1 | //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements decl-related attribute processing. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ASTConsumer.h" |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/ASTMutationListener.h" |
16 | #include "clang/AST/CXXInheritance.h" |
17 | #include "clang/AST/DeclCXX.h" |
18 | #include "clang/AST/DeclObjC.h" |
19 | #include "clang/AST/DeclTemplate.h" |
20 | #include "clang/AST/Expr.h" |
21 | #include "clang/AST/ExprCXX.h" |
22 | #include "clang/AST/Mangle.h" |
23 | #include "clang/AST/RecursiveASTVisitor.h" |
24 | #include "clang/AST/Type.h" |
25 | #include "clang/Basic/CharInfo.h" |
26 | #include "clang/Basic/Cuda.h" |
27 | #include "clang/Basic/DarwinSDKInfo.h" |
28 | #include "clang/Basic/HLSLRuntime.h" |
29 | #include "clang/Basic/LangOptions.h" |
30 | #include "clang/Basic/SourceLocation.h" |
31 | #include "clang/Basic/SourceManager.h" |
32 | #include "clang/Basic/TargetBuiltins.h" |
33 | #include "clang/Basic/TargetInfo.h" |
34 | #include "clang/Lex/Preprocessor.h" |
35 | #include "clang/Sema/DeclSpec.h" |
36 | #include "clang/Sema/DelayedDiagnostic.h" |
37 | #include "clang/Sema/Initialization.h" |
38 | #include "clang/Sema/Lookup.h" |
39 | #include "clang/Sema/ParsedAttr.h" |
40 | #include "clang/Sema/Scope.h" |
41 | #include "clang/Sema/ScopeInfo.h" |
42 | #include "clang/Sema/SemaCUDA.h" |
43 | #include "clang/Sema/SemaHLSL.h" |
44 | #include "clang/Sema/SemaInternal.h" |
45 | #include "llvm/ADT/STLExtras.h" |
46 | #include "llvm/ADT/STLForwardCompat.h" |
47 | #include "llvm/ADT/StringExtras.h" |
48 | #include "llvm/Demangle/Demangle.h" |
49 | #include "llvm/IR/Assumptions.h" |
50 | #include "llvm/MC/MCSectionMachO.h" |
51 | #include "llvm/Support/Error.h" |
52 | #include "llvm/Support/MathExtras.h" |
53 | #include "llvm/Support/raw_ostream.h" |
54 | #include <optional> |
55 | |
56 | using namespace clang; |
57 | using namespace sema; |
58 | |
59 | namespace AttributeLangSupport { |
60 | enum LANG { |
61 | C, |
62 | Cpp, |
63 | ObjC |
64 | }; |
65 | } // end namespace AttributeLangSupport |
66 | |
67 | //===----------------------------------------------------------------------===// |
68 | // Helper functions |
69 | //===----------------------------------------------------------------------===// |
70 | |
71 | /// isFunctionOrMethod - Return true if the given decl has function |
72 | /// type (function or function-typed variable) or an Objective-C |
73 | /// method. |
74 | static bool isFunctionOrMethod(const Decl *D) { |
75 | return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(Val: D); |
76 | } |
77 | |
78 | /// Return true if the given decl has function type (function or |
79 | /// function-typed variable) or an Objective-C method or a block. |
80 | static bool isFunctionOrMethodOrBlock(const Decl *D) { |
81 | return isFunctionOrMethod(D) || isa<BlockDecl>(Val: D); |
82 | } |
83 | |
84 | /// Return true if the given decl has a declarator that should have |
85 | /// been processed by Sema::GetTypeForDeclarator. |
86 | static bool hasDeclarator(const Decl *D) { |
87 | // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl. |
88 | return isa<DeclaratorDecl>(Val: D) || isa<BlockDecl>(Val: D) || isa<TypedefNameDecl>(Val: D) || |
89 | isa<ObjCPropertyDecl>(Val: D); |
90 | } |
91 | |
92 | /// hasFunctionProto - Return true if the given decl has a argument |
93 | /// information. This decl should have already passed |
94 | /// isFunctionOrMethod or isFunctionOrMethodOrBlock. |
95 | static bool hasFunctionProto(const Decl *D) { |
96 | if (const FunctionType *FnTy = D->getFunctionType()) |
97 | return isa<FunctionProtoType>(Val: FnTy); |
98 | return isa<ObjCMethodDecl>(Val: D) || isa<BlockDecl>(Val: D); |
99 | } |
100 | |
101 | /// getFunctionOrMethodNumParams - Return number of function or method |
102 | /// parameters. It is an error to call this on a K&R function (use |
103 | /// hasFunctionProto first). |
104 | static unsigned getFunctionOrMethodNumParams(const Decl *D) { |
105 | if (const FunctionType *FnTy = D->getFunctionType()) |
106 | return cast<FunctionProtoType>(Val: FnTy)->getNumParams(); |
107 | if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) |
108 | return BD->getNumParams(); |
109 | return cast<ObjCMethodDecl>(Val: D)->param_size(); |
110 | } |
111 | |
112 | static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D, |
113 | unsigned Idx) { |
114 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
115 | return FD->getParamDecl(i: Idx); |
116 | if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) |
117 | return MD->getParamDecl(Idx); |
118 | if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) |
119 | return BD->getParamDecl(i: Idx); |
120 | return nullptr; |
121 | } |
122 | |
123 | static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) { |
124 | if (const FunctionType *FnTy = D->getFunctionType()) |
125 | return cast<FunctionProtoType>(Val: FnTy)->getParamType(i: Idx); |
126 | if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) |
127 | return BD->getParamDecl(i: Idx)->getType(); |
128 | |
129 | return cast<ObjCMethodDecl>(Val: D)->parameters()[Idx]->getType(); |
130 | } |
131 | |
132 | static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) { |
133 | if (auto *PVD = getFunctionOrMethodParam(D, Idx)) |
134 | return PVD->getSourceRange(); |
135 | return SourceRange(); |
136 | } |
137 | |
138 | static QualType getFunctionOrMethodResultType(const Decl *D) { |
139 | if (const FunctionType *FnTy = D->getFunctionType()) |
140 | return FnTy->getReturnType(); |
141 | return cast<ObjCMethodDecl>(Val: D)->getReturnType(); |
142 | } |
143 | |
144 | static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) { |
145 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
146 | return FD->getReturnTypeSourceRange(); |
147 | if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) |
148 | return MD->getReturnTypeSourceRange(); |
149 | return SourceRange(); |
150 | } |
151 | |
152 | static bool isFunctionOrMethodVariadic(const Decl *D) { |
153 | if (const FunctionType *FnTy = D->getFunctionType()) |
154 | return cast<FunctionProtoType>(Val: FnTy)->isVariadic(); |
155 | if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) |
156 | return BD->isVariadic(); |
157 | return cast<ObjCMethodDecl>(Val: D)->isVariadic(); |
158 | } |
159 | |
160 | static bool isInstanceMethod(const Decl *D) { |
161 | if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(Val: D)) |
162 | return MethodDecl->isInstance(); |
163 | return false; |
164 | } |
165 | |
166 | static inline bool isNSStringType(QualType T, ASTContext &Ctx, |
167 | bool AllowNSAttributedString = false) { |
168 | const auto *PT = T->getAs<ObjCObjectPointerType>(); |
169 | if (!PT) |
170 | return false; |
171 | |
172 | ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface(); |
173 | if (!Cls) |
174 | return false; |
175 | |
176 | IdentifierInfo* ClsName = Cls->getIdentifier(); |
177 | |
178 | if (AllowNSAttributedString && |
179 | ClsName == &Ctx.Idents.get(Name: "NSAttributedString" )) |
180 | return true; |
181 | // FIXME: Should we walk the chain of classes? |
182 | return ClsName == &Ctx.Idents.get(Name: "NSString" ) || |
183 | ClsName == &Ctx.Idents.get(Name: "NSMutableString" ); |
184 | } |
185 | |
186 | static inline bool isCFStringType(QualType T, ASTContext &Ctx) { |
187 | const auto *PT = T->getAs<PointerType>(); |
188 | if (!PT) |
189 | return false; |
190 | |
191 | const auto *RT = PT->getPointeeType()->getAs<RecordType>(); |
192 | if (!RT) |
193 | return false; |
194 | |
195 | const RecordDecl *RD = RT->getDecl(); |
196 | if (RD->getTagKind() != TagTypeKind::Struct) |
197 | return false; |
198 | |
199 | return RD->getIdentifier() == &Ctx.Idents.get(Name: "__CFString" ); |
200 | } |
201 | |
202 | static unsigned getNumAttributeArgs(const ParsedAttr &AL) { |
203 | // FIXME: Include the type in the argument list. |
204 | return AL.getNumArgs() + AL.hasParsedType(); |
205 | } |
206 | |
207 | /// A helper function to provide Attribute Location for the Attr types |
208 | /// AND the ParsedAttr. |
209 | template <typename AttrInfo> |
210 | static std::enable_if_t<std::is_base_of_v<Attr, AttrInfo>, SourceLocation> |
211 | getAttrLoc(const AttrInfo &AL) { |
212 | return AL.getLocation(); |
213 | } |
214 | static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); } |
215 | |
216 | /// If Expr is a valid integer constant, get the value of the integer |
217 | /// expression and return success or failure. May output an error. |
218 | /// |
219 | /// Negative argument is implicitly converted to unsigned, unless |
220 | /// \p StrictlyUnsigned is true. |
221 | template <typename AttrInfo> |
222 | static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr, |
223 | uint32_t &Val, unsigned Idx = UINT_MAX, |
224 | bool StrictlyUnsigned = false) { |
225 | std::optional<llvm::APSInt> I = llvm::APSInt(32); |
226 | if (Expr->isTypeDependent() || |
227 | !(I = Expr->getIntegerConstantExpr(Ctx: S.Context))) { |
228 | if (Idx != UINT_MAX) |
229 | S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) |
230 | << &AI << Idx << AANT_ArgumentIntegerConstant |
231 | << Expr->getSourceRange(); |
232 | else |
233 | S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type) |
234 | << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange(); |
235 | return false; |
236 | } |
237 | |
238 | if (!I->isIntN(N: 32)) { |
239 | S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) |
240 | << toString(*I, 10, false) << 32 << /* Unsigned */ 1; |
241 | return false; |
242 | } |
243 | |
244 | if (StrictlyUnsigned && I->isSigned() && I->isNegative()) { |
245 | S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer) |
246 | << &AI << /*non-negative*/ 1; |
247 | return false; |
248 | } |
249 | |
250 | Val = (uint32_t)I->getZExtValue(); |
251 | return true; |
252 | } |
253 | |
254 | /// Wrapper around checkUInt32Argument, with an extra check to be sure |
255 | /// that the result will fit into a regular (signed) int. All args have the same |
256 | /// purpose as they do in checkUInt32Argument. |
257 | template <typename AttrInfo> |
258 | static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, |
259 | int &Val, unsigned Idx = UINT_MAX) { |
260 | uint32_t UVal; |
261 | if (!checkUInt32Argument(S, AI, Expr, UVal, Idx)) |
262 | return false; |
263 | |
264 | if (UVal > (uint32_t)std::numeric_limits<int>::max()) { |
265 | llvm::APSInt I(32); // for toString |
266 | I = UVal; |
267 | S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) |
268 | << toString(I, 10, false) << 32 << /* Unsigned */ 0; |
269 | return false; |
270 | } |
271 | |
272 | Val = UVal; |
273 | return true; |
274 | } |
275 | |
276 | /// Diagnose mutually exclusive attributes when present on a given |
277 | /// declaration. Returns true if diagnosed. |
278 | template <typename AttrTy> |
279 | static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) { |
280 | if (const auto *A = D->getAttr<AttrTy>()) { |
281 | S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) |
282 | << AL << A |
283 | << (AL.isRegularKeywordAttribute() || A->isRegularKeywordAttribute()); |
284 | S.Diag(A->getLocation(), diag::note_conflicting_attribute); |
285 | return true; |
286 | } |
287 | return false; |
288 | } |
289 | |
290 | template <typename AttrTy> |
291 | static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) { |
292 | if (const auto *A = D->getAttr<AttrTy>()) { |
293 | S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) |
294 | << &AL << A |
295 | << (AL.isRegularKeywordAttribute() || A->isRegularKeywordAttribute()); |
296 | S.Diag(A->getLocation(), diag::note_conflicting_attribute); |
297 | return true; |
298 | } |
299 | return false; |
300 | } |
301 | |
302 | /// Check if IdxExpr is a valid parameter index for a function or |
303 | /// instance method D. May output an error. |
304 | /// |
305 | /// \returns true if IdxExpr is a valid index. |
306 | template <typename AttrInfo> |
307 | static bool checkFunctionOrMethodParameterIndex( |
308 | Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum, |
309 | const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) { |
310 | assert(isFunctionOrMethodOrBlock(D)); |
311 | |
312 | // In C++ the implicit 'this' function parameter also counts. |
313 | // Parameters are counted from one. |
314 | bool HP = hasFunctionProto(D); |
315 | bool HasImplicitThisParam = isInstanceMethod(D); |
316 | bool IV = HP && isFunctionOrMethodVariadic(D); |
317 | unsigned NumParams = |
318 | (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam; |
319 | |
320 | std::optional<llvm::APSInt> IdxInt; |
321 | if (IdxExpr->isTypeDependent() || |
322 | !(IdxInt = IdxExpr->getIntegerConstantExpr(Ctx: S.Context))) { |
323 | S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) |
324 | << &AI << AttrArgNum << AANT_ArgumentIntegerConstant |
325 | << IdxExpr->getSourceRange(); |
326 | return false; |
327 | } |
328 | |
329 | unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX); |
330 | if (IdxSource < 1 || (!IV && IdxSource > NumParams)) { |
331 | S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds) |
332 | << &AI << AttrArgNum << IdxExpr->getSourceRange(); |
333 | return false; |
334 | } |
335 | if (HasImplicitThisParam && !CanIndexImplicitThis) { |
336 | if (IdxSource == 1) { |
337 | S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument) |
338 | << &AI << IdxExpr->getSourceRange(); |
339 | return false; |
340 | } |
341 | } |
342 | |
343 | Idx = ParamIdx(IdxSource, D); |
344 | return true; |
345 | } |
346 | |
347 | /// Check if the argument \p E is a ASCII string literal. If not emit an error |
348 | /// and return false, otherwise set \p Str to the value of the string literal |
349 | /// and return true. |
350 | bool Sema::checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI, |
351 | const Expr *E, StringRef &Str, |
352 | SourceLocation *ArgLocation) { |
353 | const auto *Literal = dyn_cast<StringLiteral>(Val: E->IgnoreParenCasts()); |
354 | if (ArgLocation) |
355 | *ArgLocation = E->getBeginLoc(); |
356 | |
357 | if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) { |
358 | Diag(E->getBeginLoc(), diag::err_attribute_argument_type) |
359 | << CI << AANT_ArgumentString; |
360 | return false; |
361 | } |
362 | |
363 | Str = Literal->getString(); |
364 | return true; |
365 | } |
366 | |
367 | /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal. |
368 | /// If not emit an error and return false. If the argument is an identifier it |
369 | /// will emit an error with a fixit hint and treat it as if it was a string |
370 | /// literal. |
371 | bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum, |
372 | StringRef &Str, |
373 | SourceLocation *ArgLocation) { |
374 | // Look for identifiers. If we have one emit a hint to fix it to a literal. |
375 | if (AL.isArgIdent(Arg: ArgNum)) { |
376 | IdentifierLoc *Loc = AL.getArgAsIdent(Arg: ArgNum); |
377 | Diag(Loc->Loc, diag::err_attribute_argument_type) |
378 | << AL << AANT_ArgumentString |
379 | << FixItHint::CreateInsertion(Loc->Loc, "\"" ) |
380 | << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"" ); |
381 | Str = Loc->Ident->getName(); |
382 | if (ArgLocation) |
383 | *ArgLocation = Loc->Loc; |
384 | return true; |
385 | } |
386 | |
387 | // Now check for an actual string literal. |
388 | Expr *ArgExpr = AL.getArgAsExpr(Arg: ArgNum); |
389 | const auto *Literal = dyn_cast<StringLiteral>(Val: ArgExpr->IgnoreParenCasts()); |
390 | if (ArgLocation) |
391 | *ArgLocation = ArgExpr->getBeginLoc(); |
392 | |
393 | if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) { |
394 | Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type) |
395 | << AL << AANT_ArgumentString; |
396 | return false; |
397 | } |
398 | Str = Literal->getString(); |
399 | return checkStringLiteralArgumentAttr(CI: AL, E: ArgExpr, Str, ArgLocation); |
400 | } |
401 | |
402 | /// Applies the given attribute to the Decl without performing any |
403 | /// additional semantic checking. |
404 | template <typename AttrType> |
405 | static void handleSimpleAttribute(Sema &S, Decl *D, |
406 | const AttributeCommonInfo &CI) { |
407 | D->addAttr(A: ::new (S.Context) AttrType(S.Context, CI)); |
408 | } |
409 | |
410 | template <typename... DiagnosticArgs> |
411 | static const Sema::SemaDiagnosticBuilder& |
412 | appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) { |
413 | return Bldr; |
414 | } |
415 | |
416 | template <typename T, typename... DiagnosticArgs> |
417 | static const Sema::SemaDiagnosticBuilder& |
418 | appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&, |
419 | DiagnosticArgs &&... ) { |
420 | return appendDiagnostics(Bldr << std::forward<T>(ExtraArg), |
421 | std::forward<DiagnosticArgs>(ExtraArgs)...); |
422 | } |
423 | |
424 | /// Add an attribute @c AttrType to declaration @c D, provided that |
425 | /// @c PassesCheck is true. |
426 | /// Otherwise, emit diagnostic @c DiagID, passing in all parameters |
427 | /// specified in @c ExtraArgs. |
428 | template <typename AttrType, typename... DiagnosticArgs> |
429 | static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D, |
430 | const AttributeCommonInfo &CI, |
431 | bool PassesCheck, unsigned DiagID, |
432 | DiagnosticArgs &&... ) { |
433 | if (!PassesCheck) { |
434 | Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID); |
435 | appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...); |
436 | return; |
437 | } |
438 | handleSimpleAttribute<AttrType>(S, D, CI); |
439 | } |
440 | |
441 | /// Check if the passed-in expression is of type int or bool. |
442 | static bool isIntOrBool(Expr *Exp) { |
443 | QualType QT = Exp->getType(); |
444 | return QT->isBooleanType() || QT->isIntegerType(); |
445 | } |
446 | |
447 | |
448 | // Check to see if the type is a smart pointer of some kind. We assume |
449 | // it's a smart pointer if it defines both operator-> and operator*. |
450 | static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { |
451 | auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record, |
452 | OverloadedOperatorKind Op) { |
453 | DeclContextLookupResult Result = |
454 | Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op)); |
455 | return !Result.empty(); |
456 | }; |
457 | |
458 | const RecordDecl *Record = RT->getDecl(); |
459 | bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star); |
460 | bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow); |
461 | if (foundStarOperator && foundArrowOperator) |
462 | return true; |
463 | |
464 | const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Val: Record); |
465 | if (!CXXRecord) |
466 | return false; |
467 | |
468 | for (const auto &BaseSpecifier : CXXRecord->bases()) { |
469 | if (!foundStarOperator) |
470 | foundStarOperator = IsOverloadedOperatorPresent( |
471 | BaseSpecifier.getType()->getAsRecordDecl(), OO_Star); |
472 | if (!foundArrowOperator) |
473 | foundArrowOperator = IsOverloadedOperatorPresent( |
474 | BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow); |
475 | } |
476 | |
477 | if (foundStarOperator && foundArrowOperator) |
478 | return true; |
479 | |
480 | return false; |
481 | } |
482 | |
483 | /// Check if passed in Decl is a pointer type. |
484 | /// Note that this function may produce an error message. |
485 | /// \return true if the Decl is a pointer type; false otherwise |
486 | static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, |
487 | const ParsedAttr &AL) { |
488 | const auto *VD = cast<ValueDecl>(Val: D); |
489 | QualType QT = VD->getType(); |
490 | if (QT->isAnyPointerType()) |
491 | return true; |
492 | |
493 | if (const auto *RT = QT->getAs<RecordType>()) { |
494 | // If it's an incomplete type, it could be a smart pointer; skip it. |
495 | // (We don't want to force template instantiation if we can avoid it, |
496 | // since that would alter the order in which templates are instantiated.) |
497 | if (RT->isIncompleteType()) |
498 | return true; |
499 | |
500 | if (threadSafetyCheckIsSmartPointer(S, RT)) |
501 | return true; |
502 | } |
503 | |
504 | S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT; |
505 | return false; |
506 | } |
507 | |
508 | /// Checks that the passed in QualType either is of RecordType or points |
509 | /// to RecordType. Returns the relevant RecordType, null if it does not exit. |
510 | static const RecordType *getRecordType(QualType QT) { |
511 | if (const auto *RT = QT->getAs<RecordType>()) |
512 | return RT; |
513 | |
514 | // Now check if we point to record type. |
515 | if (const auto *PT = QT->getAs<PointerType>()) |
516 | return PT->getPointeeType()->getAs<RecordType>(); |
517 | |
518 | return nullptr; |
519 | } |
520 | |
521 | template <typename AttrType> |
522 | static bool checkRecordDeclForAttr(const RecordDecl *RD) { |
523 | // Check if the record itself has the attribute. |
524 | if (RD->hasAttr<AttrType>()) |
525 | return true; |
526 | |
527 | // Else check if any base classes have the attribute. |
528 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
529 | if (!CRD->forallBases(BaseMatches: [](const CXXRecordDecl *Base) { |
530 | return !Base->hasAttr<AttrType>(); |
531 | })) |
532 | return true; |
533 | } |
534 | return false; |
535 | } |
536 | |
537 | static bool checkRecordTypeForCapability(Sema &S, QualType Ty) { |
538 | const RecordType *RT = getRecordType(QT: Ty); |
539 | |
540 | if (!RT) |
541 | return false; |
542 | |
543 | // Don't check for the capability if the class hasn't been defined yet. |
544 | if (RT->isIncompleteType()) |
545 | return true; |
546 | |
547 | // Allow smart pointers to be used as capability objects. |
548 | // FIXME -- Check the type that the smart pointer points to. |
549 | if (threadSafetyCheckIsSmartPointer(S, RT)) |
550 | return true; |
551 | |
552 | return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl()); |
553 | } |
554 | |
555 | static bool checkTypedefTypeForCapability(QualType Ty) { |
556 | const auto *TD = Ty->getAs<TypedefType>(); |
557 | if (!TD) |
558 | return false; |
559 | |
560 | TypedefNameDecl *TN = TD->getDecl(); |
561 | if (!TN) |
562 | return false; |
563 | |
564 | return TN->hasAttr<CapabilityAttr>(); |
565 | } |
566 | |
567 | static bool typeHasCapability(Sema &S, QualType Ty) { |
568 | if (checkTypedefTypeForCapability(Ty)) |
569 | return true; |
570 | |
571 | if (checkRecordTypeForCapability(S, Ty)) |
572 | return true; |
573 | |
574 | return false; |
575 | } |
576 | |
577 | static bool isCapabilityExpr(Sema &S, const Expr *Ex) { |
578 | // Capability expressions are simple expressions involving the boolean logic |
579 | // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once |
580 | // a DeclRefExpr is found, its type should be checked to determine whether it |
581 | // is a capability or not. |
582 | |
583 | if (const auto *E = dyn_cast<CastExpr>(Val: Ex)) |
584 | return isCapabilityExpr(S, Ex: E->getSubExpr()); |
585 | else if (const auto *E = dyn_cast<ParenExpr>(Val: Ex)) |
586 | return isCapabilityExpr(S, Ex: E->getSubExpr()); |
587 | else if (const auto *E = dyn_cast<UnaryOperator>(Val: Ex)) { |
588 | if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf || |
589 | E->getOpcode() == UO_Deref) |
590 | return isCapabilityExpr(S, Ex: E->getSubExpr()); |
591 | return false; |
592 | } else if (const auto *E = dyn_cast<BinaryOperator>(Val: Ex)) { |
593 | if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr) |
594 | return isCapabilityExpr(S, Ex: E->getLHS()) && |
595 | isCapabilityExpr(S, Ex: E->getRHS()); |
596 | return false; |
597 | } |
598 | |
599 | return typeHasCapability(S, Ty: Ex->getType()); |
600 | } |
601 | |
602 | /// Checks that all attribute arguments, starting from Sidx, resolve to |
603 | /// a capability object. |
604 | /// \param Sidx The attribute argument index to start checking with. |
605 | /// \param ParamIdxOk Whether an argument can be indexing into a function |
606 | /// parameter list. |
607 | static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, |
608 | const ParsedAttr &AL, |
609 | SmallVectorImpl<Expr *> &Args, |
610 | unsigned Sidx = 0, |
611 | bool ParamIdxOk = false) { |
612 | if (Sidx == AL.getNumArgs()) { |
613 | // If we don't have any capability arguments, the attribute implicitly |
614 | // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're |
615 | // a non-static method, and that the class is a (scoped) capability. |
616 | const auto *MD = dyn_cast<const CXXMethodDecl>(Val: D); |
617 | if (MD && !MD->isStatic()) { |
618 | const CXXRecordDecl *RD = MD->getParent(); |
619 | // FIXME -- need to check this again on template instantiation |
620 | if (!checkRecordDeclForAttr<CapabilityAttr>(RD) && |
621 | !checkRecordDeclForAttr<ScopedLockableAttr>(RD)) |
622 | S.Diag(AL.getLoc(), |
623 | diag::warn_thread_attribute_not_on_capability_member) |
624 | << AL << MD->getParent(); |
625 | } else { |
626 | S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member) |
627 | << AL; |
628 | } |
629 | } |
630 | |
631 | for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) { |
632 | Expr *ArgExp = AL.getArgAsExpr(Arg: Idx); |
633 | |
634 | if (ArgExp->isTypeDependent()) { |
635 | // FIXME -- need to check this again on template instantiation |
636 | Args.push_back(Elt: ArgExp); |
637 | continue; |
638 | } |
639 | |
640 | if (const auto *StrLit = dyn_cast<StringLiteral>(Val: ArgExp)) { |
641 | if (StrLit->getLength() == 0 || |
642 | (StrLit->isOrdinary() && StrLit->getString() == StringRef("*" ))) { |
643 | // Pass empty strings to the analyzer without warnings. |
644 | // Treat "*" as the universal lock. |
645 | Args.push_back(Elt: ArgExp); |
646 | continue; |
647 | } |
648 | |
649 | // We allow constant strings to be used as a placeholder for expressions |
650 | // that are not valid C++ syntax, but warn that they are ignored. |
651 | S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL; |
652 | Args.push_back(Elt: ArgExp); |
653 | continue; |
654 | } |
655 | |
656 | QualType ArgTy = ArgExp->getType(); |
657 | |
658 | // A pointer to member expression of the form &MyClass::mu is treated |
659 | // specially -- we need to look at the type of the member. |
660 | if (const auto *UOp = dyn_cast<UnaryOperator>(Val: ArgExp)) |
661 | if (UOp->getOpcode() == UO_AddrOf) |
662 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: UOp->getSubExpr())) |
663 | if (DRE->getDecl()->isCXXInstanceMember()) |
664 | ArgTy = DRE->getDecl()->getType(); |
665 | |
666 | // First see if we can just cast to record type, or pointer to record type. |
667 | const RecordType *RT = getRecordType(QT: ArgTy); |
668 | |
669 | // Now check if we index into a record type function param. |
670 | if(!RT && ParamIdxOk) { |
671 | const auto *FD = dyn_cast<FunctionDecl>(Val: D); |
672 | const auto *IL = dyn_cast<IntegerLiteral>(Val: ArgExp); |
673 | if(FD && IL) { |
674 | unsigned int NumParams = FD->getNumParams(); |
675 | llvm::APInt ArgValue = IL->getValue(); |
676 | uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); |
677 | uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; |
678 | if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { |
679 | S.Diag(AL.getLoc(), |
680 | diag::err_attribute_argument_out_of_bounds_extra_info) |
681 | << AL << Idx + 1 << NumParams; |
682 | continue; |
683 | } |
684 | ArgTy = FD->getParamDecl(i: ParamIdxFromZero)->getType(); |
685 | } |
686 | } |
687 | |
688 | // If the type does not have a capability, see if the components of the |
689 | // expression have capabilities. This allows for writing C code where the |
690 | // capability may be on the type, and the expression is a capability |
691 | // boolean logic expression. Eg) requires_capability(A || B && !C) |
692 | if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp)) |
693 | S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable) |
694 | << AL << ArgTy; |
695 | |
696 | Args.push_back(Elt: ArgExp); |
697 | } |
698 | } |
699 | |
700 | //===----------------------------------------------------------------------===// |
701 | // Attribute Implementations |
702 | //===----------------------------------------------------------------------===// |
703 | |
704 | static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
705 | if (!threadSafetyCheckIsPointer(S, D, AL)) |
706 | return; |
707 | |
708 | D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL)); |
709 | } |
710 | |
711 | static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
712 | Expr *&Arg) { |
713 | SmallVector<Expr *, 1> Args; |
714 | // check that all arguments are lockable objects |
715 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
716 | unsigned Size = Args.size(); |
717 | if (Size != 1) |
718 | return false; |
719 | |
720 | Arg = Args[0]; |
721 | |
722 | return true; |
723 | } |
724 | |
725 | static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
726 | Expr *Arg = nullptr; |
727 | if (!checkGuardedByAttrCommon(S, D, AL, Arg)) |
728 | return; |
729 | |
730 | D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg)); |
731 | } |
732 | |
733 | static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
734 | Expr *Arg = nullptr; |
735 | if (!checkGuardedByAttrCommon(S, D, AL, Arg)) |
736 | return; |
737 | |
738 | if (!threadSafetyCheckIsPointer(S, D, AL)) |
739 | return; |
740 | |
741 | D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg)); |
742 | } |
743 | |
744 | static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
745 | SmallVectorImpl<Expr *> &Args) { |
746 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
747 | return false; |
748 | |
749 | // Check that this attribute only applies to lockable types. |
750 | QualType QT = cast<ValueDecl>(Val: D)->getType(); |
751 | if (!QT->isDependentType() && !typeHasCapability(S, Ty: QT)) { |
752 | S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL; |
753 | return false; |
754 | } |
755 | |
756 | // Check that all arguments are lockable objects. |
757 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
758 | if (Args.empty()) |
759 | return false; |
760 | |
761 | return true; |
762 | } |
763 | |
764 | static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
765 | SmallVector<Expr *, 1> Args; |
766 | if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) |
767 | return; |
768 | |
769 | Expr **StartArg = &Args[0]; |
770 | D->addAttr(::new (S.Context) |
771 | AcquiredAfterAttr(S.Context, AL, StartArg, Args.size())); |
772 | } |
773 | |
774 | static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
775 | SmallVector<Expr *, 1> Args; |
776 | if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) |
777 | return; |
778 | |
779 | Expr **StartArg = &Args[0]; |
780 | D->addAttr(::new (S.Context) |
781 | AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size())); |
782 | } |
783 | |
784 | static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
785 | SmallVectorImpl<Expr *> &Args) { |
786 | // zero or more arguments ok |
787 | // check that all arguments are lockable objects |
788 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args, Sidx: 0, /*ParamIdxOk=*/true); |
789 | |
790 | return true; |
791 | } |
792 | |
793 | static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
794 | SmallVector<Expr *, 1> Args; |
795 | if (!checkLockFunAttrCommon(S, D, AL, Args)) |
796 | return; |
797 | |
798 | unsigned Size = Args.size(); |
799 | Expr **StartArg = Size == 0 ? nullptr : &Args[0]; |
800 | D->addAttr(::new (S.Context) |
801 | AssertSharedLockAttr(S.Context, AL, StartArg, Size)); |
802 | } |
803 | |
804 | static void handleAssertExclusiveLockAttr(Sema &S, Decl *D, |
805 | const ParsedAttr &AL) { |
806 | SmallVector<Expr *, 1> Args; |
807 | if (!checkLockFunAttrCommon(S, D, AL, Args)) |
808 | return; |
809 | |
810 | unsigned Size = Args.size(); |
811 | Expr **StartArg = Size == 0 ? nullptr : &Args[0]; |
812 | D->addAttr(::new (S.Context) |
813 | AssertExclusiveLockAttr(S.Context, AL, StartArg, Size)); |
814 | } |
815 | |
816 | /// Checks to be sure that the given parameter number is in bounds, and |
817 | /// is an integral type. Will emit appropriate diagnostics if this returns |
818 | /// false. |
819 | /// |
820 | /// AttrArgNo is used to actually retrieve the argument, so it's base-0. |
821 | template <typename AttrInfo> |
822 | static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI, |
823 | unsigned AttrArgNo) { |
824 | assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument" ); |
825 | Expr *AttrArg = AI.getArgAsExpr(AttrArgNo); |
826 | ParamIdx Idx; |
827 | if (!checkFunctionOrMethodParameterIndex(S, D, AI, AttrArgNo + 1, AttrArg, |
828 | Idx)) |
829 | return false; |
830 | |
831 | QualType ParamTy = getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()); |
832 | if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) { |
833 | SourceLocation SrcLoc = AttrArg->getBeginLoc(); |
834 | S.Diag(SrcLoc, diag::err_attribute_integers_only) |
835 | << AI << getFunctionOrMethodParamRange(D, Idx.getASTIndex()); |
836 | return false; |
837 | } |
838 | return true; |
839 | } |
840 | |
841 | static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
842 | if (!AL.checkAtLeastNumArgs(S, Num: 1) || !AL.checkAtMostNumArgs(S, Num: 2)) |
843 | return; |
844 | |
845 | assert(isFunctionOrMethod(D) && hasFunctionProto(D)); |
846 | |
847 | QualType RetTy = getFunctionOrMethodResultType(D); |
848 | if (!RetTy->isPointerType()) { |
849 | S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL; |
850 | return; |
851 | } |
852 | |
853 | const Expr *SizeExpr = AL.getArgAsExpr(Arg: 0); |
854 | int SizeArgNoVal; |
855 | // Parameter indices are 1-indexed, hence Index=1 |
856 | if (!checkPositiveIntArgument(S, AI: AL, Expr: SizeExpr, Val&: SizeArgNoVal, /*Idx=*/1)) |
857 | return; |
858 | if (!checkParamIsIntegerType(S, D, AI: AL, /*AttrArgNo=*/0)) |
859 | return; |
860 | ParamIdx SizeArgNo(SizeArgNoVal, D); |
861 | |
862 | ParamIdx NumberArgNo; |
863 | if (AL.getNumArgs() == 2) { |
864 | const Expr *NumberExpr = AL.getArgAsExpr(Arg: 1); |
865 | int Val; |
866 | // Parameter indices are 1-based, hence Index=2 |
867 | if (!checkPositiveIntArgument(S, AI: AL, Expr: NumberExpr, Val, /*Idx=*/2)) |
868 | return; |
869 | if (!checkParamIsIntegerType(S, D, AI: AL, /*AttrArgNo=*/1)) |
870 | return; |
871 | NumberArgNo = ParamIdx(Val, D); |
872 | } |
873 | |
874 | D->addAttr(::new (S.Context) |
875 | AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo)); |
876 | } |
877 | |
878 | static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
879 | SmallVectorImpl<Expr *> &Args) { |
880 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
881 | return false; |
882 | |
883 | if (!isIntOrBool(Exp: AL.getArgAsExpr(Arg: 0))) { |
884 | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
885 | << AL << 1 << AANT_ArgumentIntOrBool; |
886 | return false; |
887 | } |
888 | |
889 | // check that all arguments are lockable objects |
890 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args, Sidx: 1); |
891 | |
892 | return true; |
893 | } |
894 | |
895 | static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D, |
896 | const ParsedAttr &AL) { |
897 | SmallVector<Expr*, 2> Args; |
898 | if (!checkTryLockFunAttrCommon(S, D, AL, Args)) |
899 | return; |
900 | |
901 | D->addAttr(::new (S.Context) SharedTrylockFunctionAttr( |
902 | S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); |
903 | } |
904 | |
905 | static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D, |
906 | const ParsedAttr &AL) { |
907 | SmallVector<Expr*, 2> Args; |
908 | if (!checkTryLockFunAttrCommon(S, D, AL, Args)) |
909 | return; |
910 | |
911 | D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr( |
912 | S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); |
913 | } |
914 | |
915 | static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
916 | // check that the argument is lockable object |
917 | SmallVector<Expr*, 1> Args; |
918 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
919 | unsigned Size = Args.size(); |
920 | if (Size == 0) |
921 | return; |
922 | |
923 | D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0])); |
924 | } |
925 | |
926 | static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
927 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
928 | return; |
929 | |
930 | // check that all arguments are lockable objects |
931 | SmallVector<Expr*, 1> Args; |
932 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
933 | unsigned Size = Args.size(); |
934 | if (Size == 0) |
935 | return; |
936 | Expr **StartArg = &Args[0]; |
937 | |
938 | D->addAttr(::new (S.Context) |
939 | LocksExcludedAttr(S.Context, AL, StartArg, Size)); |
940 | } |
941 | |
942 | static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, |
943 | Expr *&Cond, StringRef &Msg) { |
944 | Cond = AL.getArgAsExpr(Arg: 0); |
945 | if (!Cond->isTypeDependent()) { |
946 | ExprResult Converted = S.PerformContextuallyConvertToBool(From: Cond); |
947 | if (Converted.isInvalid()) |
948 | return false; |
949 | Cond = Converted.get(); |
950 | } |
951 | |
952 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 1, Str&: Msg)) |
953 | return false; |
954 | |
955 | if (Msg.empty()) |
956 | Msg = "<no message provided>" ; |
957 | |
958 | SmallVector<PartialDiagnosticAt, 8> Diags; |
959 | if (isa<FunctionDecl>(Val: D) && !Cond->isValueDependent() && |
960 | !Expr::isPotentialConstantExprUnevaluated(E: Cond, FD: cast<FunctionDecl>(Val: D), |
961 | Diags)) { |
962 | S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL; |
963 | for (const PartialDiagnosticAt &PDiag : Diags) |
964 | S.Diag(PDiag.first, PDiag.second); |
965 | return false; |
966 | } |
967 | return true; |
968 | } |
969 | |
970 | static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
971 | S.Diag(AL.getLoc(), diag::ext_clang_enable_if); |
972 | |
973 | Expr *Cond; |
974 | StringRef Msg; |
975 | if (checkFunctionConditionAttr(S, D, AL, Cond, Msg)) |
976 | D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg)); |
977 | } |
978 | |
979 | static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
980 | StringRef NewUserDiagnostic; |
981 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: NewUserDiagnostic)) |
982 | return; |
983 | if (ErrorAttr *EA = S.mergeErrorAttr(D, AL, NewUserDiagnostic)) |
984 | D->addAttr(EA); |
985 | } |
986 | |
987 | static void handleExcludeFromExplicitInstantiationAttr(Sema &S, Decl *D, |
988 | const ParsedAttr &AL) { |
989 | const auto *PD = isa<CXXRecordDecl>(Val: D) |
990 | ? cast<DeclContext>(Val: D) |
991 | : D->getDeclContext()->getRedeclContext(); |
992 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: PD); RD && RD->isLocalClass()) { |
993 | S.Diag(AL.getLoc(), |
994 | diag::warn_attribute_exclude_from_explicit_instantiation_local_class) |
995 | << AL << /*IsMember=*/!isa<CXXRecordDecl>(D); |
996 | return; |
997 | } |
998 | D->addAttr(::new (S.Context) |
999 | ExcludeFromExplicitInstantiationAttr(S.Context, AL)); |
1000 | } |
1001 | |
1002 | namespace { |
1003 | /// Determines if a given Expr references any of the given function's |
1004 | /// ParmVarDecls, or the function's implicit `this` parameter (if applicable). |
1005 | class ArgumentDependenceChecker |
1006 | : public RecursiveASTVisitor<ArgumentDependenceChecker> { |
1007 | #ifndef NDEBUG |
1008 | const CXXRecordDecl *ClassType; |
1009 | #endif |
1010 | llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms; |
1011 | bool Result; |
1012 | |
1013 | public: |
1014 | ArgumentDependenceChecker(const FunctionDecl *FD) { |
1015 | #ifndef NDEBUG |
1016 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) |
1017 | ClassType = MD->getParent(); |
1018 | else |
1019 | ClassType = nullptr; |
1020 | #endif |
1021 | Parms.insert(I: FD->param_begin(), E: FD->param_end()); |
1022 | } |
1023 | |
1024 | bool referencesArgs(Expr *E) { |
1025 | Result = false; |
1026 | TraverseStmt(E); |
1027 | return Result; |
1028 | } |
1029 | |
1030 | bool VisitCXXThisExpr(CXXThisExpr *E) { |
1031 | assert(E->getType()->getPointeeCXXRecordDecl() == ClassType && |
1032 | "`this` doesn't refer to the enclosing class?" ); |
1033 | Result = true; |
1034 | return false; |
1035 | } |
1036 | |
1037 | bool VisitDeclRefExpr(DeclRefExpr *DRE) { |
1038 | if (const auto *PVD = dyn_cast<ParmVarDecl>(Val: DRE->getDecl())) |
1039 | if (Parms.count(Ptr: PVD)) { |
1040 | Result = true; |
1041 | return false; |
1042 | } |
1043 | return true; |
1044 | } |
1045 | }; |
1046 | } |
1047 | |
1048 | static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D, |
1049 | const ParsedAttr &AL) { |
1050 | const auto *DeclFD = cast<FunctionDecl>(Val: D); |
1051 | |
1052 | if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(Val: DeclFD)) |
1053 | if (!MethodDecl->isStatic()) { |
1054 | S.Diag(AL.getLoc(), diag::err_attribute_no_member_function) << AL; |
1055 | return; |
1056 | } |
1057 | |
1058 | auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) { |
1059 | SourceLocation Loc = [&]() { |
1060 | auto Union = AL.getArg(Arg: Index - 1); |
1061 | if (Union.is<Expr *>()) |
1062 | return Union.get<Expr *>()->getBeginLoc(); |
1063 | return Union.get<IdentifierLoc *>()->Loc; |
1064 | }(); |
1065 | |
1066 | S.Diag(Loc, diag::err_attribute_argument_n_type) << AL << Index << T; |
1067 | }; |
1068 | |
1069 | FunctionDecl *AttrFD = [&]() -> FunctionDecl * { |
1070 | if (!AL.isArgExpr(Arg: 0)) |
1071 | return nullptr; |
1072 | auto *F = dyn_cast_if_present<DeclRefExpr>(Val: AL.getArgAsExpr(Arg: 0)); |
1073 | if (!F) |
1074 | return nullptr; |
1075 | return dyn_cast_if_present<FunctionDecl>(Val: F->getFoundDecl()); |
1076 | }(); |
1077 | |
1078 | if (!AttrFD || !AttrFD->getBuiltinID(ConsiderWrapperFunctions: true)) { |
1079 | DiagnoseType(1, AANT_ArgumentBuiltinFunction); |
1080 | return; |
1081 | } |
1082 | |
1083 | if (AttrFD->getNumParams() != AL.getNumArgs() - 1) { |
1084 | S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments_for) |
1085 | << AL << AttrFD << AttrFD->getNumParams(); |
1086 | return; |
1087 | } |
1088 | |
1089 | SmallVector<unsigned, 8> Indices; |
1090 | |
1091 | for (unsigned I = 1; I < AL.getNumArgs(); ++I) { |
1092 | if (!AL.isArgExpr(Arg: I)) { |
1093 | DiagnoseType(I + 1, AANT_ArgumentIntegerConstant); |
1094 | return; |
1095 | } |
1096 | |
1097 | const Expr *IndexExpr = AL.getArgAsExpr(Arg: I); |
1098 | uint32_t Index; |
1099 | |
1100 | if (!checkUInt32Argument(S, AI: AL, Expr: IndexExpr, Val&: Index, Idx: I + 1, StrictlyUnsigned: false)) |
1101 | return; |
1102 | |
1103 | if (Index > DeclFD->getNumParams()) { |
1104 | S.Diag(AL.getLoc(), diag::err_attribute_bounds_for_function) |
1105 | << AL << Index << DeclFD << DeclFD->getNumParams(); |
1106 | return; |
1107 | } |
1108 | |
1109 | QualType T1 = AttrFD->getParamDecl(i: I - 1)->getType(); |
1110 | QualType T2 = DeclFD->getParamDecl(i: Index - 1)->getType(); |
1111 | |
1112 | if (T1.getCanonicalType().getUnqualifiedType() != |
1113 | T2.getCanonicalType().getUnqualifiedType()) { |
1114 | S.Diag(IndexExpr->getBeginLoc(), diag::err_attribute_parameter_types) |
1115 | << AL << Index << DeclFD << T2 << I << AttrFD << T1; |
1116 | return; |
1117 | } |
1118 | |
1119 | Indices.push_back(Elt: Index - 1); |
1120 | } |
1121 | |
1122 | D->addAttr(::new (S.Context) DiagnoseAsBuiltinAttr( |
1123 | S.Context, AL, AttrFD, Indices.data(), Indices.size())); |
1124 | } |
1125 | |
1126 | static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1127 | S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if); |
1128 | |
1129 | Expr *Cond; |
1130 | StringRef Msg; |
1131 | if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg)) |
1132 | return; |
1133 | |
1134 | StringRef DiagTypeStr; |
1135 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 2, Str&: DiagTypeStr)) |
1136 | return; |
1137 | |
1138 | DiagnoseIfAttr::DiagnosticType DiagType; |
1139 | if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) { |
1140 | S.Diag(AL.getArgAsExpr(2)->getBeginLoc(), |
1141 | diag::err_diagnose_if_invalid_diagnostic_type); |
1142 | return; |
1143 | } |
1144 | |
1145 | bool ArgDependent = false; |
1146 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
1147 | ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(E: Cond); |
1148 | D->addAttr(::new (S.Context) DiagnoseIfAttr( |
1149 | S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D))); |
1150 | } |
1151 | |
1152 | static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1153 | static constexpr const StringRef kWildcard = "*" ; |
1154 | |
1155 | llvm::SmallVector<StringRef, 16> Names; |
1156 | bool HasWildcard = false; |
1157 | |
1158 | const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) { |
1159 | if (Name == kWildcard) |
1160 | HasWildcard = true; |
1161 | Names.push_back(Elt: Name); |
1162 | }; |
1163 | |
1164 | // Add previously defined attributes. |
1165 | if (const auto *NBA = D->getAttr<NoBuiltinAttr>()) |
1166 | for (StringRef BuiltinName : NBA->builtinNames()) |
1167 | AddBuiltinName(BuiltinName); |
1168 | |
1169 | // Add current attributes. |
1170 | if (AL.getNumArgs() == 0) |
1171 | AddBuiltinName(kWildcard); |
1172 | else |
1173 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
1174 | StringRef BuiltinName; |
1175 | SourceLocation LiteralLoc; |
1176 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: BuiltinName, ArgLocation: &LiteralLoc)) |
1177 | return; |
1178 | |
1179 | if (Builtin::Context::isBuiltinFunc(Name: BuiltinName)) |
1180 | AddBuiltinName(BuiltinName); |
1181 | else |
1182 | S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name) |
1183 | << BuiltinName << AL; |
1184 | } |
1185 | |
1186 | // Repeating the same attribute is fine. |
1187 | llvm::sort(C&: Names); |
1188 | Names.erase(CS: std::unique(first: Names.begin(), last: Names.end()), CE: Names.end()); |
1189 | |
1190 | // Empty no_builtin must be on its own. |
1191 | if (HasWildcard && Names.size() > 1) |
1192 | S.Diag(D->getLocation(), |
1193 | diag::err_attribute_no_builtin_wildcard_or_builtin_name) |
1194 | << AL; |
1195 | |
1196 | if (D->hasAttr<NoBuiltinAttr>()) |
1197 | D->dropAttr<NoBuiltinAttr>(); |
1198 | D->addAttr(::new (S.Context) |
1199 | NoBuiltinAttr(S.Context, AL, Names.data(), Names.size())); |
1200 | } |
1201 | |
1202 | static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1203 | if (D->hasAttr<PassObjectSizeAttr>()) { |
1204 | S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL; |
1205 | return; |
1206 | } |
1207 | |
1208 | Expr *E = AL.getArgAsExpr(Arg: 0); |
1209 | uint32_t Type; |
1210 | if (!checkUInt32Argument(S, AI: AL, Expr: E, Val&: Type, /*Idx=*/1)) |
1211 | return; |
1212 | |
1213 | // pass_object_size's argument is passed in as the second argument of |
1214 | // __builtin_object_size. So, it has the same constraints as that second |
1215 | // argument; namely, it must be in the range [0, 3]. |
1216 | if (Type > 3) { |
1217 | S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range) |
1218 | << AL << 0 << 3 << E->getSourceRange(); |
1219 | return; |
1220 | } |
1221 | |
1222 | // pass_object_size is only supported on constant pointer parameters; as a |
1223 | // kindness to users, we allow the parameter to be non-const for declarations. |
1224 | // At this point, we have no clue if `D` belongs to a function declaration or |
1225 | // definition, so we defer the constness check until later. |
1226 | if (!cast<ParmVarDecl>(Val: D)->getType()->isPointerType()) { |
1227 | S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1; |
1228 | return; |
1229 | } |
1230 | |
1231 | D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type)); |
1232 | } |
1233 | |
1234 | static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1235 | ConsumableAttr::ConsumedState DefaultState; |
1236 | |
1237 | if (AL.isArgIdent(Arg: 0)) { |
1238 | IdentifierLoc *IL = AL.getArgAsIdent(Arg: 0); |
1239 | if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(), |
1240 | DefaultState)) { |
1241 | S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL |
1242 | << IL->Ident; |
1243 | return; |
1244 | } |
1245 | } else { |
1246 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
1247 | << AL << AANT_ArgumentIdentifier; |
1248 | return; |
1249 | } |
1250 | |
1251 | D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState)); |
1252 | } |
1253 | |
1254 | static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, |
1255 | const ParsedAttr &AL) { |
1256 | QualType ThisType = MD->getFunctionObjectParameterType(); |
1257 | |
1258 | if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { |
1259 | if (!RD->hasAttr<ConsumableAttr>()) { |
1260 | S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD; |
1261 | |
1262 | return false; |
1263 | } |
1264 | } |
1265 | |
1266 | return true; |
1267 | } |
1268 | |
1269 | static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1270 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
1271 | return; |
1272 | |
1273 | if (!checkForConsumableClass(S, MD: cast<CXXMethodDecl>(Val: D), AL)) |
1274 | return; |
1275 | |
1276 | SmallVector<CallableWhenAttr::ConsumedState, 3> States; |
1277 | for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) { |
1278 | CallableWhenAttr::ConsumedState CallableState; |
1279 | |
1280 | StringRef StateString; |
1281 | SourceLocation Loc; |
1282 | if (AL.isArgIdent(Arg: ArgIndex)) { |
1283 | IdentifierLoc *Ident = AL.getArgAsIdent(Arg: ArgIndex); |
1284 | StateString = Ident->Ident->getName(); |
1285 | Loc = Ident->Loc; |
1286 | } else { |
1287 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: ArgIndex, Str&: StateString, ArgLocation: &Loc)) |
1288 | return; |
1289 | } |
1290 | |
1291 | if (!CallableWhenAttr::ConvertStrToConsumedState(StateString, |
1292 | CallableState)) { |
1293 | S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString; |
1294 | return; |
1295 | } |
1296 | |
1297 | States.push_back(CallableState); |
1298 | } |
1299 | |
1300 | D->addAttr(::new (S.Context) |
1301 | CallableWhenAttr(S.Context, AL, States.data(), States.size())); |
1302 | } |
1303 | |
1304 | static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1305 | ParamTypestateAttr::ConsumedState ParamState; |
1306 | |
1307 | if (AL.isArgIdent(Arg: 0)) { |
1308 | IdentifierLoc *Ident = AL.getArgAsIdent(Arg: 0); |
1309 | StringRef StateString = Ident->Ident->getName(); |
1310 | |
1311 | if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString, |
1312 | ParamState)) { |
1313 | S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) |
1314 | << AL << StateString; |
1315 | return; |
1316 | } |
1317 | } else { |
1318 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
1319 | << AL << AANT_ArgumentIdentifier; |
1320 | return; |
1321 | } |
1322 | |
1323 | // FIXME: This check is currently being done in the analysis. It can be |
1324 | // enabled here only after the parser propagates attributes at |
1325 | // template specialization definition, not declaration. |
1326 | //QualType ReturnType = cast<ParmVarDecl>(D)->getType(); |
1327 | //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); |
1328 | // |
1329 | //if (!RD || !RD->hasAttr<ConsumableAttr>()) { |
1330 | // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) << |
1331 | // ReturnType.getAsString(); |
1332 | // return; |
1333 | //} |
1334 | |
1335 | D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState)); |
1336 | } |
1337 | |
1338 | static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1339 | ReturnTypestateAttr::ConsumedState ReturnState; |
1340 | |
1341 | if (AL.isArgIdent(Arg: 0)) { |
1342 | IdentifierLoc *IL = AL.getArgAsIdent(Arg: 0); |
1343 | if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(), |
1344 | ReturnState)) { |
1345 | S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL |
1346 | << IL->Ident; |
1347 | return; |
1348 | } |
1349 | } else { |
1350 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
1351 | << AL << AANT_ArgumentIdentifier; |
1352 | return; |
1353 | } |
1354 | |
1355 | // FIXME: This check is currently being done in the analysis. It can be |
1356 | // enabled here only after the parser propagates attributes at |
1357 | // template specialization definition, not declaration. |
1358 | // QualType ReturnType; |
1359 | // |
1360 | // if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) { |
1361 | // ReturnType = Param->getType(); |
1362 | // |
1363 | //} else if (const CXXConstructorDecl *Constructor = |
1364 | // dyn_cast<CXXConstructorDecl>(D)) { |
1365 | // ReturnType = Constructor->getFunctionObjectParameterType(); |
1366 | // |
1367 | //} else { |
1368 | // |
1369 | // ReturnType = cast<FunctionDecl>(D)->getCallResultType(); |
1370 | //} |
1371 | // |
1372 | // const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); |
1373 | // |
1374 | // if (!RD || !RD->hasAttr<ConsumableAttr>()) { |
1375 | // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << |
1376 | // ReturnType.getAsString(); |
1377 | // return; |
1378 | //} |
1379 | |
1380 | D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState)); |
1381 | } |
1382 | |
1383 | static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1384 | if (!checkForConsumableClass(S, MD: cast<CXXMethodDecl>(Val: D), AL)) |
1385 | return; |
1386 | |
1387 | SetTypestateAttr::ConsumedState NewState; |
1388 | if (AL.isArgIdent(Arg: 0)) { |
1389 | IdentifierLoc *Ident = AL.getArgAsIdent(Arg: 0); |
1390 | StringRef Param = Ident->Ident->getName(); |
1391 | if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) { |
1392 | S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL |
1393 | << Param; |
1394 | return; |
1395 | } |
1396 | } else { |
1397 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
1398 | << AL << AANT_ArgumentIdentifier; |
1399 | return; |
1400 | } |
1401 | |
1402 | D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState)); |
1403 | } |
1404 | |
1405 | static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1406 | if (!checkForConsumableClass(S, MD: cast<CXXMethodDecl>(Val: D), AL)) |
1407 | return; |
1408 | |
1409 | TestTypestateAttr::ConsumedState TestState; |
1410 | if (AL.isArgIdent(Arg: 0)) { |
1411 | IdentifierLoc *Ident = AL.getArgAsIdent(Arg: 0); |
1412 | StringRef Param = Ident->Ident->getName(); |
1413 | if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) { |
1414 | S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL |
1415 | << Param; |
1416 | return; |
1417 | } |
1418 | } else { |
1419 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
1420 | << AL << AANT_ArgumentIdentifier; |
1421 | return; |
1422 | } |
1423 | |
1424 | D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState)); |
1425 | } |
1426 | |
1427 | static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1428 | // Remember this typedef decl, we will need it later for diagnostics. |
1429 | S.ExtVectorDecls.push_back(LocalValue: cast<TypedefNameDecl>(Val: D)); |
1430 | } |
1431 | |
1432 | static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1433 | if (auto *TD = dyn_cast<TagDecl>(Val: D)) |
1434 | TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); |
1435 | else if (auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
1436 | bool BitfieldByteAligned = (!FD->getType()->isDependentType() && |
1437 | !FD->getType()->isIncompleteType() && |
1438 | FD->isBitField() && |
1439 | S.Context.getTypeAlign(FD->getType()) <= 8); |
1440 | |
1441 | if (S.getASTContext().getTargetInfo().getTriple().isPS()) { |
1442 | if (BitfieldByteAligned) |
1443 | // The PS4/PS5 targets need to maintain ABI backwards compatibility. |
1444 | S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type) |
1445 | << AL << FD->getType(); |
1446 | else |
1447 | FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); |
1448 | } else { |
1449 | // Report warning about changed offset in the newer compiler versions. |
1450 | if (BitfieldByteAligned) |
1451 | S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield); |
1452 | |
1453 | FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); |
1454 | } |
1455 | |
1456 | } else |
1457 | S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; |
1458 | } |
1459 | |
1460 | static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) { |
1461 | auto *RD = cast<CXXRecordDecl>(Val: D); |
1462 | ClassTemplateDecl *CTD = RD->getDescribedClassTemplate(); |
1463 | assert(CTD && "attribute does not appertain to this declaration" ); |
1464 | |
1465 | ParsedType PT = AL.getTypeArg(); |
1466 | TypeSourceInfo *TSI = nullptr; |
1467 | QualType T = S.GetTypeFromParser(Ty: PT, TInfo: &TSI); |
1468 | if (!TSI) |
1469 | TSI = S.Context.getTrivialTypeSourceInfo(T, Loc: AL.getLoc()); |
1470 | |
1471 | if (!T.hasQualifiers() && T->isTypedefNameType()) { |
1472 | // Find the template name, if this type names a template specialization. |
1473 | const TemplateDecl *Template = nullptr; |
1474 | if (const auto *CTSD = dyn_cast_if_present<ClassTemplateSpecializationDecl>( |
1475 | Val: T->getAsCXXRecordDecl())) { |
1476 | Template = CTSD->getSpecializedTemplate(); |
1477 | } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) { |
1478 | while (TST && TST->isTypeAlias()) |
1479 | TST = TST->getAliasedType()->getAs<TemplateSpecializationType>(); |
1480 | if (TST) |
1481 | Template = TST->getTemplateName().getAsTemplateDecl(); |
1482 | } |
1483 | |
1484 | if (Template && declaresSameEntity(Template, CTD)) { |
1485 | D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI)); |
1486 | return; |
1487 | } |
1488 | } |
1489 | |
1490 | S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid) |
1491 | << T << CTD; |
1492 | if (const auto *TT = T->getAs<TypedefType>()) |
1493 | S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at) |
1494 | << TT->getDecl(); |
1495 | } |
1496 | |
1497 | static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) { |
1498 | // The IBOutlet/IBOutletCollection attributes only apply to instance |
1499 | // variables or properties of Objective-C classes. The outlet must also |
1500 | // have an object reference type. |
1501 | if (const auto *VD = dyn_cast<ObjCIvarDecl>(Val: D)) { |
1502 | if (!VD->getType()->getAs<ObjCObjectPointerType>()) { |
1503 | S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) |
1504 | << AL << VD->getType() << 0; |
1505 | return false; |
1506 | } |
1507 | } |
1508 | else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(Val: D)) { |
1509 | if (!PD->getType()->getAs<ObjCObjectPointerType>()) { |
1510 | S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) |
1511 | << AL << PD->getType() << 1; |
1512 | return false; |
1513 | } |
1514 | } |
1515 | else { |
1516 | S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL; |
1517 | return false; |
1518 | } |
1519 | |
1520 | return true; |
1521 | } |
1522 | |
1523 | static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) { |
1524 | if (!checkIBOutletCommon(S, D, AL)) |
1525 | return; |
1526 | |
1527 | D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL)); |
1528 | } |
1529 | |
1530 | static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) { |
1531 | |
1532 | // The iboutletcollection attribute can have zero or one arguments. |
1533 | if (AL.getNumArgs() > 1) { |
1534 | S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
1535 | return; |
1536 | } |
1537 | |
1538 | if (!checkIBOutletCommon(S, D, AL)) |
1539 | return; |
1540 | |
1541 | ParsedType PT; |
1542 | |
1543 | if (AL.hasParsedType()) |
1544 | PT = AL.getTypeArg(); |
1545 | else { |
1546 | PT = S.getTypeName(II: S.Context.Idents.get(Name: "NSObject" ), NameLoc: AL.getLoc(), |
1547 | S: S.getScopeForContext(Ctx: D->getDeclContext()->getParent())); |
1548 | if (!PT) { |
1549 | S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject" ; |
1550 | return; |
1551 | } |
1552 | } |
1553 | |
1554 | TypeSourceInfo *QTLoc = nullptr; |
1555 | QualType QT = S.GetTypeFromParser(Ty: PT, TInfo: &QTLoc); |
1556 | if (!QTLoc) |
1557 | QTLoc = S.Context.getTrivialTypeSourceInfo(T: QT, Loc: AL.getLoc()); |
1558 | |
1559 | // Diagnose use of non-object type in iboutletcollection attribute. |
1560 | // FIXME. Gnu attribute extension ignores use of builtin types in |
1561 | // attributes. So, __attribute__((iboutletcollection(char))) will be |
1562 | // treated as __attribute__((iboutletcollection())). |
1563 | if (!QT->isObjCIdType() && !QT->isObjCObjectType()) { |
1564 | S.Diag(AL.getLoc(), |
1565 | QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype |
1566 | : diag::err_iboutletcollection_type) << QT; |
1567 | return; |
1568 | } |
1569 | |
1570 | D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc)); |
1571 | } |
1572 | |
1573 | bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) { |
1574 | if (RefOkay) { |
1575 | if (T->isReferenceType()) |
1576 | return true; |
1577 | } else { |
1578 | T = T.getNonReferenceType(); |
1579 | } |
1580 | |
1581 | // The nonnull attribute, and other similar attributes, can be applied to a |
1582 | // transparent union that contains a pointer type. |
1583 | if (const RecordType *UT = T->getAsUnionType()) { |
1584 | if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { |
1585 | RecordDecl *UD = UT->getDecl(); |
1586 | for (const auto *I : UD->fields()) { |
1587 | QualType QT = I->getType(); |
1588 | if (QT->isAnyPointerType() || QT->isBlockPointerType()) |
1589 | return true; |
1590 | } |
1591 | } |
1592 | } |
1593 | |
1594 | return T->isAnyPointerType() || T->isBlockPointerType(); |
1595 | } |
1596 | |
1597 | static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, |
1598 | SourceRange AttrParmRange, |
1599 | SourceRange TypeRange, |
1600 | bool isReturnValue = false) { |
1601 | if (!S.isValidPointerAttrType(T)) { |
1602 | if (isReturnValue) |
1603 | S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) |
1604 | << AL << AttrParmRange << TypeRange; |
1605 | else |
1606 | S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) |
1607 | << AL << AttrParmRange << TypeRange << 0; |
1608 | return false; |
1609 | } |
1610 | return true; |
1611 | } |
1612 | |
1613 | static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1614 | SmallVector<ParamIdx, 8> NonNullArgs; |
1615 | for (unsigned I = 0; I < AL.getNumArgs(); ++I) { |
1616 | Expr *Ex = AL.getArgAsExpr(Arg: I); |
1617 | ParamIdx Idx; |
1618 | if (!checkFunctionOrMethodParameterIndex(S, D, AI: AL, AttrArgNum: I + 1, IdxExpr: Ex, Idx)) |
1619 | return; |
1620 | |
1621 | // Is the function argument a pointer type? |
1622 | if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) && |
1623 | !attrNonNullArgCheck( |
1624 | S, getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()), AL, |
1625 | Ex->getSourceRange(), |
1626 | getFunctionOrMethodParamRange(D, Idx: Idx.getASTIndex()))) |
1627 | continue; |
1628 | |
1629 | NonNullArgs.push_back(Elt: Idx); |
1630 | } |
1631 | |
1632 | // If no arguments were specified to __attribute__((nonnull)) then all pointer |
1633 | // arguments have a nonnull attribute; warn if there aren't any. Skip this |
1634 | // check if the attribute came from a macro expansion or a template |
1635 | // instantiation. |
1636 | if (NonNullArgs.empty() && AL.getLoc().isFileID() && |
1637 | !S.inTemplateInstantiation()) { |
1638 | bool AnyPointers = isFunctionOrMethodVariadic(D); |
1639 | for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); |
1640 | I != E && !AnyPointers; ++I) { |
1641 | QualType T = getFunctionOrMethodParamType(D, Idx: I); |
1642 | if (T->isDependentType() || S.isValidPointerAttrType(T)) |
1643 | AnyPointers = true; |
1644 | } |
1645 | |
1646 | if (!AnyPointers) |
1647 | S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers); |
1648 | } |
1649 | |
1650 | ParamIdx *Start = NonNullArgs.data(); |
1651 | unsigned Size = NonNullArgs.size(); |
1652 | llvm::array_pod_sort(Start, End: Start + Size); |
1653 | D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size)); |
1654 | } |
1655 | |
1656 | static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, |
1657 | const ParsedAttr &AL) { |
1658 | if (AL.getNumArgs() > 0) { |
1659 | if (D->getFunctionType()) { |
1660 | handleNonNullAttr(S, D, AL); |
1661 | } else { |
1662 | S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args) |
1663 | << D->getSourceRange(); |
1664 | } |
1665 | return; |
1666 | } |
1667 | |
1668 | // Is the argument a pointer type? |
1669 | if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(), |
1670 | D->getSourceRange())) |
1671 | return; |
1672 | |
1673 | D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0)); |
1674 | } |
1675 | |
1676 | static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1677 | QualType ResultType = getFunctionOrMethodResultType(D); |
1678 | SourceRange SR = getFunctionOrMethodResultSourceRange(D); |
1679 | if (!attrNonNullArgCheck(S, T: ResultType, AL, AttrParmRange: SourceRange(), TypeRange: SR, |
1680 | /* isReturnValue */ true)) |
1681 | return; |
1682 | |
1683 | D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL)); |
1684 | } |
1685 | |
1686 | static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1687 | if (D->isInvalidDecl()) |
1688 | return; |
1689 | |
1690 | // noescape only applies to pointer types. |
1691 | QualType T = cast<ParmVarDecl>(Val: D)->getType(); |
1692 | if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) { |
1693 | S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) |
1694 | << AL << AL.getRange() << 0; |
1695 | return; |
1696 | } |
1697 | |
1698 | D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL)); |
1699 | } |
1700 | |
1701 | static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1702 | Expr *E = AL.getArgAsExpr(Arg: 0), |
1703 | *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(Arg: 1) : nullptr; |
1704 | S.AddAssumeAlignedAttr(D, CI: AL, E, OE); |
1705 | } |
1706 | |
1707 | static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1708 | S.AddAllocAlignAttr(D, CI: AL, ParamExpr: AL.getArgAsExpr(Arg: 0)); |
1709 | } |
1710 | |
1711 | void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, |
1712 | Expr *OE) { |
1713 | QualType ResultType = getFunctionOrMethodResultType(D); |
1714 | SourceRange SR = getFunctionOrMethodResultSourceRange(D); |
1715 | |
1716 | AssumeAlignedAttr TmpAttr(Context, CI, E, OE); |
1717 | SourceLocation AttrLoc = TmpAttr.getLocation(); |
1718 | |
1719 | if (!isValidPointerAttrType(T: ResultType, /* RefOkay */ true)) { |
1720 | Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) |
1721 | << &TmpAttr << TmpAttr.getRange() << SR; |
1722 | return; |
1723 | } |
1724 | |
1725 | if (!E->isValueDependent()) { |
1726 | std::optional<llvm::APSInt> I = llvm::APSInt(64); |
1727 | if (!(I = E->getIntegerConstantExpr(Ctx: Context))) { |
1728 | if (OE) |
1729 | Diag(AttrLoc, diag::err_attribute_argument_n_type) |
1730 | << &TmpAttr << 1 << AANT_ArgumentIntegerConstant |
1731 | << E->getSourceRange(); |
1732 | else |
1733 | Diag(AttrLoc, diag::err_attribute_argument_type) |
1734 | << &TmpAttr << AANT_ArgumentIntegerConstant |
1735 | << E->getSourceRange(); |
1736 | return; |
1737 | } |
1738 | |
1739 | if (!I->isPowerOf2()) { |
1740 | Diag(AttrLoc, diag::err_alignment_not_power_of_two) |
1741 | << E->getSourceRange(); |
1742 | return; |
1743 | } |
1744 | |
1745 | if (*I > Sema::MaximumAlignment) |
1746 | Diag(CI.getLoc(), diag::warn_assume_aligned_too_great) |
1747 | << CI.getRange() << Sema::MaximumAlignment; |
1748 | } |
1749 | |
1750 | if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Ctx: Context)) { |
1751 | Diag(AttrLoc, diag::err_attribute_argument_n_type) |
1752 | << &TmpAttr << 2 << AANT_ArgumentIntegerConstant |
1753 | << OE->getSourceRange(); |
1754 | return; |
1755 | } |
1756 | |
1757 | D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE)); |
1758 | } |
1759 | |
1760 | void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, |
1761 | Expr *ParamExpr) { |
1762 | QualType ResultType = getFunctionOrMethodResultType(D); |
1763 | |
1764 | AllocAlignAttr TmpAttr(Context, CI, ParamIdx()); |
1765 | SourceLocation AttrLoc = CI.getLoc(); |
1766 | |
1767 | if (!ResultType->isDependentType() && |
1768 | !isValidPointerAttrType(T: ResultType, /* RefOkay */ true)) { |
1769 | Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) |
1770 | << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D); |
1771 | return; |
1772 | } |
1773 | |
1774 | ParamIdx Idx; |
1775 | const auto *FuncDecl = cast<FunctionDecl>(Val: D); |
1776 | if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr, |
1777 | /*AttrArgNum=*/1, ParamExpr, Idx)) |
1778 | return; |
1779 | |
1780 | QualType Ty = getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()); |
1781 | if (!Ty->isDependentType() && !Ty->isIntegralType(Ctx: Context) && |
1782 | !Ty->isAlignValT()) { |
1783 | Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only) |
1784 | << &TmpAttr |
1785 | << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange(); |
1786 | return; |
1787 | } |
1788 | |
1789 | D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx)); |
1790 | } |
1791 | |
1792 | /// Check if \p AssumptionStr is a known assumption and warn if not. |
1793 | static void checkOMPAssumeAttr(Sema &S, SourceLocation Loc, |
1794 | StringRef AssumptionStr) { |
1795 | if (llvm::KnownAssumptionStrings.count(Key: AssumptionStr)) |
1796 | return; |
1797 | |
1798 | unsigned BestEditDistance = 3; |
1799 | StringRef Suggestion; |
1800 | for (const auto &KnownAssumptionIt : llvm::KnownAssumptionStrings) { |
1801 | unsigned EditDistance = |
1802 | AssumptionStr.edit_distance(Other: KnownAssumptionIt.getKey()); |
1803 | if (EditDistance < BestEditDistance) { |
1804 | Suggestion = KnownAssumptionIt.getKey(); |
1805 | BestEditDistance = EditDistance; |
1806 | } |
1807 | } |
1808 | |
1809 | if (!Suggestion.empty()) |
1810 | S.Diag(Loc, diag::warn_omp_assume_attribute_string_unknown_suggested) |
1811 | << AssumptionStr << Suggestion; |
1812 | else |
1813 | S.Diag(Loc, diag::warn_omp_assume_attribute_string_unknown) |
1814 | << AssumptionStr; |
1815 | } |
1816 | |
1817 | static void handleOMPAssumeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1818 | // Handle the case where the attribute has a text message. |
1819 | StringRef Str; |
1820 | SourceLocation AttrStrLoc; |
1821 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &AttrStrLoc)) |
1822 | return; |
1823 | |
1824 | checkOMPAssumeAttr(S, Loc: AttrStrLoc, AssumptionStr: Str); |
1825 | |
1826 | D->addAttr(::new (S.Context) OMPAssumeAttr(S.Context, AL, Str)); |
1827 | } |
1828 | |
1829 | /// Normalize the attribute, __foo__ becomes foo. |
1830 | /// Returns true if normalization was applied. |
1831 | static bool normalizeName(StringRef &AttrName) { |
1832 | if (AttrName.size() > 4 && AttrName.starts_with(Prefix: "__" ) && |
1833 | AttrName.ends_with(Suffix: "__" )) { |
1834 | AttrName = AttrName.drop_front(N: 2).drop_back(N: 2); |
1835 | return true; |
1836 | } |
1837 | return false; |
1838 | } |
1839 | |
1840 | static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1841 | // This attribute must be applied to a function declaration. The first |
1842 | // argument to the attribute must be an identifier, the name of the resource, |
1843 | // for example: malloc. The following arguments must be argument indexes, the |
1844 | // arguments must be of integer type for Returns, otherwise of pointer type. |
1845 | // The difference between Holds and Takes is that a pointer may still be used |
1846 | // after being held. free() should be __attribute((ownership_takes)), whereas |
1847 | // a list append function may well be __attribute((ownership_holds)). |
1848 | |
1849 | if (!AL.isArgIdent(Arg: 0)) { |
1850 | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
1851 | << AL << 1 << AANT_ArgumentIdentifier; |
1852 | return; |
1853 | } |
1854 | |
1855 | // Figure out our Kind. |
1856 | OwnershipAttr::OwnershipKind K = |
1857 | OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind(); |
1858 | |
1859 | // Check arguments. |
1860 | switch (K) { |
1861 | case OwnershipAttr::Takes: |
1862 | case OwnershipAttr::Holds: |
1863 | if (AL.getNumArgs() < 2) { |
1864 | S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2; |
1865 | return; |
1866 | } |
1867 | break; |
1868 | case OwnershipAttr::Returns: |
1869 | if (AL.getNumArgs() > 2) { |
1870 | S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; |
1871 | return; |
1872 | } |
1873 | break; |
1874 | } |
1875 | |
1876 | IdentifierInfo *Module = AL.getArgAsIdent(Arg: 0)->Ident; |
1877 | |
1878 | StringRef ModuleName = Module->getName(); |
1879 | if (normalizeName(AttrName&: ModuleName)) { |
1880 | Module = &S.PP.getIdentifierTable().get(Name: ModuleName); |
1881 | } |
1882 | |
1883 | SmallVector<ParamIdx, 8> OwnershipArgs; |
1884 | for (unsigned i = 1; i < AL.getNumArgs(); ++i) { |
1885 | Expr *Ex = AL.getArgAsExpr(Arg: i); |
1886 | ParamIdx Idx; |
1887 | if (!checkFunctionOrMethodParameterIndex(S, D, AI: AL, AttrArgNum: i, IdxExpr: Ex, Idx)) |
1888 | return; |
1889 | |
1890 | // Is the function argument a pointer type? |
1891 | QualType T = getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()); |
1892 | int Err = -1; // No error |
1893 | switch (K) { |
1894 | case OwnershipAttr::Takes: |
1895 | case OwnershipAttr::Holds: |
1896 | if (!T->isAnyPointerType() && !T->isBlockPointerType()) |
1897 | Err = 0; |
1898 | break; |
1899 | case OwnershipAttr::Returns: |
1900 | if (!T->isIntegerType()) |
1901 | Err = 1; |
1902 | break; |
1903 | } |
1904 | if (-1 != Err) { |
1905 | S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err |
1906 | << Ex->getSourceRange(); |
1907 | return; |
1908 | } |
1909 | |
1910 | // Check we don't have a conflict with another ownership attribute. |
1911 | for (const auto *I : D->specific_attrs<OwnershipAttr>()) { |
1912 | // Cannot have two ownership attributes of different kinds for the same |
1913 | // index. |
1914 | if (I->getOwnKind() != K && llvm::is_contained(I->args(), Idx)) { |
1915 | S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) |
1916 | << AL << I |
1917 | << (AL.isRegularKeywordAttribute() || |
1918 | I->isRegularKeywordAttribute()); |
1919 | return; |
1920 | } else if (K == OwnershipAttr::Returns && |
1921 | I->getOwnKind() == OwnershipAttr::Returns) { |
1922 | // A returns attribute conflicts with any other returns attribute using |
1923 | // a different index. |
1924 | if (!llvm::is_contained(I->args(), Idx)) { |
1925 | S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch) |
1926 | << I->args_begin()->getSourceIndex(); |
1927 | if (I->args_size()) |
1928 | S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch) |
1929 | << Idx.getSourceIndex() << Ex->getSourceRange(); |
1930 | return; |
1931 | } |
1932 | } |
1933 | } |
1934 | OwnershipArgs.push_back(Elt: Idx); |
1935 | } |
1936 | |
1937 | ParamIdx *Start = OwnershipArgs.data(); |
1938 | unsigned Size = OwnershipArgs.size(); |
1939 | llvm::array_pod_sort(Start, End: Start + Size); |
1940 | D->addAttr(::new (S.Context) |
1941 | OwnershipAttr(S.Context, AL, Module, Start, Size)); |
1942 | } |
1943 | |
1944 | static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1945 | // Check the attribute arguments. |
1946 | if (AL.getNumArgs() > 1) { |
1947 | S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
1948 | return; |
1949 | } |
1950 | |
1951 | // gcc rejects |
1952 | // class c { |
1953 | // static int a __attribute__((weakref ("v2"))); |
1954 | // static int b() __attribute__((weakref ("f3"))); |
1955 | // }; |
1956 | // and ignores the attributes of |
1957 | // void f(void) { |
1958 | // static int a __attribute__((weakref ("v2"))); |
1959 | // } |
1960 | // we reject them |
1961 | const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); |
1962 | if (!Ctx->isFileContext()) { |
1963 | S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context) |
1964 | << cast<NamedDecl>(D); |
1965 | return; |
1966 | } |
1967 | |
1968 | // The GCC manual says |
1969 | // |
1970 | // At present, a declaration to which `weakref' is attached can only |
1971 | // be `static'. |
1972 | // |
1973 | // It also says |
1974 | // |
1975 | // Without a TARGET, |
1976 | // given as an argument to `weakref' or to `alias', `weakref' is |
1977 | // equivalent to `weak'. |
1978 | // |
1979 | // gcc 4.4.1 will accept |
1980 | // int a7 __attribute__((weakref)); |
1981 | // as |
1982 | // int a7 __attribute__((weak)); |
1983 | // This looks like a bug in gcc. We reject that for now. We should revisit |
1984 | // it if this behaviour is actually used. |
1985 | |
1986 | // GCC rejects |
1987 | // static ((alias ("y"), weakref)). |
1988 | // Should we? How to check that weakref is before or after alias? |
1989 | |
1990 | // FIXME: it would be good for us to keep the WeakRefAttr as-written instead |
1991 | // of transforming it into an AliasAttr. The WeakRefAttr never uses the |
1992 | // StringRef parameter it was given anyway. |
1993 | StringRef Str; |
1994 | if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
1995 | // GCC will accept anything as the argument of weakref. Should we |
1996 | // check for an existing decl? |
1997 | D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); |
1998 | |
1999 | D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL)); |
2000 | } |
2001 | |
2002 | // Mark alias/ifunc target as used. Due to name mangling, we look up the |
2003 | // demangled name ignoring parameters (not supported by microsoftDemangle |
2004 | // https://github.com/llvm/llvm-project/issues/88825). This should handle the |
2005 | // majority of use cases while leaving namespace scope names unmarked. |
2006 | static void markUsedForAliasOrIfunc(Sema &S, Decl *D, const ParsedAttr &AL, |
2007 | StringRef Str) { |
2008 | std::unique_ptr<char, llvm::FreeDeleter> Demangled; |
2009 | if (S.getASTContext().getCXXABIKind() != TargetCXXABI::Microsoft) |
2010 | Demangled.reset(p: llvm::itaniumDemangle(mangled_name: Str, /*ParseParams=*/false)); |
2011 | std::unique_ptr<MangleContext> MC(S.Context.createMangleContext()); |
2012 | SmallString<256> Name; |
2013 | |
2014 | const DeclarationNameInfo Target( |
2015 | &S.Context.Idents.get(Name: Demangled ? Demangled.get() : Str), AL.getLoc()); |
2016 | LookupResult LR(S, Target, Sema::LookupOrdinaryName); |
2017 | if (S.LookupName(R&: LR, S: S.TUScope)) { |
2018 | for (NamedDecl *ND : LR) { |
2019 | if (!isa<FunctionDecl>(Val: ND) && !isa<VarDecl>(Val: ND)) |
2020 | continue; |
2021 | if (MC->shouldMangleDeclName(D: ND)) { |
2022 | llvm::raw_svector_ostream Out(Name); |
2023 | Name.clear(); |
2024 | MC->mangleName(GD: GlobalDecl(ND), Out); |
2025 | } else { |
2026 | Name = ND->getIdentifier()->getName(); |
2027 | } |
2028 | if (Name == Str) |
2029 | ND->markUsed(S.Context); |
2030 | } |
2031 | } |
2032 | } |
2033 | |
2034 | static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2035 | StringRef Str; |
2036 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
2037 | return; |
2038 | |
2039 | // Aliases should be on declarations, not definitions. |
2040 | const auto *FD = cast<FunctionDecl>(Val: D); |
2041 | if (FD->isThisDeclarationADefinition()) { |
2042 | S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1; |
2043 | return; |
2044 | } |
2045 | |
2046 | markUsedForAliasOrIfunc(S, D, AL, Str); |
2047 | D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str)); |
2048 | } |
2049 | |
2050 | static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2051 | StringRef Str; |
2052 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
2053 | return; |
2054 | |
2055 | if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { |
2056 | S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin); |
2057 | return; |
2058 | } |
2059 | |
2060 | if (S.Context.getTargetInfo().getTriple().isNVPTX()) { |
2061 | CudaVersion Version = |
2062 | ToCudaVersion(S.Context.getTargetInfo().getSDKVersion()); |
2063 | if (Version != CudaVersion::UNKNOWN && Version < CudaVersion::CUDA_100) |
2064 | S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx); |
2065 | } |
2066 | |
2067 | // Aliases should be on declarations, not definitions. |
2068 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
2069 | if (FD->isThisDeclarationADefinition()) { |
2070 | S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0; |
2071 | return; |
2072 | } |
2073 | } else { |
2074 | const auto *VD = cast<VarDecl>(Val: D); |
2075 | if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) { |
2076 | S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0; |
2077 | return; |
2078 | } |
2079 | } |
2080 | |
2081 | markUsedForAliasOrIfunc(S, D, AL, Str); |
2082 | D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); |
2083 | } |
2084 | |
2085 | static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2086 | StringRef Model; |
2087 | SourceLocation LiteralLoc; |
2088 | // Check that it is a string. |
2089 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Model, ArgLocation: &LiteralLoc)) |
2090 | return; |
2091 | |
2092 | // Check that the value. |
2093 | if (Model != "global-dynamic" && Model != "local-dynamic" |
2094 | && Model != "initial-exec" && Model != "local-exec" ) { |
2095 | S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg); |
2096 | return; |
2097 | } |
2098 | |
2099 | D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model)); |
2100 | } |
2101 | |
2102 | static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2103 | QualType ResultType = getFunctionOrMethodResultType(D); |
2104 | if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) { |
2105 | D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL)); |
2106 | return; |
2107 | } |
2108 | |
2109 | S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) |
2110 | << AL << getFunctionOrMethodResultSourceRange(D); |
2111 | } |
2112 | |
2113 | static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2114 | // Ensure we don't combine these with themselves, since that causes some |
2115 | // confusing behavior. |
2116 | if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) { |
2117 | if (checkAttrMutualExclusion<CPUSpecificAttr>(S, D, AL)) |
2118 | return; |
2119 | |
2120 | if (const auto *Other = D->getAttr<CPUDispatchAttr>()) { |
2121 | S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL; |
2122 | S.Diag(Other->getLocation(), diag::note_conflicting_attribute); |
2123 | return; |
2124 | } |
2125 | } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) { |
2126 | if (checkAttrMutualExclusion<CPUDispatchAttr>(S, D, AL)) |
2127 | return; |
2128 | |
2129 | if (const auto *Other = D->getAttr<CPUSpecificAttr>()) { |
2130 | S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL; |
2131 | S.Diag(Other->getLocation(), diag::note_conflicting_attribute); |
2132 | return; |
2133 | } |
2134 | } |
2135 | |
2136 | FunctionDecl *FD = cast<FunctionDecl>(Val: D); |
2137 | |
2138 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) { |
2139 | if (MD->getParent()->isLambda()) { |
2140 | S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL; |
2141 | return; |
2142 | } |
2143 | } |
2144 | |
2145 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
2146 | return; |
2147 | |
2148 | SmallVector<IdentifierInfo *, 8> CPUs; |
2149 | for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) { |
2150 | if (!AL.isArgIdent(Arg: ArgNo)) { |
2151 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
2152 | << AL << AANT_ArgumentIdentifier; |
2153 | return; |
2154 | } |
2155 | |
2156 | IdentifierLoc *CPUArg = AL.getArgAsIdent(Arg: ArgNo); |
2157 | StringRef CPUName = CPUArg->Ident->getName().trim(); |
2158 | |
2159 | if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(Name: CPUName)) { |
2160 | S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value) |
2161 | << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch); |
2162 | return; |
2163 | } |
2164 | |
2165 | const TargetInfo &Target = S.Context.getTargetInfo(); |
2166 | if (llvm::any_of(Range&: CPUs, P: [CPUName, &Target](const IdentifierInfo *Cur) { |
2167 | return Target.CPUSpecificManglingCharacter(Name: CPUName) == |
2168 | Target.CPUSpecificManglingCharacter(Name: Cur->getName()); |
2169 | })) { |
2170 | S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries); |
2171 | return; |
2172 | } |
2173 | CPUs.push_back(Elt: CPUArg->Ident); |
2174 | } |
2175 | |
2176 | FD->setIsMultiVersion(true); |
2177 | if (AL.getKind() == ParsedAttr::AT_CPUSpecific) |
2178 | D->addAttr(::new (S.Context) |
2179 | CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size())); |
2180 | else |
2181 | D->addAttr(::new (S.Context) |
2182 | CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size())); |
2183 | } |
2184 | |
2185 | static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2186 | if (S.LangOpts.CPlusPlus) { |
2187 | S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) |
2188 | << AL << AttributeLangSupport::Cpp; |
2189 | return; |
2190 | } |
2191 | |
2192 | D->addAttr(::new (S.Context) CommonAttr(S.Context, AL)); |
2193 | } |
2194 | |
2195 | static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2196 | if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) { |
2197 | S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL; |
2198 | return; |
2199 | } |
2200 | |
2201 | const auto *FD = cast<FunctionDecl>(Val: D); |
2202 | if (!FD->isExternallyVisible()) { |
2203 | S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static); |
2204 | return; |
2205 | } |
2206 | |
2207 | D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL)); |
2208 | } |
2209 | |
2210 | static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2211 | if (AL.isDeclspecAttribute()) { |
2212 | const auto &Triple = S.getASTContext().getTargetInfo().getTriple(); |
2213 | const auto &Arch = Triple.getArch(); |
2214 | if (Arch != llvm::Triple::x86 && |
2215 | (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) { |
2216 | S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch) |
2217 | << AL << Triple.getArchName(); |
2218 | return; |
2219 | } |
2220 | |
2221 | // This form is not allowed to be written on a member function (static or |
2222 | // nonstatic) when in Microsoft compatibility mode. |
2223 | if (S.getLangOpts().MSVCCompat && isa<CXXMethodDecl>(Val: D)) { |
2224 | S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type_str) |
2225 | << AL << AL.isRegularKeywordAttribute() << "non-member functions" ; |
2226 | return; |
2227 | } |
2228 | } |
2229 | |
2230 | D->addAttr(::new (S.Context) NakedAttr(S.Context, AL)); |
2231 | } |
2232 | |
2233 | static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { |
2234 | if (hasDeclarator(D)) return; |
2235 | |
2236 | if (!isa<ObjCMethodDecl>(Val: D)) { |
2237 | S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type) |
2238 | << Attrs << Attrs.isRegularKeywordAttribute() |
2239 | << ExpectedFunctionOrMethod; |
2240 | return; |
2241 | } |
2242 | |
2243 | D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs)); |
2244 | } |
2245 | |
2246 | static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
2247 | // The [[_Noreturn]] spelling is deprecated in C23, so if that was used, |
2248 | // issue an appropriate diagnostic. However, don't issue a diagnostic if the |
2249 | // attribute name comes from a macro expansion. We don't want to punish users |
2250 | // who write [[noreturn]] after including <stdnoreturn.h> (where 'noreturn' |
2251 | // is defined as a macro which expands to '_Noreturn'). |
2252 | if (!S.getLangOpts().CPlusPlus && |
2253 | A.getSemanticSpelling() == CXX11NoReturnAttr::C23_Noreturn && |
2254 | !(A.getLoc().isMacroID() && |
2255 | S.getSourceManager().isInSystemMacro(A.getLoc()))) |
2256 | S.Diag(A.getLoc(), diag::warn_deprecated_noreturn_spelling) << A.getRange(); |
2257 | |
2258 | D->addAttr(::new (S.Context) CXX11NoReturnAttr(S.Context, A)); |
2259 | } |
2260 | |
2261 | static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { |
2262 | if (!S.getLangOpts().CFProtectionBranch) |
2263 | S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored); |
2264 | else |
2265 | handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs); |
2266 | } |
2267 | |
2268 | bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) { |
2269 | if (!Attrs.checkExactlyNumArgs(S&: *this, Num: 0)) { |
2270 | Attrs.setInvalid(); |
2271 | return true; |
2272 | } |
2273 | |
2274 | return false; |
2275 | } |
2276 | |
2277 | bool Sema::CheckAttrTarget(const ParsedAttr &AL) { |
2278 | // Check whether the attribute is valid on the current target. |
2279 | if (!AL.existsInTarget(Target: Context.getTargetInfo())) { |
2280 | Diag(AL.getLoc(), AL.isRegularKeywordAttribute() |
2281 | ? diag::err_keyword_not_supported_on_target |
2282 | : diag::warn_unknown_attribute_ignored) |
2283 | << AL << AL.getRange(); |
2284 | AL.setInvalid(); |
2285 | return true; |
2286 | } |
2287 | |
2288 | return false; |
2289 | } |
2290 | |
2291 | static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2292 | |
2293 | // The checking path for 'noreturn' and 'analyzer_noreturn' are different |
2294 | // because 'analyzer_noreturn' does not impact the type. |
2295 | if (!isFunctionOrMethodOrBlock(D)) { |
2296 | ValueDecl *VD = dyn_cast<ValueDecl>(Val: D); |
2297 | if (!VD || (!VD->getType()->isBlockPointerType() && |
2298 | !VD->getType()->isFunctionPointerType())) { |
2299 | S.Diag(AL.getLoc(), AL.isStandardAttributeSyntax() |
2300 | ? diag::err_attribute_wrong_decl_type |
2301 | : diag::warn_attribute_wrong_decl_type) |
2302 | << AL << AL.isRegularKeywordAttribute() |
2303 | << ExpectedFunctionMethodOrBlock; |
2304 | return; |
2305 | } |
2306 | } |
2307 | |
2308 | D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL)); |
2309 | } |
2310 | |
2311 | // PS3 PPU-specific. |
2312 | static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2313 | /* |
2314 | Returning a Vector Class in Registers |
2315 | |
2316 | According to the PPU ABI specifications, a class with a single member of |
2317 | vector type is returned in memory when used as the return value of a |
2318 | function. |
2319 | This results in inefficient code when implementing vector classes. To return |
2320 | the value in a single vector register, add the vecreturn attribute to the |
2321 | class definition. This attribute is also applicable to struct types. |
2322 | |
2323 | Example: |
2324 | |
2325 | struct Vector |
2326 | { |
2327 | __vector float xyzw; |
2328 | } __attribute__((vecreturn)); |
2329 | |
2330 | Vector Add(Vector lhs, Vector rhs) |
2331 | { |
2332 | Vector result; |
2333 | result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); |
2334 | return result; // This will be returned in a register |
2335 | } |
2336 | */ |
2337 | if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) { |
2338 | S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A; |
2339 | return; |
2340 | } |
2341 | |
2342 | const auto *R = cast<RecordDecl>(Val: D); |
2343 | int count = 0; |
2344 | |
2345 | if (!isa<CXXRecordDecl>(Val: R)) { |
2346 | S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); |
2347 | return; |
2348 | } |
2349 | |
2350 | if (!cast<CXXRecordDecl>(Val: R)->isPOD()) { |
2351 | S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record); |
2352 | return; |
2353 | } |
2354 | |
2355 | for (const auto *I : R->fields()) { |
2356 | if ((count == 1) || !I->getType()->isVectorType()) { |
2357 | S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); |
2358 | return; |
2359 | } |
2360 | count++; |
2361 | } |
2362 | |
2363 | D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL)); |
2364 | } |
2365 | |
2366 | static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, |
2367 | const ParsedAttr &AL) { |
2368 | if (isa<ParmVarDecl>(Val: D)) { |
2369 | // [[carries_dependency]] can only be applied to a parameter if it is a |
2370 | // parameter of a function declaration or lambda. |
2371 | if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { |
2372 | S.Diag(AL.getLoc(), |
2373 | diag::err_carries_dependency_param_not_function_decl); |
2374 | return; |
2375 | } |
2376 | } |
2377 | |
2378 | D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL)); |
2379 | } |
2380 | |
2381 | static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2382 | bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName(); |
2383 | |
2384 | // If this is spelled as the standard C++17 attribute, but not in C++17, warn |
2385 | // about using it as an extension. |
2386 | if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr) |
2387 | S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; |
2388 | |
2389 | D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL)); |
2390 | } |
2391 | |
2392 | static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2393 | uint32_t priority = ConstructorAttr::DefaultPriority; |
2394 | if (S.getLangOpts().HLSL && AL.getNumArgs()) { |
2395 | S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported); |
2396 | return; |
2397 | } |
2398 | if (AL.getNumArgs() && |
2399 | !checkUInt32Argument(S, AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: priority)) |
2400 | return; |
2401 | |
2402 | D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority)); |
2403 | } |
2404 | |
2405 | static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2406 | uint32_t priority = DestructorAttr::DefaultPriority; |
2407 | if (AL.getNumArgs() && |
2408 | !checkUInt32Argument(S, AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: priority)) |
2409 | return; |
2410 | |
2411 | D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority)); |
2412 | } |
2413 | |
2414 | template <typename AttrTy> |
2415 | static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) { |
2416 | // Handle the case where the attribute has a text message. |
2417 | StringRef Str; |
2418 | if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
2419 | return; |
2420 | |
2421 | D->addAttr(A: ::new (S.Context) AttrTy(S.Context, AL, Str)); |
2422 | } |
2423 | |
2424 | static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D, |
2425 | const ParsedAttr &AL) { |
2426 | if (!cast<ObjCProtocolDecl>(Val: D)->isThisDeclarationADefinition()) { |
2427 | S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition) |
2428 | << AL << AL.getRange(); |
2429 | return; |
2430 | } |
2431 | |
2432 | D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL)); |
2433 | } |
2434 | |
2435 | static bool checkAvailabilityAttr(Sema &S, SourceRange Range, |
2436 | IdentifierInfo *Platform, |
2437 | VersionTuple Introduced, |
2438 | VersionTuple Deprecated, |
2439 | VersionTuple Obsoleted) { |
2440 | StringRef PlatformName |
2441 | = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); |
2442 | if (PlatformName.empty()) |
2443 | PlatformName = Platform->getName(); |
2444 | |
2445 | // Ensure that Introduced <= Deprecated <= Obsoleted (although not all |
2446 | // of these steps are needed). |
2447 | if (!Introduced.empty() && !Deprecated.empty() && |
2448 | !(Introduced <= Deprecated)) { |
2449 | S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) |
2450 | << 1 << PlatformName << Deprecated.getAsString() |
2451 | << 0 << Introduced.getAsString(); |
2452 | return true; |
2453 | } |
2454 | |
2455 | if (!Introduced.empty() && !Obsoleted.empty() && |
2456 | !(Introduced <= Obsoleted)) { |
2457 | S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) |
2458 | << 2 << PlatformName << Obsoleted.getAsString() |
2459 | << 0 << Introduced.getAsString(); |
2460 | return true; |
2461 | } |
2462 | |
2463 | if (!Deprecated.empty() && !Obsoleted.empty() && |
2464 | !(Deprecated <= Obsoleted)) { |
2465 | S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) |
2466 | << 2 << PlatformName << Obsoleted.getAsString() |
2467 | << 1 << Deprecated.getAsString(); |
2468 | return true; |
2469 | } |
2470 | |
2471 | return false; |
2472 | } |
2473 | |
2474 | /// Check whether the two versions match. |
2475 | /// |
2476 | /// If either version tuple is empty, then they are assumed to match. If |
2477 | /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. |
2478 | static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, |
2479 | bool BeforeIsOkay) { |
2480 | if (X.empty() || Y.empty()) |
2481 | return true; |
2482 | |
2483 | if (X == Y) |
2484 | return true; |
2485 | |
2486 | if (BeforeIsOkay && X < Y) |
2487 | return true; |
2488 | |
2489 | return false; |
2490 | } |
2491 | |
2492 | AvailabilityAttr *Sema::mergeAvailabilityAttr( |
2493 | NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, |
2494 | bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, |
2495 | VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, |
2496 | bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, |
2497 | int Priority) { |
2498 | VersionTuple MergedIntroduced = Introduced; |
2499 | VersionTuple MergedDeprecated = Deprecated; |
2500 | VersionTuple MergedObsoleted = Obsoleted; |
2501 | bool FoundAny = false; |
2502 | bool OverrideOrImpl = false; |
2503 | switch (AMK) { |
2504 | case AMK_None: |
2505 | case AMK_Redeclaration: |
2506 | OverrideOrImpl = false; |
2507 | break; |
2508 | |
2509 | case AMK_Override: |
2510 | case AMK_ProtocolImplementation: |
2511 | case AMK_OptionalProtocolImplementation: |
2512 | OverrideOrImpl = true; |
2513 | break; |
2514 | } |
2515 | |
2516 | if (D->hasAttrs()) { |
2517 | AttrVec &Attrs = D->getAttrs(); |
2518 | for (unsigned i = 0, e = Attrs.size(); i != e;) { |
2519 | const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]); |
2520 | if (!OldAA) { |
2521 | ++i; |
2522 | continue; |
2523 | } |
2524 | |
2525 | IdentifierInfo *OldPlatform = OldAA->getPlatform(); |
2526 | if (OldPlatform != Platform) { |
2527 | ++i; |
2528 | continue; |
2529 | } |
2530 | |
2531 | // If there is an existing availability attribute for this platform that |
2532 | // has a lower priority use the existing one and discard the new |
2533 | // attribute. |
2534 | if (OldAA->getPriority() < Priority) |
2535 | return nullptr; |
2536 | |
2537 | // If there is an existing attribute for this platform that has a higher |
2538 | // priority than the new attribute then erase the old one and continue |
2539 | // processing the attributes. |
2540 | if (OldAA->getPriority() > Priority) { |
2541 | Attrs.erase(CI: Attrs.begin() + i); |
2542 | --e; |
2543 | continue; |
2544 | } |
2545 | |
2546 | FoundAny = true; |
2547 | VersionTuple OldIntroduced = OldAA->getIntroduced(); |
2548 | VersionTuple OldDeprecated = OldAA->getDeprecated(); |
2549 | VersionTuple OldObsoleted = OldAA->getObsoleted(); |
2550 | bool OldIsUnavailable = OldAA->getUnavailable(); |
2551 | |
2552 | if (!versionsMatch(X: OldIntroduced, Y: Introduced, BeforeIsOkay: OverrideOrImpl) || |
2553 | !versionsMatch(X: Deprecated, Y: OldDeprecated, BeforeIsOkay: OverrideOrImpl) || |
2554 | !versionsMatch(X: Obsoleted, Y: OldObsoleted, BeforeIsOkay: OverrideOrImpl) || |
2555 | !(OldIsUnavailable == IsUnavailable || |
2556 | (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) { |
2557 | if (OverrideOrImpl) { |
2558 | int Which = -1; |
2559 | VersionTuple FirstVersion; |
2560 | VersionTuple SecondVersion; |
2561 | if (!versionsMatch(X: OldIntroduced, Y: Introduced, BeforeIsOkay: OverrideOrImpl)) { |
2562 | Which = 0; |
2563 | FirstVersion = OldIntroduced; |
2564 | SecondVersion = Introduced; |
2565 | } else if (!versionsMatch(X: Deprecated, Y: OldDeprecated, BeforeIsOkay: OverrideOrImpl)) { |
2566 | Which = 1; |
2567 | FirstVersion = Deprecated; |
2568 | SecondVersion = OldDeprecated; |
2569 | } else if (!versionsMatch(X: Obsoleted, Y: OldObsoleted, BeforeIsOkay: OverrideOrImpl)) { |
2570 | Which = 2; |
2571 | FirstVersion = Obsoleted; |
2572 | SecondVersion = OldObsoleted; |
2573 | } |
2574 | |
2575 | if (Which == -1) { |
2576 | Diag(OldAA->getLocation(), |
2577 | diag::warn_mismatched_availability_override_unavail) |
2578 | << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) |
2579 | << (AMK == AMK_Override); |
2580 | } else if (Which != 1 && AMK == AMK_OptionalProtocolImplementation) { |
2581 | // Allow different 'introduced' / 'obsoleted' availability versions |
2582 | // on a method that implements an optional protocol requirement. It |
2583 | // makes less sense to allow this for 'deprecated' as the user can't |
2584 | // see if the method is 'deprecated' as 'respondsToSelector' will |
2585 | // still return true when the method is deprecated. |
2586 | ++i; |
2587 | continue; |
2588 | } else { |
2589 | Diag(OldAA->getLocation(), |
2590 | diag::warn_mismatched_availability_override) |
2591 | << Which |
2592 | << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) |
2593 | << FirstVersion.getAsString() << SecondVersion.getAsString() |
2594 | << (AMK == AMK_Override); |
2595 | } |
2596 | if (AMK == AMK_Override) |
2597 | Diag(CI.getLoc(), diag::note_overridden_method); |
2598 | else |
2599 | Diag(CI.getLoc(), diag::note_protocol_method); |
2600 | } else { |
2601 | Diag(OldAA->getLocation(), diag::warn_mismatched_availability); |
2602 | Diag(CI.getLoc(), diag::note_previous_attribute); |
2603 | } |
2604 | |
2605 | Attrs.erase(CI: Attrs.begin() + i); |
2606 | --e; |
2607 | continue; |
2608 | } |
2609 | |
2610 | VersionTuple MergedIntroduced2 = MergedIntroduced; |
2611 | VersionTuple MergedDeprecated2 = MergedDeprecated; |
2612 | VersionTuple MergedObsoleted2 = MergedObsoleted; |
2613 | |
2614 | if (MergedIntroduced2.empty()) |
2615 | MergedIntroduced2 = OldIntroduced; |
2616 | if (MergedDeprecated2.empty()) |
2617 | MergedDeprecated2 = OldDeprecated; |
2618 | if (MergedObsoleted2.empty()) |
2619 | MergedObsoleted2 = OldObsoleted; |
2620 | |
2621 | if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform, |
2622 | MergedIntroduced2, MergedDeprecated2, |
2623 | MergedObsoleted2)) { |
2624 | Attrs.erase(CI: Attrs.begin() + i); |
2625 | --e; |
2626 | continue; |
2627 | } |
2628 | |
2629 | MergedIntroduced = MergedIntroduced2; |
2630 | MergedDeprecated = MergedDeprecated2; |
2631 | MergedObsoleted = MergedObsoleted2; |
2632 | ++i; |
2633 | } |
2634 | } |
2635 | |
2636 | if (FoundAny && |
2637 | MergedIntroduced == Introduced && |
2638 | MergedDeprecated == Deprecated && |
2639 | MergedObsoleted == Obsoleted) |
2640 | return nullptr; |
2641 | |
2642 | // Only create a new attribute if !OverrideOrImpl, but we want to do |
2643 | // the checking. |
2644 | if (!checkAvailabilityAttr(S&: *this, Range: CI.getRange(), Platform, Introduced: MergedIntroduced, |
2645 | Deprecated: MergedDeprecated, Obsoleted: MergedObsoleted) && |
2646 | !OverrideOrImpl) { |
2647 | auto *Avail = ::new (Context) AvailabilityAttr( |
2648 | Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable, |
2649 | Message, IsStrict, Replacement, Priority); |
2650 | Avail->setImplicit(Implicit); |
2651 | return Avail; |
2652 | } |
2653 | return nullptr; |
2654 | } |
2655 | |
2656 | static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2657 | if (isa<UsingDecl, UnresolvedUsingTypenameDecl, UnresolvedUsingValueDecl>( |
2658 | Val: D)) { |
2659 | S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using) |
2660 | << AL; |
2661 | return; |
2662 | } |
2663 | |
2664 | if (!AL.checkExactlyNumArgs(S, Num: 1)) |
2665 | return; |
2666 | IdentifierLoc *Platform = AL.getArgAsIdent(Arg: 0); |
2667 | |
2668 | IdentifierInfo *II = Platform->Ident; |
2669 | if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty()) |
2670 | S.Diag(Platform->Loc, diag::warn_availability_unknown_platform) |
2671 | << Platform->Ident; |
2672 | |
2673 | auto *ND = dyn_cast<NamedDecl>(Val: D); |
2674 | if (!ND) // We warned about this already, so just return. |
2675 | return; |
2676 | |
2677 | AvailabilityChange Introduced = AL.getAvailabilityIntroduced(); |
2678 | AvailabilityChange Deprecated = AL.getAvailabilityDeprecated(); |
2679 | AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted(); |
2680 | bool IsUnavailable = AL.getUnavailableLoc().isValid(); |
2681 | bool IsStrict = AL.getStrictLoc().isValid(); |
2682 | StringRef Str; |
2683 | if (const auto *SE = dyn_cast_if_present<StringLiteral>(Val: AL.getMessageExpr())) |
2684 | Str = SE->getString(); |
2685 | StringRef Replacement; |
2686 | if (const auto *SE = |
2687 | dyn_cast_if_present<StringLiteral>(Val: AL.getReplacementExpr())) |
2688 | Replacement = SE->getString(); |
2689 | |
2690 | if (II->isStr(Str: "swift" )) { |
2691 | if (Introduced.isValid() || Obsoleted.isValid() || |
2692 | (!IsUnavailable && !Deprecated.isValid())) { |
2693 | S.Diag(AL.getLoc(), |
2694 | diag::warn_availability_swift_unavailable_deprecated_only); |
2695 | return; |
2696 | } |
2697 | } |
2698 | |
2699 | if (II->isStr(Str: "fuchsia" )) { |
2700 | std::optional<unsigned> Min, Sub; |
2701 | if ((Min = Introduced.Version.getMinor()) || |
2702 | (Sub = Introduced.Version.getSubminor())) { |
2703 | S.Diag(AL.getLoc(), diag::warn_availability_fuchsia_unavailable_minor); |
2704 | return; |
2705 | } |
2706 | } |
2707 | |
2708 | int PriorityModifier = AL.isPragmaClangAttribute() |
2709 | ? Sema::AP_PragmaClangAttribute |
2710 | : Sema::AP_Explicit; |
2711 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2712 | ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version, |
2713 | Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement, |
2714 | Sema::AMK_None, PriorityModifier); |
2715 | if (NewAttr) |
2716 | D->addAttr(A: NewAttr); |
2717 | |
2718 | // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning |
2719 | // matches before the start of the watchOS platform. |
2720 | if (S.Context.getTargetInfo().getTriple().isWatchOS()) { |
2721 | IdentifierInfo *NewII = nullptr; |
2722 | if (II->getName() == "ios" ) |
2723 | NewII = &S.Context.Idents.get(Name: "watchos" ); |
2724 | else if (II->getName() == "ios_app_extension" ) |
2725 | NewII = &S.Context.Idents.get(Name: "watchos_app_extension" ); |
2726 | |
2727 | if (NewII) { |
2728 | const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking(); |
2729 | const auto *IOSToWatchOSMapping = |
2730 | SDKInfo ? SDKInfo->getVersionMapping( |
2731 | Kind: DarwinSDKInfo::OSEnvPair::iOStoWatchOSPair()) |
2732 | : nullptr; |
2733 | |
2734 | auto adjustWatchOSVersion = |
2735 | [IOSToWatchOSMapping](VersionTuple Version) -> VersionTuple { |
2736 | if (Version.empty()) |
2737 | return Version; |
2738 | auto MinimumWatchOSVersion = VersionTuple(2, 0); |
2739 | |
2740 | if (IOSToWatchOSMapping) { |
2741 | if (auto MappedVersion = IOSToWatchOSMapping->map( |
2742 | Key: Version, MinimumValue: MinimumWatchOSVersion, MaximumValue: std::nullopt)) { |
2743 | return *MappedVersion; |
2744 | } |
2745 | } |
2746 | |
2747 | auto Major = Version.getMajor(); |
2748 | auto NewMajor = Major >= 9 ? Major - 7 : 0; |
2749 | if (NewMajor >= 2) { |
2750 | if (Version.getMinor()) { |
2751 | if (Version.getSubminor()) |
2752 | return VersionTuple(NewMajor, *Version.getMinor(), |
2753 | *Version.getSubminor()); |
2754 | else |
2755 | return VersionTuple(NewMajor, *Version.getMinor()); |
2756 | } |
2757 | return VersionTuple(NewMajor); |
2758 | } |
2759 | |
2760 | return MinimumWatchOSVersion; |
2761 | }; |
2762 | |
2763 | auto NewIntroduced = adjustWatchOSVersion(Introduced.Version); |
2764 | auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version); |
2765 | auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version); |
2766 | |
2767 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2768 | ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated, |
2769 | NewObsoleted, IsUnavailable, Str, IsStrict, Replacement, |
2770 | Sema::AMK_None, |
2771 | PriorityModifier + Sema::AP_InferredFromOtherPlatform); |
2772 | if (NewAttr) |
2773 | D->addAttr(A: NewAttr); |
2774 | } |
2775 | } else if (S.Context.getTargetInfo().getTriple().isTvOS()) { |
2776 | // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning |
2777 | // matches before the start of the tvOS platform. |
2778 | IdentifierInfo *NewII = nullptr; |
2779 | if (II->getName() == "ios" ) |
2780 | NewII = &S.Context.Idents.get(Name: "tvos" ); |
2781 | else if (II->getName() == "ios_app_extension" ) |
2782 | NewII = &S.Context.Idents.get(Name: "tvos_app_extension" ); |
2783 | |
2784 | if (NewII) { |
2785 | const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking(); |
2786 | const auto *IOSToTvOSMapping = |
2787 | SDKInfo ? SDKInfo->getVersionMapping( |
2788 | Kind: DarwinSDKInfo::OSEnvPair::iOStoTvOSPair()) |
2789 | : nullptr; |
2790 | |
2791 | auto AdjustTvOSVersion = |
2792 | [IOSToTvOSMapping](VersionTuple Version) -> VersionTuple { |
2793 | if (Version.empty()) |
2794 | return Version; |
2795 | |
2796 | if (IOSToTvOSMapping) { |
2797 | if (auto MappedVersion = IOSToTvOSMapping->map( |
2798 | Key: Version, MinimumValue: VersionTuple(0, 0), MaximumValue: std::nullopt)) { |
2799 | return *MappedVersion; |
2800 | } |
2801 | } |
2802 | return Version; |
2803 | }; |
2804 | |
2805 | auto NewIntroduced = AdjustTvOSVersion(Introduced.Version); |
2806 | auto NewDeprecated = AdjustTvOSVersion(Deprecated.Version); |
2807 | auto NewObsoleted = AdjustTvOSVersion(Obsoleted.Version); |
2808 | |
2809 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2810 | ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated, |
2811 | NewObsoleted, IsUnavailable, Str, IsStrict, Replacement, |
2812 | Sema::AMK_None, |
2813 | PriorityModifier + Sema::AP_InferredFromOtherPlatform); |
2814 | if (NewAttr) |
2815 | D->addAttr(A: NewAttr); |
2816 | } |
2817 | } else if (S.Context.getTargetInfo().getTriple().getOS() == |
2818 | llvm::Triple::IOS && |
2819 | S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) { |
2820 | auto GetSDKInfo = [&]() { |
2821 | return S.getDarwinSDKInfoForAvailabilityChecking(Loc: AL.getRange().getBegin(), |
2822 | Platform: "macOS" ); |
2823 | }; |
2824 | |
2825 | // Transcribe "ios" to "maccatalyst" (and add a new attribute). |
2826 | IdentifierInfo *NewII = nullptr; |
2827 | if (II->getName() == "ios" ) |
2828 | NewII = &S.Context.Idents.get(Name: "maccatalyst" ); |
2829 | else if (II->getName() == "ios_app_extension" ) |
2830 | NewII = &S.Context.Idents.get(Name: "maccatalyst_app_extension" ); |
2831 | if (NewII) { |
2832 | auto MinMacCatalystVersion = [](const VersionTuple &V) { |
2833 | if (V.empty()) |
2834 | return V; |
2835 | if (V.getMajor() < 13 || |
2836 | (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1)) |
2837 | return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1. |
2838 | return V; |
2839 | }; |
2840 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2841 | ND, AL, NewII, true /*Implicit*/, |
2842 | MinMacCatalystVersion(Introduced.Version), |
2843 | MinMacCatalystVersion(Deprecated.Version), |
2844 | MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str, |
2845 | IsStrict, Replacement, Sema::AMK_None, |
2846 | PriorityModifier + Sema::AP_InferredFromOtherPlatform); |
2847 | if (NewAttr) |
2848 | D->addAttr(A: NewAttr); |
2849 | } else if (II->getName() == "macos" && GetSDKInfo() && |
2850 | (!Introduced.Version.empty() || !Deprecated.Version.empty() || |
2851 | !Obsoleted.Version.empty())) { |
2852 | if (const auto *MacOStoMacCatalystMapping = |
2853 | GetSDKInfo()->getVersionMapping( |
2854 | Kind: DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) { |
2855 | // Infer Mac Catalyst availability from the macOS availability attribute |
2856 | // if it has versioned availability. Don't infer 'unavailable'. This |
2857 | // inferred availability has lower priority than the other availability |
2858 | // attributes that are inferred from 'ios'. |
2859 | NewII = &S.Context.Idents.get(Name: "maccatalyst" ); |
2860 | auto RemapMacOSVersion = |
2861 | [&](const VersionTuple &V) -> std::optional<VersionTuple> { |
2862 | if (V.empty()) |
2863 | return std::nullopt; |
2864 | // API_TO_BE_DEPRECATED is 100000. |
2865 | if (V.getMajor() == 100000) |
2866 | return VersionTuple(100000); |
2867 | // The minimum iosmac version is 13.1 |
2868 | return MacOStoMacCatalystMapping->map(Key: V, MinimumValue: VersionTuple(13, 1), |
2869 | MaximumValue: std::nullopt); |
2870 | }; |
2871 | std::optional<VersionTuple> NewIntroduced = |
2872 | RemapMacOSVersion(Introduced.Version), |
2873 | NewDeprecated = |
2874 | RemapMacOSVersion(Deprecated.Version), |
2875 | NewObsoleted = |
2876 | RemapMacOSVersion(Obsoleted.Version); |
2877 | if (NewIntroduced || NewDeprecated || NewObsoleted) { |
2878 | auto VersionOrEmptyVersion = |
2879 | [](const std::optional<VersionTuple> &V) -> VersionTuple { |
2880 | return V ? *V : VersionTuple(); |
2881 | }; |
2882 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2883 | ND, AL, NewII, true /*Implicit*/, |
2884 | VersionOrEmptyVersion(NewIntroduced), |
2885 | VersionOrEmptyVersion(NewDeprecated), |
2886 | VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str, |
2887 | IsStrict, Replacement, Sema::AMK_None, |
2888 | PriorityModifier + Sema::AP_InferredFromOtherPlatform + |
2889 | Sema::AP_InferredFromOtherPlatform); |
2890 | if (NewAttr) |
2891 | D->addAttr(A: NewAttr); |
2892 | } |
2893 | } |
2894 | } |
2895 | } |
2896 | } |
2897 | |
2898 | static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, |
2899 | const ParsedAttr &AL) { |
2900 | if (!AL.checkAtLeastNumArgs(S, Num: 1) || !AL.checkAtMostNumArgs(S, Num: 4)) |
2901 | return; |
2902 | |
2903 | StringRef Language; |
2904 | if (const auto *SE = dyn_cast_if_present<StringLiteral>(Val: AL.getArgAsExpr(Arg: 0))) |
2905 | Language = SE->getString(); |
2906 | StringRef DefinedIn; |
2907 | if (const auto *SE = dyn_cast_if_present<StringLiteral>(Val: AL.getArgAsExpr(Arg: 1))) |
2908 | DefinedIn = SE->getString(); |
2909 | bool IsGeneratedDeclaration = AL.getArgAsIdent(Arg: 2) != nullptr; |
2910 | StringRef USR; |
2911 | if (const auto *SE = dyn_cast_if_present<StringLiteral>(Val: AL.getArgAsExpr(Arg: 3))) |
2912 | USR = SE->getString(); |
2913 | |
2914 | D->addAttr(::new (S.Context) ExternalSourceSymbolAttr( |
2915 | S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration, USR)); |
2916 | } |
2917 | |
2918 | template <class T> |
2919 | static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI, |
2920 | typename T::VisibilityType value) { |
2921 | T *existingAttr = D->getAttr<T>(); |
2922 | if (existingAttr) { |
2923 | typename T::VisibilityType existingValue = existingAttr->getVisibility(); |
2924 | if (existingValue == value) |
2925 | return nullptr; |
2926 | S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); |
2927 | S.Diag(CI.getLoc(), diag::note_previous_attribute); |
2928 | D->dropAttr<T>(); |
2929 | } |
2930 | return ::new (S.Context) T(S.Context, CI, value); |
2931 | } |
2932 | |
2933 | VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, |
2934 | const AttributeCommonInfo &CI, |
2935 | VisibilityAttr::VisibilityType Vis) { |
2936 | return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis); |
2937 | } |
2938 | |
2939 | TypeVisibilityAttr * |
2940 | Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, |
2941 | TypeVisibilityAttr::VisibilityType Vis) { |
2942 | return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis); |
2943 | } |
2944 | |
2945 | static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, |
2946 | bool isTypeVisibility) { |
2947 | // Visibility attributes don't mean anything on a typedef. |
2948 | if (isa<TypedefNameDecl>(Val: D)) { |
2949 | S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL; |
2950 | return; |
2951 | } |
2952 | |
2953 | // 'type_visibility' can only go on a type or namespace. |
2954 | if (isTypeVisibility && !(isa<TagDecl>(Val: D) || isa<ObjCInterfaceDecl>(Val: D) || |
2955 | isa<NamespaceDecl>(Val: D))) { |
2956 | S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type) |
2957 | << AL << AL.isRegularKeywordAttribute() << ExpectedTypeOrNamespace; |
2958 | return; |
2959 | } |
2960 | |
2961 | // Check that the argument is a string literal. |
2962 | StringRef TypeStr; |
2963 | SourceLocation LiteralLoc; |
2964 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: TypeStr, ArgLocation: &LiteralLoc)) |
2965 | return; |
2966 | |
2967 | VisibilityAttr::VisibilityType type; |
2968 | if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) { |
2969 | S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL |
2970 | << TypeStr; |
2971 | return; |
2972 | } |
2973 | |
2974 | // Complain about attempts to use protected visibility on targets |
2975 | // (like Darwin) that don't support it. |
2976 | if (type == VisibilityAttr::Protected && |
2977 | !S.Context.getTargetInfo().hasProtectedVisibility()) { |
2978 | S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility); |
2979 | type = VisibilityAttr::Default; |
2980 | } |
2981 | |
2982 | Attr *newAttr; |
2983 | if (isTypeVisibility) { |
2984 | newAttr = S.mergeTypeVisibilityAttr( |
2985 | D, AL, (TypeVisibilityAttr::VisibilityType)type); |
2986 | } else { |
2987 | newAttr = S.mergeVisibilityAttr(D, AL, type); |
2988 | } |
2989 | if (newAttr) |
2990 | D->addAttr(A: newAttr); |
2991 | } |
2992 | |
2993 | static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2994 | // objc_direct cannot be set on methods declared in the context of a protocol |
2995 | if (isa<ObjCProtocolDecl>(Val: D->getDeclContext())) { |
2996 | S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false; |
2997 | return; |
2998 | } |
2999 | |
3000 | if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) { |
3001 | handleSimpleAttribute<ObjCDirectAttr>(S, D, AL); |
3002 | } else { |
3003 | S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL; |
3004 | } |
3005 | } |
3006 | |
3007 | static void handleObjCDirectMembersAttr(Sema &S, Decl *D, |
3008 | const ParsedAttr &AL) { |
3009 | if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) { |
3010 | handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL); |
3011 | } else { |
3012 | S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL; |
3013 | } |
3014 | } |
3015 | |
3016 | static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3017 | const auto *M = cast<ObjCMethodDecl>(Val: D); |
3018 | if (!AL.isArgIdent(Arg: 0)) { |
3019 | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
3020 | << AL << 1 << AANT_ArgumentIdentifier; |
3021 | return; |
3022 | } |
3023 | |
3024 | IdentifierLoc *IL = AL.getArgAsIdent(Arg: 0); |
3025 | ObjCMethodFamilyAttr::FamilyKind F; |
3026 | if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) { |
3027 | S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident; |
3028 | return; |
3029 | } |
3030 | |
3031 | if (F == ObjCMethodFamilyAttr::OMF_init && |
3032 | !M->getReturnType()->isObjCObjectPointerType()) { |
3033 | S.Diag(M->getLocation(), diag::err_init_method_bad_return_type) |
3034 | << M->getReturnType(); |
3035 | // Ignore the attribute. |
3036 | return; |
3037 | } |
3038 | |
3039 | D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F)); |
3040 | } |
3041 | |
3042 | static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) { |
3043 | if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) { |
3044 | QualType T = TD->getUnderlyingType(); |
3045 | if (!T->isCARCBridgableType()) { |
3046 | S.Diag(TD->getLocation(), diag::err_nsobject_attribute); |
3047 | return; |
3048 | } |
3049 | } |
3050 | else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(Val: D)) { |
3051 | QualType T = PD->getType(); |
3052 | if (!T->isCARCBridgableType()) { |
3053 | S.Diag(PD->getLocation(), diag::err_nsobject_attribute); |
3054 | return; |
3055 | } |
3056 | } |
3057 | else { |
3058 | // It is okay to include this attribute on properties, e.g.: |
3059 | // |
3060 | // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject)); |
3061 | // |
3062 | // In this case it follows tradition and suppresses an error in the above |
3063 | // case. |
3064 | S.Diag(D->getLocation(), diag::warn_nsobject_attribute); |
3065 | } |
3066 | D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL)); |
3067 | } |
3068 | |
3069 | static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) { |
3070 | if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) { |
3071 | QualType T = TD->getUnderlyingType(); |
3072 | if (!T->isObjCObjectPointerType()) { |
3073 | S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute); |
3074 | return; |
3075 | } |
3076 | } else { |
3077 | S.Diag(D->getLocation(), diag::warn_independentclass_attribute); |
3078 | return; |
3079 | } |
3080 | D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL)); |
3081 | } |
3082 | |
3083 | static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3084 | if (!AL.isArgIdent(Arg: 0)) { |
3085 | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
3086 | << AL << 1 << AANT_ArgumentIdentifier; |
3087 | return; |
3088 | } |
3089 | |
3090 | IdentifierInfo *II = AL.getArgAsIdent(Arg: 0)->Ident; |
3091 | BlocksAttr::BlockType type; |
3092 | if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) { |
3093 | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; |
3094 | return; |
3095 | } |
3096 | |
3097 | D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type)); |
3098 | } |
3099 | |
3100 | static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3101 | unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel; |
3102 | if (AL.getNumArgs() > 0) { |
3103 | Expr *E = AL.getArgAsExpr(Arg: 0); |
3104 | std::optional<llvm::APSInt> Idx = llvm::APSInt(32); |
3105 | if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(Ctx: S.Context))) { |
3106 | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
3107 | << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
3108 | return; |
3109 | } |
3110 | |
3111 | if (Idx->isSigned() && Idx->isNegative()) { |
3112 | S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero) |
3113 | << E->getSourceRange(); |
3114 | return; |
3115 | } |
3116 | |
3117 | sentinel = Idx->getZExtValue(); |
3118 | } |
3119 | |
3120 | unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos; |
3121 | if (AL.getNumArgs() > 1) { |
3122 | Expr *E = AL.getArgAsExpr(Arg: 1); |
3123 | std::optional<llvm::APSInt> Idx = llvm::APSInt(32); |
3124 | if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(Ctx: S.Context))) { |
3125 | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
3126 | << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
3127 | return; |
3128 | } |
3129 | nullPos = Idx->getZExtValue(); |
3130 | |
3131 | if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) { |
3132 | // FIXME: This error message could be improved, it would be nice |
3133 | // to say what the bounds actually are. |
3134 | S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) |
3135 | << E->getSourceRange(); |
3136 | return; |
3137 | } |
3138 | } |
3139 | |
3140 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
3141 | const FunctionType *FT = FD->getType()->castAs<FunctionType>(); |
3142 | if (isa<FunctionNoProtoType>(Val: FT)) { |
3143 | S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments); |
3144 | return; |
3145 | } |
3146 | |
3147 | if (!cast<FunctionProtoType>(Val: FT)->isVariadic()) { |
3148 | S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; |
3149 | return; |
3150 | } |
3151 | } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) { |
3152 | if (!MD->isVariadic()) { |
3153 | S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; |
3154 | return; |
3155 | } |
3156 | } else if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) { |
3157 | if (!BD->isVariadic()) { |
3158 | S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; |
3159 | return; |
3160 | } |
3161 | } else if (const auto *V = dyn_cast<VarDecl>(Val: D)) { |
3162 | QualType Ty = V->getType(); |
3163 | if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { |
3164 | const FunctionType *FT = Ty->isFunctionPointerType() |
3165 | ? D->getFunctionType() |
3166 | : Ty->castAs<BlockPointerType>() |
3167 | ->getPointeeType() |
3168 | ->castAs<FunctionType>(); |
3169 | if (!cast<FunctionProtoType>(Val: FT)->isVariadic()) { |
3170 | int m = Ty->isFunctionPointerType() ? 0 : 1; |
3171 | S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; |
3172 | return; |
3173 | } |
3174 | } else { |
3175 | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
3176 | << AL << AL.isRegularKeywordAttribute() |
3177 | << ExpectedFunctionMethodOrBlock; |
3178 | return; |
3179 | } |
3180 | } else { |
3181 | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
3182 | << AL << AL.isRegularKeywordAttribute() |
3183 | << ExpectedFunctionMethodOrBlock; |
3184 | return; |
3185 | } |
3186 | D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos)); |
3187 | } |
3188 | |
3189 | static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) { |
3190 | if (D->getFunctionType() && |
3191 | D->getFunctionType()->getReturnType()->isVoidType() && |
3192 | !isa<CXXConstructorDecl>(Val: D)) { |
3193 | S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0; |
3194 | return; |
3195 | } |
3196 | if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) |
3197 | if (MD->getReturnType()->isVoidType()) { |
3198 | S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1; |
3199 | return; |
3200 | } |
3201 | |
3202 | StringRef Str; |
3203 | if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) { |
3204 | // The standard attribute cannot be applied to variable declarations such |
3205 | // as a function pointer. |
3206 | if (isa<VarDecl>(D)) |
3207 | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str) |
3208 | << AL << AL.isRegularKeywordAttribute() |
3209 | << "functions, classes, or enumerations" ; |
3210 | |
3211 | // If this is spelled as the standard C++17 attribute, but not in C++17, |
3212 | // warn about using it as an extension. If there are attribute arguments, |
3213 | // then claim it's a C++20 extension instead. |
3214 | // FIXME: If WG14 does not seem likely to adopt the same feature, add an |
3215 | // extension warning for C23 mode. |
3216 | const LangOptions &LO = S.getLangOpts(); |
3217 | if (AL.getNumArgs() == 1) { |
3218 | if (LO.CPlusPlus && !LO.CPlusPlus20) |
3219 | S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL; |
3220 | |
3221 | // Since this is spelled [[nodiscard]], get the optional string |
3222 | // literal. If in C++ mode, but not in C++20 mode, diagnose as an |
3223 | // extension. |
3224 | // FIXME: C23 should support this feature as well, even as an extension. |
3225 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: nullptr)) |
3226 | return; |
3227 | } else if (LO.CPlusPlus && !LO.CPlusPlus17) |
3228 | S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; |
3229 | } |
3230 | |
3231 | if ((!AL.isGNUAttribute() && |
3232 | !(AL.isStandardAttributeSyntax() && AL.isClangScope())) && |
3233 | isa<TypedefNameDecl>(Val: D)) { |
3234 | S.Diag(AL.getLoc(), diag::warn_unused_result_typedef_unsupported_spelling) |
3235 | << AL.isGNUScope(); |
3236 | return; |
3237 | } |
3238 | |
3239 | D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str)); |
3240 | } |
3241 | |
3242 | static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3243 | // weak_import only applies to variable & function declarations. |
3244 | bool isDef = false; |
3245 | if (!D->canBeWeakImported(IsDefinition&: isDef)) { |
3246 | if (isDef) |
3247 | S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition) |
3248 | << "weak_import" ; |
3249 | else if (isa<ObjCPropertyDecl>(Val: D) || isa<ObjCMethodDecl>(Val: D) || |
3250 | (S.Context.getTargetInfo().getTriple().isOSDarwin() && |
3251 | (isa<ObjCInterfaceDecl>(Val: D) || isa<EnumDecl>(Val: D)))) { |
3252 | // Nothing to warn about here. |
3253 | } else |
3254 | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
3255 | << AL << AL.isRegularKeywordAttribute() << ExpectedVariableOrFunction; |
3256 | |
3257 | return; |
3258 | } |
3259 | |
3260 | D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL)); |
3261 | } |
3262 | |
3263 | // Handles reqd_work_group_size and work_group_size_hint. |
3264 | template <typename WorkGroupAttr> |
3265 | static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { |
3266 | uint32_t WGSize[3]; |
3267 | for (unsigned i = 0; i < 3; ++i) { |
3268 | const Expr *E = AL.getArgAsExpr(Arg: i); |
3269 | if (!checkUInt32Argument(S, AI: AL, Expr: E, Val&: WGSize[i], Idx: i, |
3270 | /*StrictlyUnsigned=*/true)) |
3271 | return; |
3272 | if (WGSize[i] == 0) { |
3273 | S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) |
3274 | << AL << E->getSourceRange(); |
3275 | return; |
3276 | } |
3277 | } |
3278 | |
3279 | WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>(); |
3280 | if (Existing && !(Existing->getXDim() == WGSize[0] && |
3281 | Existing->getYDim() == WGSize[1] && |
3282 | Existing->getZDim() == WGSize[2])) |
3283 | S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; |
3284 | |
3285 | D->addAttr(A: ::new (S.Context) |
3286 | WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2])); |
3287 | } |
3288 | |
3289 | // Handles intel_reqd_sub_group_size. |
3290 | static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { |
3291 | uint32_t SGSize; |
3292 | const Expr *E = AL.getArgAsExpr(Arg: 0); |
3293 | if (!checkUInt32Argument(S, AI: AL, Expr: E, Val&: SGSize)) |
3294 | return; |
3295 | if (SGSize == 0) { |
3296 | S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) |
3297 | << AL << E->getSourceRange(); |
3298 | return; |
3299 | } |
3300 | |
3301 | OpenCLIntelReqdSubGroupSizeAttr *Existing = |
3302 | D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>(); |
3303 | if (Existing && Existing->getSubGroupSize() != SGSize) |
3304 | S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; |
3305 | |
3306 | D->addAttr(::new (S.Context) |
3307 | OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize)); |
3308 | } |
3309 | |
3310 | static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) { |
3311 | if (!AL.hasParsedType()) { |
3312 | S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
3313 | return; |
3314 | } |
3315 | |
3316 | TypeSourceInfo *ParmTSI = nullptr; |
3317 | QualType ParmType = S.GetTypeFromParser(Ty: AL.getTypeArg(), TInfo: &ParmTSI); |
3318 | assert(ParmTSI && "no type source info for attribute argument" ); |
3319 | |
3320 | if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && |
3321 | (ParmType->isBooleanType() || |
3322 | !ParmType->isIntegralType(Ctx: S.getASTContext()))) { |
3323 | S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL; |
3324 | return; |
3325 | } |
3326 | |
3327 | if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) { |
3328 | if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) { |
3329 | S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; |
3330 | return; |
3331 | } |
3332 | } |
3333 | |
3334 | D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI)); |
3335 | } |
3336 | |
3337 | SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, |
3338 | StringRef Name) { |
3339 | // Explicit or partial specializations do not inherit |
3340 | // the section attribute from the primary template. |
3341 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
3342 | if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate && |
3343 | FD->isFunctionTemplateSpecialization()) |
3344 | return nullptr; |
3345 | } |
3346 | if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) { |
3347 | if (ExistingAttr->getName() == Name) |
3348 | return nullptr; |
3349 | Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) |
3350 | << 1 /*section*/; |
3351 | Diag(CI.getLoc(), diag::note_previous_attribute); |
3352 | return nullptr; |
3353 | } |
3354 | return ::new (Context) SectionAttr(Context, CI, Name); |
3355 | } |
3356 | |
3357 | /// Used to implement to perform semantic checking on |
3358 | /// attribute((section("foo"))) specifiers. |
3359 | /// |
3360 | /// In this case, "foo" is passed in to be checked. If the section |
3361 | /// specifier is invalid, return an Error that indicates the problem. |
3362 | /// |
3363 | /// This is a simple quality of implementation feature to catch errors |
3364 | /// and give good diagnostics in cases when the assembler or code generator |
3365 | /// would otherwise reject the section specifier. |
3366 | llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) { |
3367 | if (!Context.getTargetInfo().getTriple().isOSDarwin()) |
3368 | return llvm::Error::success(); |
3369 | |
3370 | // Let MCSectionMachO validate this. |
3371 | StringRef Segment, Section; |
3372 | unsigned TAA, StubSize; |
3373 | bool HasTAA; |
3374 | return llvm::MCSectionMachO::ParseSectionSpecifier(Spec: SecName, Segment, Section, |
3375 | TAA, TAAParsed&: HasTAA, StubSize); |
3376 | } |
3377 | |
3378 | bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) { |
3379 | if (llvm::Error E = isValidSectionSpecifier(SecName)) { |
3380 | Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) |
3381 | << toString(std::move(E)) << 1 /*'section'*/; |
3382 | return false; |
3383 | } |
3384 | return true; |
3385 | } |
3386 | |
3387 | static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3388 | // Make sure that there is a string literal as the sections's single |
3389 | // argument. |
3390 | StringRef Str; |
3391 | SourceLocation LiteralLoc; |
3392 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc)) |
3393 | return; |
3394 | |
3395 | if (!S.checkSectionName(LiteralLoc, SecName: Str)) |
3396 | return; |
3397 | |
3398 | SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str); |
3399 | if (NewAttr) { |
3400 | D->addAttr(A: NewAttr); |
3401 | if (isa<FunctionDecl, FunctionTemplateDecl, ObjCMethodDecl, |
3402 | ObjCPropertyDecl>(Val: D)) |
3403 | S.UnifySection(NewAttr->getName(), |
3404 | ASTContext::PSF_Execute | ASTContext::PSF_Read, |
3405 | cast<NamedDecl>(Val: D)); |
3406 | } |
3407 | } |
3408 | |
3409 | static void handleCodeModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3410 | StringRef Str; |
3411 | SourceLocation LiteralLoc; |
3412 | // Check that it is a string. |
3413 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc)) |
3414 | return; |
3415 | |
3416 | llvm::CodeModel::Model CM; |
3417 | if (!CodeModelAttr::ConvertStrToModel(Str, CM)) { |
3418 | S.Diag(LiteralLoc, diag::err_attr_codemodel_arg) << Str; |
3419 | return; |
3420 | } |
3421 | |
3422 | D->addAttr(::new (S.Context) CodeModelAttr(S.Context, AL, CM)); |
3423 | } |
3424 | |
3425 | // This is used for `__declspec(code_seg("segname"))` on a decl. |
3426 | // `#pragma code_seg("segname")` uses checkSectionName() instead. |
3427 | static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc, |
3428 | StringRef CodeSegName) { |
3429 | if (llvm::Error E = S.isValidSectionSpecifier(SecName: CodeSegName)) { |
3430 | S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) |
3431 | << toString(std::move(E)) << 0 /*'code-seg'*/; |
3432 | return false; |
3433 | } |
3434 | |
3435 | return true; |
3436 | } |
3437 | |
3438 | CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, |
3439 | StringRef Name) { |
3440 | // Explicit or partial specializations do not inherit |
3441 | // the code_seg attribute from the primary template. |
3442 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
3443 | if (FD->isFunctionTemplateSpecialization()) |
3444 | return nullptr; |
3445 | } |
3446 | if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { |
3447 | if (ExistingAttr->getName() == Name) |
3448 | return nullptr; |
3449 | Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) |
3450 | << 0 /*codeseg*/; |
3451 | Diag(CI.getLoc(), diag::note_previous_attribute); |
3452 | return nullptr; |
3453 | } |
3454 | return ::new (Context) CodeSegAttr(Context, CI, Name); |
3455 | } |
3456 | |
3457 | static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3458 | StringRef Str; |
3459 | SourceLocation LiteralLoc; |
3460 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc)) |
3461 | return; |
3462 | if (!checkCodeSegName(S, LiteralLoc, CodeSegName: Str)) |
3463 | return; |
3464 | if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { |
3465 | if (!ExistingAttr->isImplicit()) { |
3466 | S.Diag(AL.getLoc(), |
3467 | ExistingAttr->getName() == Str |
3468 | ? diag::warn_duplicate_codeseg_attribute |
3469 | : diag::err_conflicting_codeseg_attribute); |
3470 | return; |
3471 | } |
3472 | D->dropAttr<CodeSegAttr>(); |
3473 | } |
3474 | if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str)) |
3475 | D->addAttr(CSA); |
3476 | } |
3477 | |
3478 | // Check for things we'd like to warn about. Multiversioning issues are |
3479 | // handled later in the process, once we know how many exist. |
3480 | bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) { |
3481 | enum FirstParam { Unsupported, Duplicate, Unknown }; |
3482 | enum SecondParam { None, CPU, Tune }; |
3483 | enum ThirdParam { Target, TargetClones }; |
3484 | if (AttrStr.contains("fpmath=" )) |
3485 | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
3486 | << Unsupported << None << "fpmath=" << Target; |
3487 | |
3488 | // Diagnose use of tune if target doesn't support it. |
3489 | if (!Context.getTargetInfo().supportsTargetAttributeTune() && |
3490 | AttrStr.contains("tune=" )) |
3491 | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
3492 | << Unsupported << None << "tune=" << Target; |
3493 | |
3494 | ParsedTargetAttr ParsedAttrs = |
3495 | Context.getTargetInfo().parseTargetAttr(Str: AttrStr); |
3496 | |
3497 | if (!ParsedAttrs.CPU.empty() && |
3498 | !Context.getTargetInfo().isValidCPUName(ParsedAttrs.CPU)) |
3499 | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
3500 | << Unknown << CPU << ParsedAttrs.CPU << Target; |
3501 | |
3502 | if (!ParsedAttrs.Tune.empty() && |
3503 | !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune)) |
3504 | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
3505 | << Unknown << Tune << ParsedAttrs.Tune << Target; |
3506 | |
3507 | if (Context.getTargetInfo().getTriple().isRISCV() && |
3508 | ParsedAttrs.Duplicate != "" ) |
3509 | return Diag(LiteralLoc, diag::err_duplicate_target_attribute) |
3510 | << Duplicate << None << ParsedAttrs.Duplicate << Target; |
3511 | |
3512 | if (ParsedAttrs.Duplicate != "" ) |
3513 | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
3514 | << Duplicate << None << ParsedAttrs.Duplicate << Target; |
3515 | |
3516 | for (const auto &Feature : ParsedAttrs.Features) { |
3517 | auto CurFeature = StringRef(Feature).drop_front(); // remove + or -. |
3518 | if (!Context.getTargetInfo().isValidFeatureName(CurFeature)) |
3519 | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
3520 | << Unsupported << None << CurFeature << Target; |
3521 | } |
3522 | |
3523 | TargetInfo::BranchProtectionInfo BPI; |
3524 | StringRef DiagMsg; |
3525 | if (ParsedAttrs.BranchProtection.empty()) |
3526 | return false; |
3527 | if (!Context.getTargetInfo().validateBranchProtection( |
3528 | Spec: ParsedAttrs.BranchProtection, Arch: ParsedAttrs.CPU, BPI, Err&: DiagMsg)) { |
3529 | if (DiagMsg.empty()) |
3530 | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
3531 | << Unsupported << None << "branch-protection" << Target; |
3532 | return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec) |
3533 | << DiagMsg; |
3534 | } |
3535 | if (!DiagMsg.empty()) |
3536 | Diag(LiteralLoc, diag::warn_unsupported_branch_protection_spec) << DiagMsg; |
3537 | |
3538 | return false; |
3539 | } |
3540 | |
3541 | static bool hasArmStreamingInterface(const FunctionDecl *FD) { |
3542 | if (const auto *T = FD->getType()->getAs<FunctionProtoType>()) |
3543 | if (T->getAArch64SMEAttributes() & FunctionType::SME_PStateSMEnabledMask) |
3544 | return true; |
3545 | return false; |
3546 | } |
3547 | |
3548 | // Check Target Version attrs |
3549 | bool Sema::checkTargetVersionAttr(SourceLocation LiteralLoc, Decl *D, |
3550 | StringRef &AttrStr, bool &isDefault) { |
3551 | enum FirstParam { Unsupported }; |
3552 | enum SecondParam { None }; |
3553 | enum ThirdParam { Target, TargetClones, TargetVersion }; |
3554 | if (AttrStr.trim() == "default" ) |
3555 | isDefault = true; |
3556 | llvm::SmallVector<StringRef, 8> Features; |
3557 | AttrStr.split(A&: Features, Separator: "+" ); |
3558 | for (auto &CurFeature : Features) { |
3559 | CurFeature = CurFeature.trim(); |
3560 | if (CurFeature == "default" ) |
3561 | continue; |
3562 | if (!Context.getTargetInfo().validateCpuSupports(CurFeature)) |
3563 | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
3564 | << Unsupported << None << CurFeature << TargetVersion; |
3565 | } |
3566 | if (hasArmStreamingInterface(cast<FunctionDecl>(D))) |
3567 | return Diag(LiteralLoc, diag::err_sme_streaming_cannot_be_multiversioned); |
3568 | return false; |
3569 | } |
3570 | |
3571 | static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3572 | StringRef Str; |
3573 | SourceLocation LiteralLoc; |
3574 | bool isDefault = false; |
3575 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc) || |
3576 | S.checkTargetVersionAttr(LiteralLoc, D, AttrStr&: Str, isDefault)) |
3577 | return; |
3578 | // Do not create default only target_version attribute |
3579 | if (!isDefault) { |
3580 | TargetVersionAttr *NewAttr = |
3581 | ::new (S.Context) TargetVersionAttr(S.Context, AL, Str); |
3582 | D->addAttr(A: NewAttr); |
3583 | } |
3584 | } |
3585 | |
3586 | static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3587 | StringRef Str; |
3588 | SourceLocation LiteralLoc; |
3589 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc) || |
3590 | S.checkTargetAttr(LiteralLoc, AttrStr: Str)) |
3591 | return; |
3592 | |
3593 | TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str); |
3594 | D->addAttr(NewAttr); |
3595 | } |
3596 | |
3597 | bool Sema::checkTargetClonesAttrString( |
3598 | SourceLocation LiteralLoc, StringRef Str, const StringLiteral *Literal, |
3599 | Decl *D, bool &HasDefault, bool &HasCommas, bool &HasNotDefault, |
3600 | SmallVectorImpl<SmallString<64>> &StringsBuffer) { |
3601 | enum FirstParam { Unsupported, Duplicate, Unknown }; |
3602 | enum SecondParam { None, CPU, Tune }; |
3603 | enum ThirdParam { Target, TargetClones }; |
3604 | HasCommas = HasCommas || Str.contains(C: ','); |
3605 | const TargetInfo &TInfo = Context.getTargetInfo(); |
3606 | // Warn on empty at the beginning of a string. |
3607 | if (Str.size() == 0) |
3608 | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
3609 | << Unsupported << None << "" << TargetClones; |
3610 | |
3611 | std::pair<StringRef, StringRef> Parts = {{}, Str}; |
3612 | while (!Parts.second.empty()) { |
3613 | Parts = Parts.second.split(Separator: ','); |
3614 | StringRef Cur = Parts.first.trim(); |
3615 | SourceLocation CurLoc = |
3616 | Literal->getLocationOfByte(ByteNo: Cur.data() - Literal->getString().data(), |
3617 | SM: getSourceManager(), Features: getLangOpts(), Target: TInfo); |
3618 | |
3619 | bool DefaultIsDupe = false; |
3620 | bool HasCodeGenImpact = false; |
3621 | if (Cur.empty()) |
3622 | return Diag(CurLoc, diag::warn_unsupported_target_attribute) |
3623 | << Unsupported << None << "" << TargetClones; |
3624 | |
3625 | if (TInfo.getTriple().isAArch64()) { |
3626 | // AArch64 target clones specific |
3627 | if (Cur == "default" ) { |
3628 | DefaultIsDupe = HasDefault; |
3629 | HasDefault = true; |
3630 | if (llvm::is_contained(Range&: StringsBuffer, Element: Cur) || DefaultIsDupe) |
3631 | Diag(CurLoc, diag::warn_target_clone_duplicate_options); |
3632 | else |
3633 | StringsBuffer.push_back(Elt: Cur); |
3634 | } else { |
3635 | std::pair<StringRef, StringRef> CurParts = {{}, Cur}; |
3636 | llvm::SmallVector<StringRef, 8> CurFeatures; |
3637 | while (!CurParts.second.empty()) { |
3638 | CurParts = CurParts.second.split(Separator: '+'); |
3639 | StringRef CurFeature = CurParts.first.trim(); |
3640 | if (!TInfo.validateCpuSupports(Name: CurFeature)) { |
3641 | Diag(CurLoc, diag::warn_unsupported_target_attribute) |
3642 | << Unsupported << None << CurFeature << TargetClones; |
3643 | continue; |
3644 | } |
3645 | if (TInfo.doesFeatureAffectCodeGen(Feature: CurFeature)) |
3646 | HasCodeGenImpact = true; |
3647 | CurFeatures.push_back(Elt: CurFeature); |
3648 | } |
3649 | // Canonize TargetClones Attributes |
3650 | llvm::sort(C&: CurFeatures); |
3651 | SmallString<64> Res; |
3652 | for (auto &CurFeat : CurFeatures) { |
3653 | if (!Res.equals(RHS: "" )) |
3654 | Res.append(RHS: "+" ); |
3655 | Res.append(RHS: CurFeat); |
3656 | } |
3657 | if (llvm::is_contained(Range&: StringsBuffer, Element: Res) || DefaultIsDupe) |
3658 | Diag(CurLoc, diag::warn_target_clone_duplicate_options); |
3659 | else if (!HasCodeGenImpact) |
3660 | // Ignore features in target_clone attribute that don't impact |
3661 | // code generation |
3662 | Diag(CurLoc, diag::warn_target_clone_no_impact_options); |
3663 | else if (!Res.empty()) { |
3664 | StringsBuffer.push_back(Elt: Res); |
3665 | HasNotDefault = true; |
3666 | } |
3667 | } |
3668 | if (hasArmStreamingInterface(cast<FunctionDecl>(D))) |
3669 | return Diag(LiteralLoc, |
3670 | diag::err_sme_streaming_cannot_be_multiversioned); |
3671 | } else { |
3672 | // Other targets ( currently X86 ) |
3673 | if (Cur.starts_with(Prefix: "arch=" )) { |
3674 | if (!Context.getTargetInfo().isValidCPUName( |
3675 | Cur.drop_front(sizeof("arch=" ) - 1))) |
3676 | return Diag(CurLoc, diag::warn_unsupported_target_attribute) |
3677 | << Unsupported << CPU << Cur.drop_front(sizeof("arch=" ) - 1) |
3678 | << TargetClones; |
3679 | } else if (Cur == "default" ) { |
3680 | DefaultIsDupe = HasDefault; |
3681 | HasDefault = true; |
3682 | } else if (!Context.getTargetInfo().isValidFeatureName(Cur)) |
3683 | return Diag(CurLoc, diag::warn_unsupported_target_attribute) |
3684 | << Unsupported << None << Cur << TargetClones; |
3685 | if (llvm::is_contained(StringsBuffer, Cur) || DefaultIsDupe) |
3686 | Diag(CurLoc, diag::warn_target_clone_duplicate_options); |
3687 | // Note: Add even if there are duplicates, since it changes name mangling. |
3688 | StringsBuffer.push_back(Elt: Cur); |
3689 | } |
3690 | } |
3691 | if (Str.rtrim().ends_with("," )) |
3692 | return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
3693 | << Unsupported << None << "" << TargetClones; |
3694 | return false; |
3695 | } |
3696 | |
3697 | static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3698 | if (S.Context.getTargetInfo().getTriple().isAArch64() && |
3699 | !S.Context.getTargetInfo().hasFeature(Feature: "fmv" )) |
3700 | return; |
3701 | |
3702 | // Ensure we don't combine these with themselves, since that causes some |
3703 | // confusing behavior. |
3704 | if (const auto *Other = D->getAttr<TargetClonesAttr>()) { |
3705 | S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL; |
3706 | S.Diag(Other->getLocation(), diag::note_conflicting_attribute); |
3707 | return; |
3708 | } |
3709 | if (checkAttrMutualExclusion<TargetClonesAttr>(S, D, AL)) |
3710 | return; |
3711 | |
3712 | SmallVector<StringRef, 2> Strings; |
3713 | SmallVector<SmallString<64>, 2> StringsBuffer; |
3714 | bool HasCommas = false, HasDefault = false, HasNotDefault = false; |
3715 | |
3716 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
3717 | StringRef CurStr; |
3718 | SourceLocation LiteralLoc; |
3719 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: CurStr, ArgLocation: &LiteralLoc) || |
3720 | S.checkTargetClonesAttrString( |
3721 | LiteralLoc, Str: CurStr, |
3722 | Literal: cast<StringLiteral>(Val: AL.getArgAsExpr(Arg: I)->IgnoreParenCasts()), D, |
3723 | HasDefault, HasCommas, HasNotDefault, StringsBuffer)) |
3724 | return; |
3725 | } |
3726 | for (auto &SmallStr : StringsBuffer) |
3727 | Strings.push_back(Elt: SmallStr.str()); |
3728 | |
3729 | if (HasCommas && AL.getNumArgs() > 1) |
3730 | S.Diag(AL.getLoc(), diag::warn_target_clone_mixed_values); |
3731 | |
3732 | if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasDefault) { |
3733 | // Add default attribute if there is no one |
3734 | HasDefault = true; |
3735 | Strings.push_back(Elt: "default" ); |
3736 | } |
3737 | |
3738 | if (!HasDefault) { |
3739 | S.Diag(AL.getLoc(), diag::err_target_clone_must_have_default); |
3740 | return; |
3741 | } |
3742 | |
3743 | // FIXME: We could probably figure out how to get this to work for lambdas |
3744 | // someday. |
3745 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) { |
3746 | if (MD->getParent()->isLambda()) { |
3747 | S.Diag(D->getLocation(), diag::err_multiversion_doesnt_support) |
3748 | << static_cast<unsigned>(MultiVersionKind::TargetClones) |
3749 | << /*Lambda*/ 9; |
3750 | return; |
3751 | } |
3752 | } |
3753 | |
3754 | // No multiversion if we have default version only. |
3755 | if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasNotDefault) |
3756 | return; |
3757 | |
3758 | cast<FunctionDecl>(Val: D)->setIsMultiVersion(); |
3759 | TargetClonesAttr *NewAttr = ::new (S.Context) |
3760 | TargetClonesAttr(S.Context, AL, Strings.data(), Strings.size()); |
3761 | D->addAttr(A: NewAttr); |
3762 | } |
3763 | |
3764 | static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3765 | Expr *E = AL.getArgAsExpr(Arg: 0); |
3766 | uint32_t VecWidth; |
3767 | if (!checkUInt32Argument(S, AI: AL, Expr: E, Val&: VecWidth)) { |
3768 | AL.setInvalid(); |
3769 | return; |
3770 | } |
3771 | |
3772 | MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>(); |
3773 | if (Existing && Existing->getVectorWidth() != VecWidth) { |
3774 | S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; |
3775 | return; |
3776 | } |
3777 | |
3778 | D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth)); |
3779 | } |
3780 | |
3781 | static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3782 | Expr *E = AL.getArgAsExpr(Arg: 0); |
3783 | SourceLocation Loc = E->getExprLoc(); |
3784 | FunctionDecl *FD = nullptr; |
3785 | DeclarationNameInfo NI; |
3786 | |
3787 | // gcc only allows for simple identifiers. Since we support more than gcc, we |
3788 | // will warn the user. |
3789 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
3790 | if (DRE->hasQualifier()) |
3791 | S.Diag(Loc, diag::warn_cleanup_ext); |
3792 | FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl()); |
3793 | NI = DRE->getNameInfo(); |
3794 | if (!FD) { |
3795 | S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1 |
3796 | << NI.getName(); |
3797 | return; |
3798 | } |
3799 | } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Val: E)) { |
3800 | if (ULE->hasExplicitTemplateArgs()) |
3801 | S.Diag(Loc, diag::warn_cleanup_ext); |
3802 | FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true); |
3803 | NI = ULE->getNameInfo(); |
3804 | if (!FD) { |
3805 | S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2 |
3806 | << NI.getName(); |
3807 | if (ULE->getType() == S.Context.OverloadTy) |
3808 | S.NoteAllOverloadCandidates(ULE); |
3809 | return; |
3810 | } |
3811 | } else { |
3812 | S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0; |
3813 | return; |
3814 | } |
3815 | |
3816 | if (FD->getNumParams() != 1) { |
3817 | S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg) |
3818 | << NI.getName(); |
3819 | return; |
3820 | } |
3821 | |
3822 | // We're currently more strict than GCC about what function types we accept. |
3823 | // If this ever proves to be a problem it should be easy to fix. |
3824 | QualType Ty = S.Context.getPointerType(cast<VarDecl>(Val: D)->getType()); |
3825 | QualType ParamTy = FD->getParamDecl(i: 0)->getType(); |
3826 | if (S.CheckAssignmentConstraints(FD->getParamDecl(i: 0)->getLocation(), |
3827 | ParamTy, Ty) != Sema::Compatible) { |
3828 | S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type) |
3829 | << NI.getName() << ParamTy << Ty; |
3830 | return; |
3831 | } |
3832 | VarDecl *VD = cast<VarDecl>(Val: D); |
3833 | // Create a reference to the variable declaration. This is a fake/dummy |
3834 | // reference. |
3835 | DeclRefExpr *VariableReference = DeclRefExpr::Create( |
3836 | S.Context, NestedNameSpecifierLoc{}, FD->getLocation(), VD, false, |
3837 | DeclarationNameInfo{VD->getDeclName(), VD->getLocation()}, VD->getType(), |
3838 | VK_LValue); |
3839 | |
3840 | // Create a unary operator expression that represents taking the address of |
3841 | // the variable. This is a fake/dummy expression. |
3842 | Expr *AddressOfVariable = UnaryOperator::Create( |
3843 | C: S.Context, input: VariableReference, opc: UnaryOperatorKind::UO_AddrOf, |
3844 | type: S.Context.getPointerType(VD->getType()), VK: VK_PRValue, OK: OK_Ordinary, l: Loc, |
3845 | CanOverflow: +false, FPFeatures: FPOptionsOverride{}); |
3846 | |
3847 | // Create a function call expression. This is a fake/dummy call expression. |
3848 | CallExpr *FunctionCallExpression = |
3849 | CallExpr::Create(Ctx: S.Context, Fn: E, Args: ArrayRef{AddressOfVariable}, |
3850 | Ty: S.Context.VoidTy, VK: VK_PRValue, RParenLoc: Loc, FPFeatures: FPOptionsOverride{}); |
3851 | |
3852 | if (S.CheckFunctionCall(FDecl: FD, TheCall: FunctionCallExpression, |
3853 | Proto: FD->getType()->getAs<FunctionProtoType>())) { |
3854 | return; |
3855 | } |
3856 | |
3857 | D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD)); |
3858 | } |
3859 | |
3860 | static void handleEnumExtensibilityAttr(Sema &S, Decl *D, |
3861 | const ParsedAttr &AL) { |
3862 | if (!AL.isArgIdent(Arg: 0)) { |
3863 | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
3864 | << AL << 0 << AANT_ArgumentIdentifier; |
3865 | return; |
3866 | } |
3867 | |
3868 | EnumExtensibilityAttr::Kind ExtensibilityKind; |
3869 | IdentifierInfo *II = AL.getArgAsIdent(Arg: 0)->Ident; |
3870 | if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(), |
3871 | ExtensibilityKind)) { |
3872 | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; |
3873 | return; |
3874 | } |
3875 | |
3876 | D->addAttr(::new (S.Context) |
3877 | EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind)); |
3878 | } |
3879 | |
3880 | /// Handle __attribute__((format_arg((idx)))) attribute based on |
3881 | /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html |
3882 | static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3883 | const Expr *IdxExpr = AL.getArgAsExpr(Arg: 0); |
3884 | ParamIdx Idx; |
3885 | if (!checkFunctionOrMethodParameterIndex(S, D, AI: AL, AttrArgNum: 1, IdxExpr, Idx)) |
3886 | return; |
3887 | |
3888 | // Make sure the format string is really a string. |
3889 | QualType Ty = getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()); |
3890 | |
3891 | bool NotNSStringTy = !isNSStringType(T: Ty, Ctx&: S.Context); |
3892 | if (NotNSStringTy && |
3893 | !isCFStringType(T: Ty, Ctx&: S.Context) && |
3894 | (!Ty->isPointerType() || |
3895 | !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
3896 | S.Diag(AL.getLoc(), diag::err_format_attribute_not) |
3897 | << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); |
3898 | return; |
3899 | } |
3900 | Ty = getFunctionOrMethodResultType(D); |
3901 | // replace instancetype with the class type |
3902 | auto Instancetype = S.Context.getObjCInstanceTypeDecl()->getTypeForDecl(); |
3903 | if (Ty->getAs<TypedefType>() == Instancetype) |
3904 | if (auto *OMD = dyn_cast<ObjCMethodDecl>(Val: D)) |
3905 | if (auto *Interface = OMD->getClassInterface()) |
3906 | Ty = S.Context.getObjCObjectPointerType( |
3907 | OIT: QualType(Interface->getTypeForDecl(), 0)); |
3908 | if (!isNSStringType(T: Ty, Ctx&: S.Context, /*AllowNSAttributedString=*/true) && |
3909 | !isCFStringType(T: Ty, Ctx&: S.Context) && |
3910 | (!Ty->isPointerType() || |
3911 | !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
3912 | S.Diag(AL.getLoc(), diag::err_format_attribute_result_not) |
3913 | << (NotNSStringTy ? "string type" : "NSString" ) |
3914 | << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); |
3915 | return; |
3916 | } |
3917 | |
3918 | D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx)); |
3919 | } |
3920 | |
3921 | enum FormatAttrKind { |
3922 | CFStringFormat, |
3923 | NSStringFormat, |
3924 | StrftimeFormat, |
3925 | SupportedFormat, |
3926 | IgnoredFormat, |
3927 | InvalidFormat |
3928 | }; |
3929 | |
3930 | /// getFormatAttrKind - Map from format attribute names to supported format |
3931 | /// types. |
3932 | static FormatAttrKind getFormatAttrKind(StringRef Format) { |
3933 | return llvm::StringSwitch<FormatAttrKind>(Format) |
3934 | // Check for formats that get handled specially. |
3935 | .Case(S: "NSString" , Value: NSStringFormat) |
3936 | .Case(S: "CFString" , Value: CFStringFormat) |
3937 | .Case(S: "strftime" , Value: StrftimeFormat) |
3938 | |
3939 | // Otherwise, check for supported formats. |
3940 | .Cases(S0: "scanf" , S1: "printf" , S2: "printf0" , S3: "strfmon" , Value: SupportedFormat) |
3941 | .Cases(S0: "cmn_err" , S1: "vcmn_err" , S2: "zcmn_err" , Value: SupportedFormat) |
3942 | .Case(S: "kprintf" , Value: SupportedFormat) // OpenBSD. |
3943 | .Case(S: "freebsd_kprintf" , Value: SupportedFormat) // FreeBSD. |
3944 | .Case(S: "os_trace" , Value: SupportedFormat) |
3945 | .Case(S: "os_log" , Value: SupportedFormat) |
3946 | |
3947 | .Cases(S0: "gcc_diag" , S1: "gcc_cdiag" , S2: "gcc_cxxdiag" , S3: "gcc_tdiag" , Value: IgnoredFormat) |
3948 | .Default(Value: InvalidFormat); |
3949 | } |
3950 | |
3951 | /// Handle __attribute__((init_priority(priority))) attributes based on |
3952 | /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html |
3953 | static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3954 | if (!S.getLangOpts().CPlusPlus) { |
3955 | S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; |
3956 | return; |
3957 | } |
3958 | |
3959 | if (S.getLangOpts().HLSL) { |
3960 | S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported); |
3961 | return; |
3962 | } |
3963 | |
3964 | if (S.getCurFunctionOrMethodDecl()) { |
3965 | S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); |
3966 | AL.setInvalid(); |
3967 | return; |
3968 | } |
3969 | QualType T = cast<VarDecl>(Val: D)->getType(); |
3970 | if (S.Context.getAsArrayType(T)) |
3971 | T = S.Context.getBaseElementType(QT: T); |
3972 | if (!T->getAs<RecordType>()) { |
3973 | S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); |
3974 | AL.setInvalid(); |
3975 | return; |
3976 | } |
3977 | |
3978 | Expr *E = AL.getArgAsExpr(Arg: 0); |
3979 | uint32_t prioritynum; |
3980 | if (!checkUInt32Argument(S, AI: AL, Expr: E, Val&: prioritynum)) { |
3981 | AL.setInvalid(); |
3982 | return; |
3983 | } |
3984 | |
3985 | // Only perform the priority check if the attribute is outside of a system |
3986 | // header. Values <= 100 are reserved for the implementation, and libc++ |
3987 | // benefits from being able to specify values in that range. |
3988 | if ((prioritynum < 101 || prioritynum > 65535) && |
3989 | !S.getSourceManager().isInSystemHeader(Loc: AL.getLoc())) { |
3990 | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range) |
3991 | << E->getSourceRange() << AL << 101 << 65535; |
3992 | AL.setInvalid(); |
3993 | return; |
3994 | } |
3995 | D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum)); |
3996 | } |
3997 | |
3998 | ErrorAttr *Sema::mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI, |
3999 | StringRef NewUserDiagnostic) { |
4000 | if (const auto *EA = D->getAttr<ErrorAttr>()) { |
4001 | std::string NewAttr = CI.getNormalizedFullName(); |
4002 | assert((NewAttr == "error" || NewAttr == "warning" ) && |
4003 | "unexpected normalized full name" ); |
4004 | bool Match = (EA->isError() && NewAttr == "error" ) || |
4005 | (EA->isWarning() && NewAttr == "warning" ); |
4006 | if (!Match) { |
4007 | Diag(EA->getLocation(), diag::err_attributes_are_not_compatible) |
4008 | << CI << EA |
4009 | << (CI.isRegularKeywordAttribute() || |
4010 | EA->isRegularKeywordAttribute()); |
4011 | Diag(CI.getLoc(), diag::note_conflicting_attribute); |
4012 | return nullptr; |
4013 | } |
4014 | if (EA->getUserDiagnostic() != NewUserDiagnostic) { |
4015 | Diag(CI.getLoc(), diag::warn_duplicate_attribute) << EA; |
4016 | Diag(EA->getLoc(), diag::note_previous_attribute); |
4017 | } |
4018 | D->dropAttr<ErrorAttr>(); |
4019 | } |
4020 | return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic); |
4021 | } |
4022 | |
4023 | FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, |
4024 | IdentifierInfo *Format, int FormatIdx, |
4025 | int FirstArg) { |
4026 | // Check whether we already have an equivalent format attribute. |
4027 | for (auto *F : D->specific_attrs<FormatAttr>()) { |
4028 | if (F->getType() == Format && |
4029 | F->getFormatIdx() == FormatIdx && |
4030 | F->getFirstArg() == FirstArg) { |
4031 | // If we don't have a valid location for this attribute, adopt the |
4032 | // location. |
4033 | if (F->getLocation().isInvalid()) |
4034 | F->setRange(CI.getRange()); |
4035 | return nullptr; |
4036 | } |
4037 | } |
4038 | |
4039 | return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg); |
4040 | } |
4041 | |
4042 | /// Handle __attribute__((format(type,idx,firstarg))) attributes based on |
4043 | /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html |
4044 | static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4045 | if (!AL.isArgIdent(Arg: 0)) { |
4046 | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
4047 | << AL << 1 << AANT_ArgumentIdentifier; |
4048 | return; |
4049 | } |
4050 | |
4051 | // In C++ the implicit 'this' function parameter also counts, and they are |
4052 | // counted from one. |
4053 | bool HasImplicitThisParam = isInstanceMethod(D); |
4054 | unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam; |
4055 | |
4056 | IdentifierInfo *II = AL.getArgAsIdent(Arg: 0)->Ident; |
4057 | StringRef Format = II->getName(); |
4058 | |
4059 | if (normalizeName(AttrName&: Format)) { |
4060 | // If we've modified the string name, we need a new identifier for it. |
4061 | II = &S.Context.Idents.get(Name: Format); |
4062 | } |
4063 | |
4064 | // Check for supported formats. |
4065 | FormatAttrKind Kind = getFormatAttrKind(Format); |
4066 | |
4067 | if (Kind == IgnoredFormat) |
4068 | return; |
4069 | |
4070 | if (Kind == InvalidFormat) { |
4071 | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) |
4072 | << AL << II->getName(); |
4073 | return; |
4074 | } |
4075 | |
4076 | // checks for the 2nd argument |
4077 | Expr *IdxExpr = AL.getArgAsExpr(Arg: 1); |
4078 | uint32_t Idx; |
4079 | if (!checkUInt32Argument(S, AI: AL, Expr: IdxExpr, Val&: Idx, Idx: 2)) |
4080 | return; |
4081 | |
4082 | if (Idx < 1 || Idx > NumArgs) { |
4083 | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
4084 | << AL << 2 << IdxExpr->getSourceRange(); |
4085 | return; |
4086 | } |
4087 | |
4088 | // FIXME: Do we need to bounds check? |
4089 | unsigned ArgIdx = Idx - 1; |
4090 | |
4091 | if (HasImplicitThisParam) { |
4092 | if (ArgIdx == 0) { |
4093 | S.Diag(AL.getLoc(), |
4094 | diag::err_format_attribute_implicit_this_format_string) |
4095 | << IdxExpr->getSourceRange(); |
4096 | return; |
4097 | } |
4098 | ArgIdx--; |
4099 | } |
4100 | |
4101 | // make sure the format string is really a string |
4102 | QualType Ty = getFunctionOrMethodParamType(D, Idx: ArgIdx); |
4103 | |
4104 | if (!isNSStringType(T: Ty, Ctx&: S.Context, AllowNSAttributedString: true) && |
4105 | !isCFStringType(T: Ty, Ctx&: S.Context) && |
4106 | (!Ty->isPointerType() || |
4107 | !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
4108 | S.Diag(AL.getLoc(), diag::err_format_attribute_not) |
4109 | << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, ArgIdx); |
4110 | return; |
4111 | } |
4112 | |
4113 | // check the 3rd argument |
4114 | Expr *FirstArgExpr = AL.getArgAsExpr(Arg: 2); |
4115 | uint32_t FirstArg; |
4116 | if (!checkUInt32Argument(S, AI: AL, Expr: FirstArgExpr, Val&: FirstArg, Idx: 3)) |
4117 | return; |
4118 | |
4119 | // FirstArg == 0 is is always valid. |
4120 | if (FirstArg != 0) { |
4121 | if (Kind == StrftimeFormat) { |
4122 | // If the kind is strftime, FirstArg must be 0 because strftime does not |
4123 | // use any variadic arguments. |
4124 | S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter) |
4125 | << FirstArgExpr->getSourceRange() |
4126 | << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(), "0" ); |
4127 | return; |
4128 | } else if (isFunctionOrMethodVariadic(D)) { |
4129 | // Else, if the function is variadic, then FirstArg must be 0 or the |
4130 | // "position" of the ... parameter. It's unusual to use 0 with variadic |
4131 | // functions, so the fixit proposes the latter. |
4132 | if (FirstArg != NumArgs + 1) { |
4133 | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
4134 | << AL << 3 << FirstArgExpr->getSourceRange() |
4135 | << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(), |
4136 | std::to_string(NumArgs + 1)); |
4137 | return; |
4138 | } |
4139 | } else { |
4140 | // Inescapable GCC compatibility diagnostic. |
4141 | S.Diag(D->getLocation(), diag::warn_gcc_requires_variadic_function) << AL; |
4142 | if (FirstArg <= Idx) { |
4143 | // Else, the function is not variadic, and FirstArg must be 0 or any |
4144 | // parameter after the format parameter. We don't offer a fixit because |
4145 | // there are too many possible good values. |
4146 | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
4147 | << AL << 3 << FirstArgExpr->getSourceRange(); |
4148 | return; |
4149 | } |
4150 | } |
4151 | } |
4152 | |
4153 | FormatAttr *NewAttr = S.mergeFormatAttr(D, CI: AL, Format: II, FormatIdx: Idx, FirstArg); |
4154 | if (NewAttr) |
4155 | D->addAttr(NewAttr); |
4156 | } |
4157 | |
4158 | /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes. |
4159 | static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4160 | // The index that identifies the callback callee is mandatory. |
4161 | if (AL.getNumArgs() == 0) { |
4162 | S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee) |
4163 | << AL.getRange(); |
4164 | return; |
4165 | } |
4166 | |
4167 | bool HasImplicitThisParam = isInstanceMethod(D); |
4168 | int32_t NumArgs = getFunctionOrMethodNumParams(D); |
4169 | |
4170 | FunctionDecl *FD = D->getAsFunction(); |
4171 | assert(FD && "Expected a function declaration!" ); |
4172 | |
4173 | llvm::StringMap<int> NameIdxMapping; |
4174 | NameIdxMapping["__" ] = -1; |
4175 | |
4176 | NameIdxMapping["this" ] = 0; |
4177 | |
4178 | int Idx = 1; |
4179 | for (const ParmVarDecl *PVD : FD->parameters()) |
4180 | NameIdxMapping[PVD->getName()] = Idx++; |
4181 | |
4182 | auto UnknownName = NameIdxMapping.end(); |
4183 | |
4184 | SmallVector<int, 8> EncodingIndices; |
4185 | for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) { |
4186 | SourceRange SR; |
4187 | int32_t ArgIdx; |
4188 | |
4189 | if (AL.isArgIdent(Arg: I)) { |
4190 | IdentifierLoc *IdLoc = AL.getArgAsIdent(Arg: I); |
4191 | auto It = NameIdxMapping.find(Key: IdLoc->Ident->getName()); |
4192 | if (It == UnknownName) { |
4193 | S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown) |
4194 | << IdLoc->Ident << IdLoc->Loc; |
4195 | return; |
4196 | } |
4197 | |
4198 | SR = SourceRange(IdLoc->Loc); |
4199 | ArgIdx = It->second; |
4200 | } else if (AL.isArgExpr(Arg: I)) { |
4201 | Expr *IdxExpr = AL.getArgAsExpr(Arg: I); |
4202 | |
4203 | // If the expression is not parseable as an int32_t we have a problem. |
4204 | if (!checkUInt32Argument(S, AI: AL, Expr: IdxExpr, Val&: (uint32_t &)ArgIdx, Idx: I + 1, |
4205 | StrictlyUnsigned: false)) { |
4206 | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
4207 | << AL << (I + 1) << IdxExpr->getSourceRange(); |
4208 | return; |
4209 | } |
4210 | |
4211 | // Check oob, excluding the special values, 0 and -1. |
4212 | if (ArgIdx < -1 || ArgIdx > NumArgs) { |
4213 | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
4214 | << AL << (I + 1) << IdxExpr->getSourceRange(); |
4215 | return; |
4216 | } |
4217 | |
4218 | SR = IdxExpr->getSourceRange(); |
4219 | } else { |
4220 | llvm_unreachable("Unexpected ParsedAttr argument type!" ); |
4221 | } |
4222 | |
4223 | if (ArgIdx == 0 && !HasImplicitThisParam) { |
4224 | S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available) |
4225 | << (I + 1) << SR; |
4226 | return; |
4227 | } |
4228 | |
4229 | // Adjust for the case we do not have an implicit "this" parameter. In this |
4230 | // case we decrease all positive values by 1 to get LLVM argument indices. |
4231 | if (!HasImplicitThisParam && ArgIdx > 0) |
4232 | ArgIdx -= 1; |
4233 | |
4234 | EncodingIndices.push_back(Elt: ArgIdx); |
4235 | } |
4236 | |
4237 | int CalleeIdx = EncodingIndices.front(); |
4238 | // Check if the callee index is proper, thus not "this" and not "unknown". |
4239 | // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam" |
4240 | // is false and positive if "HasImplicitThisParam" is true. |
4241 | if (CalleeIdx < (int)HasImplicitThisParam) { |
4242 | S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee) |
4243 | << AL.getRange(); |
4244 | return; |
4245 | } |
4246 | |
4247 | // Get the callee type, note the index adjustment as the AST doesn't contain |
4248 | // the this type (which the callee cannot reference anyway!). |
4249 | const Type *CalleeType = |
4250 | getFunctionOrMethodParamType(D, Idx: CalleeIdx - HasImplicitThisParam) |
4251 | .getTypePtr(); |
4252 | if (!CalleeType || !CalleeType->isFunctionPointerType()) { |
4253 | S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) |
4254 | << AL.getRange(); |
4255 | return; |
4256 | } |
4257 | |
4258 | const Type *CalleeFnType = |
4259 | CalleeType->getPointeeType()->getUnqualifiedDesugaredType(); |
4260 | |
4261 | // TODO: Check the type of the callee arguments. |
4262 | |
4263 | const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(Val: CalleeFnType); |
4264 | if (!CalleeFnProtoType) { |
4265 | S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) |
4266 | << AL.getRange(); |
4267 | return; |
4268 | } |
4269 | |
4270 | if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) { |
4271 | S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) |
4272 | << AL << (unsigned)(EncodingIndices.size() - 1); |
4273 | return; |
4274 | } |
4275 | |
4276 | if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) { |
4277 | S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) |
4278 | << AL << (unsigned)(EncodingIndices.size() - 1); |
4279 | return; |
4280 | } |
4281 | |
4282 | if (CalleeFnProtoType->isVariadic()) { |
4283 | S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange(); |
4284 | return; |
4285 | } |
4286 | |
4287 | // Do not allow multiple callback attributes. |
4288 | if (D->hasAttr<CallbackAttr>()) { |
4289 | S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange(); |
4290 | return; |
4291 | } |
4292 | |
4293 | D->addAttr(::new (S.Context) CallbackAttr( |
4294 | S.Context, AL, EncodingIndices.data(), EncodingIndices.size())); |
4295 | } |
4296 | |
4297 | static bool isFunctionLike(const Type &T) { |
4298 | // Check for explicit function types. |
4299 | // 'called_once' is only supported in Objective-C and it has |
4300 | // function pointers and block pointers. |
4301 | return T.isFunctionPointerType() || T.isBlockPointerType(); |
4302 | } |
4303 | |
4304 | /// Handle 'called_once' attribute. |
4305 | static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4306 | // 'called_once' only applies to parameters representing functions. |
4307 | QualType T = cast<ParmVarDecl>(Val: D)->getType(); |
4308 | |
4309 | if (!isFunctionLike(T: *T)) { |
4310 | S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type); |
4311 | return; |
4312 | } |
4313 | |
4314 | D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL)); |
4315 | } |
4316 | |
4317 | static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4318 | // Try to find the underlying union declaration. |
4319 | RecordDecl *RD = nullptr; |
4320 | const auto *TD = dyn_cast<TypedefNameDecl>(Val: D); |
4321 | if (TD && TD->getUnderlyingType()->isUnionType()) |
4322 | RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); |
4323 | else |
4324 | RD = dyn_cast<RecordDecl>(Val: D); |
4325 | |
4326 | if (!RD || !RD->isUnion()) { |
4327 | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
4328 | << AL << AL.isRegularKeywordAttribute() << ExpectedUnion; |
4329 | return; |
4330 | } |
4331 | |
4332 | if (!RD->isCompleteDefinition()) { |
4333 | if (!RD->isBeingDefined()) |
4334 | S.Diag(AL.getLoc(), |
4335 | diag::warn_transparent_union_attribute_not_definition); |
4336 | return; |
4337 | } |
4338 | |
4339 | RecordDecl::field_iterator Field = RD->field_begin(), |
4340 | FieldEnd = RD->field_end(); |
4341 | if (Field == FieldEnd) { |
4342 | S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields); |
4343 | return; |
4344 | } |
4345 | |
4346 | FieldDecl *FirstField = *Field; |
4347 | QualType FirstType = FirstField->getType(); |
4348 | if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { |
4349 | S.Diag(FirstField->getLocation(), |
4350 | diag::warn_transparent_union_attribute_floating) |
4351 | << FirstType->isVectorType() << FirstType; |
4352 | return; |
4353 | } |
4354 | |
4355 | if (FirstType->isIncompleteType()) |
4356 | return; |
4357 | uint64_t FirstSize = S.Context.getTypeSize(T: FirstType); |
4358 | uint64_t FirstAlign = S.Context.getTypeAlign(T: FirstType); |
4359 | for (; Field != FieldEnd; ++Field) { |
4360 | QualType FieldType = Field->getType(); |
4361 | if (FieldType->isIncompleteType()) |
4362 | return; |
4363 | // FIXME: this isn't fully correct; we also need to test whether the |
4364 | // members of the union would all have the same calling convention as the |
4365 | // first member of the union. Checking just the size and alignment isn't |
4366 | // sufficient (consider structs passed on the stack instead of in registers |
4367 | // as an example). |
4368 | if (S.Context.getTypeSize(T: FieldType) != FirstSize || |
4369 | S.Context.getTypeAlign(T: FieldType) > FirstAlign) { |
4370 | // Warn if we drop the attribute. |
4371 | bool isSize = S.Context.getTypeSize(T: FieldType) != FirstSize; |
4372 | unsigned FieldBits = isSize ? S.Context.getTypeSize(T: FieldType) |
4373 | : S.Context.getTypeAlign(T: FieldType); |
4374 | S.Diag(Field->getLocation(), |
4375 | diag::warn_transparent_union_attribute_field_size_align) |
4376 | << isSize << *Field << FieldBits; |
4377 | unsigned FirstBits = isSize ? FirstSize : FirstAlign; |
4378 | S.Diag(FirstField->getLocation(), |
4379 | diag::note_transparent_union_first_field_size_align) |
4380 | << isSize << FirstBits; |
4381 | return; |
4382 | } |
4383 | } |
4384 | |
4385 | RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL)); |
4386 | } |
4387 | |
4388 | void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI, |
4389 | StringRef Str, MutableArrayRef<Expr *> Args) { |
4390 | auto *Attr = AnnotateAttr::Create(Context, Str, Args.data(), Args.size(), CI); |
4391 | if (ConstantFoldAttrArgs( |
4392 | CI, Args: MutableArrayRef<Expr *>(Attr->args_begin(), Attr->args_end()))) { |
4393 | D->addAttr(A: Attr); |
4394 | } |
4395 | } |
4396 | |
4397 | static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4398 | // Make sure that there is a string literal as the annotation's first |
4399 | // argument. |
4400 | StringRef Str; |
4401 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
4402 | return; |
4403 | |
4404 | llvm::SmallVector<Expr *, 4> Args; |
4405 | Args.reserve(N: AL.getNumArgs() - 1); |
4406 | for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) { |
4407 | assert(!AL.isArgIdent(Idx)); |
4408 | Args.push_back(Elt: AL.getArgAsExpr(Arg: Idx)); |
4409 | } |
4410 | |
4411 | S.AddAnnotationAttr(D, CI: AL, Str, Args); |
4412 | } |
4413 | |
4414 | static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4415 | S.AddAlignValueAttr(D, CI: AL, E: AL.getArgAsExpr(Arg: 0)); |
4416 | } |
4417 | |
4418 | void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) { |
4419 | AlignValueAttr TmpAttr(Context, CI, E); |
4420 | SourceLocation AttrLoc = CI.getLoc(); |
4421 | |
4422 | QualType T; |
4423 | if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) |
4424 | T = TD->getUnderlyingType(); |
4425 | else if (const auto *VD = dyn_cast<ValueDecl>(Val: D)) |
4426 | T = VD->getType(); |
4427 | else |
4428 | llvm_unreachable("Unknown decl type for align_value" ); |
4429 | |
4430 | if (!T->isDependentType() && !T->isAnyPointerType() && |
4431 | !T->isReferenceType() && !T->isMemberPointerType()) { |
4432 | Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only) |
4433 | << &TmpAttr << T << D->getSourceRange(); |
4434 | return; |
4435 | } |
4436 | |
4437 | if (!E->isValueDependent()) { |
4438 | llvm::APSInt Alignment; |
4439 | ExprResult ICE = VerifyIntegerConstantExpression( |
4440 | E, &Alignment, diag::err_align_value_attribute_argument_not_int); |
4441 | if (ICE.isInvalid()) |
4442 | return; |
4443 | |
4444 | if (!Alignment.isPowerOf2()) { |
4445 | Diag(AttrLoc, diag::err_alignment_not_power_of_two) |
4446 | << E->getSourceRange(); |
4447 | return; |
4448 | } |
4449 | |
4450 | D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get())); |
4451 | return; |
4452 | } |
4453 | |
4454 | // Save dependent expressions in the AST to be instantiated. |
4455 | D->addAttr(::new (Context) AlignValueAttr(Context, CI, E)); |
4456 | } |
4457 | |
4458 | static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4459 | if (AL.hasParsedType()) { |
4460 | const ParsedType &TypeArg = AL.getTypeArg(); |
4461 | TypeSourceInfo *TInfo; |
4462 | (void)S.GetTypeFromParser( |
4463 | Ty: ParsedType::getFromOpaquePtr(P: TypeArg.getAsOpaquePtr()), TInfo: &TInfo); |
4464 | if (AL.isPackExpansion() && |
4465 | !TInfo->getType()->containsUnexpandedParameterPack()) { |
4466 | S.Diag(AL.getEllipsisLoc(), |
4467 | diag::err_pack_expansion_without_parameter_packs); |
4468 | return; |
4469 | } |
4470 | |
4471 | if (!AL.isPackExpansion() && |
4472 | S.DiagnoseUnexpandedParameterPack(Loc: TInfo->getTypeLoc().getBeginLoc(), |
4473 | T: TInfo, UPPC: Sema::UPPC_Expression)) |
4474 | return; |
4475 | |
4476 | S.AddAlignedAttr(D, CI: AL, T: TInfo, IsPackExpansion: AL.isPackExpansion()); |
4477 | return; |
4478 | } |
4479 | |
4480 | // check the attribute arguments. |
4481 | if (AL.getNumArgs() > 1) { |
4482 | S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
4483 | return; |
4484 | } |
4485 | |
4486 | if (AL.getNumArgs() == 0) { |
4487 | D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr)); |
4488 | return; |
4489 | } |
4490 | |
4491 | Expr *E = AL.getArgAsExpr(Arg: 0); |
4492 | if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) { |
4493 | S.Diag(AL.getEllipsisLoc(), |
4494 | diag::err_pack_expansion_without_parameter_packs); |
4495 | return; |
4496 | } |
4497 | |
4498 | if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) |
4499 | return; |
4500 | |
4501 | S.AddAlignedAttr(D, CI: AL, E, IsPackExpansion: AL.isPackExpansion()); |
4502 | } |
4503 | |
4504 | /// Perform checking of type validity |
4505 | /// |
4506 | /// C++11 [dcl.align]p1: |
4507 | /// An alignment-specifier may be applied to a variable or to a class |
4508 | /// data member, but it shall not be applied to a bit-field, a function |
4509 | /// parameter, the formal parameter of a catch clause, or a variable |
4510 | /// declared with the register storage class specifier. An |
4511 | /// alignment-specifier may also be applied to the declaration of a class |
4512 | /// or enumeration type. |
4513 | /// CWG 2354: |
4514 | /// CWG agreed to remove permission for alignas to be applied to |
4515 | /// enumerations. |
4516 | /// C11 6.7.5/2: |
4517 | /// An alignment attribute shall not be specified in a declaration of |
4518 | /// a typedef, or a bit-field, or a function, or a parameter, or an |
4519 | /// object declared with the register storage-class specifier. |
4520 | static bool validateAlignasAppliedType(Sema &S, Decl *D, |
4521 | const AlignedAttr &Attr, |
4522 | SourceLocation AttrLoc) { |
4523 | int DiagKind = -1; |
4524 | if (isa<ParmVarDecl>(Val: D)) { |
4525 | DiagKind = 0; |
4526 | } else if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
4527 | if (VD->getStorageClass() == SC_Register) |
4528 | DiagKind = 1; |
4529 | if (VD->isExceptionVariable()) |
4530 | DiagKind = 2; |
4531 | } else if (const auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
4532 | if (FD->isBitField()) |
4533 | DiagKind = 3; |
4534 | } else if (const auto *ED = dyn_cast<EnumDecl>(Val: D)) { |
4535 | if (ED->getLangOpts().CPlusPlus) |
4536 | DiagKind = 4; |
4537 | } else if (!isa<TagDecl>(Val: D)) { |
4538 | return S.Diag(AttrLoc, diag::err_attribute_wrong_decl_type) |
4539 | << &Attr << Attr.isRegularKeywordAttribute() |
4540 | << (Attr.isC11() ? ExpectedVariableOrField |
4541 | : ExpectedVariableFieldOrTag); |
4542 | } |
4543 | if (DiagKind != -1) { |
4544 | return S.Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type) |
4545 | << &Attr << DiagKind; |
4546 | } |
4547 | return false; |
4548 | } |
4549 | |
4550 | void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, |
4551 | bool IsPackExpansion) { |
4552 | AlignedAttr TmpAttr(Context, CI, true, E); |
4553 | SourceLocation AttrLoc = CI.getLoc(); |
4554 | |
4555 | // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. |
4556 | if (TmpAttr.isAlignas() && |
4557 | validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc)) |
4558 | return; |
4559 | |
4560 | if (E->isValueDependent()) { |
4561 | // We can't support a dependent alignment on a non-dependent type, |
4562 | // because we have no way to model that a type is "alignment-dependent" |
4563 | // but not dependent in any other way. |
4564 | if (const auto *TND = dyn_cast<TypedefNameDecl>(Val: D)) { |
4565 | if (!TND->getUnderlyingType()->isDependentType()) { |
4566 | Diag(AttrLoc, diag::err_alignment_dependent_typedef_name) |
4567 | << E->getSourceRange(); |
4568 | return; |
4569 | } |
4570 | } |
4571 | |
4572 | // Save dependent expressions in the AST to be instantiated. |
4573 | AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E); |
4574 | AA->setPackExpansion(IsPackExpansion); |
4575 | D->addAttr(A: AA); |
4576 | return; |
4577 | } |
4578 | |
4579 | // FIXME: Cache the number on the AL object? |
4580 | llvm::APSInt Alignment; |
4581 | ExprResult ICE = VerifyIntegerConstantExpression( |
4582 | E, &Alignment, diag::err_aligned_attribute_argument_not_int); |
4583 | if (ICE.isInvalid()) |
4584 | return; |
4585 | |
4586 | uint64_t MaximumAlignment = Sema::MaximumAlignment; |
4587 | if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF()) |
4588 | MaximumAlignment = std::min(a: MaximumAlignment, b: uint64_t(8192)); |
4589 | if (Alignment > MaximumAlignment) { |
4590 | Diag(AttrLoc, diag::err_attribute_aligned_too_great) |
4591 | << MaximumAlignment << E->getSourceRange(); |
4592 | return; |
4593 | } |
4594 | |
4595 | uint64_t AlignVal = Alignment.getZExtValue(); |
4596 | // C++11 [dcl.align]p2: |
4597 | // -- if the constant expression evaluates to zero, the alignment |
4598 | // specifier shall have no effect |
4599 | // C11 6.7.5p6: |
4600 | // An alignment specification of zero has no effect. |
4601 | if (!(TmpAttr.isAlignas() && !Alignment)) { |
4602 | if (!llvm::isPowerOf2_64(Value: AlignVal)) { |
4603 | Diag(AttrLoc, diag::err_alignment_not_power_of_two) |
4604 | << E->getSourceRange(); |
4605 | return; |
4606 | } |
4607 | } |
4608 | |
4609 | const auto *VD = dyn_cast<VarDecl>(Val: D); |
4610 | if (VD) { |
4611 | unsigned MaxTLSAlign = |
4612 | Context.toCharUnitsFromBits(BitSize: Context.getTargetInfo().getMaxTLSAlign()) |
4613 | .getQuantity(); |
4614 | if (MaxTLSAlign && AlignVal > MaxTLSAlign && |
4615 | VD->getTLSKind() != VarDecl::TLS_None) { |
4616 | Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) |
4617 | << (unsigned)AlignVal << VD << MaxTLSAlign; |
4618 | return; |
4619 | } |
4620 | } |
4621 | |
4622 | // On AIX, an aligned attribute can not decrease the alignment when applied |
4623 | // to a variable declaration with vector type. |
4624 | if (VD && Context.getTargetInfo().getTriple().isOSAIX()) { |
4625 | const Type *Ty = VD->getType().getTypePtr(); |
4626 | if (Ty->isVectorType() && AlignVal < 16) { |
4627 | Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned) |
4628 | << VD->getType() << 16; |
4629 | return; |
4630 | } |
4631 | } |
4632 | |
4633 | AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get()); |
4634 | AA->setPackExpansion(IsPackExpansion); |
4635 | AA->setCachedAlignmentValue( |
4636 | static_cast<unsigned>(AlignVal * Context.getCharWidth())); |
4637 | D->addAttr(A: AA); |
4638 | } |
4639 | |
4640 | void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, |
4641 | TypeSourceInfo *TS, bool IsPackExpansion) { |
4642 | AlignedAttr TmpAttr(Context, CI, false, TS); |
4643 | SourceLocation AttrLoc = CI.getLoc(); |
4644 | |
4645 | // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. |
4646 | if (TmpAttr.isAlignas() && |
4647 | validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc)) |
4648 | return; |
4649 | |
4650 | if (TS->getType()->isDependentType()) { |
4651 | // We can't support a dependent alignment on a non-dependent type, |
4652 | // because we have no way to model that a type is "type-dependent" |
4653 | // but not dependent in any other way. |
4654 | if (const auto *TND = dyn_cast<TypedefNameDecl>(Val: D)) { |
4655 | if (!TND->getUnderlyingType()->isDependentType()) { |
4656 | Diag(AttrLoc, diag::err_alignment_dependent_typedef_name) |
4657 | << TS->getTypeLoc().getSourceRange(); |
4658 | return; |
4659 | } |
4660 | } |
4661 | |
4662 | AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); |
4663 | AA->setPackExpansion(IsPackExpansion); |
4664 | D->addAttr(A: AA); |
4665 | return; |
4666 | } |
4667 | |
4668 | const auto *VD = dyn_cast<VarDecl>(Val: D); |
4669 | unsigned AlignVal = TmpAttr.getAlignment(Context); |
4670 | // On AIX, an aligned attribute can not decrease the alignment when applied |
4671 | // to a variable declaration with vector type. |
4672 | if (VD && Context.getTargetInfo().getTriple().isOSAIX()) { |
4673 | const Type *Ty = VD->getType().getTypePtr(); |
4674 | if (Ty->isVectorType() && |
4675 | Context.toCharUnitsFromBits(BitSize: AlignVal).getQuantity() < 16) { |
4676 | Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned) |
4677 | << VD->getType() << 16; |
4678 | return; |
4679 | } |
4680 | } |
4681 | |
4682 | AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); |
4683 | AA->setPackExpansion(IsPackExpansion); |
4684 | AA->setCachedAlignmentValue(AlignVal); |
4685 | D->addAttr(A: AA); |
4686 | } |
4687 | |
4688 | void Sema::CheckAlignasUnderalignment(Decl *D) { |
4689 | assert(D->hasAttrs() && "no attributes on decl" ); |
4690 | |
4691 | QualType UnderlyingTy, DiagTy; |
4692 | if (const auto *VD = dyn_cast<ValueDecl>(Val: D)) { |
4693 | UnderlyingTy = DiagTy = VD->getType(); |
4694 | } else { |
4695 | UnderlyingTy = DiagTy = Context.getTagDeclType(Decl: cast<TagDecl>(Val: D)); |
4696 | if (const auto *ED = dyn_cast<EnumDecl>(Val: D)) |
4697 | UnderlyingTy = ED->getIntegerType(); |
4698 | } |
4699 | if (DiagTy->isDependentType() || DiagTy->isIncompleteType()) |
4700 | return; |
4701 | |
4702 | // C++11 [dcl.align]p5, C11 6.7.5/4: |
4703 | // The combined effect of all alignment attributes in a declaration shall |
4704 | // not specify an alignment that is less strict than the alignment that |
4705 | // would otherwise be required for the entity being declared. |
4706 | AlignedAttr *AlignasAttr = nullptr; |
4707 | AlignedAttr *LastAlignedAttr = nullptr; |
4708 | unsigned Align = 0; |
4709 | for (auto *I : D->specific_attrs<AlignedAttr>()) { |
4710 | if (I->isAlignmentDependent()) |
4711 | return; |
4712 | if (I->isAlignas()) |
4713 | AlignasAttr = I; |
4714 | Align = std::max(Align, I->getAlignment(Context)); |
4715 | LastAlignedAttr = I; |
4716 | } |
4717 | |
4718 | if (Align && DiagTy->isSizelessType()) { |
4719 | Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type) |
4720 | << LastAlignedAttr << DiagTy; |
4721 | } else if (AlignasAttr && Align) { |
4722 | CharUnits RequestedAlign = Context.toCharUnitsFromBits(BitSize: Align); |
4723 | CharUnits NaturalAlign = Context.getTypeAlignInChars(T: UnderlyingTy); |
4724 | if (NaturalAlign > RequestedAlign) |
4725 | Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned) |
4726 | << DiagTy << (unsigned)NaturalAlign.getQuantity(); |
4727 | } |
4728 | } |
4729 | |
4730 | bool Sema::checkMSInheritanceAttrOnDefinition( |
4731 | CXXRecordDecl *RD, SourceRange Range, bool BestCase, |
4732 | MSInheritanceModel ExplicitModel) { |
4733 | assert(RD->hasDefinition() && "RD has no definition!" ); |
4734 | |
4735 | // We may not have seen base specifiers or any virtual methods yet. We will |
4736 | // have to wait until the record is defined to catch any mismatches. |
4737 | if (!RD->getDefinition()->isCompleteDefinition()) |
4738 | return false; |
4739 | |
4740 | // The unspecified model never matches what a definition could need. |
4741 | if (ExplicitModel == MSInheritanceModel::Unspecified) |
4742 | return false; |
4743 | |
4744 | if (BestCase) { |
4745 | if (RD->calculateInheritanceModel() == ExplicitModel) |
4746 | return false; |
4747 | } else { |
4748 | if (RD->calculateInheritanceModel() <= ExplicitModel) |
4749 | return false; |
4750 | } |
4751 | |
4752 | Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance) |
4753 | << 0 /*definition*/; |
4754 | Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD; |
4755 | return true; |
4756 | } |
4757 | |
4758 | /// parseModeAttrArg - Parses attribute mode string and returns parsed type |
4759 | /// attribute. |
4760 | static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, |
4761 | bool &IntegerMode, bool &ComplexMode, |
4762 | FloatModeKind &ExplicitType) { |
4763 | IntegerMode = true; |
4764 | ComplexMode = false; |
4765 | ExplicitType = FloatModeKind::NoFloat; |
4766 | switch (Str.size()) { |
4767 | case 2: |
4768 | switch (Str[0]) { |
4769 | case 'Q': |
4770 | DestWidth = 8; |
4771 | break; |
4772 | case 'H': |
4773 | DestWidth = 16; |
4774 | break; |
4775 | case 'S': |
4776 | DestWidth = 32; |
4777 | break; |
4778 | case 'D': |
4779 | DestWidth = 64; |
4780 | break; |
4781 | case 'X': |
4782 | DestWidth = 96; |
4783 | break; |
4784 | case 'K': // KFmode - IEEE quad precision (__float128) |
4785 | ExplicitType = FloatModeKind::Float128; |
4786 | DestWidth = Str[1] == 'I' ? 0 : 128; |
4787 | break; |
4788 | case 'T': |
4789 | ExplicitType = FloatModeKind::LongDouble; |
4790 | DestWidth = 128; |
4791 | break; |
4792 | case 'I': |
4793 | ExplicitType = FloatModeKind::Ibm128; |
4794 | DestWidth = Str[1] == 'I' ? 0 : 128; |
4795 | break; |
4796 | } |
4797 | if (Str[1] == 'F') { |
4798 | IntegerMode = false; |
4799 | } else if (Str[1] == 'C') { |
4800 | IntegerMode = false; |
4801 | ComplexMode = true; |
4802 | } else if (Str[1] != 'I') { |
4803 | DestWidth = 0; |
4804 | } |
4805 | break; |
4806 | case 4: |
4807 | // FIXME: glibc uses 'word' to define register_t; this is narrower than a |
4808 | // pointer on PIC16 and other embedded platforms. |
4809 | if (Str == "word" ) |
4810 | DestWidth = S.Context.getTargetInfo().getRegisterWidth(); |
4811 | else if (Str == "byte" ) |
4812 | DestWidth = S.Context.getTargetInfo().getCharWidth(); |
4813 | break; |
4814 | case 7: |
4815 | if (Str == "pointer" ) |
4816 | DestWidth = S.Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default); |
4817 | break; |
4818 | case 11: |
4819 | if (Str == "unwind_word" ) |
4820 | DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); |
4821 | break; |
4822 | } |
4823 | } |
4824 | |
4825 | /// handleModeAttr - This attribute modifies the width of a decl with primitive |
4826 | /// type. |
4827 | /// |
4828 | /// Despite what would be logical, the mode attribute is a decl attribute, not a |
4829 | /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be |
4830 | /// HImode, not an intermediate pointer. |
4831 | static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4832 | // This attribute isn't documented, but glibc uses it. It changes |
4833 | // the width of an int or unsigned int to the specified size. |
4834 | if (!AL.isArgIdent(Arg: 0)) { |
4835 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
4836 | << AL << AANT_ArgumentIdentifier; |
4837 | return; |
4838 | } |
4839 | |
4840 | IdentifierInfo *Name = AL.getArgAsIdent(Arg: 0)->Ident; |
4841 | |
4842 | S.AddModeAttr(D, CI: AL, Name); |
4843 | } |
4844 | |
4845 | void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI, |
4846 | IdentifierInfo *Name, bool InInstantiation) { |
4847 | StringRef Str = Name->getName(); |
4848 | normalizeName(AttrName&: Str); |
4849 | SourceLocation AttrLoc = CI.getLoc(); |
4850 | |
4851 | unsigned DestWidth = 0; |
4852 | bool IntegerMode = true; |
4853 | bool ComplexMode = false; |
4854 | FloatModeKind ExplicitType = FloatModeKind::NoFloat; |
4855 | llvm::APInt VectorSize(64, 0); |
4856 | if (Str.size() >= 4 && Str[0] == 'V') { |
4857 | // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2). |
4858 | size_t StrSize = Str.size(); |
4859 | size_t VectorStringLength = 0; |
4860 | while ((VectorStringLength + 1) < StrSize && |
4861 | isdigit(Str[VectorStringLength + 1])) |
4862 | ++VectorStringLength; |
4863 | if (VectorStringLength && |
4864 | !Str.substr(Start: 1, N: VectorStringLength).getAsInteger(Radix: 10, Result&: VectorSize) && |
4865 | VectorSize.isPowerOf2()) { |
4866 | parseModeAttrArg(S&: *this, Str: Str.substr(Start: VectorStringLength + 1), DestWidth, |
4867 | IntegerMode, ComplexMode, ExplicitType); |
4868 | // Avoid duplicate warning from template instantiation. |
4869 | if (!InInstantiation) |
4870 | Diag(AttrLoc, diag::warn_vector_mode_deprecated); |
4871 | } else { |
4872 | VectorSize = 0; |
4873 | } |
4874 | } |
4875 | |
4876 | if (!VectorSize) |
4877 | parseModeAttrArg(S&: *this, Str, DestWidth, IntegerMode, ComplexMode, |
4878 | ExplicitType); |
4879 | |
4880 | // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t |
4881 | // and friends, at least with glibc. |
4882 | // FIXME: Make sure floating-point mappings are accurate |
4883 | // FIXME: Support XF and TF types |
4884 | if (!DestWidth) { |
4885 | Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name; |
4886 | return; |
4887 | } |
4888 | |
4889 | QualType OldTy; |
4890 | if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) |
4891 | OldTy = TD->getUnderlyingType(); |
4892 | else if (const auto *ED = dyn_cast<EnumDecl>(Val: D)) { |
4893 | // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'. |
4894 | // Try to get type from enum declaration, default to int. |
4895 | OldTy = ED->getIntegerType(); |
4896 | if (OldTy.isNull()) |
4897 | OldTy = Context.IntTy; |
4898 | } else |
4899 | OldTy = cast<ValueDecl>(Val: D)->getType(); |
4900 | |
4901 | if (OldTy->isDependentType()) { |
4902 | D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); |
4903 | return; |
4904 | } |
4905 | |
4906 | // Base type can also be a vector type (see PR17453). |
4907 | // Distinguish between base type and base element type. |
4908 | QualType OldElemTy = OldTy; |
4909 | if (const auto *VT = OldTy->getAs<VectorType>()) |
4910 | OldElemTy = VT->getElementType(); |
4911 | |
4912 | // GCC allows 'mode' attribute on enumeration types (even incomplete), except |
4913 | // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete |
4914 | // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected. |
4915 | if ((isa<EnumDecl>(Val: D) || OldElemTy->getAs<EnumType>()) && |
4916 | VectorSize.getBoolValue()) { |
4917 | Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange(); |
4918 | return; |
4919 | } |
4920 | bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() && |
4921 | !OldElemTy->isBitIntType()) || |
4922 | OldElemTy->getAs<EnumType>(); |
4923 | |
4924 | if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() && |
4925 | !IntegralOrAnyEnumType) |
4926 | Diag(AttrLoc, diag::err_mode_not_primitive); |
4927 | else if (IntegerMode) { |
4928 | if (!IntegralOrAnyEnumType) |
4929 | Diag(AttrLoc, diag::err_mode_wrong_type); |
4930 | } else if (ComplexMode) { |
4931 | if (!OldElemTy->isComplexType()) |
4932 | Diag(AttrLoc, diag::err_mode_wrong_type); |
4933 | } else { |
4934 | if (!OldElemTy->isFloatingType()) |
4935 | Diag(AttrLoc, diag::err_mode_wrong_type); |
4936 | } |
4937 | |
4938 | QualType NewElemTy; |
4939 | |
4940 | if (IntegerMode) |
4941 | NewElemTy = Context.getIntTypeForBitwidth(DestWidth, |
4942 | Signed: OldElemTy->isSignedIntegerType()); |
4943 | else |
4944 | NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType); |
4945 | |
4946 | if (NewElemTy.isNull()) { |
4947 | // Only emit diagnostic on host for 128-bit mode attribute |
4948 | if (!(DestWidth == 128 && getLangOpts().CUDAIsDevice)) |
4949 | Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name; |
4950 | return; |
4951 | } |
4952 | |
4953 | if (ComplexMode) { |
4954 | NewElemTy = Context.getComplexType(T: NewElemTy); |
4955 | } |
4956 | |
4957 | QualType NewTy = NewElemTy; |
4958 | if (VectorSize.getBoolValue()) { |
4959 | NewTy = Context.getVectorType(VectorType: NewTy, NumElts: VectorSize.getZExtValue(), |
4960 | VecKind: VectorKind::Generic); |
4961 | } else if (const auto *OldVT = OldTy->getAs<VectorType>()) { |
4962 | // Complex machine mode does not support base vector types. |
4963 | if (ComplexMode) { |
4964 | Diag(AttrLoc, diag::err_complex_mode_vector_type); |
4965 | return; |
4966 | } |
4967 | unsigned NumElements = Context.getTypeSize(T: OldElemTy) * |
4968 | OldVT->getNumElements() / |
4969 | Context.getTypeSize(T: NewElemTy); |
4970 | NewTy = |
4971 | Context.getVectorType(VectorType: NewElemTy, NumElts: NumElements, VecKind: OldVT->getVectorKind()); |
4972 | } |
4973 | |
4974 | if (NewTy.isNull()) { |
4975 | Diag(AttrLoc, diag::err_mode_wrong_type); |
4976 | return; |
4977 | } |
4978 | |
4979 | // Install the new type. |
4980 | if (auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) |
4981 | TD->setModedTypeSourceInfo(unmodedTSI: TD->getTypeSourceInfo(), modedTy: NewTy); |
4982 | else if (auto *ED = dyn_cast<EnumDecl>(Val: D)) |
4983 | ED->setIntegerType(NewTy); |
4984 | else |
4985 | cast<ValueDecl>(Val: D)->setType(NewTy); |
4986 | |
4987 | D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); |
4988 | } |
4989 | |
4990 | static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4991 | D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL)); |
4992 | } |
4993 | |
4994 | AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, |
4995 | const AttributeCommonInfo &CI, |
4996 | const IdentifierInfo *Ident) { |
4997 | if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { |
4998 | Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident; |
4999 | Diag(Optnone->getLocation(), diag::note_conflicting_attribute); |
5000 | return nullptr; |
5001 | } |
5002 | |
5003 | if (D->hasAttr<AlwaysInlineAttr>()) |
5004 | return nullptr; |
5005 | |
5006 | return ::new (Context) AlwaysInlineAttr(Context, CI); |
5007 | } |
5008 | |
5009 | InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D, |
5010 | const ParsedAttr &AL) { |
5011 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
5012 | // Attribute applies to Var but not any subclass of it (like ParmVar, |
5013 | // ImplicitParm or VarTemplateSpecialization). |
5014 | if (VD->getKind() != Decl::Var) { |
5015 | Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
5016 | << AL << AL.isRegularKeywordAttribute() |
5017 | << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass |
5018 | : ExpectedVariableOrFunction); |
5019 | return nullptr; |
5020 | } |
5021 | // Attribute does not apply to non-static local variables. |
5022 | if (VD->hasLocalStorage()) { |
5023 | Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); |
5024 | return nullptr; |
5025 | } |
5026 | } |
5027 | |
5028 | return ::new (Context) InternalLinkageAttr(Context, AL); |
5029 | } |
5030 | InternalLinkageAttr * |
5031 | Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) { |
5032 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
5033 | // Attribute applies to Var but not any subclass of it (like ParmVar, |
5034 | // ImplicitParm or VarTemplateSpecialization). |
5035 | if (VD->getKind() != Decl::Var) { |
5036 | Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type) |
5037 | << &AL << AL.isRegularKeywordAttribute() |
5038 | << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass |
5039 | : ExpectedVariableOrFunction); |
5040 | return nullptr; |
5041 | } |
5042 | // Attribute does not apply to non-static local variables. |
5043 | if (VD->hasLocalStorage()) { |
5044 | Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); |
5045 | return nullptr; |
5046 | } |
5047 | } |
5048 | |
5049 | return ::new (Context) InternalLinkageAttr(Context, AL); |
5050 | } |
5051 | |
5052 | MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) { |
5053 | if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { |
5054 | Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'" ; |
5055 | Diag(Optnone->getLocation(), diag::note_conflicting_attribute); |
5056 | return nullptr; |
5057 | } |
5058 | |
5059 | if (D->hasAttr<MinSizeAttr>()) |
5060 | return nullptr; |
5061 | |
5062 | return ::new (Context) MinSizeAttr(Context, CI); |
5063 | } |
5064 | |
5065 | SwiftNameAttr *Sema::mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA, |
5066 | StringRef Name) { |
5067 | if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) { |
5068 | if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) { |
5069 | Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible) |
5070 | << PrevSNA << &SNA |
5071 | << (PrevSNA->isRegularKeywordAttribute() || |
5072 | SNA.isRegularKeywordAttribute()); |
5073 | Diag(SNA.getLoc(), diag::note_conflicting_attribute); |
5074 | } |
5075 | |
5076 | D->dropAttr<SwiftNameAttr>(); |
5077 | } |
5078 | return ::new (Context) SwiftNameAttr(Context, SNA, Name); |
5079 | } |
5080 | |
5081 | OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, |
5082 | const AttributeCommonInfo &CI) { |
5083 | if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) { |
5084 | Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline; |
5085 | Diag(CI.getLoc(), diag::note_conflicting_attribute); |
5086 | D->dropAttr<AlwaysInlineAttr>(); |
5087 | } |
5088 | if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) { |
5089 | Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize; |
5090 | Diag(CI.getLoc(), diag::note_conflicting_attribute); |
5091 | D->dropAttr<MinSizeAttr>(); |
5092 | } |
5093 | |
5094 | if (D->hasAttr<OptimizeNoneAttr>()) |
5095 | return nullptr; |
5096 | |
5097 | return ::new (Context) OptimizeNoneAttr(Context, CI); |
5098 | } |
5099 | |
5100 | static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5101 | if (AlwaysInlineAttr *Inline = |
5102 | S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName())) |
5103 | D->addAttr(Inline); |
5104 | } |
5105 | |
5106 | static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5107 | if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL)) |
5108 | D->addAttr(MinSize); |
5109 | } |
5110 | |
5111 | static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5112 | if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL)) |
5113 | D->addAttr(Optnone); |
5114 | } |
5115 | |
5116 | static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5117 | const auto *VD = cast<VarDecl>(Val: D); |
5118 | if (VD->hasLocalStorage()) { |
5119 | S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); |
5120 | return; |
5121 | } |
5122 | // constexpr variable may already get an implicit constant attr, which should |
5123 | // be replaced by the explicit constant attr. |
5124 | if (auto *A = D->getAttr<CUDAConstantAttr>()) { |
5125 | if (!A->isImplicit()) |
5126 | return; |
5127 | D->dropAttr<CUDAConstantAttr>(); |
5128 | } |
5129 | D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL)); |
5130 | } |
5131 | |
5132 | static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5133 | const auto *VD = cast<VarDecl>(Val: D); |
5134 | // extern __shared__ is only allowed on arrays with no length (e.g. |
5135 | // "int x[]"). |
5136 | if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() && |
5137 | !isa<IncompleteArrayType>(VD->getType())) { |
5138 | S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD; |
5139 | return; |
5140 | } |
5141 | if (S.getLangOpts().CUDA && VD->hasLocalStorage() && |
5142 | S.CUDA().DiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared) |
5143 | << llvm::to_underlying(S.CUDA().CurrentTarget())) |
5144 | return; |
5145 | D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL)); |
5146 | } |
5147 | |
5148 | static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5149 | const auto *FD = cast<FunctionDecl>(Val: D); |
5150 | if (!FD->getReturnType()->isVoidType() && |
5151 | !FD->getReturnType()->getAs<AutoType>() && |
5152 | !FD->getReturnType()->isInstantiationDependentType()) { |
5153 | SourceRange RTRange = FD->getReturnTypeSourceRange(); |
5154 | S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) |
5155 | << FD->getType() |
5156 | << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void" ) |
5157 | : FixItHint()); |
5158 | return; |
5159 | } |
5160 | if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: FD)) { |
5161 | if (Method->isInstance()) { |
5162 | S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method) |
5163 | << Method; |
5164 | return; |
5165 | } |
5166 | S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method; |
5167 | } |
5168 | // Only warn for "inline" when compiling for host, to cut down on noise. |
5169 | if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice) |
5170 | S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD; |
5171 | |
5172 | if (AL.getKind() == ParsedAttr::AT_NVPTXKernel) |
5173 | D->addAttr(::new (S.Context) NVPTXKernelAttr(S.Context, AL)); |
5174 | else |
5175 | D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL)); |
5176 | // In host compilation the kernel is emitted as a stub function, which is |
5177 | // a helper function for launching the kernel. The instructions in the helper |
5178 | // function has nothing to do with the source code of the kernel. Do not emit |
5179 | // debug info for the stub function to avoid confusing the debugger. |
5180 | if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice) |
5181 | D->addAttr(NoDebugAttr::CreateImplicit(S.Context)); |
5182 | } |
5183 | |
5184 | static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5185 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
5186 | if (VD->hasLocalStorage()) { |
5187 | S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); |
5188 | return; |
5189 | } |
5190 | } |
5191 | |
5192 | if (auto *A = D->getAttr<CUDADeviceAttr>()) { |
5193 | if (!A->isImplicit()) |
5194 | return; |
5195 | D->dropAttr<CUDADeviceAttr>(); |
5196 | } |
5197 | D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL)); |
5198 | } |
5199 | |
5200 | static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5201 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
5202 | if (VD->hasLocalStorage()) { |
5203 | S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); |
5204 | return; |
5205 | } |
5206 | } |
5207 | if (!D->hasAttr<HIPManagedAttr>()) |
5208 | D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL)); |
5209 | if (!D->hasAttr<CUDADeviceAttr>()) |
5210 | D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context)); |
5211 | } |
5212 | |
5213 | static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5214 | const auto *Fn = cast<FunctionDecl>(Val: D); |
5215 | if (!Fn->isInlineSpecified()) { |
5216 | S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); |
5217 | return; |
5218 | } |
5219 | |
5220 | if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern) |
5221 | S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern); |
5222 | |
5223 | D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL)); |
5224 | } |
5225 | |
5226 | static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5227 | if (hasDeclarator(D)) return; |
5228 | |
5229 | // Diagnostic is emitted elsewhere: here we store the (valid) AL |
5230 | // in the Decl node for syntactic reasoning, e.g., pretty-printing. |
5231 | CallingConv CC; |
5232 | if (S.CheckCallingConvAttr( |
5233 | attr: AL, CC, /*FD*/ nullptr, |
5234 | CFT: S.CUDA().IdentifyTarget(D: dyn_cast<FunctionDecl>(Val: D)))) |
5235 | return; |
5236 | |
5237 | if (!isa<ObjCMethodDecl>(Val: D)) { |
5238 | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
5239 | << AL << AL.isRegularKeywordAttribute() << ExpectedFunctionOrMethod; |
5240 | return; |
5241 | } |
5242 | |
5243 | switch (AL.getKind()) { |
5244 | case ParsedAttr::AT_FastCall: |
5245 | D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL)); |
5246 | return; |
5247 | case ParsedAttr::AT_StdCall: |
5248 | D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL)); |
5249 | return; |
5250 | case ParsedAttr::AT_ThisCall: |
5251 | D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL)); |
5252 | return; |
5253 | case ParsedAttr::AT_CDecl: |
5254 | D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL)); |
5255 | return; |
5256 | case ParsedAttr::AT_Pascal: |
5257 | D->addAttr(::new (S.Context) PascalAttr(S.Context, AL)); |
5258 | return; |
5259 | case ParsedAttr::AT_SwiftCall: |
5260 | D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL)); |
5261 | return; |
5262 | case ParsedAttr::AT_SwiftAsyncCall: |
5263 | D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL)); |
5264 | return; |
5265 | case ParsedAttr::AT_VectorCall: |
5266 | D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL)); |
5267 | return; |
5268 | case ParsedAttr::AT_MSABI: |
5269 | D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL)); |
5270 | return; |
5271 | case ParsedAttr::AT_SysVABI: |
5272 | D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL)); |
5273 | return; |
5274 | case ParsedAttr::AT_RegCall: |
5275 | D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL)); |
5276 | return; |
5277 | case ParsedAttr::AT_Pcs: { |
5278 | PcsAttr::PCSType PCS; |
5279 | switch (CC) { |
5280 | case CC_AAPCS: |
5281 | PCS = PcsAttr::AAPCS; |
5282 | break; |
5283 | case CC_AAPCS_VFP: |
5284 | PCS = PcsAttr::AAPCS_VFP; |
5285 | break; |
5286 | default: |
5287 | llvm_unreachable("unexpected calling convention in pcs attribute" ); |
5288 | } |
5289 | |
5290 | D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS)); |
5291 | return; |
5292 | } |
5293 | case ParsedAttr::AT_AArch64VectorPcs: |
5294 | D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL)); |
5295 | return; |
5296 | case ParsedAttr::AT_AArch64SVEPcs: |
5297 | D->addAttr(::new (S.Context) AArch64SVEPcsAttr(S.Context, AL)); |
5298 | return; |
5299 | case ParsedAttr::AT_AMDGPUKernelCall: |
5300 | D->addAttr(::new (S.Context) AMDGPUKernelCallAttr(S.Context, AL)); |
5301 | return; |
5302 | case ParsedAttr::AT_IntelOclBicc: |
5303 | D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL)); |
5304 | return; |
5305 | case ParsedAttr::AT_PreserveMost: |
5306 | D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL)); |
5307 | return; |
5308 | case ParsedAttr::AT_PreserveAll: |
5309 | D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL)); |
5310 | return; |
5311 | case ParsedAttr::AT_M68kRTD: |
5312 | D->addAttr(::new (S.Context) M68kRTDAttr(S.Context, AL)); |
5313 | return; |
5314 | case ParsedAttr::AT_PreserveNone: |
5315 | D->addAttr(::new (S.Context) PreserveNoneAttr(S.Context, AL)); |
5316 | return; |
5317 | case ParsedAttr::AT_RISCVVectorCC: |
5318 | D->addAttr(::new (S.Context) RISCVVectorCCAttr(S.Context, AL)); |
5319 | return; |
5320 | default: |
5321 | llvm_unreachable("unexpected attribute kind" ); |
5322 | } |
5323 | } |
5324 | |
5325 | static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5326 | if (AL.getAttributeSpellingListIndex() == SuppressAttr::CXX11_gsl_suppress) { |
5327 | // Suppression attribute with GSL spelling requires at least 1 argument. |
5328 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
5329 | return; |
5330 | } |
5331 | |
5332 | std::vector<StringRef> DiagnosticIdentifiers; |
5333 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
5334 | StringRef RuleName; |
5335 | |
5336 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: RuleName, ArgLocation: nullptr)) |
5337 | return; |
5338 | |
5339 | DiagnosticIdentifiers.push_back(x: RuleName); |
5340 | } |
5341 | D->addAttr(::new (S.Context) |
5342 | SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(), |
5343 | DiagnosticIdentifiers.size())); |
5344 | } |
5345 | |
5346 | static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5347 | TypeSourceInfo *DerefTypeLoc = nullptr; |
5348 | QualType ParmType; |
5349 | if (AL.hasParsedType()) { |
5350 | ParmType = S.GetTypeFromParser(Ty: AL.getTypeArg(), TInfo: &DerefTypeLoc); |
5351 | |
5352 | unsigned SelectIdx = ~0U; |
5353 | if (ParmType->isReferenceType()) |
5354 | SelectIdx = 0; |
5355 | else if (ParmType->isArrayType()) |
5356 | SelectIdx = 1; |
5357 | |
5358 | if (SelectIdx != ~0U) { |
5359 | S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) |
5360 | << SelectIdx << AL; |
5361 | return; |
5362 | } |
5363 | } |
5364 | |
5365 | // To check if earlier decl attributes do not conflict the newly parsed ones |
5366 | // we always add (and check) the attribute to the canonical decl. We need |
5367 | // to repeat the check for attribute mutual exclusion because we're attaching |
5368 | // all of the attributes to the canonical declaration rather than the current |
5369 | // declaration. |
5370 | D = D->getCanonicalDecl(); |
5371 | if (AL.getKind() == ParsedAttr::AT_Owner) { |
5372 | if (checkAttrMutualExclusion<PointerAttr>(S, D, AL)) |
5373 | return; |
5374 | if (const auto *OAttr = D->getAttr<OwnerAttr>()) { |
5375 | const Type *ExistingDerefType = OAttr->getDerefTypeLoc() |
5376 | ? OAttr->getDerefType().getTypePtr() |
5377 | : nullptr; |
5378 | if (ExistingDerefType != ParmType.getTypePtrOrNull()) { |
5379 | S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) |
5380 | << AL << OAttr |
5381 | << (AL.isRegularKeywordAttribute() || |
5382 | OAttr->isRegularKeywordAttribute()); |
5383 | S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute); |
5384 | } |
5385 | return; |
5386 | } |
5387 | for (Decl *Redecl : D->redecls()) { |
5388 | Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc)); |
5389 | } |
5390 | } else { |
5391 | if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL)) |
5392 | return; |
5393 | if (const auto *PAttr = D->getAttr<PointerAttr>()) { |
5394 | const Type *ExistingDerefType = PAttr->getDerefTypeLoc() |
5395 | ? PAttr->getDerefType().getTypePtr() |
5396 | : nullptr; |
5397 | if (ExistingDerefType != ParmType.getTypePtrOrNull()) { |
5398 | S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) |
5399 | << AL << PAttr |
5400 | << (AL.isRegularKeywordAttribute() || |
5401 | PAttr->isRegularKeywordAttribute()); |
5402 | S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute); |
5403 | } |
5404 | return; |
5405 | } |
5406 | for (Decl *Redecl : D->redecls()) { |
5407 | Redecl->addAttr(::new (S.Context) |
5408 | PointerAttr(S.Context, AL, DerefTypeLoc)); |
5409 | } |
5410 | } |
5411 | } |
5412 | |
5413 | static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5414 | if (checkAttrMutualExclusion<NoRandomizeLayoutAttr>(S, D, AL)) |
5415 | return; |
5416 | if (!D->hasAttr<RandomizeLayoutAttr>()) |
5417 | D->addAttr(::new (S.Context) RandomizeLayoutAttr(S.Context, AL)); |
5418 | } |
5419 | |
5420 | static void handleNoRandomizeLayoutAttr(Sema &S, Decl *D, |
5421 | const ParsedAttr &AL) { |
5422 | if (checkAttrMutualExclusion<RandomizeLayoutAttr>(S, D, AL)) |
5423 | return; |
5424 | if (!D->hasAttr<NoRandomizeLayoutAttr>()) |
5425 | D->addAttr(::new (S.Context) NoRandomizeLayoutAttr(S.Context, AL)); |
5426 | } |
5427 | |
5428 | bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC, |
5429 | const FunctionDecl *FD, |
5430 | CUDAFunctionTarget CFT) { |
5431 | if (Attrs.isInvalid()) |
5432 | return true; |
5433 | |
5434 | if (Attrs.hasProcessingCache()) { |
5435 | CC = (CallingConv) Attrs.getProcessingCache(); |
5436 | return false; |
5437 | } |
5438 | |
5439 | unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0; |
5440 | if (!Attrs.checkExactlyNumArgs(S&: *this, Num: ReqArgs)) { |
5441 | Attrs.setInvalid(); |
5442 | return true; |
5443 | } |
5444 | |
5445 | // TODO: diagnose uses of these conventions on the wrong target. |
5446 | switch (Attrs.getKind()) { |
5447 | case ParsedAttr::AT_CDecl: |
5448 | CC = CC_C; |
5449 | break; |
5450 | case ParsedAttr::AT_FastCall: |
5451 | CC = CC_X86FastCall; |
5452 | break; |
5453 | case ParsedAttr::AT_StdCall: |
5454 | CC = CC_X86StdCall; |
5455 | break; |
5456 | case ParsedAttr::AT_ThisCall: |
5457 | CC = CC_X86ThisCall; |
5458 | break; |
5459 | case ParsedAttr::AT_Pascal: |
5460 | CC = CC_X86Pascal; |
5461 | break; |
5462 | case ParsedAttr::AT_SwiftCall: |
5463 | CC = CC_Swift; |
5464 | break; |
5465 | case ParsedAttr::AT_SwiftAsyncCall: |
5466 | CC = CC_SwiftAsync; |
5467 | break; |
5468 | case ParsedAttr::AT_VectorCall: |
5469 | CC = CC_X86VectorCall; |
5470 | break; |
5471 | case ParsedAttr::AT_AArch64VectorPcs: |
5472 | CC = CC_AArch64VectorCall; |
5473 | break; |
5474 | case ParsedAttr::AT_AArch64SVEPcs: |
5475 | CC = CC_AArch64SVEPCS; |
5476 | break; |
5477 | case ParsedAttr::AT_AMDGPUKernelCall: |
5478 | CC = CC_AMDGPUKernelCall; |
5479 | break; |
5480 | case ParsedAttr::AT_RegCall: |
5481 | CC = CC_X86RegCall; |
5482 | break; |
5483 | case ParsedAttr::AT_MSABI: |
5484 | CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C : |
5485 | CC_Win64; |
5486 | break; |
5487 | case ParsedAttr::AT_SysVABI: |
5488 | CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV : |
5489 | CC_C; |
5490 | break; |
5491 | case ParsedAttr::AT_Pcs: { |
5492 | StringRef StrRef; |
5493 | if (!checkStringLiteralArgumentAttr(AL: Attrs, ArgNum: 0, Str&: StrRef)) { |
5494 | Attrs.setInvalid(); |
5495 | return true; |
5496 | } |
5497 | if (StrRef == "aapcs" ) { |
5498 | CC = CC_AAPCS; |
5499 | break; |
5500 | } else if (StrRef == "aapcs-vfp" ) { |
5501 | CC = CC_AAPCS_VFP; |
5502 | break; |
5503 | } |
5504 | |
5505 | Attrs.setInvalid(); |
5506 | Diag(Attrs.getLoc(), diag::err_invalid_pcs); |
5507 | return true; |
5508 | } |
5509 | case ParsedAttr::AT_IntelOclBicc: |
5510 | CC = CC_IntelOclBicc; |
5511 | break; |
5512 | case ParsedAttr::AT_PreserveMost: |
5513 | CC = CC_PreserveMost; |
5514 | break; |
5515 | case ParsedAttr::AT_PreserveAll: |
5516 | CC = CC_PreserveAll; |
5517 | break; |
5518 | case ParsedAttr::AT_M68kRTD: |
5519 | CC = CC_M68kRTD; |
5520 | break; |
5521 | case ParsedAttr::AT_PreserveNone: |
5522 | CC = CC_PreserveNone; |
5523 | break; |
5524 | case ParsedAttr::AT_RISCVVectorCC: |
5525 | CC = CC_RISCVVectorCall; |
5526 | break; |
5527 | default: llvm_unreachable("unexpected attribute kind" ); |
5528 | } |
5529 | |
5530 | TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK; |
5531 | const TargetInfo &TI = Context.getTargetInfo(); |
5532 | // CUDA functions may have host and/or device attributes which indicate |
5533 | // their targeted execution environment, therefore the calling convention |
5534 | // of functions in CUDA should be checked against the target deduced based |
5535 | // on their host/device attributes. |
5536 | if (LangOpts.CUDA) { |
5537 | auto *Aux = Context.getAuxTargetInfo(); |
5538 | assert(FD || CFT != CUDAFunctionTarget::InvalidTarget); |
5539 | auto CudaTarget = FD ? CUDA().IdentifyTarget(D: FD) : CFT; |
5540 | bool CheckHost = false, CheckDevice = false; |
5541 | switch (CudaTarget) { |
5542 | case CUDAFunctionTarget::HostDevice: |
5543 | CheckHost = true; |
5544 | CheckDevice = true; |
5545 | break; |
5546 | case CUDAFunctionTarget::Host: |
5547 | CheckHost = true; |
5548 | break; |
5549 | case CUDAFunctionTarget::Device: |
5550 | case CUDAFunctionTarget::Global: |
5551 | CheckDevice = true; |
5552 | break; |
5553 | case CUDAFunctionTarget::InvalidTarget: |
5554 | llvm_unreachable("unexpected cuda target" ); |
5555 | } |
5556 | auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI; |
5557 | auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux; |
5558 | if (CheckHost && HostTI) |
5559 | A = HostTI->checkCallingConvention(CC); |
5560 | if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI) |
5561 | A = DeviceTI->checkCallingConvention(CC); |
5562 | } else { |
5563 | A = TI.checkCallingConvention(CC); |
5564 | } |
5565 | |
5566 | switch (A) { |
5567 | case TargetInfo::CCCR_OK: |
5568 | break; |
5569 | |
5570 | case TargetInfo::CCCR_Ignore: |
5571 | // Treat an ignored convention as if it was an explicit C calling convention |
5572 | // attribute. For example, __stdcall on Win x64 functions as __cdecl, so |
5573 | // that command line flags that change the default convention to |
5574 | // __vectorcall don't affect declarations marked __stdcall. |
5575 | CC = CC_C; |
5576 | break; |
5577 | |
5578 | case TargetInfo::CCCR_Error: |
5579 | Diag(Attrs.getLoc(), diag::error_cconv_unsupported) |
5580 | << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; |
5581 | break; |
5582 | |
5583 | case TargetInfo::CCCR_Warning: { |
5584 | Diag(Attrs.getLoc(), diag::warn_cconv_unsupported) |
5585 | << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; |
5586 | |
5587 | // This convention is not valid for the target. Use the default function or |
5588 | // method calling convention. |
5589 | bool IsCXXMethod = false, IsVariadic = false; |
5590 | if (FD) { |
5591 | IsCXXMethod = FD->isCXXInstanceMember(); |
5592 | IsVariadic = FD->isVariadic(); |
5593 | } |
5594 | CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod); |
5595 | break; |
5596 | } |
5597 | } |
5598 | |
5599 | Attrs.setProcessingCache((unsigned) CC); |
5600 | return false; |
5601 | } |
5602 | |
5603 | /// Pointer-like types in the default address space. |
5604 | static bool isValidSwiftContextType(QualType Ty) { |
5605 | if (!Ty->hasPointerRepresentation()) |
5606 | return Ty->isDependentType(); |
5607 | return Ty->getPointeeType().getAddressSpace() == LangAS::Default; |
5608 | } |
5609 | |
5610 | /// Pointers and references in the default address space. |
5611 | static bool isValidSwiftIndirectResultType(QualType Ty) { |
5612 | if (const auto *PtrType = Ty->getAs<PointerType>()) { |
5613 | Ty = PtrType->getPointeeType(); |
5614 | } else if (const auto *RefType = Ty->getAs<ReferenceType>()) { |
5615 | Ty = RefType->getPointeeType(); |
5616 | } else { |
5617 | return Ty->isDependentType(); |
5618 | } |
5619 | return Ty.getAddressSpace() == LangAS::Default; |
5620 | } |
5621 | |
5622 | /// Pointers and references to pointers in the default address space. |
5623 | static bool isValidSwiftErrorResultType(QualType Ty) { |
5624 | if (const auto *PtrType = Ty->getAs<PointerType>()) { |
5625 | Ty = PtrType->getPointeeType(); |
5626 | } else if (const auto *RefType = Ty->getAs<ReferenceType>()) { |
5627 | Ty = RefType->getPointeeType(); |
5628 | } else { |
5629 | return Ty->isDependentType(); |
5630 | } |
5631 | if (!Ty.getQualifiers().empty()) |
5632 | return false; |
5633 | return isValidSwiftContextType(Ty); |
5634 | } |
5635 | |
5636 | void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI, |
5637 | ParameterABI abi) { |
5638 | |
5639 | QualType type = cast<ParmVarDecl>(Val: D)->getType(); |
5640 | |
5641 | if (auto existingAttr = D->getAttr<ParameterABIAttr>()) { |
5642 | if (existingAttr->getABI() != abi) { |
5643 | Diag(CI.getLoc(), diag::err_attributes_are_not_compatible) |
5644 | << getParameterABISpelling(abi) << existingAttr |
5645 | << (CI.isRegularKeywordAttribute() || |
5646 | existingAttr->isRegularKeywordAttribute()); |
5647 | Diag(existingAttr->getLocation(), diag::note_conflicting_attribute); |
5648 | return; |
5649 | } |
5650 | } |
5651 | |
5652 | switch (abi) { |
5653 | case ParameterABI::Ordinary: |
5654 | llvm_unreachable("explicit attribute for ordinary parameter ABI?" ); |
5655 | |
5656 | case ParameterABI::SwiftContext: |
5657 | if (!isValidSwiftContextType(Ty: type)) { |
5658 | Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) |
5659 | << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type; |
5660 | } |
5661 | D->addAttr(::new (Context) SwiftContextAttr(Context, CI)); |
5662 | return; |
5663 | |
5664 | case ParameterABI::SwiftAsyncContext: |
5665 | if (!isValidSwiftContextType(Ty: type)) { |
5666 | Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) |
5667 | << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type; |
5668 | } |
5669 | D->addAttr(::new (Context) SwiftAsyncContextAttr(Context, CI)); |
5670 | return; |
5671 | |
5672 | case ParameterABI::SwiftErrorResult: |
5673 | if (!isValidSwiftErrorResultType(Ty: type)) { |
5674 | Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) |
5675 | << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type; |
5676 | } |
5677 | D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI)); |
5678 | return; |
5679 | |
5680 | case ParameterABI::SwiftIndirectResult: |
5681 | if (!isValidSwiftIndirectResultType(Ty: type)) { |
5682 | Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) |
5683 | << getParameterABISpelling(abi) << /*pointer*/ 0 << type; |
5684 | } |
5685 | D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI)); |
5686 | return; |
5687 | } |
5688 | llvm_unreachable("bad parameter ABI attribute" ); |
5689 | } |
5690 | |
5691 | /// Checks a regparm attribute, returning true if it is ill-formed and |
5692 | /// otherwise setting numParams to the appropriate value. |
5693 | bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) { |
5694 | if (AL.isInvalid()) |
5695 | return true; |
5696 | |
5697 | if (!AL.checkExactlyNumArgs(S&: *this, Num: 1)) { |
5698 | AL.setInvalid(); |
5699 | return true; |
5700 | } |
5701 | |
5702 | uint32_t NP; |
5703 | Expr *NumParamsExpr = AL.getArgAsExpr(Arg: 0); |
5704 | if (!checkUInt32Argument(S&: *this, AI: AL, Expr: NumParamsExpr, Val&: NP)) { |
5705 | AL.setInvalid(); |
5706 | return true; |
5707 | } |
5708 | |
5709 | if (Context.getTargetInfo().getRegParmMax() == 0) { |
5710 | Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform) |
5711 | << NumParamsExpr->getSourceRange(); |
5712 | AL.setInvalid(); |
5713 | return true; |
5714 | } |
5715 | |
5716 | numParams = NP; |
5717 | if (numParams > Context.getTargetInfo().getRegParmMax()) { |
5718 | Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number) |
5719 | << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); |
5720 | AL.setInvalid(); |
5721 | return true; |
5722 | } |
5723 | |
5724 | return false; |
5725 | } |
5726 | |
5727 | // Helper to get CudaArch. |
5728 | static CudaArch getCudaArch(const TargetInfo &TI) { |
5729 | if (!TI.getTriple().isNVPTX()) |
5730 | llvm_unreachable("getCudaArch is only valid for NVPTX triple" ); |
5731 | auto &TO = TI.getTargetOpts(); |
5732 | return StringToCudaArch(S: TO.CPU); |
5733 | } |
5734 | |
5735 | // Checks whether an argument of launch_bounds attribute is |
5736 | // acceptable, performs implicit conversion to Rvalue, and returns |
5737 | // non-nullptr Expr result on success. Otherwise, it returns nullptr |
5738 | // and may output an error. |
5739 | static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E, |
5740 | const CUDALaunchBoundsAttr &AL, |
5741 | const unsigned Idx) { |
5742 | if (S.DiagnoseUnexpandedParameterPack(E)) |
5743 | return nullptr; |
5744 | |
5745 | // Accept template arguments for now as they depend on something else. |
5746 | // We'll get to check them when they eventually get instantiated. |
5747 | if (E->isValueDependent()) |
5748 | return E; |
5749 | |
5750 | std::optional<llvm::APSInt> I = llvm::APSInt(64); |
5751 | if (!(I = E->getIntegerConstantExpr(Ctx: S.Context))) { |
5752 | S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type) |
5753 | << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
5754 | return nullptr; |
5755 | } |
5756 | // Make sure we can fit it in 32 bits. |
5757 | if (!I->isIntN(N: 32)) { |
5758 | S.Diag(E->getExprLoc(), diag::err_ice_too_large) |
5759 | << toString(*I, 10, false) << 32 << /* Unsigned */ 1; |
5760 | return nullptr; |
5761 | } |
5762 | if (*I < 0) |
5763 | S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative) |
5764 | << &AL << Idx << E->getSourceRange(); |
5765 | |
5766 | // We may need to perform implicit conversion of the argument. |
5767 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
5768 | S.Context, S.Context.getConstType(T: S.Context.IntTy), /*consume*/ false); |
5769 | ExprResult ValArg = S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: E); |
5770 | assert(!ValArg.isInvalid() && |
5771 | "Unexpected PerformCopyInitialization() failure." ); |
5772 | |
5773 | return ValArg.getAs<Expr>(); |
5774 | } |
5775 | |
5776 | CUDALaunchBoundsAttr * |
5777 | Sema::CreateLaunchBoundsAttr(const AttributeCommonInfo &CI, Expr *MaxThreads, |
5778 | Expr *MinBlocks, Expr *MaxBlocks) { |
5779 | CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks); |
5780 | MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0); |
5781 | if (!MaxThreads) |
5782 | return nullptr; |
5783 | |
5784 | if (MinBlocks) { |
5785 | MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1); |
5786 | if (!MinBlocks) |
5787 | return nullptr; |
5788 | } |
5789 | |
5790 | if (MaxBlocks) { |
5791 | // '.maxclusterrank' ptx directive requires .target sm_90 or higher. |
5792 | auto SM = getCudaArch(TI: Context.getTargetInfo()); |
5793 | if (SM == CudaArch::UNKNOWN || SM < CudaArch::SM_90) { |
5794 | Diag(MaxBlocks->getBeginLoc(), diag::warn_cuda_maxclusterrank_sm_90) |
5795 | << CudaArchToString(SM) << CI << MaxBlocks->getSourceRange(); |
5796 | // Ignore it by setting MaxBlocks to null; |
5797 | MaxBlocks = nullptr; |
5798 | } else { |
5799 | MaxBlocks = makeLaunchBoundsArgExpr(*this, MaxBlocks, TmpAttr, 2); |
5800 | if (!MaxBlocks) |
5801 | return nullptr; |
5802 | } |
5803 | } |
5804 | |
5805 | return ::new (Context) |
5806 | CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks); |
5807 | } |
5808 | |
5809 | void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, |
5810 | Expr *MaxThreads, Expr *MinBlocks, |
5811 | Expr *MaxBlocks) { |
5812 | if (auto *Attr = CreateLaunchBoundsAttr(CI, MaxThreads, MinBlocks, MaxBlocks)) |
5813 | D->addAttr(A: Attr); |
5814 | } |
5815 | |
5816 | static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5817 | if (!AL.checkAtLeastNumArgs(S, Num: 1) || !AL.checkAtMostNumArgs(S, Num: 3)) |
5818 | return; |
5819 | |
5820 | S.AddLaunchBoundsAttr(D, CI: AL, MaxThreads: AL.getArgAsExpr(Arg: 0), |
5821 | MinBlocks: AL.getNumArgs() > 1 ? AL.getArgAsExpr(Arg: 1) : nullptr, |
5822 | MaxBlocks: AL.getNumArgs() > 2 ? AL.getArgAsExpr(Arg: 2) : nullptr); |
5823 | } |
5824 | |
5825 | static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, |
5826 | const ParsedAttr &AL) { |
5827 | if (!AL.isArgIdent(Arg: 0)) { |
5828 | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
5829 | << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier; |
5830 | return; |
5831 | } |
5832 | |
5833 | ParamIdx ArgumentIdx; |
5834 | if (!checkFunctionOrMethodParameterIndex(S, D, AI: AL, AttrArgNum: 2, IdxExpr: AL.getArgAsExpr(Arg: 1), |
5835 | Idx&: ArgumentIdx)) |
5836 | return; |
5837 | |
5838 | ParamIdx TypeTagIdx; |
5839 | if (!checkFunctionOrMethodParameterIndex(S, D, AI: AL, AttrArgNum: 3, IdxExpr: AL.getArgAsExpr(Arg: 2), |
5840 | Idx&: TypeTagIdx)) |
5841 | return; |
5842 | |
5843 | bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag" ; |
5844 | if (IsPointer) { |
5845 | // Ensure that buffer has a pointer type. |
5846 | unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex(); |
5847 | if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) || |
5848 | !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType()) |
5849 | S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0; |
5850 | } |
5851 | |
5852 | D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr( |
5853 | S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx, |
5854 | IsPointer)); |
5855 | } |
5856 | |
5857 | static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, |
5858 | const ParsedAttr &AL) { |
5859 | if (!AL.isArgIdent(Arg: 0)) { |
5860 | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
5861 | << AL << 1 << AANT_ArgumentIdentifier; |
5862 | return; |
5863 | } |
5864 | |
5865 | if (!AL.checkExactlyNumArgs(S, Num: 1)) |
5866 | return; |
5867 | |
5868 | if (!isa<VarDecl>(Val: D)) { |
5869 | S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type) |
5870 | << AL << AL.isRegularKeywordAttribute() << ExpectedVariable; |
5871 | return; |
5872 | } |
5873 | |
5874 | IdentifierInfo *PointerKind = AL.getArgAsIdent(Arg: 0)->Ident; |
5875 | TypeSourceInfo *MatchingCTypeLoc = nullptr; |
5876 | S.GetTypeFromParser(Ty: AL.getMatchingCType(), TInfo: &MatchingCTypeLoc); |
5877 | assert(MatchingCTypeLoc && "no type source info for attribute argument" ); |
5878 | |
5879 | D->addAttr(::new (S.Context) TypeTagForDatatypeAttr( |
5880 | S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(), |
5881 | AL.getMustBeNull())); |
5882 | } |
5883 | |
5884 | static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5885 | ParamIdx ArgCount; |
5886 | |
5887 | if (!checkFunctionOrMethodParameterIndex(S, D, AI: AL, AttrArgNum: 1, IdxExpr: AL.getArgAsExpr(Arg: 0), |
5888 | Idx&: ArgCount, |
5889 | CanIndexImplicitThis: true /* CanIndexImplicitThis */)) |
5890 | return; |
5891 | |
5892 | // ArgCount isn't a parameter index [0;n), it's a count [1;n] |
5893 | D->addAttr(::new (S.Context) |
5894 | XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex())); |
5895 | } |
5896 | |
5897 | static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D, |
5898 | const ParsedAttr &AL) { |
5899 | uint32_t Count = 0, Offset = 0; |
5900 | if (!checkUInt32Argument(S, AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: Count, Idx: 0, StrictlyUnsigned: true)) |
5901 | return; |
5902 | if (AL.getNumArgs() == 2) { |
5903 | Expr *Arg = AL.getArgAsExpr(Arg: 1); |
5904 | if (!checkUInt32Argument(S, AI: AL, Expr: Arg, Val&: Offset, Idx: 1, StrictlyUnsigned: true)) |
5905 | return; |
5906 | if (Count < Offset) { |
5907 | S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range) |
5908 | << &AL << 0 << Count << Arg->getBeginLoc(); |
5909 | return; |
5910 | } |
5911 | } |
5912 | D->addAttr(::new (S.Context) |
5913 | PatchableFunctionEntryAttr(S.Context, AL, Count, Offset)); |
5914 | } |
5915 | |
5916 | namespace { |
5917 | struct IntrinToName { |
5918 | uint32_t Id; |
5919 | int32_t FullName; |
5920 | int32_t ShortName; |
5921 | }; |
5922 | } // unnamed namespace |
5923 | |
5924 | static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName, |
5925 | ArrayRef<IntrinToName> Map, |
5926 | const char *IntrinNames) { |
5927 | AliasName.consume_front(Prefix: "__arm_" ); |
5928 | const IntrinToName *It = |
5929 | llvm::lower_bound(Range&: Map, Value&: BuiltinID, C: [](const IntrinToName &L, unsigned Id) { |
5930 | return L.Id < Id; |
5931 | }); |
5932 | if (It == Map.end() || It->Id != BuiltinID) |
5933 | return false; |
5934 | StringRef FullName(&IntrinNames[It->FullName]); |
5935 | if (AliasName == FullName) |
5936 | return true; |
5937 | if (It->ShortName == -1) |
5938 | return false; |
5939 | StringRef ShortName(&IntrinNames[It->ShortName]); |
5940 | return AliasName == ShortName; |
5941 | } |
5942 | |
5943 | static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) { |
5944 | #include "clang/Basic/arm_mve_builtin_aliases.inc" |
5945 | // The included file defines: |
5946 | // - ArrayRef<IntrinToName> Map |
5947 | // - const char IntrinNames[] |
5948 | return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames); |
5949 | } |
5950 | |
5951 | static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) { |
5952 | #include "clang/Basic/arm_cde_builtin_aliases.inc" |
5953 | return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames); |
5954 | } |
5955 | |
5956 | static bool ArmSveAliasValid(ASTContext &Context, unsigned BuiltinID, |
5957 | StringRef AliasName) { |
5958 | if (Context.BuiltinInfo.isAuxBuiltinID(ID: BuiltinID)) |
5959 | BuiltinID = Context.BuiltinInfo.getAuxBuiltinID(ID: BuiltinID); |
5960 | return BuiltinID >= AArch64::FirstSVEBuiltin && |
5961 | BuiltinID <= AArch64::LastSVEBuiltin; |
5962 | } |
5963 | |
5964 | static bool ArmSmeAliasValid(ASTContext &Context, unsigned BuiltinID, |
5965 | StringRef AliasName) { |
5966 | if (Context.BuiltinInfo.isAuxBuiltinID(ID: BuiltinID)) |
5967 | BuiltinID = Context.BuiltinInfo.getAuxBuiltinID(ID: BuiltinID); |
5968 | return BuiltinID >= AArch64::FirstSMEBuiltin && |
5969 | BuiltinID <= AArch64::LastSMEBuiltin; |
5970 | } |
5971 | |
5972 | static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5973 | if (!AL.isArgIdent(Arg: 0)) { |
5974 | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
5975 | << AL << 1 << AANT_ArgumentIdentifier; |
5976 | return; |
5977 | } |
5978 | |
5979 | IdentifierInfo *Ident = AL.getArgAsIdent(Arg: 0)->Ident; |
5980 | unsigned BuiltinID = Ident->getBuiltinID(); |
5981 | StringRef AliasName = cast<FunctionDecl>(Val: D)->getIdentifier()->getName(); |
5982 | |
5983 | bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); |
5984 | if ((IsAArch64 && !ArmSveAliasValid(Context&: S.Context, BuiltinID, AliasName) && |
5985 | !ArmSmeAliasValid(Context&: S.Context, BuiltinID, AliasName)) || |
5986 | (!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) && |
5987 | !ArmCdeAliasValid(BuiltinID, AliasName))) { |
5988 | S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias); |
5989 | return; |
5990 | } |
5991 | |
5992 | D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident)); |
5993 | } |
5994 | |
5995 | static bool RISCVAliasValid(unsigned BuiltinID, StringRef AliasName) { |
5996 | return BuiltinID >= RISCV::FirstRVVBuiltin && |
5997 | BuiltinID <= RISCV::LastRVVBuiltin; |
5998 | } |
5999 | |
6000 | static void handleBuiltinAliasAttr(Sema &S, Decl *D, |
6001 | const ParsedAttr &AL) { |
6002 | if (!AL.isArgIdent(Arg: 0)) { |
6003 | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
6004 | << AL << 1 << AANT_ArgumentIdentifier; |
6005 | return; |
6006 | } |
6007 | |
6008 | IdentifierInfo *Ident = AL.getArgAsIdent(Arg: 0)->Ident; |
6009 | unsigned BuiltinID = Ident->getBuiltinID(); |
6010 | StringRef AliasName = cast<FunctionDecl>(Val: D)->getIdentifier()->getName(); |
6011 | |
6012 | bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); |
6013 | bool IsARM = S.Context.getTargetInfo().getTriple().isARM(); |
6014 | bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV(); |
6015 | bool IsHLSL = S.Context.getLangOpts().HLSL; |
6016 | if ((IsAArch64 && !ArmSveAliasValid(Context&: S.Context, BuiltinID, AliasName)) || |
6017 | (IsARM && !ArmMveAliasValid(BuiltinID, AliasName) && |
6018 | !ArmCdeAliasValid(BuiltinID, AliasName)) || |
6019 | (IsRISCV && !RISCVAliasValid(BuiltinID, AliasName)) || |
6020 | (!IsAArch64 && !IsARM && !IsRISCV && !IsHLSL)) { |
6021 | S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL; |
6022 | return; |
6023 | } |
6024 | |
6025 | D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident)); |
6026 | } |
6027 | |
6028 | static void handleNullableTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6029 | if (AL.isUsedAsTypeAttr()) |
6030 | return; |
6031 | |
6032 | if (auto *CRD = dyn_cast<CXXRecordDecl>(Val: D); |
6033 | !CRD || !(CRD->isClass() || CRD->isStruct())) { |
6034 | S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type_str) |
6035 | << AL << AL.isRegularKeywordAttribute() << "classes" ; |
6036 | return; |
6037 | } |
6038 | |
6039 | handleSimpleAttribute<TypeNullableAttr>(S, D, AL); |
6040 | } |
6041 | |
6042 | static void handlePreferredTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6043 | if (!AL.hasParsedType()) { |
6044 | S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
6045 | return; |
6046 | } |
6047 | |
6048 | TypeSourceInfo *ParmTSI = nullptr; |
6049 | QualType QT = S.GetTypeFromParser(Ty: AL.getTypeArg(), TInfo: &ParmTSI); |
6050 | assert(ParmTSI && "no type source info for attribute argument" ); |
6051 | S.RequireCompleteType(ParmTSI->getTypeLoc().getBeginLoc(), QT, |
6052 | diag::err_incomplete_type); |
6053 | |
6054 | D->addAttr(::new (S.Context) PreferredTypeAttr(S.Context, AL, ParmTSI)); |
6055 | } |
6056 | |
6057 | //===----------------------------------------------------------------------===// |
6058 | // Checker-specific attribute handlers. |
6059 | //===----------------------------------------------------------------------===// |
6060 | static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) { |
6061 | return QT->isDependentType() || QT->isObjCRetainableType(); |
6062 | } |
6063 | |
6064 | static bool isValidSubjectOfNSAttribute(QualType QT) { |
6065 | return QT->isDependentType() || QT->isObjCObjectPointerType() || |
6066 | QT->isObjCNSObjectType(); |
6067 | } |
6068 | |
6069 | static bool isValidSubjectOfCFAttribute(QualType QT) { |
6070 | return QT->isDependentType() || QT->isPointerType() || |
6071 | isValidSubjectOfNSAttribute(QT); |
6072 | } |
6073 | |
6074 | static bool isValidSubjectOfOSAttribute(QualType QT) { |
6075 | if (QT->isDependentType()) |
6076 | return true; |
6077 | QualType PT = QT->getPointeeType(); |
6078 | return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr; |
6079 | } |
6080 | |
6081 | void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI, |
6082 | RetainOwnershipKind K, |
6083 | bool IsTemplateInstantiation) { |
6084 | ValueDecl *VD = cast<ValueDecl>(Val: D); |
6085 | switch (K) { |
6086 | case RetainOwnershipKind::OS: |
6087 | handleSimpleAttributeOrDiagnose<OSConsumedAttr>( |
6088 | *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()), |
6089 | diag::warn_ns_attribute_wrong_parameter_type, |
6090 | /*ExtraArgs=*/CI.getRange(), "os_consumed" , /*pointers*/ 1); |
6091 | return; |
6092 | case RetainOwnershipKind::NS: |
6093 | handleSimpleAttributeOrDiagnose<NSConsumedAttr>( |
6094 | *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()), |
6095 | |
6096 | // These attributes are normally just advisory, but in ARC, ns_consumed |
6097 | // is significant. Allow non-dependent code to contain inappropriate |
6098 | // attributes even in ARC, but require template instantiations to be |
6099 | // set up correctly. |
6100 | ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount) |
6101 | ? diag::err_ns_attribute_wrong_parameter_type |
6102 | : diag::warn_ns_attribute_wrong_parameter_type), |
6103 | /*ExtraArgs=*/CI.getRange(), "ns_consumed" , /*objc pointers*/ 0); |
6104 | return; |
6105 | case RetainOwnershipKind::CF: |
6106 | handleSimpleAttributeOrDiagnose<CFConsumedAttr>( |
6107 | *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()), |
6108 | diag::warn_ns_attribute_wrong_parameter_type, |
6109 | /*ExtraArgs=*/CI.getRange(), "cf_consumed" , /*pointers*/ 1); |
6110 | return; |
6111 | } |
6112 | } |
6113 | |
6114 | static Sema::RetainOwnershipKind |
6115 | parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) { |
6116 | switch (AL.getKind()) { |
6117 | case ParsedAttr::AT_CFConsumed: |
6118 | case ParsedAttr::AT_CFReturnsRetained: |
6119 | case ParsedAttr::AT_CFReturnsNotRetained: |
6120 | return Sema::RetainOwnershipKind::CF; |
6121 | case ParsedAttr::AT_OSConsumesThis: |
6122 | case ParsedAttr::AT_OSConsumed: |
6123 | case ParsedAttr::AT_OSReturnsRetained: |
6124 | case ParsedAttr::AT_OSReturnsNotRetained: |
6125 | case ParsedAttr::AT_OSReturnsRetainedOnZero: |
6126 | case ParsedAttr::AT_OSReturnsRetainedOnNonZero: |
6127 | return Sema::RetainOwnershipKind::OS; |
6128 | case ParsedAttr::AT_NSConsumesSelf: |
6129 | case ParsedAttr::AT_NSConsumed: |
6130 | case ParsedAttr::AT_NSReturnsRetained: |
6131 | case ParsedAttr::AT_NSReturnsNotRetained: |
6132 | case ParsedAttr::AT_NSReturnsAutoreleased: |
6133 | return Sema::RetainOwnershipKind::NS; |
6134 | default: |
6135 | llvm_unreachable("Wrong argument supplied" ); |
6136 | } |
6137 | } |
6138 | |
6139 | bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) { |
6140 | if (isValidSubjectOfNSReturnsRetainedAttribute(QT)) |
6141 | return false; |
6142 | |
6143 | Diag(Loc, diag::warn_ns_attribute_wrong_return_type) |
6144 | << "'ns_returns_retained'" << 0 << 0; |
6145 | return true; |
6146 | } |
6147 | |
6148 | /// \return whether the parameter is a pointer to OSObject pointer. |
6149 | static bool isValidOSObjectOutParameter(const Decl *D) { |
6150 | const auto *PVD = dyn_cast<ParmVarDecl>(Val: D); |
6151 | if (!PVD) |
6152 | return false; |
6153 | QualType QT = PVD->getType(); |
6154 | QualType PT = QT->getPointeeType(); |
6155 | return !PT.isNull() && isValidSubjectOfOSAttribute(QT: PT); |
6156 | } |
6157 | |
6158 | static void handleXReturnsXRetainedAttr(Sema &S, Decl *D, |
6159 | const ParsedAttr &AL) { |
6160 | QualType ReturnType; |
6161 | Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL); |
6162 | |
6163 | if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) { |
6164 | ReturnType = MD->getReturnType(); |
6165 | } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) && |
6166 | (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) { |
6167 | return; // ignore: was handled as a type attribute |
6168 | } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(Val: D)) { |
6169 | ReturnType = PD->getType(); |
6170 | } else if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
6171 | ReturnType = FD->getReturnType(); |
6172 | } else if (const auto *Param = dyn_cast<ParmVarDecl>(Val: D)) { |
6173 | // Attributes on parameters are used for out-parameters, |
6174 | // passed as pointers-to-pointers. |
6175 | unsigned DiagID = K == Sema::RetainOwnershipKind::CF |
6176 | ? /*pointer-to-CF-pointer*/2 |
6177 | : /*pointer-to-OSObject-pointer*/3; |
6178 | ReturnType = Param->getType()->getPointeeType(); |
6179 | if (ReturnType.isNull()) { |
6180 | S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) |
6181 | << AL << DiagID << AL.getRange(); |
6182 | return; |
6183 | } |
6184 | } else if (AL.isUsedAsTypeAttr()) { |
6185 | return; |
6186 | } else { |
6187 | AttributeDeclKind ExpectedDeclKind; |
6188 | switch (AL.getKind()) { |
6189 | default: llvm_unreachable("invalid ownership attribute" ); |
6190 | case ParsedAttr::AT_NSReturnsRetained: |
6191 | case ParsedAttr::AT_NSReturnsAutoreleased: |
6192 | case ParsedAttr::AT_NSReturnsNotRetained: |
6193 | ExpectedDeclKind = ExpectedFunctionOrMethod; |
6194 | break; |
6195 | |
6196 | case ParsedAttr::AT_OSReturnsRetained: |
6197 | case ParsedAttr::AT_OSReturnsNotRetained: |
6198 | case ParsedAttr::AT_CFReturnsRetained: |
6199 | case ParsedAttr::AT_CFReturnsNotRetained: |
6200 | ExpectedDeclKind = ExpectedFunctionMethodOrParameter; |
6201 | break; |
6202 | } |
6203 | S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type) |
6204 | << AL.getRange() << AL << AL.isRegularKeywordAttribute() |
6205 | << ExpectedDeclKind; |
6206 | return; |
6207 | } |
6208 | |
6209 | bool TypeOK; |
6210 | bool Cf; |
6211 | unsigned ParmDiagID = 2; // Pointer-to-CF-pointer |
6212 | switch (AL.getKind()) { |
6213 | default: llvm_unreachable("invalid ownership attribute" ); |
6214 | case ParsedAttr::AT_NSReturnsRetained: |
6215 | TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(QT: ReturnType); |
6216 | Cf = false; |
6217 | break; |
6218 | |
6219 | case ParsedAttr::AT_NSReturnsAutoreleased: |
6220 | case ParsedAttr::AT_NSReturnsNotRetained: |
6221 | TypeOK = isValidSubjectOfNSAttribute(QT: ReturnType); |
6222 | Cf = false; |
6223 | break; |
6224 | |
6225 | case ParsedAttr::AT_CFReturnsRetained: |
6226 | case ParsedAttr::AT_CFReturnsNotRetained: |
6227 | TypeOK = isValidSubjectOfCFAttribute(QT: ReturnType); |
6228 | Cf = true; |
6229 | break; |
6230 | |
6231 | case ParsedAttr::AT_OSReturnsRetained: |
6232 | case ParsedAttr::AT_OSReturnsNotRetained: |
6233 | TypeOK = isValidSubjectOfOSAttribute(QT: ReturnType); |
6234 | Cf = true; |
6235 | ParmDiagID = 3; // Pointer-to-OSObject-pointer |
6236 | break; |
6237 | } |
6238 | |
6239 | if (!TypeOK) { |
6240 | if (AL.isUsedAsTypeAttr()) |
6241 | return; |
6242 | |
6243 | if (isa<ParmVarDecl>(Val: D)) { |
6244 | S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) |
6245 | << AL << ParmDiagID << AL.getRange(); |
6246 | } else { |
6247 | // Needs to be kept in sync with warn_ns_attribute_wrong_return_type. |
6248 | enum : unsigned { |
6249 | Function, |
6250 | Method, |
6251 | Property |
6252 | } SubjectKind = Function; |
6253 | if (isa<ObjCMethodDecl>(Val: D)) |
6254 | SubjectKind = Method; |
6255 | else if (isa<ObjCPropertyDecl>(Val: D)) |
6256 | SubjectKind = Property; |
6257 | S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) |
6258 | << AL << SubjectKind << Cf << AL.getRange(); |
6259 | } |
6260 | return; |
6261 | } |
6262 | |
6263 | switch (AL.getKind()) { |
6264 | default: |
6265 | llvm_unreachable("invalid ownership attribute" ); |
6266 | case ParsedAttr::AT_NSReturnsAutoreleased: |
6267 | handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL); |
6268 | return; |
6269 | case ParsedAttr::AT_CFReturnsNotRetained: |
6270 | handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL); |
6271 | return; |
6272 | case ParsedAttr::AT_NSReturnsNotRetained: |
6273 | handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL); |
6274 | return; |
6275 | case ParsedAttr::AT_CFReturnsRetained: |
6276 | handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL); |
6277 | return; |
6278 | case ParsedAttr::AT_NSReturnsRetained: |
6279 | handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL); |
6280 | return; |
6281 | case ParsedAttr::AT_OSReturnsRetained: |
6282 | handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL); |
6283 | return; |
6284 | case ParsedAttr::AT_OSReturnsNotRetained: |
6285 | handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL); |
6286 | return; |
6287 | }; |
6288 | } |
6289 | |
6290 | static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D, |
6291 | const ParsedAttr &Attrs) { |
6292 | const int EP_ObjCMethod = 1; |
6293 | const int EP_ObjCProperty = 2; |
6294 | |
6295 | SourceLocation loc = Attrs.getLoc(); |
6296 | QualType resultType; |
6297 | if (isa<ObjCMethodDecl>(Val: D)) |
6298 | resultType = cast<ObjCMethodDecl>(Val: D)->getReturnType(); |
6299 | else |
6300 | resultType = cast<ObjCPropertyDecl>(Val: D)->getType(); |
6301 | |
6302 | if (!resultType->isReferenceType() && |
6303 | (!resultType->isPointerType() || resultType->isObjCRetainableType())) { |
6304 | S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) |
6305 | << SourceRange(loc) << Attrs |
6306 | << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty) |
6307 | << /*non-retainable pointer*/ 2; |
6308 | |
6309 | // Drop the attribute. |
6310 | return; |
6311 | } |
6312 | |
6313 | D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs)); |
6314 | } |
6315 | |
6316 | static void handleObjCRequiresSuperAttr(Sema &S, Decl *D, |
6317 | const ParsedAttr &Attrs) { |
6318 | const auto *Method = cast<ObjCMethodDecl>(Val: D); |
6319 | |
6320 | const DeclContext *DC = Method->getDeclContext(); |
6321 | if (const auto *PDecl = dyn_cast_if_present<ObjCProtocolDecl>(DC)) { |
6322 | S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs |
6323 | << 0; |
6324 | S.Diag(PDecl->getLocation(), diag::note_protocol_decl); |
6325 | return; |
6326 | } |
6327 | if (Method->getMethodFamily() == OMF_dealloc) { |
6328 | S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs |
6329 | << 1; |
6330 | return; |
6331 | } |
6332 | |
6333 | D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs)); |
6334 | } |
6335 | |
6336 | static void handleNSErrorDomain(Sema &S, Decl *D, const ParsedAttr &Attr) { |
6337 | if (!isa<TagDecl>(Val: D)) { |
6338 | S.Diag(D->getBeginLoc(), diag::err_nserrordomain_invalid_decl) << 0; |
6339 | return; |
6340 | } |
6341 | |
6342 | IdentifierLoc *IdentLoc = |
6343 | Attr.isArgIdent(Arg: 0) ? Attr.getArgAsIdent(Arg: 0) : nullptr; |
6344 | if (!IdentLoc || !IdentLoc->Ident) { |
6345 | // Try to locate the argument directly. |
6346 | SourceLocation Loc = Attr.getLoc(); |
6347 | if (Attr.isArgExpr(Arg: 0) && Attr.getArgAsExpr(Arg: 0)) |
6348 | Loc = Attr.getArgAsExpr(Arg: 0)->getBeginLoc(); |
6349 | |
6350 | S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 0; |
6351 | return; |
6352 | } |
6353 | |
6354 | // Verify that the identifier is a valid decl in the C decl namespace. |
6355 | LookupResult Result(S, DeclarationName(IdentLoc->Ident), SourceLocation(), |
6356 | Sema::LookupNameKind::LookupOrdinaryName); |
6357 | if (!S.LookupName(R&: Result, S: S.TUScope) || !Result.getAsSingle<VarDecl>()) { |
6358 | S.Diag(IdentLoc->Loc, diag::err_nserrordomain_invalid_decl) |
6359 | << 1 << IdentLoc->Ident; |
6360 | return; |
6361 | } |
6362 | |
6363 | D->addAttr(::new (S.Context) |
6364 | NSErrorDomainAttr(S.Context, Attr, IdentLoc->Ident)); |
6365 | } |
6366 | |
6367 | static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6368 | IdentifierLoc *Parm = AL.isArgIdent(Arg: 0) ? AL.getArgAsIdent(Arg: 0) : nullptr; |
6369 | |
6370 | if (!Parm) { |
6371 | S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; |
6372 | return; |
6373 | } |
6374 | |
6375 | // Typedefs only allow objc_bridge(id) and have some additional checking. |
6376 | if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) { |
6377 | if (!Parm->Ident->isStr(Str: "id" )) { |
6378 | S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL; |
6379 | return; |
6380 | } |
6381 | |
6382 | // Only allow 'cv void *'. |
6383 | QualType T = TD->getUnderlyingType(); |
6384 | if (!T->isVoidPointerType()) { |
6385 | S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer); |
6386 | return; |
6387 | } |
6388 | } |
6389 | |
6390 | D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident)); |
6391 | } |
6392 | |
6393 | static void handleObjCBridgeMutableAttr(Sema &S, Decl *D, |
6394 | const ParsedAttr &AL) { |
6395 | IdentifierLoc *Parm = AL.isArgIdent(Arg: 0) ? AL.getArgAsIdent(Arg: 0) : nullptr; |
6396 | |
6397 | if (!Parm) { |
6398 | S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; |
6399 | return; |
6400 | } |
6401 | |
6402 | D->addAttr(::new (S.Context) |
6403 | ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident)); |
6404 | } |
6405 | |
6406 | static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D, |
6407 | const ParsedAttr &AL) { |
6408 | IdentifierInfo *RelatedClass = |
6409 | AL.isArgIdent(Arg: 0) ? AL.getArgAsIdent(Arg: 0)->Ident : nullptr; |
6410 | if (!RelatedClass) { |
6411 | S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; |
6412 | return; |
6413 | } |
6414 | IdentifierInfo *ClassMethod = |
6415 | AL.getArgAsIdent(Arg: 1) ? AL.getArgAsIdent(Arg: 1)->Ident : nullptr; |
6416 | IdentifierInfo *InstanceMethod = |
6417 | AL.getArgAsIdent(Arg: 2) ? AL.getArgAsIdent(Arg: 2)->Ident : nullptr; |
6418 | D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr( |
6419 | S.Context, AL, RelatedClass, ClassMethod, InstanceMethod)); |
6420 | } |
6421 | |
6422 | static void handleObjCDesignatedInitializer(Sema &S, Decl *D, |
6423 | const ParsedAttr &AL) { |
6424 | DeclContext *Ctx = D->getDeclContext(); |
6425 | |
6426 | // This attribute can only be applied to methods in interfaces or class |
6427 | // extensions. |
6428 | if (!isa<ObjCInterfaceDecl>(Val: Ctx) && |
6429 | !(isa<ObjCCategoryDecl>(Val: Ctx) && |
6430 | cast<ObjCCategoryDecl>(Val: Ctx)->IsClassExtension())) { |
6431 | S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init); |
6432 | return; |
6433 | } |
6434 | |
6435 | ObjCInterfaceDecl *IFace; |
6436 | if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Val: Ctx)) |
6437 | IFace = CatDecl->getClassInterface(); |
6438 | else |
6439 | IFace = cast<ObjCInterfaceDecl>(Val: Ctx); |
6440 | |
6441 | if (!IFace) |
6442 | return; |
6443 | |
6444 | IFace->setHasDesignatedInitializers(); |
6445 | D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL)); |
6446 | } |
6447 | |
6448 | static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) { |
6449 | StringRef MetaDataName; |
6450 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: MetaDataName)) |
6451 | return; |
6452 | D->addAttr(::new (S.Context) |
6453 | ObjCRuntimeNameAttr(S.Context, AL, MetaDataName)); |
6454 | } |
6455 | |
6456 | // When a user wants to use objc_boxable with a union or struct |
6457 | // but they don't have access to the declaration (legacy/third-party code) |
6458 | // then they can 'enable' this feature with a typedef: |
6459 | // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct; |
6460 | static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) { |
6461 | bool notify = false; |
6462 | |
6463 | auto *RD = dyn_cast<RecordDecl>(Val: D); |
6464 | if (RD && RD->getDefinition()) { |
6465 | RD = RD->getDefinition(); |
6466 | notify = true; |
6467 | } |
6468 | |
6469 | if (RD) { |
6470 | ObjCBoxableAttr *BoxableAttr = |
6471 | ::new (S.Context) ObjCBoxableAttr(S.Context, AL); |
6472 | RD->addAttr(A: BoxableAttr); |
6473 | if (notify) { |
6474 | // we need to notify ASTReader/ASTWriter about |
6475 | // modification of existing declaration |
6476 | if (ASTMutationListener *L = S.getASTMutationListener()) |
6477 | L->AddedAttributeToRecord(Attr: BoxableAttr, Record: RD); |
6478 | } |
6479 | } |
6480 | } |
6481 | |
6482 | static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6483 | if (hasDeclarator(D)) |
6484 | return; |
6485 | |
6486 | S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type) |
6487 | << AL.getRange() << AL << AL.isRegularKeywordAttribute() |
6488 | << ExpectedVariable; |
6489 | } |
6490 | |
6491 | static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D, |
6492 | const ParsedAttr &AL) { |
6493 | const auto *VD = cast<ValueDecl>(Val: D); |
6494 | QualType QT = VD->getType(); |
6495 | |
6496 | if (!QT->isDependentType() && |
6497 | !QT->isObjCLifetimeType()) { |
6498 | S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type) |
6499 | << QT; |
6500 | return; |
6501 | } |
6502 | |
6503 | Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime(); |
6504 | |
6505 | // If we have no lifetime yet, check the lifetime we're presumably |
6506 | // going to infer. |
6507 | if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType()) |
6508 | Lifetime = QT->getObjCARCImplicitLifetime(); |
6509 | |
6510 | switch (Lifetime) { |
6511 | case Qualifiers::OCL_None: |
6512 | assert(QT->isDependentType() && |
6513 | "didn't infer lifetime for non-dependent type?" ); |
6514 | break; |
6515 | |
6516 | case Qualifiers::OCL_Weak: // meaningful |
6517 | case Qualifiers::OCL_Strong: // meaningful |
6518 | break; |
6519 | |
6520 | case Qualifiers::OCL_ExplicitNone: |
6521 | case Qualifiers::OCL_Autoreleasing: |
6522 | S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless) |
6523 | << (Lifetime == Qualifiers::OCL_Autoreleasing); |
6524 | break; |
6525 | } |
6526 | |
6527 | D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL)); |
6528 | } |
6529 | |
6530 | static void handleSwiftAttrAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6531 | // Make sure that there is a string literal as the annotation's single |
6532 | // argument. |
6533 | StringRef Str; |
6534 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
6535 | return; |
6536 | |
6537 | D->addAttr(::new (S.Context) SwiftAttrAttr(S.Context, AL, Str)); |
6538 | } |
6539 | |
6540 | static void handleSwiftBridge(Sema &S, Decl *D, const ParsedAttr &AL) { |
6541 | // Make sure that there is a string literal as the annotation's single |
6542 | // argument. |
6543 | StringRef BT; |
6544 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: BT)) |
6545 | return; |
6546 | |
6547 | // Warn about duplicate attributes if they have different arguments, but drop |
6548 | // any duplicate attributes regardless. |
6549 | if (const auto *Other = D->getAttr<SwiftBridgeAttr>()) { |
6550 | if (Other->getSwiftType() != BT) |
6551 | S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; |
6552 | return; |
6553 | } |
6554 | |
6555 | D->addAttr(::new (S.Context) SwiftBridgeAttr(S.Context, AL, BT)); |
6556 | } |
6557 | |
6558 | static bool isErrorParameter(Sema &S, QualType QT) { |
6559 | const auto *PT = QT->getAs<PointerType>(); |
6560 | if (!PT) |
6561 | return false; |
6562 | |
6563 | QualType Pointee = PT->getPointeeType(); |
6564 | |
6565 | // Check for NSError**. |
6566 | if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>()) |
6567 | if (const auto *ID = OPT->getInterfaceDecl()) |
6568 | if (ID->getIdentifier() == S.getNSErrorIdent()) |
6569 | return true; |
6570 | |
6571 | // Check for CFError**. |
6572 | if (const auto *PT = Pointee->getAs<PointerType>()) |
6573 | if (const auto *RT = PT->getPointeeType()->getAs<RecordType>()) |
6574 | if (S.isCFError(D: RT->getDecl())) |
6575 | return true; |
6576 | |
6577 | return false; |
6578 | } |
6579 | |
6580 | static void handleSwiftError(Sema &S, Decl *D, const ParsedAttr &AL) { |
6581 | auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool { |
6582 | for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) { |
6583 | if (isErrorParameter(S, QT: getFunctionOrMethodParamType(D, Idx: I))) |
6584 | return true; |
6585 | } |
6586 | |
6587 | S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter) |
6588 | << AL << isa<ObjCMethodDecl>(D); |
6589 | return false; |
6590 | }; |
6591 | |
6592 | auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool { |
6593 | // - C, ObjC, and block pointers are definitely okay. |
6594 | // - References are definitely not okay. |
6595 | // - nullptr_t is weird, but acceptable. |
6596 | QualType RT = getFunctionOrMethodResultType(D); |
6597 | if (RT->hasPointerRepresentation() && !RT->isReferenceType()) |
6598 | return true; |
6599 | |
6600 | S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type) |
6601 | << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D) |
6602 | << /*pointer*/ 1; |
6603 | return false; |
6604 | }; |
6605 | |
6606 | auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool { |
6607 | QualType RT = getFunctionOrMethodResultType(D); |
6608 | if (RT->isIntegralType(Ctx: S.Context)) |
6609 | return true; |
6610 | |
6611 | S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type) |
6612 | << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D) |
6613 | << /*integral*/ 0; |
6614 | return false; |
6615 | }; |
6616 | |
6617 | if (D->isInvalidDecl()) |
6618 | return; |
6619 | |
6620 | IdentifierLoc *Loc = AL.getArgAsIdent(Arg: 0); |
6621 | SwiftErrorAttr::ConventionKind Convention; |
6622 | if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(), |
6623 | Convention)) { |
6624 | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) |
6625 | << AL << Loc->Ident; |
6626 | return; |
6627 | } |
6628 | |
6629 | switch (Convention) { |
6630 | case SwiftErrorAttr::None: |
6631 | // No additional validation required. |
6632 | break; |
6633 | |
6634 | case SwiftErrorAttr::NonNullError: |
6635 | if (!hasErrorParameter(S, D, AL)) |
6636 | return; |
6637 | break; |
6638 | |
6639 | case SwiftErrorAttr::NullResult: |
6640 | if (!hasErrorParameter(S, D, AL) || !hasPointerResult(S, D, AL)) |
6641 | return; |
6642 | break; |
6643 | |
6644 | case SwiftErrorAttr::NonZeroResult: |
6645 | case SwiftErrorAttr::ZeroResult: |
6646 | if (!hasErrorParameter(S, D, AL) || !hasIntegerResult(S, D, AL)) |
6647 | return; |
6648 | break; |
6649 | } |
6650 | |
6651 | D->addAttr(::new (S.Context) SwiftErrorAttr(S.Context, AL, Convention)); |
6652 | } |
6653 | |
6654 | static void checkSwiftAsyncErrorBlock(Sema &S, Decl *D, |
6655 | const SwiftAsyncErrorAttr *ErrorAttr, |
6656 | const SwiftAsyncAttr *AsyncAttr) { |
6657 | if (AsyncAttr->getKind() == SwiftAsyncAttr::None) { |
6658 | if (ErrorAttr->getConvention() != SwiftAsyncErrorAttr::None) { |
6659 | S.Diag(AsyncAttr->getLocation(), |
6660 | diag::err_swift_async_error_without_swift_async) |
6661 | << AsyncAttr << isa<ObjCMethodDecl>(D); |
6662 | } |
6663 | return; |
6664 | } |
6665 | |
6666 | const ParmVarDecl *HandlerParam = getFunctionOrMethodParam( |
6667 | D, AsyncAttr->getCompletionHandlerIndex().getASTIndex()); |
6668 | // handleSwiftAsyncAttr already verified the type is correct, so no need to |
6669 | // double-check it here. |
6670 | const auto *FuncTy = HandlerParam->getType() |
6671 | ->castAs<BlockPointerType>() |
6672 | ->getPointeeType() |
6673 | ->getAs<FunctionProtoType>(); |
6674 | ArrayRef<QualType> BlockParams; |
6675 | if (FuncTy) |
6676 | BlockParams = FuncTy->getParamTypes(); |
6677 | |
6678 | switch (ErrorAttr->getConvention()) { |
6679 | case SwiftAsyncErrorAttr::ZeroArgument: |
6680 | case SwiftAsyncErrorAttr::NonZeroArgument: { |
6681 | uint32_t ParamIdx = ErrorAttr->getHandlerParamIdx(); |
6682 | if (ParamIdx == 0 || ParamIdx > BlockParams.size()) { |
6683 | S.Diag(ErrorAttr->getLocation(), |
6684 | diag::err_attribute_argument_out_of_bounds) << ErrorAttr << 2; |
6685 | return; |
6686 | } |
6687 | QualType ErrorParam = BlockParams[ParamIdx - 1]; |
6688 | if (!ErrorParam->isIntegralType(Ctx: S.Context)) { |
6689 | StringRef ConvStr = |
6690 | ErrorAttr->getConvention() == SwiftAsyncErrorAttr::ZeroArgument |
6691 | ? "zero_argument" |
6692 | : "nonzero_argument" ; |
6693 | S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_non_integral) |
6694 | << ErrorAttr << ConvStr << ParamIdx << ErrorParam; |
6695 | return; |
6696 | } |
6697 | break; |
6698 | } |
6699 | case SwiftAsyncErrorAttr::NonNullError: { |
6700 | bool AnyErrorParams = false; |
6701 | for (QualType Param : BlockParams) { |
6702 | // Check for NSError *. |
6703 | if (const auto *ObjCPtrTy = Param->getAs<ObjCObjectPointerType>()) { |
6704 | if (const auto *ID = ObjCPtrTy->getInterfaceDecl()) { |
6705 | if (ID->getIdentifier() == S.getNSErrorIdent()) { |
6706 | AnyErrorParams = true; |
6707 | break; |
6708 | } |
6709 | } |
6710 | } |
6711 | // Check for CFError *. |
6712 | if (const auto *PtrTy = Param->getAs<PointerType>()) { |
6713 | if (const auto *RT = PtrTy->getPointeeType()->getAs<RecordType>()) { |
6714 | if (S.isCFError(D: RT->getDecl())) { |
6715 | AnyErrorParams = true; |
6716 | break; |
6717 | } |
6718 | } |
6719 | } |
6720 | } |
6721 | |
6722 | if (!AnyErrorParams) { |
6723 | S.Diag(ErrorAttr->getLocation(), |
6724 | diag::err_swift_async_error_no_error_parameter) |
6725 | << ErrorAttr << isa<ObjCMethodDecl>(D); |
6726 | return; |
6727 | } |
6728 | break; |
6729 | } |
6730 | case SwiftAsyncErrorAttr::None: |
6731 | break; |
6732 | } |
6733 | } |
6734 | |
6735 | static void handleSwiftAsyncError(Sema &S, Decl *D, const ParsedAttr &AL) { |
6736 | IdentifierLoc *IDLoc = AL.getArgAsIdent(Arg: 0); |
6737 | SwiftAsyncErrorAttr::ConventionKind ConvKind; |
6738 | if (!SwiftAsyncErrorAttr::ConvertStrToConventionKind(IDLoc->Ident->getName(), |
6739 | ConvKind)) { |
6740 | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) |
6741 | << AL << IDLoc->Ident; |
6742 | return; |
6743 | } |
6744 | |
6745 | uint32_t ParamIdx = 0; |
6746 | switch (ConvKind) { |
6747 | case SwiftAsyncErrorAttr::ZeroArgument: |
6748 | case SwiftAsyncErrorAttr::NonZeroArgument: { |
6749 | if (!AL.checkExactlyNumArgs(S, Num: 2)) |
6750 | return; |
6751 | |
6752 | Expr *IdxExpr = AL.getArgAsExpr(Arg: 1); |
6753 | if (!checkUInt32Argument(S, AI: AL, Expr: IdxExpr, Val&: ParamIdx)) |
6754 | return; |
6755 | break; |
6756 | } |
6757 | case SwiftAsyncErrorAttr::NonNullError: |
6758 | case SwiftAsyncErrorAttr::None: { |
6759 | if (!AL.checkExactlyNumArgs(S, Num: 1)) |
6760 | return; |
6761 | break; |
6762 | } |
6763 | } |
6764 | |
6765 | auto *ErrorAttr = |
6766 | ::new (S.Context) SwiftAsyncErrorAttr(S.Context, AL, ConvKind, ParamIdx); |
6767 | D->addAttr(A: ErrorAttr); |
6768 | |
6769 | if (auto *AsyncAttr = D->getAttr<SwiftAsyncAttr>()) |
6770 | checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr); |
6771 | } |
6772 | |
6773 | // For a function, this will validate a compound Swift name, e.g. |
6774 | // <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and |
6775 | // the function will output the number of parameter names, and whether this is a |
6776 | // single-arg initializer. |
6777 | // |
6778 | // For a type, enum constant, property, or variable declaration, this will |
6779 | // validate either a simple identifier, or a qualified |
6780 | // <code>context.identifier</code> name. |
6781 | static bool |
6782 | validateSwiftFunctionName(Sema &S, const ParsedAttr &AL, SourceLocation Loc, |
6783 | StringRef Name, unsigned &SwiftParamCount, |
6784 | bool &IsSingleParamInit) { |
6785 | SwiftParamCount = 0; |
6786 | IsSingleParamInit = false; |
6787 | |
6788 | // Check whether this will be mapped to a getter or setter of a property. |
6789 | bool IsGetter = false, IsSetter = false; |
6790 | if (Name.consume_front(Prefix: "getter:" )) |
6791 | IsGetter = true; |
6792 | else if (Name.consume_front(Prefix: "setter:" )) |
6793 | IsSetter = true; |
6794 | |
6795 | if (Name.back() != ')') { |
6796 | S.Diag(Loc, diag::warn_attr_swift_name_function) << AL; |
6797 | return false; |
6798 | } |
6799 | |
6800 | bool IsMember = false; |
6801 | StringRef ContextName, BaseName, Parameters; |
6802 | |
6803 | std::tie(args&: BaseName, args&: Parameters) = Name.split(Separator: '('); |
6804 | |
6805 | // Split at the first '.', if it exists, which separates the context name |
6806 | // from the base name. |
6807 | std::tie(args&: ContextName, args&: BaseName) = BaseName.split(Separator: '.'); |
6808 | if (BaseName.empty()) { |
6809 | BaseName = ContextName; |
6810 | ContextName = StringRef(); |
6811 | } else if (ContextName.empty() || !isValidAsciiIdentifier(S: ContextName)) { |
6812 | S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) |
6813 | << AL << /*context*/ 1; |
6814 | return false; |
6815 | } else { |
6816 | IsMember = true; |
6817 | } |
6818 | |
6819 | if (!isValidAsciiIdentifier(S: BaseName) || BaseName == "_" ) { |
6820 | S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) |
6821 | << AL << /*basename*/ 0; |
6822 | return false; |
6823 | } |
6824 | |
6825 | bool IsSubscript = BaseName == "subscript" ; |
6826 | // A subscript accessor must be a getter or setter. |
6827 | if (IsSubscript && !IsGetter && !IsSetter) { |
6828 | S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter) |
6829 | << AL << /* getter or setter */ 0; |
6830 | return false; |
6831 | } |
6832 | |
6833 | if (Parameters.empty()) { |
6834 | S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL; |
6835 | return false; |
6836 | } |
6837 | |
6838 | assert(Parameters.back() == ')' && "expected ')'" ); |
6839 | Parameters = Parameters.drop_back(); // ')' |
6840 | |
6841 | if (Parameters.empty()) { |
6842 | // Setters and subscripts must have at least one parameter. |
6843 | if (IsSubscript) { |
6844 | S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter) |
6845 | << AL << /* have at least one parameter */1; |
6846 | return false; |
6847 | } |
6848 | |
6849 | if (IsSetter) { |
6850 | S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL; |
6851 | return false; |
6852 | } |
6853 | |
6854 | return true; |
6855 | } |
6856 | |
6857 | if (Parameters.back() != ':') { |
6858 | S.Diag(Loc, diag::warn_attr_swift_name_function) << AL; |
6859 | return false; |
6860 | } |
6861 | |
6862 | StringRef CurrentParam; |
6863 | std::optional<unsigned> SelfLocation; |
6864 | unsigned NewValueCount = 0; |
6865 | std::optional<unsigned> NewValueLocation; |
6866 | do { |
6867 | std::tie(args&: CurrentParam, args&: Parameters) = Parameters.split(Separator: ':'); |
6868 | |
6869 | if (!isValidAsciiIdentifier(S: CurrentParam)) { |
6870 | S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) |
6871 | << AL << /*parameter*/2; |
6872 | return false; |
6873 | } |
6874 | |
6875 | if (IsMember && CurrentParam == "self" ) { |
6876 | // "self" indicates the "self" argument for a member. |
6877 | |
6878 | // More than one "self"? |
6879 | if (SelfLocation) { |
6880 | S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL; |
6881 | return false; |
6882 | } |
6883 | |
6884 | // The "self" location is the current parameter. |
6885 | SelfLocation = SwiftParamCount; |
6886 | } else if (CurrentParam == "newValue" ) { |
6887 | // "newValue" indicates the "newValue" argument for a setter. |
6888 | |
6889 | // There should only be one 'newValue', but it's only significant for |
6890 | // subscript accessors, so don't error right away. |
6891 | ++NewValueCount; |
6892 | |
6893 | NewValueLocation = SwiftParamCount; |
6894 | } |
6895 | |
6896 | ++SwiftParamCount; |
6897 | } while (!Parameters.empty()); |
6898 | |
6899 | // Only instance subscripts are currently supported. |
6900 | if (IsSubscript && !SelfLocation) { |
6901 | S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter) |
6902 | << AL << /*have a 'self:' parameter*/2; |
6903 | return false; |
6904 | } |
6905 | |
6906 | IsSingleParamInit = |
6907 | SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_" ; |
6908 | |
6909 | // Check the number of parameters for a getter/setter. |
6910 | if (IsGetter || IsSetter) { |
6911 | // Setters have one parameter for the new value. |
6912 | unsigned NumExpectedParams = IsGetter ? 0 : 1; |
6913 | unsigned ParamDiag = |
6914 | IsGetter ? diag::warn_attr_swift_name_getter_parameters |
6915 | : diag::warn_attr_swift_name_setter_parameters; |
6916 | |
6917 | // Instance methods have one parameter for "self". |
6918 | if (SelfLocation) |
6919 | ++NumExpectedParams; |
6920 | |
6921 | // Subscripts may have additional parameters beyond the expected params for |
6922 | // the index. |
6923 | if (IsSubscript) { |
6924 | if (SwiftParamCount < NumExpectedParams) { |
6925 | S.Diag(Loc, ParamDiag) << AL; |
6926 | return false; |
6927 | } |
6928 | |
6929 | // A subscript setter must explicitly label its newValue parameter to |
6930 | // distinguish it from index parameters. |
6931 | if (IsSetter) { |
6932 | if (!NewValueLocation) { |
6933 | S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue) |
6934 | << AL; |
6935 | return false; |
6936 | } |
6937 | if (NewValueCount > 1) { |
6938 | S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_multiple_newValues) |
6939 | << AL; |
6940 | return false; |
6941 | } |
6942 | } else { |
6943 | // Subscript getters should have no 'newValue:' parameter. |
6944 | if (NewValueLocation) { |
6945 | S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue) |
6946 | << AL; |
6947 | return false; |
6948 | } |
6949 | } |
6950 | } else { |
6951 | // Property accessors must have exactly the number of expected params. |
6952 | if (SwiftParamCount != NumExpectedParams) { |
6953 | S.Diag(Loc, ParamDiag) << AL; |
6954 | return false; |
6955 | } |
6956 | } |
6957 | } |
6958 | |
6959 | return true; |
6960 | } |
6961 | |
6962 | bool Sema::DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc, |
6963 | const ParsedAttr &AL, bool IsAsync) { |
6964 | if (isa<ObjCMethodDecl>(Val: D) || isa<FunctionDecl>(Val: D)) { |
6965 | ArrayRef<ParmVarDecl*> Params; |
6966 | unsigned ParamCount; |
6967 | |
6968 | if (const auto *Method = dyn_cast<ObjCMethodDecl>(Val: D)) { |
6969 | ParamCount = Method->getSelector().getNumArgs(); |
6970 | Params = Method->parameters().slice(N: 0, M: ParamCount); |
6971 | } else { |
6972 | const auto *F = cast<FunctionDecl>(Val: D); |
6973 | |
6974 | ParamCount = F->getNumParams(); |
6975 | Params = F->parameters(); |
6976 | |
6977 | if (!F->hasWrittenPrototype()) { |
6978 | Diag(Loc, diag::warn_attribute_wrong_decl_type) |
6979 | << AL << AL.isRegularKeywordAttribute() |
6980 | << ExpectedFunctionWithProtoType; |
6981 | return false; |
6982 | } |
6983 | } |
6984 | |
6985 | // The async name drops the last callback parameter. |
6986 | if (IsAsync) { |
6987 | if (ParamCount == 0) { |
6988 | Diag(Loc, diag::warn_attr_swift_name_decl_missing_params) |
6989 | << AL << isa<ObjCMethodDecl>(D); |
6990 | return false; |
6991 | } |
6992 | ParamCount -= 1; |
6993 | } |
6994 | |
6995 | unsigned SwiftParamCount; |
6996 | bool IsSingleParamInit; |
6997 | if (!validateSwiftFunctionName(S&: *this, AL, Loc, Name, |
6998 | SwiftParamCount, IsSingleParamInit)) |
6999 | return false; |
7000 | |
7001 | bool ParamCountValid; |
7002 | if (SwiftParamCount == ParamCount) { |
7003 | ParamCountValid = true; |
7004 | } else if (SwiftParamCount > ParamCount) { |
7005 | ParamCountValid = IsSingleParamInit && ParamCount == 0; |
7006 | } else { |
7007 | // We have fewer Swift parameters than Objective-C parameters, but that |
7008 | // might be because we've transformed some of them. Check for potential |
7009 | // "out" parameters and err on the side of not warning. |
7010 | unsigned MaybeOutParamCount = |
7011 | llvm::count_if(Range&: Params, P: [](const ParmVarDecl *Param) -> bool { |
7012 | QualType ParamTy = Param->getType(); |
7013 | if (ParamTy->isReferenceType() || ParamTy->isPointerType()) |
7014 | return !ParamTy->getPointeeType().isConstQualified(); |
7015 | return false; |
7016 | }); |
7017 | |
7018 | ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount; |
7019 | } |
7020 | |
7021 | if (!ParamCountValid) { |
7022 | Diag(Loc, diag::warn_attr_swift_name_num_params) |
7023 | << (SwiftParamCount > ParamCount) << AL << ParamCount |
7024 | << SwiftParamCount; |
7025 | return false; |
7026 | } |
7027 | } else if ((isa<EnumConstantDecl>(Val: D) || isa<ObjCProtocolDecl>(Val: D) || |
7028 | isa<ObjCInterfaceDecl>(Val: D) || isa<ObjCPropertyDecl>(Val: D) || |
7029 | isa<VarDecl>(Val: D) || isa<TypedefNameDecl>(Val: D) || isa<TagDecl>(Val: D) || |
7030 | isa<IndirectFieldDecl>(Val: D) || isa<FieldDecl>(Val: D)) && |
7031 | !IsAsync) { |
7032 | StringRef ContextName, BaseName; |
7033 | |
7034 | std::tie(args&: ContextName, args&: BaseName) = Name.split(Separator: '.'); |
7035 | if (BaseName.empty()) { |
7036 | BaseName = ContextName; |
7037 | ContextName = StringRef(); |
7038 | } else if (!isValidAsciiIdentifier(S: ContextName)) { |
7039 | Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL |
7040 | << /*context*/1; |
7041 | return false; |
7042 | } |
7043 | |
7044 | if (!isValidAsciiIdentifier(S: BaseName)) { |
7045 | Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL |
7046 | << /*basename*/0; |
7047 | return false; |
7048 | } |
7049 | } else { |
7050 | Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL; |
7051 | return false; |
7052 | } |
7053 | return true; |
7054 | } |
7055 | |
7056 | static void handleSwiftName(Sema &S, Decl *D, const ParsedAttr &AL) { |
7057 | StringRef Name; |
7058 | SourceLocation Loc; |
7059 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Name, ArgLocation: &Loc)) |
7060 | return; |
7061 | |
7062 | if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/false)) |
7063 | return; |
7064 | |
7065 | D->addAttr(::new (S.Context) SwiftNameAttr(S.Context, AL, Name)); |
7066 | } |
7067 | |
7068 | static void handleSwiftAsyncName(Sema &S, Decl *D, const ParsedAttr &AL) { |
7069 | StringRef Name; |
7070 | SourceLocation Loc; |
7071 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Name, ArgLocation: &Loc)) |
7072 | return; |
7073 | |
7074 | if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/true)) |
7075 | return; |
7076 | |
7077 | D->addAttr(::new (S.Context) SwiftAsyncNameAttr(S.Context, AL, Name)); |
7078 | } |
7079 | |
7080 | static void handleSwiftNewType(Sema &S, Decl *D, const ParsedAttr &AL) { |
7081 | // Make sure that there is an identifier as the annotation's single argument. |
7082 | if (!AL.checkExactlyNumArgs(S, Num: 1)) |
7083 | return; |
7084 | |
7085 | if (!AL.isArgIdent(Arg: 0)) { |
7086 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
7087 | << AL << AANT_ArgumentIdentifier; |
7088 | return; |
7089 | } |
7090 | |
7091 | SwiftNewTypeAttr::NewtypeKind Kind; |
7092 | IdentifierInfo *II = AL.getArgAsIdent(Arg: 0)->Ident; |
7093 | if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) { |
7094 | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; |
7095 | return; |
7096 | } |
7097 | |
7098 | if (!isa<TypedefNameDecl>(Val: D)) { |
7099 | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str) |
7100 | << AL << AL.isRegularKeywordAttribute() << "typedefs" ; |
7101 | return; |
7102 | } |
7103 | |
7104 | D->addAttr(::new (S.Context) SwiftNewTypeAttr(S.Context, AL, Kind)); |
7105 | } |
7106 | |
7107 | static void handleSwiftAsyncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7108 | if (!AL.isArgIdent(Arg: 0)) { |
7109 | S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
7110 | << AL << 1 << AANT_ArgumentIdentifier; |
7111 | return; |
7112 | } |
7113 | |
7114 | SwiftAsyncAttr::Kind Kind; |
7115 | IdentifierInfo *II = AL.getArgAsIdent(Arg: 0)->Ident; |
7116 | if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) { |
7117 | S.Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II; |
7118 | return; |
7119 | } |
7120 | |
7121 | ParamIdx Idx; |
7122 | if (Kind == SwiftAsyncAttr::None) { |
7123 | // If this is 'none', then there shouldn't be any additional arguments. |
7124 | if (!AL.checkExactlyNumArgs(S, Num: 1)) |
7125 | return; |
7126 | } else { |
7127 | // Non-none swift_async requires a completion handler index argument. |
7128 | if (!AL.checkExactlyNumArgs(S, Num: 2)) |
7129 | return; |
7130 | |
7131 | Expr *HandlerIdx = AL.getArgAsExpr(Arg: 1); |
7132 | if (!checkFunctionOrMethodParameterIndex(S, D, AI: AL, AttrArgNum: 2, IdxExpr: HandlerIdx, Idx)) |
7133 | return; |
7134 | |
7135 | const ParmVarDecl *CompletionBlock = |
7136 | getFunctionOrMethodParam(D, Idx: Idx.getASTIndex()); |
7137 | QualType CompletionBlockType = CompletionBlock->getType(); |
7138 | if (!CompletionBlockType->isBlockPointerType()) { |
7139 | S.Diag(CompletionBlock->getLocation(), |
7140 | diag::err_swift_async_bad_block_type) |
7141 | << CompletionBlock->getType(); |
7142 | return; |
7143 | } |
7144 | QualType BlockTy = |
7145 | CompletionBlockType->castAs<BlockPointerType>()->getPointeeType(); |
7146 | if (!BlockTy->castAs<FunctionType>()->getReturnType()->isVoidType()) { |
7147 | S.Diag(CompletionBlock->getLocation(), |
7148 | diag::err_swift_async_bad_block_type) |
7149 | << CompletionBlock->getType(); |
7150 | return; |
7151 | } |
7152 | } |
7153 | |
7154 | auto *AsyncAttr = |
7155 | ::new (S.Context) SwiftAsyncAttr(S.Context, AL, Kind, Idx); |
7156 | D->addAttr(A: AsyncAttr); |
7157 | |
7158 | if (auto *ErrorAttr = D->getAttr<SwiftAsyncErrorAttr>()) |
7159 | checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr); |
7160 | } |
7161 | |
7162 | //===----------------------------------------------------------------------===// |
7163 | // Microsoft specific attribute handlers. |
7164 | //===----------------------------------------------------------------------===// |
7165 | |
7166 | UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, |
7167 | StringRef UuidAsWritten, MSGuidDecl *GuidDecl) { |
7168 | if (const auto *UA = D->getAttr<UuidAttr>()) { |
7169 | if (declaresSameEntity(UA->getGuidDecl(), GuidDecl)) |
7170 | return nullptr; |
7171 | if (!UA->getGuid().empty()) { |
7172 | Diag(UA->getLocation(), diag::err_mismatched_uuid); |
7173 | Diag(CI.getLoc(), diag::note_previous_uuid); |
7174 | D->dropAttr<UuidAttr>(); |
7175 | } |
7176 | } |
7177 | |
7178 | return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl); |
7179 | } |
7180 | |
7181 | static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7182 | if (!S.LangOpts.CPlusPlus) { |
7183 | S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) |
7184 | << AL << AttributeLangSupport::C; |
7185 | return; |
7186 | } |
7187 | |
7188 | StringRef OrigStrRef; |
7189 | SourceLocation LiteralLoc; |
7190 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: OrigStrRef, ArgLocation: &LiteralLoc)) |
7191 | return; |
7192 | |
7193 | // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or |
7194 | // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. |
7195 | StringRef StrRef = OrigStrRef; |
7196 | if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') |
7197 | StrRef = StrRef.drop_front().drop_back(); |
7198 | |
7199 | // Validate GUID length. |
7200 | if (StrRef.size() != 36) { |
7201 | S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); |
7202 | return; |
7203 | } |
7204 | |
7205 | for (unsigned i = 0; i < 36; ++i) { |
7206 | if (i == 8 || i == 13 || i == 18 || i == 23) { |
7207 | if (StrRef[i] != '-') { |
7208 | S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); |
7209 | return; |
7210 | } |
7211 | } else if (!isHexDigit(c: StrRef[i])) { |
7212 | S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); |
7213 | return; |
7214 | } |
7215 | } |
7216 | |
7217 | // Convert to our parsed format and canonicalize. |
7218 | MSGuidDecl::Parts Parsed; |
7219 | StrRef.substr(Start: 0, N: 8).getAsInteger(Radix: 16, Result&: Parsed.Part1); |
7220 | StrRef.substr(Start: 9, N: 4).getAsInteger(Radix: 16, Result&: Parsed.Part2); |
7221 | StrRef.substr(Start: 14, N: 4).getAsInteger(Radix: 16, Result&: Parsed.Part3); |
7222 | for (unsigned i = 0; i != 8; ++i) |
7223 | StrRef.substr(Start: 19 + 2 * i + (i >= 2 ? 1 : 0), N: 2) |
7224 | .getAsInteger(Radix: 16, Result&: Parsed.Part4And5[i]); |
7225 | MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed); |
7226 | |
7227 | // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's |
7228 | // the only thing in the [] list, the [] too), and add an insertion of |
7229 | // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas |
7230 | // separating attributes nor of the [ and the ] are in the AST. |
7231 | // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc" |
7232 | // on cfe-dev. |
7233 | if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling. |
7234 | S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated); |
7235 | |
7236 | UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid); |
7237 | if (UA) |
7238 | D->addAttr(A: UA); |
7239 | } |
7240 | |
7241 | static void handleHLSLNumThreadsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7242 | llvm::VersionTuple SMVersion = |
7243 | S.Context.getTargetInfo().getTriple().getOSVersion(); |
7244 | uint32_t ZMax = 1024; |
7245 | uint32_t ThreadMax = 1024; |
7246 | if (SMVersion.getMajor() <= 4) { |
7247 | ZMax = 1; |
7248 | ThreadMax = 768; |
7249 | } else if (SMVersion.getMajor() == 5) { |
7250 | ZMax = 64; |
7251 | ThreadMax = 1024; |
7252 | } |
7253 | |
7254 | uint32_t X; |
7255 | if (!checkUInt32Argument(S, AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: X)) |
7256 | return; |
7257 | if (X > 1024) { |
7258 | S.Diag(AL.getArgAsExpr(0)->getExprLoc(), |
7259 | diag::err_hlsl_numthreads_argument_oor) << 0 << 1024; |
7260 | return; |
7261 | } |
7262 | uint32_t Y; |
7263 | if (!checkUInt32Argument(S, AI: AL, Expr: AL.getArgAsExpr(Arg: 1), Val&: Y)) |
7264 | return; |
7265 | if (Y > 1024) { |
7266 | S.Diag(AL.getArgAsExpr(1)->getExprLoc(), |
7267 | diag::err_hlsl_numthreads_argument_oor) << 1 << 1024; |
7268 | return; |
7269 | } |
7270 | uint32_t Z; |
7271 | if (!checkUInt32Argument(S, AI: AL, Expr: AL.getArgAsExpr(Arg: 2), Val&: Z)) |
7272 | return; |
7273 | if (Z > ZMax) { |
7274 | S.Diag(AL.getArgAsExpr(2)->getExprLoc(), |
7275 | diag::err_hlsl_numthreads_argument_oor) << 2 << ZMax; |
7276 | return; |
7277 | } |
7278 | |
7279 | if (X * Y * Z > ThreadMax) { |
7280 | S.Diag(AL.getLoc(), diag::err_hlsl_numthreads_invalid) << ThreadMax; |
7281 | return; |
7282 | } |
7283 | |
7284 | HLSLNumThreadsAttr *NewAttr = S.HLSL().mergeNumThreadsAttr(D, AL, X, Y, Z); |
7285 | if (NewAttr) |
7286 | D->addAttr(A: NewAttr); |
7287 | } |
7288 | |
7289 | static bool isLegalTypeForHLSLSV_DispatchThreadID(QualType T) { |
7290 | if (!T->hasUnsignedIntegerRepresentation()) |
7291 | return false; |
7292 | if (const auto *VT = T->getAs<VectorType>()) |
7293 | return VT->getNumElements() <= 3; |
7294 | return true; |
7295 | } |
7296 | |
7297 | static void handleHLSLSV_DispatchThreadIDAttr(Sema &S, Decl *D, |
7298 | const ParsedAttr &AL) { |
7299 | // FIXME: support semantic on field. |
7300 | // See https://github.com/llvm/llvm-project/issues/57889. |
7301 | if (isa<FieldDecl>(Val: D)) { |
7302 | S.Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_ast_node) |
7303 | << AL << "parameter" ; |
7304 | return; |
7305 | } |
7306 | |
7307 | auto *VD = cast<ValueDecl>(Val: D); |
7308 | if (!isLegalTypeForHLSLSV_DispatchThreadID(T: VD->getType())) { |
7309 | S.Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_type) |
7310 | << AL << "uint/uint2/uint3" ; |
7311 | return; |
7312 | } |
7313 | |
7314 | D->addAttr(::new (S.Context) HLSLSV_DispatchThreadIDAttr(S.Context, AL)); |
7315 | } |
7316 | |
7317 | static void handleHLSLShaderAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7318 | StringRef Str; |
7319 | SourceLocation ArgLoc; |
7320 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &ArgLoc)) |
7321 | return; |
7322 | |
7323 | HLSLShaderAttr::ShaderType ShaderType; |
7324 | if (!HLSLShaderAttr::ConvertStrToShaderType(Str, ShaderType)) { |
7325 | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) |
7326 | << AL << Str << ArgLoc; |
7327 | return; |
7328 | } |
7329 | |
7330 | // FIXME: check function match the shader stage. |
7331 | |
7332 | HLSLShaderAttr *NewAttr = S.HLSL().mergeShaderAttr(D, AL, ShaderType); |
7333 | if (NewAttr) |
7334 | D->addAttr(A: NewAttr); |
7335 | } |
7336 | |
7337 | static void handleHLSLResourceBindingAttr(Sema &S, Decl *D, |
7338 | const ParsedAttr &AL) { |
7339 | StringRef Space = "space0" ; |
7340 | StringRef Slot = "" ; |
7341 | |
7342 | if (!AL.isArgIdent(Arg: 0)) { |
7343 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
7344 | << AL << AANT_ArgumentIdentifier; |
7345 | return; |
7346 | } |
7347 | |
7348 | IdentifierLoc *Loc = AL.getArgAsIdent(Arg: 0); |
7349 | StringRef Str = Loc->Ident->getName(); |
7350 | SourceLocation ArgLoc = Loc->Loc; |
7351 | |
7352 | SourceLocation SpaceArgLoc; |
7353 | if (AL.getNumArgs() == 2) { |
7354 | Slot = Str; |
7355 | if (!AL.isArgIdent(Arg: 1)) { |
7356 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
7357 | << AL << AANT_ArgumentIdentifier; |
7358 | return; |
7359 | } |
7360 | |
7361 | IdentifierLoc *Loc = AL.getArgAsIdent(Arg: 1); |
7362 | Space = Loc->Ident->getName(); |
7363 | SpaceArgLoc = Loc->Loc; |
7364 | } else { |
7365 | Slot = Str; |
7366 | } |
7367 | |
7368 | // Validate. |
7369 | if (!Slot.empty()) { |
7370 | switch (Slot[0]) { |
7371 | case 'u': |
7372 | case 'b': |
7373 | case 's': |
7374 | case 't': |
7375 | break; |
7376 | default: |
7377 | S.Diag(ArgLoc, diag::err_hlsl_unsupported_register_type) |
7378 | << Slot.substr(0, 1); |
7379 | return; |
7380 | } |
7381 | |
7382 | StringRef SlotNum = Slot.substr(Start: 1); |
7383 | unsigned Num = 0; |
7384 | if (SlotNum.getAsInteger(Radix: 10, Result&: Num)) { |
7385 | S.Diag(ArgLoc, diag::err_hlsl_unsupported_register_number); |
7386 | return; |
7387 | } |
7388 | } |
7389 | |
7390 | if (!Space.starts_with(Prefix: "space" )) { |
7391 | S.Diag(SpaceArgLoc, diag::err_hlsl_expected_space) << Space; |
7392 | return; |
7393 | } |
7394 | StringRef SpaceNum = Space.substr(Start: 5); |
7395 | unsigned Num = 0; |
7396 | if (SpaceNum.getAsInteger(Radix: 10, Result&: Num)) { |
7397 | S.Diag(SpaceArgLoc, diag::err_hlsl_expected_space) << Space; |
7398 | return; |
7399 | } |
7400 | |
7401 | // FIXME: check reg type match decl. Issue |
7402 | // https://github.com/llvm/llvm-project/issues/57886. |
7403 | HLSLResourceBindingAttr *NewAttr = |
7404 | HLSLResourceBindingAttr::Create(S.getASTContext(), Slot, Space, AL); |
7405 | if (NewAttr) |
7406 | D->addAttr(A: NewAttr); |
7407 | } |
7408 | |
7409 | static void handleHLSLParamModifierAttr(Sema &S, Decl *D, |
7410 | const ParsedAttr &AL) { |
7411 | HLSLParamModifierAttr *NewAttr = S.HLSL().mergeParamModifierAttr( |
7412 | D, AL, |
7413 | static_cast<HLSLParamModifierAttr::Spelling>(AL.getSemanticSpelling())); |
7414 | if (NewAttr) |
7415 | D->addAttr(A: NewAttr); |
7416 | } |
7417 | |
7418 | static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7419 | if (!S.LangOpts.CPlusPlus) { |
7420 | S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) |
7421 | << AL << AttributeLangSupport::C; |
7422 | return; |
7423 | } |
7424 | MSInheritanceAttr *IA = S.mergeMSInheritanceAttr( |
7425 | D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling()); |
7426 | if (IA) { |
7427 | D->addAttr(A: IA); |
7428 | S.Consumer.AssignInheritanceModel(RD: cast<CXXRecordDecl>(Val: D)); |
7429 | } |
7430 | } |
7431 | |
7432 | static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7433 | const auto *VD = cast<VarDecl>(Val: D); |
7434 | if (!S.Context.getTargetInfo().isTLSSupported()) { |
7435 | S.Diag(AL.getLoc(), diag::err_thread_unsupported); |
7436 | return; |
7437 | } |
7438 | if (VD->getTSCSpec() != TSCS_unspecified) { |
7439 | S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable); |
7440 | return; |
7441 | } |
7442 | if (VD->hasLocalStorage()) { |
7443 | S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)" ; |
7444 | return; |
7445 | } |
7446 | D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL)); |
7447 | } |
7448 | |
7449 | static void handleMSConstexprAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7450 | if (!S.getLangOpts().isCompatibleWithMSVC(MajorVersion: LangOptions::MSVC2022_3)) { |
7451 | S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) |
7452 | << AL << AL.getRange(); |
7453 | return; |
7454 | } |
7455 | auto *FD = cast<FunctionDecl>(Val: D); |
7456 | if (FD->isConstexprSpecified() || FD->isConsteval()) { |
7457 | S.Diag(AL.getLoc(), diag::err_ms_constexpr_cannot_be_applied) |
7458 | << FD->isConsteval() << FD; |
7459 | return; |
7460 | } |
7461 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
7462 | if (!S.getLangOpts().CPlusPlus20 && MD->isVirtual()) { |
7463 | S.Diag(AL.getLoc(), diag::err_ms_constexpr_cannot_be_applied) |
7464 | << /*virtual*/ 2 << MD; |
7465 | return; |
7466 | } |
7467 | } |
7468 | D->addAttr(::new (S.Context) MSConstexprAttr(S.Context, AL)); |
7469 | } |
7470 | |
7471 | static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7472 | SmallVector<StringRef, 4> Tags; |
7473 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
7474 | StringRef Tag; |
7475 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: Tag)) |
7476 | return; |
7477 | Tags.push_back(Elt: Tag); |
7478 | } |
7479 | |
7480 | if (const auto *NS = dyn_cast<NamespaceDecl>(Val: D)) { |
7481 | if (!NS->isInline()) { |
7482 | S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0; |
7483 | return; |
7484 | } |
7485 | if (NS->isAnonymousNamespace()) { |
7486 | S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1; |
7487 | return; |
7488 | } |
7489 | if (AL.getNumArgs() == 0) |
7490 | Tags.push_back(Elt: NS->getName()); |
7491 | } else if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
7492 | return; |
7493 | |
7494 | // Store tags sorted and without duplicates. |
7495 | llvm::sort(C&: Tags); |
7496 | Tags.erase(CS: std::unique(first: Tags.begin(), last: Tags.end()), CE: Tags.end()); |
7497 | |
7498 | D->addAttr(::new (S.Context) |
7499 | AbiTagAttr(S.Context, AL, Tags.data(), Tags.size())); |
7500 | } |
7501 | |
7502 | static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7503 | // Check the attribute arguments. |
7504 | if (AL.getNumArgs() > 1) { |
7505 | S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; |
7506 | return; |
7507 | } |
7508 | |
7509 | StringRef Str; |
7510 | SourceLocation ArgLoc; |
7511 | |
7512 | if (AL.getNumArgs() == 0) |
7513 | Str = "" ; |
7514 | else if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &ArgLoc)) |
7515 | return; |
7516 | |
7517 | ARMInterruptAttr::InterruptType Kind; |
7518 | if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { |
7519 | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str |
7520 | << ArgLoc; |
7521 | return; |
7522 | } |
7523 | |
7524 | D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind)); |
7525 | } |
7526 | |
7527 | static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7528 | // MSP430 'interrupt' attribute is applied to |
7529 | // a function with no parameters and void return type. |
7530 | if (!isFunctionOrMethod(D)) { |
7531 | S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) |
7532 | << AL << AL.isRegularKeywordAttribute() << ExpectedFunctionOrMethod; |
7533 | return; |
7534 | } |
7535 | |
7536 | if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { |
7537 | S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) |
7538 | << /*MSP430*/ 1 << 0; |
7539 | return; |
7540 | } |
7541 | |
7542 | if (!getFunctionOrMethodResultType(D)->isVoidType()) { |
7543 | S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) |
7544 | << /*MSP430*/ 1 << 1; |
7545 | return; |
7546 | } |
7547 | |
7548 | // The attribute takes one integer argument. |
7549 | if (!AL.checkExactlyNumArgs(S, Num: 1)) |
7550 | return; |
7551 | |
7552 | if (!AL.isArgExpr(Arg: 0)) { |
7553 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
7554 | << AL << AANT_ArgumentIntegerConstant; |
7555 | return; |
7556 | } |
7557 | |
7558 | Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(Arg: 0)); |
7559 | std::optional<llvm::APSInt> NumParams = llvm::APSInt(32); |
7560 | if (!(NumParams = NumParamsExpr->getIntegerConstantExpr(Ctx: S.Context))) { |
7561 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
7562 | << AL << AANT_ArgumentIntegerConstant |
7563 | << NumParamsExpr->getSourceRange(); |
7564 | return; |
7565 | } |
7566 | // The argument should be in range 0..63. |
7567 | unsigned Num = NumParams->getLimitedValue(Limit: 255); |
7568 | if (Num > 63) { |
7569 | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
7570 | << AL << (int)NumParams->getSExtValue() |
7571 | << NumParamsExpr->getSourceRange(); |
7572 | return; |
7573 | } |
7574 | |
7575 | D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num)); |
7576 | D->addAttr(UsedAttr::CreateImplicit(S.Context)); |
7577 | } |
7578 | |
7579 | static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7580 | // Only one optional argument permitted. |
7581 | if (AL.getNumArgs() > 1) { |
7582 | S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; |
7583 | return; |
7584 | } |
7585 | |
7586 | StringRef Str; |
7587 | SourceLocation ArgLoc; |
7588 | |
7589 | if (AL.getNumArgs() == 0) |
7590 | Str = "" ; |
7591 | else if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &ArgLoc)) |
7592 | return; |
7593 | |
7594 | // Semantic checks for a function with the 'interrupt' attribute for MIPS: |
7595 | // a) Must be a function. |
7596 | // b) Must have no parameters. |
7597 | // c) Must have the 'void' return type. |
7598 | // d) Cannot have the 'mips16' attribute, as that instruction set |
7599 | // lacks the 'eret' instruction. |
7600 | // e) The attribute itself must either have no argument or one of the |
7601 | // valid interrupt types, see [MipsInterruptDocs]. |
7602 | |
7603 | if (!isFunctionOrMethod(D)) { |
7604 | S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) |
7605 | << AL << AL.isRegularKeywordAttribute() << ExpectedFunctionOrMethod; |
7606 | return; |
7607 | } |
7608 | |
7609 | if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { |
7610 | S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) |
7611 | << /*MIPS*/ 0 << 0; |
7612 | return; |
7613 | } |
7614 | |
7615 | if (!getFunctionOrMethodResultType(D)->isVoidType()) { |
7616 | S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) |
7617 | << /*MIPS*/ 0 << 1; |
7618 | return; |
7619 | } |
7620 | |
7621 | // We still have to do this manually because the Interrupt attributes are |
7622 | // a bit special due to sharing their spellings across targets. |
7623 | if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL)) |
7624 | return; |
7625 | |
7626 | MipsInterruptAttr::InterruptType Kind; |
7627 | if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { |
7628 | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) |
7629 | << AL << "'" + std::string(Str) + "'" ; |
7630 | return; |
7631 | } |
7632 | |
7633 | D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind)); |
7634 | } |
7635 | |
7636 | static void handleM68kInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7637 | if (!AL.checkExactlyNumArgs(S, Num: 1)) |
7638 | return; |
7639 | |
7640 | if (!AL.isArgExpr(Arg: 0)) { |
7641 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
7642 | << AL << AANT_ArgumentIntegerConstant; |
7643 | return; |
7644 | } |
7645 | |
7646 | // FIXME: Check for decl - it should be void ()(void). |
7647 | |
7648 | Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(Arg: 0)); |
7649 | auto MaybeNumParams = NumParamsExpr->getIntegerConstantExpr(Ctx: S.Context); |
7650 | if (!MaybeNumParams) { |
7651 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
7652 | << AL << AANT_ArgumentIntegerConstant |
7653 | << NumParamsExpr->getSourceRange(); |
7654 | return; |
7655 | } |
7656 | |
7657 | unsigned Num = MaybeNumParams->getLimitedValue(Limit: 255); |
7658 | if ((Num & 1) || Num > 30) { |
7659 | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
7660 | << AL << (int)MaybeNumParams->getSExtValue() |
7661 | << NumParamsExpr->getSourceRange(); |
7662 | return; |
7663 | } |
7664 | |
7665 | D->addAttr(::new (S.Context) M68kInterruptAttr(S.Context, AL, Num)); |
7666 | D->addAttr(UsedAttr::CreateImplicit(S.Context)); |
7667 | } |
7668 | |
7669 | static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7670 | // Semantic checks for a function with the 'interrupt' attribute. |
7671 | // a) Must be a function. |
7672 | // b) Must have the 'void' return type. |
7673 | // c) Must take 1 or 2 arguments. |
7674 | // d) The 1st argument must be a pointer. |
7675 | // e) The 2nd argument (if any) must be an unsigned integer. |
7676 | if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) || |
7677 | CXXMethodDecl::isStaticOverloadedOperator( |
7678 | OOK: cast<NamedDecl>(Val: D)->getDeclName().getCXXOverloadedOperator())) { |
7679 | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
7680 | << AL << AL.isRegularKeywordAttribute() |
7681 | << ExpectedFunctionWithProtoType; |
7682 | return; |
7683 | } |
7684 | // Interrupt handler must have void return type. |
7685 | if (!getFunctionOrMethodResultType(D)->isVoidType()) { |
7686 | S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(), |
7687 | diag::err_anyx86_interrupt_attribute) |
7688 | << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 |
7689 | ? 0 |
7690 | : 1) |
7691 | << 0; |
7692 | return; |
7693 | } |
7694 | // Interrupt handler must have 1 or 2 parameters. |
7695 | unsigned NumParams = getFunctionOrMethodNumParams(D); |
7696 | if (NumParams < 1 || NumParams > 2) { |
7697 | S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute) |
7698 | << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 |
7699 | ? 0 |
7700 | : 1) |
7701 | << 1; |
7702 | return; |
7703 | } |
7704 | // The first argument must be a pointer. |
7705 | if (!getFunctionOrMethodParamType(D, Idx: 0)->isPointerType()) { |
7706 | S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(), |
7707 | diag::err_anyx86_interrupt_attribute) |
7708 | << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 |
7709 | ? 0 |
7710 | : 1) |
7711 | << 2; |
7712 | return; |
7713 | } |
7714 | // The second argument, if present, must be an unsigned integer. |
7715 | unsigned TypeSize = |
7716 | S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64 |
7717 | ? 64 |
7718 | : 32; |
7719 | if (NumParams == 2 && |
7720 | (!getFunctionOrMethodParamType(D, Idx: 1)->isUnsignedIntegerType() || |
7721 | S.Context.getTypeSize(T: getFunctionOrMethodParamType(D, Idx: 1)) != TypeSize)) { |
7722 | S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(), |
7723 | diag::err_anyx86_interrupt_attribute) |
7724 | << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 |
7725 | ? 0 |
7726 | : 1) |
7727 | << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false); |
7728 | return; |
7729 | } |
7730 | D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL)); |
7731 | D->addAttr(UsedAttr::CreateImplicit(S.Context)); |
7732 | } |
7733 | |
7734 | static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7735 | if (!isFunctionOrMethod(D)) { |
7736 | S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) |
7737 | << AL << AL.isRegularKeywordAttribute() << ExpectedFunction; |
7738 | return; |
7739 | } |
7740 | |
7741 | if (!AL.checkExactlyNumArgs(S, Num: 0)) |
7742 | return; |
7743 | |
7744 | handleSimpleAttribute<AVRInterruptAttr>(S, D, AL); |
7745 | } |
7746 | |
7747 | static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7748 | if (!isFunctionOrMethod(D)) { |
7749 | S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) |
7750 | << AL << AL.isRegularKeywordAttribute() << ExpectedFunction; |
7751 | return; |
7752 | } |
7753 | |
7754 | if (!AL.checkExactlyNumArgs(S, Num: 0)) |
7755 | return; |
7756 | |
7757 | handleSimpleAttribute<AVRSignalAttr>(S, D, AL); |
7758 | } |
7759 | |
7760 | static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) { |
7761 | // Add preserve_access_index attribute to all fields and inner records. |
7762 | for (auto *D : RD->decls()) { |
7763 | if (D->hasAttr<BPFPreserveAccessIndexAttr>()) |
7764 | continue; |
7765 | |
7766 | D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context)); |
7767 | if (auto *Rec = dyn_cast<RecordDecl>(D)) |
7768 | handleBPFPreserveAIRecord(S, Rec); |
7769 | } |
7770 | } |
7771 | |
7772 | static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D, |
7773 | const ParsedAttr &AL) { |
7774 | auto *Rec = cast<RecordDecl>(Val: D); |
7775 | handleBPFPreserveAIRecord(S, RD: Rec); |
7776 | Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL)); |
7777 | } |
7778 | |
7779 | static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) { |
7780 | for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) { |
7781 | if (I->getBTFDeclTag() == Tag) |
7782 | return true; |
7783 | } |
7784 | return false; |
7785 | } |
7786 | |
7787 | static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7788 | StringRef Str; |
7789 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
7790 | return; |
7791 | if (hasBTFDeclTagAttr(D, Tag: Str)) |
7792 | return; |
7793 | |
7794 | D->addAttr(::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str)); |
7795 | } |
7796 | |
7797 | BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) { |
7798 | if (hasBTFDeclTagAttr(D, AL.getBTFDeclTag())) |
7799 | return nullptr; |
7800 | return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag()); |
7801 | } |
7802 | |
7803 | static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, |
7804 | const ParsedAttr &AL) { |
7805 | if (!isFunctionOrMethod(D)) { |
7806 | S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) |
7807 | << AL << AL.isRegularKeywordAttribute() << ExpectedFunction; |
7808 | return; |
7809 | } |
7810 | |
7811 | auto *FD = cast<FunctionDecl>(Val: D); |
7812 | if (FD->isThisDeclarationADefinition()) { |
7813 | S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0; |
7814 | return; |
7815 | } |
7816 | |
7817 | StringRef Str; |
7818 | SourceLocation ArgLoc; |
7819 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &ArgLoc)) |
7820 | return; |
7821 | |
7822 | D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str)); |
7823 | D->addAttr(UsedAttr::CreateImplicit(S.Context)); |
7824 | } |
7825 | |
7826 | WebAssemblyImportModuleAttr * |
7827 | Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) { |
7828 | auto *FD = cast<FunctionDecl>(Val: D); |
7829 | |
7830 | if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportModuleAttr>()) { |
7831 | if (ExistingAttr->getImportModule() == AL.getImportModule()) |
7832 | return nullptr; |
7833 | Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0 |
7834 | << ExistingAttr->getImportModule() << AL.getImportModule(); |
7835 | Diag(AL.getLoc(), diag::note_previous_attribute); |
7836 | return nullptr; |
7837 | } |
7838 | if (FD->hasBody()) { |
7839 | Diag(AL.getLoc(), diag::warn_import_on_definition) << 0; |
7840 | return nullptr; |
7841 | } |
7842 | return ::new (Context) WebAssemblyImportModuleAttr(Context, AL, |
7843 | AL.getImportModule()); |
7844 | } |
7845 | |
7846 | WebAssemblyImportNameAttr * |
7847 | Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) { |
7848 | auto *FD = cast<FunctionDecl>(Val: D); |
7849 | |
7850 | if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportNameAttr>()) { |
7851 | if (ExistingAttr->getImportName() == AL.getImportName()) |
7852 | return nullptr; |
7853 | Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1 |
7854 | << ExistingAttr->getImportName() << AL.getImportName(); |
7855 | Diag(AL.getLoc(), diag::note_previous_attribute); |
7856 | return nullptr; |
7857 | } |
7858 | if (FD->hasBody()) { |
7859 | Diag(AL.getLoc(), diag::warn_import_on_definition) << 1; |
7860 | return nullptr; |
7861 | } |
7862 | return ::new (Context) WebAssemblyImportNameAttr(Context, AL, |
7863 | AL.getImportName()); |
7864 | } |
7865 | |
7866 | static void |
7867 | handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7868 | auto *FD = cast<FunctionDecl>(Val: D); |
7869 | |
7870 | StringRef Str; |
7871 | SourceLocation ArgLoc; |
7872 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &ArgLoc)) |
7873 | return; |
7874 | if (FD->hasBody()) { |
7875 | S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0; |
7876 | return; |
7877 | } |
7878 | |
7879 | FD->addAttr(::new (S.Context) |
7880 | WebAssemblyImportModuleAttr(S.Context, AL, Str)); |
7881 | } |
7882 | |
7883 | static void |
7884 | handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7885 | auto *FD = cast<FunctionDecl>(Val: D); |
7886 | |
7887 | StringRef Str; |
7888 | SourceLocation ArgLoc; |
7889 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &ArgLoc)) |
7890 | return; |
7891 | if (FD->hasBody()) { |
7892 | S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1; |
7893 | return; |
7894 | } |
7895 | |
7896 | FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str)); |
7897 | } |
7898 | |
7899 | static void handleRISCVInterruptAttr(Sema &S, Decl *D, |
7900 | const ParsedAttr &AL) { |
7901 | // Warn about repeated attributes. |
7902 | if (const auto *A = D->getAttr<RISCVInterruptAttr>()) { |
7903 | S.Diag(AL.getRange().getBegin(), |
7904 | diag::warn_riscv_repeated_interrupt_attribute); |
7905 | S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute); |
7906 | return; |
7907 | } |
7908 | |
7909 | // Check the attribute argument. Argument is optional. |
7910 | if (!AL.checkAtMostNumArgs(S, Num: 1)) |
7911 | return; |
7912 | |
7913 | StringRef Str; |
7914 | SourceLocation ArgLoc; |
7915 | |
7916 | // 'machine'is the default interrupt mode. |
7917 | if (AL.getNumArgs() == 0) |
7918 | Str = "machine" ; |
7919 | else if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &ArgLoc)) |
7920 | return; |
7921 | |
7922 | // Semantic checks for a function with the 'interrupt' attribute: |
7923 | // - Must be a function. |
7924 | // - Must have no parameters. |
7925 | // - Must have the 'void' return type. |
7926 | // - The attribute itself must either have no argument or one of the |
7927 | // valid interrupt types, see [RISCVInterruptDocs]. |
7928 | |
7929 | if (D->getFunctionType() == nullptr) { |
7930 | S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) |
7931 | << AL << AL.isRegularKeywordAttribute() << ExpectedFunction; |
7932 | return; |
7933 | } |
7934 | |
7935 | if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { |
7936 | S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) |
7937 | << /*RISC-V*/ 2 << 0; |
7938 | return; |
7939 | } |
7940 | |
7941 | if (!getFunctionOrMethodResultType(D)->isVoidType()) { |
7942 | S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) |
7943 | << /*RISC-V*/ 2 << 1; |
7944 | return; |
7945 | } |
7946 | |
7947 | RISCVInterruptAttr::InterruptType Kind; |
7948 | if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { |
7949 | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str |
7950 | << ArgLoc; |
7951 | return; |
7952 | } |
7953 | |
7954 | D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind)); |
7955 | } |
7956 | |
7957 | static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
7958 | // Dispatch the interrupt attribute based on the current target. |
7959 | switch (S.Context.getTargetInfo().getTriple().getArch()) { |
7960 | case llvm::Triple::msp430: |
7961 | handleMSP430InterruptAttr(S, D, AL); |
7962 | break; |
7963 | case llvm::Triple::mipsel: |
7964 | case llvm::Triple::mips: |
7965 | handleMipsInterruptAttr(S, D, AL); |
7966 | break; |
7967 | case llvm::Triple::m68k: |
7968 | handleM68kInterruptAttr(S, D, AL); |
7969 | break; |
7970 | case llvm::Triple::x86: |
7971 | case llvm::Triple::x86_64: |
7972 | handleAnyX86InterruptAttr(S, D, AL); |
7973 | break; |
7974 | case llvm::Triple::avr: |
7975 | handleAVRInterruptAttr(S, D, AL); |
7976 | break; |
7977 | case llvm::Triple::riscv32: |
7978 | case llvm::Triple::riscv64: |
7979 | handleRISCVInterruptAttr(S, D, AL); |
7980 | break; |
7981 | default: |
7982 | handleARMInterruptAttr(S, D, AL); |
7983 | break; |
7984 | } |
7985 | } |
7986 | |
7987 | static bool |
7988 | checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr, |
7989 | const AMDGPUFlatWorkGroupSizeAttr &Attr) { |
7990 | // Accept template arguments for now as they depend on something else. |
7991 | // We'll get to check them when they eventually get instantiated. |
7992 | if (MinExpr->isValueDependent() || MaxExpr->isValueDependent()) |
7993 | return false; |
7994 | |
7995 | uint32_t Min = 0; |
7996 | if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0)) |
7997 | return true; |
7998 | |
7999 | uint32_t Max = 0; |
8000 | if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1)) |
8001 | return true; |
8002 | |
8003 | if (Min == 0 && Max != 0) { |
8004 | S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) |
8005 | << &Attr << 0; |
8006 | return true; |
8007 | } |
8008 | if (Min > Max) { |
8009 | S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) |
8010 | << &Attr << 1; |
8011 | return true; |
8012 | } |
8013 | |
8014 | return false; |
8015 | } |
8016 | |
8017 | AMDGPUFlatWorkGroupSizeAttr * |
8018 | Sema::CreateAMDGPUFlatWorkGroupSizeAttr(const AttributeCommonInfo &CI, |
8019 | Expr *MinExpr, Expr *MaxExpr) { |
8020 | AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr); |
8021 | |
8022 | if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr)) |
8023 | return nullptr; |
8024 | return ::new (Context) |
8025 | AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr); |
8026 | } |
8027 | |
8028 | void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D, |
8029 | const AttributeCommonInfo &CI, |
8030 | Expr *MinExpr, Expr *MaxExpr) { |
8031 | if (auto *Attr = CreateAMDGPUFlatWorkGroupSizeAttr(CI, MinExpr, MaxExpr)) |
8032 | D->addAttr(A: Attr); |
8033 | } |
8034 | |
8035 | static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D, |
8036 | const ParsedAttr &AL) { |
8037 | Expr *MinExpr = AL.getArgAsExpr(Arg: 0); |
8038 | Expr *MaxExpr = AL.getArgAsExpr(Arg: 1); |
8039 | |
8040 | S.addAMDGPUFlatWorkGroupSizeAttr(D, CI: AL, MinExpr, MaxExpr); |
8041 | } |
8042 | |
8043 | static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr, |
8044 | Expr *MaxExpr, |
8045 | const AMDGPUWavesPerEUAttr &Attr) { |
8046 | if (S.DiagnoseUnexpandedParameterPack(E: MinExpr) || |
8047 | (MaxExpr && S.DiagnoseUnexpandedParameterPack(E: MaxExpr))) |
8048 | return true; |
8049 | |
8050 | // Accept template arguments for now as they depend on something else. |
8051 | // We'll get to check them when they eventually get instantiated. |
8052 | if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent())) |
8053 | return false; |
8054 | |
8055 | uint32_t Min = 0; |
8056 | if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0)) |
8057 | return true; |
8058 | |
8059 | uint32_t Max = 0; |
8060 | if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1)) |
8061 | return true; |
8062 | |
8063 | if (Min == 0 && Max != 0) { |
8064 | S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) |
8065 | << &Attr << 0; |
8066 | return true; |
8067 | } |
8068 | if (Max != 0 && Min > Max) { |
8069 | S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) |
8070 | << &Attr << 1; |
8071 | return true; |
8072 | } |
8073 | |
8074 | return false; |
8075 | } |
8076 | |
8077 | AMDGPUWavesPerEUAttr * |
8078 | Sema::CreateAMDGPUWavesPerEUAttr(const AttributeCommonInfo &CI, Expr *MinExpr, |
8079 | Expr *MaxExpr) { |
8080 | AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr); |
8081 | |
8082 | if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr)) |
8083 | return nullptr; |
8084 | |
8085 | return ::new (Context) AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr); |
8086 | } |
8087 | |
8088 | void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI, |
8089 | Expr *MinExpr, Expr *MaxExpr) { |
8090 | if (auto *Attr = CreateAMDGPUWavesPerEUAttr(CI, MinExpr, MaxExpr)) |
8091 | D->addAttr(A: Attr); |
8092 | } |
8093 | |
8094 | static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8095 | if (!AL.checkAtLeastNumArgs(S, Num: 1) || !AL.checkAtMostNumArgs(S, Num: 2)) |
8096 | return; |
8097 | |
8098 | Expr *MinExpr = AL.getArgAsExpr(Arg: 0); |
8099 | Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(Arg: 1) : nullptr; |
8100 | |
8101 | S.addAMDGPUWavesPerEUAttr(D, CI: AL, MinExpr, MaxExpr); |
8102 | } |
8103 | |
8104 | static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8105 | uint32_t NumSGPR = 0; |
8106 | Expr *NumSGPRExpr = AL.getArgAsExpr(Arg: 0); |
8107 | if (!checkUInt32Argument(S, AI: AL, Expr: NumSGPRExpr, Val&: NumSGPR)) |
8108 | return; |
8109 | |
8110 | D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR)); |
8111 | } |
8112 | |
8113 | static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8114 | uint32_t NumVGPR = 0; |
8115 | Expr *NumVGPRExpr = AL.getArgAsExpr(Arg: 0); |
8116 | if (!checkUInt32Argument(S, AI: AL, Expr: NumVGPRExpr, Val&: NumVGPR)) |
8117 | return; |
8118 | |
8119 | D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR)); |
8120 | } |
8121 | |
8122 | static bool |
8123 | checkAMDGPUMaxNumWorkGroupsArguments(Sema &S, Expr *XExpr, Expr *YExpr, |
8124 | Expr *ZExpr, |
8125 | const AMDGPUMaxNumWorkGroupsAttr &Attr) { |
8126 | if (S.DiagnoseUnexpandedParameterPack(E: XExpr) || |
8127 | (YExpr && S.DiagnoseUnexpandedParameterPack(E: YExpr)) || |
8128 | (ZExpr && S.DiagnoseUnexpandedParameterPack(E: ZExpr))) |
8129 | return true; |
8130 | |
8131 | // Accept template arguments for now as they depend on something else. |
8132 | // We'll get to check them when they eventually get instantiated. |
8133 | if (XExpr->isValueDependent() || (YExpr && YExpr->isValueDependent()) || |
8134 | (ZExpr && ZExpr->isValueDependent())) |
8135 | return false; |
8136 | |
8137 | uint32_t NumWG = 0; |
8138 | Expr *Exprs[3] = {XExpr, YExpr, ZExpr}; |
8139 | for (int i = 0; i < 3; i++) { |
8140 | if (Exprs[i]) { |
8141 | if (!checkUInt32Argument(S, Attr, Exprs[i], NumWG, i, |
8142 | /*StrictlyUnsigned=*/true)) |
8143 | return true; |
8144 | if (NumWG == 0) { |
8145 | S.Diag(Attr.getLoc(), diag::err_attribute_argument_is_zero) |
8146 | << &Attr << Exprs[i]->getSourceRange(); |
8147 | return true; |
8148 | } |
8149 | } |
8150 | } |
8151 | |
8152 | return false; |
8153 | } |
8154 | |
8155 | AMDGPUMaxNumWorkGroupsAttr * |
8156 | Sema::CreateAMDGPUMaxNumWorkGroupsAttr(const AttributeCommonInfo &CI, |
8157 | Expr *XExpr, Expr *YExpr, Expr *ZExpr) { |
8158 | AMDGPUMaxNumWorkGroupsAttr TmpAttr(Context, CI, XExpr, YExpr, ZExpr); |
8159 | |
8160 | if (checkAMDGPUMaxNumWorkGroupsArguments(*this, XExpr, YExpr, ZExpr, TmpAttr)) |
8161 | return nullptr; |
8162 | |
8163 | return ::new (Context) |
8164 | AMDGPUMaxNumWorkGroupsAttr(Context, CI, XExpr, YExpr, ZExpr); |
8165 | } |
8166 | |
8167 | void Sema::addAMDGPUMaxNumWorkGroupsAttr(Decl *D, const AttributeCommonInfo &CI, |
8168 | Expr *XExpr, Expr *YExpr, |
8169 | Expr *ZExpr) { |
8170 | if (auto *Attr = CreateAMDGPUMaxNumWorkGroupsAttr(CI, XExpr, YExpr, ZExpr)) |
8171 | D->addAttr(A: Attr); |
8172 | } |
8173 | |
8174 | static void handleAMDGPUMaxNumWorkGroupsAttr(Sema &S, Decl *D, |
8175 | const ParsedAttr &AL) { |
8176 | Expr *YExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(Arg: 1) : nullptr; |
8177 | Expr *ZExpr = (AL.getNumArgs() > 2) ? AL.getArgAsExpr(Arg: 2) : nullptr; |
8178 | S.addAMDGPUMaxNumWorkGroupsAttr(D, CI: AL, XExpr: AL.getArgAsExpr(Arg: 0), YExpr, ZExpr); |
8179 | } |
8180 | |
8181 | static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D, |
8182 | const ParsedAttr &AL) { |
8183 | // If we try to apply it to a function pointer, don't warn, but don't |
8184 | // do anything, either. It doesn't matter anyway, because there's nothing |
8185 | // special about calling a force_align_arg_pointer function. |
8186 | const auto *VD = dyn_cast<ValueDecl>(Val: D); |
8187 | if (VD && VD->getType()->isFunctionPointerType()) |
8188 | return; |
8189 | // Also don't warn on function pointer typedefs. |
8190 | const auto *TD = dyn_cast<TypedefNameDecl>(Val: D); |
8191 | if (TD && (TD->getUnderlyingType()->isFunctionPointerType() || |
8192 | TD->getUnderlyingType()->isFunctionType())) |
8193 | return; |
8194 | // Attribute can only be applied to function types. |
8195 | if (!isa<FunctionDecl>(Val: D)) { |
8196 | S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
8197 | << AL << AL.isRegularKeywordAttribute() << ExpectedFunction; |
8198 | return; |
8199 | } |
8200 | |
8201 | D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL)); |
8202 | } |
8203 | |
8204 | static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) { |
8205 | uint32_t Version; |
8206 | Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(Arg: 0)); |
8207 | if (!checkUInt32Argument(S, AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: Version)) |
8208 | return; |
8209 | |
8210 | // TODO: Investigate what happens with the next major version of MSVC. |
8211 | if (Version != LangOptions::MSVC2015 / 100) { |
8212 | S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
8213 | << AL << Version << VersionExpr->getSourceRange(); |
8214 | return; |
8215 | } |
8216 | |
8217 | // The attribute expects a "major" version number like 19, but new versions of |
8218 | // MSVC have moved to updating the "minor", or less significant numbers, so we |
8219 | // have to multiply by 100 now. |
8220 | Version *= 100; |
8221 | |
8222 | D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version)); |
8223 | } |
8224 | |
8225 | DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, |
8226 | const AttributeCommonInfo &CI) { |
8227 | if (D->hasAttr<DLLExportAttr>()) { |
8228 | Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'" ; |
8229 | return nullptr; |
8230 | } |
8231 | |
8232 | if (D->hasAttr<DLLImportAttr>()) |
8233 | return nullptr; |
8234 | |
8235 | return ::new (Context) DLLImportAttr(Context, CI); |
8236 | } |
8237 | |
8238 | DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, |
8239 | const AttributeCommonInfo &CI) { |
8240 | if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) { |
8241 | Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import; |
8242 | D->dropAttr<DLLImportAttr>(); |
8243 | } |
8244 | |
8245 | if (D->hasAttr<DLLExportAttr>()) |
8246 | return nullptr; |
8247 | |
8248 | return ::new (Context) DLLExportAttr(Context, CI); |
8249 | } |
8250 | |
8251 | static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
8252 | if (isa<ClassTemplatePartialSpecializationDecl>(Val: D) && |
8253 | (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { |
8254 | S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A; |
8255 | return; |
8256 | } |
8257 | |
8258 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
8259 | if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport && |
8260 | !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { |
8261 | // MinGW doesn't allow dllimport on inline functions. |
8262 | S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline) |
8263 | << A; |
8264 | return; |
8265 | } |
8266 | } |
8267 | |
8268 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) { |
8269 | if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) && |
8270 | MD->getParent()->isLambda()) { |
8271 | S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A; |
8272 | return; |
8273 | } |
8274 | } |
8275 | |
8276 | Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport |
8277 | ? (Attr *)S.mergeDLLExportAttr(D, A) |
8278 | : (Attr *)S.mergeDLLImportAttr(D, A); |
8279 | if (NewAttr) |
8280 | D->addAttr(A: NewAttr); |
8281 | } |
8282 | |
8283 | MSInheritanceAttr * |
8284 | Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, |
8285 | bool BestCase, |
8286 | MSInheritanceModel Model) { |
8287 | if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) { |
8288 | if (IA->getInheritanceModel() == Model) |
8289 | return nullptr; |
8290 | Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance) |
8291 | << 1 /*previous declaration*/; |
8292 | Diag(CI.getLoc(), diag::note_previous_ms_inheritance); |
8293 | D->dropAttr<MSInheritanceAttr>(); |
8294 | } |
8295 | |
8296 | auto *RD = cast<CXXRecordDecl>(Val: D); |
8297 | if (RD->hasDefinition()) { |
8298 | if (checkMSInheritanceAttrOnDefinition(RD, Range: CI.getRange(), BestCase, |
8299 | ExplicitModel: Model)) { |
8300 | return nullptr; |
8301 | } |
8302 | } else { |
8303 | if (isa<ClassTemplatePartialSpecializationDecl>(Val: RD)) { |
8304 | Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) |
8305 | << 1 /*partial specialization*/; |
8306 | return nullptr; |
8307 | } |
8308 | if (RD->getDescribedClassTemplate()) { |
8309 | Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) |
8310 | << 0 /*primary template*/; |
8311 | return nullptr; |
8312 | } |
8313 | } |
8314 | |
8315 | return ::new (Context) MSInheritanceAttr(Context, CI, BestCase); |
8316 | } |
8317 | |
8318 | static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8319 | // The capability attributes take a single string parameter for the name of |
8320 | // the capability they represent. The lockable attribute does not take any |
8321 | // parameters. However, semantically, both attributes represent the same |
8322 | // concept, and so they use the same semantic attribute. Eventually, the |
8323 | // lockable attribute will be removed. |
8324 | // |
8325 | // For backward compatibility, any capability which has no specified string |
8326 | // literal will be considered a "mutex." |
8327 | StringRef N("mutex" ); |
8328 | SourceLocation LiteralLoc; |
8329 | if (AL.getKind() == ParsedAttr::AT_Capability && |
8330 | !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc)) |
8331 | return; |
8332 | |
8333 | D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N)); |
8334 | } |
8335 | |
8336 | static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8337 | SmallVector<Expr*, 1> Args; |
8338 | if (!checkLockFunAttrCommon(S, D, AL, Args)) |
8339 | return; |
8340 | |
8341 | D->addAttr(::new (S.Context) |
8342 | AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size())); |
8343 | } |
8344 | |
8345 | static void handleAcquireCapabilityAttr(Sema &S, Decl *D, |
8346 | const ParsedAttr &AL) { |
8347 | SmallVector<Expr*, 1> Args; |
8348 | if (!checkLockFunAttrCommon(S, D, AL, Args)) |
8349 | return; |
8350 | |
8351 | D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(), |
8352 | Args.size())); |
8353 | } |
8354 | |
8355 | static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, |
8356 | const ParsedAttr &AL) { |
8357 | SmallVector<Expr*, 2> Args; |
8358 | if (!checkTryLockFunAttrCommon(S, D, AL, Args)) |
8359 | return; |
8360 | |
8361 | D->addAttr(::new (S.Context) TryAcquireCapabilityAttr( |
8362 | S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); |
8363 | } |
8364 | |
8365 | static void handleReleaseCapabilityAttr(Sema &S, Decl *D, |
8366 | const ParsedAttr &AL) { |
8367 | // Check that all arguments are lockable objects. |
8368 | SmallVector<Expr *, 1> Args; |
8369 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args, Sidx: 0, ParamIdxOk: true); |
8370 | |
8371 | D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(), |
8372 | Args.size())); |
8373 | } |
8374 | |
8375 | static void handleRequiresCapabilityAttr(Sema &S, Decl *D, |
8376 | const ParsedAttr &AL) { |
8377 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
8378 | return; |
8379 | |
8380 | // check that all arguments are lockable objects |
8381 | SmallVector<Expr*, 1> Args; |
8382 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
8383 | if (Args.empty()) |
8384 | return; |
8385 | |
8386 | RequiresCapabilityAttr *RCA = ::new (S.Context) |
8387 | RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size()); |
8388 | |
8389 | D->addAttr(A: RCA); |
8390 | } |
8391 | |
8392 | static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8393 | if (const auto *NSD = dyn_cast<NamespaceDecl>(Val: D)) { |
8394 | if (NSD->isAnonymousNamespace()) { |
8395 | S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace); |
8396 | // Do not want to attach the attribute to the namespace because that will |
8397 | // cause confusing diagnostic reports for uses of declarations within the |
8398 | // namespace. |
8399 | return; |
8400 | } |
8401 | } else if (isa<UsingDecl, UnresolvedUsingTypenameDecl, |
8402 | UnresolvedUsingValueDecl>(Val: D)) { |
8403 | S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using) |
8404 | << AL; |
8405 | return; |
8406 | } |
8407 | |
8408 | // Handle the cases where the attribute has a text message. |
8409 | StringRef Str, Replacement; |
8410 | if (AL.isArgExpr(Arg: 0) && AL.getArgAsExpr(Arg: 0) && |
8411 | !S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
8412 | return; |
8413 | |
8414 | // Support a single optional message only for Declspec and [[]] spellings. |
8415 | if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax()) |
8416 | AL.checkAtMostNumArgs(S, Num: 1); |
8417 | else if (AL.isArgExpr(Arg: 1) && AL.getArgAsExpr(Arg: 1) && |
8418 | !S.checkStringLiteralArgumentAttr(AL, ArgNum: 1, Str&: Replacement)) |
8419 | return; |
8420 | |
8421 | if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope()) |
8422 | S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL; |
8423 | |
8424 | D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement)); |
8425 | } |
8426 | |
8427 | static bool isGlobalVar(const Decl *D) { |
8428 | if (const auto *S = dyn_cast<VarDecl>(Val: D)) |
8429 | return S->hasGlobalStorage(); |
8430 | return false; |
8431 | } |
8432 | |
8433 | static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer) { |
8434 | return Sanitizer == "address" || Sanitizer == "hwaddress" || |
8435 | Sanitizer == "memtag" ; |
8436 | } |
8437 | |
8438 | static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8439 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
8440 | return; |
8441 | |
8442 | std::vector<StringRef> Sanitizers; |
8443 | |
8444 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
8445 | StringRef SanitizerName; |
8446 | SourceLocation LiteralLoc; |
8447 | |
8448 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: SanitizerName, ArgLocation: &LiteralLoc)) |
8449 | return; |
8450 | |
8451 | if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == |
8452 | SanitizerMask() && |
8453 | SanitizerName != "coverage" ) |
8454 | S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName; |
8455 | else if (isGlobalVar(D) && !isSanitizerAttributeAllowedOnGlobals(SanitizerName)) |
8456 | S.Diag(D->getLocation(), diag::warn_attribute_type_not_supported_global) |
8457 | << AL << SanitizerName; |
8458 | Sanitizers.push_back(x: SanitizerName); |
8459 | } |
8460 | |
8461 | D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(), |
8462 | Sanitizers.size())); |
8463 | } |
8464 | |
8465 | static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D, |
8466 | const ParsedAttr &AL) { |
8467 | StringRef AttrName = AL.getAttrName()->getName(); |
8468 | normalizeName(AttrName); |
8469 | StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName) |
8470 | .Case(S: "no_address_safety_analysis" , Value: "address" ) |
8471 | .Case(S: "no_sanitize_address" , Value: "address" ) |
8472 | .Case(S: "no_sanitize_thread" , Value: "thread" ) |
8473 | .Case(S: "no_sanitize_memory" , Value: "memory" ); |
8474 | if (isGlobalVar(D) && SanitizerName != "address" ) |
8475 | S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
8476 | << AL << AL.isRegularKeywordAttribute() << ExpectedFunction; |
8477 | |
8478 | // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a |
8479 | // NoSanitizeAttr object; but we need to calculate the correct spelling list |
8480 | // index rather than incorrectly assume the index for NoSanitizeSpecificAttr |
8481 | // has the same spellings as the index for NoSanitizeAttr. We don't have a |
8482 | // general way to "translate" between the two, so this hack attempts to work |
8483 | // around the issue with hard-coded indices. This is critical for calling |
8484 | // getSpelling() or prettyPrint() on the resulting semantic attribute object |
8485 | // without failing assertions. |
8486 | unsigned TranslatedSpellingIndex = 0; |
8487 | if (AL.isStandardAttributeSyntax()) |
8488 | TranslatedSpellingIndex = 1; |
8489 | |
8490 | AttributeCommonInfo Info = AL; |
8491 | Info.setAttributeSpellingListIndex(TranslatedSpellingIndex); |
8492 | D->addAttr(::new (S.Context) |
8493 | NoSanitizeAttr(S.Context, Info, &SanitizerName, 1)); |
8494 | } |
8495 | |
8496 | static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8497 | if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL)) |
8498 | D->addAttr(Internal); |
8499 | } |
8500 | |
8501 | static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8502 | if (S.LangOpts.getOpenCLCompatibleVersion() < 200) |
8503 | S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version) |
8504 | << AL << "2.0" << 1; |
8505 | else |
8506 | S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored) |
8507 | << AL << S.LangOpts.getOpenCLVersionString(); |
8508 | } |
8509 | |
8510 | static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8511 | if (D->isInvalidDecl()) |
8512 | return; |
8513 | |
8514 | // Check if there is only one access qualifier. |
8515 | if (D->hasAttr<OpenCLAccessAttr>()) { |
8516 | if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() == |
8517 | AL.getSemanticSpelling()) { |
8518 | S.Diag(AL.getLoc(), diag::warn_duplicate_declspec) |
8519 | << AL.getAttrName()->getName() << AL.getRange(); |
8520 | } else { |
8521 | S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers) |
8522 | << D->getSourceRange(); |
8523 | D->setInvalidDecl(true); |
8524 | return; |
8525 | } |
8526 | } |
8527 | |
8528 | // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that |
8529 | // an image object can be read and written. OpenCL v2.0 s6.13.6 - A kernel |
8530 | // cannot read from and write to the same pipe object. Using the read_write |
8531 | // (or __read_write) qualifier with the pipe qualifier is a compilation error. |
8532 | // OpenCL v3.0 s6.8 - For OpenCL C 2.0, or with the |
8533 | // __opencl_c_read_write_images feature, image objects specified as arguments |
8534 | // to a kernel can additionally be declared to be read-write. |
8535 | // C++ for OpenCL 1.0 inherits rule from OpenCL C v2.0. |
8536 | // C++ for OpenCL 2021 inherits rule from OpenCL C v3.0. |
8537 | if (const auto *PDecl = dyn_cast<ParmVarDecl>(Val: D)) { |
8538 | const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr(); |
8539 | if (AL.getAttrName()->getName().contains(Other: "read_write" )) { |
8540 | bool ReadWriteImagesUnsupported = |
8541 | (S.getLangOpts().getOpenCLCompatibleVersion() < 200) || |
8542 | (S.getLangOpts().getOpenCLCompatibleVersion() == 300 && |
8543 | !S.getOpenCLOptions().isSupported(Ext: "__opencl_c_read_write_images" , |
8544 | LO: S.getLangOpts())); |
8545 | if (ReadWriteImagesUnsupported || DeclTy->isPipeType()) { |
8546 | S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write) |
8547 | << AL << PDecl->getType() << DeclTy->isImageType(); |
8548 | D->setInvalidDecl(true); |
8549 | return; |
8550 | } |
8551 | } |
8552 | } |
8553 | |
8554 | D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL)); |
8555 | } |
8556 | |
8557 | static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8558 | // Check that the argument is a string literal. |
8559 | StringRef KindStr; |
8560 | SourceLocation LiteralLoc; |
8561 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: KindStr, ArgLocation: &LiteralLoc)) |
8562 | return; |
8563 | |
8564 | ZeroCallUsedRegsAttr::ZeroCallUsedRegsKind Kind; |
8565 | if (!ZeroCallUsedRegsAttr::ConvertStrToZeroCallUsedRegsKind(KindStr, Kind)) { |
8566 | S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) |
8567 | << AL << KindStr; |
8568 | return; |
8569 | } |
8570 | |
8571 | D->dropAttr<ZeroCallUsedRegsAttr>(); |
8572 | D->addAttr(ZeroCallUsedRegsAttr::Create(S.Context, Kind, AL)); |
8573 | } |
8574 | |
8575 | static const RecordDecl *GetEnclosingNamedOrTopAnonRecord(const FieldDecl *FD) { |
8576 | const auto *RD = FD->getParent(); |
8577 | // An unnamed struct is anonymous struct only if it's not instantiated. |
8578 | // However, the struct may not be fully processed yet to determine |
8579 | // whether it's anonymous or not. In that case, this function treats it as |
8580 | // an anonymous struct and tries to find a named parent. |
8581 | while (RD && (RD->isAnonymousStructOrUnion() || |
8582 | (!RD->isCompleteDefinition() && RD->getName().empty()))) { |
8583 | const auto *Parent = dyn_cast<RecordDecl>(RD->getParent()); |
8584 | if (!Parent) |
8585 | break; |
8586 | RD = Parent; |
8587 | } |
8588 | return RD; |
8589 | } |
8590 | |
8591 | static bool |
8592 | CheckCountExpr(Sema &S, FieldDecl *FD, Expr *E, |
8593 | llvm::SmallVectorImpl<TypeCoupledDeclRefInfo> &Decls) { |
8594 | if (FD->getParent()->isUnion()) { |
8595 | S.Diag(FD->getBeginLoc(), diag::err_counted_by_attr_in_union) |
8596 | << FD->getSourceRange(); |
8597 | return true; |
8598 | } |
8599 | |
8600 | if (!E->getType()->isIntegerType() || E->getType()->isBooleanType()) { |
8601 | S.Diag(E->getBeginLoc(), diag::err_counted_by_attr_argument_not_integer) |
8602 | << E->getSourceRange(); |
8603 | return true; |
8604 | } |
8605 | |
8606 | LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel = |
8607 | LangOptions::StrictFlexArraysLevelKind::IncompleteOnly; |
8608 | |
8609 | if (!Decl::isFlexibleArrayMemberLike(Context&: S.getASTContext(), D: FD, Ty: FD->getType(), |
8610 | StrictFlexArraysLevel, IgnoreTemplateOrMacroSubstitution: true)) { |
8611 | // The "counted_by" attribute must be on a flexible array member. |
8612 | SourceRange SR = FD->getLocation(); |
8613 | S.Diag(SR.getBegin(), |
8614 | diag::err_counted_by_attr_not_on_flexible_array_member) |
8615 | << SR; |
8616 | return true; |
8617 | } |
8618 | |
8619 | auto *DRE = dyn_cast<DeclRefExpr>(Val: E); |
8620 | if (!DRE) { |
8621 | S.Diag(E->getBeginLoc(), |
8622 | diag::err_counted_by_attr_only_support_simple_decl_reference) |
8623 | << E->getSourceRange(); |
8624 | return true; |
8625 | } |
8626 | |
8627 | auto *CountDecl = DRE->getDecl(); |
8628 | FieldDecl *CountFD = dyn_cast<FieldDecl>(Val: CountDecl); |
8629 | if (auto *IFD = dyn_cast<IndirectFieldDecl>(Val: CountDecl)) { |
8630 | CountFD = IFD->getAnonField(); |
8631 | } |
8632 | if (!CountFD) { |
8633 | S.Diag(E->getBeginLoc(), diag::err_counted_by_must_be_in_structure) |
8634 | << CountDecl << E->getSourceRange(); |
8635 | |
8636 | S.Diag(CountDecl->getBeginLoc(), |
8637 | diag::note_flexible_array_counted_by_attr_field) |
8638 | << CountDecl << CountDecl->getSourceRange(); |
8639 | return true; |
8640 | } |
8641 | |
8642 | if (FD->getParent() != CountFD->getParent()) { |
8643 | if (CountFD->getParent()->isUnion()) { |
8644 | S.Diag(CountFD->getBeginLoc(), diag::err_counted_by_attr_refer_to_union) |
8645 | << CountFD->getSourceRange(); |
8646 | return true; |
8647 | } |
8648 | // Whether CountRD is an anonymous struct is not determined at this |
8649 | // point. Thus, an additional diagnostic in case it's not anonymous struct |
8650 | // is done later in `Parser::ParseStructDeclaration`. |
8651 | auto *RD = GetEnclosingNamedOrTopAnonRecord(FD); |
8652 | auto *CountRD = GetEnclosingNamedOrTopAnonRecord(FD: CountFD); |
8653 | |
8654 | if (RD != CountRD) { |
8655 | S.Diag(E->getBeginLoc(), |
8656 | diag::err_flexible_array_count_not_in_same_struct) |
8657 | << CountFD << E->getSourceRange(); |
8658 | S.Diag(CountFD->getBeginLoc(), |
8659 | diag::note_flexible_array_counted_by_attr_field) |
8660 | << CountFD << CountFD->getSourceRange(); |
8661 | return true; |
8662 | } |
8663 | } |
8664 | |
8665 | Decls.push_back(Elt: TypeCoupledDeclRefInfo(CountFD, /*IsDref*/ false)); |
8666 | return false; |
8667 | } |
8668 | |
8669 | static void handleCountedByAttrField(Sema &S, Decl *D, const ParsedAttr &AL) { |
8670 | auto *FD = dyn_cast<FieldDecl>(Val: D); |
8671 | assert(FD); |
8672 | |
8673 | auto *CountExpr = AL.getArgAsExpr(Arg: 0); |
8674 | if (!CountExpr) |
8675 | return; |
8676 | |
8677 | llvm::SmallVector<TypeCoupledDeclRefInfo, 1> Decls; |
8678 | if (CheckCountExpr(S, FD, E: CountExpr, Decls)) |
8679 | return; |
8680 | |
8681 | QualType CAT = S.BuildCountAttributedArrayType(WrappedTy: FD->getType(), CountExpr); |
8682 | FD->setType(CAT); |
8683 | } |
8684 | |
8685 | static void handleFunctionReturnThunksAttr(Sema &S, Decl *D, |
8686 | const ParsedAttr &AL) { |
8687 | StringRef KindStr; |
8688 | SourceLocation LiteralLoc; |
8689 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: KindStr, ArgLocation: &LiteralLoc)) |
8690 | return; |
8691 | |
8692 | FunctionReturnThunksAttr::Kind Kind; |
8693 | if (!FunctionReturnThunksAttr::ConvertStrToKind(KindStr, Kind)) { |
8694 | S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) |
8695 | << AL << KindStr; |
8696 | return; |
8697 | } |
8698 | // FIXME: it would be good to better handle attribute merging rather than |
8699 | // silently replacing the existing attribute, so long as it does not break |
8700 | // the expected codegen tests. |
8701 | D->dropAttr<FunctionReturnThunksAttr>(); |
8702 | D->addAttr(FunctionReturnThunksAttr::Create(S.Context, Kind, AL)); |
8703 | } |
8704 | |
8705 | static void handleAvailableOnlyInDefaultEvalMethod(Sema &S, Decl *D, |
8706 | const ParsedAttr &AL) { |
8707 | assert(isa<TypedefNameDecl>(D) && "This attribute only applies to a typedef" ); |
8708 | handleSimpleAttribute<AvailableOnlyInDefaultEvalMethodAttr>(S, D, AL); |
8709 | } |
8710 | |
8711 | static void handleNoMergeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8712 | auto *VDecl = dyn_cast<VarDecl>(Val: D); |
8713 | if (VDecl && !VDecl->isFunctionPointerType()) { |
8714 | S.Diag(AL.getLoc(), diag::warn_attribute_ignored_non_function_pointer) |
8715 | << AL << VDecl; |
8716 | return; |
8717 | } |
8718 | D->addAttr(NoMergeAttr::Create(S.Context, AL)); |
8719 | } |
8720 | |
8721 | static void handleNoUniqueAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8722 | D->addAttr(NoUniqueAddressAttr::Create(S.Context, AL)); |
8723 | } |
8724 | |
8725 | static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8726 | // The 'sycl_kernel' attribute applies only to function templates. |
8727 | const auto *FD = cast<FunctionDecl>(Val: D); |
8728 | const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate(); |
8729 | assert(FT && "Function template is expected" ); |
8730 | |
8731 | // Function template must have at least two template parameters. |
8732 | const TemplateParameterList *TL = FT->getTemplateParameters(); |
8733 | if (TL->size() < 2) { |
8734 | S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params); |
8735 | return; |
8736 | } |
8737 | |
8738 | // Template parameters must be typenames. |
8739 | for (unsigned I = 0; I < 2; ++I) { |
8740 | const NamedDecl *TParam = TL->getParam(Idx: I); |
8741 | if (isa<NonTypeTemplateParmDecl>(Val: TParam)) { |
8742 | S.Diag(FT->getLocation(), |
8743 | diag::warn_sycl_kernel_invalid_template_param_type); |
8744 | return; |
8745 | } |
8746 | } |
8747 | |
8748 | // Function must have at least one argument. |
8749 | if (getFunctionOrMethodNumParams(D) != 1) { |
8750 | S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params); |
8751 | return; |
8752 | } |
8753 | |
8754 | // Function must return void. |
8755 | QualType RetTy = getFunctionOrMethodResultType(D); |
8756 | if (!RetTy->isVoidType()) { |
8757 | S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type); |
8758 | return; |
8759 | } |
8760 | |
8761 | handleSimpleAttribute<SYCLKernelAttr>(S, D, AL); |
8762 | } |
8763 | |
8764 | static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
8765 | if (!cast<VarDecl>(Val: D)->hasGlobalStorage()) { |
8766 | S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var) |
8767 | << (A.getKind() == ParsedAttr::AT_AlwaysDestroy); |
8768 | return; |
8769 | } |
8770 | |
8771 | if (A.getKind() == ParsedAttr::AT_AlwaysDestroy) |
8772 | handleSimpleAttribute<AlwaysDestroyAttr>(S, D, A); |
8773 | else |
8774 | handleSimpleAttribute<NoDestroyAttr>(S, D, A); |
8775 | } |
8776 | |
8777 | static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8778 | assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic && |
8779 | "uninitialized is only valid on automatic duration variables" ); |
8780 | D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL)); |
8781 | } |
8782 | |
8783 | static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD, |
8784 | bool DiagnoseFailure) { |
8785 | QualType Ty = VD->getType(); |
8786 | if (!Ty->isObjCRetainableType()) { |
8787 | if (DiagnoseFailure) { |
8788 | S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained) |
8789 | << 0; |
8790 | } |
8791 | return false; |
8792 | } |
8793 | |
8794 | Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime(); |
8795 | |
8796 | // Sema::inferObjCARCLifetime must run after processing decl attributes |
8797 | // (because __block lowers to an attribute), so if the lifetime hasn't been |
8798 | // explicitly specified, infer it locally now. |
8799 | if (LifetimeQual == Qualifiers::OCL_None) |
8800 | LifetimeQual = Ty->getObjCARCImplicitLifetime(); |
8801 | |
8802 | // The attributes only really makes sense for __strong variables; ignore any |
8803 | // attempts to annotate a parameter with any other lifetime qualifier. |
8804 | if (LifetimeQual != Qualifiers::OCL_Strong) { |
8805 | if (DiagnoseFailure) { |
8806 | S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained) |
8807 | << 1; |
8808 | } |
8809 | return false; |
8810 | } |
8811 | |
8812 | // Tampering with the type of a VarDecl here is a bit of a hack, but we need |
8813 | // to ensure that the variable is 'const' so that we can error on |
8814 | // modification, which can otherwise over-release. |
8815 | VD->setType(Ty.withConst()); |
8816 | VD->setARCPseudoStrong(true); |
8817 | return true; |
8818 | } |
8819 | |
8820 | static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D, |
8821 | const ParsedAttr &AL) { |
8822 | if (auto *VD = dyn_cast<VarDecl>(Val: D)) { |
8823 | assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically" ); |
8824 | if (!VD->hasLocalStorage()) { |
8825 | S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained) |
8826 | << 0; |
8827 | return; |
8828 | } |
8829 | |
8830 | if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true)) |
8831 | return; |
8832 | |
8833 | handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL); |
8834 | return; |
8835 | } |
8836 | |
8837 | // If D is a function-like declaration (method, block, or function), then we |
8838 | // make every parameter psuedo-strong. |
8839 | unsigned NumParams = |
8840 | hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0; |
8841 | for (unsigned I = 0; I != NumParams; ++I) { |
8842 | auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, Idx: I)); |
8843 | QualType Ty = PVD->getType(); |
8844 | |
8845 | // If a user wrote a parameter with __strong explicitly, then assume they |
8846 | // want "real" strong semantics for that parameter. This works because if |
8847 | // the parameter was written with __strong, then the strong qualifier will |
8848 | // be non-local. |
8849 | if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() == |
8850 | Qualifiers::OCL_Strong) |
8851 | continue; |
8852 | |
8853 | tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false); |
8854 | } |
8855 | handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL); |
8856 | } |
8857 | |
8858 | static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8859 | // Check that the return type is a `typedef int kern_return_t` or a typedef |
8860 | // around it, because otherwise MIG convention checks make no sense. |
8861 | // BlockDecl doesn't store a return type, so it's annoying to check, |
8862 | // so let's skip it for now. |
8863 | if (!isa<BlockDecl>(Val: D)) { |
8864 | QualType T = getFunctionOrMethodResultType(D); |
8865 | bool IsKernReturnT = false; |
8866 | while (const auto *TT = T->getAs<TypedefType>()) { |
8867 | IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t" ); |
8868 | T = TT->desugar(); |
8869 | } |
8870 | if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) { |
8871 | S.Diag(D->getBeginLoc(), |
8872 | diag::warn_mig_server_routine_does_not_return_kern_return_t); |
8873 | return; |
8874 | } |
8875 | } |
8876 | |
8877 | handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL); |
8878 | } |
8879 | |
8880 | static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8881 | // Warn if the return type is not a pointer or reference type. |
8882 | if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
8883 | QualType RetTy = FD->getReturnType(); |
8884 | if (!RetTy->isPointerType() && !RetTy->isReferenceType()) { |
8885 | S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer) |
8886 | << AL.getRange() << RetTy; |
8887 | return; |
8888 | } |
8889 | } |
8890 | |
8891 | handleSimpleAttribute<MSAllocatorAttr>(S, D, AL); |
8892 | } |
8893 | |
8894 | static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8895 | if (AL.isUsedAsTypeAttr()) |
8896 | return; |
8897 | // Warn if the parameter is definitely not an output parameter. |
8898 | if (const auto *PVD = dyn_cast<ParmVarDecl>(Val: D)) { |
8899 | if (PVD->getType()->isIntegerType()) { |
8900 | S.Diag(AL.getLoc(), diag::err_attribute_output_parameter) |
8901 | << AL.getRange(); |
8902 | return; |
8903 | } |
8904 | } |
8905 | StringRef Argument; |
8906 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Argument)) |
8907 | return; |
8908 | D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL)); |
8909 | } |
8910 | |
8911 | template<typename Attr> |
8912 | static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8913 | StringRef Argument; |
8914 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Argument)) |
8915 | return; |
8916 | D->addAttr(A: Attr::Create(S.Context, Argument, AL)); |
8917 | } |
8918 | |
8919 | template<typename Attr> |
8920 | static void handleUnsafeBufferUsage(Sema &S, Decl *D, const ParsedAttr &AL) { |
8921 | D->addAttr(A: Attr::Create(S.Context, AL)); |
8922 | } |
8923 | |
8924 | static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8925 | // The guard attribute takes a single identifier argument. |
8926 | |
8927 | if (!AL.isArgIdent(Arg: 0)) { |
8928 | S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
8929 | << AL << AANT_ArgumentIdentifier; |
8930 | return; |
8931 | } |
8932 | |
8933 | CFGuardAttr::GuardArg Arg; |
8934 | IdentifierInfo *II = AL.getArgAsIdent(Arg: 0)->Ident; |
8935 | if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) { |
8936 | S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; |
8937 | return; |
8938 | } |
8939 | |
8940 | D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg)); |
8941 | } |
8942 | |
8943 | |
8944 | template <typename AttrTy> |
8945 | static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) { |
8946 | auto Attrs = D->specific_attrs<AttrTy>(); |
8947 | auto I = llvm::find_if(Attrs, |
8948 | [Name](const AttrTy *A) { |
8949 | return A->getTCBName() == Name; |
8950 | }); |
8951 | return I == Attrs.end() ? nullptr : *I; |
8952 | } |
8953 | |
8954 | template <typename AttrTy, typename ConflictingAttrTy> |
8955 | static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
8956 | StringRef Argument; |
8957 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Argument)) |
8958 | return; |
8959 | |
8960 | // A function cannot be have both regular and leaf membership in the same TCB. |
8961 | if (const ConflictingAttrTy *ConflictingAttr = |
8962 | findEnforceTCBAttrByName<ConflictingAttrTy>(D, Argument)) { |
8963 | // We could attach a note to the other attribute but in this case |
8964 | // there's no need given how the two are very close to each other. |
8965 | S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes) |
8966 | << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName() |
8967 | << Argument; |
8968 | |
8969 | // Error recovery: drop the non-leaf attribute so that to suppress |
8970 | // all future warnings caused by erroneous attributes. The leaf attribute |
8971 | // needs to be kept because it can only suppresses warnings, not cause them. |
8972 | D->dropAttr<EnforceTCBAttr>(); |
8973 | return; |
8974 | } |
8975 | |
8976 | D->addAttr(A: AttrTy::Create(S.Context, Argument, AL)); |
8977 | } |
8978 | |
8979 | template <typename AttrTy, typename ConflictingAttrTy> |
8980 | static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) { |
8981 | // Check if the new redeclaration has different leaf-ness in the same TCB. |
8982 | StringRef TCBName = AL.getTCBName(); |
8983 | if (const ConflictingAttrTy *ConflictingAttr = |
8984 | findEnforceTCBAttrByName<ConflictingAttrTy>(D, TCBName)) { |
8985 | S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes) |
8986 | << ConflictingAttr->getAttrName()->getName() |
8987 | << AL.getAttrName()->getName() << TCBName; |
8988 | |
8989 | // Add a note so that the user could easily find the conflicting attribute. |
8990 | S.Diag(AL.getLoc(), diag::note_conflicting_attribute); |
8991 | |
8992 | // More error recovery. |
8993 | D->dropAttr<EnforceTCBAttr>(); |
8994 | return nullptr; |
8995 | } |
8996 | |
8997 | ASTContext &Context = S.getASTContext(); |
8998 | return ::new(Context) AttrTy(Context, AL, AL.getTCBName()); |
8999 | } |
9000 | |
9001 | EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) { |
9002 | return mergeEnforceTCBAttrImpl<EnforceTCBAttr, EnforceTCBLeafAttr>( |
9003 | *this, D, AL); |
9004 | } |
9005 | |
9006 | EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr( |
9007 | Decl *D, const EnforceTCBLeafAttr &AL) { |
9008 | return mergeEnforceTCBAttrImpl<EnforceTCBLeafAttr, EnforceTCBAttr>( |
9009 | *this, D, AL); |
9010 | } |
9011 | |
9012 | //===----------------------------------------------------------------------===// |
9013 | // Top Level Sema Entry Points |
9014 | //===----------------------------------------------------------------------===// |
9015 | |
9016 | // Returns true if the attribute must delay setting its arguments until after |
9017 | // template instantiation, and false otherwise. |
9018 | static bool MustDelayAttributeArguments(const ParsedAttr &AL) { |
9019 | // Only attributes that accept expression parameter packs can delay arguments. |
9020 | if (!AL.acceptsExprPack()) |
9021 | return false; |
9022 | |
9023 | bool AttrHasVariadicArg = AL.hasVariadicArg(); |
9024 | unsigned AttrNumArgs = AL.getNumArgMembers(); |
9025 | for (size_t I = 0; I < std::min(a: AL.getNumArgs(), b: AttrNumArgs); ++I) { |
9026 | bool IsLastAttrArg = I == (AttrNumArgs - 1); |
9027 | // If the argument is the last argument and it is variadic it can contain |
9028 | // any expression. |
9029 | if (IsLastAttrArg && AttrHasVariadicArg) |
9030 | return false; |
9031 | Expr *E = AL.getArgAsExpr(Arg: I); |
9032 | bool ArgMemberCanHoldExpr = AL.isParamExpr(N: I); |
9033 | // If the expression is a pack expansion then arguments must be delayed |
9034 | // unless the argument is an expression and it is the last argument of the |
9035 | // attribute. |
9036 | if (isa<PackExpansionExpr>(Val: E)) |
9037 | return !(IsLastAttrArg && ArgMemberCanHoldExpr); |
9038 | // Last case is if the expression is value dependent then it must delay |
9039 | // arguments unless the corresponding argument is able to hold the |
9040 | // expression. |
9041 | if (E->isValueDependent() && !ArgMemberCanHoldExpr) |
9042 | return true; |
9043 | } |
9044 | return false; |
9045 | } |
9046 | |
9047 | static bool checkArmNewAttrMutualExclusion( |
9048 | Sema &S, const ParsedAttr &AL, const FunctionProtoType *FPT, |
9049 | FunctionType::ArmStateValue CurrentState, StringRef StateName) { |
9050 | auto CheckForIncompatibleAttr = |
9051 | [&](FunctionType::ArmStateValue IncompatibleState, |
9052 | StringRef IncompatibleStateName) { |
9053 | if (CurrentState == IncompatibleState) { |
9054 | S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) |
9055 | << (std::string("'__arm_new(\"" ) + StateName.str() + "\")'" ) |
9056 | << (std::string("'" ) + IncompatibleStateName.str() + "(\"" + |
9057 | StateName.str() + "\")'" ) |
9058 | << true; |
9059 | AL.setInvalid(); |
9060 | } |
9061 | }; |
9062 | |
9063 | CheckForIncompatibleAttr(FunctionType::ARM_In, "__arm_in" ); |
9064 | CheckForIncompatibleAttr(FunctionType::ARM_Out, "__arm_out" ); |
9065 | CheckForIncompatibleAttr(FunctionType::ARM_InOut, "__arm_inout" ); |
9066 | CheckForIncompatibleAttr(FunctionType::ARM_Preserves, "__arm_preserves" ); |
9067 | return AL.isInvalid(); |
9068 | } |
9069 | |
9070 | static void handleArmNewAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
9071 | if (!AL.getNumArgs()) { |
9072 | S.Diag(AL.getLoc(), diag::err_missing_arm_state) << AL; |
9073 | AL.setInvalid(); |
9074 | return; |
9075 | } |
9076 | |
9077 | std::vector<StringRef> NewState; |
9078 | if (const auto *ExistingAttr = D->getAttr<ArmNewAttr>()) { |
9079 | for (StringRef S : ExistingAttr->newArgs()) |
9080 | NewState.push_back(S); |
9081 | } |
9082 | |
9083 | bool HasZA = false; |
9084 | bool HasZT0 = false; |
9085 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
9086 | StringRef StateName; |
9087 | SourceLocation LiteralLoc; |
9088 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: StateName, ArgLocation: &LiteralLoc)) |
9089 | return; |
9090 | |
9091 | if (StateName == "za" ) |
9092 | HasZA = true; |
9093 | else if (StateName == "zt0" ) |
9094 | HasZT0 = true; |
9095 | else { |
9096 | S.Diag(LiteralLoc, diag::err_unknown_arm_state) << StateName; |
9097 | AL.setInvalid(); |
9098 | return; |
9099 | } |
9100 | |
9101 | if (!llvm::is_contained(Range&: NewState, Element: StateName)) // Avoid adding duplicates. |
9102 | NewState.push_back(x: StateName); |
9103 | } |
9104 | |
9105 | if (auto *FPT = dyn_cast<FunctionProtoType>(Val: D->getFunctionType())) { |
9106 | FunctionType::ArmStateValue ZAState = |
9107 | FunctionType::getArmZAState(AttrBits: FPT->getAArch64SMEAttributes()); |
9108 | if (HasZA && ZAState != FunctionType::ARM_None && |
9109 | checkArmNewAttrMutualExclusion(S, AL, FPT, CurrentState: ZAState, StateName: "za" )) |
9110 | return; |
9111 | FunctionType::ArmStateValue ZT0State = |
9112 | FunctionType::getArmZT0State(AttrBits: FPT->getAArch64SMEAttributes()); |
9113 | if (HasZT0 && ZT0State != FunctionType::ARM_None && |
9114 | checkArmNewAttrMutualExclusion(S, AL, FPT, CurrentState: ZT0State, StateName: "zt0" )) |
9115 | return; |
9116 | } |
9117 | |
9118 | D->dropAttr<ArmNewAttr>(); |
9119 | D->addAttr(::new (S.Context) |
9120 | ArmNewAttr(S.Context, AL, NewState.data(), NewState.size())); |
9121 | } |
9122 | |
9123 | /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if |
9124 | /// the attribute applies to decls. If the attribute is a type attribute, just |
9125 | /// silently ignore it if a GNU attribute. |
9126 | static void |
9127 | ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const ParsedAttr &AL, |
9128 | const Sema::ProcessDeclAttributeOptions &Options) { |
9129 | if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) |
9130 | return; |
9131 | |
9132 | // Ignore C++11 attributes on declarator chunks: they appertain to the type |
9133 | // instead. |
9134 | if (AL.isCXX11Attribute() && !Options.IncludeCXX11Attributes) |
9135 | return; |
9136 | |
9137 | // Unknown attributes are automatically warned on. Target-specific attributes |
9138 | // which do not apply to the current target architecture are treated as |
9139 | // though they were unknown attributes. |
9140 | if (AL.getKind() == ParsedAttr::UnknownAttribute || |
9141 | !AL.existsInTarget(Target: S.Context.getTargetInfo())) { |
9142 | S.Diag(AL.getLoc(), |
9143 | AL.isRegularKeywordAttribute() |
9144 | ? (unsigned)diag::err_keyword_not_supported_on_target |
9145 | : AL.isDeclspecAttribute() |
9146 | ? (unsigned)diag::warn_unhandled_ms_attribute_ignored |
9147 | : (unsigned)diag::warn_unknown_attribute_ignored) |
9148 | << AL << AL.getRange(); |
9149 | return; |
9150 | } |
9151 | |
9152 | // Check if argument population must delayed to after template instantiation. |
9153 | bool MustDelayArgs = MustDelayAttributeArguments(AL); |
9154 | |
9155 | // Argument number check must be skipped if arguments are delayed. |
9156 | if (S.checkCommonAttributeFeatures(D, A: AL, SkipArgCountCheck: MustDelayArgs)) |
9157 | return; |
9158 | |
9159 | if (MustDelayArgs) { |
9160 | AL.handleAttrWithDelayedArgs(S, D); |
9161 | return; |
9162 | } |
9163 | |
9164 | switch (AL.getKind()) { |
9165 | default: |
9166 | if (AL.getInfo().handleDeclAttribute(S, D, Attr: AL) != ParsedAttrInfo::NotHandled) |
9167 | break; |
9168 | if (!AL.isStmtAttr()) { |
9169 | assert(AL.isTypeAttr() && "Non-type attribute not handled" ); |
9170 | } |
9171 | if (AL.isTypeAttr()) { |
9172 | if (Options.IgnoreTypeAttributes) |
9173 | break; |
9174 | if (!AL.isStandardAttributeSyntax() && !AL.isRegularKeywordAttribute()) { |
9175 | // Non-[[]] type attributes are handled in processTypeAttrs(); silently |
9176 | // move on. |
9177 | break; |
9178 | } |
9179 | |
9180 | // According to the C and C++ standards, we should never see a |
9181 | // [[]] type attribute on a declaration. However, we have in the past |
9182 | // allowed some type attributes to "slide" to the `DeclSpec`, so we need |
9183 | // to continue to support this legacy behavior. We only do this, however, |
9184 | // if |
9185 | // - we actually have a `DeclSpec`, i.e. if we're looking at a |
9186 | // `DeclaratorDecl`, or |
9187 | // - we are looking at an alias-declaration, where historically we have |
9188 | // allowed type attributes after the identifier to slide to the type. |
9189 | if (AL.slidesFromDeclToDeclSpecLegacyBehavior() && |
9190 | isa<DeclaratorDecl, TypeAliasDecl>(Val: D)) { |
9191 | // Suggest moving the attribute to the type instead, but only for our |
9192 | // own vendor attributes; moving other vendors' attributes might hurt |
9193 | // portability. |
9194 | if (AL.isClangScope()) { |
9195 | S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl) |
9196 | << AL << D->getLocation(); |
9197 | } |
9198 | |
9199 | // Allow this type attribute to be handled in processTypeAttrs(); |
9200 | // silently move on. |
9201 | break; |
9202 | } |
9203 | |
9204 | if (AL.getKind() == ParsedAttr::AT_Regparm) { |
9205 | // `regparm` is a special case: It's a type attribute but we still want |
9206 | // to treat it as if it had been written on the declaration because that |
9207 | // way we'll be able to handle it directly in `processTypeAttr()`. |
9208 | // If we treated `regparm` it as if it had been written on the |
9209 | // `DeclSpec`, the logic in `distributeFunctionTypeAttrFromDeclSepc()` |
9210 | // would try to move it to the declarator, but that doesn't work: We |
9211 | // can't remove the attribute from the list of declaration attributes |
9212 | // because it might be needed by other declarators in the same |
9213 | // declaration. |
9214 | break; |
9215 | } |
9216 | |
9217 | if (AL.getKind() == ParsedAttr::AT_VectorSize) { |
9218 | // `vector_size` is a special case: It's a type attribute semantically, |
9219 | // but GCC expects the [[]] syntax to be written on the declaration (and |
9220 | // warns that the attribute has no effect if it is placed on the |
9221 | // decl-specifier-seq). |
9222 | // Silently move on and allow the attribute to be handled in |
9223 | // processTypeAttr(). |
9224 | break; |
9225 | } |
9226 | |
9227 | if (AL.getKind() == ParsedAttr::AT_NoDeref) { |
9228 | // FIXME: `noderef` currently doesn't work correctly in [[]] syntax. |
9229 | // See https://github.com/llvm/llvm-project/issues/55790 for details. |
9230 | // We allow processTypeAttrs() to emit a warning and silently move on. |
9231 | break; |
9232 | } |
9233 | } |
9234 | // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a |
9235 | // statement attribute is not written on a declaration, but this code is |
9236 | // needed for type attributes as well as statement attributes in Attr.td |
9237 | // that do not list any subjects. |
9238 | S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl) |
9239 | << AL << AL.isRegularKeywordAttribute() << D->getLocation(); |
9240 | break; |
9241 | case ParsedAttr::AT_Interrupt: |
9242 | handleInterruptAttr(S, D, AL); |
9243 | break; |
9244 | case ParsedAttr::AT_X86ForceAlignArgPointer: |
9245 | handleX86ForceAlignArgPointerAttr(S, D, AL); |
9246 | break; |
9247 | case ParsedAttr::AT_ReadOnlyPlacement: |
9248 | handleSimpleAttribute<ReadOnlyPlacementAttr>(S, D, AL); |
9249 | break; |
9250 | case ParsedAttr::AT_DLLExport: |
9251 | case ParsedAttr::AT_DLLImport: |
9252 | handleDLLAttr(S, D, A: AL); |
9253 | break; |
9254 | case ParsedAttr::AT_AMDGPUFlatWorkGroupSize: |
9255 | handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL); |
9256 | break; |
9257 | case ParsedAttr::AT_AMDGPUWavesPerEU: |
9258 | handleAMDGPUWavesPerEUAttr(S, D, AL); |
9259 | break; |
9260 | case ParsedAttr::AT_AMDGPUNumSGPR: |
9261 | handleAMDGPUNumSGPRAttr(S, D, AL); |
9262 | break; |
9263 | case ParsedAttr::AT_AMDGPUNumVGPR: |
9264 | handleAMDGPUNumVGPRAttr(S, D, AL); |
9265 | break; |
9266 | case ParsedAttr::AT_AMDGPUMaxNumWorkGroups: |
9267 | handleAMDGPUMaxNumWorkGroupsAttr(S, D, AL); |
9268 | break; |
9269 | case ParsedAttr::AT_AVRSignal: |
9270 | handleAVRSignalAttr(S, D, AL); |
9271 | break; |
9272 | case ParsedAttr::AT_BPFPreserveAccessIndex: |
9273 | handleBPFPreserveAccessIndexAttr(S, D, AL); |
9274 | break; |
9275 | case ParsedAttr::AT_BPFPreserveStaticOffset: |
9276 | handleSimpleAttribute<BPFPreserveStaticOffsetAttr>(S, D, AL); |
9277 | break; |
9278 | case ParsedAttr::AT_BTFDeclTag: |
9279 | handleBTFDeclTagAttr(S, D, AL); |
9280 | break; |
9281 | case ParsedAttr::AT_WebAssemblyExportName: |
9282 | handleWebAssemblyExportNameAttr(S, D, AL); |
9283 | break; |
9284 | case ParsedAttr::AT_WebAssemblyImportModule: |
9285 | handleWebAssemblyImportModuleAttr(S, D, AL); |
9286 | break; |
9287 | case ParsedAttr::AT_WebAssemblyImportName: |
9288 | handleWebAssemblyImportNameAttr(S, D, AL); |
9289 | break; |
9290 | case ParsedAttr::AT_IBOutlet: |
9291 | handleIBOutlet(S, D, AL); |
9292 | break; |
9293 | case ParsedAttr::AT_IBOutletCollection: |
9294 | handleIBOutletCollection(S, D, AL); |
9295 | break; |
9296 | case ParsedAttr::AT_IFunc: |
9297 | handleIFuncAttr(S, D, AL); |
9298 | break; |
9299 | case ParsedAttr::AT_Alias: |
9300 | handleAliasAttr(S, D, AL); |
9301 | break; |
9302 | case ParsedAttr::AT_Aligned: |
9303 | handleAlignedAttr(S, D, AL); |
9304 | break; |
9305 | case ParsedAttr::AT_AlignValue: |
9306 | handleAlignValueAttr(S, D, AL); |
9307 | break; |
9308 | case ParsedAttr::AT_AllocSize: |
9309 | handleAllocSizeAttr(S, D, AL); |
9310 | break; |
9311 | case ParsedAttr::AT_AlwaysInline: |
9312 | handleAlwaysInlineAttr(S, D, AL); |
9313 | break; |
9314 | case ParsedAttr::AT_AnalyzerNoReturn: |
9315 | handleAnalyzerNoReturnAttr(S, D, AL); |
9316 | break; |
9317 | case ParsedAttr::AT_TLSModel: |
9318 | handleTLSModelAttr(S, D, AL); |
9319 | break; |
9320 | case ParsedAttr::AT_Annotate: |
9321 | handleAnnotateAttr(S, D, AL); |
9322 | break; |
9323 | case ParsedAttr::AT_Availability: |
9324 | handleAvailabilityAttr(S, D, AL); |
9325 | break; |
9326 | case ParsedAttr::AT_CarriesDependency: |
9327 | handleDependencyAttr(S, Scope: scope, D, AL); |
9328 | break; |
9329 | case ParsedAttr::AT_CPUDispatch: |
9330 | case ParsedAttr::AT_CPUSpecific: |
9331 | handleCPUSpecificAttr(S, D, AL); |
9332 | break; |
9333 | case ParsedAttr::AT_Common: |
9334 | handleCommonAttr(S, D, AL); |
9335 | break; |
9336 | case ParsedAttr::AT_CUDAConstant: |
9337 | handleConstantAttr(S, D, AL); |
9338 | break; |
9339 | case ParsedAttr::AT_PassObjectSize: |
9340 | handlePassObjectSizeAttr(S, D, AL); |
9341 | break; |
9342 | case ParsedAttr::AT_Constructor: |
9343 | handleConstructorAttr(S, D, AL); |
9344 | break; |
9345 | case ParsedAttr::AT_Deprecated: |
9346 | handleDeprecatedAttr(S, D, AL); |
9347 | break; |
9348 | case ParsedAttr::AT_Destructor: |
9349 | handleDestructorAttr(S, D, AL); |
9350 | break; |
9351 | case ParsedAttr::AT_EnableIf: |
9352 | handleEnableIfAttr(S, D, AL); |
9353 | break; |
9354 | case ParsedAttr::AT_Error: |
9355 | handleErrorAttr(S, D, AL); |
9356 | break; |
9357 | case ParsedAttr::AT_ExcludeFromExplicitInstantiation: |
9358 | handleExcludeFromExplicitInstantiationAttr(S, D, AL); |
9359 | break; |
9360 | case ParsedAttr::AT_DiagnoseIf: |
9361 | handleDiagnoseIfAttr(S, D, AL); |
9362 | break; |
9363 | case ParsedAttr::AT_DiagnoseAsBuiltin: |
9364 | handleDiagnoseAsBuiltinAttr(S, D, AL); |
9365 | break; |
9366 | case ParsedAttr::AT_NoBuiltin: |
9367 | handleNoBuiltinAttr(S, D, AL); |
9368 | break; |
9369 | case ParsedAttr::AT_ExtVectorType: |
9370 | handleExtVectorTypeAttr(S, D, AL); |
9371 | break; |
9372 | case ParsedAttr::AT_ExternalSourceSymbol: |
9373 | handleExternalSourceSymbolAttr(S, D, AL); |
9374 | break; |
9375 | case ParsedAttr::AT_MinSize: |
9376 | handleMinSizeAttr(S, D, AL); |
9377 | break; |
9378 | case ParsedAttr::AT_OptimizeNone: |
9379 | handleOptimizeNoneAttr(S, D, AL); |
9380 | break; |
9381 | case ParsedAttr::AT_EnumExtensibility: |
9382 | handleEnumExtensibilityAttr(S, D, AL); |
9383 | break; |
9384 | case ParsedAttr::AT_SYCLKernel: |
9385 | handleSYCLKernelAttr(S, D, AL); |
9386 | break; |
9387 | case ParsedAttr::AT_SYCLSpecialClass: |
9388 | handleSimpleAttribute<SYCLSpecialClassAttr>(S, D, AL); |
9389 | break; |
9390 | case ParsedAttr::AT_Format: |
9391 | handleFormatAttr(S, D, AL); |
9392 | break; |
9393 | case ParsedAttr::AT_FormatArg: |
9394 | handleFormatArgAttr(S, D, AL); |
9395 | break; |
9396 | case ParsedAttr::AT_Callback: |
9397 | handleCallbackAttr(S, D, AL); |
9398 | break; |
9399 | case ParsedAttr::AT_CalledOnce: |
9400 | handleCalledOnceAttr(S, D, AL); |
9401 | break; |
9402 | case ParsedAttr::AT_NVPTXKernel: |
9403 | case ParsedAttr::AT_CUDAGlobal: |
9404 | handleGlobalAttr(S, D, AL); |
9405 | break; |
9406 | case ParsedAttr::AT_CUDADevice: |
9407 | handleDeviceAttr(S, D, AL); |
9408 | break; |
9409 | case ParsedAttr::AT_HIPManaged: |
9410 | handleManagedAttr(S, D, AL); |
9411 | break; |
9412 | case ParsedAttr::AT_GNUInline: |
9413 | handleGNUInlineAttr(S, D, AL); |
9414 | break; |
9415 | case ParsedAttr::AT_CUDALaunchBounds: |
9416 | handleLaunchBoundsAttr(S, D, AL); |
9417 | break; |
9418 | case ParsedAttr::AT_Restrict: |
9419 | handleRestrictAttr(S, D, AL); |
9420 | break; |
9421 | case ParsedAttr::AT_Mode: |
9422 | handleModeAttr(S, D, AL); |
9423 | break; |
9424 | case ParsedAttr::AT_NonNull: |
9425 | if (auto *PVD = dyn_cast<ParmVarDecl>(Val: D)) |
9426 | handleNonNullAttrParameter(S, D: PVD, AL); |
9427 | else |
9428 | handleNonNullAttr(S, D, AL); |
9429 | break; |
9430 | case ParsedAttr::AT_ReturnsNonNull: |
9431 | handleReturnsNonNullAttr(S, D, AL); |
9432 | break; |
9433 | case ParsedAttr::AT_NoEscape: |
9434 | handleNoEscapeAttr(S, D, AL); |
9435 | break; |
9436 | case ParsedAttr::AT_MaybeUndef: |
9437 | handleSimpleAttribute<MaybeUndefAttr>(S, D, AL); |
9438 | break; |
9439 | case ParsedAttr::AT_AssumeAligned: |
9440 | handleAssumeAlignedAttr(S, D, AL); |
9441 | break; |
9442 | case ParsedAttr::AT_AllocAlign: |
9443 | handleAllocAlignAttr(S, D, AL); |
9444 | break; |
9445 | case ParsedAttr::AT_Ownership: |
9446 | handleOwnershipAttr(S, D, AL); |
9447 | break; |
9448 | case ParsedAttr::AT_Naked: |
9449 | handleNakedAttr(S, D, AL); |
9450 | break; |
9451 | case ParsedAttr::AT_NoReturn: |
9452 | handleNoReturnAttr(S, D, Attrs: AL); |
9453 | break; |
9454 | case ParsedAttr::AT_CXX11NoReturn: |
9455 | handleStandardNoReturnAttr(S, D, A: AL); |
9456 | break; |
9457 | case ParsedAttr::AT_AnyX86NoCfCheck: |
9458 | handleNoCfCheckAttr(S, D, Attrs: AL); |
9459 | break; |
9460 | case ParsedAttr::AT_NoThrow: |
9461 | if (!AL.isUsedAsTypeAttr()) |
9462 | handleSimpleAttribute<NoThrowAttr>(S, D, AL); |
9463 | break; |
9464 | case ParsedAttr::AT_CUDAShared: |
9465 | handleSharedAttr(S, D, AL); |
9466 | break; |
9467 | case ParsedAttr::AT_VecReturn: |
9468 | handleVecReturnAttr(S, D, AL); |
9469 | break; |
9470 | case ParsedAttr::AT_ObjCOwnership: |
9471 | handleObjCOwnershipAttr(S, D, AL); |
9472 | break; |
9473 | case ParsedAttr::AT_ObjCPreciseLifetime: |
9474 | handleObjCPreciseLifetimeAttr(S, D, AL); |
9475 | break; |
9476 | case ParsedAttr::AT_ObjCReturnsInnerPointer: |
9477 | handleObjCReturnsInnerPointerAttr(S, D, Attrs: AL); |
9478 | break; |
9479 | case ParsedAttr::AT_ObjCRequiresSuper: |
9480 | handleObjCRequiresSuperAttr(S, D, Attrs: AL); |
9481 | break; |
9482 | case ParsedAttr::AT_ObjCBridge: |
9483 | handleObjCBridgeAttr(S, D, AL); |
9484 | break; |
9485 | case ParsedAttr::AT_ObjCBridgeMutable: |
9486 | handleObjCBridgeMutableAttr(S, D, AL); |
9487 | break; |
9488 | case ParsedAttr::AT_ObjCBridgeRelated: |
9489 | handleObjCBridgeRelatedAttr(S, D, AL); |
9490 | break; |
9491 | case ParsedAttr::AT_ObjCDesignatedInitializer: |
9492 | handleObjCDesignatedInitializer(S, D, AL); |
9493 | break; |
9494 | case ParsedAttr::AT_ObjCRuntimeName: |
9495 | handleObjCRuntimeName(S, D, AL); |
9496 | break; |
9497 | case ParsedAttr::AT_ObjCBoxable: |
9498 | handleObjCBoxable(S, D, AL); |
9499 | break; |
9500 | case ParsedAttr::AT_NSErrorDomain: |
9501 | handleNSErrorDomain(S, D, Attr: AL); |
9502 | break; |
9503 | case ParsedAttr::AT_CFConsumed: |
9504 | case ParsedAttr::AT_NSConsumed: |
9505 | case ParsedAttr::AT_OSConsumed: |
9506 | S.AddXConsumedAttr(D, CI: AL, K: parsedAttrToRetainOwnershipKind(AL), |
9507 | /*IsTemplateInstantiation=*/false); |
9508 | break; |
9509 | case ParsedAttr::AT_OSReturnsRetainedOnZero: |
9510 | handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>( |
9511 | S, D, AL, isValidOSObjectOutParameter(D), |
9512 | diag::warn_ns_attribute_wrong_parameter_type, |
9513 | /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange()); |
9514 | break; |
9515 | case ParsedAttr::AT_OSReturnsRetainedOnNonZero: |
9516 | handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>( |
9517 | S, D, AL, isValidOSObjectOutParameter(D), |
9518 | diag::warn_ns_attribute_wrong_parameter_type, |
9519 | /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange()); |
9520 | break; |
9521 | case ParsedAttr::AT_NSReturnsAutoreleased: |
9522 | case ParsedAttr::AT_NSReturnsNotRetained: |
9523 | case ParsedAttr::AT_NSReturnsRetained: |
9524 | case ParsedAttr::AT_CFReturnsNotRetained: |
9525 | case ParsedAttr::AT_CFReturnsRetained: |
9526 | case ParsedAttr::AT_OSReturnsNotRetained: |
9527 | case ParsedAttr::AT_OSReturnsRetained: |
9528 | handleXReturnsXRetainedAttr(S, D, AL); |
9529 | break; |
9530 | case ParsedAttr::AT_WorkGroupSizeHint: |
9531 | handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL); |
9532 | break; |
9533 | case ParsedAttr::AT_ReqdWorkGroupSize: |
9534 | handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL); |
9535 | break; |
9536 | case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize: |
9537 | handleSubGroupSize(S, D, AL); |
9538 | break; |
9539 | case ParsedAttr::AT_VecTypeHint: |
9540 | handleVecTypeHint(S, D, AL); |
9541 | break; |
9542 | case ParsedAttr::AT_InitPriority: |
9543 | handleInitPriorityAttr(S, D, AL); |
9544 | break; |
9545 | case ParsedAttr::AT_Packed: |
9546 | handlePackedAttr(S, D, AL); |
9547 | break; |
9548 | case ParsedAttr::AT_PreferredName: |
9549 | handlePreferredName(S, D, AL); |
9550 | break; |
9551 | case ParsedAttr::AT_Section: |
9552 | handleSectionAttr(S, D, AL); |
9553 | break; |
9554 | case ParsedAttr::AT_CodeModel: |
9555 | handleCodeModelAttr(S, D, AL); |
9556 | break; |
9557 | case ParsedAttr::AT_RandomizeLayout: |
9558 | handleRandomizeLayoutAttr(S, D, AL); |
9559 | break; |
9560 | case ParsedAttr::AT_NoRandomizeLayout: |
9561 | handleNoRandomizeLayoutAttr(S, D, AL); |
9562 | break; |
9563 | case ParsedAttr::AT_CodeSeg: |
9564 | handleCodeSegAttr(S, D, AL); |
9565 | break; |
9566 | case ParsedAttr::AT_Target: |
9567 | handleTargetAttr(S, D, AL); |
9568 | break; |
9569 | case ParsedAttr::AT_TargetVersion: |
9570 | handleTargetVersionAttr(S, D, AL); |
9571 | break; |
9572 | case ParsedAttr::AT_TargetClones: |
9573 | handleTargetClonesAttr(S, D, AL); |
9574 | break; |
9575 | case ParsedAttr::AT_MinVectorWidth: |
9576 | handleMinVectorWidthAttr(S, D, AL); |
9577 | break; |
9578 | case ParsedAttr::AT_Unavailable: |
9579 | handleAttrWithMessage<UnavailableAttr>(S, D, AL); |
9580 | break; |
9581 | case ParsedAttr::AT_OMPAssume: |
9582 | handleOMPAssumeAttr(S, D, AL); |
9583 | break; |
9584 | case ParsedAttr::AT_ObjCDirect: |
9585 | handleObjCDirectAttr(S, D, AL); |
9586 | break; |
9587 | case ParsedAttr::AT_ObjCDirectMembers: |
9588 | handleObjCDirectMembersAttr(S, D, AL); |
9589 | handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL); |
9590 | break; |
9591 | case ParsedAttr::AT_ObjCExplicitProtocolImpl: |
9592 | handleObjCSuppresProtocolAttr(S, D, AL); |
9593 | break; |
9594 | case ParsedAttr::AT_Unused: |
9595 | handleUnusedAttr(S, D, AL); |
9596 | break; |
9597 | case ParsedAttr::AT_Visibility: |
9598 | handleVisibilityAttr(S, D, AL, isTypeVisibility: false); |
9599 | break; |
9600 | case ParsedAttr::AT_TypeVisibility: |
9601 | handleVisibilityAttr(S, D, AL, isTypeVisibility: true); |
9602 | break; |
9603 | case ParsedAttr::AT_WarnUnusedResult: |
9604 | handleWarnUnusedResult(S, D, AL); |
9605 | break; |
9606 | case ParsedAttr::AT_WeakRef: |
9607 | handleWeakRefAttr(S, D, AL); |
9608 | break; |
9609 | case ParsedAttr::AT_WeakImport: |
9610 | handleWeakImportAttr(S, D, AL); |
9611 | break; |
9612 | case ParsedAttr::AT_TransparentUnion: |
9613 | handleTransparentUnionAttr(S, D, AL); |
9614 | break; |
9615 | case ParsedAttr::AT_ObjCMethodFamily: |
9616 | handleObjCMethodFamilyAttr(S, D, AL); |
9617 | break; |
9618 | case ParsedAttr::AT_ObjCNSObject: |
9619 | handleObjCNSObject(S, D, AL); |
9620 | break; |
9621 | case ParsedAttr::AT_ObjCIndependentClass: |
9622 | handleObjCIndependentClass(S, D, AL); |
9623 | break; |
9624 | case ParsedAttr::AT_Blocks: |
9625 | handleBlocksAttr(S, D, AL); |
9626 | break; |
9627 | case ParsedAttr::AT_Sentinel: |
9628 | handleSentinelAttr(S, D, AL); |
9629 | break; |
9630 | case ParsedAttr::AT_Cleanup: |
9631 | handleCleanupAttr(S, D, AL); |
9632 | break; |
9633 | case ParsedAttr::AT_NoDebug: |
9634 | handleNoDebugAttr(S, D, AL); |
9635 | break; |
9636 | case ParsedAttr::AT_CmseNSEntry: |
9637 | handleCmseNSEntryAttr(S, D, AL); |
9638 | break; |
9639 | case ParsedAttr::AT_StdCall: |
9640 | case ParsedAttr::AT_CDecl: |
9641 | case ParsedAttr::AT_FastCall: |
9642 | case ParsedAttr::AT_ThisCall: |
9643 | case ParsedAttr::AT_Pascal: |
9644 | case ParsedAttr::AT_RegCall: |
9645 | case ParsedAttr::AT_SwiftCall: |
9646 | case ParsedAttr::AT_SwiftAsyncCall: |
9647 | case ParsedAttr::AT_VectorCall: |
9648 | case ParsedAttr::AT_MSABI: |
9649 | case ParsedAttr::AT_SysVABI: |
9650 | case ParsedAttr::AT_Pcs: |
9651 | case ParsedAttr::AT_IntelOclBicc: |
9652 | case ParsedAttr::AT_PreserveMost: |
9653 | case ParsedAttr::AT_PreserveAll: |
9654 | case ParsedAttr::AT_AArch64VectorPcs: |
9655 | case ParsedAttr::AT_AArch64SVEPcs: |
9656 | case ParsedAttr::AT_AMDGPUKernelCall: |
9657 | case ParsedAttr::AT_M68kRTD: |
9658 | case ParsedAttr::AT_PreserveNone: |
9659 | case ParsedAttr::AT_RISCVVectorCC: |
9660 | handleCallConvAttr(S, D, AL); |
9661 | break; |
9662 | case ParsedAttr::AT_Suppress: |
9663 | handleSuppressAttr(S, D, AL); |
9664 | break; |
9665 | case ParsedAttr::AT_Owner: |
9666 | case ParsedAttr::AT_Pointer: |
9667 | handleLifetimeCategoryAttr(S, D, AL); |
9668 | break; |
9669 | case ParsedAttr::AT_OpenCLAccess: |
9670 | handleOpenCLAccessAttr(S, D, AL); |
9671 | break; |
9672 | case ParsedAttr::AT_OpenCLNoSVM: |
9673 | handleOpenCLNoSVMAttr(S, D, AL); |
9674 | break; |
9675 | case ParsedAttr::AT_SwiftContext: |
9676 | S.AddParameterABIAttr(D, CI: AL, abi: ParameterABI::SwiftContext); |
9677 | break; |
9678 | case ParsedAttr::AT_SwiftAsyncContext: |
9679 | S.AddParameterABIAttr(D, CI: AL, abi: ParameterABI::SwiftAsyncContext); |
9680 | break; |
9681 | case ParsedAttr::AT_SwiftErrorResult: |
9682 | S.AddParameterABIAttr(D, CI: AL, abi: ParameterABI::SwiftErrorResult); |
9683 | break; |
9684 | case ParsedAttr::AT_SwiftIndirectResult: |
9685 | S.AddParameterABIAttr(D, CI: AL, abi: ParameterABI::SwiftIndirectResult); |
9686 | break; |
9687 | case ParsedAttr::AT_InternalLinkage: |
9688 | handleInternalLinkageAttr(S, D, AL); |
9689 | break; |
9690 | case ParsedAttr::AT_ZeroCallUsedRegs: |
9691 | handleZeroCallUsedRegsAttr(S, D, AL); |
9692 | break; |
9693 | case ParsedAttr::AT_FunctionReturnThunks: |
9694 | handleFunctionReturnThunksAttr(S, D, AL); |
9695 | break; |
9696 | case ParsedAttr::AT_NoMerge: |
9697 | handleNoMergeAttr(S, D, AL); |
9698 | break; |
9699 | case ParsedAttr::AT_NoUniqueAddress: |
9700 | handleNoUniqueAddressAttr(S, D, AL); |
9701 | break; |
9702 | |
9703 | case ParsedAttr::AT_AvailableOnlyInDefaultEvalMethod: |
9704 | handleAvailableOnlyInDefaultEvalMethod(S, D, AL); |
9705 | break; |
9706 | |
9707 | case ParsedAttr::AT_CountedBy: |
9708 | handleCountedByAttrField(S, D, AL); |
9709 | break; |
9710 | |
9711 | // Microsoft attributes: |
9712 | case ParsedAttr::AT_LayoutVersion: |
9713 | handleLayoutVersion(S, D, AL); |
9714 | break; |
9715 | case ParsedAttr::AT_Uuid: |
9716 | handleUuidAttr(S, D, AL); |
9717 | break; |
9718 | case ParsedAttr::AT_MSInheritance: |
9719 | handleMSInheritanceAttr(S, D, AL); |
9720 | break; |
9721 | case ParsedAttr::AT_Thread: |
9722 | handleDeclspecThreadAttr(S, D, AL); |
9723 | break; |
9724 | case ParsedAttr::AT_MSConstexpr: |
9725 | handleMSConstexprAttr(S, D, AL); |
9726 | break; |
9727 | |
9728 | // HLSL attributes: |
9729 | case ParsedAttr::AT_HLSLNumThreads: |
9730 | handleHLSLNumThreadsAttr(S, D, AL); |
9731 | break; |
9732 | case ParsedAttr::AT_HLSLSV_GroupIndex: |
9733 | handleSimpleAttribute<HLSLSV_GroupIndexAttr>(S, D, AL); |
9734 | break; |
9735 | case ParsedAttr::AT_HLSLSV_DispatchThreadID: |
9736 | handleHLSLSV_DispatchThreadIDAttr(S, D, AL); |
9737 | break; |
9738 | case ParsedAttr::AT_HLSLShader: |
9739 | handleHLSLShaderAttr(S, D, AL); |
9740 | break; |
9741 | case ParsedAttr::AT_HLSLResourceBinding: |
9742 | handleHLSLResourceBindingAttr(S, D, AL); |
9743 | break; |
9744 | case ParsedAttr::AT_HLSLParamModifier: |
9745 | handleHLSLParamModifierAttr(S, D, AL); |
9746 | break; |
9747 | |
9748 | case ParsedAttr::AT_AbiTag: |
9749 | handleAbiTagAttr(S, D, AL); |
9750 | break; |
9751 | case ParsedAttr::AT_CFGuard: |
9752 | handleCFGuardAttr(S, D, AL); |
9753 | break; |
9754 | |
9755 | // Thread safety attributes: |
9756 | case ParsedAttr::AT_AssertExclusiveLock: |
9757 | handleAssertExclusiveLockAttr(S, D, AL); |
9758 | break; |
9759 | case ParsedAttr::AT_AssertSharedLock: |
9760 | handleAssertSharedLockAttr(S, D, AL); |
9761 | break; |
9762 | case ParsedAttr::AT_PtGuardedVar: |
9763 | handlePtGuardedVarAttr(S, D, AL); |
9764 | break; |
9765 | case ParsedAttr::AT_NoSanitize: |
9766 | handleNoSanitizeAttr(S, D, AL); |
9767 | break; |
9768 | case ParsedAttr::AT_NoSanitizeSpecific: |
9769 | handleNoSanitizeSpecificAttr(S, D, AL); |
9770 | break; |
9771 | case ParsedAttr::AT_GuardedBy: |
9772 | handleGuardedByAttr(S, D, AL); |
9773 | break; |
9774 | case ParsedAttr::AT_PtGuardedBy: |
9775 | handlePtGuardedByAttr(S, D, AL); |
9776 | break; |
9777 | case ParsedAttr::AT_ExclusiveTrylockFunction: |
9778 | handleExclusiveTrylockFunctionAttr(S, D, AL); |
9779 | break; |
9780 | case ParsedAttr::AT_LockReturned: |
9781 | handleLockReturnedAttr(S, D, AL); |
9782 | break; |
9783 | case ParsedAttr::AT_LocksExcluded: |
9784 | handleLocksExcludedAttr(S, D, AL); |
9785 | break; |
9786 | case ParsedAttr::AT_SharedTrylockFunction: |
9787 | handleSharedTrylockFunctionAttr(S, D, AL); |
9788 | break; |
9789 | case ParsedAttr::AT_AcquiredBefore: |
9790 | handleAcquiredBeforeAttr(S, D, AL); |
9791 | break; |
9792 | case ParsedAttr::AT_AcquiredAfter: |
9793 | handleAcquiredAfterAttr(S, D, AL); |
9794 | break; |
9795 | |
9796 | // Capability analysis attributes. |
9797 | case ParsedAttr::AT_Capability: |
9798 | case ParsedAttr::AT_Lockable: |
9799 | handleCapabilityAttr(S, D, AL); |
9800 | break; |
9801 | case ParsedAttr::AT_RequiresCapability: |
9802 | handleRequiresCapabilityAttr(S, D, AL); |
9803 | break; |
9804 | |
9805 | case ParsedAttr::AT_AssertCapability: |
9806 | handleAssertCapabilityAttr(S, D, AL); |
9807 | break; |
9808 | case ParsedAttr::AT_AcquireCapability: |
9809 | handleAcquireCapabilityAttr(S, D, AL); |
9810 | break; |
9811 | case ParsedAttr::AT_ReleaseCapability: |
9812 | handleReleaseCapabilityAttr(S, D, AL); |
9813 | break; |
9814 | case ParsedAttr::AT_TryAcquireCapability: |
9815 | handleTryAcquireCapabilityAttr(S, D, AL); |
9816 | break; |
9817 | |
9818 | // Consumed analysis attributes. |
9819 | case ParsedAttr::AT_Consumable: |
9820 | handleConsumableAttr(S, D, AL); |
9821 | break; |
9822 | case ParsedAttr::AT_CallableWhen: |
9823 | handleCallableWhenAttr(S, D, AL); |
9824 | break; |
9825 | case ParsedAttr::AT_ParamTypestate: |
9826 | handleParamTypestateAttr(S, D, AL); |
9827 | break; |
9828 | case ParsedAttr::AT_ReturnTypestate: |
9829 | handleReturnTypestateAttr(S, D, AL); |
9830 | break; |
9831 | case ParsedAttr::AT_SetTypestate: |
9832 | handleSetTypestateAttr(S, D, AL); |
9833 | break; |
9834 | case ParsedAttr::AT_TestTypestate: |
9835 | handleTestTypestateAttr(S, D, AL); |
9836 | break; |
9837 | |
9838 | // Type safety attributes. |
9839 | case ParsedAttr::AT_ArgumentWithTypeTag: |
9840 | handleArgumentWithTypeTagAttr(S, D, AL); |
9841 | break; |
9842 | case ParsedAttr::AT_TypeTagForDatatype: |
9843 | handleTypeTagForDatatypeAttr(S, D, AL); |
9844 | break; |
9845 | |
9846 | // Swift attributes. |
9847 | case ParsedAttr::AT_SwiftAsyncName: |
9848 | handleSwiftAsyncName(S, D, AL); |
9849 | break; |
9850 | case ParsedAttr::AT_SwiftAttr: |
9851 | handleSwiftAttrAttr(S, D, AL); |
9852 | break; |
9853 | case ParsedAttr::AT_SwiftBridge: |
9854 | handleSwiftBridge(S, D, AL); |
9855 | break; |
9856 | case ParsedAttr::AT_SwiftError: |
9857 | handleSwiftError(S, D, AL); |
9858 | break; |
9859 | case ParsedAttr::AT_SwiftName: |
9860 | handleSwiftName(S, D, AL); |
9861 | break; |
9862 | case ParsedAttr::AT_SwiftNewType: |
9863 | handleSwiftNewType(S, D, AL); |
9864 | break; |
9865 | case ParsedAttr::AT_SwiftAsync: |
9866 | handleSwiftAsyncAttr(S, D, AL); |
9867 | break; |
9868 | case ParsedAttr::AT_SwiftAsyncError: |
9869 | handleSwiftAsyncError(S, D, AL); |
9870 | break; |
9871 | |
9872 | // XRay attributes. |
9873 | case ParsedAttr::AT_XRayLogArgs: |
9874 | handleXRayLogArgsAttr(S, D, AL); |
9875 | break; |
9876 | |
9877 | case ParsedAttr::AT_PatchableFunctionEntry: |
9878 | handlePatchableFunctionEntryAttr(S, D, AL); |
9879 | break; |
9880 | |
9881 | case ParsedAttr::AT_AlwaysDestroy: |
9882 | case ParsedAttr::AT_NoDestroy: |
9883 | handleDestroyAttr(S, D, A: AL); |
9884 | break; |
9885 | |
9886 | case ParsedAttr::AT_Uninitialized: |
9887 | handleUninitializedAttr(S, D, AL); |
9888 | break; |
9889 | |
9890 | case ParsedAttr::AT_ObjCExternallyRetained: |
9891 | handleObjCExternallyRetainedAttr(S, D, AL); |
9892 | break; |
9893 | |
9894 | case ParsedAttr::AT_MIGServerRoutine: |
9895 | handleMIGServerRoutineAttr(S, D, AL); |
9896 | break; |
9897 | |
9898 | case ParsedAttr::AT_MSAllocator: |
9899 | handleMSAllocatorAttr(S, D, AL); |
9900 | break; |
9901 | |
9902 | case ParsedAttr::AT_ArmBuiltinAlias: |
9903 | handleArmBuiltinAliasAttr(S, D, AL); |
9904 | break; |
9905 | |
9906 | case ParsedAttr::AT_ArmLocallyStreaming: |
9907 | handleSimpleAttribute<ArmLocallyStreamingAttr>(S, D, AL); |
9908 | break; |
9909 | |
9910 | case ParsedAttr::AT_ArmNew: |
9911 | handleArmNewAttr(S, D, AL); |
9912 | break; |
9913 | |
9914 | case ParsedAttr::AT_AcquireHandle: |
9915 | handleAcquireHandleAttr(S, D, AL); |
9916 | break; |
9917 | |
9918 | case ParsedAttr::AT_ReleaseHandle: |
9919 | handleHandleAttr<ReleaseHandleAttr>(S, D, AL); |
9920 | break; |
9921 | |
9922 | case ParsedAttr::AT_UnsafeBufferUsage: |
9923 | handleUnsafeBufferUsage<UnsafeBufferUsageAttr>(S, D, AL); |
9924 | break; |
9925 | |
9926 | case ParsedAttr::AT_UseHandle: |
9927 | handleHandleAttr<UseHandleAttr>(S, D, AL); |
9928 | break; |
9929 | |
9930 | case ParsedAttr::AT_EnforceTCB: |
9931 | handleEnforceTCBAttr<EnforceTCBAttr, EnforceTCBLeafAttr>(S, D, AL); |
9932 | break; |
9933 | |
9934 | case ParsedAttr::AT_EnforceTCBLeaf: |
9935 | handleEnforceTCBAttr<EnforceTCBLeafAttr, EnforceTCBAttr>(S, D, AL); |
9936 | break; |
9937 | |
9938 | case ParsedAttr::AT_BuiltinAlias: |
9939 | handleBuiltinAliasAttr(S, D, AL); |
9940 | break; |
9941 | |
9942 | case ParsedAttr::AT_PreferredType: |
9943 | handlePreferredTypeAttr(S, D, AL); |
9944 | break; |
9945 | |
9946 | case ParsedAttr::AT_UsingIfExists: |
9947 | handleSimpleAttribute<UsingIfExistsAttr>(S, D, AL); |
9948 | break; |
9949 | |
9950 | case ParsedAttr::AT_TypeNullable: |
9951 | handleNullableTypeAttr(S, D, AL); |
9952 | break; |
9953 | } |
9954 | } |
9955 | |
9956 | /// ProcessDeclAttributeList - Apply all the decl attributes in the specified |
9957 | /// attribute list to the specified decl, ignoring any type attributes. |
9958 | void Sema::ProcessDeclAttributeList( |
9959 | Scope *S, Decl *D, const ParsedAttributesView &AttrList, |
9960 | const ProcessDeclAttributeOptions &Options) { |
9961 | if (AttrList.empty()) |
9962 | return; |
9963 | |
9964 | for (const ParsedAttr &AL : AttrList) |
9965 | ProcessDeclAttribute(S&: *this, scope: S, D, AL, Options); |
9966 | |
9967 | // FIXME: We should be able to handle these cases in TableGen. |
9968 | // GCC accepts |
9969 | // static int a9 __attribute__((weakref)); |
9970 | // but that looks really pointless. We reject it. |
9971 | if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) { |
9972 | Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias) |
9973 | << cast<NamedDecl>(D); |
9974 | D->dropAttr<WeakRefAttr>(); |
9975 | return; |
9976 | } |
9977 | |
9978 | // FIXME: We should be able to handle this in TableGen as well. It would be |
9979 | // good to have a way to specify "these attributes must appear as a group", |
9980 | // for these. Additionally, it would be good to have a way to specify "these |
9981 | // attribute must never appear as a group" for attributes like cold and hot. |
9982 | if (!D->hasAttr<OpenCLKernelAttr>()) { |
9983 | // These attributes cannot be applied to a non-kernel function. |
9984 | if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) { |
9985 | // FIXME: This emits a different error message than |
9986 | // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction. |
9987 | Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; |
9988 | D->setInvalidDecl(); |
9989 | } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) { |
9990 | Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; |
9991 | D->setInvalidDecl(); |
9992 | } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) { |
9993 | Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; |
9994 | D->setInvalidDecl(); |
9995 | } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { |
9996 | Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; |
9997 | D->setInvalidDecl(); |
9998 | } else if (!D->hasAttr<CUDAGlobalAttr>()) { |
9999 | if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { |
10000 | Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
10001 | << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
10002 | D->setInvalidDecl(); |
10003 | } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) { |
10004 | Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
10005 | << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
10006 | D->setInvalidDecl(); |
10007 | } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) { |
10008 | Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
10009 | << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
10010 | D->setInvalidDecl(); |
10011 | } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) { |
10012 | Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
10013 | << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
10014 | D->setInvalidDecl(); |
10015 | } |
10016 | } |
10017 | } |
10018 | |
10019 | // Do this check after processing D's attributes because the attribute |
10020 | // objc_method_family can change whether the given method is in the init |
10021 | // family, and it can be applied after objc_designated_initializer. This is a |
10022 | // bit of a hack, but we need it to be compatible with versions of clang that |
10023 | // processed the attribute list in the wrong order. |
10024 | if (D->hasAttr<ObjCDesignatedInitializerAttr>() && |
10025 | cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) { |
10026 | Diag(D->getLocation(), diag::err_designated_init_attr_non_init); |
10027 | D->dropAttr<ObjCDesignatedInitializerAttr>(); |
10028 | } |
10029 | } |
10030 | |
10031 | // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr |
10032 | // attribute. |
10033 | void Sema::ProcessDeclAttributeDelayed(Decl *D, |
10034 | const ParsedAttributesView &AttrList) { |
10035 | for (const ParsedAttr &AL : AttrList) |
10036 | if (AL.getKind() == ParsedAttr::AT_TransparentUnion) { |
10037 | handleTransparentUnionAttr(S&: *this, D, AL); |
10038 | break; |
10039 | } |
10040 | |
10041 | // For BPFPreserveAccessIndexAttr, we want to populate the attributes |
10042 | // to fields and inner records as well. |
10043 | if (D && D->hasAttr<BPFPreserveAccessIndexAttr>()) |
10044 | handleBPFPreserveAIRecord(S&: *this, RD: cast<RecordDecl>(Val: D)); |
10045 | } |
10046 | |
10047 | // Annotation attributes are the only attributes allowed after an access |
10048 | // specifier. |
10049 | bool Sema::ProcessAccessDeclAttributeList( |
10050 | AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) { |
10051 | for (const ParsedAttr &AL : AttrList) { |
10052 | if (AL.getKind() == ParsedAttr::AT_Annotate) { |
10053 | ProcessDeclAttribute(*this, nullptr, ASDecl, AL, |
10054 | ProcessDeclAttributeOptions()); |
10055 | } else { |
10056 | Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec); |
10057 | return true; |
10058 | } |
10059 | } |
10060 | return false; |
10061 | } |
10062 | |
10063 | /// checkUnusedDeclAttributes - Check a list of attributes to see if it |
10064 | /// contains any decl attributes that we should warn about. |
10065 | static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) { |
10066 | for (const ParsedAttr &AL : A) { |
10067 | // Only warn if the attribute is an unignored, non-type attribute. |
10068 | if (AL.isUsedAsTypeAttr() || AL.isInvalid()) |
10069 | continue; |
10070 | if (AL.getKind() == ParsedAttr::IgnoredAttribute) |
10071 | continue; |
10072 | |
10073 | if (AL.getKind() == ParsedAttr::UnknownAttribute) { |
10074 | S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) |
10075 | << AL << AL.getRange(); |
10076 | } else { |
10077 | S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL |
10078 | << AL.getRange(); |
10079 | } |
10080 | } |
10081 | } |
10082 | |
10083 | /// checkUnusedDeclAttributes - Given a declarator which is not being |
10084 | /// used to build a declaration, complain about any decl attributes |
10085 | /// which might be lying around on it. |
10086 | void Sema::checkUnusedDeclAttributes(Declarator &D) { |
10087 | ::checkUnusedDeclAttributes(S&: *this, A: D.getDeclarationAttributes()); |
10088 | ::checkUnusedDeclAttributes(S&: *this, A: D.getDeclSpec().getAttributes()); |
10089 | ::checkUnusedDeclAttributes(S&: *this, A: D.getAttributes()); |
10090 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) |
10091 | ::checkUnusedDeclAttributes(S&: *this, A: D.getTypeObject(i).getAttrs()); |
10092 | } |
10093 | |
10094 | /// DeclClonePragmaWeak - clone existing decl (maybe definition), |
10095 | /// \#pragma weak needs a non-definition decl and source may not have one. |
10096 | NamedDecl *Sema::DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II, |
10097 | SourceLocation Loc) { |
10098 | assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND)); |
10099 | NamedDecl *NewD = nullptr; |
10100 | if (auto *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
10101 | FunctionDecl *NewFD; |
10102 | // FIXME: Missing call to CheckFunctionDeclaration(). |
10103 | // FIXME: Mangling? |
10104 | // FIXME: Is the qualifier info correct? |
10105 | // FIXME: Is the DeclContext correct? |
10106 | NewFD = FunctionDecl::Create( |
10107 | FD->getASTContext(), FD->getDeclContext(), Loc, Loc, |
10108 | DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None, |
10109 | getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/, |
10110 | FD->hasPrototype(), ConstexprSpecKind::Unspecified, |
10111 | FD->getTrailingRequiresClause()); |
10112 | NewD = NewFD; |
10113 | |
10114 | if (FD->getQualifier()) |
10115 | NewFD->setQualifierInfo(FD->getQualifierLoc()); |
10116 | |
10117 | // Fake up parameter variables; they are declared as if this were |
10118 | // a typedef. |
10119 | QualType FDTy = FD->getType(); |
10120 | if (const auto *FT = FDTy->getAs<FunctionProtoType>()) { |
10121 | SmallVector<ParmVarDecl*, 16> Params; |
10122 | for (const auto &AI : FT->param_types()) { |
10123 | ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI); |
10124 | Param->setScopeInfo(0, Params.size()); |
10125 | Params.push_back(Param); |
10126 | } |
10127 | NewFD->setParams(Params); |
10128 | } |
10129 | } else if (auto *VD = dyn_cast<VarDecl>(Val: ND)) { |
10130 | NewD = VarDecl::Create(C&: VD->getASTContext(), DC: VD->getDeclContext(), |
10131 | StartLoc: VD->getInnerLocStart(), IdLoc: VD->getLocation(), Id: II, |
10132 | T: VD->getType(), TInfo: VD->getTypeSourceInfo(), |
10133 | S: VD->getStorageClass()); |
10134 | if (VD->getQualifier()) |
10135 | cast<VarDecl>(Val: NewD)->setQualifierInfo(VD->getQualifierLoc()); |
10136 | } |
10137 | return NewD; |
10138 | } |
10139 | |
10140 | /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak |
10141 | /// applied to it, possibly with an alias. |
10142 | void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W) { |
10143 | if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) |
10144 | IdentifierInfo *NDId = ND->getIdentifier(); |
10145 | NamedDecl *NewD = DeclClonePragmaWeak(ND, II: W.getAlias(), Loc: W.getLocation()); |
10146 | NewD->addAttr( |
10147 | AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation())); |
10148 | NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation())); |
10149 | WeakTopLevelDecl.push_back(NewD); |
10150 | // FIXME: "hideous" code from Sema::LazilyCreateBuiltin |
10151 | // to insert Decl at TU scope, sorry. |
10152 | DeclContext *SavedContext = CurContext; |
10153 | CurContext = Context.getTranslationUnitDecl(); |
10154 | NewD->setDeclContext(CurContext); |
10155 | NewD->setLexicalDeclContext(CurContext); |
10156 | PushOnScopeChains(D: NewD, S); |
10157 | CurContext = SavedContext; |
10158 | } else { // just add weak to existing |
10159 | ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation())); |
10160 | } |
10161 | } |
10162 | |
10163 | void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { |
10164 | // It's valid to "forward-declare" #pragma weak, in which case we |
10165 | // have to do this. |
10166 | LoadExternalWeakUndeclaredIdentifiers(); |
10167 | if (WeakUndeclaredIdentifiers.empty()) |
10168 | return; |
10169 | NamedDecl *ND = nullptr; |
10170 | if (auto *VD = dyn_cast<VarDecl>(Val: D)) |
10171 | if (VD->isExternC()) |
10172 | ND = VD; |
10173 | if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
10174 | if (FD->isExternC()) |
10175 | ND = FD; |
10176 | if (!ND) |
10177 | return; |
10178 | if (IdentifierInfo *Id = ND->getIdentifier()) { |
10179 | auto I = WeakUndeclaredIdentifiers.find(Key: Id); |
10180 | if (I != WeakUndeclaredIdentifiers.end()) { |
10181 | auto &WeakInfos = I->second; |
10182 | for (const auto &W : WeakInfos) |
10183 | DeclApplyPragmaWeak(S, ND, W); |
10184 | std::remove_reference_t<decltype(WeakInfos)> EmptyWeakInfos; |
10185 | WeakInfos.swap(RHS&: EmptyWeakInfos); |
10186 | } |
10187 | } |
10188 | } |
10189 | |
10190 | /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in |
10191 | /// it, apply them to D. This is a bit tricky because PD can have attributes |
10192 | /// specified in many different places, and we need to find and apply them all. |
10193 | void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { |
10194 | // Ordering of attributes can be important, so we take care to process |
10195 | // attributes in the order in which they appeared in the source code. |
10196 | |
10197 | // First, process attributes that appeared on the declaration itself (but |
10198 | // only if they don't have the legacy behavior of "sliding" to the DeclSepc). |
10199 | ParsedAttributesView NonSlidingAttrs; |
10200 | for (ParsedAttr &AL : PD.getDeclarationAttributes()) { |
10201 | if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) { |
10202 | // Skip processing the attribute, but do check if it appertains to the |
10203 | // declaration. This is needed for the `MatrixType` attribute, which, |
10204 | // despite being a type attribute, defines a `SubjectList` that only |
10205 | // allows it to be used on typedef declarations. |
10206 | AL.diagnoseAppertainsTo(S&: *this, D); |
10207 | } else { |
10208 | NonSlidingAttrs.addAtEnd(newAttr: &AL); |
10209 | } |
10210 | } |
10211 | ProcessDeclAttributeList(S, D, AttrList: NonSlidingAttrs); |
10212 | |
10213 | // Apply decl attributes from the DeclSpec if present. |
10214 | if (!PD.getDeclSpec().getAttributes().empty()) { |
10215 | ProcessDeclAttributeList(S, D, AttrList: PD.getDeclSpec().getAttributes(), |
10216 | Options: ProcessDeclAttributeOptions() |
10217 | .WithIncludeCXX11Attributes(Val: false) |
10218 | .WithIgnoreTypeAttributes(Val: true)); |
10219 | } |
10220 | |
10221 | // Walk the declarator structure, applying decl attributes that were in a type |
10222 | // position to the decl itself. This handles cases like: |
10223 | // int *__attr__(x)** D; |
10224 | // when X is a decl attribute. |
10225 | for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) { |
10226 | ProcessDeclAttributeList(S, D, AttrList: PD.getTypeObject(i).getAttrs(), |
10227 | Options: ProcessDeclAttributeOptions() |
10228 | .WithIncludeCXX11Attributes(Val: false) |
10229 | .WithIgnoreTypeAttributes(Val: true)); |
10230 | } |
10231 | |
10232 | // Finally, apply any attributes on the decl itself. |
10233 | ProcessDeclAttributeList(S, D, AttrList: PD.getAttributes()); |
10234 | |
10235 | // Apply additional attributes specified by '#pragma clang attribute'. |
10236 | AddPragmaAttributes(S, D); |
10237 | |
10238 | // Look for API notes that map to attributes. |
10239 | ProcessAPINotes(D); |
10240 | } |
10241 | |
10242 | /// Is the given declaration allowed to use a forbidden type? |
10243 | /// If so, it'll still be annotated with an attribute that makes it |
10244 | /// illegal to actually use. |
10245 | static bool isForbiddenTypeAllowed(Sema &S, Decl *D, |
10246 | const DelayedDiagnostic &diag, |
10247 | UnavailableAttr::ImplicitReason &reason) { |
10248 | // Private ivars are always okay. Unfortunately, people don't |
10249 | // always properly make their ivars private, even in system headers. |
10250 | // Plus we need to make fields okay, too. |
10251 | if (!isa<FieldDecl>(Val: D) && !isa<ObjCPropertyDecl>(Val: D) && |
10252 | !isa<FunctionDecl>(Val: D)) |
10253 | return false; |
10254 | |
10255 | // Silently accept unsupported uses of __weak in both user and system |
10256 | // declarations when it's been disabled, for ease of integration with |
10257 | // -fno-objc-arc files. We do have to take some care against attempts |
10258 | // to define such things; for now, we've only done that for ivars |
10259 | // and properties. |
10260 | if ((isa<ObjCIvarDecl>(Val: D) || isa<ObjCPropertyDecl>(Val: D))) { |
10261 | if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled || |
10262 | diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) { |
10263 | reason = UnavailableAttr::IR_ForbiddenWeak; |
10264 | return true; |
10265 | } |
10266 | } |
10267 | |
10268 | // Allow all sorts of things in system headers. |
10269 | if (S.Context.getSourceManager().isInSystemHeader(Loc: D->getLocation())) { |
10270 | // Currently, all the failures dealt with this way are due to ARC |
10271 | // restrictions. |
10272 | reason = UnavailableAttr::IR_ARCForbiddenType; |
10273 | return true; |
10274 | } |
10275 | |
10276 | return false; |
10277 | } |
10278 | |
10279 | /// Handle a delayed forbidden-type diagnostic. |
10280 | static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, |
10281 | Decl *D) { |
10282 | auto Reason = UnavailableAttr::IR_None; |
10283 | if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) { |
10284 | assert(Reason && "didn't set reason?" ); |
10285 | D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "" , Reason, DD.Loc)); |
10286 | return; |
10287 | } |
10288 | if (S.getLangOpts().ObjCAutoRefCount) |
10289 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
10290 | // FIXME: we may want to suppress diagnostics for all |
10291 | // kind of forbidden type messages on unavailable functions. |
10292 | if (FD->hasAttr<UnavailableAttr>() && |
10293 | DD.getForbiddenTypeDiagnostic() == |
10294 | diag::err_arc_array_param_no_ownership) { |
10295 | DD.Triggered = true; |
10296 | return; |
10297 | } |
10298 | } |
10299 | |
10300 | S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic()) |
10301 | << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument(); |
10302 | DD.Triggered = true; |
10303 | } |
10304 | |
10305 | |
10306 | void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { |
10307 | assert(DelayedDiagnostics.getCurrentPool()); |
10308 | DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); |
10309 | DelayedDiagnostics.popWithoutEmitting(state); |
10310 | |
10311 | // When delaying diagnostics to run in the context of a parsed |
10312 | // declaration, we only want to actually emit anything if parsing |
10313 | // succeeds. |
10314 | if (!decl) return; |
10315 | |
10316 | // We emit all the active diagnostics in this pool or any of its |
10317 | // parents. In general, we'll get one pool for the decl spec |
10318 | // and a child pool for each declarator; in a decl group like: |
10319 | // deprecated_typedef foo, *bar, baz(); |
10320 | // only the declarator pops will be passed decls. This is correct; |
10321 | // we really do need to consider delayed diagnostics from the decl spec |
10322 | // for each of the different declarations. |
10323 | const DelayedDiagnosticPool *pool = &poppedPool; |
10324 | do { |
10325 | bool AnyAccessFailures = false; |
10326 | for (DelayedDiagnosticPool::pool_iterator |
10327 | i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { |
10328 | // This const_cast is a bit lame. Really, Triggered should be mutable. |
10329 | DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i); |
10330 | if (diag.Triggered) |
10331 | continue; |
10332 | |
10333 | switch (diag.Kind) { |
10334 | case DelayedDiagnostic::Availability: |
10335 | // Don't bother giving deprecation/unavailable diagnostics if |
10336 | // the decl is invalid. |
10337 | if (!decl->isInvalidDecl()) |
10338 | handleDelayedAvailabilityCheck(DD&: diag, Ctx: decl); |
10339 | break; |
10340 | |
10341 | case DelayedDiagnostic::Access: |
10342 | // Only produce one access control diagnostic for a structured binding |
10343 | // declaration: we don't need to tell the user that all the fields are |
10344 | // inaccessible one at a time. |
10345 | if (AnyAccessFailures && isa<DecompositionDecl>(Val: decl)) |
10346 | continue; |
10347 | HandleDelayedAccessCheck(DD&: diag, Ctx: decl); |
10348 | if (diag.Triggered) |
10349 | AnyAccessFailures = true; |
10350 | break; |
10351 | |
10352 | case DelayedDiagnostic::ForbiddenType: |
10353 | handleDelayedForbiddenType(S&: *this, DD&: diag, D: decl); |
10354 | break; |
10355 | } |
10356 | } |
10357 | } while ((pool = pool->getParent())); |
10358 | } |
10359 | |
10360 | /// Given a set of delayed diagnostics, re-emit them as if they had |
10361 | /// been delayed in the current context instead of in the given pool. |
10362 | /// Essentially, this just moves them to the current pool. |
10363 | void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { |
10364 | DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); |
10365 | assert(curPool && "re-emitting in undelayed context not supported" ); |
10366 | curPool->steal(pool); |
10367 | } |
10368 | |