1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CheckExprLifetime.h"
14#include "TreeTransform.h"
15#include "UsedDeclVisitor.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTDiagnostic.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/ASTMutationListener.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/DynamicRecursiveASTVisitor.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExprObjC.h"
30#include "clang/AST/MangleNumberingContext.h"
31#include "clang/AST/OperationKinds.h"
32#include "clang/AST/Type.h"
33#include "clang/AST/TypeLoc.h"
34#include "clang/Basic/Builtins.h"
35#include "clang/Basic/DiagnosticSema.h"
36#include "clang/Basic/PartialDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/Specifiers.h"
39#include "clang/Basic/TargetInfo.h"
40#include "clang/Basic/TypeTraits.h"
41#include "clang/Lex/LiteralSupport.h"
42#include "clang/Lex/Preprocessor.h"
43#include "clang/Sema/AnalysisBasedWarnings.h"
44#include "clang/Sema/DeclSpec.h"
45#include "clang/Sema/DelayedDiagnostic.h"
46#include "clang/Sema/Designator.h"
47#include "clang/Sema/EnterExpressionEvaluationContext.h"
48#include "clang/Sema/Initialization.h"
49#include "clang/Sema/Lookup.h"
50#include "clang/Sema/Overload.h"
51#include "clang/Sema/ParsedTemplate.h"
52#include "clang/Sema/Scope.h"
53#include "clang/Sema/ScopeInfo.h"
54#include "clang/Sema/SemaCUDA.h"
55#include "clang/Sema/SemaFixItUtils.h"
56#include "clang/Sema/SemaHLSL.h"
57#include "clang/Sema/SemaInternal.h"
58#include "clang/Sema/SemaObjC.h"
59#include "clang/Sema/SemaOpenMP.h"
60#include "clang/Sema/SemaPseudoObject.h"
61#include "clang/Sema/Template.h"
62#include "llvm/ADT/STLExtras.h"
63#include "llvm/ADT/StringExtras.h"
64#include "llvm/Support/ConvertUTF.h"
65#include "llvm/Support/SaveAndRestore.h"
66#include "llvm/Support/TimeProfiler.h"
67#include "llvm/Support/TypeSize.h"
68#include <optional>
69
70using namespace clang;
71using namespace sema;
72
73bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
74 // See if this is an auto-typed variable whose initializer we are parsing.
75 if (ParsingInitForAutoVars.count(D))
76 return false;
77
78 // See if this is a deleted function.
79 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) {
80 if (FD->isDeleted())
81 return false;
82
83 // If the function has a deduced return type, and we can't deduce it,
84 // then we can't use it either.
85 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
86 DeduceReturnType(FD, Loc: SourceLocation(), /*Diagnose*/ false))
87 return false;
88
89 // See if this is an aligned allocation/deallocation function that is
90 // unavailable.
91 if (TreatUnavailableAsInvalid &&
92 isUnavailableAlignedAllocationFunction(FD: *FD))
93 return false;
94 }
95
96 // See if this function is unavailable.
97 if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
98 cast<Decl>(Val: CurContext)->getAvailability() != AR_Unavailable)
99 return false;
100
101 if (isa<UnresolvedUsingIfExistsDecl>(Val: D))
102 return false;
103
104 return true;
105}
106
107static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
108 // Warn if this is used but marked unused.
109 if (const auto *A = D->getAttr<UnusedAttr>()) {
110 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
111 // should diagnose them.
112 if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
113 A->getSemanticSpelling() != UnusedAttr::C23_maybe_unused) {
114 const Decl *DC = cast_or_null<Decl>(Val: S.ObjC().getCurObjCLexicalContext());
115 if (DC && !DC->hasAttr<UnusedAttr>())
116 S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
117 }
118 }
119}
120
121void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
122 assert(Decl && Decl->isDeleted());
123
124 if (Decl->isDefaulted()) {
125 // If the method was explicitly defaulted, point at that declaration.
126 if (!Decl->isImplicit())
127 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
128
129 // Try to diagnose why this special member function was implicitly
130 // deleted. This might fail, if that reason no longer applies.
131 DiagnoseDeletedDefaultedFunction(FD: Decl);
132 return;
133 }
134
135 auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: Decl);
136 if (Ctor && Ctor->isInheritingConstructor())
137 return NoteDeletedInheritingConstructor(CD: Ctor);
138
139 Diag(Decl->getLocation(), diag::note_availability_specified_here)
140 << Decl << 1;
141}
142
143/// Determine whether a FunctionDecl was ever declared with an
144/// explicit storage class.
145static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
146 for (auto *I : D->redecls()) {
147 if (I->getStorageClass() != SC_None)
148 return true;
149 }
150 return false;
151}
152
153/// Check whether we're in an extern inline function and referring to a
154/// variable or function with internal linkage (C11 6.7.4p3).
155///
156/// This is only a warning because we used to silently accept this code, but
157/// in many cases it will not behave correctly. This is not enabled in C++ mode
158/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
159/// and so while there may still be user mistakes, most of the time we can't
160/// prove that there are errors.
161static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
162 const NamedDecl *D,
163 SourceLocation Loc) {
164 // This is disabled under C++; there are too many ways for this to fire in
165 // contexts where the warning is a false positive, or where it is technically
166 // correct but benign.
167 if (S.getLangOpts().CPlusPlus)
168 return;
169
170 // Check if this is an inlined function or method.
171 FunctionDecl *Current = S.getCurFunctionDecl();
172 if (!Current)
173 return;
174 if (!Current->isInlined())
175 return;
176 if (!Current->isExternallyVisible())
177 return;
178
179 // Check if the decl has internal linkage.
180 if (D->getFormalLinkage() != Linkage::Internal)
181 return;
182
183 // Downgrade from ExtWarn to Extension if
184 // (1) the supposedly external inline function is in the main file,
185 // and probably won't be included anywhere else.
186 // (2) the thing we're referencing is a pure function.
187 // (3) the thing we're referencing is another inline function.
188 // This last can give us false negatives, but it's better than warning on
189 // wrappers for simple C library functions.
190 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(Val: D);
191 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
192 if (!DowngradeWarning && UsedFn)
193 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
194
195 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
196 : diag::ext_internal_in_extern_inline)
197 << /*IsVar=*/!UsedFn << D;
198
199 S.MaybeSuggestAddingStaticToDecl(D: Current);
200
201 S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
202 << D;
203}
204
205void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
206 const FunctionDecl *First = Cur->getFirstDecl();
207
208 // Suggest "static" on the function, if possible.
209 if (!hasAnyExplicitStorageClass(D: First)) {
210 SourceLocation DeclBegin = First->getSourceRange().getBegin();
211 Diag(DeclBegin, diag::note_convert_inline_to_static)
212 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
213 }
214}
215
216bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
217 const ObjCInterfaceDecl *UnknownObjCClass,
218 bool ObjCPropertyAccess,
219 bool AvoidPartialAvailabilityChecks,
220 ObjCInterfaceDecl *ClassReceiver,
221 bool SkipTrailingRequiresClause) {
222 SourceLocation Loc = Locs.front();
223 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(Val: D)) {
224 // If there were any diagnostics suppressed by template argument deduction,
225 // emit them now.
226 auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
227 if (Pos != SuppressedDiagnostics.end()) {
228 for (const auto &[DiagLoc, PD] : Pos->second) {
229 DiagnosticBuilder Builder(Diags.Report(DiagLoc, PD.getDiagID()));
230 PD.Emit(Builder);
231 }
232 // Clear out the list of suppressed diagnostics, so that we don't emit
233 // them again for this specialization. However, we don't obsolete this
234 // entry from the table, because we want to avoid ever emitting these
235 // diagnostics again.
236 Pos->second.clear();
237 }
238
239 // C++ [basic.start.main]p3:
240 // The function 'main' shall not be used within a program.
241 if (cast<FunctionDecl>(D)->isMain())
242 Diag(Loc, diag::ext_main_used);
243
244 diagnoseUnavailableAlignedAllocation(FD: *cast<FunctionDecl>(Val: D), Loc);
245 }
246
247 // See if this is an auto-typed variable whose initializer we are parsing.
248 if (ParsingInitForAutoVars.count(D)) {
249 if (isa<BindingDecl>(Val: D)) {
250 Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
251 << D->getDeclName();
252 } else {
253 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
254 << diag::ParsingInitFor::Var << D->getDeclName()
255 << cast<VarDecl>(D)->getType();
256 }
257 return true;
258 }
259
260 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) {
261 // See if this is a deleted function.
262 if (FD->isDeleted()) {
263 auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: FD);
264 if (Ctor && Ctor->isInheritingConstructor())
265 Diag(Loc, diag::err_deleted_inherited_ctor_use)
266 << Ctor->getParent()
267 << Ctor->getInheritedConstructor().getConstructor()->getParent();
268 else {
269 StringLiteral *Msg = FD->getDeletedMessage();
270 Diag(Loc, diag::err_deleted_function_use)
271 << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef());
272 }
273 NoteDeletedFunction(Decl: FD);
274 return true;
275 }
276
277 // [expr.prim.id]p4
278 // A program that refers explicitly or implicitly to a function with a
279 // trailing requires-clause whose constraint-expression is not satisfied,
280 // other than to declare it, is ill-formed. [...]
281 //
282 // See if this is a function with constraints that need to be satisfied.
283 // Check this before deducing the return type, as it might instantiate the
284 // definition.
285 if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
286 ConstraintSatisfaction Satisfaction;
287 if (CheckFunctionConstraints(FD, Satisfaction, UsageLoc: Loc,
288 /*ForOverloadResolution*/ true))
289 // A diagnostic will have already been generated (non-constant
290 // constraint expression, for example)
291 return true;
292 if (!Satisfaction.IsSatisfied) {
293 Diag(Loc,
294 diag::err_reference_to_function_with_unsatisfied_constraints)
295 << D;
296 DiagnoseUnsatisfiedConstraint(Satisfaction);
297 return true;
298 }
299 }
300
301 // If the function has a deduced return type, and we can't deduce it,
302 // then we can't use it either.
303 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
304 DeduceReturnType(FD, Loc))
305 return true;
306
307 if (getLangOpts().CUDA && !CUDA().CheckCall(Loc, Callee: FD))
308 return true;
309
310 }
311
312 if (auto *Concept = dyn_cast<ConceptDecl>(Val: D);
313 Concept && CheckConceptUseInDefinition(Concept, Loc))
314 return true;
315
316 if (auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) {
317 // Lambdas are only default-constructible or assignable in C++2a onwards.
318 if (MD->getParent()->isLambda() &&
319 ((isa<CXXConstructorDecl>(Val: MD) &&
320 cast<CXXConstructorDecl>(Val: MD)->isDefaultConstructor()) ||
321 MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
322 Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
323 << !isa<CXXConstructorDecl>(MD);
324 }
325 }
326
327 auto getReferencedObjCProp = [](const NamedDecl *D) ->
328 const ObjCPropertyDecl * {
329 if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D))
330 return MD->findPropertyDecl();
331 return nullptr;
332 };
333 if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
334 if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
335 return true;
336 } else if (diagnoseArgIndependentDiagnoseIfAttrs(ND: D, Loc)) {
337 return true;
338 }
339
340 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
341 // Only the variables omp_in and omp_out are allowed in the combiner.
342 // Only the variables omp_priv and omp_orig are allowed in the
343 // initializer-clause.
344 auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Val: CurContext);
345 if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
346 isa<VarDecl>(Val: D)) {
347 Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
348 << getCurFunction()->HasOMPDeclareReductionCombiner;
349 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
350 return true;
351 }
352
353 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
354 // List-items in map clauses on this construct may only refer to the declared
355 // variable var and entities that could be referenced by a procedure defined
356 // at the same location.
357 // [OpenMP 5.2] Also allow iterator declared variables.
358 if (LangOpts.OpenMP && isa<VarDecl>(Val: D) &&
359 !OpenMP().isOpenMPDeclareMapperVarDeclAllowed(VD: cast<VarDecl>(Val: D))) {
360 Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
361 << OpenMP().getOpenMPDeclareMapperVarName();
362 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
363 return true;
364 }
365
366 if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(Val: D)) {
367 Diag(Loc, diag::err_use_of_empty_using_if_exists);
368 Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
369 return true;
370 }
371
372 DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
373 AvoidPartialAvailabilityChecks, ClassReceiver);
374
375 DiagnoseUnusedOfDecl(S&: *this, D, Loc);
376
377 diagnoseUseOfInternalDeclInInlineFunction(S&: *this, D, Loc);
378
379 if (D->hasAttr<AvailableOnlyInDefaultEvalMethodAttr>()) {
380 if (getLangOpts().getFPEvalMethod() !=
381 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine &&
382 PP.getLastFPEvalPragmaLocation().isValid() &&
383 PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
384 Diag(D->getLocation(),
385 diag::err_type_available_only_in_default_eval_method)
386 << D->getName();
387 }
388
389 if (auto *VD = dyn_cast<ValueDecl>(Val: D))
390 checkTypeSupport(Ty: VD->getType(), Loc, D: VD);
391
392 if (LangOpts.SYCLIsDevice ||
393 (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) {
394 if (!Context.getTargetInfo().isTLSSupported())
395 if (const auto *VD = dyn_cast<VarDecl>(D))
396 if (VD->getTLSKind() != VarDecl::TLS_None)
397 targetDiag(*Locs.begin(), diag::err_thread_unsupported);
398 }
399
400 return false;
401}
402
403void Sema::DiagnoseSentinelCalls(const NamedDecl *D, SourceLocation Loc,
404 ArrayRef<Expr *> Args) {
405 const SentinelAttr *Attr = D->getAttr<SentinelAttr>();
406 if (!Attr)
407 return;
408
409 // The number of formal parameters of the declaration.
410 unsigned NumFormalParams;
411
412 // The kind of declaration. This is also an index into a %select in
413 // the diagnostic.
414 enum { CK_Function, CK_Method, CK_Block } CalleeKind;
415
416 if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) {
417 NumFormalParams = MD->param_size();
418 CalleeKind = CK_Method;
419 } else if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
420 NumFormalParams = FD->param_size();
421 CalleeKind = CK_Function;
422 } else if (const auto *VD = dyn_cast<VarDecl>(Val: D)) {
423 QualType Ty = VD->getType();
424 const FunctionType *Fn = nullptr;
425 if (const auto *PtrTy = Ty->getAs<PointerType>()) {
426 Fn = PtrTy->getPointeeType()->getAs<FunctionType>();
427 if (!Fn)
428 return;
429 CalleeKind = CK_Function;
430 } else if (const auto *PtrTy = Ty->getAs<BlockPointerType>()) {
431 Fn = PtrTy->getPointeeType()->castAs<FunctionType>();
432 CalleeKind = CK_Block;
433 } else {
434 return;
435 }
436
437 if (const auto *proto = dyn_cast<FunctionProtoType>(Val: Fn))
438 NumFormalParams = proto->getNumParams();
439 else
440 NumFormalParams = 0;
441 } else {
442 return;
443 }
444
445 // "NullPos" is the number of formal parameters at the end which
446 // effectively count as part of the variadic arguments. This is
447 // useful if you would prefer to not have *any* formal parameters,
448 // but the language forces you to have at least one.
449 unsigned NullPos = Attr->getNullPos();
450 assert((NullPos == 0 || NullPos == 1) && "invalid null position on sentinel");
451 NumFormalParams = (NullPos > NumFormalParams ? 0 : NumFormalParams - NullPos);
452
453 // The number of arguments which should follow the sentinel.
454 unsigned NumArgsAfterSentinel = Attr->getSentinel();
455
456 // If there aren't enough arguments for all the formal parameters,
457 // the sentinel, and the args after the sentinel, complain.
458 if (Args.size() < NumFormalParams + NumArgsAfterSentinel + 1) {
459 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
460 Diag(D->getLocation(), diag::note_sentinel_here) << int(CalleeKind);
461 return;
462 }
463
464 // Otherwise, find the sentinel expression.
465 const Expr *SentinelExpr = Args[Args.size() - NumArgsAfterSentinel - 1];
466 if (!SentinelExpr)
467 return;
468 if (SentinelExpr->isValueDependent())
469 return;
470 if (Context.isSentinelNullExpr(E: SentinelExpr))
471 return;
472
473 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
474 // or 'NULL' if those are actually defined in the context. Only use
475 // 'nil' for ObjC methods, where it's much more likely that the
476 // variadic arguments form a list of object pointers.
477 SourceLocation MissingNilLoc = getLocForEndOfToken(Loc: SentinelExpr->getEndLoc());
478 std::string NullValue;
479 if (CalleeKind == CK_Method && PP.isMacroDefined(Id: "nil"))
480 NullValue = "nil";
481 else if (getLangOpts().CPlusPlus11)
482 NullValue = "nullptr";
483 else if (PP.isMacroDefined(Id: "NULL"))
484 NullValue = "NULL";
485 else
486 NullValue = "(void*) 0";
487
488 if (MissingNilLoc.isInvalid())
489 Diag(Loc, diag::warn_missing_sentinel) << int(CalleeKind);
490 else
491 Diag(MissingNilLoc, diag::warn_missing_sentinel)
492 << int(CalleeKind)
493 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
494 Diag(D->getLocation(), diag::note_sentinel_here)
495 << int(CalleeKind) << Attr->getRange();
496}
497
498SourceRange Sema::getExprRange(Expr *E) const {
499 return E ? E->getSourceRange() : SourceRange();
500}
501
502//===----------------------------------------------------------------------===//
503// Standard Promotions and Conversions
504//===----------------------------------------------------------------------===//
505
506/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
507ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
508 // Handle any placeholder expressions which made it here.
509 if (E->hasPlaceholderType()) {
510 ExprResult result = CheckPlaceholderExpr(E);
511 if (result.isInvalid()) return ExprError();
512 E = result.get();
513 }
514
515 QualType Ty = E->getType();
516 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
517
518 if (Ty->isFunctionType()) {
519 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenCasts()))
520 if (auto *FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl()))
521 if (!checkAddressOfFunctionIsAvailable(Function: FD, Complain: Diagnose, Loc: E->getExprLoc()))
522 return ExprError();
523
524 E = ImpCastExprToType(E, Type: Context.getPointerType(T: Ty),
525 CK: CK_FunctionToPointerDecay).get();
526 } else if (Ty->isArrayType()) {
527 // In C90 mode, arrays only promote to pointers if the array expression is
528 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
529 // type 'array of type' is converted to an expression that has type 'pointer
530 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
531 // that has type 'array of type' ...". The relevant change is "an lvalue"
532 // (C90) to "an expression" (C99).
533 //
534 // C++ 4.2p1:
535 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
536 // T" can be converted to an rvalue of type "pointer to T".
537 //
538 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
539 ExprResult Res = ImpCastExprToType(E, Type: Context.getArrayDecayedType(T: Ty),
540 CK: CK_ArrayToPointerDecay);
541 if (Res.isInvalid())
542 return ExprError();
543 E = Res.get();
544 }
545 }
546 return E;
547}
548
549static void CheckForNullPointerDereference(Sema &S, Expr *E) {
550 // Check to see if we are dereferencing a null pointer. If so,
551 // and if not volatile-qualified, this is undefined behavior that the
552 // optimizer will delete, so warn about it. People sometimes try to use this
553 // to get a deterministic trap and are surprised by clang's behavior. This
554 // only handles the pattern "*null", which is a very syntactic check.
555 const auto *UO = dyn_cast<UnaryOperator>(Val: E->IgnoreParenCasts());
556 if (UO && UO->getOpcode() == UO_Deref &&
557 UO->getSubExpr()->getType()->isPointerType()) {
558 const LangAS AS =
559 UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
560 if ((!isTargetAddressSpace(AS) ||
561 (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
562 UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
563 Ctx&: S.Context, NPC: Expr::NPC_ValueDependentIsNotNull) &&
564 !UO->getType().isVolatileQualified()) {
565 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
566 S.PDiag(diag::warn_indirection_through_null)
567 << UO->getSubExpr()->getSourceRange());
568 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
569 S.PDiag(diag::note_indirection_through_null));
570 }
571 }
572}
573
574static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
575 SourceLocation AssignLoc,
576 const Expr* RHS) {
577 const ObjCIvarDecl *IV = OIRE->getDecl();
578 if (!IV)
579 return;
580
581 DeclarationName MemberName = IV->getDeclName();
582 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
583 if (!Member || !Member->isStr(Str: "isa"))
584 return;
585
586 const Expr *Base = OIRE->getBase();
587 QualType BaseType = Base->getType();
588 if (OIRE->isArrow())
589 BaseType = BaseType->getPointeeType();
590 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
591 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
592 ObjCInterfaceDecl *ClassDeclared = nullptr;
593 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(IVarName: Member, ClassDeclared);
594 if (!ClassDeclared->getSuperClass()
595 && (*ClassDeclared->ivar_begin()) == IV) {
596 if (RHS) {
597 NamedDecl *ObjectSetClass =
598 S.LookupSingleName(S: S.TUScope,
599 Name: &S.Context.Idents.get(Name: "object_setClass"),
600 Loc: SourceLocation(), NameKind: S.LookupOrdinaryName);
601 if (ObjectSetClass) {
602 SourceLocation RHSLocEnd = S.getLocForEndOfToken(Loc: RHS->getEndLoc());
603 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
604 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
605 "object_setClass(")
606 << FixItHint::CreateReplacement(
607 SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
608 << FixItHint::CreateInsertion(RHSLocEnd, ")");
609 }
610 else
611 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
612 } else {
613 NamedDecl *ObjectGetClass =
614 S.LookupSingleName(S: S.TUScope,
615 Name: &S.Context.Idents.get(Name: "object_getClass"),
616 Loc: SourceLocation(), NameKind: S.LookupOrdinaryName);
617 if (ObjectGetClass)
618 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
619 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
620 "object_getClass(")
621 << FixItHint::CreateReplacement(
622 SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
623 else
624 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
625 }
626 S.Diag(IV->getLocation(), diag::note_ivar_decl);
627 }
628 }
629}
630
631ExprResult Sema::DefaultLvalueConversion(Expr *E) {
632 // Handle any placeholder expressions which made it here.
633 if (E->hasPlaceholderType()) {
634 ExprResult result = CheckPlaceholderExpr(E);
635 if (result.isInvalid()) return ExprError();
636 E = result.get();
637 }
638
639 // C++ [conv.lval]p1:
640 // A glvalue of a non-function, non-array type T can be
641 // converted to a prvalue.
642 if (!E->isGLValue()) return E;
643
644 QualType T = E->getType();
645 assert(!T.isNull() && "r-value conversion on typeless expression?");
646
647 // lvalue-to-rvalue conversion cannot be applied to types that decay to
648 // pointers (i.e. function or array types).
649 if (T->canDecayToPointerType())
650 return E;
651
652 // We don't want to throw lvalue-to-rvalue casts on top of
653 // expressions of certain types in C++.
654 if (getLangOpts().CPlusPlus) {
655 if (T == Context.OverloadTy || T->isRecordType() ||
656 (T->isDependentType() && !T->isAnyPointerType() &&
657 !T->isMemberPointerType()))
658 return E;
659 }
660
661 // The C standard is actually really unclear on this point, and
662 // DR106 tells us what the result should be but not why. It's
663 // generally best to say that void types just doesn't undergo
664 // lvalue-to-rvalue at all. Note that expressions of unqualified
665 // 'void' type are never l-values, but qualified void can be.
666 if (T->isVoidType())
667 return E;
668
669 // OpenCL usually rejects direct accesses to values of 'half' type.
670 if (getLangOpts().OpenCL &&
671 !getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16", LO: getLangOpts()) &&
672 T->isHalfType()) {
673 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
674 << 0 << T;
675 return ExprError();
676 }
677
678 CheckForNullPointerDereference(S&: *this, E);
679 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(Val: E->IgnoreParenCasts())) {
680 NamedDecl *ObjectGetClass = LookupSingleName(S: TUScope,
681 Name: &Context.Idents.get(Name: "object_getClass"),
682 Loc: SourceLocation(), NameKind: LookupOrdinaryName);
683 if (ObjectGetClass)
684 Diag(E->getExprLoc(), diag::warn_objc_isa_use)
685 << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
686 << FixItHint::CreateReplacement(
687 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
688 else
689 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
690 }
691 else if (const ObjCIvarRefExpr *OIRE =
692 dyn_cast<ObjCIvarRefExpr>(Val: E->IgnoreParenCasts()))
693 DiagnoseDirectIsaAccess(S&: *this, OIRE, AssignLoc: SourceLocation(), /* Expr*/RHS: nullptr);
694
695 // C++ [conv.lval]p1:
696 // [...] If T is a non-class type, the type of the prvalue is the
697 // cv-unqualified version of T. Otherwise, the type of the
698 // rvalue is T.
699 //
700 // C99 6.3.2.1p2:
701 // If the lvalue has qualified type, the value has the unqualified
702 // version of the type of the lvalue; otherwise, the value has the
703 // type of the lvalue.
704 if (T.hasQualifiers())
705 T = T.getUnqualifiedType();
706
707 // Under the MS ABI, lock down the inheritance model now.
708 if (T->isMemberPointerType() &&
709 Context.getTargetInfo().getCXXABI().isMicrosoft())
710 (void)isCompleteType(Loc: E->getExprLoc(), T);
711
712 ExprResult Res = CheckLValueToRValueConversionOperand(E);
713 if (Res.isInvalid())
714 return Res;
715 E = Res.get();
716
717 // Loading a __weak object implicitly retains the value, so we need a cleanup to
718 // balance that.
719 if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
720 Cleanup.setExprNeedsCleanups(true);
721
722 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
723 Cleanup.setExprNeedsCleanups(true);
724
725 if (!BoundsSafetyCheckUseOfCountAttrPtr(E: Res.get()))
726 return ExprError();
727
728 // C++ [conv.lval]p3:
729 // If T is cv std::nullptr_t, the result is a null pointer constant.
730 CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
731 Res = ImplicitCastExpr::Create(Context, T, Kind: CK, Operand: E, BasePath: nullptr, Cat: VK_PRValue,
732 FPO: CurFPFeatureOverrides());
733
734 // C11 6.3.2.1p2:
735 // ... if the lvalue has atomic type, the value has the non-atomic version
736 // of the type of the lvalue ...
737 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
738 T = Atomic->getValueType().getUnqualifiedType();
739 Res = ImplicitCastExpr::Create(Context, T, Kind: CK_AtomicToNonAtomic, Operand: Res.get(),
740 BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride());
741 }
742
743 return Res;
744}
745
746ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
747 ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
748 if (Res.isInvalid())
749 return ExprError();
750 Res = DefaultLvalueConversion(E: Res.get());
751 if (Res.isInvalid())
752 return ExprError();
753 return Res;
754}
755
756ExprResult Sema::CallExprUnaryConversions(Expr *E) {
757 QualType Ty = E->getType();
758 ExprResult Res = E;
759 // Only do implicit cast for a function type, but not for a pointer
760 // to function type.
761 if (Ty->isFunctionType()) {
762 Res = ImpCastExprToType(E, Type: Context.getPointerType(T: Ty),
763 CK: CK_FunctionToPointerDecay);
764 if (Res.isInvalid())
765 return ExprError();
766 }
767 Res = DefaultLvalueConversion(E: Res.get());
768 if (Res.isInvalid())
769 return ExprError();
770 return Res.get();
771}
772
773/// UsualUnaryFPConversions - Promotes floating-point types according to the
774/// current language semantics.
775ExprResult Sema::UsualUnaryFPConversions(Expr *E) {
776 QualType Ty = E->getType();
777 assert(!Ty.isNull() && "UsualUnaryFPConversions - missing type");
778
779 LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
780 if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
781 (getLangOpts().getFPEvalMethod() !=
782 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
783 PP.getLastFPEvalPragmaLocation().isValid())) {
784 switch (EvalMethod) {
785 default:
786 llvm_unreachable("Unrecognized float evaluation method");
787 break;
788 case LangOptions::FEM_UnsetOnCommandLine:
789 llvm_unreachable("Float evaluation method should be set by now");
790 break;
791 case LangOptions::FEM_Double:
792 if (Context.getFloatingTypeOrder(LHS: Context.DoubleTy, RHS: Ty) > 0)
793 // Widen the expression to double.
794 return Ty->isComplexType()
795 ? ImpCastExprToType(E,
796 Type: Context.getComplexType(Context.DoubleTy),
797 CK: CK_FloatingComplexCast)
798 : ImpCastExprToType(E, Type: Context.DoubleTy, CK: CK_FloatingCast);
799 break;
800 case LangOptions::FEM_Extended:
801 if (Context.getFloatingTypeOrder(LHS: Context.LongDoubleTy, RHS: Ty) > 0)
802 // Widen the expression to long double.
803 return Ty->isComplexType()
804 ? ImpCastExprToType(
805 E, Type: Context.getComplexType(Context.LongDoubleTy),
806 CK: CK_FloatingComplexCast)
807 : ImpCastExprToType(E, Type: Context.LongDoubleTy,
808 CK: CK_FloatingCast);
809 break;
810 }
811 }
812
813 // Half FP have to be promoted to float unless it is natively supported
814 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
815 return ImpCastExprToType(E, Type: Context.FloatTy, CK: CK_FloatingCast);
816
817 return E;
818}
819
820/// UsualUnaryConversions - Performs various conversions that are common to most
821/// operators (C99 6.3). The conversions of array and function types are
822/// sometimes suppressed. For example, the array->pointer conversion doesn't
823/// apply if the array is an argument to the sizeof or address (&) operators.
824/// In these instances, this routine should *not* be called.
825ExprResult Sema::UsualUnaryConversions(Expr *E) {
826 // First, convert to an r-value.
827 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
828 if (Res.isInvalid())
829 return ExprError();
830
831 // Promote floating-point types.
832 Res = UsualUnaryFPConversions(E: Res.get());
833 if (Res.isInvalid())
834 return ExprError();
835 E = Res.get();
836
837 QualType Ty = E->getType();
838 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
839
840 // Try to perform integral promotions if the object has a theoretically
841 // promotable type.
842 if (Ty->isIntegralOrUnscopedEnumerationType()) {
843 // C99 6.3.1.1p2:
844 //
845 // The following may be used in an expression wherever an int or
846 // unsigned int may be used:
847 // - an object or expression with an integer type whose integer
848 // conversion rank is less than or equal to the rank of int
849 // and unsigned int.
850 // - A bit-field of type _Bool, int, signed int, or unsigned int.
851 //
852 // If an int can represent all values of the original type, the
853 // value is converted to an int; otherwise, it is converted to an
854 // unsigned int. These are called the integer promotions. All
855 // other types are unchanged by the integer promotions.
856
857 QualType PTy = Context.isPromotableBitField(E);
858 if (!PTy.isNull()) {
859 E = ImpCastExprToType(E, Type: PTy, CK: CK_IntegralCast).get();
860 return E;
861 }
862 if (Context.isPromotableIntegerType(T: Ty)) {
863 QualType PT = Context.getPromotedIntegerType(PromotableType: Ty);
864 E = ImpCastExprToType(E, Type: PT, CK: CK_IntegralCast).get();
865 return E;
866 }
867 }
868 return E;
869}
870
871/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
872/// do not have a prototype. Arguments that have type float or __fp16
873/// are promoted to double. All other argument types are converted by
874/// UsualUnaryConversions().
875ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
876 QualType Ty = E->getType();
877 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
878
879 ExprResult Res = UsualUnaryConversions(E);
880 if (Res.isInvalid())
881 return ExprError();
882 E = Res.get();
883
884 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
885 // promote to double.
886 // Note that default argument promotion applies only to float (and
887 // half/fp16); it does not apply to _Float16.
888 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
889 if (BTy && (BTy->getKind() == BuiltinType::Half ||
890 BTy->getKind() == BuiltinType::Float)) {
891 if (getLangOpts().OpenCL &&
892 !getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp64", LO: getLangOpts())) {
893 if (BTy->getKind() == BuiltinType::Half) {
894 E = ImpCastExprToType(E, Type: Context.FloatTy, CK: CK_FloatingCast).get();
895 }
896 } else {
897 E = ImpCastExprToType(E, Type: Context.DoubleTy, CK: CK_FloatingCast).get();
898 }
899 }
900 if (BTy &&
901 getLangOpts().getExtendIntArgs() ==
902 LangOptions::ExtendArgsKind::ExtendTo64 &&
903 Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
904 Context.getTypeSizeInChars(BTy) <
905 Context.getTypeSizeInChars(Context.LongLongTy)) {
906 E = (Ty->isUnsignedIntegerType())
907 ? ImpCastExprToType(E, Type: Context.UnsignedLongLongTy, CK: CK_IntegralCast)
908 .get()
909 : ImpCastExprToType(E, Type: Context.LongLongTy, CK: CK_IntegralCast).get();
910 assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
911 "Unexpected typesize for LongLongTy");
912 }
913
914 // C++ performs lvalue-to-rvalue conversion as a default argument
915 // promotion, even on class types, but note:
916 // C++11 [conv.lval]p2:
917 // When an lvalue-to-rvalue conversion occurs in an unevaluated
918 // operand or a subexpression thereof the value contained in the
919 // referenced object is not accessed. Otherwise, if the glvalue
920 // has a class type, the conversion copy-initializes a temporary
921 // of type T from the glvalue and the result of the conversion
922 // is a prvalue for the temporary.
923 // FIXME: add some way to gate this entire thing for correctness in
924 // potentially potentially evaluated contexts.
925 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
926 ExprResult Temp = PerformCopyInitialization(
927 Entity: InitializedEntity::InitializeTemporary(Type: E->getType()),
928 EqualLoc: E->getExprLoc(), Init: E);
929 if (Temp.isInvalid())
930 return ExprError();
931 E = Temp.get();
932 }
933
934 // C++ [expr.call]p7, per CWG722:
935 // An argument that has (possibly cv-qualified) type std::nullptr_t is
936 // converted to void* ([conv.ptr]).
937 // (This does not apply to C23 nullptr)
938 if (getLangOpts().CPlusPlus && E->getType()->isNullPtrType())
939 E = ImpCastExprToType(E, Type: Context.VoidPtrTy, CK: CK_NullToPointer).get();
940
941 return E;
942}
943
944VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
945 if (Ty->isIncompleteType()) {
946 // C++11 [expr.call]p7:
947 // After these conversions, if the argument does not have arithmetic,
948 // enumeration, pointer, pointer to member, or class type, the program
949 // is ill-formed.
950 //
951 // Since we've already performed null pointer conversion, array-to-pointer
952 // decay and function-to-pointer decay, the only such type in C++ is cv
953 // void. This also handles initializer lists as variadic arguments.
954 if (Ty->isVoidType())
955 return VarArgKind::Invalid;
956
957 if (Ty->isObjCObjectType())
958 return VarArgKind::Invalid;
959 return VarArgKind::Valid;
960 }
961
962 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
963 return VarArgKind::Invalid;
964
965 if (Context.getTargetInfo().getTriple().isWasm() &&
966 Ty.isWebAssemblyReferenceType()) {
967 return VarArgKind::Invalid;
968 }
969
970 if (Ty.isCXX98PODType(Context))
971 return VarArgKind::Valid;
972
973 // C++11 [expr.call]p7:
974 // Passing a potentially-evaluated argument of class type (Clause 9)
975 // having a non-trivial copy constructor, a non-trivial move constructor,
976 // or a non-trivial destructor, with no corresponding parameter,
977 // is conditionally-supported with implementation-defined semantics.
978 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
979 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
980 if (!Record->hasNonTrivialCopyConstructor() &&
981 !Record->hasNonTrivialMoveConstructor() &&
982 !Record->hasNonTrivialDestructor())
983 return VarArgKind::ValidInCXX11;
984
985 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
986 return VarArgKind::Valid;
987
988 if (Ty->isObjCObjectType())
989 return VarArgKind::Invalid;
990
991 if (getLangOpts().HLSL && Ty->getAs<HLSLAttributedResourceType>())
992 return VarArgKind::Valid;
993
994 if (getLangOpts().MSVCCompat)
995 return VarArgKind::MSVCUndefined;
996
997 if (getLangOpts().HLSL && Ty->getAs<HLSLAttributedResourceType>())
998 return VarArgKind::Valid;
999
1000 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
1001 // permitted to reject them. We should consider doing so.
1002 return VarArgKind::Undefined;
1003}
1004
1005void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
1006 // Don't allow one to pass an Objective-C interface to a vararg.
1007 const QualType &Ty = E->getType();
1008 VarArgKind VAK = isValidVarArgType(Ty);
1009
1010 // Complain about passing non-POD types through varargs.
1011 switch (VAK) {
1012 case VarArgKind::ValidInCXX11:
1013 DiagRuntimeBehavior(
1014 E->getBeginLoc(), nullptr,
1015 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
1016 [[fallthrough]];
1017 case VarArgKind::Valid:
1018 if (Ty->isRecordType()) {
1019 // This is unlikely to be what the user intended. If the class has a
1020 // 'c_str' member function, the user probably meant to call that.
1021 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1022 PDiag(diag::warn_pass_class_arg_to_vararg)
1023 << Ty << CT << hasCStrMethod(E) << ".c_str()");
1024 }
1025 break;
1026
1027 case VarArgKind::Undefined:
1028 case VarArgKind::MSVCUndefined:
1029 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1030 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
1031 << getLangOpts().CPlusPlus11 << Ty << CT);
1032 break;
1033
1034 case VarArgKind::Invalid:
1035 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1036 Diag(E->getBeginLoc(),
1037 diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1038 << Ty << CT;
1039 else if (Ty->isObjCObjectType())
1040 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1041 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1042 << Ty << CT);
1043 else
1044 Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1045 << isa<InitListExpr>(E) << Ty << CT;
1046 break;
1047 }
1048}
1049
1050ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1051 FunctionDecl *FDecl) {
1052 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1053 // Strip the unbridged-cast placeholder expression off, if applicable.
1054 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1055 (CT == VariadicCallType::Method ||
1056 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1057 E = ObjC().stripARCUnbridgedCast(e: E);
1058
1059 // Otherwise, do normal placeholder checking.
1060 } else {
1061 ExprResult ExprRes = CheckPlaceholderExpr(E);
1062 if (ExprRes.isInvalid())
1063 return ExprError();
1064 E = ExprRes.get();
1065 }
1066 }
1067
1068 ExprResult ExprRes = DefaultArgumentPromotion(E);
1069 if (ExprRes.isInvalid())
1070 return ExprError();
1071
1072 // Copy blocks to the heap.
1073 if (ExprRes.get()->getType()->isBlockPointerType())
1074 maybeExtendBlockObject(E&: ExprRes);
1075
1076 E = ExprRes.get();
1077
1078 // Diagnostics regarding non-POD argument types are
1079 // emitted along with format string checking in Sema::CheckFunctionCall().
1080 if (isValidVarArgType(Ty: E->getType()) == VarArgKind::Undefined) {
1081 // Turn this into a trap.
1082 CXXScopeSpec SS;
1083 SourceLocation TemplateKWLoc;
1084 UnqualifiedId Name;
1085 Name.setIdentifier(Id: PP.getIdentifierInfo(Name: "__builtin_trap"),
1086 IdLoc: E->getBeginLoc());
1087 ExprResult TrapFn = ActOnIdExpression(S: TUScope, SS, TemplateKWLoc, Id&: Name,
1088 /*HasTrailingLParen=*/true,
1089 /*IsAddressOfOperand=*/false);
1090 if (TrapFn.isInvalid())
1091 return ExprError();
1092
1093 ExprResult Call = BuildCallExpr(S: TUScope, Fn: TrapFn.get(), LParenLoc: E->getBeginLoc(), ArgExprs: {},
1094 RParenLoc: E->getEndLoc());
1095 if (Call.isInvalid())
1096 return ExprError();
1097
1098 ExprResult Comma =
1099 ActOnBinOp(S: TUScope, TokLoc: E->getBeginLoc(), Kind: tok::comma, LHSExpr: Call.get(), RHSExpr: E);
1100 if (Comma.isInvalid())
1101 return ExprError();
1102 return Comma.get();
1103 }
1104
1105 if (!getLangOpts().CPlusPlus &&
1106 RequireCompleteType(E->getExprLoc(), E->getType(),
1107 diag::err_call_incomplete_argument))
1108 return ExprError();
1109
1110 return E;
1111}
1112
1113/// Convert complex integers to complex floats and real integers to
1114/// real floats as required for complex arithmetic. Helper function of
1115/// UsualArithmeticConversions()
1116///
1117/// \return false if the integer expression is an integer type and is
1118/// successfully converted to the (complex) float type.
1119static bool handleComplexIntegerToFloatConversion(Sema &S, ExprResult &IntExpr,
1120 ExprResult &ComplexExpr,
1121 QualType IntTy,
1122 QualType ComplexTy,
1123 bool SkipCast) {
1124 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1125 if (SkipCast) return false;
1126 if (IntTy->isIntegerType()) {
1127 QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1128 IntExpr = S.ImpCastExprToType(E: IntExpr.get(), Type: fpTy, CK: CK_IntegralToFloating);
1129 } else {
1130 assert(IntTy->isComplexIntegerType());
1131 IntExpr = S.ImpCastExprToType(E: IntExpr.get(), Type: ComplexTy,
1132 CK: CK_IntegralComplexToFloatingComplex);
1133 }
1134 return false;
1135}
1136
1137// This handles complex/complex, complex/float, or float/complex.
1138// When both operands are complex, the shorter operand is converted to the
1139// type of the longer, and that is the type of the result. This corresponds
1140// to what is done when combining two real floating-point operands.
1141// The fun begins when size promotion occur across type domains.
1142// From H&S 6.3.4: When one operand is complex and the other is a real
1143// floating-point type, the less precise type is converted, within it's
1144// real or complex domain, to the precision of the other type. For example,
1145// when combining a "long double" with a "double _Complex", the
1146// "double _Complex" is promoted to "long double _Complex".
1147static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1148 QualType ShorterType,
1149 QualType LongerType,
1150 bool PromotePrecision) {
1151 bool LongerIsComplex = isa<ComplexType>(Val: LongerType.getCanonicalType());
1152 QualType Result =
1153 LongerIsComplex ? LongerType : S.Context.getComplexType(T: LongerType);
1154
1155 if (PromotePrecision) {
1156 if (isa<ComplexType>(Val: ShorterType.getCanonicalType())) {
1157 Shorter =
1158 S.ImpCastExprToType(E: Shorter.get(), Type: Result, CK: CK_FloatingComplexCast);
1159 } else {
1160 if (LongerIsComplex)
1161 LongerType = LongerType->castAs<ComplexType>()->getElementType();
1162 Shorter = S.ImpCastExprToType(E: Shorter.get(), Type: LongerType, CK: CK_FloatingCast);
1163 }
1164 }
1165 return Result;
1166}
1167
1168/// Handle arithmetic conversion with complex types. Helper function of
1169/// UsualArithmeticConversions()
1170static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1171 ExprResult &RHS, QualType LHSType,
1172 QualType RHSType, bool IsCompAssign) {
1173 // Handle (complex) integer types.
1174 if (!handleComplexIntegerToFloatConversion(S, IntExpr&: RHS, ComplexExpr&: LHS, IntTy: RHSType, ComplexTy: LHSType,
1175 /*SkipCast=*/false))
1176 return LHSType;
1177 if (!handleComplexIntegerToFloatConversion(S, IntExpr&: LHS, ComplexExpr&: RHS, IntTy: LHSType, ComplexTy: RHSType,
1178 /*SkipCast=*/IsCompAssign))
1179 return RHSType;
1180
1181 // Compute the rank of the two types, regardless of whether they are complex.
1182 int Order = S.Context.getFloatingTypeOrder(LHS: LHSType, RHS: RHSType);
1183 if (Order < 0)
1184 // Promote the precision of the LHS if not an assignment.
1185 return handleComplexFloatConversion(S, Shorter&: LHS, ShorterType: LHSType, LongerType: RHSType,
1186 /*PromotePrecision=*/!IsCompAssign);
1187 // Promote the precision of the RHS unless it is already the same as the LHS.
1188 return handleComplexFloatConversion(S, Shorter&: RHS, ShorterType: RHSType, LongerType: LHSType,
1189 /*PromotePrecision=*/Order > 0);
1190}
1191
1192/// Handle arithmetic conversion from integer to float. Helper function
1193/// of UsualArithmeticConversions()
1194static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1195 ExprResult &IntExpr,
1196 QualType FloatTy, QualType IntTy,
1197 bool ConvertFloat, bool ConvertInt) {
1198 if (IntTy->isIntegerType()) {
1199 if (ConvertInt)
1200 // Convert intExpr to the lhs floating point type.
1201 IntExpr = S.ImpCastExprToType(E: IntExpr.get(), Type: FloatTy,
1202 CK: CK_IntegralToFloating);
1203 return FloatTy;
1204 }
1205
1206 // Convert both sides to the appropriate complex float.
1207 assert(IntTy->isComplexIntegerType());
1208 QualType result = S.Context.getComplexType(T: FloatTy);
1209
1210 // _Complex int -> _Complex float
1211 if (ConvertInt)
1212 IntExpr = S.ImpCastExprToType(E: IntExpr.get(), Type: result,
1213 CK: CK_IntegralComplexToFloatingComplex);
1214
1215 // float -> _Complex float
1216 if (ConvertFloat)
1217 FloatExpr = S.ImpCastExprToType(E: FloatExpr.get(), Type: result,
1218 CK: CK_FloatingRealToComplex);
1219
1220 return result;
1221}
1222
1223/// Handle arithmethic conversion with floating point types. Helper
1224/// function of UsualArithmeticConversions()
1225static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1226 ExprResult &RHS, QualType LHSType,
1227 QualType RHSType, bool IsCompAssign) {
1228 bool LHSFloat = LHSType->isRealFloatingType();
1229 bool RHSFloat = RHSType->isRealFloatingType();
1230
1231 // N1169 4.1.4: If one of the operands has a floating type and the other
1232 // operand has a fixed-point type, the fixed-point operand
1233 // is converted to the floating type [...]
1234 if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1235 if (LHSFloat)
1236 RHS = S.ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_FixedPointToFloating);
1237 else if (!IsCompAssign)
1238 LHS = S.ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_FixedPointToFloating);
1239 return LHSFloat ? LHSType : RHSType;
1240 }
1241
1242 // If we have two real floating types, convert the smaller operand
1243 // to the bigger result.
1244 if (LHSFloat && RHSFloat) {
1245 int order = S.Context.getFloatingTypeOrder(LHS: LHSType, RHS: RHSType);
1246 if (order > 0) {
1247 RHS = S.ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_FloatingCast);
1248 return LHSType;
1249 }
1250
1251 assert(order < 0 && "illegal float comparison");
1252 if (!IsCompAssign)
1253 LHS = S.ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_FloatingCast);
1254 return RHSType;
1255 }
1256
1257 if (LHSFloat) {
1258 // Half FP has to be promoted to float unless it is natively supported
1259 if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1260 LHSType = S.Context.FloatTy;
1261
1262 return handleIntToFloatConversion(S, FloatExpr&: LHS, IntExpr&: RHS, FloatTy: LHSType, IntTy: RHSType,
1263 /*ConvertFloat=*/!IsCompAssign,
1264 /*ConvertInt=*/ true);
1265 }
1266 assert(RHSFloat);
1267 return handleIntToFloatConversion(S, FloatExpr&: RHS, IntExpr&: LHS, FloatTy: RHSType, IntTy: LHSType,
1268 /*ConvertFloat=*/ true,
1269 /*ConvertInt=*/!IsCompAssign);
1270}
1271
1272/// Diagnose attempts to convert between __float128, __ibm128 and
1273/// long double if there is no support for such conversion.
1274/// Helper function of UsualArithmeticConversions().
1275static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1276 QualType RHSType) {
1277 // No issue if either is not a floating point type.
1278 if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1279 return false;
1280
1281 // No issue if both have the same 128-bit float semantics.
1282 auto *LHSComplex = LHSType->getAs<ComplexType>();
1283 auto *RHSComplex = RHSType->getAs<ComplexType>();
1284
1285 QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1286 QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1287
1288 const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(T: LHSElem);
1289 const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(T: RHSElem);
1290
1291 if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1292 &RHSSem != &llvm::APFloat::IEEEquad()) &&
1293 (&LHSSem != &llvm::APFloat::IEEEquad() ||
1294 &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1295 return false;
1296
1297 return true;
1298}
1299
1300typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1301
1302namespace {
1303/// These helper callbacks are placed in an anonymous namespace to
1304/// permit their use as function template parameters.
1305ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1306 return S.ImpCastExprToType(E: op, Type: toType, CK: CK_IntegralCast);
1307}
1308
1309ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1310 return S.ImpCastExprToType(E: op, Type: S.Context.getComplexType(T: toType),
1311 CK: CK_IntegralComplexCast);
1312}
1313}
1314
1315/// Handle integer arithmetic conversions. Helper function of
1316/// UsualArithmeticConversions()
1317template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1318static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1319 ExprResult &RHS, QualType LHSType,
1320 QualType RHSType, bool IsCompAssign) {
1321 // The rules for this case are in C99 6.3.1.8
1322 int order = S.Context.getIntegerTypeOrder(LHS: LHSType, RHS: RHSType);
1323 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1324 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1325 if (LHSSigned == RHSSigned) {
1326 // Same signedness; use the higher-ranked type
1327 if (order >= 0) {
1328 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1329 return LHSType;
1330 } else if (!IsCompAssign)
1331 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1332 return RHSType;
1333 } else if (order != (LHSSigned ? 1 : -1)) {
1334 // The unsigned type has greater than or equal rank to the
1335 // signed type, so use the unsigned type
1336 if (RHSSigned) {
1337 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1338 return LHSType;
1339 } else if (!IsCompAssign)
1340 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1341 return RHSType;
1342 } else if (S.Context.getIntWidth(T: LHSType) != S.Context.getIntWidth(T: RHSType)) {
1343 // The two types are different widths; if we are here, that
1344 // means the signed type is larger than the unsigned type, so
1345 // use the signed type.
1346 if (LHSSigned) {
1347 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1348 return LHSType;
1349 } else if (!IsCompAssign)
1350 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1351 return RHSType;
1352 } else {
1353 // The signed type is higher-ranked than the unsigned type,
1354 // but isn't actually any bigger (like unsigned int and long
1355 // on most 32-bit systems). Use the unsigned type corresponding
1356 // to the signed type.
1357 QualType result =
1358 S.Context.getCorrespondingUnsignedType(T: LHSSigned ? LHSType : RHSType);
1359 RHS = (*doRHSCast)(S, RHS.get(), result);
1360 if (!IsCompAssign)
1361 LHS = (*doLHSCast)(S, LHS.get(), result);
1362 return result;
1363 }
1364}
1365
1366/// Handle conversions with GCC complex int extension. Helper function
1367/// of UsualArithmeticConversions()
1368static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1369 ExprResult &RHS, QualType LHSType,
1370 QualType RHSType,
1371 bool IsCompAssign) {
1372 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1373 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1374
1375 if (LHSComplexInt && RHSComplexInt) {
1376 QualType LHSEltType = LHSComplexInt->getElementType();
1377 QualType RHSEltType = RHSComplexInt->getElementType();
1378 QualType ScalarType =
1379 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1380 (S, LHS, RHS, LHSType: LHSEltType, RHSType: RHSEltType, IsCompAssign);
1381
1382 return S.Context.getComplexType(T: ScalarType);
1383 }
1384
1385 if (LHSComplexInt) {
1386 QualType LHSEltType = LHSComplexInt->getElementType();
1387 QualType ScalarType =
1388 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1389 (S, LHS, RHS, LHSType: LHSEltType, RHSType, IsCompAssign);
1390 QualType ComplexType = S.Context.getComplexType(T: ScalarType);
1391 RHS = S.ImpCastExprToType(E: RHS.get(), Type: ComplexType,
1392 CK: CK_IntegralRealToComplex);
1393
1394 return ComplexType;
1395 }
1396
1397 assert(RHSComplexInt);
1398
1399 QualType RHSEltType = RHSComplexInt->getElementType();
1400 QualType ScalarType =
1401 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1402 (S, LHS, RHS, LHSType, RHSType: RHSEltType, IsCompAssign);
1403 QualType ComplexType = S.Context.getComplexType(T: ScalarType);
1404
1405 if (!IsCompAssign)
1406 LHS = S.ImpCastExprToType(E: LHS.get(), Type: ComplexType,
1407 CK: CK_IntegralRealToComplex);
1408 return ComplexType;
1409}
1410
1411/// Return the rank of a given fixed point or integer type. The value itself
1412/// doesn't matter, but the values must be increasing with proper increasing
1413/// rank as described in N1169 4.1.1.
1414static unsigned GetFixedPointRank(QualType Ty) {
1415 const auto *BTy = Ty->getAs<BuiltinType>();
1416 assert(BTy && "Expected a builtin type.");
1417
1418 switch (BTy->getKind()) {
1419 case BuiltinType::ShortFract:
1420 case BuiltinType::UShortFract:
1421 case BuiltinType::SatShortFract:
1422 case BuiltinType::SatUShortFract:
1423 return 1;
1424 case BuiltinType::Fract:
1425 case BuiltinType::UFract:
1426 case BuiltinType::SatFract:
1427 case BuiltinType::SatUFract:
1428 return 2;
1429 case BuiltinType::LongFract:
1430 case BuiltinType::ULongFract:
1431 case BuiltinType::SatLongFract:
1432 case BuiltinType::SatULongFract:
1433 return 3;
1434 case BuiltinType::ShortAccum:
1435 case BuiltinType::UShortAccum:
1436 case BuiltinType::SatShortAccum:
1437 case BuiltinType::SatUShortAccum:
1438 return 4;
1439 case BuiltinType::Accum:
1440 case BuiltinType::UAccum:
1441 case BuiltinType::SatAccum:
1442 case BuiltinType::SatUAccum:
1443 return 5;
1444 case BuiltinType::LongAccum:
1445 case BuiltinType::ULongAccum:
1446 case BuiltinType::SatLongAccum:
1447 case BuiltinType::SatULongAccum:
1448 return 6;
1449 default:
1450 if (BTy->isInteger())
1451 return 0;
1452 llvm_unreachable("Unexpected fixed point or integer type");
1453 }
1454}
1455
1456/// handleFixedPointConversion - Fixed point operations between fixed
1457/// point types and integers or other fixed point types do not fall under
1458/// usual arithmetic conversion since these conversions could result in loss
1459/// of precsision (N1169 4.1.4). These operations should be calculated with
1460/// the full precision of their result type (N1169 4.1.6.2.1).
1461static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1462 QualType RHSTy) {
1463 assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1464 "Expected at least one of the operands to be a fixed point type");
1465 assert((LHSTy->isFixedPointOrIntegerType() ||
1466 RHSTy->isFixedPointOrIntegerType()) &&
1467 "Special fixed point arithmetic operation conversions are only "
1468 "applied to ints or other fixed point types");
1469
1470 // If one operand has signed fixed-point type and the other operand has
1471 // unsigned fixed-point type, then the unsigned fixed-point operand is
1472 // converted to its corresponding signed fixed-point type and the resulting
1473 // type is the type of the converted operand.
1474 if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1475 LHSTy = S.Context.getCorrespondingSignedFixedPointType(Ty: LHSTy);
1476 else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1477 RHSTy = S.Context.getCorrespondingSignedFixedPointType(Ty: RHSTy);
1478
1479 // The result type is the type with the highest rank, whereby a fixed-point
1480 // conversion rank is always greater than an integer conversion rank; if the
1481 // type of either of the operands is a saturating fixedpoint type, the result
1482 // type shall be the saturating fixed-point type corresponding to the type
1483 // with the highest rank; the resulting value is converted (taking into
1484 // account rounding and overflow) to the precision of the resulting type.
1485 // Same ranks between signed and unsigned types are resolved earlier, so both
1486 // types are either signed or both unsigned at this point.
1487 unsigned LHSTyRank = GetFixedPointRank(Ty: LHSTy);
1488 unsigned RHSTyRank = GetFixedPointRank(Ty: RHSTy);
1489
1490 QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1491
1492 if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1493 ResultTy = S.Context.getCorrespondingSaturatedType(Ty: ResultTy);
1494
1495 return ResultTy;
1496}
1497
1498/// Check that the usual arithmetic conversions can be performed on this pair of
1499/// expressions that might be of enumeration type.
1500void Sema::checkEnumArithmeticConversions(Expr *LHS, Expr *RHS,
1501 SourceLocation Loc,
1502 ArithConvKind ACK) {
1503 // C++2a [expr.arith.conv]p1:
1504 // If one operand is of enumeration type and the other operand is of a
1505 // different enumeration type or a floating-point type, this behavior is
1506 // deprecated ([depr.arith.conv.enum]).
1507 //
1508 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1509 // Eventually we will presumably reject these cases (in C++23 onwards?).
1510 QualType L = LHS->getEnumCoercedType(Ctx: Context),
1511 R = RHS->getEnumCoercedType(Ctx: Context);
1512 bool LEnum = L->isUnscopedEnumerationType(),
1513 REnum = R->isUnscopedEnumerationType();
1514 bool IsCompAssign = ACK == ArithConvKind::CompAssign;
1515 if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1516 (REnum && L->isFloatingType())) {
1517 Diag(Loc, getLangOpts().CPlusPlus26 ? diag::err_arith_conv_enum_float_cxx26
1518 : getLangOpts().CPlusPlus20
1519 ? diag::warn_arith_conv_enum_float_cxx20
1520 : diag::warn_arith_conv_enum_float)
1521 << LHS->getSourceRange() << RHS->getSourceRange() << (int)ACK << LEnum
1522 << L << R;
1523 } else if (!IsCompAssign && LEnum && REnum &&
1524 !Context.hasSameUnqualifiedType(T1: L, T2: R)) {
1525 unsigned DiagID;
1526 // In C++ 26, usual arithmetic conversions between 2 different enum types
1527 // are ill-formed.
1528 if (getLangOpts().CPlusPlus26)
1529 DiagID = diag::warn_conv_mixed_enum_types_cxx26;
1530 else if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1531 !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1532 // If either enumeration type is unnamed, it's less likely that the
1533 // user cares about this, but this situation is still deprecated in
1534 // C++2a. Use a different warning group.
1535 DiagID = getLangOpts().CPlusPlus20
1536 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1537 : diag::warn_arith_conv_mixed_anon_enum_types;
1538 } else if (ACK == ArithConvKind::Conditional) {
1539 // Conditional expressions are separated out because they have
1540 // historically had a different warning flag.
1541 DiagID = getLangOpts().CPlusPlus20
1542 ? diag::warn_conditional_mixed_enum_types_cxx20
1543 : diag::warn_conditional_mixed_enum_types;
1544 } else if (ACK == ArithConvKind::Comparison) {
1545 // Comparison expressions are separated out because they have
1546 // historically had a different warning flag.
1547 DiagID = getLangOpts().CPlusPlus20
1548 ? diag::warn_comparison_mixed_enum_types_cxx20
1549 : diag::warn_comparison_mixed_enum_types;
1550 } else {
1551 DiagID = getLangOpts().CPlusPlus20
1552 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1553 : diag::warn_arith_conv_mixed_enum_types;
1554 }
1555 Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1556 << (int)ACK << L << R;
1557 }
1558}
1559
1560static void CheckUnicodeArithmeticConversions(Sema &SemaRef, Expr *LHS,
1561 Expr *RHS, SourceLocation Loc,
1562 ArithConvKind ACK) {
1563 QualType LHSType = LHS->getType().getUnqualifiedType();
1564 QualType RHSType = RHS->getType().getUnqualifiedType();
1565
1566 if (!SemaRef.getLangOpts().CPlusPlus || !LHSType->isUnicodeCharacterType() ||
1567 !RHSType->isUnicodeCharacterType())
1568 return;
1569
1570 if (ACK == ArithConvKind::Comparison) {
1571 if (SemaRef.getASTContext().hasSameType(T1: LHSType, T2: RHSType))
1572 return;
1573
1574 auto IsSingleCodeUnitCP = [](const QualType &T, const llvm::APSInt &Value) {
1575 if (T->isChar8Type())
1576 return llvm::IsSingleCodeUnitUTF8Codepoint(Value.getExtValue());
1577 if (T->isChar16Type())
1578 return llvm::IsSingleCodeUnitUTF16Codepoint(Value.getExtValue());
1579 assert(T->isChar32Type());
1580 return llvm::IsSingleCodeUnitUTF32Codepoint(Value.getExtValue());
1581 };
1582
1583 Expr::EvalResult LHSRes, RHSRes;
1584 bool LHSSuccess = LHS->EvaluateAsInt(Result&: LHSRes, Ctx: SemaRef.getASTContext(),
1585 AllowSideEffects: Expr::SE_AllowSideEffects,
1586 InConstantContext: SemaRef.isConstantEvaluatedContext());
1587 bool RHSuccess = RHS->EvaluateAsInt(Result&: RHSRes, Ctx: SemaRef.getASTContext(),
1588 AllowSideEffects: Expr::SE_AllowSideEffects,
1589 InConstantContext: SemaRef.isConstantEvaluatedContext());
1590
1591 // Don't warn if the one known value is a representable
1592 // in the type of both expressions.
1593 if (LHSSuccess != RHSuccess) {
1594 Expr::EvalResult &Res = LHSSuccess ? LHSRes : RHSRes;
1595 if (IsSingleCodeUnitCP(LHSType, Res.Val.getInt()) &&
1596 IsSingleCodeUnitCP(RHSType, Res.Val.getInt()))
1597 return;
1598 }
1599
1600 if (!LHSSuccess || !RHSuccess) {
1601 SemaRef.Diag(Loc, diag::warn_comparison_unicode_mixed_types)
1602 << LHS->getSourceRange() << RHS->getSourceRange() << LHSType
1603 << RHSType;
1604 return;
1605 }
1606
1607 llvm::APSInt LHSValue(32);
1608 LHSValue = LHSRes.Val.getInt();
1609 llvm::APSInt RHSValue(32);
1610 RHSValue = RHSRes.Val.getInt();
1611
1612 bool LHSSafe = IsSingleCodeUnitCP(LHSType, LHSValue);
1613 bool RHSSafe = IsSingleCodeUnitCP(RHSType, RHSValue);
1614 if (LHSSafe && RHSSafe)
1615 return;
1616
1617 SemaRef.Diag(Loc, diag::warn_comparison_unicode_mixed_types_constant)
1618 << LHS->getSourceRange() << RHS->getSourceRange() << LHSType << RHSType
1619 << FormatUTFCodeUnitAsCodepoint(LHSValue.getExtValue(), LHSType)
1620 << FormatUTFCodeUnitAsCodepoint(RHSValue.getExtValue(), RHSType);
1621 return;
1622 }
1623
1624 if (SemaRef.getASTContext().hasSameType(T1: LHSType, T2: RHSType))
1625 return;
1626
1627 SemaRef.Diag(Loc, diag::warn_arith_conv_mixed_unicode_types)
1628 << LHS->getSourceRange() << RHS->getSourceRange() << ACK << LHSType
1629 << RHSType;
1630}
1631
1632/// UsualArithmeticConversions - Performs various conversions that are common to
1633/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1634/// routine returns the first non-arithmetic type found. The client is
1635/// responsible for emitting appropriate error diagnostics.
1636QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1637 SourceLocation Loc,
1638 ArithConvKind ACK) {
1639
1640 checkEnumArithmeticConversions(LHS: LHS.get(), RHS: RHS.get(), Loc, ACK);
1641
1642 CheckUnicodeArithmeticConversions(SemaRef&: *this, LHS: LHS.get(), RHS: RHS.get(), Loc, ACK);
1643
1644 if (ACK != ArithConvKind::CompAssign) {
1645 LHS = UsualUnaryConversions(E: LHS.get());
1646 if (LHS.isInvalid())
1647 return QualType();
1648 }
1649
1650 RHS = UsualUnaryConversions(E: RHS.get());
1651 if (RHS.isInvalid())
1652 return QualType();
1653
1654 // For conversion purposes, we ignore any qualifiers.
1655 // For example, "const float" and "float" are equivalent.
1656 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1657 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1658
1659 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1660 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1661 LHSType = AtomicLHS->getValueType();
1662
1663 // If both types are identical, no conversion is needed.
1664 if (Context.hasSameType(T1: LHSType, T2: RHSType))
1665 return Context.getCommonSugaredType(X: LHSType, Y: RHSType);
1666
1667 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1668 // The caller can deal with this (e.g. pointer + int).
1669 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1670 return QualType();
1671
1672 // Apply unary and bitfield promotions to the LHS's type.
1673 QualType LHSUnpromotedType = LHSType;
1674 if (Context.isPromotableIntegerType(T: LHSType))
1675 LHSType = Context.getPromotedIntegerType(PromotableType: LHSType);
1676 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(E: LHS.get());
1677 if (!LHSBitfieldPromoteTy.isNull())
1678 LHSType = LHSBitfieldPromoteTy;
1679 if (LHSType != LHSUnpromotedType && ACK != ArithConvKind::CompAssign)
1680 LHS = ImpCastExprToType(E: LHS.get(), Type: LHSType, CK: CK_IntegralCast);
1681
1682 // If both types are identical, no conversion is needed.
1683 if (Context.hasSameType(T1: LHSType, T2: RHSType))
1684 return Context.getCommonSugaredType(X: LHSType, Y: RHSType);
1685
1686 // At this point, we have two different arithmetic types.
1687
1688 // Diagnose attempts to convert between __ibm128, __float128 and long double
1689 // where such conversions currently can't be handled.
1690 if (unsupportedTypeConversion(S: *this, LHSType, RHSType))
1691 return QualType();
1692
1693 // Handle complex types first (C99 6.3.1.8p1).
1694 if (LHSType->isComplexType() || RHSType->isComplexType())
1695 return handleComplexConversion(S&: *this, LHS, RHS, LHSType, RHSType,
1696 IsCompAssign: ACK == ArithConvKind::CompAssign);
1697
1698 // Now handle "real" floating types (i.e. float, double, long double).
1699 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1700 return handleFloatConversion(S&: *this, LHS, RHS, LHSType, RHSType,
1701 IsCompAssign: ACK == ArithConvKind::CompAssign);
1702
1703 // Handle GCC complex int extension.
1704 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1705 return handleComplexIntConversion(S&: *this, LHS, RHS, LHSType, RHSType,
1706 IsCompAssign: ACK == ArithConvKind::CompAssign);
1707
1708 if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1709 return handleFixedPointConversion(S&: *this, LHSTy: LHSType, RHSTy: RHSType);
1710
1711 // Finally, we have two differing integer types.
1712 return handleIntegerConversion<doIntegralCast, doIntegralCast>(
1713 S&: *this, LHS, RHS, LHSType, RHSType, IsCompAssign: ACK == ArithConvKind::CompAssign);
1714}
1715
1716//===----------------------------------------------------------------------===//
1717// Semantic Analysis for various Expression Types
1718//===----------------------------------------------------------------------===//
1719
1720
1721ExprResult Sema::ActOnGenericSelectionExpr(
1722 SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1723 bool PredicateIsExpr, void *ControllingExprOrType,
1724 ArrayRef<ParsedType> ArgTypes, ArrayRef<Expr *> ArgExprs) {
1725 unsigned NumAssocs = ArgTypes.size();
1726 assert(NumAssocs == ArgExprs.size());
1727
1728 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1729 for (unsigned i = 0; i < NumAssocs; ++i) {
1730 if (ArgTypes[i])
1731 (void) GetTypeFromParser(Ty: ArgTypes[i], TInfo: &Types[i]);
1732 else
1733 Types[i] = nullptr;
1734 }
1735
1736 // If we have a controlling type, we need to convert it from a parsed type
1737 // into a semantic type and then pass that along.
1738 if (!PredicateIsExpr) {
1739 TypeSourceInfo *ControllingType;
1740 (void)GetTypeFromParser(Ty: ParsedType::getFromOpaquePtr(P: ControllingExprOrType),
1741 TInfo: &ControllingType);
1742 assert(ControllingType && "couldn't get the type out of the parser");
1743 ControllingExprOrType = ControllingType;
1744 }
1745
1746 ExprResult ER = CreateGenericSelectionExpr(
1747 KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType,
1748 Types: llvm::ArrayRef(Types, NumAssocs), Exprs: ArgExprs);
1749 delete [] Types;
1750 return ER;
1751}
1752
1753ExprResult Sema::CreateGenericSelectionExpr(
1754 SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1755 bool PredicateIsExpr, void *ControllingExprOrType,
1756 ArrayRef<TypeSourceInfo *> Types, ArrayRef<Expr *> Exprs) {
1757 unsigned NumAssocs = Types.size();
1758 assert(NumAssocs == Exprs.size());
1759 assert(ControllingExprOrType &&
1760 "Must have either a controlling expression or a controlling type");
1761
1762 Expr *ControllingExpr = nullptr;
1763 TypeSourceInfo *ControllingType = nullptr;
1764 if (PredicateIsExpr) {
1765 // Decay and strip qualifiers for the controlling expression type, and
1766 // handle placeholder type replacement. See committee discussion from WG14
1767 // DR423.
1768 EnterExpressionEvaluationContext Unevaluated(
1769 *this, Sema::ExpressionEvaluationContext::Unevaluated);
1770 ExprResult R = DefaultFunctionArrayLvalueConversion(
1771 E: reinterpret_cast<Expr *>(ControllingExprOrType));
1772 if (R.isInvalid())
1773 return ExprError();
1774 ControllingExpr = R.get();
1775 } else {
1776 // The extension form uses the type directly rather than converting it.
1777 ControllingType = reinterpret_cast<TypeSourceInfo *>(ControllingExprOrType);
1778 if (!ControllingType)
1779 return ExprError();
1780 }
1781
1782 bool TypeErrorFound = false,
1783 IsResultDependent = ControllingExpr
1784 ? ControllingExpr->isTypeDependent()
1785 : ControllingType->getType()->isDependentType(),
1786 ContainsUnexpandedParameterPack =
1787 ControllingExpr
1788 ? ControllingExpr->containsUnexpandedParameterPack()
1789 : ControllingType->getType()->containsUnexpandedParameterPack();
1790
1791 // The controlling expression is an unevaluated operand, so side effects are
1792 // likely unintended.
1793 if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr &&
1794 ControllingExpr->HasSideEffects(Context, false))
1795 Diag(ControllingExpr->getExprLoc(),
1796 diag::warn_side_effects_unevaluated_context);
1797
1798 for (unsigned i = 0; i < NumAssocs; ++i) {
1799 if (Exprs[i]->containsUnexpandedParameterPack())
1800 ContainsUnexpandedParameterPack = true;
1801
1802 if (Types[i]) {
1803 if (Types[i]->getType()->containsUnexpandedParameterPack())
1804 ContainsUnexpandedParameterPack = true;
1805
1806 if (Types[i]->getType()->isDependentType()) {
1807 IsResultDependent = true;
1808 } else {
1809 // We relax the restriction on use of incomplete types and non-object
1810 // types with the type-based extension of _Generic. Allowing incomplete
1811 // objects means those can be used as "tags" for a type-safe way to map
1812 // to a value. Similarly, matching on function types rather than
1813 // function pointer types can be useful. However, the restriction on VM
1814 // types makes sense to retain as there are open questions about how
1815 // the selection can be made at compile time.
1816 //
1817 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1818 // complete object type other than a variably modified type."
1819 // C2y removed the requirement that an expression form must
1820 // use a complete type, though it's still as-if the type has undergone
1821 // lvalue conversion. We support this as an extension in C23 and
1822 // earlier because GCC does so.
1823 unsigned D = 0;
1824 if (ControllingExpr && Types[i]->getType()->isIncompleteType())
1825 D = LangOpts.C2y ? diag::warn_c2y_compat_assoc_type_incomplete
1826 : diag::ext_assoc_type_incomplete;
1827 else if (ControllingExpr && !Types[i]->getType()->isObjectType())
1828 D = diag::err_assoc_type_nonobject;
1829 else if (Types[i]->getType()->isVariablyModifiedType())
1830 D = diag::err_assoc_type_variably_modified;
1831 else if (ControllingExpr) {
1832 // Because the controlling expression undergoes lvalue conversion,
1833 // array conversion, and function conversion, an association which is
1834 // of array type, function type, or is qualified can never be
1835 // reached. We will warn about this so users are less surprised by
1836 // the unreachable association. However, we don't have to handle
1837 // function types; that's not an object type, so it's handled above.
1838 //
1839 // The logic is somewhat different for C++ because C++ has different
1840 // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1841 // If T is a non-class type, the type of the prvalue is the cv-
1842 // unqualified version of T. Otherwise, the type of the prvalue is T.
1843 // The result of these rules is that all qualified types in an
1844 // association in C are unreachable, and in C++, only qualified non-
1845 // class types are unreachable.
1846 //
1847 // NB: this does not apply when the first operand is a type rather
1848 // than an expression, because the type form does not undergo
1849 // conversion.
1850 unsigned Reason = 0;
1851 QualType QT = Types[i]->getType();
1852 if (QT->isArrayType())
1853 Reason = 1;
1854 else if (QT.hasQualifiers() &&
1855 (!LangOpts.CPlusPlus || !QT->isRecordType()))
1856 Reason = 2;
1857
1858 if (Reason)
1859 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1860 diag::warn_unreachable_association)
1861 << QT << (Reason - 1);
1862 }
1863
1864 if (D != 0) {
1865 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1866 << Types[i]->getTypeLoc().getSourceRange() << Types[i]->getType();
1867 if (getDiagnostics().getDiagnosticLevel(
1868 DiagID: D, Loc: Types[i]->getTypeLoc().getBeginLoc()) >=
1869 DiagnosticsEngine::Error)
1870 TypeErrorFound = true;
1871 }
1872
1873 // C11 6.5.1.1p2 "No two generic associations in the same generic
1874 // selection shall specify compatible types."
1875 for (unsigned j = i+1; j < NumAssocs; ++j)
1876 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1877 Context.typesAreCompatible(T1: Types[i]->getType(),
1878 T2: Types[j]->getType())) {
1879 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1880 diag::err_assoc_compatible_types)
1881 << Types[j]->getTypeLoc().getSourceRange()
1882 << Types[j]->getType()
1883 << Types[i]->getType();
1884 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1885 diag::note_compat_assoc)
1886 << Types[i]->getTypeLoc().getSourceRange()
1887 << Types[i]->getType();
1888 TypeErrorFound = true;
1889 }
1890 }
1891 }
1892 }
1893 if (TypeErrorFound)
1894 return ExprError();
1895
1896 // If we determined that the generic selection is result-dependent, don't
1897 // try to compute the result expression.
1898 if (IsResultDependent) {
1899 if (ControllingExpr)
1900 return GenericSelectionExpr::Create(Context, GenericLoc: KeyLoc, ControllingExpr,
1901 AssocTypes: Types, AssocExprs: Exprs, DefaultLoc, RParenLoc,
1902 ContainsUnexpandedParameterPack);
1903 return GenericSelectionExpr::Create(Context, GenericLoc: KeyLoc, ControllingType, AssocTypes: Types,
1904 AssocExprs: Exprs, DefaultLoc, RParenLoc,
1905 ContainsUnexpandedParameterPack);
1906 }
1907
1908 SmallVector<unsigned, 1> CompatIndices;
1909 unsigned DefaultIndex = -1U;
1910 // Look at the canonical type of the controlling expression in case it was a
1911 // deduced type like __auto_type. However, when issuing diagnostics, use the
1912 // type the user wrote in source rather than the canonical one.
1913 for (unsigned i = 0; i < NumAssocs; ++i) {
1914 if (!Types[i])
1915 DefaultIndex = i;
1916 else if (ControllingExpr &&
1917 Context.typesAreCompatible(
1918 T1: ControllingExpr->getType().getCanonicalType(),
1919 T2: Types[i]->getType()))
1920 CompatIndices.push_back(Elt: i);
1921 else if (ControllingType &&
1922 Context.typesAreCompatible(
1923 T1: ControllingType->getType().getCanonicalType(),
1924 T2: Types[i]->getType()))
1925 CompatIndices.push_back(Elt: i);
1926 }
1927
1928 auto GetControllingRangeAndType = [](Expr *ControllingExpr,
1929 TypeSourceInfo *ControllingType) {
1930 // We strip parens here because the controlling expression is typically
1931 // parenthesized in macro definitions.
1932 if (ControllingExpr)
1933 ControllingExpr = ControllingExpr->IgnoreParens();
1934
1935 SourceRange SR = ControllingExpr
1936 ? ControllingExpr->getSourceRange()
1937 : ControllingType->getTypeLoc().getSourceRange();
1938 QualType QT = ControllingExpr ? ControllingExpr->getType()
1939 : ControllingType->getType();
1940
1941 return std::make_pair(SR, QT);
1942 };
1943
1944 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1945 // type compatible with at most one of the types named in its generic
1946 // association list."
1947 if (CompatIndices.size() > 1) {
1948 auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1949 SourceRange SR = P.first;
1950 Diag(SR.getBegin(), diag::err_generic_sel_multi_match)
1951 << SR << P.second << (unsigned)CompatIndices.size();
1952 for (unsigned I : CompatIndices) {
1953 Diag(Types[I]->getTypeLoc().getBeginLoc(),
1954 diag::note_compat_assoc)
1955 << Types[I]->getTypeLoc().getSourceRange()
1956 << Types[I]->getType();
1957 }
1958 return ExprError();
1959 }
1960
1961 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1962 // its controlling expression shall have type compatible with exactly one of
1963 // the types named in its generic association list."
1964 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1965 auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1966 SourceRange SR = P.first;
1967 Diag(SR.getBegin(), diag::err_generic_sel_no_match) << SR << P.second;
1968 return ExprError();
1969 }
1970
1971 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1972 // type name that is compatible with the type of the controlling expression,
1973 // then the result expression of the generic selection is the expression
1974 // in that generic association. Otherwise, the result expression of the
1975 // generic selection is the expression in the default generic association."
1976 unsigned ResultIndex =
1977 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1978
1979 if (ControllingExpr) {
1980 return GenericSelectionExpr::Create(
1981 Context, GenericLoc: KeyLoc, ControllingExpr, AssocTypes: Types, AssocExprs: Exprs, DefaultLoc, RParenLoc,
1982 ContainsUnexpandedParameterPack, ResultIndex);
1983 }
1984 return GenericSelectionExpr::Create(
1985 Context, GenericLoc: KeyLoc, ControllingType, AssocTypes: Types, AssocExprs: Exprs, DefaultLoc, RParenLoc,
1986 ContainsUnexpandedParameterPack, ResultIndex);
1987}
1988
1989static PredefinedIdentKind getPredefinedExprKind(tok::TokenKind Kind) {
1990 switch (Kind) {
1991 default:
1992 llvm_unreachable("unexpected TokenKind");
1993 case tok::kw___func__:
1994 return PredefinedIdentKind::Func; // [C99 6.4.2.2]
1995 case tok::kw___FUNCTION__:
1996 return PredefinedIdentKind::Function;
1997 case tok::kw___FUNCDNAME__:
1998 return PredefinedIdentKind::FuncDName; // [MS]
1999 case tok::kw___FUNCSIG__:
2000 return PredefinedIdentKind::FuncSig; // [MS]
2001 case tok::kw_L__FUNCTION__:
2002 return PredefinedIdentKind::LFunction; // [MS]
2003 case tok::kw_L__FUNCSIG__:
2004 return PredefinedIdentKind::LFuncSig; // [MS]
2005 case tok::kw___PRETTY_FUNCTION__:
2006 return PredefinedIdentKind::PrettyFunction; // [GNU]
2007 }
2008}
2009
2010/// getPredefinedExprDecl - Returns Decl of a given DeclContext that can be used
2011/// to determine the value of a PredefinedExpr. This can be either a
2012/// block, lambda, captured statement, function, otherwise a nullptr.
2013static Decl *getPredefinedExprDecl(DeclContext *DC) {
2014 while (DC && !isa<BlockDecl, CapturedDecl, FunctionDecl, ObjCMethodDecl>(Val: DC))
2015 DC = DC->getParent();
2016 return cast_or_null<Decl>(Val: DC);
2017}
2018
2019/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
2020/// location of the token and the offset of the ud-suffix within it.
2021static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
2022 unsigned Offset) {
2023 return Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: Offset, SM: S.getSourceManager(),
2024 LangOpts: S.getLangOpts());
2025}
2026
2027/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
2028/// the corresponding cooked (non-raw) literal operator, and build a call to it.
2029static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
2030 IdentifierInfo *UDSuffix,
2031 SourceLocation UDSuffixLoc,
2032 ArrayRef<Expr*> Args,
2033 SourceLocation LitEndLoc) {
2034 assert(Args.size() <= 2 && "too many arguments for literal operator");
2035
2036 QualType ArgTy[2];
2037 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2038 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
2039 if (ArgTy[ArgIdx]->isArrayType())
2040 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(T: ArgTy[ArgIdx]);
2041 }
2042
2043 DeclarationName OpName =
2044 S.Context.DeclarationNames.getCXXLiteralOperatorName(II: UDSuffix);
2045 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2046 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2047
2048 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
2049 if (S.LookupLiteralOperator(S: Scope, R, ArgTys: llvm::ArrayRef(ArgTy, Args.size()),
2050 /*AllowRaw*/ false, /*AllowTemplate*/ false,
2051 /*AllowStringTemplatePack*/ AllowStringTemplate: false,
2052 /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
2053 return ExprError();
2054
2055 return S.BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args, LitEndLoc);
2056}
2057
2058ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks) {
2059 // StringToks needs backing storage as it doesn't hold array elements itself
2060 std::vector<Token> ExpandedToks;
2061 if (getLangOpts().MicrosoftExt)
2062 StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(Toks: StringToks);
2063
2064 StringLiteralParser Literal(StringToks, PP,
2065 StringLiteralEvalMethod::Unevaluated);
2066 if (Literal.hadError)
2067 return ExprError();
2068
2069 SmallVector<SourceLocation, 4> StringTokLocs;
2070 for (const Token &Tok : StringToks)
2071 StringTokLocs.push_back(Elt: Tok.getLocation());
2072
2073 StringLiteral *Lit = StringLiteral::Create(
2074 Ctx: Context, Str: Literal.GetString(), Kind: StringLiteralKind::Unevaluated, Pascal: false, Ty: {},
2075 Loc: &StringTokLocs[0], NumConcatenated: StringTokLocs.size());
2076
2077 if (!Literal.getUDSuffix().empty()) {
2078 SourceLocation UDSuffixLoc =
2079 getUDSuffixLoc(S&: *this, TokLoc: StringTokLocs[Literal.getUDSuffixToken()],
2080 Offset: Literal.getUDSuffixOffset());
2081 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
2082 }
2083
2084 return Lit;
2085}
2086
2087std::vector<Token>
2088Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks) {
2089 // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
2090 // local macros that expand to string literals that may be concatenated.
2091 // These macros are expanded here (in Sema), because StringLiteralParser
2092 // (in Lex) doesn't know the enclosing function (because it hasn't been
2093 // parsed yet).
2094 assert(getLangOpts().MicrosoftExt);
2095
2096 // Note: Although function local macros are defined only inside functions,
2097 // we ensure a valid `CurrentDecl` even outside of a function. This allows
2098 // expansion of macros into empty string literals without additional checks.
2099 Decl *CurrentDecl = getPredefinedExprDecl(DC: CurContext);
2100 if (!CurrentDecl)
2101 CurrentDecl = Context.getTranslationUnitDecl();
2102
2103 std::vector<Token> ExpandedToks;
2104 ExpandedToks.reserve(n: Toks.size());
2105 for (const Token &Tok : Toks) {
2106 if (!isFunctionLocalStringLiteralMacro(K: Tok.getKind(), LO: getLangOpts())) {
2107 assert(tok::isStringLiteral(Tok.getKind()));
2108 ExpandedToks.emplace_back(args: Tok);
2109 continue;
2110 }
2111 if (isa<TranslationUnitDecl>(CurrentDecl))
2112 Diag(Tok.getLocation(), diag::ext_predef_outside_function);
2113 // Stringify predefined expression
2114 Diag(Tok.getLocation(), diag::ext_string_literal_from_predefined)
2115 << Tok.getKind();
2116 SmallString<64> Str;
2117 llvm::raw_svector_ostream OS(Str);
2118 Token &Exp = ExpandedToks.emplace_back();
2119 Exp.startToken();
2120 if (Tok.getKind() == tok::kw_L__FUNCTION__ ||
2121 Tok.getKind() == tok::kw_L__FUNCSIG__) {
2122 OS << 'L';
2123 Exp.setKind(tok::wide_string_literal);
2124 } else {
2125 Exp.setKind(tok::string_literal);
2126 }
2127 OS << '"'
2128 << Lexer::Stringify(Str: PredefinedExpr::ComputeName(
2129 IK: getPredefinedExprKind(Kind: Tok.getKind()), CurrentDecl))
2130 << '"';
2131 PP.CreateString(Str: OS.str(), Tok&: Exp, ExpansionLocStart: Tok.getLocation(), ExpansionLocEnd: Tok.getEndLoc());
2132 }
2133 return ExpandedToks;
2134}
2135
2136ExprResult
2137Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
2138 assert(!StringToks.empty() && "Must have at least one string!");
2139
2140 // StringToks needs backing storage as it doesn't hold array elements itself
2141 std::vector<Token> ExpandedToks;
2142 if (getLangOpts().MicrosoftExt)
2143 StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(Toks: StringToks);
2144
2145 StringLiteralParser Literal(StringToks, PP);
2146 if (Literal.hadError)
2147 return ExprError();
2148
2149 SmallVector<SourceLocation, 4> StringTokLocs;
2150 for (const Token &Tok : StringToks)
2151 StringTokLocs.push_back(Elt: Tok.getLocation());
2152
2153 QualType CharTy = Context.CharTy;
2154 StringLiteralKind Kind = StringLiteralKind::Ordinary;
2155 if (Literal.isWide()) {
2156 CharTy = Context.getWideCharType();
2157 Kind = StringLiteralKind::Wide;
2158 } else if (Literal.isUTF8()) {
2159 if (getLangOpts().Char8)
2160 CharTy = Context.Char8Ty;
2161 else if (getLangOpts().C23)
2162 CharTy = Context.UnsignedCharTy;
2163 Kind = StringLiteralKind::UTF8;
2164 } else if (Literal.isUTF16()) {
2165 CharTy = Context.Char16Ty;
2166 Kind = StringLiteralKind::UTF16;
2167 } else if (Literal.isUTF32()) {
2168 CharTy = Context.Char32Ty;
2169 Kind = StringLiteralKind::UTF32;
2170 } else if (Literal.isPascal()) {
2171 CharTy = Context.UnsignedCharTy;
2172 }
2173
2174 // Warn on u8 string literals before C++20 and C23, whose type
2175 // was an array of char before but becomes an array of char8_t.
2176 // In C++20, it cannot be used where a pointer to char is expected.
2177 // In C23, it might have an unexpected value if char was signed.
2178 if (Kind == StringLiteralKind::UTF8 &&
2179 (getLangOpts().CPlusPlus
2180 ? !getLangOpts().CPlusPlus20 && !getLangOpts().Char8
2181 : !getLangOpts().C23)) {
2182 Diag(StringTokLocs.front(), getLangOpts().CPlusPlus
2183 ? diag::warn_cxx20_compat_utf8_string
2184 : diag::warn_c23_compat_utf8_string);
2185
2186 // Create removals for all 'u8' prefixes in the string literal(s). This
2187 // ensures C++20/C23 compatibility (but may change the program behavior when
2188 // built by non-Clang compilers for which the execution character set is
2189 // not always UTF-8).
2190 auto RemovalDiag = PDiag(diag::note_cxx20_c23_compat_utf8_string_remove_u8);
2191 SourceLocation RemovalDiagLoc;
2192 for (const Token &Tok : StringToks) {
2193 if (Tok.getKind() == tok::utf8_string_literal) {
2194 if (RemovalDiagLoc.isInvalid())
2195 RemovalDiagLoc = Tok.getLocation();
2196 RemovalDiag << FixItHint::CreateRemoval(RemoveRange: CharSourceRange::getCharRange(
2197 B: Tok.getLocation(),
2198 E: Lexer::AdvanceToTokenCharacter(TokStart: Tok.getLocation(), Characters: 2,
2199 SM: getSourceManager(), LangOpts: getLangOpts())));
2200 }
2201 }
2202 Diag(RemovalDiagLoc, RemovalDiag);
2203 }
2204
2205 QualType StrTy =
2206 Context.getStringLiteralArrayType(EltTy: CharTy, Length: Literal.GetNumStringChars());
2207
2208 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2209 StringLiteral *Lit = StringLiteral::Create(Ctx: Context, Str: Literal.GetString(),
2210 Kind, Pascal: Literal.Pascal, Ty: StrTy,
2211 Loc: &StringTokLocs[0],
2212 NumConcatenated: StringTokLocs.size());
2213 if (Literal.getUDSuffix().empty())
2214 return Lit;
2215
2216 // We're building a user-defined literal.
2217 IdentifierInfo *UDSuffix = &Context.Idents.get(Name: Literal.getUDSuffix());
2218 SourceLocation UDSuffixLoc =
2219 getUDSuffixLoc(S&: *this, TokLoc: StringTokLocs[Literal.getUDSuffixToken()],
2220 Offset: Literal.getUDSuffixOffset());
2221
2222 // Make sure we're allowed user-defined literals here.
2223 if (!UDLScope)
2224 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
2225
2226 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2227 // operator "" X (str, len)
2228 QualType SizeType = Context.getSizeType();
2229
2230 DeclarationName OpName =
2231 Context.DeclarationNames.getCXXLiteralOperatorName(II: UDSuffix);
2232 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2233 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2234
2235 QualType ArgTy[] = {
2236 Context.getArrayDecayedType(T: StrTy), SizeType
2237 };
2238
2239 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2240 switch (LookupLiteralOperator(S: UDLScope, R, ArgTys: ArgTy,
2241 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2242 /*AllowStringTemplatePack*/ AllowStringTemplate: true,
2243 /*DiagnoseMissing*/ true, StringLit: Lit)) {
2244
2245 case LOLR_Cooked: {
2246 llvm::APInt Len(Context.getIntWidth(T: SizeType), Literal.GetNumStringChars());
2247 IntegerLiteral *LenArg = IntegerLiteral::Create(C: Context, V: Len, type: SizeType,
2248 l: StringTokLocs[0]);
2249 Expr *Args[] = { Lit, LenArg };
2250
2251 return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
2252 }
2253
2254 case LOLR_Template: {
2255 TemplateArgumentListInfo ExplicitArgs;
2256 TemplateArgument Arg(Lit, /*IsCanonical=*/false);
2257 TemplateArgumentLocInfo ArgInfo(Lit);
2258 ExplicitArgs.addArgument(Loc: TemplateArgumentLoc(Arg, ArgInfo));
2259 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: {}, LitEndLoc: StringTokLocs.back(),
2260 ExplicitTemplateArgs: &ExplicitArgs);
2261 }
2262
2263 case LOLR_StringTemplatePack: {
2264 TemplateArgumentListInfo ExplicitArgs;
2265
2266 unsigned CharBits = Context.getIntWidth(T: CharTy);
2267 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
2268 llvm::APSInt Value(CharBits, CharIsUnsigned);
2269
2270 TemplateArgument TypeArg(CharTy);
2271 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(T: CharTy));
2272 ExplicitArgs.addArgument(Loc: TemplateArgumentLoc(TypeArg, TypeArgInfo));
2273
2274 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
2275 Value = Lit->getCodeUnit(i: I);
2276 TemplateArgument Arg(Context, Value, CharTy);
2277 TemplateArgumentLocInfo ArgInfo;
2278 ExplicitArgs.addArgument(Loc: TemplateArgumentLoc(Arg, ArgInfo));
2279 }
2280 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: {}, LitEndLoc: StringTokLocs.back(),
2281 ExplicitTemplateArgs: &ExplicitArgs);
2282 }
2283 case LOLR_Raw:
2284 case LOLR_ErrorNoDiagnostic:
2285 llvm_unreachable("unexpected literal operator lookup result");
2286 case LOLR_Error:
2287 return ExprError();
2288 }
2289 llvm_unreachable("unexpected literal operator lookup result");
2290}
2291
2292DeclRefExpr *
2293Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2294 SourceLocation Loc,
2295 const CXXScopeSpec *SS) {
2296 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2297 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2298}
2299
2300DeclRefExpr *
2301Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2302 const DeclarationNameInfo &NameInfo,
2303 const CXXScopeSpec *SS, NamedDecl *FoundD,
2304 SourceLocation TemplateKWLoc,
2305 const TemplateArgumentListInfo *TemplateArgs) {
2306 NestedNameSpecifierLoc NNS =
2307 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2308 return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2309 TemplateArgs);
2310}
2311
2312// CUDA/HIP: Check whether a captured reference variable is referencing a
2313// host variable in a device or host device lambda.
2314static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2315 VarDecl *VD) {
2316 if (!S.getLangOpts().CUDA || !VD->hasInit())
2317 return false;
2318 assert(VD->getType()->isReferenceType());
2319
2320 // Check whether the reference variable is referencing a host variable.
2321 auto *DRE = dyn_cast<DeclRefExpr>(Val: VD->getInit());
2322 if (!DRE)
2323 return false;
2324 auto *Referee = dyn_cast<VarDecl>(Val: DRE->getDecl());
2325 if (!Referee || !Referee->hasGlobalStorage() ||
2326 Referee->hasAttr<CUDADeviceAttr>())
2327 return false;
2328
2329 // Check whether the current function is a device or host device lambda.
2330 // Check whether the reference variable is a capture by getDeclContext()
2331 // since refersToEnclosingVariableOrCapture() is not ready at this point.
2332 auto *MD = dyn_cast_or_null<CXXMethodDecl>(Val: S.CurContext);
2333 if (MD && MD->getParent()->isLambda() &&
2334 MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2335 VD->getDeclContext() != MD)
2336 return true;
2337
2338 return false;
2339}
2340
2341NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2342 // A declaration named in an unevaluated operand never constitutes an odr-use.
2343 if (isUnevaluatedContext())
2344 return NOUR_Unevaluated;
2345
2346 // C++2a [basic.def.odr]p4:
2347 // A variable x whose name appears as a potentially-evaluated expression e
2348 // is odr-used by e unless [...] x is a reference that is usable in
2349 // constant expressions.
2350 // CUDA/HIP:
2351 // If a reference variable referencing a host variable is captured in a
2352 // device or host device lambda, the value of the referee must be copied
2353 // to the capture and the reference variable must be treated as odr-use
2354 // since the value of the referee is not known at compile time and must
2355 // be loaded from the captured.
2356 if (VarDecl *VD = dyn_cast<VarDecl>(Val: D)) {
2357 if (VD->getType()->isReferenceType() &&
2358 !(getLangOpts().OpenMP && OpenMP().isOpenMPCapturedDecl(D)) &&
2359 !isCapturingReferenceToHostVarInCUDADeviceLambda(S: *this, VD) &&
2360 VD->isUsableInConstantExpressions(C: Context))
2361 return NOUR_Constant;
2362 }
2363
2364 // All remaining non-variable cases constitute an odr-use. For variables, we
2365 // need to wait and see how the expression is used.
2366 return NOUR_None;
2367}
2368
2369DeclRefExpr *
2370Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2371 const DeclarationNameInfo &NameInfo,
2372 NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2373 SourceLocation TemplateKWLoc,
2374 const TemplateArgumentListInfo *TemplateArgs) {
2375 bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(Val: D) &&
2376 NeedToCaptureVariable(Var: D, Loc: NameInfo.getLoc());
2377
2378 DeclRefExpr *E = DeclRefExpr::Create(
2379 Context, QualifierLoc: NNS, TemplateKWLoc, D, RefersToEnclosingVariableOrCapture: RefersToCapturedVariable, NameInfo, T: Ty,
2380 VK, FoundD, TemplateArgs, NOUR: getNonOdrUseReasonInCurrentContext(D));
2381 MarkDeclRefReferenced(E);
2382
2383 // C++ [except.spec]p17:
2384 // An exception-specification is considered to be needed when:
2385 // - in an expression, the function is the unique lookup result or
2386 // the selected member of a set of overloaded functions.
2387 //
2388 // We delay doing this until after we've built the function reference and
2389 // marked it as used so that:
2390 // a) if the function is defaulted, we get errors from defining it before /
2391 // instead of errors from computing its exception specification, and
2392 // b) if the function is a defaulted comparison, we can use the body we
2393 // build when defining it as input to the exception specification
2394 // computation rather than computing a new body.
2395 if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
2396 if (isUnresolvedExceptionSpec(ESpecType: FPT->getExceptionSpecType())) {
2397 if (const auto *NewFPT = ResolveExceptionSpec(Loc: NameInfo.getLoc(), FPT))
2398 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2399 }
2400 }
2401
2402 if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2403 Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2404 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2405 getCurFunction()->recordUseOfWeak(E);
2406
2407 const auto *FD = dyn_cast<FieldDecl>(Val: D);
2408 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(Val: D))
2409 FD = IFD->getAnonField();
2410 if (FD) {
2411 UnusedPrivateFields.remove(FD);
2412 // Just in case we're building an illegal pointer-to-member.
2413 if (FD->isBitField())
2414 E->setObjectKind(OK_BitField);
2415 }
2416
2417 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2418 // designates a bit-field.
2419 if (const auto *BD = dyn_cast<BindingDecl>(Val: D))
2420 if (const auto *BE = BD->getBinding())
2421 E->setObjectKind(BE->getObjectKind());
2422
2423 return E;
2424}
2425
2426void
2427Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2428 TemplateArgumentListInfo &Buffer,
2429 DeclarationNameInfo &NameInfo,
2430 const TemplateArgumentListInfo *&TemplateArgs) {
2431 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2432 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2433 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2434
2435 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2436 Id.TemplateId->NumArgs);
2437 translateTemplateArguments(In: TemplateArgsPtr, Out&: Buffer);
2438
2439 TemplateName TName = Id.TemplateId->Template.get();
2440 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2441 NameInfo = Context.getNameForTemplate(Name: TName, NameLoc: TNameLoc);
2442 TemplateArgs = &Buffer;
2443 } else {
2444 NameInfo = GetNameFromUnqualifiedId(Name: Id);
2445 TemplateArgs = nullptr;
2446 }
2447}
2448
2449static void emitEmptyLookupTypoDiagnostic(const TypoCorrection &TC,
2450 Sema &SemaRef, const CXXScopeSpec &SS,
2451 DeclarationName Typo,
2452 SourceRange TypoRange,
2453 unsigned DiagnosticID,
2454 unsigned DiagnosticSuggestID) {
2455 DeclContext *Ctx =
2456 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, EnteringContext: false);
2457 if (!TC) {
2458 // Emit a special diagnostic for failed member lookups.
2459 // FIXME: computing the declaration context might fail here (?)
2460 if (Ctx)
2461 SemaRef.Diag(TypoRange.getBegin(), diag::err_no_member)
2462 << Typo << Ctx << TypoRange;
2463 else
2464 SemaRef.Diag(TypoRange.getBegin(), DiagnosticID) << Typo << TypoRange;
2465 return;
2466 }
2467
2468 std::string CorrectedStr = TC.getAsString(LO: SemaRef.getLangOpts());
2469 bool DroppedSpecifier =
2470 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2471 unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2472 ? diag::note_implicit_param_decl
2473 : diag::note_previous_decl;
2474 if (!Ctx)
2475 SemaRef.diagnoseTypo(
2476 TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo << TypoRange,
2477 SemaRef.PDiag(NoteID));
2478 else
2479 SemaRef.diagnoseTypo(TC,
2480 SemaRef.PDiag(diag::err_no_member_suggest)
2481 << Typo << Ctx << DroppedSpecifier << TypoRange,
2482 SemaRef.PDiag(NoteID));
2483}
2484
2485bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) {
2486 // During a default argument instantiation the CurContext points
2487 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2488 // function parameter list, hence add an explicit check.
2489 bool isDefaultArgument =
2490 !CodeSynthesisContexts.empty() &&
2491 CodeSynthesisContexts.back().Kind ==
2492 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2493 const auto *CurMethod = dyn_cast<CXXMethodDecl>(Val: CurContext);
2494 bool isInstance = CurMethod && CurMethod->isInstance() &&
2495 R.getNamingClass() == CurMethod->getParent() &&
2496 !isDefaultArgument;
2497
2498 // There are two ways we can find a class-scope declaration during template
2499 // instantiation that we did not find in the template definition: if it is a
2500 // member of a dependent base class, or if it is declared after the point of
2501 // use in the same class. Distinguish these by comparing the class in which
2502 // the member was found to the naming class of the lookup.
2503 unsigned DiagID = diag::err_found_in_dependent_base;
2504 unsigned NoteID = diag::note_member_declared_at;
2505 if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2506 DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2507 : diag::err_found_later_in_class;
2508 } else if (getLangOpts().MSVCCompat) {
2509 DiagID = diag::ext_found_in_dependent_base;
2510 NoteID = diag::note_dependent_member_use;
2511 }
2512
2513 if (isInstance) {
2514 // Give a code modification hint to insert 'this->'.
2515 Diag(R.getNameLoc(), DiagID)
2516 << R.getLookupName()
2517 << FixItHint::CreateInsertion(InsertionLoc: R.getNameLoc(), Code: "this->");
2518 CheckCXXThisCapture(Loc: R.getNameLoc());
2519 } else {
2520 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2521 // they're not shadowed).
2522 Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2523 }
2524
2525 for (const NamedDecl *D : R)
2526 Diag(D->getLocation(), NoteID);
2527
2528 // Return true if we are inside a default argument instantiation
2529 // and the found name refers to an instance member function, otherwise
2530 // the caller will try to create an implicit member call and this is wrong
2531 // for default arguments.
2532 //
2533 // FIXME: Is this special case necessary? We could allow the caller to
2534 // diagnose this.
2535 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2536 Diag(R.getNameLoc(), diag::err_member_call_without_object) << 0;
2537 return true;
2538 }
2539
2540 // Tell the callee to try to recover.
2541 return false;
2542}
2543
2544bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2545 CorrectionCandidateCallback &CCC,
2546 TemplateArgumentListInfo *ExplicitTemplateArgs,
2547 ArrayRef<Expr *> Args, DeclContext *LookupCtx,
2548 TypoExpr **Out) {
2549 DeclarationName Name = R.getLookupName();
2550 SourceRange NameRange = R.getLookupNameInfo().getSourceRange();
2551
2552 unsigned diagnostic = diag::err_undeclared_var_use;
2553 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2554 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2555 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2556 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2557 diagnostic = diag::err_undeclared_use;
2558 diagnostic_suggest = diag::err_undeclared_use_suggest;
2559 }
2560
2561 // If the original lookup was an unqualified lookup, fake an
2562 // unqualified lookup. This is useful when (for example) the
2563 // original lookup would not have found something because it was a
2564 // dependent name.
2565 DeclContext *DC =
2566 LookupCtx ? LookupCtx : (SS.isEmpty() ? CurContext : nullptr);
2567 while (DC) {
2568 if (isa<CXXRecordDecl>(Val: DC)) {
2569 if (ExplicitTemplateArgs) {
2570 if (LookupTemplateName(
2571 R, S, SS, ObjectType: Context.getRecordType(cast<CXXRecordDecl>(Val: DC)),
2572 /*EnteringContext*/ false, RequiredTemplate: TemplateNameIsRequired,
2573 /*RequiredTemplateKind*/ ATK: nullptr, /*AllowTypoCorrection*/ true))
2574 return true;
2575 } else {
2576 LookupQualifiedName(R, LookupCtx: DC);
2577 }
2578
2579 if (!R.empty()) {
2580 // Don't give errors about ambiguities in this lookup.
2581 R.suppressDiagnostics();
2582
2583 // If there's a best viable function among the results, only mention
2584 // that one in the notes.
2585 OverloadCandidateSet Candidates(R.getNameLoc(),
2586 OverloadCandidateSet::CSK_Normal);
2587 AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, CandidateSet&: Candidates);
2588 OverloadCandidateSet::iterator Best;
2589 if (Candidates.BestViableFunction(S&: *this, Loc: R.getNameLoc(), Best) ==
2590 OR_Success) {
2591 R.clear();
2592 R.addDecl(D: Best->FoundDecl.getDecl(), AS: Best->FoundDecl.getAccess());
2593 R.resolveKind();
2594 }
2595
2596 return DiagnoseDependentMemberLookup(R);
2597 }
2598
2599 R.clear();
2600 }
2601
2602 DC = DC->getLookupParent();
2603 }
2604
2605 // We didn't find anything, so try to correct for a typo.
2606 TypoCorrection Corrected;
2607 if (S && Out) {
2608 assert(!ExplicitTemplateArgs &&
2609 "Diagnosing an empty lookup with explicit template args!");
2610 *Out = CorrectTypoDelayed(
2611 Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S, SS: &SS, CCC,
2612 TDG: [=](const TypoCorrection &TC) {
2613 emitEmptyLookupTypoDiagnostic(TC, SemaRef&: *this, SS, Typo: Name, TypoRange: NameRange,
2614 DiagnosticID: diagnostic, DiagnosticSuggestID: diagnostic_suggest);
2615 },
2616 TRC: nullptr, Mode: CorrectTypoKind::ErrorRecovery, MemberContext: LookupCtx);
2617 if (*Out)
2618 return true;
2619 } else if (S && (Corrected = CorrectTypo(
2620 Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S, SS: &SS, CCC,
2621 Mode: CorrectTypoKind::ErrorRecovery, MemberContext: LookupCtx))) {
2622 std::string CorrectedStr(Corrected.getAsString(LO: getLangOpts()));
2623 bool DroppedSpecifier =
2624 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2625 R.setLookupName(Corrected.getCorrection());
2626
2627 bool AcceptableWithRecovery = false;
2628 bool AcceptableWithoutRecovery = false;
2629 NamedDecl *ND = Corrected.getFoundDecl();
2630 if (ND) {
2631 if (Corrected.isOverloaded()) {
2632 OverloadCandidateSet OCS(R.getNameLoc(),
2633 OverloadCandidateSet::CSK_Normal);
2634 OverloadCandidateSet::iterator Best;
2635 for (NamedDecl *CD : Corrected) {
2636 if (FunctionTemplateDecl *FTD =
2637 dyn_cast<FunctionTemplateDecl>(Val: CD))
2638 AddTemplateOverloadCandidate(
2639 FunctionTemplate: FTD, FoundDecl: DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2640 Args, CandidateSet&: OCS);
2641 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CD))
2642 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2643 AddOverloadCandidate(Function: FD, FoundDecl: DeclAccessPair::make(FD, AS_none),
2644 Args, CandidateSet&: OCS);
2645 }
2646 switch (OCS.BestViableFunction(S&: *this, Loc: R.getNameLoc(), Best)) {
2647 case OR_Success:
2648 ND = Best->FoundDecl;
2649 Corrected.setCorrectionDecl(ND);
2650 break;
2651 default:
2652 // FIXME: Arbitrarily pick the first declaration for the note.
2653 Corrected.setCorrectionDecl(ND);
2654 break;
2655 }
2656 }
2657 R.addDecl(D: ND);
2658 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2659 CXXRecordDecl *Record = nullptr;
2660 if (Corrected.getCorrectionSpecifier()) {
2661 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2662 Record = Ty->getAsCXXRecordDecl();
2663 }
2664 if (!Record)
2665 Record = cast<CXXRecordDecl>(
2666 ND->getDeclContext()->getRedeclContext());
2667 R.setNamingClass(Record);
2668 }
2669
2670 auto *UnderlyingND = ND->getUnderlyingDecl();
2671 AcceptableWithRecovery = isa<ValueDecl>(Val: UnderlyingND) ||
2672 isa<FunctionTemplateDecl>(Val: UnderlyingND);
2673 // FIXME: If we ended up with a typo for a type name or
2674 // Objective-C class name, we're in trouble because the parser
2675 // is in the wrong place to recover. Suggest the typo
2676 // correction, but don't make it a fix-it since we're not going
2677 // to recover well anyway.
2678 AcceptableWithoutRecovery = isa<TypeDecl>(Val: UnderlyingND) ||
2679 getAsTypeTemplateDecl(UnderlyingND) ||
2680 isa<ObjCInterfaceDecl>(Val: UnderlyingND);
2681 } else {
2682 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2683 // because we aren't able to recover.
2684 AcceptableWithoutRecovery = true;
2685 }
2686
2687 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2688 unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2689 ? diag::note_implicit_param_decl
2690 : diag::note_previous_decl;
2691 if (SS.isEmpty())
2692 diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name << NameRange,
2693 PDiag(NoteID), AcceptableWithRecovery);
2694 else
2695 diagnoseTypo(Corrected,
2696 PDiag(diag::err_no_member_suggest)
2697 << Name << computeDeclContext(SS, false)
2698 << DroppedSpecifier << NameRange,
2699 PDiag(NoteID), AcceptableWithRecovery);
2700
2701 // Tell the callee whether to try to recover.
2702 return !AcceptableWithRecovery;
2703 }
2704 }
2705 R.clear();
2706
2707 // Emit a special diagnostic for failed member lookups.
2708 // FIXME: computing the declaration context might fail here (?)
2709 if (!SS.isEmpty()) {
2710 Diag(R.getNameLoc(), diag::err_no_member)
2711 << Name << computeDeclContext(SS, false) << NameRange;
2712 return true;
2713 }
2714
2715 // Give up, we can't recover.
2716 Diag(R.getNameLoc(), diagnostic) << Name << NameRange;
2717 return true;
2718}
2719
2720/// In Microsoft mode, if we are inside a template class whose parent class has
2721/// dependent base classes, and we can't resolve an unqualified identifier, then
2722/// assume the identifier is a member of a dependent base class. We can only
2723/// recover successfully in static methods, instance methods, and other contexts
2724/// where 'this' is available. This doesn't precisely match MSVC's
2725/// instantiation model, but it's close enough.
2726static Expr *
2727recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2728 DeclarationNameInfo &NameInfo,
2729 SourceLocation TemplateKWLoc,
2730 const TemplateArgumentListInfo *TemplateArgs) {
2731 // Only try to recover from lookup into dependent bases in static methods or
2732 // contexts where 'this' is available.
2733 QualType ThisType = S.getCurrentThisType();
2734 const CXXRecordDecl *RD = nullptr;
2735 if (!ThisType.isNull())
2736 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2737 else if (auto *MD = dyn_cast<CXXMethodDecl>(Val: S.CurContext))
2738 RD = MD->getParent();
2739 if (!RD || !RD->hasDefinition() || !RD->hasAnyDependentBases())
2740 return nullptr;
2741
2742 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2743 // is available, suggest inserting 'this->' as a fixit.
2744 SourceLocation Loc = NameInfo.getLoc();
2745 auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2746 DB << NameInfo.getName() << RD;
2747
2748 if (!ThisType.isNull()) {
2749 DB << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: "this->");
2750 return CXXDependentScopeMemberExpr::Create(
2751 Ctx: Context, /*This=*/Base: nullptr, BaseType: ThisType, /*IsArrow=*/true,
2752 /*Op=*/OperatorLoc: SourceLocation(), QualifierLoc: NestedNameSpecifierLoc(), TemplateKWLoc,
2753 /*FirstQualifierFoundInScope=*/nullptr, MemberNameInfo: NameInfo, TemplateArgs);
2754 }
2755
2756 // Synthesize a fake NNS that points to the derived class. This will
2757 // perform name lookup during template instantiation.
2758 CXXScopeSpec SS;
2759 auto *NNS =
2760 NestedNameSpecifier::Create(Context, nullptr, RD->getTypeForDecl());
2761 SS.MakeTrivial(Context, Qualifier: NNS, R: SourceRange(Loc, Loc));
2762 return DependentScopeDeclRefExpr::Create(
2763 Context, QualifierLoc: SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2764 TemplateArgs);
2765}
2766
2767ExprResult
2768Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2769 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2770 bool HasTrailingLParen, bool IsAddressOfOperand,
2771 CorrectionCandidateCallback *CCC,
2772 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2773 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2774 "cannot be direct & operand and have a trailing lparen");
2775 if (SS.isInvalid())
2776 return ExprError();
2777
2778 TemplateArgumentListInfo TemplateArgsBuffer;
2779
2780 // Decompose the UnqualifiedId into the following data.
2781 DeclarationNameInfo NameInfo;
2782 const TemplateArgumentListInfo *TemplateArgs;
2783 DecomposeUnqualifiedId(Id, Buffer&: TemplateArgsBuffer, NameInfo, TemplateArgs);
2784
2785 DeclarationName Name = NameInfo.getName();
2786 IdentifierInfo *II = Name.getAsIdentifierInfo();
2787 SourceLocation NameLoc = NameInfo.getLoc();
2788
2789 if (II && II->isEditorPlaceholder()) {
2790 // FIXME: When typed placeholders are supported we can create a typed
2791 // placeholder expression node.
2792 return ExprError();
2793 }
2794
2795 // This specially handles arguments of attributes appertains to a type of C
2796 // struct field such that the name lookup within a struct finds the member
2797 // name, which is not the case for other contexts in C.
2798 if (isAttrContext() && !getLangOpts().CPlusPlus && S->isClassScope()) {
2799 // See if this is reference to a field of struct.
2800 LookupResult R(*this, NameInfo, LookupMemberName);
2801 // LookupName handles a name lookup from within anonymous struct.
2802 if (LookupName(R, S)) {
2803 if (auto *VD = dyn_cast<ValueDecl>(Val: R.getFoundDecl())) {
2804 QualType type = VD->getType().getNonReferenceType();
2805 // This will eventually be translated into MemberExpr upon
2806 // the use of instantiated struct fields.
2807 return BuildDeclRefExpr(D: VD, Ty: type, VK: VK_LValue, Loc: NameLoc);
2808 }
2809 }
2810 }
2811
2812 // Perform the required lookup.
2813 LookupResult R(*this, NameInfo,
2814 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2815 ? LookupObjCImplicitSelfParam
2816 : LookupOrdinaryName);
2817 if (TemplateKWLoc.isValid() || TemplateArgs) {
2818 // Lookup the template name again to correctly establish the context in
2819 // which it was found. This is really unfortunate as we already did the
2820 // lookup to determine that it was a template name in the first place. If
2821 // this becomes a performance hit, we can work harder to preserve those
2822 // results until we get here but it's likely not worth it.
2823 AssumedTemplateKind AssumedTemplate;
2824 if (LookupTemplateName(R, S, SS, /*ObjectType=*/QualType(),
2825 /*EnteringContext=*/false, RequiredTemplate: TemplateKWLoc,
2826 ATK: &AssumedTemplate))
2827 return ExprError();
2828
2829 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2830 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2831 isAddressOfOperand: IsAddressOfOperand, TemplateArgs);
2832 } else {
2833 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2834 LookupParsedName(R, S, SS: &SS, /*ObjectType=*/QualType(),
2835 /*AllowBuiltinCreation=*/!IvarLookupFollowUp);
2836
2837 // If the result might be in a dependent base class, this is a dependent
2838 // id-expression.
2839 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2840 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2841 isAddressOfOperand: IsAddressOfOperand, TemplateArgs);
2842
2843 // If this reference is in an Objective-C method, then we need to do
2844 // some special Objective-C lookup, too.
2845 if (IvarLookupFollowUp) {
2846 ExprResult E(ObjC().LookupInObjCMethod(LookUp&: R, S, II, AllowBuiltinCreation: true));
2847 if (E.isInvalid())
2848 return ExprError();
2849
2850 if (Expr *Ex = E.getAs<Expr>())
2851 return Ex;
2852 }
2853 }
2854
2855 if (R.isAmbiguous())
2856 return ExprError();
2857
2858 // This could be an implicitly declared function reference if the language
2859 // mode allows it as a feature.
2860 if (R.empty() && HasTrailingLParen && II &&
2861 getLangOpts().implicitFunctionsAllowed()) {
2862 NamedDecl *D = ImplicitlyDefineFunction(Loc: NameLoc, II&: *II, S);
2863 if (D) R.addDecl(D);
2864 }
2865
2866 // Determine whether this name might be a candidate for
2867 // argument-dependent lookup.
2868 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2869
2870 if (R.empty() && !ADL) {
2871 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2872 if (Expr *E = recoverFromMSUnqualifiedLookup(S&: *this, Context, NameInfo,
2873 TemplateKWLoc, TemplateArgs))
2874 return E;
2875 }
2876
2877 // Don't diagnose an empty lookup for inline assembly.
2878 if (IsInlineAsmIdentifier)
2879 return ExprError();
2880
2881 // If this name wasn't predeclared and if this is not a function
2882 // call, diagnose the problem.
2883 TypoExpr *TE = nullptr;
2884 DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2885 : nullptr);
2886 DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2887 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2888 "Typo correction callback misconfigured");
2889 if (CCC) {
2890 // Make sure the callback knows what the typo being diagnosed is.
2891 CCC->setTypoName(II);
2892 if (SS.isValid())
2893 CCC->setTypoNNS(SS.getScopeRep());
2894 }
2895 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2896 // a template name, but we happen to have always already looked up the name
2897 // before we get here if it must be a template name.
2898 if (DiagnoseEmptyLookup(S, SS, R, CCC&: CCC ? *CCC : DefaultValidator, ExplicitTemplateArgs: nullptr,
2899 Args: {}, LookupCtx: nullptr, Out: &TE)) {
2900 if (TE && KeywordReplacement) {
2901 auto &State = getTypoExprState(TE);
2902 auto BestTC = State.Consumer->getNextCorrection();
2903 if (BestTC.isKeyword()) {
2904 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2905 if (State.DiagHandler)
2906 State.DiagHandler(BestTC);
2907 KeywordReplacement->startToken();
2908 KeywordReplacement->setKind(II->getTokenID());
2909 KeywordReplacement->setIdentifierInfo(II);
2910 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2911 // Clean up the state associated with the TypoExpr, since it has
2912 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2913 clearDelayedTypo(TE);
2914 // Signal that a correction to a keyword was performed by returning a
2915 // valid-but-null ExprResult.
2916 return (Expr*)nullptr;
2917 }
2918 State.Consumer->resetCorrectionStream();
2919 }
2920 return TE ? TE : ExprError();
2921 }
2922
2923 assert(!R.empty() &&
2924 "DiagnoseEmptyLookup returned false but added no results");
2925
2926 // If we found an Objective-C instance variable, let
2927 // LookupInObjCMethod build the appropriate expression to
2928 // reference the ivar.
2929 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2930 R.clear();
2931 ExprResult E(ObjC().LookupInObjCMethod(LookUp&: R, S, II: Ivar->getIdentifier()));
2932 // In a hopelessly buggy code, Objective-C instance variable
2933 // lookup fails and no expression will be built to reference it.
2934 if (!E.isInvalid() && !E.get())
2935 return ExprError();
2936 return E;
2937 }
2938 }
2939
2940 // This is guaranteed from this point on.
2941 assert(!R.empty() || ADL);
2942
2943 // Check whether this might be a C++ implicit instance member access.
2944 // C++ [class.mfct.non-static]p3:
2945 // When an id-expression that is not part of a class member access
2946 // syntax and not used to form a pointer to member is used in the
2947 // body of a non-static member function of class X, if name lookup
2948 // resolves the name in the id-expression to a non-static non-type
2949 // member of some class C, the id-expression is transformed into a
2950 // class member access expression using (*this) as the
2951 // postfix-expression to the left of the . operator.
2952 //
2953 // But we don't actually need to do this for '&' operands if R
2954 // resolved to a function or overloaded function set, because the
2955 // expression is ill-formed if it actually works out to be a
2956 // non-static member function:
2957 //
2958 // C++ [expr.ref]p4:
2959 // Otherwise, if E1.E2 refers to a non-static member function. . .
2960 // [t]he expression can be used only as the left-hand operand of a
2961 // member function call.
2962 //
2963 // There are other safeguards against such uses, but it's important
2964 // to get this right here so that we don't end up making a
2965 // spuriously dependent expression if we're inside a dependent
2966 // instance method.
2967 if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
2968 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs,
2969 S);
2970
2971 if (TemplateArgs || TemplateKWLoc.isValid()) {
2972
2973 // In C++1y, if this is a variable template id, then check it
2974 // in BuildTemplateIdExpr().
2975 // The single lookup result must be a variable template declaration.
2976 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2977 Id.TemplateId->Kind == TNK_Var_template) {
2978 assert(R.getAsSingle<VarTemplateDecl>() &&
2979 "There should only be one declaration found.");
2980 }
2981
2982 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL: ADL, TemplateArgs);
2983 }
2984
2985 return BuildDeclarationNameExpr(SS, R, NeedsADL: ADL);
2986}
2987
2988ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2989 CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2990 bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI) {
2991 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2992 LookupParsedName(R, /*S=*/nullptr, SS: &SS, /*ObjectType=*/QualType());
2993
2994 if (R.isAmbiguous())
2995 return ExprError();
2996
2997 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2998 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2999 NameInfo, /*TemplateArgs=*/nullptr);
3000
3001 if (R.empty()) {
3002 // Don't diagnose problems with invalid record decl, the secondary no_member
3003 // diagnostic during template instantiation is likely bogus, e.g. if a class
3004 // is invalid because it's derived from an invalid base class, then missing
3005 // members were likely supposed to be inherited.
3006 DeclContext *DC = computeDeclContext(SS);
3007 if (const auto *CD = dyn_cast<CXXRecordDecl>(Val: DC))
3008 if (CD->isInvalidDecl())
3009 return ExprError();
3010 Diag(NameInfo.getLoc(), diag::err_no_member)
3011 << NameInfo.getName() << DC << SS.getRange();
3012 return ExprError();
3013 }
3014
3015 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
3016 QualType Ty = Context.getTypeDeclType(Decl: TD);
3017 QualType ET = getElaboratedType(Keyword: ElaboratedTypeKeyword::None, SS, T: Ty);
3018
3019 // Diagnose a missing typename if this resolved unambiguously to a type in
3020 // a dependent context. If we can recover with a type, downgrade this to
3021 // a warning in Microsoft compatibility mode.
3022 unsigned DiagID = diag::err_typename_missing;
3023 if (RecoveryTSI && getLangOpts().MSVCCompat)
3024 DiagID = diag::ext_typename_missing;
3025 SourceLocation Loc = SS.getBeginLoc();
3026 auto D = Diag(Loc, DiagID);
3027 D << ET << SourceRange(Loc, NameInfo.getEndLoc());
3028
3029 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
3030 // context.
3031 if (!RecoveryTSI)
3032 return ExprError();
3033
3034 // Only issue the fixit if we're prepared to recover.
3035 D << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: "typename ");
3036
3037 // Recover by pretending this was an elaborated type.
3038 TypeLocBuilder TLB;
3039 TLB.pushTypeSpec(T: Ty).setNameLoc(NameInfo.getLoc());
3040
3041 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(T: ET);
3042 QTL.setElaboratedKeywordLoc(SourceLocation());
3043 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
3044
3045 *RecoveryTSI = TLB.getTypeSourceInfo(Context, T: ET);
3046
3047 return ExprEmpty();
3048 }
3049
3050 // If necessary, build an implicit class member access.
3051 if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
3052 return BuildPossibleImplicitMemberExpr(SS,
3053 /*TemplateKWLoc=*/SourceLocation(),
3054 R, /*TemplateArgs=*/nullptr,
3055 /*S=*/nullptr);
3056
3057 return BuildDeclarationNameExpr(SS, R, /*ADL=*/NeedsADL: false);
3058}
3059
3060ExprResult
3061Sema::PerformObjectMemberConversion(Expr *From,
3062 NestedNameSpecifier *Qualifier,
3063 NamedDecl *FoundDecl,
3064 NamedDecl *Member) {
3065 const auto *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
3066 if (!RD)
3067 return From;
3068
3069 QualType DestRecordType;
3070 QualType DestType;
3071 QualType FromRecordType;
3072 QualType FromType = From->getType();
3073 bool PointerConversions = false;
3074 if (isa<FieldDecl>(Val: Member)) {
3075 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(Decl: RD));
3076 auto FromPtrType = FromType->getAs<PointerType>();
3077 DestRecordType = Context.getAddrSpaceQualType(
3078 T: DestRecordType, AddressSpace: FromPtrType
3079 ? FromType->getPointeeType().getAddressSpace()
3080 : FromType.getAddressSpace());
3081
3082 if (FromPtrType) {
3083 DestType = Context.getPointerType(T: DestRecordType);
3084 FromRecordType = FromPtrType->getPointeeType();
3085 PointerConversions = true;
3086 } else {
3087 DestType = DestRecordType;
3088 FromRecordType = FromType;
3089 }
3090 } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: Member)) {
3091 if (!Method->isImplicitObjectMemberFunction())
3092 return From;
3093
3094 DestType = Method->getThisType().getNonReferenceType();
3095 DestRecordType = Method->getFunctionObjectParameterType();
3096
3097 if (FromType->getAs<PointerType>()) {
3098 FromRecordType = FromType->getPointeeType();
3099 PointerConversions = true;
3100 } else {
3101 FromRecordType = FromType;
3102 DestType = DestRecordType;
3103 }
3104
3105 LangAS FromAS = FromRecordType.getAddressSpace();
3106 LangAS DestAS = DestRecordType.getAddressSpace();
3107 if (FromAS != DestAS) {
3108 QualType FromRecordTypeWithoutAS =
3109 Context.removeAddrSpaceQualType(T: FromRecordType);
3110 QualType FromTypeWithDestAS =
3111 Context.getAddrSpaceQualType(T: FromRecordTypeWithoutAS, AddressSpace: DestAS);
3112 if (PointerConversions)
3113 FromTypeWithDestAS = Context.getPointerType(T: FromTypeWithDestAS);
3114 From = ImpCastExprToType(E: From, Type: FromTypeWithDestAS,
3115 CK: CK_AddressSpaceConversion, VK: From->getValueKind())
3116 .get();
3117 }
3118 } else {
3119 // No conversion necessary.
3120 return From;
3121 }
3122
3123 if (DestType->isDependentType() || FromType->isDependentType())
3124 return From;
3125
3126 // If the unqualified types are the same, no conversion is necessary.
3127 if (Context.hasSameUnqualifiedType(T1: FromRecordType, T2: DestRecordType))
3128 return From;
3129
3130 SourceRange FromRange = From->getSourceRange();
3131 SourceLocation FromLoc = FromRange.getBegin();
3132
3133 ExprValueKind VK = From->getValueKind();
3134
3135 // C++ [class.member.lookup]p8:
3136 // [...] Ambiguities can often be resolved by qualifying a name with its
3137 // class name.
3138 //
3139 // If the member was a qualified name and the qualified referred to a
3140 // specific base subobject type, we'll cast to that intermediate type
3141 // first and then to the object in which the member is declared. That allows
3142 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3143 //
3144 // class Base { public: int x; };
3145 // class Derived1 : public Base { };
3146 // class Derived2 : public Base { };
3147 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3148 //
3149 // void VeryDerived::f() {
3150 // x = 17; // error: ambiguous base subobjects
3151 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3152 // }
3153 if (Qualifier && Qualifier->getAsType()) {
3154 QualType QType = QualType(Qualifier->getAsType(), 0);
3155 assert(QType->isRecordType() && "lookup done with non-record type");
3156
3157 QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3158
3159 // In C++98, the qualifier type doesn't actually have to be a base
3160 // type of the object type, in which case we just ignore it.
3161 // Otherwise build the appropriate casts.
3162 if (IsDerivedFrom(Loc: FromLoc, Derived: FromRecordType, Base: QRecordType)) {
3163 CXXCastPath BasePath;
3164 if (CheckDerivedToBaseConversion(Derived: FromRecordType, Base: QRecordType,
3165 Loc: FromLoc, Range: FromRange, BasePath: &BasePath))
3166 return ExprError();
3167
3168 if (PointerConversions)
3169 QType = Context.getPointerType(T: QType);
3170 From = ImpCastExprToType(E: From, Type: QType, CK: CK_UncheckedDerivedToBase,
3171 VK, BasePath: &BasePath).get();
3172
3173 FromType = QType;
3174 FromRecordType = QRecordType;
3175
3176 // If the qualifier type was the same as the destination type,
3177 // we're done.
3178 if (Context.hasSameUnqualifiedType(T1: FromRecordType, T2: DestRecordType))
3179 return From;
3180 }
3181 }
3182
3183 CXXCastPath BasePath;
3184 if (CheckDerivedToBaseConversion(Derived: FromRecordType, Base: DestRecordType,
3185 Loc: FromLoc, Range: FromRange, BasePath: &BasePath,
3186 /*IgnoreAccess=*/true))
3187 return ExprError();
3188
3189 // Propagate qualifiers to base subobjects as per:
3190 // C++ [basic.type.qualifier]p1.2:
3191 // A volatile object is [...] a subobject of a volatile object.
3192 Qualifiers FromTypeQuals = FromType.getQualifiers();
3193 FromTypeQuals.setAddressSpace(DestType.getAddressSpace());
3194 DestType = Context.getQualifiedType(T: DestType, Qs: FromTypeQuals);
3195
3196 return ImpCastExprToType(E: From, Type: DestType, CK: CK_UncheckedDerivedToBase, VK,
3197 BasePath: &BasePath);
3198}
3199
3200bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3201 const LookupResult &R,
3202 bool HasTrailingLParen) {
3203 // Only when used directly as the postfix-expression of a call.
3204 if (!HasTrailingLParen)
3205 return false;
3206
3207 // Never if a scope specifier was provided.
3208 if (SS.isNotEmpty())
3209 return false;
3210
3211 // Only in C++ or ObjC++.
3212 if (!getLangOpts().CPlusPlus)
3213 return false;
3214
3215 // Turn off ADL when we find certain kinds of declarations during
3216 // normal lookup:
3217 for (const NamedDecl *D : R) {
3218 // C++0x [basic.lookup.argdep]p3:
3219 // -- a declaration of a class member
3220 // Since using decls preserve this property, we check this on the
3221 // original decl.
3222 if (D->isCXXClassMember())
3223 return false;
3224
3225 // C++0x [basic.lookup.argdep]p3:
3226 // -- a block-scope function declaration that is not a
3227 // using-declaration
3228 // NOTE: we also trigger this for function templates (in fact, we
3229 // don't check the decl type at all, since all other decl types
3230 // turn off ADL anyway).
3231 if (isa<UsingShadowDecl>(Val: D))
3232 D = cast<UsingShadowDecl>(Val: D)->getTargetDecl();
3233 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3234 return false;
3235
3236 // C++0x [basic.lookup.argdep]p3:
3237 // -- a declaration that is neither a function or a function
3238 // template
3239 // And also for builtin functions.
3240 if (const auto *FDecl = dyn_cast<FunctionDecl>(Val: D)) {
3241 // But also builtin functions.
3242 if (FDecl->getBuiltinID() && FDecl->isImplicit())
3243 return false;
3244 } else if (!isa<FunctionTemplateDecl>(Val: D))
3245 return false;
3246 }
3247
3248 return true;
3249}
3250
3251
3252/// Diagnoses obvious problems with the use of the given declaration
3253/// as an expression. This is only actually called for lookups that
3254/// were not overloaded, and it doesn't promise that the declaration
3255/// will in fact be used.
3256static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3257 bool AcceptInvalid) {
3258 if (D->isInvalidDecl() && !AcceptInvalid)
3259 return true;
3260
3261 if (isa<TypedefNameDecl>(Val: D)) {
3262 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3263 return true;
3264 }
3265
3266 if (isa<ObjCInterfaceDecl>(Val: D)) {
3267 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3268 return true;
3269 }
3270
3271 if (isa<NamespaceDecl>(Val: D)) {
3272 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3273 return true;
3274 }
3275
3276 return false;
3277}
3278
3279// Certain multiversion types should be treated as overloaded even when there is
3280// only one result.
3281static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3282 assert(R.isSingleResult() && "Expected only a single result");
3283 const auto *FD = dyn_cast<FunctionDecl>(Val: R.getFoundDecl());
3284 return FD &&
3285 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3286}
3287
3288ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3289 LookupResult &R, bool NeedsADL,
3290 bool AcceptInvalidDecl) {
3291 // If this is a single, fully-resolved result and we don't need ADL,
3292 // just build an ordinary singleton decl ref.
3293 if (!NeedsADL && R.isSingleResult() &&
3294 !R.getAsSingle<FunctionTemplateDecl>() &&
3295 !ShouldLookupResultBeMultiVersionOverload(R))
3296 return BuildDeclarationNameExpr(SS, NameInfo: R.getLookupNameInfo(), D: R.getFoundDecl(),
3297 FoundD: R.getRepresentativeDecl(), TemplateArgs: nullptr,
3298 AcceptInvalidDecl);
3299
3300 // We only need to check the declaration if there's exactly one
3301 // result, because in the overloaded case the results can only be
3302 // functions and function templates.
3303 if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3304 CheckDeclInExpr(S&: *this, Loc: R.getNameLoc(), D: R.getFoundDecl(),
3305 AcceptInvalid: AcceptInvalidDecl))
3306 return ExprError();
3307
3308 // Otherwise, just build an unresolved lookup expression. Suppress
3309 // any lookup-related diagnostics; we'll hash these out later, when
3310 // we've picked a target.
3311 R.suppressDiagnostics();
3312
3313 UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
3314 Context, NamingClass: R.getNamingClass(), QualifierLoc: SS.getWithLocInContext(Context),
3315 NameInfo: R.getLookupNameInfo(), RequiresADL: NeedsADL, Begin: R.begin(), End: R.end(),
3316 /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false);
3317
3318 return ULE;
3319}
3320
3321static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3322 SourceLocation loc,
3323 ValueDecl *var);
3324
3325ExprResult Sema::BuildDeclarationNameExpr(
3326 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3327 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3328 bool AcceptInvalidDecl) {
3329 assert(D && "Cannot refer to a NULL declaration");
3330 assert(!isa<FunctionTemplateDecl>(D) &&
3331 "Cannot refer unambiguously to a function template");
3332
3333 SourceLocation Loc = NameInfo.getLoc();
3334 if (CheckDeclInExpr(S&: *this, Loc, D, AcceptInvalid: AcceptInvalidDecl)) {
3335 // Recovery from invalid cases (e.g. D is an invalid Decl).
3336 // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3337 // diagnostics, as invalid decls use int as a fallback type.
3338 return CreateRecoveryExpr(Begin: NameInfo.getBeginLoc(), End: NameInfo.getEndLoc(), SubExprs: {});
3339 }
3340
3341 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(Val: D)) {
3342 // Specifically diagnose references to class templates that are missing
3343 // a template argument list.
3344 diagnoseMissingTemplateArguments(SS, /*TemplateKeyword=*/false, TD, Loc);
3345 return ExprError();
3346 }
3347
3348 // Make sure that we're referring to a value.
3349 if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(Val: D)) {
3350 Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3351 Diag(D->getLocation(), diag::note_declared_at);
3352 return ExprError();
3353 }
3354
3355 // Check whether this declaration can be used. Note that we suppress
3356 // this check when we're going to perform argument-dependent lookup
3357 // on this function name, because this might not be the function
3358 // that overload resolution actually selects.
3359 if (DiagnoseUseOfDecl(D, Locs: Loc))
3360 return ExprError();
3361
3362 auto *VD = cast<ValueDecl>(Val: D);
3363
3364 // Only create DeclRefExpr's for valid Decl's.
3365 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3366 return ExprError();
3367
3368 // Handle members of anonymous structs and unions. If we got here,
3369 // and the reference is to a class member indirect field, then this
3370 // must be the subject of a pointer-to-member expression.
3371 if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(Val: VD);
3372 IndirectField && !IndirectField->isCXXClassMember())
3373 return BuildAnonymousStructUnionMemberReference(SS, nameLoc: NameInfo.getLoc(),
3374 indirectField: IndirectField);
3375
3376 QualType type = VD->getType();
3377 if (type.isNull())
3378 return ExprError();
3379 ExprValueKind valueKind = VK_PRValue;
3380
3381 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3382 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3383 // is expanded by some outer '...' in the context of the use.
3384 type = type.getNonPackExpansionType();
3385
3386 switch (D->getKind()) {
3387 // Ignore all the non-ValueDecl kinds.
3388#define ABSTRACT_DECL(kind)
3389#define VALUE(type, base)
3390#define DECL(type, base) case Decl::type:
3391#include "clang/AST/DeclNodes.inc"
3392 llvm_unreachable("invalid value decl kind");
3393
3394 // These shouldn't make it here.
3395 case Decl::ObjCAtDefsField:
3396 llvm_unreachable("forming non-member reference to ivar?");
3397
3398 // Enum constants are always r-values and never references.
3399 // Unresolved using declarations are dependent.
3400 case Decl::EnumConstant:
3401 case Decl::UnresolvedUsingValue:
3402 case Decl::OMPDeclareReduction:
3403 case Decl::OMPDeclareMapper:
3404 valueKind = VK_PRValue;
3405 break;
3406
3407 // Fields and indirect fields that got here must be for
3408 // pointer-to-member expressions; we just call them l-values for
3409 // internal consistency, because this subexpression doesn't really
3410 // exist in the high-level semantics.
3411 case Decl::Field:
3412 case Decl::IndirectField:
3413 case Decl::ObjCIvar:
3414 assert((getLangOpts().CPlusPlus || isAttrContext()) &&
3415 "building reference to field in C?");
3416
3417 // These can't have reference type in well-formed programs, but
3418 // for internal consistency we do this anyway.
3419 type = type.getNonReferenceType();
3420 valueKind = VK_LValue;
3421 break;
3422
3423 // Non-type template parameters are either l-values or r-values
3424 // depending on the type.
3425 case Decl::NonTypeTemplateParm: {
3426 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3427 type = reftype->getPointeeType();
3428 valueKind = VK_LValue; // even if the parameter is an r-value reference
3429 break;
3430 }
3431
3432 // [expr.prim.id.unqual]p2:
3433 // If the entity is a template parameter object for a template
3434 // parameter of type T, the type of the expression is const T.
3435 // [...] The expression is an lvalue if the entity is a [...] template
3436 // parameter object.
3437 if (type->isRecordType()) {
3438 type = type.getUnqualifiedType().withConst();
3439 valueKind = VK_LValue;
3440 break;
3441 }
3442
3443 // For non-references, we need to strip qualifiers just in case
3444 // the template parameter was declared as 'const int' or whatever.
3445 valueKind = VK_PRValue;
3446 type = type.getUnqualifiedType();
3447 break;
3448 }
3449
3450 case Decl::Var:
3451 case Decl::VarTemplateSpecialization:
3452 case Decl::VarTemplatePartialSpecialization:
3453 case Decl::Decomposition:
3454 case Decl::Binding:
3455 case Decl::OMPCapturedExpr:
3456 // In C, "extern void blah;" is valid and is an r-value.
3457 if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3458 type->isVoidType()) {
3459 valueKind = VK_PRValue;
3460 break;
3461 }
3462 [[fallthrough]];
3463
3464 case Decl::ImplicitParam:
3465 case Decl::ParmVar: {
3466 // These are always l-values.
3467 valueKind = VK_LValue;
3468 type = type.getNonReferenceType();
3469
3470 // FIXME: Does the addition of const really only apply in
3471 // potentially-evaluated contexts? Since the variable isn't actually
3472 // captured in an unevaluated context, it seems that the answer is no.
3473 if (!isUnevaluatedContext()) {
3474 QualType CapturedType = getCapturedDeclRefType(Var: cast<ValueDecl>(VD), Loc);
3475 if (!CapturedType.isNull())
3476 type = CapturedType;
3477 }
3478 break;
3479 }
3480
3481 case Decl::Function: {
3482 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3483 if (!Context.BuiltinInfo.isDirectlyAddressable(ID: BID)) {
3484 type = Context.BuiltinFnTy;
3485 valueKind = VK_PRValue;
3486 break;
3487 }
3488 }
3489
3490 const FunctionType *fty = type->castAs<FunctionType>();
3491
3492 // If we're referring to a function with an __unknown_anytype
3493 // result type, make the entire expression __unknown_anytype.
3494 if (fty->getReturnType() == Context.UnknownAnyTy) {
3495 type = Context.UnknownAnyTy;
3496 valueKind = VK_PRValue;
3497 break;
3498 }
3499
3500 // Functions are l-values in C++.
3501 if (getLangOpts().CPlusPlus) {
3502 valueKind = VK_LValue;
3503 break;
3504 }
3505
3506 // C99 DR 316 says that, if a function type comes from a
3507 // function definition (without a prototype), that type is only
3508 // used for checking compatibility. Therefore, when referencing
3509 // the function, we pretend that we don't have the full function
3510 // type.
3511 if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3512 type = Context.getFunctionNoProtoType(ResultTy: fty->getReturnType(),
3513 Info: fty->getExtInfo());
3514
3515 // Functions are r-values in C.
3516 valueKind = VK_PRValue;
3517 break;
3518 }
3519
3520 case Decl::CXXDeductionGuide:
3521 llvm_unreachable("building reference to deduction guide");
3522
3523 case Decl::MSProperty:
3524 case Decl::MSGuid:
3525 case Decl::TemplateParamObject:
3526 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3527 // capture in OpenMP, or duplicated between host and device?
3528 valueKind = VK_LValue;
3529 break;
3530
3531 case Decl::UnnamedGlobalConstant:
3532 valueKind = VK_LValue;
3533 break;
3534
3535 case Decl::CXXMethod:
3536 // If we're referring to a method with an __unknown_anytype
3537 // result type, make the entire expression __unknown_anytype.
3538 // This should only be possible with a type written directly.
3539 if (const FunctionProtoType *proto =
3540 dyn_cast<FunctionProtoType>(VD->getType()))
3541 if (proto->getReturnType() == Context.UnknownAnyTy) {
3542 type = Context.UnknownAnyTy;
3543 valueKind = VK_PRValue;
3544 break;
3545 }
3546
3547 // C++ methods are l-values if static, r-values if non-static.
3548 if (cast<CXXMethodDecl>(VD)->isStatic()) {
3549 valueKind = VK_LValue;
3550 break;
3551 }
3552 [[fallthrough]];
3553
3554 case Decl::CXXConversion:
3555 case Decl::CXXDestructor:
3556 case Decl::CXXConstructor:
3557 valueKind = VK_PRValue;
3558 break;
3559 }
3560
3561 auto *E =
3562 BuildDeclRefExpr(D: VD, Ty: type, VK: valueKind, NameInfo, SS: &SS, FoundD,
3563 /*FIXME: TemplateKWLoc*/ TemplateKWLoc: SourceLocation(), TemplateArgs);
3564 // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3565 // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3566 // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3567 // diagnostics).
3568 if (VD->isInvalidDecl() && E)
3569 return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3570 return E;
3571}
3572
3573static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3574 SmallString<32> &Target) {
3575 Target.resize(N: CharByteWidth * (Source.size() + 1));
3576 char *ResultPtr = &Target[0];
3577 const llvm::UTF8 *ErrorPtr;
3578 bool success =
3579 llvm::ConvertUTF8toWide(WideCharWidth: CharByteWidth, Source, ResultPtr, ErrorPtr);
3580 (void)success;
3581 assert(success);
3582 Target.resize(N: ResultPtr - &Target[0]);
3583}
3584
3585ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3586 PredefinedIdentKind IK) {
3587 Decl *currentDecl = getPredefinedExprDecl(DC: CurContext);
3588 if (!currentDecl) {
3589 Diag(Loc, diag::ext_predef_outside_function);
3590 currentDecl = Context.getTranslationUnitDecl();
3591 }
3592
3593 QualType ResTy;
3594 StringLiteral *SL = nullptr;
3595 if (cast<DeclContext>(Val: currentDecl)->isDependentContext())
3596 ResTy = Context.DependentTy;
3597 else {
3598 // Pre-defined identifiers are of type char[x], where x is the length of
3599 // the string.
3600 bool ForceElaboratedPrinting =
3601 IK == PredefinedIdentKind::Function && getLangOpts().MSVCCompat;
3602 auto Str =
3603 PredefinedExpr::ComputeName(IK, CurrentDecl: currentDecl, ForceElaboratedPrinting);
3604 unsigned Length = Str.length();
3605
3606 llvm::APInt LengthI(32, Length + 1);
3607 if (IK == PredefinedIdentKind::LFunction ||
3608 IK == PredefinedIdentKind::LFuncSig) {
3609 ResTy =
3610 Context.adjustStringLiteralBaseType(StrLTy: Context.WideCharTy.withConst());
3611 SmallString<32> RawChars;
3612 ConvertUTF8ToWideString(CharByteWidth: Context.getTypeSizeInChars(T: ResTy).getQuantity(),
3613 Source: Str, Target&: RawChars);
3614 ResTy = Context.getConstantArrayType(EltTy: ResTy, ArySize: LengthI, SizeExpr: nullptr,
3615 ASM: ArraySizeModifier::Normal,
3616 /*IndexTypeQuals*/ 0);
3617 SL = StringLiteral::Create(Ctx: Context, Str: RawChars, Kind: StringLiteralKind::Wide,
3618 /*Pascal*/ false, Ty: ResTy, Loc);
3619 } else {
3620 ResTy = Context.adjustStringLiteralBaseType(StrLTy: Context.CharTy.withConst());
3621 ResTy = Context.getConstantArrayType(EltTy: ResTy, ArySize: LengthI, SizeExpr: nullptr,
3622 ASM: ArraySizeModifier::Normal,
3623 /*IndexTypeQuals*/ 0);
3624 SL = StringLiteral::Create(Ctx: Context, Str, Kind: StringLiteralKind::Ordinary,
3625 /*Pascal*/ false, Ty: ResTy, Loc);
3626 }
3627 }
3628
3629 return PredefinedExpr::Create(Ctx: Context, L: Loc, FNTy: ResTy, IK, IsTransparent: LangOpts.MicrosoftExt,
3630 SL);
3631}
3632
3633ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3634 return BuildPredefinedExpr(Loc, IK: getPredefinedExprKind(Kind));
3635}
3636
3637ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3638 SmallString<16> CharBuffer;
3639 bool Invalid = false;
3640 StringRef ThisTok = PP.getSpelling(Tok, Buffer&: CharBuffer, Invalid: &Invalid);
3641 if (Invalid)
3642 return ExprError();
3643
3644 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3645 PP, Tok.getKind());
3646 if (Literal.hadError())
3647 return ExprError();
3648
3649 QualType Ty;
3650 if (Literal.isWide())
3651 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3652 else if (Literal.isUTF8() && getLangOpts().C23)
3653 Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C23
3654 else if (Literal.isUTF8() && getLangOpts().Char8)
3655 Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3656 else if (Literal.isUTF16())
3657 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3658 else if (Literal.isUTF32())
3659 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3660 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3661 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3662 else
3663 Ty = Context.CharTy; // 'x' -> char in C++;
3664 // u8'x' -> char in C11-C17 and in C++ without char8_t.
3665
3666 CharacterLiteralKind Kind = CharacterLiteralKind::Ascii;
3667 if (Literal.isWide())
3668 Kind = CharacterLiteralKind::Wide;
3669 else if (Literal.isUTF16())
3670 Kind = CharacterLiteralKind::UTF16;
3671 else if (Literal.isUTF32())
3672 Kind = CharacterLiteralKind::UTF32;
3673 else if (Literal.isUTF8())
3674 Kind = CharacterLiteralKind::UTF8;
3675
3676 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3677 Tok.getLocation());
3678
3679 if (Literal.getUDSuffix().empty())
3680 return Lit;
3681
3682 // We're building a user-defined literal.
3683 IdentifierInfo *UDSuffix = &Context.Idents.get(Name: Literal.getUDSuffix());
3684 SourceLocation UDSuffixLoc =
3685 getUDSuffixLoc(S&: *this, TokLoc: Tok.getLocation(), Offset: Literal.getUDSuffixOffset());
3686
3687 // Make sure we're allowed user-defined literals here.
3688 if (!UDLScope)
3689 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3690
3691 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3692 // operator "" X (ch)
3693 return BuildCookedLiteralOperatorCall(S&: *this, Scope: UDLScope, UDSuffix, UDSuffixLoc,
3694 Args: Lit, LitEndLoc: Tok.getLocation());
3695}
3696
3697ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, int64_t Val) {
3698 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3699 return IntegerLiteral::Create(Context,
3700 llvm::APInt(IntSize, Val, /*isSigned=*/true),
3701 Context.IntTy, Loc);
3702}
3703
3704static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3705 QualType Ty, SourceLocation Loc) {
3706 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(T: Ty);
3707
3708 using llvm::APFloat;
3709 APFloat Val(Format);
3710
3711 llvm::RoundingMode RM = S.CurFPFeatures.getRoundingMode();
3712 if (RM == llvm::RoundingMode::Dynamic)
3713 RM = llvm::RoundingMode::NearestTiesToEven;
3714 APFloat::opStatus result = Literal.GetFloatValue(Result&: Val, RM);
3715
3716 // Overflow is always an error, but underflow is only an error if
3717 // we underflowed to zero (APFloat reports denormals as underflow).
3718 if ((result & APFloat::opOverflow) ||
3719 ((result & APFloat::opUnderflow) && Val.isZero())) {
3720 unsigned diagnostic;
3721 SmallString<20> buffer;
3722 if (result & APFloat::opOverflow) {
3723 diagnostic = diag::warn_float_overflow;
3724 APFloat::getLargest(Sem: Format).toString(Str&: buffer);
3725 } else {
3726 diagnostic = diag::warn_float_underflow;
3727 APFloat::getSmallest(Sem: Format).toString(Str&: buffer);
3728 }
3729
3730 S.Diag(Loc, diagnostic) << Ty << buffer.str();
3731 }
3732
3733 bool isExact = (result == APFloat::opOK);
3734 return FloatingLiteral::Create(C: S.Context, V: Val, isexact: isExact, Type: Ty, L: Loc);
3735}
3736
3737bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc, bool AllowZero) {
3738 assert(E && "Invalid expression");
3739
3740 if (E->isValueDependent())
3741 return false;
3742
3743 QualType QT = E->getType();
3744 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3745 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3746 return true;
3747 }
3748
3749 llvm::APSInt ValueAPS;
3750 ExprResult R = VerifyIntegerConstantExpression(E, Result: &ValueAPS);
3751
3752 if (R.isInvalid())
3753 return true;
3754
3755 // GCC allows the value of unroll count to be 0.
3756 // https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html says
3757 // "The values of 0 and 1 block any unrolling of the loop."
3758 // The values doesn't have to be strictly positive in '#pragma GCC unroll' and
3759 // '#pragma unroll' cases.
3760 bool ValueIsPositive =
3761 AllowZero ? ValueAPS.isNonNegative() : ValueAPS.isStrictlyPositive();
3762 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3763 Diag(E->getExprLoc(), diag::err_requires_positive_value)
3764 << toString(ValueAPS, 10) << ValueIsPositive;
3765 return true;
3766 }
3767
3768 return false;
3769}
3770
3771ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3772 // Fast path for a single digit (which is quite common). A single digit
3773 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3774 if (Tok.getLength() == 1 || Tok.getKind() == tok::binary_data) {
3775 const uint8_t Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3776 return ActOnIntegerConstant(Loc: Tok.getLocation(), Val);
3777 }
3778
3779 SmallString<128> SpellingBuffer;
3780 // NumericLiteralParser wants to overread by one character. Add padding to
3781 // the buffer in case the token is copied to the buffer. If getSpelling()
3782 // returns a StringRef to the memory buffer, it should have a null char at
3783 // the EOF, so it is also safe.
3784 SpellingBuffer.resize(N: Tok.getLength() + 1);
3785
3786 // Get the spelling of the token, which eliminates trigraphs, etc.
3787 bool Invalid = false;
3788 StringRef TokSpelling = PP.getSpelling(Tok, Buffer&: SpellingBuffer, Invalid: &Invalid);
3789 if (Invalid)
3790 return ExprError();
3791
3792 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3793 PP.getSourceManager(), PP.getLangOpts(),
3794 PP.getTargetInfo(), PP.getDiagnostics());
3795 if (Literal.hadError)
3796 return ExprError();
3797
3798 if (Literal.hasUDSuffix()) {
3799 // We're building a user-defined literal.
3800 const IdentifierInfo *UDSuffix = &Context.Idents.get(Name: Literal.getUDSuffix());
3801 SourceLocation UDSuffixLoc =
3802 getUDSuffixLoc(S&: *this, TokLoc: Tok.getLocation(), Offset: Literal.getUDSuffixOffset());
3803
3804 // Make sure we're allowed user-defined literals here.
3805 if (!UDLScope)
3806 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3807
3808 QualType CookedTy;
3809 if (Literal.isFloatingLiteral()) {
3810 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3811 // long double, the literal is treated as a call of the form
3812 // operator "" X (f L)
3813 CookedTy = Context.LongDoubleTy;
3814 } else {
3815 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3816 // unsigned long long, the literal is treated as a call of the form
3817 // operator "" X (n ULL)
3818 CookedTy = Context.UnsignedLongLongTy;
3819 }
3820
3821 DeclarationName OpName =
3822 Context.DeclarationNames.getCXXLiteralOperatorName(II: UDSuffix);
3823 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3824 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3825
3826 SourceLocation TokLoc = Tok.getLocation();
3827
3828 // Perform literal operator lookup to determine if we're building a raw
3829 // literal or a cooked one.
3830 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3831 switch (LookupLiteralOperator(S: UDLScope, R, ArgTys: CookedTy,
3832 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3833 /*AllowStringTemplatePack*/ AllowStringTemplate: false,
3834 /*DiagnoseMissing*/ !Literal.isImaginary)) {
3835 case LOLR_ErrorNoDiagnostic:
3836 // Lookup failure for imaginary constants isn't fatal, there's still the
3837 // GNU extension producing _Complex types.
3838 break;
3839 case LOLR_Error:
3840 return ExprError();
3841 case LOLR_Cooked: {
3842 Expr *Lit;
3843 if (Literal.isFloatingLiteral()) {
3844 Lit = BuildFloatingLiteral(S&: *this, Literal, Ty: CookedTy, Loc: Tok.getLocation());
3845 } else {
3846 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3847 if (Literal.GetIntegerValue(ResultVal))
3848 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3849 << /* Unsigned */ 1;
3850 Lit = IntegerLiteral::Create(C: Context, V: ResultVal, type: CookedTy,
3851 l: Tok.getLocation());
3852 }
3853 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: Lit, LitEndLoc: TokLoc);
3854 }
3855
3856 case LOLR_Raw: {
3857 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3858 // literal is treated as a call of the form
3859 // operator "" X ("n")
3860 unsigned Length = Literal.getUDSuffixOffset();
3861 QualType StrTy = Context.getConstantArrayType(
3862 EltTy: Context.adjustStringLiteralBaseType(StrLTy: Context.CharTy.withConst()),
3863 ArySize: llvm::APInt(32, Length + 1), SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
3864 Expr *Lit =
3865 StringLiteral::Create(Ctx: Context, Str: StringRef(TokSpelling.data(), Length),
3866 Kind: StringLiteralKind::Ordinary,
3867 /*Pascal*/ false, Ty: StrTy, Loc: &TokLoc, NumConcatenated: 1);
3868 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: Lit, LitEndLoc: TokLoc);
3869 }
3870
3871 case LOLR_Template: {
3872 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3873 // template), L is treated as a call fo the form
3874 // operator "" X <'c1', 'c2', ... 'ck'>()
3875 // where n is the source character sequence c1 c2 ... ck.
3876 TemplateArgumentListInfo ExplicitArgs;
3877 unsigned CharBits = Context.getIntWidth(T: Context.CharTy);
3878 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3879 llvm::APSInt Value(CharBits, CharIsUnsigned);
3880 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3881 Value = TokSpelling[I];
3882 TemplateArgument Arg(Context, Value, Context.CharTy);
3883 TemplateArgumentLocInfo ArgInfo;
3884 ExplicitArgs.addArgument(Loc: TemplateArgumentLoc(Arg, ArgInfo));
3885 }
3886 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: {}, LitEndLoc: TokLoc, ExplicitTemplateArgs: &ExplicitArgs);
3887 }
3888 case LOLR_StringTemplatePack:
3889 llvm_unreachable("unexpected literal operator lookup result");
3890 }
3891 }
3892
3893 Expr *Res;
3894
3895 if (Literal.isFixedPointLiteral()) {
3896 QualType Ty;
3897
3898 if (Literal.isAccum) {
3899 if (Literal.isHalf) {
3900 Ty = Context.ShortAccumTy;
3901 } else if (Literal.isLong) {
3902 Ty = Context.LongAccumTy;
3903 } else {
3904 Ty = Context.AccumTy;
3905 }
3906 } else if (Literal.isFract) {
3907 if (Literal.isHalf) {
3908 Ty = Context.ShortFractTy;
3909 } else if (Literal.isLong) {
3910 Ty = Context.LongFractTy;
3911 } else {
3912 Ty = Context.FractTy;
3913 }
3914 }
3915
3916 if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(T: Ty);
3917
3918 bool isSigned = !Literal.isUnsigned;
3919 unsigned scale = Context.getFixedPointScale(Ty);
3920 unsigned bit_width = Context.getTypeInfo(T: Ty).Width;
3921
3922 llvm::APInt Val(bit_width, 0, isSigned);
3923 bool Overflowed = Literal.GetFixedPointValue(StoreVal&: Val, Scale: scale);
3924 bool ValIsZero = Val.isZero() && !Overflowed;
3925
3926 auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3927 if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3928 // Clause 6.4.4 - The value of a constant shall be in the range of
3929 // representable values for its type, with exception for constants of a
3930 // fract type with a value of exactly 1; such a constant shall denote
3931 // the maximal value for the type.
3932 --Val;
3933 else if (Val.ugt(MaxVal) || Overflowed)
3934 Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3935
3936 Res = FixedPointLiteral::CreateFromRawInt(C: Context, V: Val, type: Ty,
3937 l: Tok.getLocation(), Scale: scale);
3938 } else if (Literal.isFloatingLiteral()) {
3939 QualType Ty;
3940 if (Literal.isHalf){
3941 if (getLangOpts().HLSL ||
3942 getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16", LO: getLangOpts()))
3943 Ty = Context.HalfTy;
3944 else {
3945 Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3946 return ExprError();
3947 }
3948 } else if (Literal.isFloat)
3949 Ty = Context.FloatTy;
3950 else if (Literal.isLong)
3951 Ty = !getLangOpts().HLSL ? Context.LongDoubleTy : Context.DoubleTy;
3952 else if (Literal.isFloat16)
3953 Ty = Context.Float16Ty;
3954 else if (Literal.isFloat128)
3955 Ty = Context.Float128Ty;
3956 else if (getLangOpts().HLSL)
3957 Ty = Context.FloatTy;
3958 else
3959 Ty = Context.DoubleTy;
3960
3961 Res = BuildFloatingLiteral(S&: *this, Literal, Ty, Loc: Tok.getLocation());
3962
3963 if (Ty == Context.DoubleTy) {
3964 if (getLangOpts().SinglePrecisionConstants) {
3965 if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3966 Res = ImpCastExprToType(E: Res, Type: Context.FloatTy, CK: CK_FloatingCast).get();
3967 }
3968 } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3969 Ext: "cl_khr_fp64", LO: getLangOpts())) {
3970 // Impose single-precision float type when cl_khr_fp64 is not enabled.
3971 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3972 << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3973 Res = ImpCastExprToType(E: Res, Type: Context.FloatTy, CK: CK_FloatingCast).get();
3974 }
3975 }
3976 } else if (!Literal.isIntegerLiteral()) {
3977 return ExprError();
3978 } else {
3979 QualType Ty;
3980
3981 // 'z/uz' literals are a C++23 feature.
3982 if (Literal.isSizeT)
3983 Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3984 ? getLangOpts().CPlusPlus23
3985 ? diag::warn_cxx20_compat_size_t_suffix
3986 : diag::ext_cxx23_size_t_suffix
3987 : diag::err_cxx23_size_t_suffix);
3988
3989 // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
3990 // but we do not currently support the suffix in C++ mode because it's not
3991 // entirely clear whether WG21 will prefer this suffix to return a library
3992 // type such as std::bit_int instead of returning a _BitInt. '__wb/__uwb'
3993 // literals are a C++ extension.
3994 if (Literal.isBitInt)
3995 PP.Diag(Tok.getLocation(),
3996 getLangOpts().CPlusPlus ? diag::ext_cxx_bitint_suffix
3997 : getLangOpts().C23 ? diag::warn_c23_compat_bitint_suffix
3998 : diag::ext_c23_bitint_suffix);
3999
4000 // Get the value in the widest-possible width. What is "widest" depends on
4001 // whether the literal is a bit-precise integer or not. For a bit-precise
4002 // integer type, try to scan the source to determine how many bits are
4003 // needed to represent the value. This may seem a bit expensive, but trying
4004 // to get the integer value from an overly-wide APInt is *extremely*
4005 // expensive, so the naive approach of assuming
4006 // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
4007 unsigned BitsNeeded = Context.getTargetInfo().getIntMaxTWidth();
4008 if (Literal.isBitInt)
4009 BitsNeeded = llvm::APInt::getSufficientBitsNeeded(
4010 Str: Literal.getLiteralDigits(), Radix: Literal.getRadix());
4011 if (Literal.MicrosoftInteger) {
4012 if (Literal.MicrosoftInteger == 128 &&
4013 !Context.getTargetInfo().hasInt128Type())
4014 PP.Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4015 << Literal.isUnsigned;
4016 BitsNeeded = Literal.MicrosoftInteger;
4017 }
4018
4019 llvm::APInt ResultVal(BitsNeeded, 0);
4020
4021 if (Literal.GetIntegerValue(Val&: ResultVal)) {
4022 // If this value didn't fit into uintmax_t, error and force to ull.
4023 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4024 << /* Unsigned */ 1;
4025 Ty = Context.UnsignedLongLongTy;
4026 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
4027 "long long is not intmax_t?");
4028 } else {
4029 // If this value fits into a ULL, try to figure out what else it fits into
4030 // according to the rules of C99 6.4.4.1p5.
4031
4032 // Octal, Hexadecimal, and integers with a U suffix are allowed to
4033 // be an unsigned int.
4034 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
4035
4036 // HLSL doesn't really have `long` or `long long`. We support the `ll`
4037 // suffix for portability of code with C++, but both `l` and `ll` are
4038 // 64-bit integer types, and we want the type of `1l` and `1ll` to be the
4039 // same.
4040 if (getLangOpts().HLSL && !Literal.isLong && Literal.isLongLong) {
4041 Literal.isLong = true;
4042 Literal.isLongLong = false;
4043 }
4044
4045 // Check from smallest to largest, picking the smallest type we can.
4046 unsigned Width = 0;
4047
4048 // Microsoft specific integer suffixes are explicitly sized.
4049 if (Literal.MicrosoftInteger) {
4050 if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
4051 Width = 8;
4052 Ty = Context.CharTy;
4053 } else {
4054 Width = Literal.MicrosoftInteger;
4055 Ty = Context.getIntTypeForBitwidth(DestWidth: Width,
4056 /*Signed=*/!Literal.isUnsigned);
4057 }
4058 }
4059
4060 // Bit-precise integer literals are automagically-sized based on the
4061 // width required by the literal.
4062 if (Literal.isBitInt) {
4063 // The signed version has one more bit for the sign value. There are no
4064 // zero-width bit-precise integers, even if the literal value is 0.
4065 Width = std::max(a: ResultVal.getActiveBits(), b: 1u) +
4066 (Literal.isUnsigned ? 0u : 1u);
4067
4068 // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4069 // and reset the type to the largest supported width.
4070 unsigned int MaxBitIntWidth =
4071 Context.getTargetInfo().getMaxBitIntWidth();
4072 if (Width > MaxBitIntWidth) {
4073 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4074 << Literal.isUnsigned;
4075 Width = MaxBitIntWidth;
4076 }
4077
4078 // Reset the result value to the smaller APInt and select the correct
4079 // type to be used. Note, we zext even for signed values because the
4080 // literal itself is always an unsigned value (a preceeding - is a
4081 // unary operator, not part of the literal).
4082 ResultVal = ResultVal.zextOrTrunc(width: Width);
4083 Ty = Context.getBitIntType(Unsigned: Literal.isUnsigned, NumBits: Width);
4084 }
4085
4086 // Check C++23 size_t literals.
4087 if (Literal.isSizeT) {
4088 assert(!Literal.MicrosoftInteger &&
4089 "size_t literals can't be Microsoft literals");
4090 unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
4091 T: Context.getTargetInfo().getSizeType());
4092
4093 // Does it fit in size_t?
4094 if (ResultVal.isIntN(N: SizeTSize)) {
4095 // Does it fit in ssize_t?
4096 if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4097 Ty = Context.getSignedSizeType();
4098 else if (AllowUnsigned)
4099 Ty = Context.getSizeType();
4100 Width = SizeTSize;
4101 }
4102 }
4103
4104 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4105 !Literal.isSizeT) {
4106 // Are int/unsigned possibilities?
4107 unsigned IntSize = Context.getTargetInfo().getIntWidth();
4108
4109 // Does it fit in a unsigned int?
4110 if (ResultVal.isIntN(N: IntSize)) {
4111 // Does it fit in a signed int?
4112 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4113 Ty = Context.IntTy;
4114 else if (AllowUnsigned)
4115 Ty = Context.UnsignedIntTy;
4116 Width = IntSize;
4117 }
4118 }
4119
4120 // Are long/unsigned long possibilities?
4121 if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4122 unsigned LongSize = Context.getTargetInfo().getLongWidth();
4123
4124 // Does it fit in a unsigned long?
4125 if (ResultVal.isIntN(N: LongSize)) {
4126 // Does it fit in a signed long?
4127 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4128 Ty = Context.LongTy;
4129 else if (AllowUnsigned)
4130 Ty = Context.UnsignedLongTy;
4131 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4132 // is compatible.
4133 else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4134 const unsigned LongLongSize =
4135 Context.getTargetInfo().getLongLongWidth();
4136 Diag(Tok.getLocation(),
4137 getLangOpts().CPlusPlus
4138 ? Literal.isLong
4139 ? diag::warn_old_implicitly_unsigned_long_cxx
4140 : /*C++98 UB*/ diag::
4141 ext_old_implicitly_unsigned_long_cxx
4142 : diag::warn_old_implicitly_unsigned_long)
4143 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4144 : /*will be ill-formed*/ 1);
4145 Ty = Context.UnsignedLongTy;
4146 }
4147 Width = LongSize;
4148 }
4149 }
4150
4151 // Check long long if needed.
4152 if (Ty.isNull() && !Literal.isSizeT) {
4153 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4154
4155 // Does it fit in a unsigned long long?
4156 if (ResultVal.isIntN(N: LongLongSize)) {
4157 // Does it fit in a signed long long?
4158 // To be compatible with MSVC, hex integer literals ending with the
4159 // LL or i64 suffix are always signed in Microsoft mode.
4160 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4161 (getLangOpts().MSVCCompat && Literal.isLongLong)))
4162 Ty = Context.LongLongTy;
4163 else if (AllowUnsigned)
4164 Ty = Context.UnsignedLongLongTy;
4165 Width = LongLongSize;
4166
4167 // 'long long' is a C99 or C++11 feature, whether the literal
4168 // explicitly specified 'long long' or we needed the extra width.
4169 if (getLangOpts().CPlusPlus)
4170 Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4171 ? diag::warn_cxx98_compat_longlong
4172 : diag::ext_cxx11_longlong);
4173 else if (!getLangOpts().C99)
4174 Diag(Tok.getLocation(), diag::ext_c99_longlong);
4175 }
4176 }
4177
4178 // If we still couldn't decide a type, we either have 'size_t' literal
4179 // that is out of range, or a decimal literal that does not fit in a
4180 // signed long long and has no U suffix.
4181 if (Ty.isNull()) {
4182 if (Literal.isSizeT)
4183 Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4184 << Literal.isUnsigned;
4185 else
4186 Diag(Tok.getLocation(),
4187 diag::ext_integer_literal_too_large_for_signed);
4188 Ty = Context.UnsignedLongLongTy;
4189 Width = Context.getTargetInfo().getLongLongWidth();
4190 }
4191
4192 if (ResultVal.getBitWidth() != Width)
4193 ResultVal = ResultVal.trunc(width: Width);
4194 }
4195 Res = IntegerLiteral::Create(C: Context, V: ResultVal, type: Ty, l: Tok.getLocation());
4196 }
4197
4198 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4199 if (Literal.isImaginary) {
4200 Res = new (Context) ImaginaryLiteral(Res,
4201 Context.getComplexType(T: Res->getType()));
4202
4203 // In C++, this is a GNU extension. In C, it's a C2y extension.
4204 unsigned DiagId;
4205 if (getLangOpts().CPlusPlus)
4206 DiagId = diag::ext_gnu_imaginary_constant;
4207 else if (getLangOpts().C2y)
4208 DiagId = diag::warn_c23_compat_imaginary_constant;
4209 else
4210 DiagId = diag::ext_c2y_imaginary_constant;
4211 Diag(Tok.getLocation(), DiagId);
4212 }
4213 return Res;
4214}
4215
4216ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4217 assert(E && "ActOnParenExpr() missing expr");
4218 QualType ExprTy = E->getType();
4219 if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4220 !E->isLValue() && ExprTy->hasFloatingRepresentation())
4221 return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4222 return new (Context) ParenExpr(L, R, E);
4223}
4224
4225static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4226 SourceLocation Loc,
4227 SourceRange ArgRange) {
4228 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4229 // scalar or vector data type argument..."
4230 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4231 // type (C99 6.2.5p18) or void.
4232 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4233 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4234 << T << ArgRange;
4235 return true;
4236 }
4237
4238 assert((T->isVoidType() || !T->isIncompleteType()) &&
4239 "Scalar types should always be complete");
4240 return false;
4241}
4242
4243static bool CheckVectorElementsTraitOperandType(Sema &S, QualType T,
4244 SourceLocation Loc,
4245 SourceRange ArgRange) {
4246 // builtin_vectorelements supports both fixed-sized and scalable vectors.
4247 if (!T->isVectorType() && !T->isSizelessVectorType())
4248 return S.Diag(Loc, diag::err_builtin_non_vector_type)
4249 << ""
4250 << "__builtin_vectorelements" << T << ArgRange;
4251
4252 return false;
4253}
4254
4255static bool checkPtrAuthTypeDiscriminatorOperandType(Sema &S, QualType T,
4256 SourceLocation Loc,
4257 SourceRange ArgRange) {
4258 if (S.checkPointerAuthEnabled(Loc, Range: ArgRange))
4259 return true;
4260
4261 if (!T->isFunctionType() && !T->isFunctionPointerType() &&
4262 !T->isFunctionReferenceType() && !T->isMemberFunctionPointerType()) {
4263 S.Diag(Loc, diag::err_ptrauth_type_disc_undiscriminated) << T << ArgRange;
4264 return true;
4265 }
4266
4267 return false;
4268}
4269
4270static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4271 SourceLocation Loc,
4272 SourceRange ArgRange,
4273 UnaryExprOrTypeTrait TraitKind) {
4274 // Invalid types must be hard errors for SFINAE in C++.
4275 if (S.LangOpts.CPlusPlus)
4276 return true;
4277
4278 // C99 6.5.3.4p1:
4279 if (T->isFunctionType() &&
4280 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4281 TraitKind == UETT_PreferredAlignOf)) {
4282 // sizeof(function)/alignof(function) is allowed as an extension.
4283 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4284 << getTraitSpelling(TraitKind) << ArgRange;
4285 return false;
4286 }
4287
4288 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4289 // this is an error (OpenCL v1.1 s6.3.k)
4290 if (T->isVoidType()) {
4291 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4292 : diag::ext_sizeof_alignof_void_type;
4293 S.Diag(Loc, DiagID) << getTraitSpelling(T: TraitKind) << ArgRange;
4294 return false;
4295 }
4296
4297 return true;
4298}
4299
4300static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4301 SourceLocation Loc,
4302 SourceRange ArgRange,
4303 UnaryExprOrTypeTrait TraitKind) {
4304 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4305 // runtime doesn't allow it.
4306 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4307 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4308 << T << (TraitKind == UETT_SizeOf)
4309 << ArgRange;
4310 return true;
4311 }
4312
4313 return false;
4314}
4315
4316/// Check whether E is a pointer from a decayed array type (the decayed
4317/// pointer type is equal to T) and emit a warning if it is.
4318static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4319 const Expr *E) {
4320 // Don't warn if the operation changed the type.
4321 if (T != E->getType())
4322 return;
4323
4324 // Now look for array decays.
4325 const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E);
4326 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4327 return;
4328
4329 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4330 << ICE->getType()
4331 << ICE->getSubExpr()->getType();
4332}
4333
4334bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4335 UnaryExprOrTypeTrait ExprKind) {
4336 QualType ExprTy = E->getType();
4337 assert(!ExprTy->isReferenceType());
4338
4339 bool IsUnevaluatedOperand =
4340 (ExprKind == UETT_SizeOf || ExprKind == UETT_DataSizeOf ||
4341 ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4342 ExprKind == UETT_VecStep || ExprKind == UETT_CountOf);
4343 if (IsUnevaluatedOperand) {
4344 ExprResult Result = CheckUnevaluatedOperand(E);
4345 if (Result.isInvalid())
4346 return true;
4347 E = Result.get();
4348 }
4349
4350 // The operand for sizeof and alignof is in an unevaluated expression context,
4351 // so side effects could result in unintended consequences.
4352 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4353 // used to build SFINAE gadgets.
4354 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4355 if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4356 !E->isInstantiationDependent() &&
4357 !E->getType()->isVariableArrayType() &&
4358 E->HasSideEffects(Context, false))
4359 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4360
4361 if (ExprKind == UETT_VecStep)
4362 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4363 E->getSourceRange());
4364
4365 if (ExprKind == UETT_VectorElements)
4366 return CheckVectorElementsTraitOperandType(*this, ExprTy, E->getExprLoc(),
4367 E->getSourceRange());
4368
4369 // Explicitly list some types as extensions.
4370 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4371 E->getSourceRange(), ExprKind))
4372 return false;
4373
4374 // WebAssembly tables are always illegal operands to unary expressions and
4375 // type traits.
4376 if (Context.getTargetInfo().getTriple().isWasm() &&
4377 E->getType()->isWebAssemblyTableType()) {
4378 Diag(E->getExprLoc(), diag::err_wasm_table_invalid_uett_operand)
4379 << getTraitSpelling(ExprKind);
4380 return true;
4381 }
4382
4383 // 'alignof' applied to an expression only requires the base element type of
4384 // the expression to be complete. 'sizeof' requires the expression's type to
4385 // be complete (and will attempt to complete it if it's an array of unknown
4386 // bound).
4387 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4388 if (RequireCompleteSizedType(
4389 E->getExprLoc(), Context.getBaseElementType(E->getType()),
4390 diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4391 getTraitSpelling(ExprKind), E->getSourceRange()))
4392 return true;
4393 } else {
4394 if (RequireCompleteSizedExprType(
4395 E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4396 getTraitSpelling(ExprKind), E->getSourceRange()))
4397 return true;
4398 }
4399
4400 // Completing the expression's type may have changed it.
4401 ExprTy = E->getType();
4402 assert(!ExprTy->isReferenceType());
4403
4404 if (ExprTy->isFunctionType()) {
4405 Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4406 << getTraitSpelling(ExprKind) << E->getSourceRange();
4407 return true;
4408 }
4409
4410 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4411 E->getSourceRange(), ExprKind))
4412 return true;
4413
4414 if (ExprKind == UETT_CountOf) {
4415 // The type has to be an array type. We already checked for incomplete
4416 // types above.
4417 QualType ExprType = E->IgnoreParens()->getType();
4418 if (!ExprType->isArrayType()) {
4419 Diag(E->getExprLoc(), diag::err_countof_arg_not_array_type) << ExprType;
4420 return true;
4421 }
4422 // FIXME: warn on _Countof on an array parameter. Not warning on it
4423 // currently because there are papers in WG14 about array types which do
4424 // not decay that could impact this behavior, so we want to see if anything
4425 // changes here before coming up with a warning group for _Countof-related
4426 // diagnostics.
4427 }
4428
4429 if (ExprKind == UETT_SizeOf) {
4430 if (const auto *DeclRef = dyn_cast<DeclRefExpr>(Val: E->IgnoreParens())) {
4431 if (const auto *PVD = dyn_cast<ParmVarDecl>(Val: DeclRef->getFoundDecl())) {
4432 QualType OType = PVD->getOriginalType();
4433 QualType Type = PVD->getType();
4434 if (Type->isPointerType() && OType->isArrayType()) {
4435 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4436 << Type << OType;
4437 Diag(PVD->getLocation(), diag::note_declared_at);
4438 }
4439 }
4440 }
4441
4442 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4443 // decays into a pointer and returns an unintended result. This is most
4444 // likely a typo for "sizeof(array) op x".
4445 if (const auto *BO = dyn_cast<BinaryOperator>(Val: E->IgnoreParens())) {
4446 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4447 BO->getLHS());
4448 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4449 BO->getRHS());
4450 }
4451 }
4452
4453 return false;
4454}
4455
4456static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4457 // Cannot know anything else if the expression is dependent.
4458 if (E->isTypeDependent())
4459 return false;
4460
4461 if (E->getObjectKind() == OK_BitField) {
4462 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4463 << 1 << E->getSourceRange();
4464 return true;
4465 }
4466
4467 ValueDecl *D = nullptr;
4468 Expr *Inner = E->IgnoreParens();
4469 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Inner)) {
4470 D = DRE->getDecl();
4471 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Val: Inner)) {
4472 D = ME->getMemberDecl();
4473 }
4474
4475 // If it's a field, require the containing struct to have a
4476 // complete definition so that we can compute the layout.
4477 //
4478 // This can happen in C++11 onwards, either by naming the member
4479 // in a way that is not transformed into a member access expression
4480 // (in an unevaluated operand, for instance), or by naming the member
4481 // in a trailing-return-type.
4482 //
4483 // For the record, since __alignof__ on expressions is a GCC
4484 // extension, GCC seems to permit this but always gives the
4485 // nonsensical answer 0.
4486 //
4487 // We don't really need the layout here --- we could instead just
4488 // directly check for all the appropriate alignment-lowing
4489 // attributes --- but that would require duplicating a lot of
4490 // logic that just isn't worth duplicating for such a marginal
4491 // use-case.
4492 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(Val: D)) {
4493 // Fast path this check, since we at least know the record has a
4494 // definition if we can find a member of it.
4495 if (!FD->getParent()->isCompleteDefinition()) {
4496 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4497 << E->getSourceRange();
4498 return true;
4499 }
4500
4501 // Otherwise, if it's a field, and the field doesn't have
4502 // reference type, then it must have a complete type (or be a
4503 // flexible array member, which we explicitly want to
4504 // white-list anyway), which makes the following checks trivial.
4505 if (!FD->getType()->isReferenceType())
4506 return false;
4507 }
4508
4509 return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4510}
4511
4512bool Sema::CheckVecStepExpr(Expr *E) {
4513 E = E->IgnoreParens();
4514
4515 // Cannot know anything else if the expression is dependent.
4516 if (E->isTypeDependent())
4517 return false;
4518
4519 return CheckUnaryExprOrTypeTraitOperand(E, ExprKind: UETT_VecStep);
4520}
4521
4522static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4523 CapturingScopeInfo *CSI) {
4524 assert(T->isVariablyModifiedType());
4525 assert(CSI != nullptr);
4526
4527 // We're going to walk down into the type and look for VLA expressions.
4528 do {
4529 const Type *Ty = T.getTypePtr();
4530 switch (Ty->getTypeClass()) {
4531#define TYPE(Class, Base)
4532#define ABSTRACT_TYPE(Class, Base)
4533#define NON_CANONICAL_TYPE(Class, Base)
4534#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4535#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4536#include "clang/AST/TypeNodes.inc"
4537 T = QualType();
4538 break;
4539 // These types are never variably-modified.
4540 case Type::Builtin:
4541 case Type::Complex:
4542 case Type::Vector:
4543 case Type::ExtVector:
4544 case Type::ConstantMatrix:
4545 case Type::Record:
4546 case Type::Enum:
4547 case Type::TemplateSpecialization:
4548 case Type::ObjCObject:
4549 case Type::ObjCInterface:
4550 case Type::ObjCObjectPointer:
4551 case Type::ObjCTypeParam:
4552 case Type::Pipe:
4553 case Type::BitInt:
4554 case Type::HLSLInlineSpirv:
4555 llvm_unreachable("type class is never variably-modified!");
4556 case Type::Elaborated:
4557 T = cast<ElaboratedType>(Ty)->getNamedType();
4558 break;
4559 case Type::Adjusted:
4560 T = cast<AdjustedType>(Ty)->getOriginalType();
4561 break;
4562 case Type::Decayed:
4563 T = cast<DecayedType>(Ty)->getPointeeType();
4564 break;
4565 case Type::ArrayParameter:
4566 T = cast<ArrayParameterType>(Ty)->getElementType();
4567 break;
4568 case Type::Pointer:
4569 T = cast<PointerType>(Ty)->getPointeeType();
4570 break;
4571 case Type::BlockPointer:
4572 T = cast<BlockPointerType>(Ty)->getPointeeType();
4573 break;
4574 case Type::LValueReference:
4575 case Type::RValueReference:
4576 T = cast<ReferenceType>(Ty)->getPointeeType();
4577 break;
4578 case Type::MemberPointer:
4579 T = cast<MemberPointerType>(Ty)->getPointeeType();
4580 break;
4581 case Type::ConstantArray:
4582 case Type::IncompleteArray:
4583 // Losing element qualification here is fine.
4584 T = cast<ArrayType>(Ty)->getElementType();
4585 break;
4586 case Type::VariableArray: {
4587 // Losing element qualification here is fine.
4588 const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4589
4590 // Unknown size indication requires no size computation.
4591 // Otherwise, evaluate and record it.
4592 auto Size = VAT->getSizeExpr();
4593 if (Size && !CSI->isVLATypeCaptured(VAT) &&
4594 (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4595 CSI->addVLATypeCapture(Loc: Size->getExprLoc(), VLAType: VAT, CaptureType: Context.getSizeType());
4596
4597 T = VAT->getElementType();
4598 break;
4599 }
4600 case Type::FunctionProto:
4601 case Type::FunctionNoProto:
4602 T = cast<FunctionType>(Ty)->getReturnType();
4603 break;
4604 case Type::Paren:
4605 case Type::TypeOf:
4606 case Type::UnaryTransform:
4607 case Type::Attributed:
4608 case Type::BTFTagAttributed:
4609 case Type::HLSLAttributedResource:
4610 case Type::SubstTemplateTypeParm:
4611 case Type::MacroQualified:
4612 case Type::CountAttributed:
4613 // Keep walking after single level desugaring.
4614 T = T.getSingleStepDesugaredType(Context);
4615 break;
4616 case Type::Typedef:
4617 T = cast<TypedefType>(Ty)->desugar();
4618 break;
4619 case Type::Decltype:
4620 T = cast<DecltypeType>(Ty)->desugar();
4621 break;
4622 case Type::PackIndexing:
4623 T = cast<PackIndexingType>(Ty)->desugar();
4624 break;
4625 case Type::Using:
4626 T = cast<UsingType>(Ty)->desugar();
4627 break;
4628 case Type::Auto:
4629 case Type::DeducedTemplateSpecialization:
4630 T = cast<DeducedType>(Ty)->getDeducedType();
4631 break;
4632 case Type::TypeOfExpr:
4633 T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4634 break;
4635 case Type::Atomic:
4636 T = cast<AtomicType>(Ty)->getValueType();
4637 break;
4638 }
4639 } while (!T.isNull() && T->isVariablyModifiedType());
4640}
4641
4642bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4643 SourceLocation OpLoc,
4644 SourceRange ExprRange,
4645 UnaryExprOrTypeTrait ExprKind,
4646 StringRef KWName) {
4647 if (ExprType->isDependentType())
4648 return false;
4649
4650 // C++ [expr.sizeof]p2:
4651 // When applied to a reference or a reference type, the result
4652 // is the size of the referenced type.
4653 // C++11 [expr.alignof]p3:
4654 // When alignof is applied to a reference type, the result
4655 // shall be the alignment of the referenced type.
4656 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4657 ExprType = Ref->getPointeeType();
4658
4659 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4660 // When alignof or _Alignof is applied to an array type, the result
4661 // is the alignment of the element type.
4662 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4663 ExprKind == UETT_OpenMPRequiredSimdAlign) {
4664 // If the trait is 'alignof' in C before C2y, the ability to apply the
4665 // trait to an incomplete array is an extension.
4666 if (ExprKind == UETT_AlignOf && !getLangOpts().CPlusPlus &&
4667 ExprType->isIncompleteArrayType())
4668 Diag(OpLoc, getLangOpts().C2y
4669 ? diag::warn_c2y_compat_alignof_incomplete_array
4670 : diag::ext_c2y_alignof_incomplete_array);
4671 ExprType = Context.getBaseElementType(QT: ExprType);
4672 }
4673
4674 if (ExprKind == UETT_VecStep)
4675 return CheckVecStepTraitOperandType(S&: *this, T: ExprType, Loc: OpLoc, ArgRange: ExprRange);
4676
4677 if (ExprKind == UETT_VectorElements)
4678 return CheckVectorElementsTraitOperandType(S&: *this, T: ExprType, Loc: OpLoc,
4679 ArgRange: ExprRange);
4680
4681 if (ExprKind == UETT_PtrAuthTypeDiscriminator)
4682 return checkPtrAuthTypeDiscriminatorOperandType(S&: *this, T: ExprType, Loc: OpLoc,
4683 ArgRange: ExprRange);
4684
4685 // Explicitly list some types as extensions.
4686 if (!CheckExtensionTraitOperandType(S&: *this, T: ExprType, Loc: OpLoc, ArgRange: ExprRange,
4687 TraitKind: ExprKind))
4688 return false;
4689
4690 if (RequireCompleteSizedType(
4691 OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4692 KWName, ExprRange))
4693 return true;
4694
4695 if (ExprType->isFunctionType()) {
4696 Diag(OpLoc, diag::err_sizeof_alignof_function_type) << KWName << ExprRange;
4697 return true;
4698 }
4699
4700 if (ExprKind == UETT_CountOf) {
4701 // The type has to be an array type. We already checked for incomplete
4702 // types above.
4703 if (!ExprType->isArrayType()) {
4704 Diag(OpLoc, diag::err_countof_arg_not_array_type) << ExprType;
4705 return true;
4706 }
4707 }
4708
4709 // WebAssembly tables are always illegal operands to unary expressions and
4710 // type traits.
4711 if (Context.getTargetInfo().getTriple().isWasm() &&
4712 ExprType->isWebAssemblyTableType()) {
4713 Diag(OpLoc, diag::err_wasm_table_invalid_uett_operand)
4714 << getTraitSpelling(ExprKind);
4715 return true;
4716 }
4717
4718 if (CheckObjCTraitOperandConstraints(S&: *this, T: ExprType, Loc: OpLoc, ArgRange: ExprRange,
4719 TraitKind: ExprKind))
4720 return true;
4721
4722 if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4723 if (auto *TT = ExprType->getAs<TypedefType>()) {
4724 for (auto I = FunctionScopes.rbegin(),
4725 E = std::prev(x: FunctionScopes.rend());
4726 I != E; ++I) {
4727 auto *CSI = dyn_cast<CapturingScopeInfo>(Val: *I);
4728 if (CSI == nullptr)
4729 break;
4730 DeclContext *DC = nullptr;
4731 if (auto *LSI = dyn_cast<LambdaScopeInfo>(Val: CSI))
4732 DC = LSI->CallOperator;
4733 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(Val: CSI))
4734 DC = CRSI->TheCapturedDecl;
4735 else if (auto *BSI = dyn_cast<BlockScopeInfo>(Val: CSI))
4736 DC = BSI->TheDecl;
4737 if (DC) {
4738 if (DC->containsDecl(TT->getDecl()))
4739 break;
4740 captureVariablyModifiedType(Context, T: ExprType, CSI);
4741 }
4742 }
4743 }
4744 }
4745
4746 return false;
4747}
4748
4749ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4750 SourceLocation OpLoc,
4751 UnaryExprOrTypeTrait ExprKind,
4752 SourceRange R) {
4753 if (!TInfo)
4754 return ExprError();
4755
4756 QualType T = TInfo->getType();
4757
4758 if (!T->isDependentType() &&
4759 CheckUnaryExprOrTypeTraitOperand(ExprType: T, OpLoc, ExprRange: R, ExprKind,
4760 KWName: getTraitSpelling(T: ExprKind)))
4761 return ExprError();
4762
4763 // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4764 // properly deal with VLAs in nested calls of sizeof and typeof.
4765 if (currentEvaluationContext().isUnevaluated() &&
4766 currentEvaluationContext().InConditionallyConstantEvaluateContext &&
4767 (ExprKind == UETT_SizeOf || ExprKind == UETT_CountOf) &&
4768 TInfo->getType()->isVariablyModifiedType())
4769 TInfo = TransformToPotentiallyEvaluated(TInfo);
4770
4771 // It's possible that the transformation above failed.
4772 if (!TInfo)
4773 return ExprError();
4774
4775 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4776 return new (Context) UnaryExprOrTypeTraitExpr(
4777 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4778}
4779
4780ExprResult
4781Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4782 UnaryExprOrTypeTrait ExprKind) {
4783 ExprResult PE = CheckPlaceholderExpr(E);
4784 if (PE.isInvalid())
4785 return ExprError();
4786
4787 E = PE.get();
4788
4789 // Verify that the operand is valid.
4790 bool isInvalid = false;
4791 if (E->isTypeDependent()) {
4792 // Delay type-checking for type-dependent expressions.
4793 } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4794 isInvalid = CheckAlignOfExpr(S&: *this, E, ExprKind);
4795 } else if (ExprKind == UETT_VecStep) {
4796 isInvalid = CheckVecStepExpr(E);
4797 } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4798 Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4799 isInvalid = true;
4800 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
4801 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4802 isInvalid = true;
4803 } else if (ExprKind == UETT_VectorElements || ExprKind == UETT_SizeOf ||
4804 ExprKind == UETT_CountOf) { // FIXME: __datasizeof?
4805 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4806 }
4807
4808 if (isInvalid)
4809 return ExprError();
4810
4811 if ((ExprKind == UETT_SizeOf || ExprKind == UETT_CountOf) &&
4812 E->getType()->isVariableArrayType()) {
4813 PE = TransformToPotentiallyEvaluated(E);
4814 if (PE.isInvalid()) return ExprError();
4815 E = PE.get();
4816 }
4817
4818 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4819 return new (Context) UnaryExprOrTypeTraitExpr(
4820 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4821}
4822
4823ExprResult
4824Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4825 UnaryExprOrTypeTrait ExprKind, bool IsType,
4826 void *TyOrEx, SourceRange ArgRange) {
4827 // If error parsing type, ignore.
4828 if (!TyOrEx) return ExprError();
4829
4830 if (IsType) {
4831 TypeSourceInfo *TInfo;
4832 (void) GetTypeFromParser(Ty: ParsedType::getFromOpaquePtr(P: TyOrEx), TInfo: &TInfo);
4833 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R: ArgRange);
4834 }
4835
4836 Expr *ArgEx = (Expr *)TyOrEx;
4837 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(E: ArgEx, OpLoc, ExprKind);
4838 return Result;
4839}
4840
4841bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
4842 SourceLocation OpLoc, SourceRange R) {
4843 if (!TInfo)
4844 return true;
4845 return CheckUnaryExprOrTypeTraitOperand(ExprType: TInfo->getType(), OpLoc, ExprRange: R,
4846 ExprKind: UETT_AlignOf, KWName);
4847}
4848
4849bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
4850 SourceLocation OpLoc, SourceRange R) {
4851 TypeSourceInfo *TInfo;
4852 (void)GetTypeFromParser(Ty: ParsedType::getFromOpaquePtr(P: Ty.getAsOpaquePtr()),
4853 TInfo: &TInfo);
4854 return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R);
4855}
4856
4857static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4858 bool IsReal) {
4859 if (V.get()->isTypeDependent())
4860 return S.Context.DependentTy;
4861
4862 // _Real and _Imag are only l-values for normal l-values.
4863 if (V.get()->getObjectKind() != OK_Ordinary) {
4864 V = S.DefaultLvalueConversion(E: V.get());
4865 if (V.isInvalid())
4866 return QualType();
4867 }
4868
4869 // These operators return the element type of a complex type.
4870 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4871 return CT->getElementType();
4872
4873 // Otherwise they pass through real integer and floating point types here.
4874 if (V.get()->getType()->isArithmeticType())
4875 return V.get()->getType();
4876
4877 // Test for placeholders.
4878 ExprResult PR = S.CheckPlaceholderExpr(E: V.get());
4879 if (PR.isInvalid()) return QualType();
4880 if (PR.get() != V.get()) {
4881 V = PR;
4882 return CheckRealImagOperand(S, V, Loc, IsReal);
4883 }
4884
4885 // Reject anything else.
4886 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4887 << (IsReal ? "__real" : "__imag");
4888 return QualType();
4889}
4890
4891
4892
4893ExprResult
4894Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4895 tok::TokenKind Kind, Expr *Input) {
4896 UnaryOperatorKind Opc;
4897 switch (Kind) {
4898 default: llvm_unreachable("Unknown unary op!");
4899 case tok::plusplus: Opc = UO_PostInc; break;
4900 case tok::minusminus: Opc = UO_PostDec; break;
4901 }
4902
4903 // Since this might is a postfix expression, get rid of ParenListExprs.
4904 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, ME: Input);
4905 if (Result.isInvalid()) return ExprError();
4906 Input = Result.get();
4907
4908 return BuildUnaryOp(S, OpLoc, Opc, Input);
4909}
4910
4911/// Diagnose if arithmetic on the given ObjC pointer is illegal.
4912///
4913/// \return true on error
4914static bool checkArithmeticOnObjCPointer(Sema &S,
4915 SourceLocation opLoc,
4916 Expr *op) {
4917 assert(op->getType()->isObjCObjectPointerType());
4918 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4919 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4920 return false;
4921
4922 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4923 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4924 << op->getSourceRange();
4925 return true;
4926}
4927
4928static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4929 auto *BaseNoParens = Base->IgnoreParens();
4930 if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(Val: BaseNoParens))
4931 return MSProp->getPropertyDecl()->getType()->isArrayType();
4932 return isa<MSPropertySubscriptExpr>(Val: BaseNoParens);
4933}
4934
4935// Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4936// Typically this is DependentTy, but can sometimes be more precise.
4937//
4938// There are cases when we could determine a non-dependent type:
4939// - LHS and RHS may have non-dependent types despite being type-dependent
4940// (e.g. unbounded array static members of the current instantiation)
4941// - one may be a dependent-sized array with known element type
4942// - one may be a dependent-typed valid index (enum in current instantiation)
4943//
4944// We *always* return a dependent type, in such cases it is DependentTy.
4945// This avoids creating type-dependent expressions with non-dependent types.
4946// FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4947static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4948 const ASTContext &Ctx) {
4949 assert(LHS->isTypeDependent() || RHS->isTypeDependent());
4950 QualType LTy = LHS->getType(), RTy = RHS->getType();
4951 QualType Result = Ctx.DependentTy;
4952 if (RTy->isIntegralOrUnscopedEnumerationType()) {
4953 if (const PointerType *PT = LTy->getAs<PointerType>())
4954 Result = PT->getPointeeType();
4955 else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4956 Result = AT->getElementType();
4957 } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4958 if (const PointerType *PT = RTy->getAs<PointerType>())
4959 Result = PT->getPointeeType();
4960 else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4961 Result = AT->getElementType();
4962 }
4963 // Ensure we return a dependent type.
4964 return Result->isDependentType() ? Result : Ctx.DependentTy;
4965}
4966
4967ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4968 SourceLocation lbLoc,
4969 MultiExprArg ArgExprs,
4970 SourceLocation rbLoc) {
4971
4972 if (base && !base->getType().isNull() &&
4973 base->hasPlaceholderType(K: BuiltinType::ArraySection)) {
4974 auto *AS = cast<ArraySectionExpr>(Val: base);
4975 if (AS->isOMPArraySection())
4976 return OpenMP().ActOnOMPArraySectionExpr(
4977 Base: base, LBLoc: lbLoc, LowerBound: ArgExprs.front(), ColonLocFirst: SourceLocation(), ColonLocSecond: SourceLocation(),
4978 /*Length*/ nullptr,
4979 /*Stride=*/nullptr, RBLoc: rbLoc);
4980
4981 return OpenACC().ActOnArraySectionExpr(Base: base, LBLoc: lbLoc, LowerBound: ArgExprs.front(),
4982 ColonLocFirst: SourceLocation(), /*Length*/ nullptr,
4983 RBLoc: rbLoc);
4984 }
4985
4986 // Since this might be a postfix expression, get rid of ParenListExprs.
4987 if (isa<ParenListExpr>(Val: base)) {
4988 ExprResult result = MaybeConvertParenListExprToParenExpr(S, ME: base);
4989 if (result.isInvalid())
4990 return ExprError();
4991 base = result.get();
4992 }
4993
4994 // Check if base and idx form a MatrixSubscriptExpr.
4995 //
4996 // Helper to check for comma expressions, which are not allowed as indices for
4997 // matrix subscript expressions.
4998 auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4999 if (isa<BinaryOperator>(Val: E) && cast<BinaryOperator>(Val: E)->isCommaOp()) {
5000 Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
5001 << SourceRange(base->getBeginLoc(), rbLoc);
5002 return true;
5003 }
5004 return false;
5005 };
5006 // The matrix subscript operator ([][])is considered a single operator.
5007 // Separating the index expressions by parenthesis is not allowed.
5008 if (base && !base->getType().isNull() &&
5009 base->hasPlaceholderType(K: BuiltinType::IncompleteMatrixIdx) &&
5010 !isa<MatrixSubscriptExpr>(Val: base)) {
5011 Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
5012 << SourceRange(base->getBeginLoc(), rbLoc);
5013 return ExprError();
5014 }
5015 // If the base is a MatrixSubscriptExpr, try to create a new
5016 // MatrixSubscriptExpr.
5017 auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(Val: base);
5018 if (matSubscriptE) {
5019 assert(ArgExprs.size() == 1);
5020 if (CheckAndReportCommaError(ArgExprs.front()))
5021 return ExprError();
5022
5023 assert(matSubscriptE->isIncomplete() &&
5024 "base has to be an incomplete matrix subscript");
5025 return CreateBuiltinMatrixSubscriptExpr(Base: matSubscriptE->getBase(),
5026 RowIdx: matSubscriptE->getRowIdx(),
5027 ColumnIdx: ArgExprs.front(), RBLoc: rbLoc);
5028 }
5029 if (base->getType()->isWebAssemblyTableType()) {
5030 Diag(base->getExprLoc(), diag::err_wasm_table_art)
5031 << SourceRange(base->getBeginLoc(), rbLoc) << 3;
5032 return ExprError();
5033 }
5034
5035 CheckInvalidBuiltinCountedByRef(E: base,
5036 K: BuiltinCountedByRefKind::ArraySubscript);
5037
5038 // Handle any non-overload placeholder types in the base and index
5039 // expressions. We can't handle overloads here because the other
5040 // operand might be an overloadable type, in which case the overload
5041 // resolution for the operator overload should get the first crack
5042 // at the overload.
5043 bool IsMSPropertySubscript = false;
5044 if (base->getType()->isNonOverloadPlaceholderType()) {
5045 IsMSPropertySubscript = isMSPropertySubscriptExpr(S&: *this, Base: base);
5046 if (!IsMSPropertySubscript) {
5047 ExprResult result = CheckPlaceholderExpr(E: base);
5048 if (result.isInvalid())
5049 return ExprError();
5050 base = result.get();
5051 }
5052 }
5053
5054 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
5055 if (base->getType()->isMatrixType()) {
5056 assert(ArgExprs.size() == 1);
5057 if (CheckAndReportCommaError(ArgExprs.front()))
5058 return ExprError();
5059
5060 return CreateBuiltinMatrixSubscriptExpr(Base: base, RowIdx: ArgExprs.front(), ColumnIdx: nullptr,
5061 RBLoc: rbLoc);
5062 }
5063
5064 if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
5065 Expr *idx = ArgExprs[0];
5066 if ((isa<BinaryOperator>(Val: idx) && cast<BinaryOperator>(Val: idx)->isCommaOp()) ||
5067 (isa<CXXOperatorCallExpr>(Val: idx) &&
5068 cast<CXXOperatorCallExpr>(Val: idx)->getOperator() == OO_Comma)) {
5069 Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
5070 << SourceRange(base->getBeginLoc(), rbLoc);
5071 }
5072 }
5073
5074 if (ArgExprs.size() == 1 &&
5075 ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
5076 ExprResult result = CheckPlaceholderExpr(E: ArgExprs[0]);
5077 if (result.isInvalid())
5078 return ExprError();
5079 ArgExprs[0] = result.get();
5080 } else {
5081 if (CheckArgsForPlaceholders(args: ArgExprs))
5082 return ExprError();
5083 }
5084
5085 // Build an unanalyzed expression if either operand is type-dependent.
5086 if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
5087 (base->isTypeDependent() ||
5088 Expr::hasAnyTypeDependentArguments(Exprs: ArgExprs)) &&
5089 !isa<PackExpansionExpr>(Val: ArgExprs[0])) {
5090 return new (Context) ArraySubscriptExpr(
5091 base, ArgExprs.front(),
5092 getDependentArraySubscriptType(LHS: base, RHS: ArgExprs.front(), Ctx: getASTContext()),
5093 VK_LValue, OK_Ordinary, rbLoc);
5094 }
5095
5096 // MSDN, property (C++)
5097 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
5098 // This attribute can also be used in the declaration of an empty array in a
5099 // class or structure definition. For example:
5100 // __declspec(property(get=GetX, put=PutX)) int x[];
5101 // The above statement indicates that x[] can be used with one or more array
5102 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
5103 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
5104 if (IsMSPropertySubscript) {
5105 assert(ArgExprs.size() == 1);
5106 // Build MS property subscript expression if base is MS property reference
5107 // or MS property subscript.
5108 return new (Context)
5109 MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
5110 VK_LValue, OK_Ordinary, rbLoc);
5111 }
5112
5113 // Use C++ overloaded-operator rules if either operand has record
5114 // type. The spec says to do this if either type is *overloadable*,
5115 // but enum types can't declare subscript operators or conversion
5116 // operators, so there's nothing interesting for overload resolution
5117 // to do if there aren't any record types involved.
5118 //
5119 // ObjC pointers have their own subscripting logic that is not tied
5120 // to overload resolution and so should not take this path.
5121 if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
5122 ((base->getType()->isRecordType() ||
5123 (ArgExprs.size() != 1 || isa<PackExpansionExpr>(Val: ArgExprs[0]) ||
5124 ArgExprs[0]->getType()->isRecordType())))) {
5125 return CreateOverloadedArraySubscriptExpr(LLoc: lbLoc, RLoc: rbLoc, Base: base, Args: ArgExprs);
5126 }
5127
5128 ExprResult Res =
5129 CreateBuiltinArraySubscriptExpr(Base: base, LLoc: lbLoc, Idx: ArgExprs.front(), RLoc: rbLoc);
5130
5131 if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Val: Res.get()))
5132 CheckSubscriptAccessOfNoDeref(E: cast<ArraySubscriptExpr>(Val: Res.get()));
5133
5134 return Res;
5135}
5136
5137ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
5138 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Type: Ty);
5139 InitializationKind Kind =
5140 InitializationKind::CreateCopy(InitLoc: E->getBeginLoc(), EqualLoc: SourceLocation());
5141 InitializationSequence InitSeq(*this, Entity, Kind, E);
5142 return InitSeq.Perform(S&: *this, Entity, Kind, Args: E);
5143}
5144
5145ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5146 Expr *ColumnIdx,
5147 SourceLocation RBLoc) {
5148 ExprResult BaseR = CheckPlaceholderExpr(E: Base);
5149 if (BaseR.isInvalid())
5150 return BaseR;
5151 Base = BaseR.get();
5152
5153 ExprResult RowR = CheckPlaceholderExpr(E: RowIdx);
5154 if (RowR.isInvalid())
5155 return RowR;
5156 RowIdx = RowR.get();
5157
5158 if (!ColumnIdx)
5159 return new (Context) MatrixSubscriptExpr(
5160 Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
5161
5162 // Build an unanalyzed expression if any of the operands is type-dependent.
5163 if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
5164 ColumnIdx->isTypeDependent())
5165 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5166 Context.DependentTy, RBLoc);
5167
5168 ExprResult ColumnR = CheckPlaceholderExpr(E: ColumnIdx);
5169 if (ColumnR.isInvalid())
5170 return ColumnR;
5171 ColumnIdx = ColumnR.get();
5172
5173 // Check that IndexExpr is an integer expression. If it is a constant
5174 // expression, check that it is less than Dim (= the number of elements in the
5175 // corresponding dimension).
5176 auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5177 bool IsColumnIdx) -> Expr * {
5178 if (!IndexExpr->getType()->isIntegerType() &&
5179 !IndexExpr->isTypeDependent()) {
5180 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5181 << IsColumnIdx;
5182 return nullptr;
5183 }
5184
5185 if (std::optional<llvm::APSInt> Idx =
5186 IndexExpr->getIntegerConstantExpr(Ctx: Context)) {
5187 if ((*Idx < 0 || *Idx >= Dim)) {
5188 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5189 << IsColumnIdx << Dim;
5190 return nullptr;
5191 }
5192 }
5193
5194 ExprResult ConvExpr = IndexExpr;
5195 assert(!ConvExpr.isInvalid() &&
5196 "should be able to convert any integer type to size type");
5197 return ConvExpr.get();
5198 };
5199
5200 auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5201 RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5202 ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5203 if (!RowIdx || !ColumnIdx)
5204 return ExprError();
5205
5206 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5207 MTy->getElementType(), RBLoc);
5208}
5209
5210void Sema::CheckAddressOfNoDeref(const Expr *E) {
5211 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5212 const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5213
5214 // For expressions like `&(*s).b`, the base is recorded and what should be
5215 // checked.
5216 const MemberExpr *Member = nullptr;
5217 while ((Member = dyn_cast<MemberExpr>(Val: StrippedExpr)) && !Member->isArrow())
5218 StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5219
5220 LastRecord.PossibleDerefs.erase(Ptr: StrippedExpr);
5221}
5222
5223void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5224 if (isUnevaluatedContext())
5225 return;
5226
5227 QualType ResultTy = E->getType();
5228 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5229
5230 // Bail if the element is an array since it is not memory access.
5231 if (isa<ArrayType>(Val: ResultTy))
5232 return;
5233
5234 if (ResultTy->hasAttr(attr::NoDeref)) {
5235 LastRecord.PossibleDerefs.insert(E);
5236 return;
5237 }
5238
5239 // Check if the base type is a pointer to a member access of a struct
5240 // marked with noderef.
5241 const Expr *Base = E->getBase();
5242 QualType BaseTy = Base->getType();
5243 if (!(isa<ArrayType>(Val: BaseTy) || isa<PointerType>(Val: BaseTy)))
5244 // Not a pointer access
5245 return;
5246
5247 const MemberExpr *Member = nullptr;
5248 while ((Member = dyn_cast<MemberExpr>(Val: Base->IgnoreParenCasts())) &&
5249 Member->isArrow())
5250 Base = Member->getBase();
5251
5252 if (const auto *Ptr = dyn_cast<PointerType>(Val: Base->getType())) {
5253 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5254 LastRecord.PossibleDerefs.insert(E);
5255 }
5256}
5257
5258ExprResult
5259Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5260 Expr *Idx, SourceLocation RLoc) {
5261 Expr *LHSExp = Base;
5262 Expr *RHSExp = Idx;
5263
5264 ExprValueKind VK = VK_LValue;
5265 ExprObjectKind OK = OK_Ordinary;
5266
5267 // Per C++ core issue 1213, the result is an xvalue if either operand is
5268 // a non-lvalue array, and an lvalue otherwise.
5269 if (getLangOpts().CPlusPlus11) {
5270 for (auto *Op : {LHSExp, RHSExp}) {
5271 Op = Op->IgnoreImplicit();
5272 if (Op->getType()->isArrayType() && !Op->isLValue())
5273 VK = VK_XValue;
5274 }
5275 }
5276
5277 // Perform default conversions.
5278 if (!LHSExp->getType()->isSubscriptableVectorType()) {
5279 ExprResult Result = DefaultFunctionArrayLvalueConversion(E: LHSExp);
5280 if (Result.isInvalid())
5281 return ExprError();
5282 LHSExp = Result.get();
5283 }
5284 ExprResult Result = DefaultFunctionArrayLvalueConversion(E: RHSExp);
5285 if (Result.isInvalid())
5286 return ExprError();
5287 RHSExp = Result.get();
5288
5289 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5290
5291 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5292 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5293 // in the subscript position. As a result, we need to derive the array base
5294 // and index from the expression types.
5295 Expr *BaseExpr, *IndexExpr;
5296 QualType ResultType;
5297 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5298 BaseExpr = LHSExp;
5299 IndexExpr = RHSExp;
5300 ResultType =
5301 getDependentArraySubscriptType(LHS: LHSExp, RHS: RHSExp, Ctx: getASTContext());
5302 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5303 BaseExpr = LHSExp;
5304 IndexExpr = RHSExp;
5305 ResultType = PTy->getPointeeType();
5306 } else if (const ObjCObjectPointerType *PTy =
5307 LHSTy->getAs<ObjCObjectPointerType>()) {
5308 BaseExpr = LHSExp;
5309 IndexExpr = RHSExp;
5310
5311 // Use custom logic if this should be the pseudo-object subscript
5312 // expression.
5313 if (!LangOpts.isSubscriptPointerArithmetic())
5314 return ObjC().BuildObjCSubscriptExpression(RB: RLoc, BaseExpr, IndexExpr,
5315 getterMethod: nullptr, setterMethod: nullptr);
5316
5317 ResultType = PTy->getPointeeType();
5318 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5319 // Handle the uncommon case of "123[Ptr]".
5320 BaseExpr = RHSExp;
5321 IndexExpr = LHSExp;
5322 ResultType = PTy->getPointeeType();
5323 } else if (const ObjCObjectPointerType *PTy =
5324 RHSTy->getAs<ObjCObjectPointerType>()) {
5325 // Handle the uncommon case of "123[Ptr]".
5326 BaseExpr = RHSExp;
5327 IndexExpr = LHSExp;
5328 ResultType = PTy->getPointeeType();
5329 if (!LangOpts.isSubscriptPointerArithmetic()) {
5330 Diag(LLoc, diag::err_subscript_nonfragile_interface)
5331 << ResultType << BaseExpr->getSourceRange();
5332 return ExprError();
5333 }
5334 } else if (LHSTy->isSubscriptableVectorType()) {
5335 if (LHSTy->isBuiltinType() &&
5336 LHSTy->getAs<BuiltinType>()->isSveVLSBuiltinType()) {
5337 const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5338 if (BTy->isSVEBool())
5339 return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5340 << LHSExp->getSourceRange()
5341 << RHSExp->getSourceRange());
5342 ResultType = BTy->getSveEltType(Context);
5343 } else {
5344 const VectorType *VTy = LHSTy->getAs<VectorType>();
5345 ResultType = VTy->getElementType();
5346 }
5347 BaseExpr = LHSExp; // vectors: V[123]
5348 IndexExpr = RHSExp;
5349 // We apply C++ DR1213 to vector subscripting too.
5350 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5351 ExprResult Materialized = TemporaryMaterializationConversion(E: LHSExp);
5352 if (Materialized.isInvalid())
5353 return ExprError();
5354 LHSExp = Materialized.get();
5355 }
5356 VK = LHSExp->getValueKind();
5357 if (VK != VK_PRValue)
5358 OK = OK_VectorComponent;
5359
5360 QualType BaseType = BaseExpr->getType();
5361 Qualifiers BaseQuals = BaseType.getQualifiers();
5362 Qualifiers MemberQuals = ResultType.getQualifiers();
5363 Qualifiers Combined = BaseQuals + MemberQuals;
5364 if (Combined != MemberQuals)
5365 ResultType = Context.getQualifiedType(T: ResultType, Qs: Combined);
5366 } else if (LHSTy->isArrayType()) {
5367 // If we see an array that wasn't promoted by
5368 // DefaultFunctionArrayLvalueConversion, it must be an array that
5369 // wasn't promoted because of the C90 rule that doesn't
5370 // allow promoting non-lvalue arrays. Warn, then
5371 // force the promotion here.
5372 Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5373 << LHSExp->getSourceRange();
5374 LHSExp = ImpCastExprToType(E: LHSExp, Type: Context.getArrayDecayedType(T: LHSTy),
5375 CK: CK_ArrayToPointerDecay).get();
5376 LHSTy = LHSExp->getType();
5377
5378 BaseExpr = LHSExp;
5379 IndexExpr = RHSExp;
5380 ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5381 } else if (RHSTy->isArrayType()) {
5382 // Same as previous, except for 123[f().a] case
5383 Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5384 << RHSExp->getSourceRange();
5385 RHSExp = ImpCastExprToType(E: RHSExp, Type: Context.getArrayDecayedType(T: RHSTy),
5386 CK: CK_ArrayToPointerDecay).get();
5387 RHSTy = RHSExp->getType();
5388
5389 BaseExpr = RHSExp;
5390 IndexExpr = LHSExp;
5391 ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5392 } else {
5393 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5394 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5395 }
5396 // C99 6.5.2.1p1
5397 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5398 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5399 << IndexExpr->getSourceRange());
5400
5401 if ((IndexExpr->getType()->isSpecificBuiltinType(K: BuiltinType::Char_S) ||
5402 IndexExpr->getType()->isSpecificBuiltinType(K: BuiltinType::Char_U)) &&
5403 !IndexExpr->isTypeDependent()) {
5404 std::optional<llvm::APSInt> IntegerContantExpr =
5405 IndexExpr->getIntegerConstantExpr(Ctx: getASTContext());
5406 if (!IntegerContantExpr.has_value() ||
5407 IntegerContantExpr.value().isNegative())
5408 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5409 }
5410
5411 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5412 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5413 // type. Note that Functions are not objects, and that (in C99 parlance)
5414 // incomplete types are not object types.
5415 if (ResultType->isFunctionType()) {
5416 Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5417 << ResultType << BaseExpr->getSourceRange();
5418 return ExprError();
5419 }
5420
5421 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5422 // GNU extension: subscripting on pointer to void
5423 Diag(LLoc, diag::ext_gnu_subscript_void_type)
5424 << BaseExpr->getSourceRange();
5425
5426 // C forbids expressions of unqualified void type from being l-values.
5427 // See IsCForbiddenLValueType.
5428 if (!ResultType.hasQualifiers())
5429 VK = VK_PRValue;
5430 } else if (!ResultType->isDependentType() &&
5431 !ResultType.isWebAssemblyReferenceType() &&
5432 RequireCompleteSizedType(
5433 LLoc, ResultType,
5434 diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5435 return ExprError();
5436
5437 assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
5438 !ResultType.isCForbiddenLValueType());
5439
5440 if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5441 FunctionScopes.size() > 1) {
5442 if (auto *TT =
5443 LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5444 for (auto I = FunctionScopes.rbegin(),
5445 E = std::prev(x: FunctionScopes.rend());
5446 I != E; ++I) {
5447 auto *CSI = dyn_cast<CapturingScopeInfo>(Val: *I);
5448 if (CSI == nullptr)
5449 break;
5450 DeclContext *DC = nullptr;
5451 if (auto *LSI = dyn_cast<LambdaScopeInfo>(Val: CSI))
5452 DC = LSI->CallOperator;
5453 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(Val: CSI))
5454 DC = CRSI->TheCapturedDecl;
5455 else if (auto *BSI = dyn_cast<BlockScopeInfo>(Val: CSI))
5456 DC = BSI->TheDecl;
5457 if (DC) {
5458 if (DC->containsDecl(TT->getDecl()))
5459 break;
5460 captureVariablyModifiedType(
5461 Context, T: LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5462 }
5463 }
5464 }
5465 }
5466
5467 return new (Context)
5468 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5469}
5470
5471bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5472 ParmVarDecl *Param, Expr *RewrittenInit,
5473 bool SkipImmediateInvocations) {
5474 if (Param->hasUnparsedDefaultArg()) {
5475 assert(!RewrittenInit && "Should not have a rewritten init expression yet");
5476 // If we've already cleared out the location for the default argument,
5477 // that means we're parsing it right now.
5478 if (!UnparsedDefaultArgLocs.count(Val: Param)) {
5479 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5480 Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5481 Param->setInvalidDecl();
5482 return true;
5483 }
5484
5485 Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5486 << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5487 Diag(UnparsedDefaultArgLocs[Param],
5488 diag::note_default_argument_declared_here);
5489 return true;
5490 }
5491
5492 if (Param->hasUninstantiatedDefaultArg()) {
5493 assert(!RewrittenInit && "Should not have a rewitten init expression yet");
5494 if (InstantiateDefaultArgument(CallLoc, FD, Param))
5495 return true;
5496 }
5497
5498 Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
5499 assert(Init && "default argument but no initializer?");
5500
5501 // If the default expression creates temporaries, we need to
5502 // push them to the current stack of expression temporaries so they'll
5503 // be properly destroyed.
5504 // FIXME: We should really be rebuilding the default argument with new
5505 // bound temporaries; see the comment in PR5810.
5506 // We don't need to do that with block decls, though, because
5507 // blocks in default argument expression can never capture anything.
5508 if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) {
5509 // Set the "needs cleanups" bit regardless of whether there are
5510 // any explicit objects.
5511 Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
5512 // Append all the objects to the cleanup list. Right now, this
5513 // should always be a no-op, because blocks in default argument
5514 // expressions should never be able to capture anything.
5515 assert(!InitWithCleanup->getNumObjects() &&
5516 "default argument expression has capturing blocks?");
5517 }
5518 // C++ [expr.const]p15.1:
5519 // An expression or conversion is in an immediate function context if it is
5520 // potentially evaluated and [...] its innermost enclosing non-block scope
5521 // is a function parameter scope of an immediate function.
5522 EnterExpressionEvaluationContext EvalContext(
5523 *this,
5524 FD->isImmediateFunction()
5525 ? ExpressionEvaluationContext::ImmediateFunctionContext
5526 : ExpressionEvaluationContext::PotentiallyEvaluated,
5527 Param);
5528 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5529 SkipImmediateInvocations;
5530 runWithSufficientStackSpace(Loc: CallLoc, Fn: [&] {
5531 MarkDeclarationsReferencedInExpr(E: Init, /*SkipLocalVariables=*/true);
5532 });
5533 return false;
5534}
5535
5536struct ImmediateCallVisitor : DynamicRecursiveASTVisitor {
5537 const ASTContext &Context;
5538 ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {
5539 ShouldVisitImplicitCode = true;
5540 }
5541
5542 bool HasImmediateCalls = false;
5543
5544 bool VisitCallExpr(CallExpr *E) override {
5545 if (const FunctionDecl *FD = E->getDirectCallee())
5546 HasImmediateCalls |= FD->isImmediateFunction();
5547 return DynamicRecursiveASTVisitor::VisitStmt(E);
5548 }
5549
5550 bool VisitCXXConstructExpr(CXXConstructExpr *E) override {
5551 if (const FunctionDecl *FD = E->getConstructor())
5552 HasImmediateCalls |= FD->isImmediateFunction();
5553 return DynamicRecursiveASTVisitor::VisitStmt(E);
5554 }
5555
5556 // SourceLocExpr are not immediate invocations
5557 // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
5558 // need to be rebuilt so that they refer to the correct SourceLocation and
5559 // DeclContext.
5560 bool VisitSourceLocExpr(SourceLocExpr *E) override {
5561 HasImmediateCalls = true;
5562 return DynamicRecursiveASTVisitor::VisitStmt(E);
5563 }
5564
5565 // A nested lambda might have parameters with immediate invocations
5566 // in their default arguments.
5567 // The compound statement is not visited (as it does not constitute a
5568 // subexpression).
5569 // FIXME: We should consider visiting and transforming captures
5570 // with init expressions.
5571 bool VisitLambdaExpr(LambdaExpr *E) override {
5572 return VisitCXXMethodDecl(E->getCallOperator());
5573 }
5574
5575 bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) override {
5576 return TraverseStmt(E->getExpr());
5577 }
5578
5579 bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) override {
5580 return TraverseStmt(E->getExpr());
5581 }
5582};
5583
5584struct EnsureImmediateInvocationInDefaultArgs
5585 : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
5586 EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
5587 : TreeTransform(SemaRef) {}
5588
5589 bool AlwaysRebuild() { return true; }
5590
5591 // Lambda can only have immediate invocations in the default
5592 // args of their parameters, which is transformed upon calling the closure.
5593 // The body is not a subexpression, so we have nothing to do.
5594 // FIXME: Immediate calls in capture initializers should be transformed.
5595 ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
5596 ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
5597
5598 // Make sure we don't rebuild the this pointer as it would
5599 // cause it to incorrectly point it to the outermost class
5600 // in the case of nested struct initialization.
5601 ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
5602
5603 // Rewrite to source location to refer to the context in which they are used.
5604 ExprResult TransformSourceLocExpr(SourceLocExpr *E) {
5605 DeclContext *DC = E->getParentContext();
5606 if (DC == SemaRef.CurContext)
5607 return E;
5608
5609 // FIXME: During instantiation, because the rebuild of defaults arguments
5610 // is not always done in the context of the template instantiator,
5611 // we run the risk of producing a dependent source location
5612 // that would never be rebuilt.
5613 // This usually happens during overload resolution, or in contexts
5614 // where the value of the source location does not matter.
5615 // However, we should find a better way to deal with source location
5616 // of function templates.
5617 if (!SemaRef.CurrentInstantiationScope ||
5618 !SemaRef.CurContext->isDependentContext() || DC->isDependentContext())
5619 DC = SemaRef.CurContext;
5620
5621 return getDerived().RebuildSourceLocExpr(
5622 E->getIdentKind(), E->getType(), E->getBeginLoc(), E->getEndLoc(), DC);
5623 }
5624};
5625
5626ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5627 FunctionDecl *FD, ParmVarDecl *Param,
5628 Expr *Init) {
5629 assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5630
5631 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5632 bool NeedRebuild = needsRebuildOfDefaultArgOrInit();
5633 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5634 InitializationContext =
5635 OutermostDeclarationWithDelayedImmediateInvocations();
5636 if (!InitializationContext.has_value())
5637 InitializationContext.emplace(CallLoc, Param, CurContext);
5638
5639 if (!Init && !Param->hasUnparsedDefaultArg()) {
5640 // Mark that we are replacing a default argument first.
5641 // If we are instantiating a template we won't have to
5642 // retransform immediate calls.
5643 // C++ [expr.const]p15.1:
5644 // An expression or conversion is in an immediate function context if it
5645 // is potentially evaluated and [...] its innermost enclosing non-block
5646 // scope is a function parameter scope of an immediate function.
5647 EnterExpressionEvaluationContext EvalContext(
5648 *this,
5649 FD->isImmediateFunction()
5650 ? ExpressionEvaluationContext::ImmediateFunctionContext
5651 : ExpressionEvaluationContext::PotentiallyEvaluated,
5652 Param);
5653
5654 if (Param->hasUninstantiatedDefaultArg()) {
5655 if (InstantiateDefaultArgument(CallLoc, FD, Param))
5656 return ExprError();
5657 }
5658 // CWG2631
5659 // An immediate invocation that is not evaluated where it appears is
5660 // evaluated and checked for whether it is a constant expression at the
5661 // point where the enclosing initializer is used in a function call.
5662 ImmediateCallVisitor V(getASTContext());
5663 if (!NestedDefaultChecking)
5664 V.TraverseDecl(Param);
5665
5666 // Rewrite the call argument that was created from the corresponding
5667 // parameter's default argument.
5668 if (V.HasImmediateCalls ||
5669 (NeedRebuild && isa_and_present<ExprWithCleanups>(Param->getInit()))) {
5670 if (V.HasImmediateCalls)
5671 ExprEvalContexts.back().DelayedDefaultInitializationContext = {
5672 CallLoc, Param, CurContext};
5673 // Pass down lifetime extending flag, and collect temporaries in
5674 // CreateMaterializeTemporaryExpr when we rewrite the call argument.
5675 currentEvaluationContext().InLifetimeExtendingContext =
5676 parentEvaluationContext().InLifetimeExtendingContext;
5677 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5678 ExprResult Res;
5679 runWithSufficientStackSpace(Loc: CallLoc, Fn: [&] {
5680 Res = Immediate.TransformInitializer(Param->getInit(),
5681 /*NotCopy=*/false);
5682 });
5683 if (Res.isInvalid())
5684 return ExprError();
5685 Res = ConvertParamDefaultArgument(Param, DefaultArg: Res.get(),
5686 EqualLoc: Res.get()->getBeginLoc());
5687 if (Res.isInvalid())
5688 return ExprError();
5689 Init = Res.get();
5690 }
5691 }
5692
5693 if (CheckCXXDefaultArgExpr(
5694 CallLoc, FD, Param, RewrittenInit: Init,
5695 /*SkipImmediateInvocations=*/NestedDefaultChecking))
5696 return ExprError();
5697
5698 return CXXDefaultArgExpr::Create(C: Context, Loc: InitializationContext->Loc, Param,
5699 RewrittenExpr: Init, UsedContext: InitializationContext->Context);
5700}
5701
5702static FieldDecl *FindFieldDeclInstantiationPattern(const ASTContext &Ctx,
5703 FieldDecl *Field) {
5704 if (FieldDecl *Pattern = Ctx.getInstantiatedFromUnnamedFieldDecl(Field))
5705 return Pattern;
5706 auto *ParentRD = cast<CXXRecordDecl>(Val: Field->getParent());
5707 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
5708 DeclContext::lookup_result Lookup =
5709 ClassPattern->lookup(Name: Field->getDeclName());
5710 auto Rng = llvm::make_filter_range(
5711 Range&: Lookup, Pred: [](auto &&L) { return isa<FieldDecl>(*L); });
5712 if (Rng.empty())
5713 return nullptr;
5714 // FIXME: this breaks clang/test/Modules/pr28812.cpp
5715 // assert(std::distance(Rng.begin(), Rng.end()) <= 1
5716 // && "Duplicated instantiation pattern for field decl");
5717 return cast<FieldDecl>(*Rng.begin());
5718}
5719
5720ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
5721 assert(Field->hasInClassInitializer());
5722
5723 CXXThisScopeRAII This(*this, Field->getParent(), Qualifiers());
5724
5725 auto *ParentRD = cast<CXXRecordDecl>(Val: Field->getParent());
5726
5727 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5728 InitializationContext =
5729 OutermostDeclarationWithDelayedImmediateInvocations();
5730 if (!InitializationContext.has_value())
5731 InitializationContext.emplace(Loc, Field, CurContext);
5732
5733 Expr *Init = nullptr;
5734
5735 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5736 bool NeedRebuild = needsRebuildOfDefaultArgOrInit();
5737 EnterExpressionEvaluationContext EvalContext(
5738 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
5739
5740 if (!Field->getInClassInitializer()) {
5741 // Maybe we haven't instantiated the in-class initializer. Go check the
5742 // pattern FieldDecl to see if it has one.
5743 if (isTemplateInstantiation(Kind: ParentRD->getTemplateSpecializationKind())) {
5744 FieldDecl *Pattern =
5745 FindFieldDeclInstantiationPattern(Ctx: getASTContext(), Field);
5746 assert(Pattern && "We must have set the Pattern!");
5747 if (!Pattern->hasInClassInitializer() ||
5748 InstantiateInClassInitializer(PointOfInstantiation: Loc, Instantiation: Field, Pattern,
5749 TemplateArgs: getTemplateInstantiationArgs(Field))) {
5750 Field->setInvalidDecl();
5751 return ExprError();
5752 }
5753 }
5754 }
5755
5756 // CWG2631
5757 // An immediate invocation that is not evaluated where it appears is
5758 // evaluated and checked for whether it is a constant expression at the
5759 // point where the enclosing initializer is used in a [...] a constructor
5760 // definition, or an aggregate initialization.
5761 ImmediateCallVisitor V(getASTContext());
5762 if (!NestedDefaultChecking)
5763 V.TraverseDecl(Field);
5764
5765 // CWG1815
5766 // Support lifetime extension of temporary created by aggregate
5767 // initialization using a default member initializer. We should rebuild
5768 // the initializer in a lifetime extension context if the initializer
5769 // expression is an ExprWithCleanups. Then make sure the normal lifetime
5770 // extension code recurses into the default initializer and does lifetime
5771 // extension when warranted.
5772 bool ContainsAnyTemporaries =
5773 isa_and_present<ExprWithCleanups>(Val: Field->getInClassInitializer());
5774 if (Field->getInClassInitializer() &&
5775 !Field->getInClassInitializer()->containsErrors() &&
5776 (V.HasImmediateCalls || (NeedRebuild && ContainsAnyTemporaries))) {
5777 ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
5778 CurContext};
5779 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5780 NestedDefaultChecking;
5781 // Pass down lifetime extending flag, and collect temporaries in
5782 // CreateMaterializeTemporaryExpr when we rewrite the call argument.
5783 currentEvaluationContext().InLifetimeExtendingContext =
5784 parentEvaluationContext().InLifetimeExtendingContext;
5785 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5786 ExprResult Res;
5787 runWithSufficientStackSpace(Loc, Fn: [&] {
5788 Res = Immediate.TransformInitializer(Field->getInClassInitializer(),
5789 /*CXXDirectInit=*/false);
5790 });
5791 if (!Res.isInvalid())
5792 Res = ConvertMemberDefaultInitExpression(FD: Field, InitExpr: Res.get(), InitLoc: Loc);
5793 if (Res.isInvalid()) {
5794 Field->setInvalidDecl();
5795 return ExprError();
5796 }
5797 Init = Res.get();
5798 }
5799
5800 if (Field->getInClassInitializer()) {
5801 Expr *E = Init ? Init : Field->getInClassInitializer();
5802 if (!NestedDefaultChecking)
5803 runWithSufficientStackSpace(Loc, Fn: [&] {
5804 MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
5805 });
5806 if (isInLifetimeExtendingContext())
5807 DiscardCleanupsInEvaluationContext();
5808 // C++11 [class.base.init]p7:
5809 // The initialization of each base and member constitutes a
5810 // full-expression.
5811 ExprResult Res = ActOnFinishFullExpr(Expr: E, /*DiscardedValue=*/false);
5812 if (Res.isInvalid()) {
5813 Field->setInvalidDecl();
5814 return ExprError();
5815 }
5816 Init = Res.get();
5817
5818 return CXXDefaultInitExpr::Create(Ctx: Context, Loc: InitializationContext->Loc,
5819 Field, UsedContext: InitializationContext->Context,
5820 RewrittenInitExpr: Init);
5821 }
5822
5823 // DR1351:
5824 // If the brace-or-equal-initializer of a non-static data member
5825 // invokes a defaulted default constructor of its class or of an
5826 // enclosing class in a potentially evaluated subexpression, the
5827 // program is ill-formed.
5828 //
5829 // This resolution is unworkable: the exception specification of the
5830 // default constructor can be needed in an unevaluated context, in
5831 // particular, in the operand of a noexcept-expression, and we can be
5832 // unable to compute an exception specification for an enclosed class.
5833 //
5834 // Any attempt to resolve the exception specification of a defaulted default
5835 // constructor before the initializer is lexically complete will ultimately
5836 // come here at which point we can diagnose it.
5837 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
5838 Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
5839 << OutermostClass << Field;
5840 Diag(Field->getEndLoc(),
5841 diag::note_default_member_initializer_not_yet_parsed);
5842 // Recover by marking the field invalid, unless we're in a SFINAE context.
5843 if (!isSFINAEContext())
5844 Field->setInvalidDecl();
5845 return ExprError();
5846}
5847
5848VariadicCallType Sema::getVariadicCallType(FunctionDecl *FDecl,
5849 const FunctionProtoType *Proto,
5850 Expr *Fn) {
5851 if (Proto && Proto->isVariadic()) {
5852 if (isa_and_nonnull<CXXConstructorDecl>(Val: FDecl))
5853 return VariadicCallType::Constructor;
5854 else if (Fn && Fn->getType()->isBlockPointerType())
5855 return VariadicCallType::Block;
5856 else if (FDecl) {
5857 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Val: FDecl))
5858 if (Method->isInstance())
5859 return VariadicCallType::Method;
5860 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5861 return VariadicCallType::Method;
5862 return VariadicCallType::Function;
5863 }
5864 return VariadicCallType::DoesNotApply;
5865}
5866
5867namespace {
5868class FunctionCallCCC final : public FunctionCallFilterCCC {
5869public:
5870 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5871 unsigned NumArgs, MemberExpr *ME)
5872 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5873 FunctionName(FuncName) {}
5874
5875 bool ValidateCandidate(const TypoCorrection &candidate) override {
5876 if (!candidate.getCorrectionSpecifier() ||
5877 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5878 return false;
5879 }
5880
5881 return FunctionCallFilterCCC::ValidateCandidate(candidate);
5882 }
5883
5884 std::unique_ptr<CorrectionCandidateCallback> clone() override {
5885 return std::make_unique<FunctionCallCCC>(args&: *this);
5886 }
5887
5888private:
5889 const IdentifierInfo *const FunctionName;
5890};
5891}
5892
5893static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5894 FunctionDecl *FDecl,
5895 ArrayRef<Expr *> Args) {
5896 MemberExpr *ME = dyn_cast<MemberExpr>(Val: Fn);
5897 DeclarationName FuncName = FDecl->getDeclName();
5898 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5899
5900 FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5901 if (TypoCorrection Corrected = S.CorrectTypo(
5902 Typo: DeclarationNameInfo(FuncName, NameLoc), LookupKind: Sema::LookupOrdinaryName,
5903 S: S.getScopeForContext(Ctx: S.CurContext), SS: nullptr, CCC,
5904 Mode: CorrectTypoKind::ErrorRecovery)) {
5905 if (NamedDecl *ND = Corrected.getFoundDecl()) {
5906 if (Corrected.isOverloaded()) {
5907 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5908 OverloadCandidateSet::iterator Best;
5909 for (NamedDecl *CD : Corrected) {
5910 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5911 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5912 OCS);
5913 }
5914 switch (OCS.BestViableFunction(S, Loc: NameLoc, Best)) {
5915 case OR_Success:
5916 ND = Best->FoundDecl;
5917 Corrected.setCorrectionDecl(ND);
5918 break;
5919 default:
5920 break;
5921 }
5922 }
5923 ND = ND->getUnderlyingDecl();
5924 if (isa<ValueDecl>(Val: ND) || isa<FunctionTemplateDecl>(Val: ND))
5925 return Corrected;
5926 }
5927 }
5928 return TypoCorrection();
5929}
5930
5931// [C++26][[expr.unary.op]/p4
5932// A pointer to member is only formed when an explicit &
5933// is used and its operand is a qualified-id not enclosed in parentheses.
5934static bool isParenthetizedAndQualifiedAddressOfExpr(Expr *Fn) {
5935 if (!isa<ParenExpr>(Val: Fn))
5936 return false;
5937
5938 Fn = Fn->IgnoreParens();
5939
5940 auto *UO = dyn_cast<UnaryOperator>(Val: Fn);
5941 if (!UO || UO->getOpcode() != clang::UO_AddrOf)
5942 return false;
5943 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: UO->getSubExpr()->IgnoreParens())) {
5944 return DRE->hasQualifier();
5945 }
5946 if (auto *OVL = dyn_cast<OverloadExpr>(Val: UO->getSubExpr()->IgnoreParens()))
5947 return OVL->getQualifier();
5948 return false;
5949}
5950
5951bool
5952Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5953 FunctionDecl *FDecl,
5954 const FunctionProtoType *Proto,
5955 ArrayRef<Expr *> Args,
5956 SourceLocation RParenLoc,
5957 bool IsExecConfig) {
5958 // Bail out early if calling a builtin with custom typechecking.
5959 if (FDecl)
5960 if (unsigned ID = FDecl->getBuiltinID())
5961 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5962 return false;
5963
5964 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5965 // assignment, to the types of the corresponding parameter, ...
5966
5967 bool AddressOf = isParenthetizedAndQualifiedAddressOfExpr(Fn);
5968 bool HasExplicitObjectParameter =
5969 !AddressOf && FDecl && FDecl->hasCXXExplicitFunctionObjectParameter();
5970 unsigned ExplicitObjectParameterOffset = HasExplicitObjectParameter ? 1 : 0;
5971 unsigned NumParams = Proto->getNumParams();
5972 bool Invalid = false;
5973 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5974 unsigned FnKind = Fn->getType()->isBlockPointerType()
5975 ? 1 /* block */
5976 : (IsExecConfig ? 3 /* kernel function (exec config) */
5977 : 0 /* function */);
5978
5979 // If too few arguments are available (and we don't have default
5980 // arguments for the remaining parameters), don't make the call.
5981 if (Args.size() < NumParams) {
5982 if (Args.size() < MinArgs) {
5983 TypoCorrection TC;
5984 if (FDecl && (TC = TryTypoCorrectionForCall(S&: *this, Fn, FDecl, Args))) {
5985 unsigned diag_id =
5986 MinArgs == NumParams && !Proto->isVariadic()
5987 ? diag::err_typecheck_call_too_few_args_suggest
5988 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5989 diagnoseTypo(
5990 TC, PDiag(diag_id)
5991 << FnKind << MinArgs - ExplicitObjectParameterOffset
5992 << static_cast<unsigned>(Args.size()) -
5993 ExplicitObjectParameterOffset
5994 << HasExplicitObjectParameter << TC.getCorrectionRange());
5995 } else if (MinArgs - ExplicitObjectParameterOffset == 1 && FDecl &&
5996 FDecl->getParamDecl(ExplicitObjectParameterOffset)
5997 ->getDeclName())
5998 Diag(RParenLoc,
5999 MinArgs == NumParams && !Proto->isVariadic()
6000 ? diag::err_typecheck_call_too_few_args_one
6001 : diag::err_typecheck_call_too_few_args_at_least_one)
6002 << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
6003 << HasExplicitObjectParameter << Fn->getSourceRange();
6004 else
6005 Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
6006 ? diag::err_typecheck_call_too_few_args
6007 : diag::err_typecheck_call_too_few_args_at_least)
6008 << FnKind << MinArgs - ExplicitObjectParameterOffset
6009 << static_cast<unsigned>(Args.size()) -
6010 ExplicitObjectParameterOffset
6011 << HasExplicitObjectParameter << Fn->getSourceRange();
6012
6013 // Emit the location of the prototype.
6014 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6015 Diag(FDecl->getLocation(), diag::note_callee_decl)
6016 << FDecl << FDecl->getParametersSourceRange();
6017
6018 return true;
6019 }
6020 // We reserve space for the default arguments when we create
6021 // the call expression, before calling ConvertArgumentsForCall.
6022 assert((Call->getNumArgs() == NumParams) &&
6023 "We should have reserved space for the default arguments before!");
6024 }
6025
6026 // If too many are passed and not variadic, error on the extras and drop
6027 // them.
6028 if (Args.size() > NumParams) {
6029 if (!Proto->isVariadic()) {
6030 TypoCorrection TC;
6031 if (FDecl && (TC = TryTypoCorrectionForCall(S&: *this, Fn, FDecl, Args))) {
6032 unsigned diag_id =
6033 MinArgs == NumParams && !Proto->isVariadic()
6034 ? diag::err_typecheck_call_too_many_args_suggest
6035 : diag::err_typecheck_call_too_many_args_at_most_suggest;
6036 diagnoseTypo(
6037 TC, PDiag(diag_id)
6038 << FnKind << NumParams - ExplicitObjectParameterOffset
6039 << static_cast<unsigned>(Args.size()) -
6040 ExplicitObjectParameterOffset
6041 << HasExplicitObjectParameter << TC.getCorrectionRange());
6042 } else if (NumParams - ExplicitObjectParameterOffset == 1 && FDecl &&
6043 FDecl->getParamDecl(ExplicitObjectParameterOffset)
6044 ->getDeclName())
6045 Diag(Args[NumParams]->getBeginLoc(),
6046 MinArgs == NumParams
6047 ? diag::err_typecheck_call_too_many_args_one
6048 : diag::err_typecheck_call_too_many_args_at_most_one)
6049 << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
6050 << static_cast<unsigned>(Args.size()) -
6051 ExplicitObjectParameterOffset
6052 << HasExplicitObjectParameter << Fn->getSourceRange()
6053 << SourceRange(Args[NumParams]->getBeginLoc(),
6054 Args.back()->getEndLoc());
6055 else
6056 Diag(Args[NumParams]->getBeginLoc(),
6057 MinArgs == NumParams
6058 ? diag::err_typecheck_call_too_many_args
6059 : diag::err_typecheck_call_too_many_args_at_most)
6060 << FnKind << NumParams - ExplicitObjectParameterOffset
6061 << static_cast<unsigned>(Args.size()) -
6062 ExplicitObjectParameterOffset
6063 << HasExplicitObjectParameter << Fn->getSourceRange()
6064 << SourceRange(Args[NumParams]->getBeginLoc(),
6065 Args.back()->getEndLoc());
6066
6067 // Emit the location of the prototype.
6068 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6069 Diag(FDecl->getLocation(), diag::note_callee_decl)
6070 << FDecl << FDecl->getParametersSourceRange();
6071
6072 // This deletes the extra arguments.
6073 Call->shrinkNumArgs(NewNumArgs: NumParams);
6074 return true;
6075 }
6076 }
6077 SmallVector<Expr *, 8> AllArgs;
6078 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
6079
6080 Invalid = GatherArgumentsForCall(CallLoc: Call->getExprLoc(), FDecl, Proto, FirstParam: 0, Args,
6081 AllArgs, CallType);
6082 if (Invalid)
6083 return true;
6084 unsigned TotalNumArgs = AllArgs.size();
6085 for (unsigned i = 0; i < TotalNumArgs; ++i)
6086 Call->setArg(Arg: i, ArgExpr: AllArgs[i]);
6087
6088 Call->computeDependence();
6089 return false;
6090}
6091
6092bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
6093 const FunctionProtoType *Proto,
6094 unsigned FirstParam, ArrayRef<Expr *> Args,
6095 SmallVectorImpl<Expr *> &AllArgs,
6096 VariadicCallType CallType, bool AllowExplicit,
6097 bool IsListInitialization) {
6098 unsigned NumParams = Proto->getNumParams();
6099 bool Invalid = false;
6100 size_t ArgIx = 0;
6101 // Continue to check argument types (even if we have too few/many args).
6102 for (unsigned i = FirstParam; i < NumParams; i++) {
6103 QualType ProtoArgType = Proto->getParamType(i);
6104
6105 Expr *Arg;
6106 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
6107 if (ArgIx < Args.size()) {
6108 Arg = Args[ArgIx++];
6109
6110 if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
6111 diag::err_call_incomplete_argument, Arg))
6112 return true;
6113
6114 // Strip the unbridged-cast placeholder expression off, if applicable.
6115 bool CFAudited = false;
6116 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
6117 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6118 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6119 Arg = ObjC().stripARCUnbridgedCast(e: Arg);
6120 else if (getLangOpts().ObjCAutoRefCount &&
6121 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6122 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6123 CFAudited = true;
6124
6125 if (Proto->getExtParameterInfo(I: i).isNoEscape() &&
6126 ProtoArgType->isBlockPointerType())
6127 if (auto *BE = dyn_cast<BlockExpr>(Val: Arg->IgnoreParenNoopCasts(Ctx: Context)))
6128 BE->getBlockDecl()->setDoesNotEscape();
6129 if ((Proto->getExtParameterInfo(I: i).getABI() == ParameterABI::HLSLOut ||
6130 Proto->getExtParameterInfo(I: i).getABI() == ParameterABI::HLSLInOut)) {
6131 ExprResult ArgExpr = HLSL().ActOnOutParamExpr(Param, Arg);
6132 if (ArgExpr.isInvalid())
6133 return true;
6134 Arg = ArgExpr.getAs<Expr>();
6135 }
6136
6137 InitializedEntity Entity =
6138 Param ? InitializedEntity::InitializeParameter(Context, Parm: Param,
6139 Type: ProtoArgType)
6140 : InitializedEntity::InitializeParameter(
6141 Context, Type: ProtoArgType, Consumed: Proto->isParamConsumed(I: i));
6142
6143 // Remember that parameter belongs to a CF audited API.
6144 if (CFAudited)
6145 Entity.setParameterCFAudited();
6146
6147 ExprResult ArgE = PerformCopyInitialization(
6148 Entity, EqualLoc: SourceLocation(), Init: Arg, TopLevelOfInitList: IsListInitialization, AllowExplicit);
6149 if (ArgE.isInvalid())
6150 return true;
6151
6152 Arg = ArgE.getAs<Expr>();
6153 } else {
6154 assert(Param && "can't use default arguments without a known callee");
6155
6156 ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FD: FDecl, Param);
6157 if (ArgExpr.isInvalid())
6158 return true;
6159
6160 Arg = ArgExpr.getAs<Expr>();
6161 }
6162
6163 // Check for array bounds violations for each argument to the call. This
6164 // check only triggers warnings when the argument isn't a more complex Expr
6165 // with its own checking, such as a BinaryOperator.
6166 CheckArrayAccess(E: Arg);
6167
6168 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6169 CheckStaticArrayArgument(CallLoc, Param, ArgExpr: Arg);
6170
6171 AllArgs.push_back(Elt: Arg);
6172 }
6173
6174 // If this is a variadic call, handle args passed through "...".
6175 if (CallType != VariadicCallType::DoesNotApply) {
6176 // Assume that extern "C" functions with variadic arguments that
6177 // return __unknown_anytype aren't *really* variadic.
6178 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6179 FDecl->isExternC()) {
6180 for (Expr *A : Args.slice(N: ArgIx)) {
6181 QualType paramType; // ignored
6182 ExprResult arg = checkUnknownAnyArg(callLoc: CallLoc, result: A, paramType);
6183 Invalid |= arg.isInvalid();
6184 AllArgs.push_back(Elt: arg.get());
6185 }
6186
6187 // Otherwise do argument promotion, (C99 6.5.2.2p7).
6188 } else {
6189 for (Expr *A : Args.slice(N: ArgIx)) {
6190 ExprResult Arg = DefaultVariadicArgumentPromotion(E: A, CT: CallType, FDecl);
6191 Invalid |= Arg.isInvalid();
6192 AllArgs.push_back(Elt: Arg.get());
6193 }
6194 }
6195
6196 // Check for array bounds violations.
6197 for (Expr *A : Args.slice(N: ArgIx))
6198 CheckArrayAccess(E: A);
6199 }
6200 return Invalid;
6201}
6202
6203static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6204 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6205 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6206 TL = DTL.getOriginalLoc();
6207 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6208 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6209 << ATL.getLocalSourceRange();
6210}
6211
6212void
6213Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6214 ParmVarDecl *Param,
6215 const Expr *ArgExpr) {
6216 // Static array parameters are not supported in C++.
6217 if (!Param || getLangOpts().CPlusPlus)
6218 return;
6219
6220 QualType OrigTy = Param->getOriginalType();
6221
6222 const ArrayType *AT = Context.getAsArrayType(T: OrigTy);
6223 if (!AT || AT->getSizeModifier() != ArraySizeModifier::Static)
6224 return;
6225
6226 if (ArgExpr->isNullPointerConstant(Ctx&: Context,
6227 NPC: Expr::NPC_NeverValueDependent)) {
6228 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6229 DiagnoseCalleeStaticArrayParam(S&: *this, PVD: Param);
6230 return;
6231 }
6232
6233 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Val: AT);
6234 if (!CAT)
6235 return;
6236
6237 const ConstantArrayType *ArgCAT =
6238 Context.getAsConstantArrayType(T: ArgExpr->IgnoreParenCasts()->getType());
6239 if (!ArgCAT)
6240 return;
6241
6242 if (getASTContext().hasSameUnqualifiedType(T1: CAT->getElementType(),
6243 T2: ArgCAT->getElementType())) {
6244 if (ArgCAT->getSize().ult(RHS: CAT->getSize())) {
6245 Diag(CallLoc, diag::warn_static_array_too_small)
6246 << ArgExpr->getSourceRange() << (unsigned)ArgCAT->getZExtSize()
6247 << (unsigned)CAT->getZExtSize() << 0;
6248 DiagnoseCalleeStaticArrayParam(S&: *this, PVD: Param);
6249 }
6250 return;
6251 }
6252
6253 std::optional<CharUnits> ArgSize =
6254 getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6255 std::optional<CharUnits> ParmSize =
6256 getASTContext().getTypeSizeInCharsIfKnown(CAT);
6257 if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6258 Diag(CallLoc, diag::warn_static_array_too_small)
6259 << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6260 << (unsigned)ParmSize->getQuantity() << 1;
6261 DiagnoseCalleeStaticArrayParam(S&: *this, PVD: Param);
6262 }
6263}
6264
6265/// Given a function expression of unknown-any type, try to rebuild it
6266/// to have a function type.
6267static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6268
6269/// Is the given type a placeholder that we need to lower out
6270/// immediately during argument processing?
6271static bool isPlaceholderToRemoveAsArg(QualType type) {
6272 // Placeholders are never sugared.
6273 const BuiltinType *placeholder = dyn_cast<BuiltinType>(Val&: type);
6274 if (!placeholder) return false;
6275
6276 switch (placeholder->getKind()) {
6277 // Ignore all the non-placeholder types.
6278#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6279 case BuiltinType::Id:
6280#include "clang/Basic/OpenCLImageTypes.def"
6281#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6282 case BuiltinType::Id:
6283#include "clang/Basic/OpenCLExtensionTypes.def"
6284 // In practice we'll never use this, since all SVE types are sugared
6285 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6286#define SVE_TYPE(Name, Id, SingletonId) \
6287 case BuiltinType::Id:
6288#include "clang/Basic/AArch64ACLETypes.def"
6289#define PPC_VECTOR_TYPE(Name, Id, Size) \
6290 case BuiltinType::Id:
6291#include "clang/Basic/PPCTypes.def"
6292#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6293#include "clang/Basic/RISCVVTypes.def"
6294#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6295#include "clang/Basic/WebAssemblyReferenceTypes.def"
6296#define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id:
6297#include "clang/Basic/AMDGPUTypes.def"
6298#define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6299#include "clang/Basic/HLSLIntangibleTypes.def"
6300#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6301#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6302#include "clang/AST/BuiltinTypes.def"
6303 return false;
6304
6305 case BuiltinType::UnresolvedTemplate:
6306 // We cannot lower out overload sets; they might validly be resolved
6307 // by the call machinery.
6308 case BuiltinType::Overload:
6309 return false;
6310
6311 // Unbridged casts in ARC can be handled in some call positions and
6312 // should be left in place.
6313 case BuiltinType::ARCUnbridgedCast:
6314 return false;
6315
6316 // Pseudo-objects should be converted as soon as possible.
6317 case BuiltinType::PseudoObject:
6318 return true;
6319
6320 // The debugger mode could theoretically but currently does not try
6321 // to resolve unknown-typed arguments based on known parameter types.
6322 case BuiltinType::UnknownAny:
6323 return true;
6324
6325 // These are always invalid as call arguments and should be reported.
6326 case BuiltinType::BoundMember:
6327 case BuiltinType::BuiltinFn:
6328 case BuiltinType::IncompleteMatrixIdx:
6329 case BuiltinType::ArraySection:
6330 case BuiltinType::OMPArrayShaping:
6331 case BuiltinType::OMPIterator:
6332 return true;
6333
6334 }
6335 llvm_unreachable("bad builtin type kind");
6336}
6337
6338bool Sema::CheckArgsForPlaceholders(MultiExprArg args) {
6339 // Apply this processing to all the arguments at once instead of
6340 // dying at the first failure.
6341 bool hasInvalid = false;
6342 for (size_t i = 0, e = args.size(); i != e; i++) {
6343 if (isPlaceholderToRemoveAsArg(type: args[i]->getType())) {
6344 ExprResult result = CheckPlaceholderExpr(E: args[i]);
6345 if (result.isInvalid()) hasInvalid = true;
6346 else args[i] = result.get();
6347 }
6348 }
6349 return hasInvalid;
6350}
6351
6352/// If a builtin function has a pointer argument with no explicit address
6353/// space, then it should be able to accept a pointer to any address
6354/// space as input. In order to do this, we need to replace the
6355/// standard builtin declaration with one that uses the same address space
6356/// as the call.
6357///
6358/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6359/// it does not contain any pointer arguments without
6360/// an address space qualifer. Otherwise the rewritten
6361/// FunctionDecl is returned.
6362/// TODO: Handle pointer return types.
6363static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6364 FunctionDecl *FDecl,
6365 MultiExprArg ArgExprs) {
6366
6367 QualType DeclType = FDecl->getType();
6368 const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Val&: DeclType);
6369
6370 if (!Context.BuiltinInfo.hasPtrArgsOrResult(ID: FDecl->getBuiltinID()) || !FT ||
6371 ArgExprs.size() < FT->getNumParams())
6372 return nullptr;
6373
6374 bool NeedsNewDecl = false;
6375 unsigned i = 0;
6376 SmallVector<QualType, 8> OverloadParams;
6377
6378 for (QualType ParamType : FT->param_types()) {
6379
6380 // Convert array arguments to pointer to simplify type lookup.
6381 ExprResult ArgRes =
6382 Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6383 if (ArgRes.isInvalid())
6384 return nullptr;
6385 Expr *Arg = ArgRes.get();
6386 QualType ArgType = Arg->getType();
6387 if (!ParamType->isPointerType() ||
6388 ParamType->getPointeeType().hasAddressSpace() ||
6389 !ArgType->isPointerType() ||
6390 !ArgType->getPointeeType().hasAddressSpace() ||
6391 isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) {
6392 OverloadParams.push_back(ParamType);
6393 continue;
6394 }
6395
6396 QualType PointeeType = ParamType->getPointeeType();
6397 NeedsNewDecl = true;
6398 LangAS AS = ArgType->getPointeeType().getAddressSpace();
6399
6400 PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6401 OverloadParams.push_back(Context.getPointerType(PointeeType));
6402 }
6403
6404 if (!NeedsNewDecl)
6405 return nullptr;
6406
6407 FunctionProtoType::ExtProtoInfo EPI;
6408 EPI.Variadic = FT->isVariadic();
6409 QualType OverloadTy = Context.getFunctionType(ResultTy: FT->getReturnType(),
6410 Args: OverloadParams, EPI);
6411 DeclContext *Parent = FDecl->getParent();
6412 FunctionDecl *OverloadDecl = FunctionDecl::Create(
6413 Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6414 FDecl->getIdentifier(), OverloadTy,
6415 /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6416 false,
6417 /*hasPrototype=*/true);
6418 SmallVector<ParmVarDecl*, 16> Params;
6419 FT = cast<FunctionProtoType>(Val&: OverloadTy);
6420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6421 QualType ParamType = FT->getParamType(i);
6422 ParmVarDecl *Parm =
6423 ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6424 SourceLocation(), nullptr, ParamType,
6425 /*TInfo=*/nullptr, SC_None, nullptr);
6426 Parm->setScopeInfo(scopeDepth: 0, parameterIndex: i);
6427 Params.push_back(Elt: Parm);
6428 }
6429 OverloadDecl->setParams(Params);
6430 // We cannot merge host/device attributes of redeclarations. They have to
6431 // be consistent when created.
6432 if (Sema->LangOpts.CUDA) {
6433 if (FDecl->hasAttr<CUDAHostAttr>())
6434 OverloadDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
6435 if (FDecl->hasAttr<CUDADeviceAttr>())
6436 OverloadDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
6437 }
6438 Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6439 return OverloadDecl;
6440}
6441
6442static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6443 FunctionDecl *Callee,
6444 MultiExprArg ArgExprs) {
6445 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6446 // similar attributes) really don't like it when functions are called with an
6447 // invalid number of args.
6448 if (S.TooManyArguments(NumParams: Callee->getNumParams(), NumArgs: ArgExprs.size(),
6449 /*PartialOverloading=*/false) &&
6450 !Callee->isVariadic())
6451 return;
6452 if (Callee->getMinRequiredArguments() > ArgExprs.size())
6453 return;
6454
6455 if (const EnableIfAttr *Attr =
6456 S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6457 S.Diag(Fn->getBeginLoc(),
6458 isa<CXXMethodDecl>(Callee)
6459 ? diag::err_ovl_no_viable_member_function_in_call
6460 : diag::err_ovl_no_viable_function_in_call)
6461 << Callee << Callee->getSourceRange();
6462 S.Diag(Callee->getLocation(),
6463 diag::note_ovl_candidate_disabled_by_function_cond_attr)
6464 << Attr->getCond()->getSourceRange() << Attr->getMessage();
6465 return;
6466 }
6467}
6468
6469static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6470 const UnresolvedMemberExpr *const UME, Sema &S) {
6471
6472 const auto GetFunctionLevelDCIfCXXClass =
6473 [](Sema &S) -> const CXXRecordDecl * {
6474 const DeclContext *const DC = S.getFunctionLevelDeclContext();
6475 if (!DC || !DC->getParent())
6476 return nullptr;
6477
6478 // If the call to some member function was made from within a member
6479 // function body 'M' return return 'M's parent.
6480 if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: DC))
6481 return MD->getParent()->getCanonicalDecl();
6482 // else the call was made from within a default member initializer of a
6483 // class, so return the class.
6484 if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: DC))
6485 return RD->getCanonicalDecl();
6486 return nullptr;
6487 };
6488 // If our DeclContext is neither a member function nor a class (in the
6489 // case of a lambda in a default member initializer), we can't have an
6490 // enclosing 'this'.
6491
6492 const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6493 if (!CurParentClass)
6494 return false;
6495
6496 // The naming class for implicit member functions call is the class in which
6497 // name lookup starts.
6498 const CXXRecordDecl *const NamingClass =
6499 UME->getNamingClass()->getCanonicalDecl();
6500 assert(NamingClass && "Must have naming class even for implicit access");
6501
6502 // If the unresolved member functions were found in a 'naming class' that is
6503 // related (either the same or derived from) to the class that contains the
6504 // member function that itself contained the implicit member access.
6505
6506 return CurParentClass == NamingClass ||
6507 CurParentClass->isDerivedFrom(Base: NamingClass);
6508}
6509
6510static void
6511tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6512 Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6513
6514 if (!UME)
6515 return;
6516
6517 LambdaScopeInfo *const CurLSI = S.getCurLambda();
6518 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6519 // already been captured, or if this is an implicit member function call (if
6520 // it isn't, an attempt to capture 'this' should already have been made).
6521 if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6522 !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6523 return;
6524
6525 // Check if the naming class in which the unresolved members were found is
6526 // related (same as or is a base of) to the enclosing class.
6527
6528 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6529 return;
6530
6531
6532 DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6533 // If the enclosing function is not dependent, then this lambda is
6534 // capture ready, so if we can capture this, do so.
6535 if (!EnclosingFunctionCtx->isDependentContext()) {
6536 // If the current lambda and all enclosing lambdas can capture 'this' -
6537 // then go ahead and capture 'this' (since our unresolved overload set
6538 // contains at least one non-static member function).
6539 if (!S.CheckCXXThisCapture(Loc: CallLoc, /*Explcit*/ Explicit: false, /*Diagnose*/ BuildAndDiagnose: false))
6540 S.CheckCXXThisCapture(Loc: CallLoc);
6541 } else if (S.CurContext->isDependentContext()) {
6542 // ... since this is an implicit member reference, that might potentially
6543 // involve a 'this' capture, mark 'this' for potential capture in
6544 // enclosing lambdas.
6545 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6546 CurLSI->addPotentialThisCapture(Loc: CallLoc);
6547 }
6548}
6549
6550// Once a call is fully resolved, warn for unqualified calls to specific
6551// C++ standard functions, like move and forward.
6552static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S,
6553 const CallExpr *Call) {
6554 // We are only checking unary move and forward so exit early here.
6555 if (Call->getNumArgs() != 1)
6556 return;
6557
6558 const Expr *E = Call->getCallee()->IgnoreParenImpCasts();
6559 if (!E || isa<UnresolvedLookupExpr>(Val: E))
6560 return;
6561 const DeclRefExpr *DRE = dyn_cast_if_present<DeclRefExpr>(Val: E);
6562 if (!DRE || !DRE->getLocation().isValid())
6563 return;
6564
6565 if (DRE->getQualifier())
6566 return;
6567
6568 const FunctionDecl *FD = Call->getDirectCallee();
6569 if (!FD)
6570 return;
6571
6572 // Only warn for some functions deemed more frequent or problematic.
6573 unsigned BuiltinID = FD->getBuiltinID();
6574 if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
6575 return;
6576
6577 S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
6578 << FD->getQualifiedNameAsString()
6579 << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
6580}
6581
6582ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6583 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6584 Expr *ExecConfig) {
6585 ExprResult Call =
6586 BuildCallExpr(S: Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6587 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6588 if (Call.isInvalid())
6589 return Call;
6590
6591 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6592 // language modes.
6593 if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(Val: Fn);
6594 ULE && ULE->hasExplicitTemplateArgs() &&
6595 ULE->decls_begin() == ULE->decls_end()) {
6596 DiagCompat(Fn->getExprLoc(), diag_compat::adl_only_template_id)
6597 << ULE->getName();
6598 }
6599
6600 if (LangOpts.OpenMP)
6601 Call = OpenMP().ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6602 ExecConfig);
6603 if (LangOpts.CPlusPlus) {
6604 if (const auto *CE = dyn_cast<CallExpr>(Val: Call.get()))
6605 DiagnosedUnqualifiedCallsToStdFunctions(S&: *this, Call: CE);
6606
6607 // If we previously found that the id-expression of this call refers to a
6608 // consteval function but the call is dependent, we should not treat is an
6609 // an invalid immediate call.
6610 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: Fn->IgnoreParens());
6611 DRE && Call.get()->isValueDependent()) {
6612 currentEvaluationContext().ReferenceToConsteval.erase(Ptr: DRE);
6613 }
6614 }
6615 return Call;
6616}
6617
6618// Any type that could be used to form a callable expression
6619static bool MayBeFunctionType(const ASTContext &Context, const Expr *E) {
6620 QualType T = E->getType();
6621 if (T->isDependentType())
6622 return true;
6623
6624 if (T == Context.BoundMemberTy || T == Context.UnknownAnyTy ||
6625 T == Context.BuiltinFnTy || T == Context.OverloadTy ||
6626 T->isFunctionType() || T->isFunctionReferenceType() ||
6627 T->isMemberFunctionPointerType() || T->isFunctionPointerType() ||
6628 T->isBlockPointerType() || T->isRecordType())
6629 return true;
6630
6631 return isa<CallExpr, DeclRefExpr, MemberExpr, CXXPseudoDestructorExpr,
6632 OverloadExpr, UnresolvedMemberExpr, UnaryOperator>(Val: E);
6633}
6634
6635ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6636 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6637 Expr *ExecConfig, bool IsExecConfig,
6638 bool AllowRecovery) {
6639 // Since this might be a postfix expression, get rid of ParenListExprs.
6640 ExprResult Result = MaybeConvertParenListExprToParenExpr(S: Scope, ME: Fn);
6641 if (Result.isInvalid()) return ExprError();
6642 Fn = Result.get();
6643
6644 if (CheckArgsForPlaceholders(args: ArgExprs))
6645 return ExprError();
6646
6647 // The result of __builtin_counted_by_ref cannot be used as a function
6648 // argument. It allows leaking and modification of bounds safety information.
6649 for (const Expr *Arg : ArgExprs)
6650 if (CheckInvalidBuiltinCountedByRef(E: Arg,
6651 K: BuiltinCountedByRefKind::FunctionArg))
6652 return ExprError();
6653
6654 if (getLangOpts().CPlusPlus) {
6655 // If this is a pseudo-destructor expression, build the call immediately.
6656 if (isa<CXXPseudoDestructorExpr>(Val: Fn)) {
6657 if (!ArgExprs.empty()) {
6658 // Pseudo-destructor calls should not have any arguments.
6659 Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6660 << FixItHint::CreateRemoval(
6661 SourceRange(ArgExprs.front()->getBeginLoc(),
6662 ArgExprs.back()->getEndLoc()));
6663 }
6664
6665 return CallExpr::Create(Ctx: Context, Fn, /*Args=*/{}, Ty: Context.VoidTy,
6666 VK: VK_PRValue, RParenLoc, FPFeatures: CurFPFeatureOverrides());
6667 }
6668 if (Fn->getType() == Context.PseudoObjectTy) {
6669 ExprResult result = CheckPlaceholderExpr(E: Fn);
6670 if (result.isInvalid()) return ExprError();
6671 Fn = result.get();
6672 }
6673
6674 // Determine whether this is a dependent call inside a C++ template,
6675 // in which case we won't do any semantic analysis now.
6676 if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(Exprs: ArgExprs)) {
6677 if (ExecConfig) {
6678 return CUDAKernelCallExpr::Create(Ctx: Context, Fn,
6679 Config: cast<CallExpr>(Val: ExecConfig), Args: ArgExprs,
6680 Ty: Context.DependentTy, VK: VK_PRValue,
6681 RP: RParenLoc, FPFeatures: CurFPFeatureOverrides());
6682 } else {
6683
6684 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6685 *this, dyn_cast<UnresolvedMemberExpr>(Val: Fn->IgnoreParens()),
6686 Fn->getBeginLoc());
6687
6688 // If the type of the function itself is not dependent
6689 // check that it is a reasonable as a function, as type deduction
6690 // later assume the CallExpr has a sensible TYPE.
6691 if (!MayBeFunctionType(Context, Fn))
6692 return ExprError(
6693 Diag(LParenLoc, diag::err_typecheck_call_not_function)
6694 << Fn->getType() << Fn->getSourceRange());
6695
6696 return CallExpr::Create(Ctx: Context, Fn, Args: ArgExprs, Ty: Context.DependentTy,
6697 VK: VK_PRValue, RParenLoc, FPFeatures: CurFPFeatureOverrides());
6698 }
6699 }
6700
6701 // Determine whether this is a call to an object (C++ [over.call.object]).
6702 if (Fn->getType()->isRecordType())
6703 return BuildCallToObjectOfClassType(S: Scope, Object: Fn, LParenLoc, Args: ArgExprs,
6704 RParenLoc);
6705
6706 if (Fn->getType() == Context.UnknownAnyTy) {
6707 ExprResult result = rebuildUnknownAnyFunction(S&: *this, fn: Fn);
6708 if (result.isInvalid()) return ExprError();
6709 Fn = result.get();
6710 }
6711
6712 if (Fn->getType() == Context.BoundMemberTy) {
6713 return BuildCallToMemberFunction(S: Scope, MemExpr: Fn, LParenLoc, Args: ArgExprs,
6714 RParenLoc, ExecConfig, IsExecConfig,
6715 AllowRecovery);
6716 }
6717 }
6718
6719 // Check for overloaded calls. This can happen even in C due to extensions.
6720 if (Fn->getType() == Context.OverloadTy) {
6721 OverloadExpr::FindResult find = OverloadExpr::find(E: Fn);
6722
6723 // We aren't supposed to apply this logic if there's an '&' involved.
6724 if (!find.HasFormOfMemberPointer || find.IsAddressOfOperandWithParen) {
6725 if (Expr::hasAnyTypeDependentArguments(Exprs: ArgExprs))
6726 return CallExpr::Create(Ctx: Context, Fn, Args: ArgExprs, Ty: Context.DependentTy,
6727 VK: VK_PRValue, RParenLoc, FPFeatures: CurFPFeatureOverrides());
6728 OverloadExpr *ovl = find.Expression;
6729 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Val: ovl))
6730 return BuildOverloadedCallExpr(
6731 S: Scope, Fn, ULE, LParenLoc, Args: ArgExprs, RParenLoc, ExecConfig,
6732 /*AllowTypoCorrection=*/true, CalleesAddressIsTaken: find.IsAddressOfOperand);
6733 return BuildCallToMemberFunction(S: Scope, MemExpr: Fn, LParenLoc, Args: ArgExprs,
6734 RParenLoc, ExecConfig, IsExecConfig,
6735 AllowRecovery);
6736 }
6737 }
6738
6739 // If we're directly calling a function, get the appropriate declaration.
6740 if (Fn->getType() == Context.UnknownAnyTy) {
6741 ExprResult result = rebuildUnknownAnyFunction(S&: *this, fn: Fn);
6742 if (result.isInvalid()) return ExprError();
6743 Fn = result.get();
6744 }
6745
6746 Expr *NakedFn = Fn->IgnoreParens();
6747
6748 bool CallingNDeclIndirectly = false;
6749 NamedDecl *NDecl = nullptr;
6750 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: NakedFn)) {
6751 if (UnOp->getOpcode() == UO_AddrOf) {
6752 CallingNDeclIndirectly = true;
6753 NakedFn = UnOp->getSubExpr()->IgnoreParens();
6754 }
6755 }
6756
6757 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: NakedFn)) {
6758 NDecl = DRE->getDecl();
6759
6760 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Val: NDecl);
6761 if (FDecl && FDecl->getBuiltinID()) {
6762 // Rewrite the function decl for this builtin by replacing parameters
6763 // with no explicit address space with the address space of the arguments
6764 // in ArgExprs.
6765 if ((FDecl =
6766 rewriteBuiltinFunctionDecl(Sema: this, Context, FDecl, ArgExprs))) {
6767 NDecl = FDecl;
6768 Fn = DeclRefExpr::Create(
6769 Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6770 SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6771 nullptr, DRE->isNonOdrUse());
6772 }
6773 }
6774 } else if (auto *ME = dyn_cast<MemberExpr>(Val: NakedFn))
6775 NDecl = ME->getMemberDecl();
6776
6777 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: NDecl)) {
6778 if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6779 Function: FD, /*Complain=*/true, Loc: Fn->getBeginLoc()))
6780 return ExprError();
6781
6782 checkDirectCallValidity(S&: *this, Fn, Callee: FD, ArgExprs);
6783
6784 // If this expression is a call to a builtin function in HIP device
6785 // compilation, allow a pointer-type argument to default address space to be
6786 // passed as a pointer-type parameter to a non-default address space.
6787 // If Arg is declared in the default address space and Param is declared
6788 // in a non-default address space, perform an implicit address space cast to
6789 // the parameter type.
6790 if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
6791 FD->getBuiltinID()) {
6792 for (unsigned Idx = 0; Idx < ArgExprs.size() && Idx < FD->param_size();
6793 ++Idx) {
6794 ParmVarDecl *Param = FD->getParamDecl(i: Idx);
6795 if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
6796 !ArgExprs[Idx]->getType()->isPointerType())
6797 continue;
6798
6799 auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
6800 auto ArgTy = ArgExprs[Idx]->getType();
6801 auto ArgPtTy = ArgTy->getPointeeType();
6802 auto ArgAS = ArgPtTy.getAddressSpace();
6803
6804 // Add address space cast if target address spaces are different
6805 bool NeedImplicitASC =
6806 ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling.
6807 ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS
6808 // or from specific AS which has target AS matching that of Param.
6809 getASTContext().getTargetAddressSpace(AS: ArgAS) == getASTContext().getTargetAddressSpace(AS: ParamAS));
6810 if (!NeedImplicitASC)
6811 continue;
6812
6813 // First, ensure that the Arg is an RValue.
6814 if (ArgExprs[Idx]->isGLValue()) {
6815 ArgExprs[Idx] = ImplicitCastExpr::Create(
6816 Context, T: ArgExprs[Idx]->getType(), Kind: CK_NoOp, Operand: ArgExprs[Idx],
6817 BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride());
6818 }
6819
6820 // Construct a new arg type with address space of Param
6821 Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
6822 ArgPtQuals.setAddressSpace(ParamAS);
6823 auto NewArgPtTy =
6824 Context.getQualifiedType(T: ArgPtTy.getUnqualifiedType(), Qs: ArgPtQuals);
6825 auto NewArgTy =
6826 Context.getQualifiedType(T: Context.getPointerType(T: NewArgPtTy),
6827 Qs: ArgTy.getQualifiers());
6828
6829 // Finally perform an implicit address space cast
6830 ArgExprs[Idx] = ImpCastExprToType(E: ArgExprs[Idx], Type: NewArgTy,
6831 CK: CK_AddressSpaceConversion)
6832 .get();
6833 }
6834 }
6835 }
6836
6837 if (Context.isDependenceAllowed() &&
6838 (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(Exprs: ArgExprs))) {
6839 assert(!getLangOpts().CPlusPlus);
6840 assert((Fn->containsErrors() ||
6841 llvm::any_of(ArgExprs,
6842 [](clang::Expr *E) { return E->containsErrors(); })) &&
6843 "should only occur in error-recovery path.");
6844 return CallExpr::Create(Ctx: Context, Fn, Args: ArgExprs, Ty: Context.DependentTy,
6845 VK: VK_PRValue, RParenLoc, FPFeatures: CurFPFeatureOverrides());
6846 }
6847 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Arg: ArgExprs, RParenLoc,
6848 Config: ExecConfig, IsExecConfig);
6849}
6850
6851Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
6852 MultiExprArg CallArgs) {
6853 std::string Name = Context.BuiltinInfo.getName(ID: Id);
6854 LookupResult R(*this, &Context.Idents.get(Name), Loc,
6855 Sema::LookupOrdinaryName);
6856 LookupName(R, S: TUScope, /*AllowBuiltinCreation=*/true);
6857
6858 auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
6859 assert(BuiltInDecl && "failed to find builtin declaration");
6860
6861 ExprResult DeclRef =
6862 BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
6863 assert(DeclRef.isUsable() && "Builtin reference cannot fail");
6864
6865 ExprResult Call =
6866 BuildCallExpr(/*Scope=*/nullptr, Fn: DeclRef.get(), LParenLoc: Loc, ArgExprs: CallArgs, RParenLoc: Loc);
6867
6868 assert(!Call.isInvalid() && "Call to builtin cannot fail!");
6869 return Call.get();
6870}
6871
6872ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6873 SourceLocation BuiltinLoc,
6874 SourceLocation RParenLoc) {
6875 QualType DstTy = GetTypeFromParser(Ty: ParsedDestTy);
6876 return BuildAsTypeExpr(E, DestTy: DstTy, BuiltinLoc, RParenLoc);
6877}
6878
6879ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6880 SourceLocation BuiltinLoc,
6881 SourceLocation RParenLoc) {
6882 ExprValueKind VK = VK_PRValue;
6883 ExprObjectKind OK = OK_Ordinary;
6884 QualType SrcTy = E->getType();
6885 if (!SrcTy->isDependentType() &&
6886 Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
6887 return ExprError(
6888 Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
6889 << DestTy << SrcTy << E->getSourceRange());
6890 return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6891}
6892
6893ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6894 SourceLocation BuiltinLoc,
6895 SourceLocation RParenLoc) {
6896 TypeSourceInfo *TInfo;
6897 GetTypeFromParser(Ty: ParsedDestTy, TInfo: &TInfo);
6898 return ConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6899}
6900
6901ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6902 SourceLocation LParenLoc,
6903 ArrayRef<Expr *> Args,
6904 SourceLocation RParenLoc, Expr *Config,
6905 bool IsExecConfig, ADLCallKind UsesADL) {
6906 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(Val: NDecl);
6907 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6908
6909 // Functions with 'interrupt' attribute cannot be called directly.
6910 if (FDecl) {
6911 if (FDecl->hasAttr<AnyX86InterruptAttr>()) {
6912 Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6913 return ExprError();
6914 }
6915 if (FDecl->hasAttr<ARMInterruptAttr>()) {
6916 Diag(Fn->getExprLoc(), diag::err_arm_interrupt_called);
6917 return ExprError();
6918 }
6919 }
6920
6921 // X86 interrupt handlers may only call routines with attribute
6922 // no_caller_saved_registers since there is no efficient way to
6923 // save and restore the non-GPR state.
6924 if (auto *Caller = getCurFunctionDecl()) {
6925 if (Caller->hasAttr<AnyX86InterruptAttr>() ||
6926 Caller->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) {
6927 const TargetInfo &TI = Context.getTargetInfo();
6928 bool HasNonGPRRegisters =
6929 TI.hasFeature(Feature: "sse") || TI.hasFeature(Feature: "x87") || TI.hasFeature(Feature: "mmx");
6930 if (HasNonGPRRegisters &&
6931 (!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())) {
6932 Diag(Fn->getExprLoc(), diag::warn_anyx86_excessive_regsave)
6933 << (Caller->hasAttr<AnyX86InterruptAttr>() ? 0 : 1);
6934 if (FDecl)
6935 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6936 }
6937 }
6938 }
6939
6940 // Promote the function operand.
6941 // We special-case function promotion here because we only allow promoting
6942 // builtin functions to function pointers in the callee of a call.
6943 ExprResult Result;
6944 QualType ResultTy;
6945 if (BuiltinID &&
6946 Fn->getType()->isSpecificBuiltinType(K: BuiltinType::BuiltinFn)) {
6947 // Extract the return type from the (builtin) function pointer type.
6948 // FIXME Several builtins still have setType in
6949 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6950 // Builtins.td to ensure they are correct before removing setType calls.
6951 QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6952 Result = ImpCastExprToType(E: Fn, Type: FnPtrTy, CK: CK_BuiltinFnToFnPtr).get();
6953 ResultTy = FDecl->getCallResultType();
6954 } else {
6955 Result = CallExprUnaryConversions(E: Fn);
6956 ResultTy = Context.BoolTy;
6957 }
6958 if (Result.isInvalid())
6959 return ExprError();
6960 Fn = Result.get();
6961
6962 // Check for a valid function type, but only if it is not a builtin which
6963 // requires custom type checking. These will be handled by
6964 // CheckBuiltinFunctionCall below just after creation of the call expression.
6965 const FunctionType *FuncT = nullptr;
6966 if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(ID: BuiltinID)) {
6967 retry:
6968 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6969 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6970 // have type pointer to function".
6971 FuncT = PT->getPointeeType()->getAs<FunctionType>();
6972 if (!FuncT)
6973 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6974 << Fn->getType() << Fn->getSourceRange());
6975 } else if (const BlockPointerType *BPT =
6976 Fn->getType()->getAs<BlockPointerType>()) {
6977 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6978 } else {
6979 // Handle calls to expressions of unknown-any type.
6980 if (Fn->getType() == Context.UnknownAnyTy) {
6981 ExprResult rewrite = rebuildUnknownAnyFunction(S&: *this, fn: Fn);
6982 if (rewrite.isInvalid())
6983 return ExprError();
6984 Fn = rewrite.get();
6985 goto retry;
6986 }
6987
6988 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6989 << Fn->getType() << Fn->getSourceRange());
6990 }
6991 }
6992
6993 // Get the number of parameters in the function prototype, if any.
6994 // We will allocate space for max(Args.size(), NumParams) arguments
6995 // in the call expression.
6996 const auto *Proto = dyn_cast_or_null<FunctionProtoType>(Val: FuncT);
6997 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
6998
6999 CallExpr *TheCall;
7000 if (Config) {
7001 assert(UsesADL == ADLCallKind::NotADL &&
7002 "CUDAKernelCallExpr should not use ADL");
7003 TheCall = CUDAKernelCallExpr::Create(Ctx: Context, Fn, Config: cast<CallExpr>(Val: Config),
7004 Args, Ty: ResultTy, VK: VK_PRValue, RP: RParenLoc,
7005 FPFeatures: CurFPFeatureOverrides(), MinNumArgs: NumParams);
7006 } else {
7007 TheCall =
7008 CallExpr::Create(Ctx: Context, Fn, Args, Ty: ResultTy, VK: VK_PRValue, RParenLoc,
7009 FPFeatures: CurFPFeatureOverrides(), MinNumArgs: NumParams, UsesADL);
7010 }
7011
7012 if (!Context.isDependenceAllowed()) {
7013 // Forget about the nulled arguments since typo correction
7014 // do not handle them well.
7015 TheCall->shrinkNumArgs(NewNumArgs: Args.size());
7016 // C cannot always handle TypoExpr nodes in builtin calls and direct
7017 // function calls as their argument checking don't necessarily handle
7018 // dependent types properly, so make sure any TypoExprs have been
7019 // dealt with.
7020 ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
7021 if (!Result.isUsable()) return ExprError();
7022 CallExpr *TheOldCall = TheCall;
7023 TheCall = dyn_cast<CallExpr>(Val: Result.get());
7024 bool CorrectedTypos = TheCall != TheOldCall;
7025 if (!TheCall) return Result;
7026 Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
7027
7028 // A new call expression node was created if some typos were corrected.
7029 // However it may not have been constructed with enough storage. In this
7030 // case, rebuild the node with enough storage. The waste of space is
7031 // immaterial since this only happens when some typos were corrected.
7032 if (CorrectedTypos && Args.size() < NumParams) {
7033 if (Config)
7034 TheCall = CUDAKernelCallExpr::Create(
7035 Ctx: Context, Fn, Config: cast<CallExpr>(Val: Config), Args, Ty: ResultTy, VK: VK_PRValue,
7036 RP: RParenLoc, FPFeatures: CurFPFeatureOverrides(), MinNumArgs: NumParams);
7037 else
7038 TheCall =
7039 CallExpr::Create(Ctx: Context, Fn, Args, Ty: ResultTy, VK: VK_PRValue, RParenLoc,
7040 FPFeatures: CurFPFeatureOverrides(), MinNumArgs: NumParams, UsesADL);
7041 }
7042 // We can now handle the nulled arguments for the default arguments.
7043 TheCall->setNumArgsUnsafe(std::max<unsigned>(a: Args.size(), b: NumParams));
7044 }
7045
7046 // Bail out early if calling a builtin with custom type checking.
7047 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(ID: BuiltinID)) {
7048 ExprResult E = CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7049 if (!E.isInvalid() && Context.BuiltinInfo.isImmediate(ID: BuiltinID))
7050 E = CheckForImmediateInvocation(E, Decl: FDecl);
7051 return E;
7052 }
7053
7054 if (getLangOpts().CUDA) {
7055 if (Config) {
7056 // CUDA: Kernel calls must be to global functions
7057 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
7058 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
7059 << FDecl << Fn->getSourceRange());
7060
7061 // CUDA: Kernel function must have 'void' return type
7062 if (!FuncT->getReturnType()->isVoidType() &&
7063 !FuncT->getReturnType()->getAs<AutoType>() &&
7064 !FuncT->getReturnType()->isInstantiationDependentType())
7065 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
7066 << Fn->getType() << Fn->getSourceRange());
7067 } else {
7068 // CUDA: Calls to global functions must be configured
7069 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
7070 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
7071 << FDecl << Fn->getSourceRange());
7072 }
7073 }
7074
7075 // Check for a valid return type
7076 if (CheckCallReturnType(ReturnType: FuncT->getReturnType(), Loc: Fn->getBeginLoc(), CE: TheCall,
7077 FD: FDecl))
7078 return ExprError();
7079
7080 // We know the result type of the call, set it.
7081 TheCall->setType(FuncT->getCallResultType(Context));
7082 TheCall->setValueKind(Expr::getValueKindForType(T: FuncT->getReturnType()));
7083
7084 // WebAssembly tables can't be used as arguments.
7085 if (Context.getTargetInfo().getTriple().isWasm()) {
7086 for (const Expr *Arg : Args) {
7087 if (Arg && Arg->getType()->isWebAssemblyTableType()) {
7088 return ExprError(Diag(Arg->getExprLoc(),
7089 diag::err_wasm_table_as_function_parameter));
7090 }
7091 }
7092 }
7093
7094 if (Proto) {
7095 if (ConvertArgumentsForCall(Call: TheCall, Fn, FDecl, Proto, Args, RParenLoc,
7096 IsExecConfig))
7097 return ExprError();
7098 } else {
7099 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
7100
7101 if (FDecl) {
7102 // Check if we have too few/too many template arguments, based
7103 // on our knowledge of the function definition.
7104 const FunctionDecl *Def = nullptr;
7105 if (FDecl->hasBody(Definition&: Def) && Args.size() != Def->param_size()) {
7106 Proto = Def->getType()->getAs<FunctionProtoType>();
7107 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
7108 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
7109 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
7110 }
7111
7112 // If the function we're calling isn't a function prototype, but we have
7113 // a function prototype from a prior declaratiom, use that prototype.
7114 if (!FDecl->hasPrototype())
7115 Proto = FDecl->getType()->getAs<FunctionProtoType>();
7116 }
7117
7118 // If we still haven't found a prototype to use but there are arguments to
7119 // the call, diagnose this as calling a function without a prototype.
7120 // However, if we found a function declaration, check to see if
7121 // -Wdeprecated-non-prototype was disabled where the function was declared.
7122 // If so, we will silence the diagnostic here on the assumption that this
7123 // interface is intentional and the user knows what they're doing. We will
7124 // also silence the diagnostic if there is a function declaration but it
7125 // was implicitly defined (the user already gets diagnostics about the
7126 // creation of the implicit function declaration, so the additional warning
7127 // is not helpful).
7128 if (!Proto && !Args.empty() &&
7129 (!FDecl || (!FDecl->isImplicit() &&
7130 !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
7131 FDecl->getLocation()))))
7132 Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
7133 << (FDecl != nullptr) << FDecl;
7134
7135 // Promote the arguments (C99 6.5.2.2p6).
7136 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7137 Expr *Arg = Args[i];
7138
7139 if (Proto && i < Proto->getNumParams()) {
7140 InitializedEntity Entity = InitializedEntity::InitializeParameter(
7141 Context, Type: Proto->getParamType(i), Consumed: Proto->isParamConsumed(I: i));
7142 ExprResult ArgE =
7143 PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg);
7144 if (ArgE.isInvalid())
7145 return true;
7146
7147 Arg = ArgE.getAs<Expr>();
7148
7149 } else {
7150 ExprResult ArgE = DefaultArgumentPromotion(E: Arg);
7151
7152 if (ArgE.isInvalid())
7153 return true;
7154
7155 Arg = ArgE.getAs<Expr>();
7156 }
7157
7158 if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
7159 diag::err_call_incomplete_argument, Arg))
7160 return ExprError();
7161
7162 TheCall->setArg(Arg: i, ArgExpr: Arg);
7163 }
7164 TheCall->computeDependence();
7165 }
7166
7167 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7168 if (Method->isImplicitObjectMemberFunction())
7169 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7170 << Fn->getSourceRange() << 0);
7171
7172 // Check for sentinels
7173 if (NDecl)
7174 DiagnoseSentinelCalls(D: NDecl, Loc: LParenLoc, Args);
7175
7176 // Warn for unions passing across security boundary (CMSE).
7177 if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7178 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7179 if (const auto *RT =
7180 dyn_cast<RecordType>(Val: Args[i]->getType().getCanonicalType())) {
7181 if (RT->getDecl()->isOrContainsUnion())
7182 Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7183 << 0 << i;
7184 }
7185 }
7186 }
7187
7188 // Do special checking on direct calls to functions.
7189 if (FDecl) {
7190 if (CheckFunctionCall(FDecl, TheCall, Proto))
7191 return ExprError();
7192
7193 checkFortifiedBuiltinMemoryFunction(FD: FDecl, TheCall);
7194
7195 if (BuiltinID)
7196 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7197 } else if (NDecl) {
7198 if (CheckPointerCall(NDecl, TheCall, Proto))
7199 return ExprError();
7200 } else {
7201 if (CheckOtherCall(TheCall, Proto))
7202 return ExprError();
7203 }
7204
7205 return CheckForImmediateInvocation(E: MaybeBindToTemporary(TheCall), Decl: FDecl);
7206}
7207
7208ExprResult
7209Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7210 SourceLocation RParenLoc, Expr *InitExpr) {
7211 assert(Ty && "ActOnCompoundLiteral(): missing type");
7212 assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7213
7214 TypeSourceInfo *TInfo;
7215 QualType literalType = GetTypeFromParser(Ty, TInfo: &TInfo);
7216 if (!TInfo)
7217 TInfo = Context.getTrivialTypeSourceInfo(T: literalType);
7218
7219 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, LiteralExpr: InitExpr);
7220}
7221
7222ExprResult
7223Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7224 SourceLocation RParenLoc, Expr *LiteralExpr) {
7225 QualType literalType = TInfo->getType();
7226
7227 if (literalType->isArrayType()) {
7228 if (RequireCompleteSizedType(
7229 LParenLoc, Context.getBaseElementType(literalType),
7230 diag::err_array_incomplete_or_sizeless_type,
7231 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7232 return ExprError();
7233 if (literalType->isVariableArrayType()) {
7234 // C23 6.7.10p4: An entity of variable length array type shall not be
7235 // initialized except by an empty initializer.
7236 //
7237 // The C extension warnings are issued from ParseBraceInitializer() and
7238 // do not need to be issued here. However, we continue to issue an error
7239 // in the case there are initializers or we are compiling C++. We allow
7240 // use of VLAs in C++, but it's not clear we want to allow {} to zero
7241 // init a VLA in C++ in all cases (such as with non-trivial constructors).
7242 // FIXME: should we allow this construct in C++ when it makes sense to do
7243 // so?
7244 //
7245 // But: C99-C23 6.5.2.5 Compound literals constraint 1: The type name
7246 // shall specify an object type or an array of unknown size, but not a
7247 // variable length array type. This seems odd, as it allows 'int a[size] =
7248 // {}', but forbids 'int *a = (int[size]){}'. As this is what the standard
7249 // says, this is what's implemented here for C (except for the extension
7250 // that permits constant foldable size arrays)
7251
7252 auto diagID = LangOpts.CPlusPlus
7253 ? diag::err_variable_object_no_init
7254 : diag::err_compound_literal_with_vla_type;
7255 if (!tryToFixVariablyModifiedVarType(TInfo, T&: literalType, Loc: LParenLoc,
7256 FailedFoldDiagID: diagID))
7257 return ExprError();
7258 }
7259 } else if (!literalType->isDependentType() &&
7260 RequireCompleteType(LParenLoc, literalType,
7261 diag::err_typecheck_decl_incomplete_type,
7262 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7263 return ExprError();
7264
7265 InitializedEntity Entity
7266 = InitializedEntity::InitializeCompoundLiteralInit(TSI: TInfo);
7267 InitializationKind Kind
7268 = InitializationKind::CreateCStyleCast(StartLoc: LParenLoc,
7269 TypeRange: SourceRange(LParenLoc, RParenLoc),
7270 /*InitList=*/true);
7271 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7272 ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: LiteralExpr,
7273 ResultType: &literalType);
7274 if (Result.isInvalid())
7275 return ExprError();
7276 LiteralExpr = Result.get();
7277
7278 // We treat the compound literal as being at file scope if it's not in a
7279 // function or method body, or within the function's prototype scope. This
7280 // means the following compound literal is not at file scope:
7281 // void func(char *para[(int [1]){ 0 }[0]);
7282 const Scope *S = getCurScope();
7283 bool IsFileScope = !CurContext->isFunctionOrMethod() &&
7284 (!S || !S->isFunctionPrototypeScope());
7285
7286 // In C, compound literals are l-values for some reason.
7287 // For GCC compatibility, in C++, file-scope array compound literals with
7288 // constant initializers are also l-values, and compound literals are
7289 // otherwise prvalues.
7290 //
7291 // (GCC also treats C++ list-initialized file-scope array prvalues with
7292 // constant initializers as l-values, but that's non-conforming, so we don't
7293 // follow it there.)
7294 //
7295 // FIXME: It would be better to handle the lvalue cases as materializing and
7296 // lifetime-extending a temporary object, but our materialized temporaries
7297 // representation only supports lifetime extension from a variable, not "out
7298 // of thin air".
7299 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7300 // is bound to the result of applying array-to-pointer decay to the compound
7301 // literal.
7302 // FIXME: GCC supports compound literals of reference type, which should
7303 // obviously have a value kind derived from the kind of reference involved.
7304 ExprValueKind VK =
7305 (getLangOpts().CPlusPlus && !(IsFileScope && literalType->isArrayType()))
7306 ? VK_PRValue
7307 : VK_LValue;
7308
7309 // C99 6.5.2.5
7310 // "If the compound literal occurs outside the body of a function, the
7311 // initializer list shall consist of constant expressions."
7312 if (IsFileScope)
7313 if (auto ILE = dyn_cast<InitListExpr>(Val: LiteralExpr))
7314 for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7315 Expr *Init = ILE->getInit(Init: i);
7316 if (!Init->isTypeDependent() && !Init->isValueDependent() &&
7317 !Init->isConstantInitializer(Ctx&: Context, /*IsForRef=*/ForRef: false)) {
7318 Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7319 << Init->getSourceBitField();
7320 return ExprError();
7321 }
7322
7323 ILE->setInit(i, ConstantExpr::Create(Context, E: Init));
7324 }
7325
7326 auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, VK,
7327 LiteralExpr, IsFileScope);
7328 if (IsFileScope) {
7329 if (!LiteralExpr->isTypeDependent() &&
7330 !LiteralExpr->isValueDependent() &&
7331 !literalType->isDependentType()) // C99 6.5.2.5p3
7332 if (CheckForConstantInitializer(Init: LiteralExpr))
7333 return ExprError();
7334 } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7335 literalType.getAddressSpace() != LangAS::Default) {
7336 // Embedded-C extensions to C99 6.5.2.5:
7337 // "If the compound literal occurs inside the body of a function, the
7338 // type name shall not be qualified by an address-space qualifier."
7339 Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7340 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7341 return ExprError();
7342 }
7343
7344 if (!IsFileScope && !getLangOpts().CPlusPlus) {
7345 // Compound literals that have automatic storage duration are destroyed at
7346 // the end of the scope in C; in C++, they're just temporaries.
7347
7348 // Emit diagnostics if it is or contains a C union type that is non-trivial
7349 // to destruct.
7350 if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7351 checkNonTrivialCUnion(QT: E->getType(), Loc: E->getExprLoc(),
7352 UseContext: NonTrivialCUnionContext::CompoundLiteral,
7353 NonTrivialKind: NTCUK_Destruct);
7354
7355 // Diagnose jumps that enter or exit the lifetime of the compound literal.
7356 if (literalType.isDestructedType()) {
7357 Cleanup.setExprNeedsCleanups(true);
7358 ExprCleanupObjects.push_back(Elt: E);
7359 getCurFunction()->setHasBranchProtectedScope();
7360 }
7361 }
7362
7363 if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7364 E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7365 checkNonTrivialCUnionInInitializer(Init: E->getInitializer(),
7366 Loc: E->getInitializer()->getExprLoc());
7367
7368 return MaybeBindToTemporary(E);
7369}
7370
7371ExprResult
7372Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7373 SourceLocation RBraceLoc) {
7374 // Only produce each kind of designated initialization diagnostic once.
7375 SourceLocation FirstDesignator;
7376 bool DiagnosedArrayDesignator = false;
7377 bool DiagnosedNestedDesignator = false;
7378 bool DiagnosedMixedDesignator = false;
7379
7380 // Check that any designated initializers are syntactically valid in the
7381 // current language mode.
7382 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7383 if (auto *DIE = dyn_cast<DesignatedInitExpr>(Val: InitArgList[I])) {
7384 if (FirstDesignator.isInvalid())
7385 FirstDesignator = DIE->getBeginLoc();
7386
7387 if (!getLangOpts().CPlusPlus)
7388 break;
7389
7390 if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7391 DiagnosedNestedDesignator = true;
7392 Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7393 << DIE->getDesignatorsSourceRange();
7394 }
7395
7396 for (auto &Desig : DIE->designators()) {
7397 if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7398 DiagnosedArrayDesignator = true;
7399 Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7400 << Desig.getSourceRange();
7401 }
7402 }
7403
7404 if (!DiagnosedMixedDesignator &&
7405 !isa<DesignatedInitExpr>(Val: InitArgList[0])) {
7406 DiagnosedMixedDesignator = true;
7407 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7408 << DIE->getSourceRange();
7409 Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7410 << InitArgList[0]->getSourceRange();
7411 }
7412 } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7413 isa<DesignatedInitExpr>(Val: InitArgList[0])) {
7414 DiagnosedMixedDesignator = true;
7415 auto *DIE = cast<DesignatedInitExpr>(Val: InitArgList[0]);
7416 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7417 << DIE->getSourceRange();
7418 Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7419 << InitArgList[I]->getSourceRange();
7420 }
7421 }
7422
7423 if (FirstDesignator.isValid()) {
7424 // Only diagnose designated initiaization as a C++20 extension if we didn't
7425 // already diagnose use of (non-C++20) C99 designator syntax.
7426 if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7427 !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7428 Diag(FirstDesignator, getLangOpts().CPlusPlus20
7429 ? diag::warn_cxx17_compat_designated_init
7430 : diag::ext_cxx_designated_init);
7431 } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7432 Diag(FirstDesignator, diag::ext_designated_init);
7433 }
7434 }
7435
7436 return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7437}
7438
7439ExprResult
7440Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7441 SourceLocation RBraceLoc) {
7442 // Semantic analysis for initializers is done by ActOnDeclarator() and
7443 // CheckInitializer() - it requires knowledge of the object being initialized.
7444
7445 // Immediately handle non-overload placeholders. Overloads can be
7446 // resolved contextually, but everything else here can't.
7447 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7448 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7449 ExprResult result = CheckPlaceholderExpr(E: InitArgList[I]);
7450
7451 // Ignore failures; dropping the entire initializer list because
7452 // of one failure would be terrible for indexing/etc.
7453 if (result.isInvalid()) continue;
7454
7455 InitArgList[I] = result.get();
7456 }
7457 }
7458
7459 InitListExpr *E =
7460 new (Context) InitListExpr(Context, LBraceLoc, InitArgList, RBraceLoc);
7461 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7462 return E;
7463}
7464
7465void Sema::maybeExtendBlockObject(ExprResult &E) {
7466 assert(E.get()->getType()->isBlockPointerType());
7467 assert(E.get()->isPRValue());
7468
7469 // Only do this in an r-value context.
7470 if (!getLangOpts().ObjCAutoRefCount) return;
7471
7472 E = ImplicitCastExpr::Create(
7473 Context, T: E.get()->getType(), Kind: CK_ARCExtendBlockObject, Operand: E.get(),
7474 /*base path*/ BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride());
7475 Cleanup.setExprNeedsCleanups(true);
7476}
7477
7478CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7479 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7480 // Also, callers should have filtered out the invalid cases with
7481 // pointers. Everything else should be possible.
7482
7483 QualType SrcTy = Src.get()->getType();
7484 if (Context.hasSameUnqualifiedType(T1: SrcTy, T2: DestTy))
7485 return CK_NoOp;
7486
7487 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7488 case Type::STK_MemberPointer:
7489 llvm_unreachable("member pointer type in C");
7490
7491 case Type::STK_CPointer:
7492 case Type::STK_BlockPointer:
7493 case Type::STK_ObjCObjectPointer:
7494 switch (DestTy->getScalarTypeKind()) {
7495 case Type::STK_CPointer: {
7496 LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7497 LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7498 if (SrcAS != DestAS)
7499 return CK_AddressSpaceConversion;
7500 if (Context.hasCvrSimilarType(T1: SrcTy, T2: DestTy))
7501 return CK_NoOp;
7502 return CK_BitCast;
7503 }
7504 case Type::STK_BlockPointer:
7505 return (SrcKind == Type::STK_BlockPointer
7506 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7507 case Type::STK_ObjCObjectPointer:
7508 if (SrcKind == Type::STK_ObjCObjectPointer)
7509 return CK_BitCast;
7510 if (SrcKind == Type::STK_CPointer)
7511 return CK_CPointerToObjCPointerCast;
7512 maybeExtendBlockObject(E&: Src);
7513 return CK_BlockPointerToObjCPointerCast;
7514 case Type::STK_Bool:
7515 return CK_PointerToBoolean;
7516 case Type::STK_Integral:
7517 return CK_PointerToIntegral;
7518 case Type::STK_Floating:
7519 case Type::STK_FloatingComplex:
7520 case Type::STK_IntegralComplex:
7521 case Type::STK_MemberPointer:
7522 case Type::STK_FixedPoint:
7523 llvm_unreachable("illegal cast from pointer");
7524 }
7525 llvm_unreachable("Should have returned before this");
7526
7527 case Type::STK_FixedPoint:
7528 switch (DestTy->getScalarTypeKind()) {
7529 case Type::STK_FixedPoint:
7530 return CK_FixedPointCast;
7531 case Type::STK_Bool:
7532 return CK_FixedPointToBoolean;
7533 case Type::STK_Integral:
7534 return CK_FixedPointToIntegral;
7535 case Type::STK_Floating:
7536 return CK_FixedPointToFloating;
7537 case Type::STK_IntegralComplex:
7538 case Type::STK_FloatingComplex:
7539 Diag(Src.get()->getExprLoc(),
7540 diag::err_unimplemented_conversion_with_fixed_point_type)
7541 << DestTy;
7542 return CK_IntegralCast;
7543 case Type::STK_CPointer:
7544 case Type::STK_ObjCObjectPointer:
7545 case Type::STK_BlockPointer:
7546 case Type::STK_MemberPointer:
7547 llvm_unreachable("illegal cast to pointer type");
7548 }
7549 llvm_unreachable("Should have returned before this");
7550
7551 case Type::STK_Bool: // casting from bool is like casting from an integer
7552 case Type::STK_Integral:
7553 switch (DestTy->getScalarTypeKind()) {
7554 case Type::STK_CPointer:
7555 case Type::STK_ObjCObjectPointer:
7556 case Type::STK_BlockPointer:
7557 if (Src.get()->isNullPointerConstant(Ctx&: Context,
7558 NPC: Expr::NPC_ValueDependentIsNull))
7559 return CK_NullToPointer;
7560 return CK_IntegralToPointer;
7561 case Type::STK_Bool:
7562 return CK_IntegralToBoolean;
7563 case Type::STK_Integral:
7564 return CK_IntegralCast;
7565 case Type::STK_Floating:
7566 return CK_IntegralToFloating;
7567 case Type::STK_IntegralComplex:
7568 Src = ImpCastExprToType(E: Src.get(),
7569 Type: DestTy->castAs<ComplexType>()->getElementType(),
7570 CK: CK_IntegralCast);
7571 return CK_IntegralRealToComplex;
7572 case Type::STK_FloatingComplex:
7573 Src = ImpCastExprToType(E: Src.get(),
7574 Type: DestTy->castAs<ComplexType>()->getElementType(),
7575 CK: CK_IntegralToFloating);
7576 return CK_FloatingRealToComplex;
7577 case Type::STK_MemberPointer:
7578 llvm_unreachable("member pointer type in C");
7579 case Type::STK_FixedPoint:
7580 return CK_IntegralToFixedPoint;
7581 }
7582 llvm_unreachable("Should have returned before this");
7583
7584 case Type::STK_Floating:
7585 switch (DestTy->getScalarTypeKind()) {
7586 case Type::STK_Floating:
7587 return CK_FloatingCast;
7588 case Type::STK_Bool:
7589 return CK_FloatingToBoolean;
7590 case Type::STK_Integral:
7591 return CK_FloatingToIntegral;
7592 case Type::STK_FloatingComplex:
7593 Src = ImpCastExprToType(E: Src.get(),
7594 Type: DestTy->castAs<ComplexType>()->getElementType(),
7595 CK: CK_FloatingCast);
7596 return CK_FloatingRealToComplex;
7597 case Type::STK_IntegralComplex:
7598 Src = ImpCastExprToType(E: Src.get(),
7599 Type: DestTy->castAs<ComplexType>()->getElementType(),
7600 CK: CK_FloatingToIntegral);
7601 return CK_IntegralRealToComplex;
7602 case Type::STK_CPointer:
7603 case Type::STK_ObjCObjectPointer:
7604 case Type::STK_BlockPointer:
7605 llvm_unreachable("valid float->pointer cast?");
7606 case Type::STK_MemberPointer:
7607 llvm_unreachable("member pointer type in C");
7608 case Type::STK_FixedPoint:
7609 return CK_FloatingToFixedPoint;
7610 }
7611 llvm_unreachable("Should have returned before this");
7612
7613 case Type::STK_FloatingComplex:
7614 switch (DestTy->getScalarTypeKind()) {
7615 case Type::STK_FloatingComplex:
7616 return CK_FloatingComplexCast;
7617 case Type::STK_IntegralComplex:
7618 return CK_FloatingComplexToIntegralComplex;
7619 case Type::STK_Floating: {
7620 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7621 if (Context.hasSameType(T1: ET, T2: DestTy))
7622 return CK_FloatingComplexToReal;
7623 Src = ImpCastExprToType(E: Src.get(), Type: ET, CK: CK_FloatingComplexToReal);
7624 return CK_FloatingCast;
7625 }
7626 case Type::STK_Bool:
7627 return CK_FloatingComplexToBoolean;
7628 case Type::STK_Integral:
7629 Src = ImpCastExprToType(E: Src.get(),
7630 Type: SrcTy->castAs<ComplexType>()->getElementType(),
7631 CK: CK_FloatingComplexToReal);
7632 return CK_FloatingToIntegral;
7633 case Type::STK_CPointer:
7634 case Type::STK_ObjCObjectPointer:
7635 case Type::STK_BlockPointer:
7636 llvm_unreachable("valid complex float->pointer cast?");
7637 case Type::STK_MemberPointer:
7638 llvm_unreachable("member pointer type in C");
7639 case Type::STK_FixedPoint:
7640 Diag(Src.get()->getExprLoc(),
7641 diag::err_unimplemented_conversion_with_fixed_point_type)
7642 << SrcTy;
7643 return CK_IntegralCast;
7644 }
7645 llvm_unreachable("Should have returned before this");
7646
7647 case Type::STK_IntegralComplex:
7648 switch (DestTy->getScalarTypeKind()) {
7649 case Type::STK_FloatingComplex:
7650 return CK_IntegralComplexToFloatingComplex;
7651 case Type::STK_IntegralComplex:
7652 return CK_IntegralComplexCast;
7653 case Type::STK_Integral: {
7654 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7655 if (Context.hasSameType(T1: ET, T2: DestTy))
7656 return CK_IntegralComplexToReal;
7657 Src = ImpCastExprToType(E: Src.get(), Type: ET, CK: CK_IntegralComplexToReal);
7658 return CK_IntegralCast;
7659 }
7660 case Type::STK_Bool:
7661 return CK_IntegralComplexToBoolean;
7662 case Type::STK_Floating:
7663 Src = ImpCastExprToType(E: Src.get(),
7664 Type: SrcTy->castAs<ComplexType>()->getElementType(),
7665 CK: CK_IntegralComplexToReal);
7666 return CK_IntegralToFloating;
7667 case Type::STK_CPointer:
7668 case Type::STK_ObjCObjectPointer:
7669 case Type::STK_BlockPointer:
7670 llvm_unreachable("valid complex int->pointer cast?");
7671 case Type::STK_MemberPointer:
7672 llvm_unreachable("member pointer type in C");
7673 case Type::STK_FixedPoint:
7674 Diag(Src.get()->getExprLoc(),
7675 diag::err_unimplemented_conversion_with_fixed_point_type)
7676 << SrcTy;
7677 return CK_IntegralCast;
7678 }
7679 llvm_unreachable("Should have returned before this");
7680 }
7681
7682 llvm_unreachable("Unhandled scalar cast");
7683}
7684
7685static bool breakDownVectorType(QualType type, uint64_t &len,
7686 QualType &eltType) {
7687 // Vectors are simple.
7688 if (const VectorType *vecType = type->getAs<VectorType>()) {
7689 len = vecType->getNumElements();
7690 eltType = vecType->getElementType();
7691 assert(eltType->isScalarType() || eltType->isMFloat8Type());
7692 return true;
7693 }
7694
7695 // We allow lax conversion to and from non-vector types, but only if
7696 // they're real types (i.e. non-complex, non-pointer scalar types).
7697 if (!type->isRealType()) return false;
7698
7699 len = 1;
7700 eltType = type;
7701 return true;
7702}
7703
7704bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7705 assert(srcTy->isVectorType() || destTy->isVectorType());
7706
7707 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7708 if (!FirstType->isSVESizelessBuiltinType())
7709 return false;
7710
7711 const auto *VecTy = SecondType->getAs<VectorType>();
7712 return VecTy && VecTy->getVectorKind() == VectorKind::SveFixedLengthData;
7713 };
7714
7715 return ValidScalableConversion(srcTy, destTy) ||
7716 ValidScalableConversion(destTy, srcTy);
7717}
7718
7719bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7720 if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7721 return false;
7722
7723 const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7724 const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7725
7726 return matSrcType->getNumRows() == matDestType->getNumRows() &&
7727 matSrcType->getNumColumns() == matDestType->getNumColumns();
7728}
7729
7730bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7731 assert(DestTy->isVectorType() || SrcTy->isVectorType());
7732
7733 uint64_t SrcLen, DestLen;
7734 QualType SrcEltTy, DestEltTy;
7735 if (!breakDownVectorType(type: SrcTy, len&: SrcLen, eltType&: SrcEltTy))
7736 return false;
7737 if (!breakDownVectorType(type: DestTy, len&: DestLen, eltType&: DestEltTy))
7738 return false;
7739
7740 // ASTContext::getTypeSize will return the size rounded up to a
7741 // power of 2, so instead of using that, we need to use the raw
7742 // element size multiplied by the element count.
7743 uint64_t SrcEltSize = Context.getTypeSize(T: SrcEltTy);
7744 uint64_t DestEltSize = Context.getTypeSize(T: DestEltTy);
7745
7746 return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7747}
7748
7749bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
7750 assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7751 "expected at least one type to be a vector here");
7752
7753 bool IsSrcTyAltivec =
7754 SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() ==
7755 VectorKind::AltiVecVector) ||
7756 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7757 VectorKind::AltiVecBool) ||
7758 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7759 VectorKind::AltiVecPixel));
7760
7761 bool IsDestTyAltivec = DestTy->isVectorType() &&
7762 ((DestTy->castAs<VectorType>()->getVectorKind() ==
7763 VectorKind::AltiVecVector) ||
7764 (DestTy->castAs<VectorType>()->getVectorKind() ==
7765 VectorKind::AltiVecBool) ||
7766 (DestTy->castAs<VectorType>()->getVectorKind() ==
7767 VectorKind::AltiVecPixel));
7768
7769 return (IsSrcTyAltivec || IsDestTyAltivec);
7770}
7771
7772bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7773 assert(destTy->isVectorType() || srcTy->isVectorType());
7774
7775 // Disallow lax conversions between scalars and ExtVectors (these
7776 // conversions are allowed for other vector types because common headers
7777 // depend on them). Most scalar OP ExtVector cases are handled by the
7778 // splat path anyway, which does what we want (convert, not bitcast).
7779 // What this rules out for ExtVectors is crazy things like char4*float.
7780 if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7781 if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7782
7783 return areVectorTypesSameSize(SrcTy: srcTy, DestTy: destTy);
7784}
7785
7786bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7787 assert(destTy->isVectorType() || srcTy->isVectorType());
7788
7789 switch (Context.getLangOpts().getLaxVectorConversions()) {
7790 case LangOptions::LaxVectorConversionKind::None:
7791 return false;
7792
7793 case LangOptions::LaxVectorConversionKind::Integer:
7794 if (!srcTy->isIntegralOrEnumerationType()) {
7795 auto *Vec = srcTy->getAs<VectorType>();
7796 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7797 return false;
7798 }
7799 if (!destTy->isIntegralOrEnumerationType()) {
7800 auto *Vec = destTy->getAs<VectorType>();
7801 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7802 return false;
7803 }
7804 // OK, integer (vector) -> integer (vector) bitcast.
7805 break;
7806
7807 case LangOptions::LaxVectorConversionKind::All:
7808 break;
7809 }
7810
7811 return areLaxCompatibleVectorTypes(srcTy, destTy);
7812}
7813
7814bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7815 CastKind &Kind) {
7816 if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7817 if (!areMatrixTypesOfTheSameDimension(srcTy: SrcTy, destTy: DestTy)) {
7818 return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
7819 << DestTy << SrcTy << R;
7820 }
7821 } else if (SrcTy->isMatrixType()) {
7822 return Diag(R.getBegin(),
7823 diag::err_invalid_conversion_between_matrix_and_type)
7824 << SrcTy << DestTy << R;
7825 } else if (DestTy->isMatrixType()) {
7826 return Diag(R.getBegin(),
7827 diag::err_invalid_conversion_between_matrix_and_type)
7828 << DestTy << SrcTy << R;
7829 }
7830
7831 Kind = CK_MatrixCast;
7832 return false;
7833}
7834
7835bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7836 CastKind &Kind) {
7837 assert(VectorTy->isVectorType() && "Not a vector type!");
7838
7839 if (Ty->isVectorType() || Ty->isIntegralType(Ctx: Context)) {
7840 if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7841 return Diag(R.getBegin(),
7842 Ty->isVectorType() ?
7843 diag::err_invalid_conversion_between_vectors :
7844 diag::err_invalid_conversion_between_vector_and_integer)
7845 << VectorTy << Ty << R;
7846 } else
7847 return Diag(R.getBegin(),
7848 diag::err_invalid_conversion_between_vector_and_scalar)
7849 << VectorTy << Ty << R;
7850
7851 Kind = CK_BitCast;
7852 return false;
7853}
7854
7855ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7856 QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7857
7858 if (DestElemTy == SplattedExpr->getType())
7859 return SplattedExpr;
7860
7861 assert(DestElemTy->isFloatingType() ||
7862 DestElemTy->isIntegralOrEnumerationType());
7863
7864 CastKind CK;
7865 if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7866 // OpenCL requires that we convert `true` boolean expressions to -1, but
7867 // only when splatting vectors.
7868 if (DestElemTy->isFloatingType()) {
7869 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7870 // in two steps: boolean to signed integral, then to floating.
7871 ExprResult CastExprRes = ImpCastExprToType(E: SplattedExpr, Type: Context.IntTy,
7872 CK: CK_BooleanToSignedIntegral);
7873 SplattedExpr = CastExprRes.get();
7874 CK = CK_IntegralToFloating;
7875 } else {
7876 CK = CK_BooleanToSignedIntegral;
7877 }
7878 } else {
7879 ExprResult CastExprRes = SplattedExpr;
7880 CK = PrepareScalarCast(Src&: CastExprRes, DestTy: DestElemTy);
7881 if (CastExprRes.isInvalid())
7882 return ExprError();
7883 SplattedExpr = CastExprRes.get();
7884 }
7885 return ImpCastExprToType(E: SplattedExpr, Type: DestElemTy, CK);
7886}
7887
7888ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7889 Expr *CastExpr, CastKind &Kind) {
7890 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
7891
7892 QualType SrcTy = CastExpr->getType();
7893
7894 // If SrcTy is a VectorType, the total size must match to explicitly cast to
7895 // an ExtVectorType.
7896 // In OpenCL, casts between vectors of different types are not allowed.
7897 // (See OpenCL 6.2).
7898 if (SrcTy->isVectorType()) {
7899 if (!areLaxCompatibleVectorTypes(srcTy: SrcTy, destTy: DestTy) ||
7900 (getLangOpts().OpenCL &&
7901 !Context.hasSameUnqualifiedType(T1: DestTy, T2: SrcTy))) {
7902 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7903 << DestTy << SrcTy << R;
7904 return ExprError();
7905 }
7906 Kind = CK_BitCast;
7907 return CastExpr;
7908 }
7909
7910 // All non-pointer scalars can be cast to ExtVector type. The appropriate
7911 // conversion will take place first from scalar to elt type, and then
7912 // splat from elt type to vector.
7913 if (SrcTy->isPointerType())
7914 return Diag(R.getBegin(),
7915 diag::err_invalid_conversion_between_vector_and_scalar)
7916 << DestTy << SrcTy << R;
7917
7918 Kind = CK_VectorSplat;
7919 return prepareVectorSplat(VectorTy: DestTy, SplattedExpr: CastExpr);
7920}
7921
7922ExprResult
7923Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7924 Declarator &D, ParsedType &Ty,
7925 SourceLocation RParenLoc, Expr *CastExpr) {
7926 assert(!D.isInvalidType() && (CastExpr != nullptr) &&
7927 "ActOnCastExpr(): missing type or expr");
7928
7929 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, FromTy: CastExpr->getType());
7930 if (D.isInvalidType())
7931 return ExprError();
7932
7933 if (getLangOpts().CPlusPlus) {
7934 // Check that there are no default arguments (C++ only).
7935 CheckExtraCXXDefaultArguments(D);
7936 } else {
7937 // Make sure any TypoExprs have been dealt with.
7938 ExprResult Res = CorrectDelayedTyposInExpr(E: CastExpr);
7939 if (!Res.isUsable())
7940 return ExprError();
7941 CastExpr = Res.get();
7942 }
7943
7944 checkUnusedDeclAttributes(D);
7945
7946 QualType castType = castTInfo->getType();
7947 Ty = CreateParsedType(T: castType, TInfo: castTInfo);
7948
7949 bool isVectorLiteral = false;
7950
7951 // Check for an altivec or OpenCL literal,
7952 // i.e. all the elements are integer constants.
7953 ParenExpr *PE = dyn_cast<ParenExpr>(Val: CastExpr);
7954 ParenListExpr *PLE = dyn_cast<ParenListExpr>(Val: CastExpr);
7955 if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7956 && castType->isVectorType() && (PE || PLE)) {
7957 if (PLE && PLE->getNumExprs() == 0) {
7958 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7959 return ExprError();
7960 }
7961 if (PE || PLE->getNumExprs() == 1) {
7962 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(Init: 0));
7963 if (!E->isTypeDependent() && !E->getType()->isVectorType())
7964 isVectorLiteral = true;
7965 }
7966 else
7967 isVectorLiteral = true;
7968 }
7969
7970 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7971 // then handle it as such.
7972 if (isVectorLiteral)
7973 return BuildVectorLiteral(LParenLoc, RParenLoc, E: CastExpr, TInfo: castTInfo);
7974
7975 // If the Expr being casted is a ParenListExpr, handle it specially.
7976 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7977 // sequence of BinOp comma operators.
7978 if (isa<ParenListExpr>(Val: CastExpr)) {
7979 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, ME: CastExpr);
7980 if (Result.isInvalid()) return ExprError();
7981 CastExpr = Result.get();
7982 }
7983
7984 if (getLangOpts().CPlusPlus && !castType->isVoidType())
7985 Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7986
7987 ObjC().CheckTollFreeBridgeCast(castType, castExpr: CastExpr);
7988
7989 ObjC().CheckObjCBridgeRelatedCast(castType, castExpr: CastExpr);
7990
7991 DiscardMisalignedMemberAddress(T: castType.getTypePtr(), E: CastExpr);
7992
7993 return BuildCStyleCastExpr(LParenLoc, Ty: castTInfo, RParenLoc, Op: CastExpr);
7994}
7995
7996ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7997 SourceLocation RParenLoc, Expr *E,
7998 TypeSourceInfo *TInfo) {
7999 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
8000 "Expected paren or paren list expression");
8001
8002 Expr **exprs;
8003 unsigned numExprs;
8004 Expr *subExpr;
8005 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
8006 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(Val: E)) {
8007 LiteralLParenLoc = PE->getLParenLoc();
8008 LiteralRParenLoc = PE->getRParenLoc();
8009 exprs = PE->getExprs();
8010 numExprs = PE->getNumExprs();
8011 } else { // isa<ParenExpr> by assertion at function entrance
8012 LiteralLParenLoc = cast<ParenExpr>(Val: E)->getLParen();
8013 LiteralRParenLoc = cast<ParenExpr>(Val: E)->getRParen();
8014 subExpr = cast<ParenExpr>(Val: E)->getSubExpr();
8015 exprs = &subExpr;
8016 numExprs = 1;
8017 }
8018
8019 QualType Ty = TInfo->getType();
8020 assert(Ty->isVectorType() && "Expected vector type");
8021
8022 SmallVector<Expr *, 8> initExprs;
8023 const VectorType *VTy = Ty->castAs<VectorType>();
8024 unsigned numElems = VTy->getNumElements();
8025
8026 // '(...)' form of vector initialization in AltiVec: the number of
8027 // initializers must be one or must match the size of the vector.
8028 // If a single value is specified in the initializer then it will be
8029 // replicated to all the components of the vector
8030 if (CheckAltivecInitFromScalar(R: E->getSourceRange(), VecTy: Ty,
8031 SrcTy: VTy->getElementType()))
8032 return ExprError();
8033 if (ShouldSplatAltivecScalarInCast(VecTy: VTy)) {
8034 // The number of initializers must be one or must match the size of the
8035 // vector. If a single value is specified in the initializer then it will
8036 // be replicated to all the components of the vector
8037 if (numExprs == 1) {
8038 QualType ElemTy = VTy->getElementType();
8039 ExprResult Literal = DefaultLvalueConversion(E: exprs[0]);
8040 if (Literal.isInvalid())
8041 return ExprError();
8042 Literal = ImpCastExprToType(E: Literal.get(), Type: ElemTy,
8043 CK: PrepareScalarCast(Src&: Literal, DestTy: ElemTy));
8044 return BuildCStyleCastExpr(LParenLoc, Ty: TInfo, RParenLoc, Op: Literal.get());
8045 }
8046 else if (numExprs < numElems) {
8047 Diag(E->getExprLoc(),
8048 diag::err_incorrect_number_of_vector_initializers);
8049 return ExprError();
8050 }
8051 else
8052 initExprs.append(in_start: exprs, in_end: exprs + numExprs);
8053 }
8054 else {
8055 // For OpenCL, when the number of initializers is a single value,
8056 // it will be replicated to all components of the vector.
8057 if (getLangOpts().OpenCL && VTy->getVectorKind() == VectorKind::Generic &&
8058 numExprs == 1) {
8059 QualType ElemTy = VTy->getElementType();
8060 ExprResult Literal = DefaultLvalueConversion(E: exprs[0]);
8061 if (Literal.isInvalid())
8062 return ExprError();
8063 Literal = ImpCastExprToType(E: Literal.get(), Type: ElemTy,
8064 CK: PrepareScalarCast(Src&: Literal, DestTy: ElemTy));
8065 return BuildCStyleCastExpr(LParenLoc, Ty: TInfo, RParenLoc, Op: Literal.get());
8066 }
8067
8068 initExprs.append(in_start: exprs, in_end: exprs + numExprs);
8069 }
8070 // FIXME: This means that pretty-printing the final AST will produce curly
8071 // braces instead of the original commas.
8072 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
8073 initExprs, LiteralRParenLoc);
8074 initE->setType(Ty);
8075 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
8076}
8077
8078ExprResult
8079Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
8080 ParenListExpr *E = dyn_cast<ParenListExpr>(Val: OrigExpr);
8081 if (!E)
8082 return OrigExpr;
8083
8084 ExprResult Result(E->getExpr(Init: 0));
8085
8086 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
8087 Result = ActOnBinOp(S, TokLoc: E->getExprLoc(), Kind: tok::comma, LHSExpr: Result.get(),
8088 RHSExpr: E->getExpr(Init: i));
8089
8090 if (Result.isInvalid()) return ExprError();
8091
8092 return ActOnParenExpr(L: E->getLParenLoc(), R: E->getRParenLoc(), E: Result.get());
8093}
8094
8095ExprResult Sema::ActOnParenListExpr(SourceLocation L,
8096 SourceLocation R,
8097 MultiExprArg Val) {
8098 return ParenListExpr::Create(Ctx: Context, LParenLoc: L, Exprs: Val, RParenLoc: R);
8099}
8100
8101ExprResult Sema::ActOnCXXParenListInitExpr(ArrayRef<Expr *> Args, QualType T,
8102 unsigned NumUserSpecifiedExprs,
8103 SourceLocation InitLoc,
8104 SourceLocation LParenLoc,
8105 SourceLocation RParenLoc) {
8106 return CXXParenListInitExpr::Create(C&: Context, Args, T, NumUserSpecifiedExprs,
8107 InitLoc, LParenLoc, RParenLoc);
8108}
8109
8110bool Sema::DiagnoseConditionalForNull(const Expr *LHSExpr, const Expr *RHSExpr,
8111 SourceLocation QuestionLoc) {
8112 const Expr *NullExpr = LHSExpr;
8113 const Expr *NonPointerExpr = RHSExpr;
8114 Expr::NullPointerConstantKind NullKind =
8115 NullExpr->isNullPointerConstant(Ctx&: Context,
8116 NPC: Expr::NPC_ValueDependentIsNotNull);
8117
8118 if (NullKind == Expr::NPCK_NotNull) {
8119 NullExpr = RHSExpr;
8120 NonPointerExpr = LHSExpr;
8121 NullKind =
8122 NullExpr->isNullPointerConstant(Ctx&: Context,
8123 NPC: Expr::NPC_ValueDependentIsNotNull);
8124 }
8125
8126 if (NullKind == Expr::NPCK_NotNull)
8127 return false;
8128
8129 if (NullKind == Expr::NPCK_ZeroExpression)
8130 return false;
8131
8132 if (NullKind == Expr::NPCK_ZeroLiteral) {
8133 // In this case, check to make sure that we got here from a "NULL"
8134 // string in the source code.
8135 NullExpr = NullExpr->IgnoreParenImpCasts();
8136 SourceLocation loc = NullExpr->getExprLoc();
8137 if (!findMacroSpelling(loc, name: "NULL"))
8138 return false;
8139 }
8140
8141 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
8142 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
8143 << NonPointerExpr->getType() << DiagType
8144 << NonPointerExpr->getSourceRange();
8145 return true;
8146}
8147
8148/// Return false if the condition expression is valid, true otherwise.
8149static bool checkCondition(Sema &S, const Expr *Cond,
8150 SourceLocation QuestionLoc) {
8151 QualType CondTy = Cond->getType();
8152
8153 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8154 if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
8155 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8156 << CondTy << Cond->getSourceRange();
8157 return true;
8158 }
8159
8160 // C99 6.5.15p2
8161 if (CondTy->isScalarType()) return false;
8162
8163 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
8164 << CondTy << Cond->getSourceRange();
8165 return true;
8166}
8167
8168/// Return false if the NullExpr can be promoted to PointerTy,
8169/// true otherwise.
8170static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
8171 QualType PointerTy) {
8172 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
8173 !NullExpr.get()->isNullPointerConstant(Ctx&: S.Context,
8174 NPC: Expr::NPC_ValueDependentIsNull))
8175 return true;
8176
8177 NullExpr = S.ImpCastExprToType(E: NullExpr.get(), Type: PointerTy, CK: CK_NullToPointer);
8178 return false;
8179}
8180
8181/// Checks compatibility between two pointers and return the resulting
8182/// type.
8183static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8184 ExprResult &RHS,
8185 SourceLocation Loc) {
8186 QualType LHSTy = LHS.get()->getType();
8187 QualType RHSTy = RHS.get()->getType();
8188
8189 if (S.Context.hasSameType(T1: LHSTy, T2: RHSTy)) {
8190 // Two identical pointers types are always compatible.
8191 return S.Context.getCommonSugaredType(X: LHSTy, Y: RHSTy);
8192 }
8193
8194 QualType lhptee, rhptee;
8195
8196 // Get the pointee types.
8197 bool IsBlockPointer = false;
8198 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8199 lhptee = LHSBTy->getPointeeType();
8200 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8201 IsBlockPointer = true;
8202 } else {
8203 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8204 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8205 }
8206
8207 // C99 6.5.15p6: If both operands are pointers to compatible types or to
8208 // differently qualified versions of compatible types, the result type is
8209 // a pointer to an appropriately qualified version of the composite
8210 // type.
8211
8212 // Only CVR-qualifiers exist in the standard, and the differently-qualified
8213 // clause doesn't make sense for our extensions. E.g. address space 2 should
8214 // be incompatible with address space 3: they may live on different devices or
8215 // anything.
8216 Qualifiers lhQual = lhptee.getQualifiers();
8217 Qualifiers rhQual = rhptee.getQualifiers();
8218
8219 LangAS ResultAddrSpace = LangAS::Default;
8220 LangAS LAddrSpace = lhQual.getAddressSpace();
8221 LangAS RAddrSpace = rhQual.getAddressSpace();
8222
8223 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8224 // spaces is disallowed.
8225 if (lhQual.isAddressSpaceSupersetOf(other: rhQual, Ctx: S.getASTContext()))
8226 ResultAddrSpace = LAddrSpace;
8227 else if (rhQual.isAddressSpaceSupersetOf(other: lhQual, Ctx: S.getASTContext()))
8228 ResultAddrSpace = RAddrSpace;
8229 else {
8230 S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8231 << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8232 << RHS.get()->getSourceRange();
8233 return QualType();
8234 }
8235
8236 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8237 auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8238 lhQual.removeCVRQualifiers();
8239 rhQual.removeCVRQualifiers();
8240
8241 if (!lhQual.getPointerAuth().isEquivalent(Other: rhQual.getPointerAuth())) {
8242 S.Diag(Loc, diag::err_typecheck_cond_incompatible_ptrauth)
8243 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8244 << RHS.get()->getSourceRange();
8245 return QualType();
8246 }
8247
8248 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8249 // (C99 6.7.3) for address spaces. We assume that the check should behave in
8250 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8251 // qual types are compatible iff
8252 // * corresponded types are compatible
8253 // * CVR qualifiers are equal
8254 // * address spaces are equal
8255 // Thus for conditional operator we merge CVR and address space unqualified
8256 // pointees and if there is a composite type we return a pointer to it with
8257 // merged qualifiers.
8258 LHSCastKind =
8259 LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8260 RHSCastKind =
8261 RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8262 lhQual.removeAddressSpace();
8263 rhQual.removeAddressSpace();
8264
8265 lhptee = S.Context.getQualifiedType(T: lhptee.getUnqualifiedType(), Qs: lhQual);
8266 rhptee = S.Context.getQualifiedType(T: rhptee.getUnqualifiedType(), Qs: rhQual);
8267
8268 QualType CompositeTy = S.Context.mergeTypes(
8269 lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8270 /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8271
8272 if (CompositeTy.isNull()) {
8273 // In this situation, we assume void* type. No especially good
8274 // reason, but this is what gcc does, and we do have to pick
8275 // to get a consistent AST.
8276 QualType incompatTy;
8277 incompatTy = S.Context.getPointerType(
8278 S.Context.getAddrSpaceQualType(T: S.Context.VoidTy, AddressSpace: ResultAddrSpace));
8279 LHS = S.ImpCastExprToType(E: LHS.get(), Type: incompatTy, CK: LHSCastKind);
8280 RHS = S.ImpCastExprToType(E: RHS.get(), Type: incompatTy, CK: RHSCastKind);
8281
8282 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8283 // for casts between types with incompatible address space qualifiers.
8284 // For the following code the compiler produces casts between global and
8285 // local address spaces of the corresponded innermost pointees:
8286 // local int *global *a;
8287 // global int *global *b;
8288 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8289 S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8290 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8291 << RHS.get()->getSourceRange();
8292
8293 return incompatTy;
8294 }
8295
8296 // The pointer types are compatible.
8297 // In case of OpenCL ResultTy should have the address space qualifier
8298 // which is a superset of address spaces of both the 2nd and the 3rd
8299 // operands of the conditional operator.
8300 QualType ResultTy = [&, ResultAddrSpace]() {
8301 if (S.getLangOpts().OpenCL) {
8302 Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8303 CompositeQuals.setAddressSpace(ResultAddrSpace);
8304 return S.Context
8305 .getQualifiedType(T: CompositeTy.getUnqualifiedType(), Qs: CompositeQuals)
8306 .withCVRQualifiers(CVR: MergedCVRQual);
8307 }
8308 return CompositeTy.withCVRQualifiers(CVR: MergedCVRQual);
8309 }();
8310 if (IsBlockPointer)
8311 ResultTy = S.Context.getBlockPointerType(T: ResultTy);
8312 else
8313 ResultTy = S.Context.getPointerType(T: ResultTy);
8314
8315 LHS = S.ImpCastExprToType(E: LHS.get(), Type: ResultTy, CK: LHSCastKind);
8316 RHS = S.ImpCastExprToType(E: RHS.get(), Type: ResultTy, CK: RHSCastKind);
8317 return ResultTy;
8318}
8319
8320/// Return the resulting type when the operands are both block pointers.
8321static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8322 ExprResult &LHS,
8323 ExprResult &RHS,
8324 SourceLocation Loc) {
8325 QualType LHSTy = LHS.get()->getType();
8326 QualType RHSTy = RHS.get()->getType();
8327
8328 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8329 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8330 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8331 LHS = S.ImpCastExprToType(E: LHS.get(), Type: destType, CK: CK_BitCast);
8332 RHS = S.ImpCastExprToType(E: RHS.get(), Type: destType, CK: CK_BitCast);
8333 return destType;
8334 }
8335 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8336 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8337 << RHS.get()->getSourceRange();
8338 return QualType();
8339 }
8340
8341 // We have 2 block pointer types.
8342 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8343}
8344
8345/// Return the resulting type when the operands are both pointers.
8346static QualType
8347checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8348 ExprResult &RHS,
8349 SourceLocation Loc) {
8350 // get the pointer types
8351 QualType LHSTy = LHS.get()->getType();
8352 QualType RHSTy = RHS.get()->getType();
8353
8354 // get the "pointed to" types
8355 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8356 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8357
8358 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8359 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8360 // Figure out necessary qualifiers (C99 6.5.15p6)
8361 QualType destPointee
8362 = S.Context.getQualifiedType(T: lhptee, Qs: rhptee.getQualifiers());
8363 QualType destType = S.Context.getPointerType(T: destPointee);
8364 // Add qualifiers if necessary.
8365 LHS = S.ImpCastExprToType(E: LHS.get(), Type: destType, CK: CK_NoOp);
8366 // Promote to void*.
8367 RHS = S.ImpCastExprToType(E: RHS.get(), Type: destType, CK: CK_BitCast);
8368 return destType;
8369 }
8370 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8371 QualType destPointee
8372 = S.Context.getQualifiedType(T: rhptee, Qs: lhptee.getQualifiers());
8373 QualType destType = S.Context.getPointerType(T: destPointee);
8374 // Add qualifiers if necessary.
8375 RHS = S.ImpCastExprToType(E: RHS.get(), Type: destType, CK: CK_NoOp);
8376 // Promote to void*.
8377 LHS = S.ImpCastExprToType(E: LHS.get(), Type: destType, CK: CK_BitCast);
8378 return destType;
8379 }
8380
8381 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8382}
8383
8384/// Return false if the first expression is not an integer and the second
8385/// expression is not a pointer, true otherwise.
8386static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8387 Expr* PointerExpr, SourceLocation Loc,
8388 bool IsIntFirstExpr) {
8389 if (!PointerExpr->getType()->isPointerType() ||
8390 !Int.get()->getType()->isIntegerType())
8391 return false;
8392
8393 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8394 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8395
8396 S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8397 << Expr1->getType() << Expr2->getType()
8398 << Expr1->getSourceRange() << Expr2->getSourceRange();
8399 Int = S.ImpCastExprToType(E: Int.get(), Type: PointerExpr->getType(),
8400 CK: CK_IntegralToPointer);
8401 return true;
8402}
8403
8404/// Simple conversion between integer and floating point types.
8405///
8406/// Used when handling the OpenCL conditional operator where the
8407/// condition is a vector while the other operands are scalar.
8408///
8409/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8410/// types are either integer or floating type. Between the two
8411/// operands, the type with the higher rank is defined as the "result
8412/// type". The other operand needs to be promoted to the same type. No
8413/// other type promotion is allowed. We cannot use
8414/// UsualArithmeticConversions() for this purpose, since it always
8415/// promotes promotable types.
8416static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8417 ExprResult &RHS,
8418 SourceLocation QuestionLoc) {
8419 LHS = S.DefaultFunctionArrayLvalueConversion(E: LHS.get());
8420 if (LHS.isInvalid())
8421 return QualType();
8422 RHS = S.DefaultFunctionArrayLvalueConversion(E: RHS.get());
8423 if (RHS.isInvalid())
8424 return QualType();
8425
8426 // For conversion purposes, we ignore any qualifiers.
8427 // For example, "const float" and "float" are equivalent.
8428 QualType LHSType =
8429 S.Context.getCanonicalType(T: LHS.get()->getType()).getUnqualifiedType();
8430 QualType RHSType =
8431 S.Context.getCanonicalType(T: RHS.get()->getType()).getUnqualifiedType();
8432
8433 if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8434 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8435 << LHSType << LHS.get()->getSourceRange();
8436 return QualType();
8437 }
8438
8439 if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8440 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8441 << RHSType << RHS.get()->getSourceRange();
8442 return QualType();
8443 }
8444
8445 // If both types are identical, no conversion is needed.
8446 if (LHSType == RHSType)
8447 return LHSType;
8448
8449 // Now handle "real" floating types (i.e. float, double, long double).
8450 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8451 return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8452 /*IsCompAssign = */ false);
8453
8454 // Finally, we have two differing integer types.
8455 return handleIntegerConversion<doIntegralCast, doIntegralCast>
8456 (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8457}
8458
8459/// Convert scalar operands to a vector that matches the
8460/// condition in length.
8461///
8462/// Used when handling the OpenCL conditional operator where the
8463/// condition is a vector while the other operands are scalar.
8464///
8465/// We first compute the "result type" for the scalar operands
8466/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8467/// into a vector of that type where the length matches the condition
8468/// vector type. s6.11.6 requires that the element types of the result
8469/// and the condition must have the same number of bits.
8470static QualType
8471OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8472 QualType CondTy, SourceLocation QuestionLoc) {
8473 QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8474 if (ResTy.isNull()) return QualType();
8475
8476 const VectorType *CV = CondTy->getAs<VectorType>();
8477 assert(CV);
8478
8479 // Determine the vector result type
8480 unsigned NumElements = CV->getNumElements();
8481 QualType VectorTy = S.Context.getExtVectorType(VectorType: ResTy, NumElts: NumElements);
8482
8483 // Ensure that all types have the same number of bits
8484 if (S.Context.getTypeSize(T: CV->getElementType())
8485 != S.Context.getTypeSize(T: ResTy)) {
8486 // Since VectorTy is created internally, it does not pretty print
8487 // with an OpenCL name. Instead, we just print a description.
8488 std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8489 SmallString<64> Str;
8490 llvm::raw_svector_ostream OS(Str);
8491 OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8492 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8493 << CondTy << OS.str();
8494 return QualType();
8495 }
8496
8497 // Convert operands to the vector result type
8498 LHS = S.ImpCastExprToType(E: LHS.get(), Type: VectorTy, CK: CK_VectorSplat);
8499 RHS = S.ImpCastExprToType(E: RHS.get(), Type: VectorTy, CK: CK_VectorSplat);
8500
8501 return VectorTy;
8502}
8503
8504/// Return false if this is a valid OpenCL condition vector
8505static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8506 SourceLocation QuestionLoc) {
8507 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8508 // integral type.
8509 const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8510 assert(CondTy);
8511 QualType EleTy = CondTy->getElementType();
8512 if (EleTy->isIntegerType()) return false;
8513
8514 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8515 << Cond->getType() << Cond->getSourceRange();
8516 return true;
8517}
8518
8519/// Return false if the vector condition type and the vector
8520/// result type are compatible.
8521///
8522/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8523/// number of elements, and their element types have the same number
8524/// of bits.
8525static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8526 SourceLocation QuestionLoc) {
8527 const VectorType *CV = CondTy->getAs<VectorType>();
8528 const VectorType *RV = VecResTy->getAs<VectorType>();
8529 assert(CV && RV);
8530
8531 if (CV->getNumElements() != RV->getNumElements()) {
8532 S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8533 << CondTy << VecResTy;
8534 return true;
8535 }
8536
8537 QualType CVE = CV->getElementType();
8538 QualType RVE = RV->getElementType();
8539
8540 if (S.Context.getTypeSize(T: CVE) != S.Context.getTypeSize(T: RVE)) {
8541 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8542 << CondTy << VecResTy;
8543 return true;
8544 }
8545
8546 return false;
8547}
8548
8549/// Return the resulting type for the conditional operator in
8550/// OpenCL (aka "ternary selection operator", OpenCL v1.1
8551/// s6.3.i) when the condition is a vector type.
8552static QualType
8553OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8554 ExprResult &LHS, ExprResult &RHS,
8555 SourceLocation QuestionLoc) {
8556 Cond = S.DefaultFunctionArrayLvalueConversion(E: Cond.get());
8557 if (Cond.isInvalid())
8558 return QualType();
8559 QualType CondTy = Cond.get()->getType();
8560
8561 if (checkOpenCLConditionVector(S, Cond: Cond.get(), QuestionLoc))
8562 return QualType();
8563
8564 // If either operand is a vector then find the vector type of the
8565 // result as specified in OpenCL v1.1 s6.3.i.
8566 if (LHS.get()->getType()->isVectorType() ||
8567 RHS.get()->getType()->isVectorType()) {
8568 bool IsBoolVecLang =
8569 !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
8570 QualType VecResTy =
8571 S.CheckVectorOperands(LHS, RHS, Loc: QuestionLoc,
8572 /*isCompAssign*/ IsCompAssign: false,
8573 /*AllowBothBool*/ true,
8574 /*AllowBoolConversions*/ AllowBoolConversion: false,
8575 /*AllowBooleanOperation*/ AllowBoolOperation: IsBoolVecLang,
8576 /*ReportInvalid*/ true);
8577 if (VecResTy.isNull())
8578 return QualType();
8579 // The result type must match the condition type as specified in
8580 // OpenCL v1.1 s6.11.6.
8581 if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8582 return QualType();
8583 return VecResTy;
8584 }
8585
8586 // Both operands are scalar.
8587 return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8588}
8589
8590/// Return true if the Expr is block type
8591static bool checkBlockType(Sema &S, const Expr *E) {
8592 if (E->getType()->isBlockPointerType()) {
8593 S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8594 return true;
8595 }
8596
8597 if (const CallExpr *CE = dyn_cast<CallExpr>(Val: E)) {
8598 QualType Ty = CE->getCallee()->getType();
8599 if (Ty->isBlockPointerType()) {
8600 S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8601 return true;
8602 }
8603 }
8604 return false;
8605}
8606
8607/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8608/// In that case, LHS = cond.
8609/// C99 6.5.15
8610QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8611 ExprResult &RHS, ExprValueKind &VK,
8612 ExprObjectKind &OK,
8613 SourceLocation QuestionLoc) {
8614
8615 ExprResult LHSResult = CheckPlaceholderExpr(E: LHS.get());
8616 if (!LHSResult.isUsable()) return QualType();
8617 LHS = LHSResult;
8618
8619 ExprResult RHSResult = CheckPlaceholderExpr(E: RHS.get());
8620 if (!RHSResult.isUsable()) return QualType();
8621 RHS = RHSResult;
8622
8623 // C++ is sufficiently different to merit its own checker.
8624 if (getLangOpts().CPlusPlus)
8625 return CXXCheckConditionalOperands(cond&: Cond, lhs&: LHS, rhs&: RHS, VK, OK, questionLoc: QuestionLoc);
8626
8627 VK = VK_PRValue;
8628 OK = OK_Ordinary;
8629
8630 if (Context.isDependenceAllowed() &&
8631 (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8632 RHS.get()->isTypeDependent())) {
8633 assert(!getLangOpts().CPlusPlus);
8634 assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8635 RHS.get()->containsErrors()) &&
8636 "should only occur in error-recovery path.");
8637 return Context.DependentTy;
8638 }
8639
8640 // The OpenCL operator with a vector condition is sufficiently
8641 // different to merit its own checker.
8642 if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8643 Cond.get()->getType()->isExtVectorType())
8644 return OpenCLCheckVectorConditional(S&: *this, Cond, LHS, RHS, QuestionLoc);
8645
8646 // First, check the condition.
8647 Cond = UsualUnaryConversions(E: Cond.get());
8648 if (Cond.isInvalid())
8649 return QualType();
8650 if (checkCondition(S&: *this, Cond: Cond.get(), QuestionLoc))
8651 return QualType();
8652
8653 // Handle vectors.
8654 if (LHS.get()->getType()->isVectorType() ||
8655 RHS.get()->getType()->isVectorType())
8656 return CheckVectorOperands(LHS, RHS, Loc: QuestionLoc, /*isCompAssign*/ IsCompAssign: false,
8657 /*AllowBothBool*/ true,
8658 /*AllowBoolConversions*/ AllowBoolConversion: false,
8659 /*AllowBooleanOperation*/ AllowBoolOperation: false,
8660 /*ReportInvalid*/ true);
8661
8662 QualType ResTy = UsualArithmeticConversions(LHS, RHS, Loc: QuestionLoc,
8663 ACK: ArithConvKind::Conditional);
8664 if (LHS.isInvalid() || RHS.isInvalid())
8665 return QualType();
8666
8667 // WebAssembly tables are not allowed as conditional LHS or RHS.
8668 QualType LHSTy = LHS.get()->getType();
8669 QualType RHSTy = RHS.get()->getType();
8670 if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) {
8671 Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
8672 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8673 return QualType();
8674 }
8675
8676 // Diagnose attempts to convert between __ibm128, __float128 and long double
8677 // where such conversions currently can't be handled.
8678 if (unsupportedTypeConversion(S: *this, LHSType: LHSTy, RHSType: RHSTy)) {
8679 Diag(QuestionLoc,
8680 diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8681 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8682 return QualType();
8683 }
8684
8685 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8686 // selection operator (?:).
8687 if (getLangOpts().OpenCL &&
8688 ((int)checkBlockType(S&: *this, E: LHS.get()) | (int)checkBlockType(S&: *this, E: RHS.get()))) {
8689 return QualType();
8690 }
8691
8692 // If both operands have arithmetic type, do the usual arithmetic conversions
8693 // to find a common type: C99 6.5.15p3,5.
8694 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8695 // Disallow invalid arithmetic conversions, such as those between bit-
8696 // precise integers types of different sizes, or between a bit-precise
8697 // integer and another type.
8698 if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
8699 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8700 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8701 << RHS.get()->getSourceRange();
8702 return QualType();
8703 }
8704
8705 LHS = ImpCastExprToType(E: LHS.get(), Type: ResTy, CK: PrepareScalarCast(Src&: LHS, DestTy: ResTy));
8706 RHS = ImpCastExprToType(E: RHS.get(), Type: ResTy, CK: PrepareScalarCast(Src&: RHS, DestTy: ResTy));
8707
8708 return ResTy;
8709 }
8710
8711 // If both operands are the same structure or union type, the result is that
8712 // type.
8713 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
8714 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8715 if (LHSRT->getDecl() == RHSRT->getDecl())
8716 // "If both the operands have structure or union type, the result has
8717 // that type." This implies that CV qualifiers are dropped.
8718 return Context.getCommonSugaredType(X: LHSTy.getUnqualifiedType(),
8719 Y: RHSTy.getUnqualifiedType());
8720 // FIXME: Type of conditional expression must be complete in C mode.
8721 }
8722
8723 // C99 6.5.15p5: "If both operands have void type, the result has void type."
8724 // The following || allows only one side to be void (a GCC-ism).
8725 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8726 QualType ResTy;
8727 if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
8728 ResTy = Context.getCommonSugaredType(X: LHSTy, Y: RHSTy);
8729 } else if (RHSTy->isVoidType()) {
8730 ResTy = RHSTy;
8731 Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8732 << RHS.get()->getSourceRange();
8733 } else {
8734 ResTy = LHSTy;
8735 Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8736 << LHS.get()->getSourceRange();
8737 }
8738 LHS = ImpCastExprToType(E: LHS.get(), Type: ResTy, CK: CK_ToVoid);
8739 RHS = ImpCastExprToType(E: RHS.get(), Type: ResTy, CK: CK_ToVoid);
8740 return ResTy;
8741 }
8742
8743 // C23 6.5.15p7:
8744 // ... if both the second and third operands have nullptr_t type, the
8745 // result also has that type.
8746 if (LHSTy->isNullPtrType() && Context.hasSameType(T1: LHSTy, T2: RHSTy))
8747 return ResTy;
8748
8749 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8750 // the type of the other operand."
8751 if (!checkConditionalNullPointer(S&: *this, NullExpr&: RHS, PointerTy: LHSTy)) return LHSTy;
8752 if (!checkConditionalNullPointer(S&: *this, NullExpr&: LHS, PointerTy: RHSTy)) return RHSTy;
8753
8754 // All objective-c pointer type analysis is done here.
8755 QualType compositeType =
8756 ObjC().FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
8757 if (LHS.isInvalid() || RHS.isInvalid())
8758 return QualType();
8759 if (!compositeType.isNull())
8760 return compositeType;
8761
8762
8763 // Handle block pointer types.
8764 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8765 return checkConditionalBlockPointerCompatibility(S&: *this, LHS, RHS,
8766 Loc: QuestionLoc);
8767
8768 // Check constraints for C object pointers types (C99 6.5.15p3,6).
8769 if (LHSTy->isPointerType() && RHSTy->isPointerType())
8770 return checkConditionalObjectPointersCompatibility(S&: *this, LHS, RHS,
8771 Loc: QuestionLoc);
8772
8773 // GCC compatibility: soften pointer/integer mismatch. Note that
8774 // null pointers have been filtered out by this point.
8775 if (checkPointerIntegerMismatch(S&: *this, Int&: LHS, PointerExpr: RHS.get(), Loc: QuestionLoc,
8776 /*IsIntFirstExpr=*/true))
8777 return RHSTy;
8778 if (checkPointerIntegerMismatch(S&: *this, Int&: RHS, PointerExpr: LHS.get(), Loc: QuestionLoc,
8779 /*IsIntFirstExpr=*/false))
8780 return LHSTy;
8781
8782 // Emit a better diagnostic if one of the expressions is a null pointer
8783 // constant and the other is not a pointer type. In this case, the user most
8784 // likely forgot to take the address of the other expression.
8785 if (DiagnoseConditionalForNull(LHSExpr: LHS.get(), RHSExpr: RHS.get(), QuestionLoc))
8786 return QualType();
8787
8788 // Finally, if the LHS and RHS types are canonically the same type, we can
8789 // use the common sugared type.
8790 if (Context.hasSameType(T1: LHSTy, T2: RHSTy))
8791 return Context.getCommonSugaredType(X: LHSTy, Y: RHSTy);
8792
8793 // Otherwise, the operands are not compatible.
8794 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8795 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8796 << RHS.get()->getSourceRange();
8797 return QualType();
8798}
8799
8800/// SuggestParentheses - Emit a note with a fixit hint that wraps
8801/// ParenRange in parentheses.
8802static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8803 const PartialDiagnostic &Note,
8804 SourceRange ParenRange) {
8805 SourceLocation EndLoc = Self.getLocForEndOfToken(Loc: ParenRange.getEnd());
8806 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8807 EndLoc.isValid()) {
8808 Self.Diag(Loc, Note)
8809 << FixItHint::CreateInsertion(InsertionLoc: ParenRange.getBegin(), Code: "(")
8810 << FixItHint::CreateInsertion(InsertionLoc: EndLoc, Code: ")");
8811 } else {
8812 // We can't display the parentheses, so just show the bare note.
8813 Self.Diag(Loc, Note) << ParenRange;
8814 }
8815}
8816
8817static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8818 return BinaryOperator::isAdditiveOp(Opc) ||
8819 BinaryOperator::isMultiplicativeOp(Opc) ||
8820 BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8821 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8822 // not any of the logical operators. Bitwise-xor is commonly used as a
8823 // logical-xor because there is no logical-xor operator. The logical
8824 // operators, including uses of xor, have a high false positive rate for
8825 // precedence warnings.
8826}
8827
8828/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8829/// expression, either using a built-in or overloaded operator,
8830/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8831/// expression.
8832static bool IsArithmeticBinaryExpr(const Expr *E, BinaryOperatorKind *Opcode,
8833 const Expr **RHSExprs) {
8834 // Don't strip parenthesis: we should not warn if E is in parenthesis.
8835 E = E->IgnoreImpCasts();
8836 E = E->IgnoreConversionOperatorSingleStep();
8837 E = E->IgnoreImpCasts();
8838 if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E)) {
8839 E = MTE->getSubExpr();
8840 E = E->IgnoreImpCasts();
8841 }
8842
8843 // Built-in binary operator.
8844 if (const auto *OP = dyn_cast<BinaryOperator>(Val: E);
8845 OP && IsArithmeticOp(Opc: OP->getOpcode())) {
8846 *Opcode = OP->getOpcode();
8847 *RHSExprs = OP->getRHS();
8848 return true;
8849 }
8850
8851 // Overloaded operator.
8852 if (const auto *Call = dyn_cast<CXXOperatorCallExpr>(Val: E)) {
8853 if (Call->getNumArgs() != 2)
8854 return false;
8855
8856 // Make sure this is really a binary operator that is safe to pass into
8857 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8858 OverloadedOperatorKind OO = Call->getOperator();
8859 if (OO < OO_Plus || OO > OO_Arrow ||
8860 OO == OO_PlusPlus || OO == OO_MinusMinus)
8861 return false;
8862
8863 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8864 if (IsArithmeticOp(Opc: OpKind)) {
8865 *Opcode = OpKind;
8866 *RHSExprs = Call->getArg(1);
8867 return true;
8868 }
8869 }
8870
8871 return false;
8872}
8873
8874/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8875/// or is a logical expression such as (x==y) which has int type, but is
8876/// commonly interpreted as boolean.
8877static bool ExprLooksBoolean(const Expr *E) {
8878 E = E->IgnoreParenImpCasts();
8879
8880 if (E->getType()->isBooleanType())
8881 return true;
8882 if (const auto *OP = dyn_cast<BinaryOperator>(Val: E))
8883 return OP->isComparisonOp() || OP->isLogicalOp();
8884 if (const auto *OP = dyn_cast<UnaryOperator>(Val: E))
8885 return OP->getOpcode() == UO_LNot;
8886 if (E->getType()->isPointerType())
8887 return true;
8888 // FIXME: What about overloaded operator calls returning "unspecified boolean
8889 // type"s (commonly pointer-to-members)?
8890
8891 return false;
8892}
8893
8894/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8895/// and binary operator are mixed in a way that suggests the programmer assumed
8896/// the conditional operator has higher precedence, for example:
8897/// "int x = a + someBinaryCondition ? 1 : 2".
8898static void DiagnoseConditionalPrecedence(Sema &Self, SourceLocation OpLoc,
8899 Expr *Condition, const Expr *LHSExpr,
8900 const Expr *RHSExpr) {
8901 BinaryOperatorKind CondOpcode;
8902 const Expr *CondRHS;
8903
8904 if (!IsArithmeticBinaryExpr(E: Condition, Opcode: &CondOpcode, RHSExprs: &CondRHS))
8905 return;
8906 if (!ExprLooksBoolean(E: CondRHS))
8907 return;
8908
8909 // The condition is an arithmetic binary expression, with a right-
8910 // hand side that looks boolean, so warn.
8911
8912 unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
8913 ? diag::warn_precedence_bitwise_conditional
8914 : diag::warn_precedence_conditional;
8915
8916 Self.Diag(OpLoc, DiagID)
8917 << Condition->getSourceRange()
8918 << BinaryOperator::getOpcodeStr(Op: CondOpcode);
8919
8920 SuggestParentheses(
8921 Self, OpLoc,
8922 Self.PDiag(diag::note_precedence_silence)
8923 << BinaryOperator::getOpcodeStr(CondOpcode),
8924 SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8925
8926 SuggestParentheses(Self, OpLoc,
8927 Self.PDiag(diag::note_precedence_conditional_first),
8928 SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8929}
8930
8931/// Compute the nullability of a conditional expression.
8932static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8933 QualType LHSTy, QualType RHSTy,
8934 ASTContext &Ctx) {
8935 if (!ResTy->isAnyPointerType())
8936 return ResTy;
8937
8938 auto GetNullability = [](QualType Ty) {
8939 std::optional<NullabilityKind> Kind = Ty->getNullability();
8940 if (Kind) {
8941 // For our purposes, treat _Nullable_result as _Nullable.
8942 if (*Kind == NullabilityKind::NullableResult)
8943 return NullabilityKind::Nullable;
8944 return *Kind;
8945 }
8946 return NullabilityKind::Unspecified;
8947 };
8948
8949 auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8950 NullabilityKind MergedKind;
8951
8952 // Compute nullability of a binary conditional expression.
8953 if (IsBin) {
8954 if (LHSKind == NullabilityKind::NonNull)
8955 MergedKind = NullabilityKind::NonNull;
8956 else
8957 MergedKind = RHSKind;
8958 // Compute nullability of a normal conditional expression.
8959 } else {
8960 if (LHSKind == NullabilityKind::Nullable ||
8961 RHSKind == NullabilityKind::Nullable)
8962 MergedKind = NullabilityKind::Nullable;
8963 else if (LHSKind == NullabilityKind::NonNull)
8964 MergedKind = RHSKind;
8965 else if (RHSKind == NullabilityKind::NonNull)
8966 MergedKind = LHSKind;
8967 else
8968 MergedKind = NullabilityKind::Unspecified;
8969 }
8970
8971 // Return if ResTy already has the correct nullability.
8972 if (GetNullability(ResTy) == MergedKind)
8973 return ResTy;
8974
8975 // Strip all nullability from ResTy.
8976 while (ResTy->getNullability())
8977 ResTy = ResTy.getSingleStepDesugaredType(Context: Ctx);
8978
8979 // Create a new AttributedType with the new nullability kind.
8980 return Ctx.getAttributedType(nullability: MergedKind, modifiedType: ResTy, equivalentType: ResTy);
8981}
8982
8983ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8984 SourceLocation ColonLoc,
8985 Expr *CondExpr, Expr *LHSExpr,
8986 Expr *RHSExpr) {
8987 if (!Context.isDependenceAllowed()) {
8988 // C cannot handle TypoExpr nodes in the condition because it
8989 // doesn't handle dependent types properly, so make sure any TypoExprs have
8990 // been dealt with before checking the operands.
8991 ExprResult CondResult = CorrectDelayedTyposInExpr(E: CondExpr);
8992 ExprResult LHSResult = CorrectDelayedTyposInExpr(E: LHSExpr);
8993 ExprResult RHSResult = CorrectDelayedTyposInExpr(E: RHSExpr);
8994
8995 if (!CondResult.isUsable())
8996 return ExprError();
8997
8998 if (LHSExpr) {
8999 if (!LHSResult.isUsable())
9000 return ExprError();
9001 }
9002
9003 if (!RHSResult.isUsable())
9004 return ExprError();
9005
9006 CondExpr = CondResult.get();
9007 LHSExpr = LHSResult.get();
9008 RHSExpr = RHSResult.get();
9009 }
9010
9011 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9012 // was the condition.
9013 OpaqueValueExpr *opaqueValue = nullptr;
9014 Expr *commonExpr = nullptr;
9015 if (!LHSExpr) {
9016 commonExpr = CondExpr;
9017 // Lower out placeholder types first. This is important so that we don't
9018 // try to capture a placeholder. This happens in few cases in C++; such
9019 // as Objective-C++'s dictionary subscripting syntax.
9020 if (commonExpr->hasPlaceholderType()) {
9021 ExprResult result = CheckPlaceholderExpr(E: commonExpr);
9022 if (!result.isUsable()) return ExprError();
9023 commonExpr = result.get();
9024 }
9025 // We usually want to apply unary conversions *before* saving, except
9026 // in the special case of a C++ l-value conditional.
9027 if (!(getLangOpts().CPlusPlus
9028 && !commonExpr->isTypeDependent()
9029 && commonExpr->getValueKind() == RHSExpr->getValueKind()
9030 && commonExpr->isGLValue()
9031 && commonExpr->isOrdinaryOrBitFieldObject()
9032 && RHSExpr->isOrdinaryOrBitFieldObject()
9033 && Context.hasSameType(T1: commonExpr->getType(), T2: RHSExpr->getType()))) {
9034 ExprResult commonRes = UsualUnaryConversions(E: commonExpr);
9035 if (commonRes.isInvalid())
9036 return ExprError();
9037 commonExpr = commonRes.get();
9038 }
9039
9040 // If the common expression is a class or array prvalue, materialize it
9041 // so that we can safely refer to it multiple times.
9042 if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
9043 commonExpr->getType()->isArrayType())) {
9044 ExprResult MatExpr = TemporaryMaterializationConversion(E: commonExpr);
9045 if (MatExpr.isInvalid())
9046 return ExprError();
9047 commonExpr = MatExpr.get();
9048 }
9049
9050 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
9051 commonExpr->getType(),
9052 commonExpr->getValueKind(),
9053 commonExpr->getObjectKind(),
9054 commonExpr);
9055 LHSExpr = CondExpr = opaqueValue;
9056 }
9057
9058 QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
9059 ExprValueKind VK = VK_PRValue;
9060 ExprObjectKind OK = OK_Ordinary;
9061 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
9062 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
9063 VK, OK, QuestionLoc);
9064 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
9065 RHS.isInvalid())
9066 return ExprError();
9067
9068 DiagnoseConditionalPrecedence(Self&: *this, OpLoc: QuestionLoc, Condition: Cond.get(), LHSExpr: LHS.get(),
9069 RHSExpr: RHS.get());
9070
9071 CheckBoolLikeConversion(E: Cond.get(), CC: QuestionLoc);
9072
9073 result = computeConditionalNullability(ResTy: result, IsBin: commonExpr, LHSTy, RHSTy,
9074 Ctx&: Context);
9075
9076 if (!commonExpr)
9077 return new (Context)
9078 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
9079 RHS.get(), result, VK, OK);
9080
9081 return new (Context) BinaryConditionalOperator(
9082 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
9083 ColonLoc, result, VK, OK);
9084}
9085
9086bool Sema::IsInvalidSMECallConversion(QualType FromType, QualType ToType) {
9087 unsigned FromAttributes = 0, ToAttributes = 0;
9088 if (const auto *FromFn =
9089 dyn_cast<FunctionProtoType>(Val: Context.getCanonicalType(T: FromType)))
9090 FromAttributes =
9091 FromFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
9092 if (const auto *ToFn =
9093 dyn_cast<FunctionProtoType>(Val: Context.getCanonicalType(T: ToType)))
9094 ToAttributes =
9095 ToFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
9096
9097 return FromAttributes != ToAttributes;
9098}
9099
9100// Check if we have a conversion between incompatible cmse function pointer
9101// types, that is, a conversion between a function pointer with the
9102// cmse_nonsecure_call attribute and one without.
9103static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
9104 QualType ToType) {
9105 if (const auto *ToFn =
9106 dyn_cast<FunctionType>(Val: S.Context.getCanonicalType(T: ToType))) {
9107 if (const auto *FromFn =
9108 dyn_cast<FunctionType>(Val: S.Context.getCanonicalType(T: FromType))) {
9109 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
9110 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
9111
9112 return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
9113 }
9114 }
9115 return false;
9116}
9117
9118// checkPointerTypesForAssignment - This is a very tricky routine (despite
9119// being closely modeled after the C99 spec:-). The odd characteristic of this
9120// routine is it effectively iqnores the qualifiers on the top level pointee.
9121// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9122// FIXME: add a couple examples in this comment.
9123static AssignConvertType checkPointerTypesForAssignment(Sema &S,
9124 QualType LHSType,
9125 QualType RHSType,
9126 SourceLocation Loc) {
9127 assert(LHSType.isCanonical() && "LHS not canonicalized!");
9128 assert(RHSType.isCanonical() && "RHS not canonicalized!");
9129
9130 // get the "pointed to" type (ignoring qualifiers at the top level)
9131 const Type *lhptee, *rhptee;
9132 Qualifiers lhq, rhq;
9133 std::tie(args&: lhptee, args&: lhq) =
9134 cast<PointerType>(Val&: LHSType)->getPointeeType().split().asPair();
9135 std::tie(args&: rhptee, args&: rhq) =
9136 cast<PointerType>(Val&: RHSType)->getPointeeType().split().asPair();
9137
9138 AssignConvertType ConvTy = AssignConvertType::Compatible;
9139
9140 // C99 6.5.16.1p1: This following citation is common to constraints
9141 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9142 // qualifiers of the type *pointed to* by the right;
9143
9144 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9145 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9146 lhq.compatiblyIncludesObjCLifetime(other: rhq)) {
9147 // Ignore lifetime for further calculation.
9148 lhq.removeObjCLifetime();
9149 rhq.removeObjCLifetime();
9150 }
9151
9152 if (!lhq.compatiblyIncludes(other: rhq, Ctx: S.getASTContext())) {
9153 // Treat address-space mismatches as fatal.
9154 if (!lhq.isAddressSpaceSupersetOf(other: rhq, Ctx: S.getASTContext()))
9155 return AssignConvertType::IncompatiblePointerDiscardsQualifiers;
9156
9157 // It's okay to add or remove GC or lifetime qualifiers when converting to
9158 // and from void*.
9159 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime().compatiblyIncludes(
9160 other: rhq.withoutObjCGCAttr().withoutObjCLifetime(),
9161 Ctx: S.getASTContext()) &&
9162 (lhptee->isVoidType() || rhptee->isVoidType()))
9163 ; // keep old
9164
9165 // Treat lifetime mismatches as fatal.
9166 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9167 ConvTy = AssignConvertType::IncompatiblePointerDiscardsQualifiers;
9168
9169 // Treat pointer-auth mismatches as fatal.
9170 else if (!lhq.getPointerAuth().isEquivalent(Other: rhq.getPointerAuth()))
9171 ConvTy = AssignConvertType::IncompatiblePointerDiscardsQualifiers;
9172
9173 // For GCC/MS compatibility, other qualifier mismatches are treated
9174 // as still compatible in C.
9175 else
9176 ConvTy = AssignConvertType::CompatiblePointerDiscardsQualifiers;
9177 }
9178
9179 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9180 // incomplete type and the other is a pointer to a qualified or unqualified
9181 // version of void...
9182 if (lhptee->isVoidType()) {
9183 if (rhptee->isIncompleteOrObjectType())
9184 return ConvTy;
9185
9186 // As an extension, we allow cast to/from void* to function pointer.
9187 assert(rhptee->isFunctionType());
9188 return AssignConvertType::FunctionVoidPointer;
9189 }
9190
9191 if (rhptee->isVoidType()) {
9192 // In C, void * to another pointer type is compatible, but we want to note
9193 // that there will be an implicit conversion happening here.
9194 if (lhptee->isIncompleteOrObjectType())
9195 return ConvTy == AssignConvertType::Compatible &&
9196 !S.getLangOpts().CPlusPlus
9197 ? AssignConvertType::CompatibleVoidPtrToNonVoidPtr
9198 : ConvTy;
9199
9200 // As an extension, we allow cast to/from void* to function pointer.
9201 assert(lhptee->isFunctionType());
9202 return AssignConvertType::FunctionVoidPointer;
9203 }
9204
9205 if (!S.Diags.isIgnored(
9206 diag::warn_typecheck_convert_incompatible_function_pointer_strict,
9207 Loc) &&
9208 RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
9209 !S.TryFunctionConversion(RHSType, LHSType, RHSType))
9210 return AssignConvertType::IncompatibleFunctionPointerStrict;
9211
9212 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9213 // unqualified versions of compatible types, ...
9214 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9215 if (!S.Context.typesAreCompatible(T1: ltrans, T2: rtrans)) {
9216 // Check if the pointee types are compatible ignoring the sign.
9217 // We explicitly check for char so that we catch "char" vs
9218 // "unsigned char" on systems where "char" is unsigned.
9219 if (lhptee->isCharType())
9220 ltrans = S.Context.UnsignedCharTy;
9221 else if (lhptee->hasSignedIntegerRepresentation())
9222 ltrans = S.Context.getCorrespondingUnsignedType(T: ltrans);
9223
9224 if (rhptee->isCharType())
9225 rtrans = S.Context.UnsignedCharTy;
9226 else if (rhptee->hasSignedIntegerRepresentation())
9227 rtrans = S.Context.getCorrespondingUnsignedType(T: rtrans);
9228
9229 if (ltrans == rtrans) {
9230 // Types are compatible ignoring the sign. Qualifier incompatibility
9231 // takes priority over sign incompatibility because the sign
9232 // warning can be disabled.
9233 if (!S.IsAssignConvertCompatible(ConvTy))
9234 return ConvTy;
9235
9236 return AssignConvertType::IncompatiblePointerSign;
9237 }
9238
9239 // If we are a multi-level pointer, it's possible that our issue is simply
9240 // one of qualification - e.g. char ** -> const char ** is not allowed. If
9241 // the eventual target type is the same and the pointers have the same
9242 // level of indirection, this must be the issue.
9243 if (isa<PointerType>(Val: lhptee) && isa<PointerType>(Val: rhptee)) {
9244 do {
9245 std::tie(args&: lhptee, args&: lhq) =
9246 cast<PointerType>(Val: lhptee)->getPointeeType().split().asPair();
9247 std::tie(args&: rhptee, args&: rhq) =
9248 cast<PointerType>(Val: rhptee)->getPointeeType().split().asPair();
9249
9250 // Inconsistent address spaces at this point is invalid, even if the
9251 // address spaces would be compatible.
9252 // FIXME: This doesn't catch address space mismatches for pointers of
9253 // different nesting levels, like:
9254 // __local int *** a;
9255 // int ** b = a;
9256 // It's not clear how to actually determine when such pointers are
9257 // invalidly incompatible.
9258 if (lhq.getAddressSpace() != rhq.getAddressSpace())
9259 return AssignConvertType::
9260 IncompatibleNestedPointerAddressSpaceMismatch;
9261
9262 } while (isa<PointerType>(Val: lhptee) && isa<PointerType>(Val: rhptee));
9263
9264 if (lhptee == rhptee)
9265 return AssignConvertType::IncompatibleNestedPointerQualifiers;
9266 }
9267
9268 // General pointer incompatibility takes priority over qualifiers.
9269 if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9270 return AssignConvertType::IncompatibleFunctionPointer;
9271 return AssignConvertType::IncompatiblePointer;
9272 }
9273 bool DiscardingCFIUncheckedCallee, AddingCFIUncheckedCallee;
9274 if (!S.getLangOpts().CPlusPlus &&
9275 S.IsFunctionConversion(FromType: ltrans, ToType: rtrans, DiscardingCFIUncheckedCallee: &DiscardingCFIUncheckedCallee,
9276 AddingCFIUncheckedCallee: &AddingCFIUncheckedCallee)) {
9277 // Allow conversions between CFIUncheckedCallee-ness.
9278 if (!DiscardingCFIUncheckedCallee && !AddingCFIUncheckedCallee)
9279 return AssignConvertType::IncompatibleFunctionPointer;
9280 }
9281 if (IsInvalidCmseNSCallConversion(S, FromType: ltrans, ToType: rtrans))
9282 return AssignConvertType::IncompatibleFunctionPointer;
9283 if (S.IsInvalidSMECallConversion(FromType: rtrans, ToType: ltrans))
9284 return AssignConvertType::IncompatibleFunctionPointer;
9285 return ConvTy;
9286}
9287
9288/// checkBlockPointerTypesForAssignment - This routine determines whether two
9289/// block pointer types are compatible or whether a block and normal pointer
9290/// are compatible. It is more restrict than comparing two function pointer
9291// types.
9292static AssignConvertType checkBlockPointerTypesForAssignment(Sema &S,
9293 QualType LHSType,
9294 QualType RHSType) {
9295 assert(LHSType.isCanonical() && "LHS not canonicalized!");
9296 assert(RHSType.isCanonical() && "RHS not canonicalized!");
9297
9298 QualType lhptee, rhptee;
9299
9300 // get the "pointed to" type (ignoring qualifiers at the top level)
9301 lhptee = cast<BlockPointerType>(Val&: LHSType)->getPointeeType();
9302 rhptee = cast<BlockPointerType>(Val&: RHSType)->getPointeeType();
9303
9304 // In C++, the types have to match exactly.
9305 if (S.getLangOpts().CPlusPlus)
9306 return AssignConvertType::IncompatibleBlockPointer;
9307
9308 AssignConvertType ConvTy = AssignConvertType::Compatible;
9309
9310 // For blocks we enforce that qualifiers are identical.
9311 Qualifiers LQuals = lhptee.getLocalQualifiers();
9312 Qualifiers RQuals = rhptee.getLocalQualifiers();
9313 if (S.getLangOpts().OpenCL) {
9314 LQuals.removeAddressSpace();
9315 RQuals.removeAddressSpace();
9316 }
9317 if (LQuals != RQuals)
9318 ConvTy = AssignConvertType::CompatiblePointerDiscardsQualifiers;
9319
9320 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9321 // assignment.
9322 // The current behavior is similar to C++ lambdas. A block might be
9323 // assigned to a variable iff its return type and parameters are compatible
9324 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9325 // an assignment. Presumably it should behave in way that a function pointer
9326 // assignment does in C, so for each parameter and return type:
9327 // * CVR and address space of LHS should be a superset of CVR and address
9328 // space of RHS.
9329 // * unqualified types should be compatible.
9330 if (S.getLangOpts().OpenCL) {
9331 if (!S.Context.typesAreBlockPointerCompatible(
9332 S.Context.getQualifiedType(T: LHSType.getUnqualifiedType(), Qs: LQuals),
9333 S.Context.getQualifiedType(T: RHSType.getUnqualifiedType(), Qs: RQuals)))
9334 return AssignConvertType::IncompatibleBlockPointer;
9335 } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9336 return AssignConvertType::IncompatibleBlockPointer;
9337
9338 return ConvTy;
9339}
9340
9341/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9342/// for assignment compatibility.
9343static AssignConvertType checkObjCPointerTypesForAssignment(Sema &S,
9344 QualType LHSType,
9345 QualType RHSType) {
9346 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9347 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9348
9349 if (LHSType->isObjCBuiltinType()) {
9350 // Class is not compatible with ObjC object pointers.
9351 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9352 !RHSType->isObjCQualifiedClassType())
9353 return AssignConvertType::IncompatiblePointer;
9354 return AssignConvertType::Compatible;
9355 }
9356 if (RHSType->isObjCBuiltinType()) {
9357 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9358 !LHSType->isObjCQualifiedClassType())
9359 return AssignConvertType::IncompatiblePointer;
9360 return AssignConvertType::Compatible;
9361 }
9362 QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9363 QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9364
9365 if (!lhptee.isAtLeastAsQualifiedAs(other: rhptee, Ctx: S.getASTContext()) &&
9366 // make an exception for id<P>
9367 !LHSType->isObjCQualifiedIdType())
9368 return AssignConvertType::CompatiblePointerDiscardsQualifiers;
9369
9370 if (S.Context.typesAreCompatible(T1: LHSType, T2: RHSType))
9371 return AssignConvertType::Compatible;
9372 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9373 return AssignConvertType::IncompatibleObjCQualifiedId;
9374 return AssignConvertType::IncompatiblePointer;
9375}
9376
9377AssignConvertType Sema::CheckAssignmentConstraints(SourceLocation Loc,
9378 QualType LHSType,
9379 QualType RHSType) {
9380 // Fake up an opaque expression. We don't actually care about what
9381 // cast operations are required, so if CheckAssignmentConstraints
9382 // adds casts to this they'll be wasted, but fortunately that doesn't
9383 // usually happen on valid code.
9384 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9385 ExprResult RHSPtr = &RHSExpr;
9386 CastKind K;
9387
9388 return CheckAssignmentConstraints(LHSType, RHS&: RHSPtr, Kind&: K, /*ConvertRHS=*/false);
9389}
9390
9391/// This helper function returns true if QT is a vector type that has element
9392/// type ElementType.
9393static bool isVector(QualType QT, QualType ElementType) {
9394 if (const VectorType *VT = QT->getAs<VectorType>())
9395 return VT->getElementType().getCanonicalType() == ElementType;
9396 return false;
9397}
9398
9399/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9400/// has code to accommodate several GCC extensions when type checking
9401/// pointers. Here are some objectionable examples that GCC considers warnings:
9402///
9403/// int a, *pint;
9404/// short *pshort;
9405/// struct foo *pfoo;
9406///
9407/// pint = pshort; // warning: assignment from incompatible pointer type
9408/// a = pint; // warning: assignment makes integer from pointer without a cast
9409/// pint = a; // warning: assignment makes pointer from integer without a cast
9410/// pint = pfoo; // warning: assignment from incompatible pointer type
9411///
9412/// As a result, the code for dealing with pointers is more complex than the
9413/// C99 spec dictates.
9414///
9415/// Sets 'Kind' for any result kind except Incompatible.
9416AssignConvertType Sema::CheckAssignmentConstraints(QualType LHSType,
9417 ExprResult &RHS,
9418 CastKind &Kind,
9419 bool ConvertRHS) {
9420 QualType RHSType = RHS.get()->getType();
9421 QualType OrigLHSType = LHSType;
9422
9423 // Get canonical types. We're not formatting these types, just comparing
9424 // them.
9425 LHSType = Context.getCanonicalType(T: LHSType).getUnqualifiedType();
9426 RHSType = Context.getCanonicalType(T: RHSType).getUnqualifiedType();
9427
9428 // Common case: no conversion required.
9429 if (LHSType == RHSType) {
9430 Kind = CK_NoOp;
9431 return AssignConvertType::Compatible;
9432 }
9433
9434 // If the LHS has an __auto_type, there are no additional type constraints
9435 // to be worried about.
9436 if (const auto *AT = dyn_cast<AutoType>(Val&: LHSType)) {
9437 if (AT->isGNUAutoType()) {
9438 Kind = CK_NoOp;
9439 return AssignConvertType::Compatible;
9440 }
9441 }
9442
9443 // If we have an atomic type, try a non-atomic assignment, then just add an
9444 // atomic qualification step.
9445 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(Val&: LHSType)) {
9446 AssignConvertType result =
9447 CheckAssignmentConstraints(LHSType: AtomicTy->getValueType(), RHS, Kind);
9448 if (result != AssignConvertType::Compatible)
9449 return result;
9450 if (Kind != CK_NoOp && ConvertRHS)
9451 RHS = ImpCastExprToType(E: RHS.get(), Type: AtomicTy->getValueType(), CK: Kind);
9452 Kind = CK_NonAtomicToAtomic;
9453 return AssignConvertType::Compatible;
9454 }
9455
9456 // If the left-hand side is a reference type, then we are in a
9457 // (rare!) case where we've allowed the use of references in C,
9458 // e.g., as a parameter type in a built-in function. In this case,
9459 // just make sure that the type referenced is compatible with the
9460 // right-hand side type. The caller is responsible for adjusting
9461 // LHSType so that the resulting expression does not have reference
9462 // type.
9463 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9464 if (Context.typesAreCompatible(T1: LHSTypeRef->getPointeeType(), T2: RHSType)) {
9465 Kind = CK_LValueBitCast;
9466 return AssignConvertType::Compatible;
9467 }
9468 return AssignConvertType::Incompatible;
9469 }
9470
9471 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9472 // to the same ExtVector type.
9473 if (LHSType->isExtVectorType()) {
9474 if (RHSType->isExtVectorType())
9475 return AssignConvertType::Incompatible;
9476 if (RHSType->isArithmeticType()) {
9477 // CK_VectorSplat does T -> vector T, so first cast to the element type.
9478 if (ConvertRHS)
9479 RHS = prepareVectorSplat(VectorTy: LHSType, SplattedExpr: RHS.get());
9480 Kind = CK_VectorSplat;
9481 return AssignConvertType::Compatible;
9482 }
9483 }
9484
9485 // Conversions to or from vector type.
9486 if (LHSType->isVectorType() || RHSType->isVectorType()) {
9487 if (LHSType->isVectorType() && RHSType->isVectorType()) {
9488 // Allow assignments of an AltiVec vector type to an equivalent GCC
9489 // vector type and vice versa
9490 if (Context.areCompatibleVectorTypes(FirstVec: LHSType, SecondVec: RHSType)) {
9491 Kind = CK_BitCast;
9492 return AssignConvertType::Compatible;
9493 }
9494
9495 // If we are allowing lax vector conversions, and LHS and RHS are both
9496 // vectors, the total size only needs to be the same. This is a bitcast;
9497 // no bits are changed but the result type is different.
9498 if (isLaxVectorConversion(srcTy: RHSType, destTy: LHSType)) {
9499 // The default for lax vector conversions with Altivec vectors will
9500 // change, so if we are converting between vector types where
9501 // at least one is an Altivec vector, emit a warning.
9502 if (Context.getTargetInfo().getTriple().isPPC() &&
9503 anyAltivecTypes(RHSType, LHSType) &&
9504 !Context.areCompatibleVectorTypes(RHSType, LHSType))
9505 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9506 << RHSType << LHSType;
9507 Kind = CK_BitCast;
9508 return AssignConvertType::IncompatibleVectors;
9509 }
9510 }
9511
9512 // When the RHS comes from another lax conversion (e.g. binops between
9513 // scalars and vectors) the result is canonicalized as a vector. When the
9514 // LHS is also a vector, the lax is allowed by the condition above. Handle
9515 // the case where LHS is a scalar.
9516 if (LHSType->isScalarType()) {
9517 const VectorType *VecType = RHSType->getAs<VectorType>();
9518 if (VecType && VecType->getNumElements() == 1 &&
9519 isLaxVectorConversion(srcTy: RHSType, destTy: LHSType)) {
9520 if (Context.getTargetInfo().getTriple().isPPC() &&
9521 (VecType->getVectorKind() == VectorKind::AltiVecVector ||
9522 VecType->getVectorKind() == VectorKind::AltiVecBool ||
9523 VecType->getVectorKind() == VectorKind::AltiVecPixel))
9524 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9525 << RHSType << LHSType;
9526 ExprResult *VecExpr = &RHS;
9527 *VecExpr = ImpCastExprToType(E: VecExpr->get(), Type: LHSType, CK: CK_BitCast);
9528 Kind = CK_BitCast;
9529 return AssignConvertType::Compatible;
9530 }
9531 }
9532
9533 // Allow assignments between fixed-length and sizeless SVE vectors.
9534 if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) ||
9535 (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType()))
9536 if (Context.areCompatibleSveTypes(FirstType: LHSType, SecondType: RHSType) ||
9537 Context.areLaxCompatibleSveTypes(FirstType: LHSType, SecondType: RHSType)) {
9538 Kind = CK_BitCast;
9539 return AssignConvertType::Compatible;
9540 }
9541
9542 // Allow assignments between fixed-length and sizeless RVV vectors.
9543 if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) ||
9544 (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) {
9545 if (Context.areCompatibleRVVTypes(FirstType: LHSType, SecondType: RHSType) ||
9546 Context.areLaxCompatibleRVVTypes(FirstType: LHSType, SecondType: RHSType)) {
9547 Kind = CK_BitCast;
9548 return AssignConvertType::Compatible;
9549 }
9550 }
9551
9552 return AssignConvertType::Incompatible;
9553 }
9554
9555 // Diagnose attempts to convert between __ibm128, __float128 and long double
9556 // where such conversions currently can't be handled.
9557 if (unsupportedTypeConversion(S: *this, LHSType, RHSType))
9558 return AssignConvertType::Incompatible;
9559
9560 // Disallow assigning a _Complex to a real type in C++ mode since it simply
9561 // discards the imaginary part.
9562 if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9563 !LHSType->getAs<ComplexType>())
9564 return AssignConvertType::Incompatible;
9565
9566 // Arithmetic conversions.
9567 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9568 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9569 if (ConvertRHS)
9570 Kind = PrepareScalarCast(Src&: RHS, DestTy: LHSType);
9571 return AssignConvertType::Compatible;
9572 }
9573
9574 // Conversions to normal pointers.
9575 if (const PointerType *LHSPointer = dyn_cast<PointerType>(Val&: LHSType)) {
9576 // U* -> T*
9577 if (isa<PointerType>(Val: RHSType)) {
9578 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9579 LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9580 if (AddrSpaceL != AddrSpaceR)
9581 Kind = CK_AddressSpaceConversion;
9582 else if (Context.hasCvrSimilarType(T1: RHSType, T2: LHSType))
9583 Kind = CK_NoOp;
9584 else
9585 Kind = CK_BitCast;
9586 return checkPointerTypesForAssignment(*this, LHSType, RHSType,
9587 RHS.get()->getBeginLoc());
9588 }
9589
9590 // int -> T*
9591 if (RHSType->isIntegerType()) {
9592 Kind = CK_IntegralToPointer; // FIXME: null?
9593 return AssignConvertType::IntToPointer;
9594 }
9595
9596 // C pointers are not compatible with ObjC object pointers,
9597 // with two exceptions:
9598 if (isa<ObjCObjectPointerType>(Val: RHSType)) {
9599 // - conversions to void*
9600 if (LHSPointer->getPointeeType()->isVoidType()) {
9601 Kind = CK_BitCast;
9602 return AssignConvertType::Compatible;
9603 }
9604
9605 // - conversions from 'Class' to the redefinition type
9606 if (RHSType->isObjCClassType() &&
9607 Context.hasSameType(T1: LHSType,
9608 T2: Context.getObjCClassRedefinitionType())) {
9609 Kind = CK_BitCast;
9610 return AssignConvertType::Compatible;
9611 }
9612
9613 Kind = CK_BitCast;
9614 return AssignConvertType::IncompatiblePointer;
9615 }
9616
9617 // U^ -> void*
9618 if (RHSType->getAs<BlockPointerType>()) {
9619 if (LHSPointer->getPointeeType()->isVoidType()) {
9620 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9621 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9622 ->getPointeeType()
9623 .getAddressSpace();
9624 Kind =
9625 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9626 return AssignConvertType::Compatible;
9627 }
9628 }
9629
9630 return AssignConvertType::Incompatible;
9631 }
9632
9633 // Conversions to block pointers.
9634 if (isa<BlockPointerType>(Val: LHSType)) {
9635 // U^ -> T^
9636 if (RHSType->isBlockPointerType()) {
9637 LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9638 ->getPointeeType()
9639 .getAddressSpace();
9640 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9641 ->getPointeeType()
9642 .getAddressSpace();
9643 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9644 return checkBlockPointerTypesForAssignment(S&: *this, LHSType, RHSType);
9645 }
9646
9647 // int or null -> T^
9648 if (RHSType->isIntegerType()) {
9649 Kind = CK_IntegralToPointer; // FIXME: null
9650 return AssignConvertType::IntToBlockPointer;
9651 }
9652
9653 // id -> T^
9654 if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9655 Kind = CK_AnyPointerToBlockPointerCast;
9656 return AssignConvertType::Compatible;
9657 }
9658
9659 // void* -> T^
9660 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9661 if (RHSPT->getPointeeType()->isVoidType()) {
9662 Kind = CK_AnyPointerToBlockPointerCast;
9663 return AssignConvertType::Compatible;
9664 }
9665
9666 return AssignConvertType::Incompatible;
9667 }
9668
9669 // Conversions to Objective-C pointers.
9670 if (isa<ObjCObjectPointerType>(Val: LHSType)) {
9671 // A* -> B*
9672 if (RHSType->isObjCObjectPointerType()) {
9673 Kind = CK_BitCast;
9674 AssignConvertType result =
9675 checkObjCPointerTypesForAssignment(S&: *this, LHSType, RHSType);
9676 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9677 result == AssignConvertType::Compatible &&
9678 !ObjC().CheckObjCARCUnavailableWeakConversion(castType: OrigLHSType, ExprType: RHSType))
9679 result = AssignConvertType::IncompatibleObjCWeakRef;
9680 return result;
9681 }
9682
9683 // int or null -> A*
9684 if (RHSType->isIntegerType()) {
9685 Kind = CK_IntegralToPointer; // FIXME: null
9686 return AssignConvertType::IntToPointer;
9687 }
9688
9689 // In general, C pointers are not compatible with ObjC object pointers,
9690 // with two exceptions:
9691 if (isa<PointerType>(Val: RHSType)) {
9692 Kind = CK_CPointerToObjCPointerCast;
9693
9694 // - conversions from 'void*'
9695 if (RHSType->isVoidPointerType()) {
9696 return AssignConvertType::Compatible;
9697 }
9698
9699 // - conversions to 'Class' from its redefinition type
9700 if (LHSType->isObjCClassType() &&
9701 Context.hasSameType(T1: RHSType,
9702 T2: Context.getObjCClassRedefinitionType())) {
9703 return AssignConvertType::Compatible;
9704 }
9705
9706 return AssignConvertType::IncompatiblePointer;
9707 }
9708
9709 // Only under strict condition T^ is compatible with an Objective-C pointer.
9710 if (RHSType->isBlockPointerType() &&
9711 LHSType->isBlockCompatibleObjCPointerType(ctx&: Context)) {
9712 if (ConvertRHS)
9713 maybeExtendBlockObject(E&: RHS);
9714 Kind = CK_BlockPointerToObjCPointerCast;
9715 return AssignConvertType::Compatible;
9716 }
9717
9718 return AssignConvertType::Incompatible;
9719 }
9720
9721 // Conversion to nullptr_t (C23 only)
9722 if (getLangOpts().C23 && LHSType->isNullPtrType() &&
9723 RHS.get()->isNullPointerConstant(Ctx&: Context,
9724 NPC: Expr::NPC_ValueDependentIsNull)) {
9725 // null -> nullptr_t
9726 Kind = CK_NullToPointer;
9727 return AssignConvertType::Compatible;
9728 }
9729
9730 // Conversions from pointers that are not covered by the above.
9731 if (isa<PointerType>(Val: RHSType)) {
9732 // T* -> _Bool
9733 if (LHSType == Context.BoolTy) {
9734 Kind = CK_PointerToBoolean;
9735 return AssignConvertType::Compatible;
9736 }
9737
9738 // T* -> int
9739 if (LHSType->isIntegerType()) {
9740 Kind = CK_PointerToIntegral;
9741 return AssignConvertType::PointerToInt;
9742 }
9743
9744 return AssignConvertType::Incompatible;
9745 }
9746
9747 // Conversions from Objective-C pointers that are not covered by the above.
9748 if (isa<ObjCObjectPointerType>(Val: RHSType)) {
9749 // T* -> _Bool
9750 if (LHSType == Context.BoolTy) {
9751 Kind = CK_PointerToBoolean;
9752 return AssignConvertType::Compatible;
9753 }
9754
9755 // T* -> int
9756 if (LHSType->isIntegerType()) {
9757 Kind = CK_PointerToIntegral;
9758 return AssignConvertType::PointerToInt;
9759 }
9760
9761 return AssignConvertType::Incompatible;
9762 }
9763
9764 // struct A -> struct B
9765 if (isa<TagType>(Val: LHSType) && isa<TagType>(Val: RHSType)) {
9766 if (Context.typesAreCompatible(T1: LHSType, T2: RHSType)) {
9767 Kind = CK_NoOp;
9768 return AssignConvertType::Compatible;
9769 }
9770 }
9771
9772 if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9773 Kind = CK_IntToOCLSampler;
9774 return AssignConvertType::Compatible;
9775 }
9776
9777 return AssignConvertType::Incompatible;
9778}
9779
9780/// Constructs a transparent union from an expression that is
9781/// used to initialize the transparent union.
9782static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9783 ExprResult &EResult, QualType UnionType,
9784 FieldDecl *Field) {
9785 // Build an initializer list that designates the appropriate member
9786 // of the transparent union.
9787 Expr *E = EResult.get();
9788 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9789 E, SourceLocation());
9790 Initializer->setType(UnionType);
9791 Initializer->setInitializedFieldInUnion(Field);
9792
9793 // Build a compound literal constructing a value of the transparent
9794 // union type from this initializer list.
9795 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(T: UnionType);
9796 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9797 VK_PRValue, Initializer, false);
9798}
9799
9800AssignConvertType
9801Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9802 ExprResult &RHS) {
9803 QualType RHSType = RHS.get()->getType();
9804
9805 // If the ArgType is a Union type, we want to handle a potential
9806 // transparent_union GCC extension.
9807 const RecordType *UT = ArgType->getAsUnionType();
9808 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9809 return AssignConvertType::Incompatible;
9810
9811 // The field to initialize within the transparent union.
9812 RecordDecl *UD = UT->getDecl();
9813 FieldDecl *InitField = nullptr;
9814 // It's compatible if the expression matches any of the fields.
9815 for (auto *it : UD->fields()) {
9816 if (it->getType()->isPointerType()) {
9817 // If the transparent union contains a pointer type, we allow:
9818 // 1) void pointer
9819 // 2) null pointer constant
9820 if (RHSType->isPointerType())
9821 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9822 RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9823 InitField = it;
9824 break;
9825 }
9826
9827 if (RHS.get()->isNullPointerConstant(Context,
9828 Expr::NPC_ValueDependentIsNull)) {
9829 RHS = ImpCastExprToType(RHS.get(), it->getType(),
9830 CK_NullToPointer);
9831 InitField = it;
9832 break;
9833 }
9834 }
9835
9836 CastKind Kind;
9837 if (CheckAssignmentConstraints(it->getType(), RHS, Kind) ==
9838 AssignConvertType::Compatible) {
9839 RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9840 InitField = it;
9841 break;
9842 }
9843 }
9844
9845 if (!InitField)
9846 return AssignConvertType::Incompatible;
9847
9848 ConstructTransparentUnion(S&: *this, C&: Context, EResult&: RHS, UnionType: ArgType, Field: InitField);
9849 return AssignConvertType::Compatible;
9850}
9851
9852AssignConvertType Sema::CheckSingleAssignmentConstraints(QualType LHSType,
9853 ExprResult &CallerRHS,
9854 bool Diagnose,
9855 bool DiagnoseCFAudited,
9856 bool ConvertRHS) {
9857 // We need to be able to tell the caller whether we diagnosed a problem, if
9858 // they ask us to issue diagnostics.
9859 assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
9860
9861 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9862 // we can't avoid *all* modifications at the moment, so we need some somewhere
9863 // to put the updated value.
9864 ExprResult LocalRHS = CallerRHS;
9865 ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9866
9867 if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9868 if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9869 if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9870 !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9871 Diag(RHS.get()->getExprLoc(),
9872 diag::warn_noderef_to_dereferenceable_pointer)
9873 << RHS.get()->getSourceRange();
9874 }
9875 }
9876 }
9877
9878 if (getLangOpts().CPlusPlus) {
9879 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9880 // C++ 5.17p3: If the left operand is not of class type, the
9881 // expression is implicitly converted (C++ 4) to the
9882 // cv-unqualified type of the left operand.
9883 QualType RHSType = RHS.get()->getType();
9884 if (Diagnose) {
9885 RHS = PerformImplicitConversion(From: RHS.get(), ToType: LHSType.getUnqualifiedType(),
9886 Action: AssignmentAction::Assigning);
9887 } else {
9888 ImplicitConversionSequence ICS =
9889 TryImplicitConversion(From: RHS.get(), ToType: LHSType.getUnqualifiedType(),
9890 /*SuppressUserConversions=*/false,
9891 AllowExplicit: AllowedExplicit::None,
9892 /*InOverloadResolution=*/false,
9893 /*CStyle=*/false,
9894 /*AllowObjCWritebackConversion=*/false);
9895 if (ICS.isFailure())
9896 return AssignConvertType::Incompatible;
9897 RHS = PerformImplicitConversion(From: RHS.get(), ToType: LHSType.getUnqualifiedType(),
9898 ICS, Action: AssignmentAction::Assigning);
9899 }
9900 if (RHS.isInvalid())
9901 return AssignConvertType::Incompatible;
9902 AssignConvertType result = AssignConvertType::Compatible;
9903 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9904 !ObjC().CheckObjCARCUnavailableWeakConversion(castType: LHSType, ExprType: RHSType))
9905 result = AssignConvertType::IncompatibleObjCWeakRef;
9906 return result;
9907 }
9908
9909 // FIXME: Currently, we fall through and treat C++ classes like C
9910 // structures.
9911 // FIXME: We also fall through for atomics; not sure what should
9912 // happen there, though.
9913 } else if (RHS.get()->getType() == Context.OverloadTy) {
9914 // As a set of extensions to C, we support overloading on functions. These
9915 // functions need to be resolved here.
9916 DeclAccessPair DAP;
9917 if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9918 AddressOfExpr: RHS.get(), TargetType: LHSType, /*Complain=*/false, Found&: DAP))
9919 RHS = FixOverloadedFunctionReference(E: RHS.get(), FoundDecl: DAP, Fn: FD);
9920 else
9921 return AssignConvertType::Incompatible;
9922 }
9923
9924 // This check seems unnatural, however it is necessary to ensure the proper
9925 // conversion of functions/arrays. If the conversion were done for all
9926 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9927 // expressions that suppress this implicit conversion (&, sizeof). This needs
9928 // to happen before we check for null pointer conversions because C does not
9929 // undergo the same implicit conversions as C++ does above (by the calls to
9930 // TryImplicitConversion() and PerformImplicitConversion()) which insert the
9931 // lvalue to rvalue cast before checking for null pointer constraints. This
9932 // addresses code like: nullptr_t val; int *ptr; ptr = val;
9933 //
9934 // Suppress this for references: C++ 8.5.3p5.
9935 if (!LHSType->isReferenceType()) {
9936 // FIXME: We potentially allocate here even if ConvertRHS is false.
9937 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get(), Diagnose);
9938 if (RHS.isInvalid())
9939 return AssignConvertType::Incompatible;
9940 }
9941
9942 // The constraints are expressed in terms of the atomic, qualified, or
9943 // unqualified type of the LHS.
9944 QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType();
9945
9946 // C99 6.5.16.1p1: the left operand is a pointer and the right is
9947 // a null pointer constant <C23>or its type is nullptr_t;</C23>.
9948 if ((LHSTypeAfterConversion->isPointerType() ||
9949 LHSTypeAfterConversion->isObjCObjectPointerType() ||
9950 LHSTypeAfterConversion->isBlockPointerType()) &&
9951 ((getLangOpts().C23 && RHS.get()->getType()->isNullPtrType()) ||
9952 RHS.get()->isNullPointerConstant(Ctx&: Context,
9953 NPC: Expr::NPC_ValueDependentIsNull))) {
9954 AssignConvertType Ret = AssignConvertType::Compatible;
9955 if (Diagnose || ConvertRHS) {
9956 CastKind Kind;
9957 CXXCastPath Path;
9958 CheckPointerConversion(From: RHS.get(), ToType: LHSType, Kind, BasePath&: Path,
9959 /*IgnoreBaseAccess=*/false, Diagnose);
9960
9961 // If there is a conversion of some kind, check to see what kind of
9962 // pointer conversion happened so we can diagnose a C++ compatibility
9963 // diagnostic if the conversion is invalid. This only matters if the RHS
9964 // is some kind of void pointer. We have a carve-out when the RHS is from
9965 // a macro expansion because the use of a macro may indicate different
9966 // code between C and C++. Consider: char *s = NULL; where NULL is
9967 // defined as (void *)0 in C (which would be invalid in C++), but 0 in
9968 // C++, which is valid in C++.
9969 if (Kind != CK_NoOp && !getLangOpts().CPlusPlus &&
9970 !RHS.get()->getBeginLoc().isMacroID()) {
9971 QualType CanRHS =
9972 RHS.get()->getType().getCanonicalType().getUnqualifiedType();
9973 QualType CanLHS = LHSType.getCanonicalType().getUnqualifiedType();
9974 if (CanRHS->isVoidPointerType() && CanLHS->isPointerType()) {
9975 Ret = checkPointerTypesForAssignment(S&: *this, LHSType: CanLHS, RHSType: CanRHS,
9976 Loc: RHS.get()->getExprLoc());
9977 // Anything that's not considered perfectly compatible would be
9978 // incompatible in C++.
9979 if (Ret != AssignConvertType::Compatible)
9980 Ret = AssignConvertType::CompatibleVoidPtrToNonVoidPtr;
9981 }
9982 }
9983
9984 if (ConvertRHS)
9985 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: Kind, VK: VK_PRValue, BasePath: &Path);
9986 }
9987 return Ret;
9988 }
9989 // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
9990 // unqualified bool, and the right operand is a pointer or its type is
9991 // nullptr_t.
9992 if (getLangOpts().C23 && LHSType->isBooleanType() &&
9993 RHS.get()->getType()->isNullPtrType()) {
9994 // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
9995 // only handles nullptr -> _Bool due to needing an extra conversion
9996 // step.
9997 // We model this by converting from nullptr -> void * and then let the
9998 // conversion from void * -> _Bool happen naturally.
9999 if (Diagnose || ConvertRHS) {
10000 CastKind Kind;
10001 CXXCastPath Path;
10002 CheckPointerConversion(From: RHS.get(), ToType: Context.VoidPtrTy, Kind, BasePath&: Path,
10003 /*IgnoreBaseAccess=*/false, Diagnose);
10004 if (ConvertRHS)
10005 RHS = ImpCastExprToType(E: RHS.get(), Type: Context.VoidPtrTy, CK: Kind, VK: VK_PRValue,
10006 BasePath: &Path);
10007 }
10008 }
10009
10010 // OpenCL queue_t type assignment.
10011 if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
10012 Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull)) {
10013 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
10014 return AssignConvertType::Compatible;
10015 }
10016
10017 CastKind Kind;
10018 AssignConvertType result =
10019 CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
10020
10021 // C99 6.5.16.1p2: The value of the right operand is converted to the
10022 // type of the assignment expression.
10023 // CheckAssignmentConstraints allows the left-hand side to be a reference,
10024 // so that we can use references in built-in functions even in C.
10025 // The getNonReferenceType() call makes sure that the resulting expression
10026 // does not have reference type.
10027 if (result != AssignConvertType::Incompatible &&
10028 RHS.get()->getType() != LHSType) {
10029 QualType Ty = LHSType.getNonLValueExprType(Context);
10030 Expr *E = RHS.get();
10031
10032 // Check for various Objective-C errors. If we are not reporting
10033 // diagnostics and just checking for errors, e.g., during overload
10034 // resolution, return Incompatible to indicate the failure.
10035 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10036 ObjC().CheckObjCConversion(castRange: SourceRange(), castType: Ty, op&: E,
10037 CCK: CheckedConversionKind::Implicit, Diagnose,
10038 DiagnoseCFAudited) != SemaObjC::ACR_okay) {
10039 if (!Diagnose)
10040 return AssignConvertType::Incompatible;
10041 }
10042 if (getLangOpts().ObjC &&
10043 (ObjC().CheckObjCBridgeRelatedConversions(Loc: E->getBeginLoc(), DestType: LHSType,
10044 SrcType: E->getType(), SrcExpr&: E, Diagnose) ||
10045 ObjC().CheckConversionToObjCLiteral(DstType: LHSType, SrcExpr&: E, Diagnose))) {
10046 if (!Diagnose)
10047 return AssignConvertType::Incompatible;
10048 // Replace the expression with a corrected version and continue so we
10049 // can find further errors.
10050 RHS = E;
10051 return AssignConvertType::Compatible;
10052 }
10053
10054 if (ConvertRHS)
10055 RHS = ImpCastExprToType(E, Type: Ty, CK: Kind);
10056 }
10057
10058 return result;
10059}
10060
10061namespace {
10062/// The original operand to an operator, prior to the application of the usual
10063/// arithmetic conversions and converting the arguments of a builtin operator
10064/// candidate.
10065struct OriginalOperand {
10066 explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
10067 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: Op))
10068 Op = MTE->getSubExpr();
10069 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Val: Op))
10070 Op = BTE->getSubExpr();
10071 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Op)) {
10072 Orig = ICE->getSubExprAsWritten();
10073 Conversion = ICE->getConversionFunction();
10074 }
10075 }
10076
10077 QualType getType() const { return Orig->getType(); }
10078
10079 Expr *Orig;
10080 NamedDecl *Conversion;
10081};
10082}
10083
10084QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
10085 ExprResult &RHS) {
10086 OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
10087
10088 Diag(Loc, diag::err_typecheck_invalid_operands)
10089 << OrigLHS.getType() << OrigRHS.getType()
10090 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10091
10092 // If a user-defined conversion was applied to either of the operands prior
10093 // to applying the built-in operator rules, tell the user about it.
10094 if (OrigLHS.Conversion) {
10095 Diag(OrigLHS.Conversion->getLocation(),
10096 diag::note_typecheck_invalid_operands_converted)
10097 << 0 << LHS.get()->getType();
10098 }
10099 if (OrigRHS.Conversion) {
10100 Diag(OrigRHS.Conversion->getLocation(),
10101 diag::note_typecheck_invalid_operands_converted)
10102 << 1 << RHS.get()->getType();
10103 }
10104
10105 return QualType();
10106}
10107
10108QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
10109 ExprResult &RHS) {
10110 QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
10111 QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
10112
10113 bool LHSNatVec = LHSType->isVectorType();
10114 bool RHSNatVec = RHSType->isVectorType();
10115
10116 if (!(LHSNatVec && RHSNatVec)) {
10117 Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
10118 Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
10119 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10120 << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
10121 << Vector->getSourceRange();
10122 return QualType();
10123 }
10124
10125 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10126 << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
10127 << RHS.get()->getSourceRange();
10128
10129 return QualType();
10130}
10131
10132/// Try to convert a value of non-vector type to a vector type by converting
10133/// the type to the element type of the vector and then performing a splat.
10134/// If the language is OpenCL, we only use conversions that promote scalar
10135/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10136/// for float->int.
10137///
10138/// OpenCL V2.0 6.2.6.p2:
10139/// An error shall occur if any scalar operand type has greater rank
10140/// than the type of the vector element.
10141///
10142/// \param scalar - if non-null, actually perform the conversions
10143/// \return true if the operation fails (but without diagnosing the failure)
10144static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
10145 QualType scalarTy,
10146 QualType vectorEltTy,
10147 QualType vectorTy,
10148 unsigned &DiagID) {
10149 // The conversion to apply to the scalar before splatting it,
10150 // if necessary.
10151 CastKind scalarCast = CK_NoOp;
10152
10153 if (vectorEltTy->isBooleanType() && scalarTy->isIntegralType(Ctx: S.Context)) {
10154 scalarCast = CK_IntegralToBoolean;
10155 } else if (vectorEltTy->isIntegralType(Ctx: S.Context)) {
10156 if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
10157 (scalarTy->isIntegerType() &&
10158 S.Context.getIntegerTypeOrder(LHS: vectorEltTy, RHS: scalarTy) < 0))) {
10159 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10160 return true;
10161 }
10162 if (!scalarTy->isIntegralType(Ctx: S.Context))
10163 return true;
10164 scalarCast = CK_IntegralCast;
10165 } else if (vectorEltTy->isRealFloatingType()) {
10166 if (scalarTy->isRealFloatingType()) {
10167 if (S.getLangOpts().OpenCL &&
10168 S.Context.getFloatingTypeOrder(LHS: vectorEltTy, RHS: scalarTy) < 0) {
10169 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10170 return true;
10171 }
10172 scalarCast = CK_FloatingCast;
10173 }
10174 else if (scalarTy->isIntegralType(Ctx: S.Context))
10175 scalarCast = CK_IntegralToFloating;
10176 else
10177 return true;
10178 } else {
10179 return true;
10180 }
10181
10182 // Adjust scalar if desired.
10183 if (scalar) {
10184 if (scalarCast != CK_NoOp)
10185 *scalar = S.ImpCastExprToType(E: scalar->get(), Type: vectorEltTy, CK: scalarCast);
10186 *scalar = S.ImpCastExprToType(E: scalar->get(), Type: vectorTy, CK: CK_VectorSplat);
10187 }
10188 return false;
10189}
10190
10191/// Convert vector E to a vector with the same number of elements but different
10192/// element type.
10193static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
10194 const auto *VecTy = E->getType()->getAs<VectorType>();
10195 assert(VecTy && "Expression E must be a vector");
10196 QualType NewVecTy =
10197 VecTy->isExtVectorType()
10198 ? S.Context.getExtVectorType(VectorType: ElementType, NumElts: VecTy->getNumElements())
10199 : S.Context.getVectorType(VectorType: ElementType, NumElts: VecTy->getNumElements(),
10200 VecKind: VecTy->getVectorKind());
10201
10202 // Look through the implicit cast. Return the subexpression if its type is
10203 // NewVecTy.
10204 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E))
10205 if (ICE->getSubExpr()->getType() == NewVecTy)
10206 return ICE->getSubExpr();
10207
10208 auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
10209 return S.ImpCastExprToType(E, Type: NewVecTy, CK: Cast);
10210}
10211
10212/// Test if a (constant) integer Int can be casted to another integer type
10213/// IntTy without losing precision.
10214static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
10215 QualType OtherIntTy) {
10216 if (Int->get()->containsErrors())
10217 return false;
10218
10219 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10220
10221 // Reject cases where the value of the Int is unknown as that would
10222 // possibly cause truncation, but accept cases where the scalar can be
10223 // demoted without loss of precision.
10224 Expr::EvalResult EVResult;
10225 bool CstInt = Int->get()->EvaluateAsInt(Result&: EVResult, Ctx: S.Context);
10226 int Order = S.Context.getIntegerTypeOrder(LHS: OtherIntTy, RHS: IntTy);
10227 bool IntSigned = IntTy->hasSignedIntegerRepresentation();
10228 bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
10229
10230 if (CstInt) {
10231 // If the scalar is constant and is of a higher order and has more active
10232 // bits that the vector element type, reject it.
10233 llvm::APSInt Result = EVResult.Val.getInt();
10234 unsigned NumBits = IntSigned
10235 ? (Result.isNegative() ? Result.getSignificantBits()
10236 : Result.getActiveBits())
10237 : Result.getActiveBits();
10238 if (Order < 0 && S.Context.getIntWidth(T: OtherIntTy) < NumBits)
10239 return true;
10240
10241 // If the signedness of the scalar type and the vector element type
10242 // differs and the number of bits is greater than that of the vector
10243 // element reject it.
10244 return (IntSigned != OtherIntSigned &&
10245 NumBits > S.Context.getIntWidth(T: OtherIntTy));
10246 }
10247
10248 // Reject cases where the value of the scalar is not constant and it's
10249 // order is greater than that of the vector element type.
10250 return (Order < 0);
10251}
10252
10253/// Test if a (constant) integer Int can be casted to floating point type
10254/// FloatTy without losing precision.
10255static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10256 QualType FloatTy) {
10257 if (Int->get()->containsErrors())
10258 return false;
10259
10260 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10261
10262 // Determine if the integer constant can be expressed as a floating point
10263 // number of the appropriate type.
10264 Expr::EvalResult EVResult;
10265 bool CstInt = Int->get()->EvaluateAsInt(Result&: EVResult, Ctx: S.Context);
10266
10267 uint64_t Bits = 0;
10268 if (CstInt) {
10269 // Reject constants that would be truncated if they were converted to
10270 // the floating point type. Test by simple to/from conversion.
10271 // FIXME: Ideally the conversion to an APFloat and from an APFloat
10272 // could be avoided if there was a convertFromAPInt method
10273 // which could signal back if implicit truncation occurred.
10274 llvm::APSInt Result = EVResult.Val.getInt();
10275 llvm::APFloat Float(S.Context.getFloatTypeSemantics(T: FloatTy));
10276 Float.convertFromAPInt(Input: Result, IsSigned: IntTy->hasSignedIntegerRepresentation(),
10277 RM: llvm::APFloat::rmTowardZero);
10278 llvm::APSInt ConvertBack(S.Context.getIntWidth(T: IntTy),
10279 !IntTy->hasSignedIntegerRepresentation());
10280 bool Ignored = false;
10281 Float.convertToInteger(Result&: ConvertBack, RM: llvm::APFloat::rmNearestTiesToEven,
10282 IsExact: &Ignored);
10283 if (Result != ConvertBack)
10284 return true;
10285 } else {
10286 // Reject types that cannot be fully encoded into the mantissa of
10287 // the float.
10288 Bits = S.Context.getTypeSize(T: IntTy);
10289 unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10290 S.Context.getFloatTypeSemantics(T: FloatTy));
10291 if (Bits > FloatPrec)
10292 return true;
10293 }
10294
10295 return false;
10296}
10297
10298/// Attempt to convert and splat Scalar into a vector whose types matches
10299/// Vector following GCC conversion rules. The rule is that implicit
10300/// conversion can occur when Scalar can be casted to match Vector's element
10301/// type without causing truncation of Scalar.
10302static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10303 ExprResult *Vector) {
10304 QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10305 QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10306 QualType VectorEltTy;
10307
10308 if (const auto *VT = VectorTy->getAs<VectorType>()) {
10309 assert(!isa<ExtVectorType>(VT) &&
10310 "ExtVectorTypes should not be handled here!");
10311 VectorEltTy = VT->getElementType();
10312 } else if (VectorTy->isSveVLSBuiltinType()) {
10313 VectorEltTy =
10314 VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
10315 } else {
10316 llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10317 }
10318
10319 // Reject cases where the vector element type or the scalar element type are
10320 // not integral or floating point types.
10321 if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10322 return true;
10323
10324 // The conversion to apply to the scalar before splatting it,
10325 // if necessary.
10326 CastKind ScalarCast = CK_NoOp;
10327
10328 // Accept cases where the vector elements are integers and the scalar is
10329 // an integer.
10330 // FIXME: Notionally if the scalar was a floating point value with a precise
10331 // integral representation, we could cast it to an appropriate integer
10332 // type and then perform the rest of the checks here. GCC will perform
10333 // this conversion in some cases as determined by the input language.
10334 // We should accept it on a language independent basis.
10335 if (VectorEltTy->isIntegralType(Ctx: S.Context) &&
10336 ScalarTy->isIntegralType(Ctx: S.Context) &&
10337 S.Context.getIntegerTypeOrder(LHS: VectorEltTy, RHS: ScalarTy)) {
10338
10339 if (canConvertIntToOtherIntTy(S, Int: Scalar, OtherIntTy: VectorEltTy))
10340 return true;
10341
10342 ScalarCast = CK_IntegralCast;
10343 } else if (VectorEltTy->isIntegralType(Ctx: S.Context) &&
10344 ScalarTy->isRealFloatingType()) {
10345 if (S.Context.getTypeSize(T: VectorEltTy) == S.Context.getTypeSize(T: ScalarTy))
10346 ScalarCast = CK_FloatingToIntegral;
10347 else
10348 return true;
10349 } else if (VectorEltTy->isRealFloatingType()) {
10350 if (ScalarTy->isRealFloatingType()) {
10351
10352 // Reject cases where the scalar type is not a constant and has a higher
10353 // Order than the vector element type.
10354 llvm::APFloat Result(0.0);
10355
10356 // Determine whether this is a constant scalar. In the event that the
10357 // value is dependent (and thus cannot be evaluated by the constant
10358 // evaluator), skip the evaluation. This will then diagnose once the
10359 // expression is instantiated.
10360 bool CstScalar = Scalar->get()->isValueDependent() ||
10361 Scalar->get()->EvaluateAsFloat(Result, Ctx: S.Context);
10362 int Order = S.Context.getFloatingTypeOrder(LHS: VectorEltTy, RHS: ScalarTy);
10363 if (!CstScalar && Order < 0)
10364 return true;
10365
10366 // If the scalar cannot be safely casted to the vector element type,
10367 // reject it.
10368 if (CstScalar) {
10369 bool Truncated = false;
10370 Result.convert(ToSemantics: S.Context.getFloatTypeSemantics(T: VectorEltTy),
10371 RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &Truncated);
10372 if (Truncated)
10373 return true;
10374 }
10375
10376 ScalarCast = CK_FloatingCast;
10377 } else if (ScalarTy->isIntegralType(Ctx: S.Context)) {
10378 if (canConvertIntTyToFloatTy(S, Int: Scalar, FloatTy: VectorEltTy))
10379 return true;
10380
10381 ScalarCast = CK_IntegralToFloating;
10382 } else
10383 return true;
10384 } else if (ScalarTy->isEnumeralType())
10385 return true;
10386
10387 // Adjust scalar if desired.
10388 if (ScalarCast != CK_NoOp)
10389 *Scalar = S.ImpCastExprToType(E: Scalar->get(), Type: VectorEltTy, CK: ScalarCast);
10390 *Scalar = S.ImpCastExprToType(E: Scalar->get(), Type: VectorTy, CK: CK_VectorSplat);
10391 return false;
10392}
10393
10394QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10395 SourceLocation Loc, bool IsCompAssign,
10396 bool AllowBothBool,
10397 bool AllowBoolConversions,
10398 bool AllowBoolOperation,
10399 bool ReportInvalid) {
10400 if (!IsCompAssign) {
10401 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
10402 if (LHS.isInvalid())
10403 return QualType();
10404 }
10405 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
10406 if (RHS.isInvalid())
10407 return QualType();
10408
10409 // For conversion purposes, we ignore any qualifiers.
10410 // For example, "const float" and "float" are equivalent.
10411 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10412 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10413
10414 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10415 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10416 assert(LHSVecType || RHSVecType);
10417
10418 if (getLangOpts().HLSL)
10419 return HLSL().handleVectorBinOpConversion(LHS, RHS, LHSType, RHSType,
10420 IsCompAssign);
10421
10422 // Any operation with MFloat8 type is only possible with C intrinsics
10423 if ((LHSVecType && LHSVecType->getElementType()->isMFloat8Type()) ||
10424 (RHSVecType && RHSVecType->getElementType()->isMFloat8Type()))
10425 return InvalidOperands(Loc, LHS, RHS);
10426
10427 // AltiVec-style "vector bool op vector bool" combinations are allowed
10428 // for some operators but not others.
10429 if (!AllowBothBool && LHSVecType &&
10430 LHSVecType->getVectorKind() == VectorKind::AltiVecBool && RHSVecType &&
10431 RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
10432 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10433
10434 // This operation may not be performed on boolean vectors.
10435 if (!AllowBoolOperation &&
10436 (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
10437 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10438
10439 // If the vector types are identical, return.
10440 if (Context.hasSameType(T1: LHSType, T2: RHSType))
10441 return Context.getCommonSugaredType(X: LHSType, Y: RHSType);
10442
10443 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10444 if (LHSVecType && RHSVecType &&
10445 Context.areCompatibleVectorTypes(FirstVec: LHSType, SecondVec: RHSType)) {
10446 if (isa<ExtVectorType>(Val: LHSVecType)) {
10447 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
10448 return LHSType;
10449 }
10450
10451 if (!IsCompAssign)
10452 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_BitCast);
10453 return RHSType;
10454 }
10455
10456 // AllowBoolConversions says that bool and non-bool AltiVec vectors
10457 // can be mixed, with the result being the non-bool type. The non-bool
10458 // operand must have integer element type.
10459 if (AllowBoolConversions && LHSVecType && RHSVecType &&
10460 LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10461 (Context.getTypeSize(T: LHSVecType->getElementType()) ==
10462 Context.getTypeSize(T: RHSVecType->getElementType()))) {
10463 if (LHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10464 LHSVecType->getElementType()->isIntegerType() &&
10465 RHSVecType->getVectorKind() == VectorKind::AltiVecBool) {
10466 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
10467 return LHSType;
10468 }
10469 if (!IsCompAssign &&
10470 LHSVecType->getVectorKind() == VectorKind::AltiVecBool &&
10471 RHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10472 RHSVecType->getElementType()->isIntegerType()) {
10473 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_BitCast);
10474 return RHSType;
10475 }
10476 }
10477
10478 // Expressions containing fixed-length and sizeless SVE/RVV vectors are
10479 // invalid since the ambiguity can affect the ABI.
10480 auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType,
10481 unsigned &SVEorRVV) {
10482 const VectorType *VecType = SecondType->getAs<VectorType>();
10483 SVEorRVV = 0;
10484 if (FirstType->isSizelessBuiltinType() && VecType) {
10485 if (VecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10486 VecType->getVectorKind() == VectorKind::SveFixedLengthPredicate)
10487 return true;
10488 if (VecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10489 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask ||
10490 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask_1 ||
10491 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask_2 ||
10492 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask_4) {
10493 SVEorRVV = 1;
10494 return true;
10495 }
10496 }
10497
10498 return false;
10499 };
10500
10501 unsigned SVEorRVV;
10502 if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) ||
10503 IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) {
10504 Diag(Loc, diag::err_typecheck_sve_rvv_ambiguous)
10505 << SVEorRVV << LHSType << RHSType;
10506 return QualType();
10507 }
10508
10509 // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
10510 // invalid since the ambiguity can affect the ABI.
10511 auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType,
10512 unsigned &SVEorRVV) {
10513 const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10514 const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10515
10516 SVEorRVV = 0;
10517 if (FirstVecType && SecondVecType) {
10518 if (FirstVecType->getVectorKind() == VectorKind::Generic) {
10519 if (SecondVecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10520 SecondVecType->getVectorKind() ==
10521 VectorKind::SveFixedLengthPredicate)
10522 return true;
10523 if (SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10524 SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthMask ||
10525 SecondVecType->getVectorKind() ==
10526 VectorKind::RVVFixedLengthMask_1 ||
10527 SecondVecType->getVectorKind() ==
10528 VectorKind::RVVFixedLengthMask_2 ||
10529 SecondVecType->getVectorKind() ==
10530 VectorKind::RVVFixedLengthMask_4) {
10531 SVEorRVV = 1;
10532 return true;
10533 }
10534 }
10535 return false;
10536 }
10537
10538 if (SecondVecType &&
10539 SecondVecType->getVectorKind() == VectorKind::Generic) {
10540 if (FirstType->isSVESizelessBuiltinType())
10541 return true;
10542 if (FirstType->isRVVSizelessBuiltinType()) {
10543 SVEorRVV = 1;
10544 return true;
10545 }
10546 }
10547
10548 return false;
10549 };
10550
10551 if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) ||
10552 IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) {
10553 Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous)
10554 << SVEorRVV << LHSType << RHSType;
10555 return QualType();
10556 }
10557
10558 // If there's a vector type and a scalar, try to convert the scalar to
10559 // the vector element type and splat.
10560 unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10561 if (!RHSVecType) {
10562 if (isa<ExtVectorType>(Val: LHSVecType)) {
10563 if (!tryVectorConvertAndSplat(S&: *this, scalar: &RHS, scalarTy: RHSType,
10564 vectorEltTy: LHSVecType->getElementType(), vectorTy: LHSType,
10565 DiagID))
10566 return LHSType;
10567 } else {
10568 if (!tryGCCVectorConvertAndSplat(S&: *this, Scalar: &RHS, Vector: &LHS))
10569 return LHSType;
10570 }
10571 }
10572 if (!LHSVecType) {
10573 if (isa<ExtVectorType>(Val: RHSVecType)) {
10574 if (!tryVectorConvertAndSplat(S&: *this, scalar: (IsCompAssign ? nullptr : &LHS),
10575 scalarTy: LHSType, vectorEltTy: RHSVecType->getElementType(),
10576 vectorTy: RHSType, DiagID))
10577 return RHSType;
10578 } else {
10579 if (LHS.get()->isLValue() ||
10580 !tryGCCVectorConvertAndSplat(S&: *this, Scalar: &LHS, Vector: &RHS))
10581 return RHSType;
10582 }
10583 }
10584
10585 // FIXME: The code below also handles conversion between vectors and
10586 // non-scalars, we should break this down into fine grained specific checks
10587 // and emit proper diagnostics.
10588 QualType VecType = LHSVecType ? LHSType : RHSType;
10589 const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10590 QualType OtherType = LHSVecType ? RHSType : LHSType;
10591 ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10592 if (isLaxVectorConversion(srcTy: OtherType, destTy: VecType)) {
10593 if (Context.getTargetInfo().getTriple().isPPC() &&
10594 anyAltivecTypes(RHSType, LHSType) &&
10595 !Context.areCompatibleVectorTypes(RHSType, LHSType))
10596 Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
10597 // If we're allowing lax vector conversions, only the total (data) size
10598 // needs to be the same. For non compound assignment, if one of the types is
10599 // scalar, the result is always the vector type.
10600 if (!IsCompAssign) {
10601 *OtherExpr = ImpCastExprToType(E: OtherExpr->get(), Type: VecType, CK: CK_BitCast);
10602 return VecType;
10603 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10604 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10605 // type. Note that this is already done by non-compound assignments in
10606 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10607 // <1 x T> -> T. The result is also a vector type.
10608 } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10609 (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10610 ExprResult *RHSExpr = &RHS;
10611 *RHSExpr = ImpCastExprToType(E: RHSExpr->get(), Type: LHSType, CK: CK_BitCast);
10612 return VecType;
10613 }
10614 }
10615
10616 // Okay, the expression is invalid.
10617
10618 // If there's a non-vector, non-real operand, diagnose that.
10619 if ((!RHSVecType && !RHSType->isRealType()) ||
10620 (!LHSVecType && !LHSType->isRealType())) {
10621 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10622 << LHSType << RHSType
10623 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10624 return QualType();
10625 }
10626
10627 // OpenCL V1.1 6.2.6.p1:
10628 // If the operands are of more than one vector type, then an error shall
10629 // occur. Implicit conversions between vector types are not permitted, per
10630 // section 6.2.1.
10631 if (getLangOpts().OpenCL &&
10632 RHSVecType && isa<ExtVectorType>(Val: RHSVecType) &&
10633 LHSVecType && isa<ExtVectorType>(Val: LHSVecType)) {
10634 Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10635 << RHSType;
10636 return QualType();
10637 }
10638
10639
10640 // If there is a vector type that is not a ExtVector and a scalar, we reach
10641 // this point if scalar could not be converted to the vector's element type
10642 // without truncation.
10643 if ((RHSVecType && !isa<ExtVectorType>(Val: RHSVecType)) ||
10644 (LHSVecType && !isa<ExtVectorType>(Val: LHSVecType))) {
10645 QualType Scalar = LHSVecType ? RHSType : LHSType;
10646 QualType Vector = LHSVecType ? LHSType : RHSType;
10647 unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10648 Diag(Loc,
10649 diag::err_typecheck_vector_not_convertable_implict_truncation)
10650 << ScalarOrVector << Scalar << Vector;
10651
10652 return QualType();
10653 }
10654
10655 // Otherwise, use the generic diagnostic.
10656 Diag(Loc, DiagID)
10657 << LHSType << RHSType
10658 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10659 return QualType();
10660}
10661
10662QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
10663 SourceLocation Loc,
10664 bool IsCompAssign,
10665 ArithConvKind OperationKind) {
10666 if (!IsCompAssign) {
10667 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
10668 if (LHS.isInvalid())
10669 return QualType();
10670 }
10671 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
10672 if (RHS.isInvalid())
10673 return QualType();
10674
10675 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10676 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10677
10678 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
10679 const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
10680
10681 unsigned DiagID = diag::err_typecheck_invalid_operands;
10682 if ((OperationKind == ArithConvKind::Arithmetic) &&
10683 ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
10684 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
10685 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10686 << RHS.get()->getSourceRange();
10687 return QualType();
10688 }
10689
10690 if (Context.hasSameType(T1: LHSType, T2: RHSType))
10691 return LHSType;
10692
10693 if (LHSType->isSveVLSBuiltinType() && !RHSType->isSveVLSBuiltinType()) {
10694 if (!tryGCCVectorConvertAndSplat(S&: *this, Scalar: &RHS, Vector: &LHS))
10695 return LHSType;
10696 }
10697 if (RHSType->isSveVLSBuiltinType() && !LHSType->isSveVLSBuiltinType()) {
10698 if (LHS.get()->isLValue() ||
10699 !tryGCCVectorConvertAndSplat(S&: *this, Scalar: &LHS, Vector: &RHS))
10700 return RHSType;
10701 }
10702
10703 if ((!LHSType->isSveVLSBuiltinType() && !LHSType->isRealType()) ||
10704 (!RHSType->isSveVLSBuiltinType() && !RHSType->isRealType())) {
10705 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10706 << LHSType << RHSType << LHS.get()->getSourceRange()
10707 << RHS.get()->getSourceRange();
10708 return QualType();
10709 }
10710
10711 if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
10712 Context.getBuiltinVectorTypeInfo(VecTy: LHSBuiltinTy).EC !=
10713 Context.getBuiltinVectorTypeInfo(VecTy: RHSBuiltinTy).EC) {
10714 Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10715 << LHSType << RHSType << LHS.get()->getSourceRange()
10716 << RHS.get()->getSourceRange();
10717 return QualType();
10718 }
10719
10720 if (LHSType->isSveVLSBuiltinType() || RHSType->isSveVLSBuiltinType()) {
10721 QualType Scalar = LHSType->isSveVLSBuiltinType() ? RHSType : LHSType;
10722 QualType Vector = LHSType->isSveVLSBuiltinType() ? LHSType : RHSType;
10723 bool ScalarOrVector =
10724 LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType();
10725
10726 Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
10727 << ScalarOrVector << Scalar << Vector;
10728
10729 return QualType();
10730 }
10731
10732 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10733 << RHS.get()->getSourceRange();
10734 return QualType();
10735}
10736
10737// checkArithmeticNull - Detect when a NULL constant is used improperly in an
10738// expression. These are mainly cases where the null pointer is used as an
10739// integer instead of a pointer.
10740static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10741 SourceLocation Loc, bool IsCompare) {
10742 // The canonical way to check for a GNU null is with isNullPointerConstant,
10743 // but we use a bit of a hack here for speed; this is a relatively
10744 // hot path, and isNullPointerConstant is slow.
10745 bool LHSNull = isa<GNUNullExpr>(Val: LHS.get()->IgnoreParenImpCasts());
10746 bool RHSNull = isa<GNUNullExpr>(Val: RHS.get()->IgnoreParenImpCasts());
10747
10748 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10749
10750 // Avoid analyzing cases where the result will either be invalid (and
10751 // diagnosed as such) or entirely valid and not something to warn about.
10752 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10753 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10754 return;
10755
10756 // Comparison operations would not make sense with a null pointer no matter
10757 // what the other expression is.
10758 if (!IsCompare) {
10759 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10760 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10761 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10762 return;
10763 }
10764
10765 // The rest of the operations only make sense with a null pointer
10766 // if the other expression is a pointer.
10767 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10768 NonNullType->canDecayToPointerType())
10769 return;
10770
10771 S.Diag(Loc, diag::warn_null_in_comparison_operation)
10772 << LHSNull /* LHS is NULL */ << NonNullType
10773 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10774}
10775
10776static void DetectPrecisionLossInComplexDivision(Sema &S, QualType DivisorTy,
10777 SourceLocation OpLoc) {
10778 // If the divisor is real, then this is real/real or complex/real division.
10779 // Either way there can be no precision loss.
10780 auto *CT = DivisorTy->getAs<ComplexType>();
10781 if (!CT)
10782 return;
10783
10784 QualType ElementType = CT->getElementType();
10785 bool IsComplexRangePromoted = S.getLangOpts().getComplexRange() ==
10786 LangOptions::ComplexRangeKind::CX_Promoted;
10787 if (!ElementType->isFloatingType() || !IsComplexRangePromoted)
10788 return;
10789
10790 ASTContext &Ctx = S.getASTContext();
10791 QualType HigherElementType = Ctx.GetHigherPrecisionFPType(ElementType);
10792 const llvm::fltSemantics &ElementTypeSemantics =
10793 Ctx.getFloatTypeSemantics(T: ElementType);
10794 const llvm::fltSemantics &HigherElementTypeSemantics =
10795 Ctx.getFloatTypeSemantics(T: HigherElementType);
10796
10797 if ((llvm::APFloat::semanticsMaxExponent(ElementTypeSemantics) * 2 + 1 >
10798 llvm::APFloat::semanticsMaxExponent(HigherElementTypeSemantics)) ||
10799 (HigherElementType == Ctx.LongDoubleTy &&
10800 !Ctx.getTargetInfo().hasLongDoubleType())) {
10801 // Retain the location of the first use of higher precision type.
10802 if (!S.LocationOfExcessPrecisionNotSatisfied.isValid())
10803 S.LocationOfExcessPrecisionNotSatisfied = OpLoc;
10804 for (auto &[Type, Num] : S.ExcessPrecisionNotSatisfied) {
10805 if (Type == HigherElementType) {
10806 Num++;
10807 return;
10808 }
10809 }
10810 S.ExcessPrecisionNotSatisfied.push_back(std::make_pair(
10811 x&: HigherElementType, y: S.ExcessPrecisionNotSatisfied.size()));
10812 }
10813}
10814
10815static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10816 SourceLocation Loc) {
10817 const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(Val: LHS);
10818 const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(Val: RHS);
10819 if (!LUE || !RUE)
10820 return;
10821 if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10822 RUE->getKind() != UETT_SizeOf)
10823 return;
10824
10825 const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10826 QualType LHSTy = LHSArg->getType();
10827 QualType RHSTy;
10828
10829 if (RUE->isArgumentType())
10830 RHSTy = RUE->getArgumentType().getNonReferenceType();
10831 else
10832 RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10833
10834 if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10835 if (!S.Context.hasSameUnqualifiedType(T1: LHSTy->getPointeeType(), T2: RHSTy))
10836 return;
10837
10838 S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10839 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: LHSArg)) {
10840 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10841 S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10842 << LHSArgDecl;
10843 }
10844 } else if (const auto *ArrayTy = S.Context.getAsArrayType(T: LHSTy)) {
10845 QualType ArrayElemTy = ArrayTy->getElementType();
10846 if (ArrayElemTy != S.Context.getBaseElementType(VAT: ArrayTy) ||
10847 ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10848 RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10849 S.Context.getTypeSize(T: ArrayElemTy) == S.Context.getTypeSize(T: RHSTy))
10850 return;
10851 S.Diag(Loc, diag::warn_division_sizeof_array)
10852 << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10853 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: LHSArg)) {
10854 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10855 S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10856 << LHSArgDecl;
10857 }
10858
10859 S.Diag(Loc, diag::note_precedence_silence) << RHS;
10860 }
10861}
10862
10863static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10864 ExprResult &RHS,
10865 SourceLocation Loc, bool IsDiv) {
10866 // Check for division/remainder by zero.
10867 Expr::EvalResult RHSValue;
10868 if (!RHS.get()->isValueDependent() &&
10869 RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10870 RHSValue.Val.getInt() == 0)
10871 S.DiagRuntimeBehavior(Loc, RHS.get(),
10872 S.PDiag(diag::warn_remainder_division_by_zero)
10873 << IsDiv << RHS.get()->getSourceRange());
10874}
10875
10876QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10877 SourceLocation Loc,
10878 bool IsCompAssign, bool IsDiv) {
10879 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
10880
10881 QualType LHSTy = LHS.get()->getType();
10882 QualType RHSTy = RHS.get()->getType();
10883 if (LHSTy->isVectorType() || RHSTy->isVectorType())
10884 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10885 /*AllowBothBool*/ getLangOpts().AltiVec,
10886 /*AllowBoolConversions*/ false,
10887 /*AllowBooleanOperation*/ AllowBoolOperation: false,
10888 /*ReportInvalid*/ true);
10889 if (LHSTy->isSveVLSBuiltinType() || RHSTy->isSveVLSBuiltinType())
10890 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10891 OperationKind: ArithConvKind::Arithmetic);
10892 if (!IsDiv &&
10893 (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10894 return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10895 // For division, only matrix-by-scalar is supported. Other combinations with
10896 // matrix types are invalid.
10897 if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10898 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10899
10900 QualType compType = UsualArithmeticConversions(
10901 LHS, RHS, Loc,
10902 ACK: IsCompAssign ? ArithConvKind::CompAssign : ArithConvKind::Arithmetic);
10903 if (LHS.isInvalid() || RHS.isInvalid())
10904 return QualType();
10905
10906
10907 if (compType.isNull() || !compType->isArithmeticType())
10908 return InvalidOperands(Loc, LHS, RHS);
10909 if (IsDiv) {
10910 DetectPrecisionLossInComplexDivision(S&: *this, DivisorTy: RHS.get()->getType(), OpLoc: Loc);
10911 DiagnoseBadDivideOrRemainderValues(S&: *this, LHS, RHS, Loc, IsDiv);
10912 DiagnoseDivisionSizeofPointerOrArray(S&: *this, LHS: LHS.get(), RHS: RHS.get(), Loc);
10913 }
10914 return compType;
10915}
10916
10917QualType Sema::CheckRemainderOperands(
10918 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10919 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
10920
10921 // Note: This check is here to simplify the double exclusions of
10922 // scalar and vector HLSL checks. No getLangOpts().HLSL
10923 // is needed since all languages exlcude doubles.
10924 if (LHS.get()->getType()->isDoubleType() ||
10925 RHS.get()->getType()->isDoubleType() ||
10926 (LHS.get()->getType()->isVectorType() && LHS.get()
10927 ->getType()
10928 ->getAs<VectorType>()
10929 ->getElementType()
10930 ->isDoubleType()) ||
10931 (RHS.get()->getType()->isVectorType() && RHS.get()
10932 ->getType()
10933 ->getAs<VectorType>()
10934 ->getElementType()
10935 ->isDoubleType()))
10936 return InvalidOperands(Loc, LHS, RHS);
10937
10938 if (LHS.get()->getType()->isVectorType() ||
10939 RHS.get()->getType()->isVectorType()) {
10940 if ((LHS.get()->getType()->hasIntegerRepresentation() &&
10941 RHS.get()->getType()->hasIntegerRepresentation()) ||
10942 (getLangOpts().HLSL &&
10943 (LHS.get()->getType()->hasFloatingRepresentation() ||
10944 RHS.get()->getType()->hasFloatingRepresentation())))
10945 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10946 /*AllowBothBool*/ getLangOpts().AltiVec,
10947 /*AllowBoolConversions*/ false,
10948 /*AllowBooleanOperation*/ AllowBoolOperation: false,
10949 /*ReportInvalid*/ true);
10950 return InvalidOperands(Loc, LHS, RHS);
10951 }
10952
10953 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10954 RHS.get()->getType()->isSveVLSBuiltinType()) {
10955 if (LHS.get()->getType()->hasIntegerRepresentation() &&
10956 RHS.get()->getType()->hasIntegerRepresentation())
10957 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10958 OperationKind: ArithConvKind::Arithmetic);
10959
10960 return InvalidOperands(Loc, LHS, RHS);
10961 }
10962
10963 QualType compType = UsualArithmeticConversions(
10964 LHS, RHS, Loc,
10965 ACK: IsCompAssign ? ArithConvKind::CompAssign : ArithConvKind::Arithmetic);
10966 if (LHS.isInvalid() || RHS.isInvalid())
10967 return QualType();
10968
10969 if (compType.isNull() ||
10970 (!compType->isIntegerType() &&
10971 !(getLangOpts().HLSL && compType->isFloatingType())))
10972 return InvalidOperands(Loc, LHS, RHS);
10973 DiagnoseBadDivideOrRemainderValues(S&: *this, LHS, RHS, Loc, IsDiv: false /* IsDiv */);
10974 return compType;
10975}
10976
10977/// Diagnose invalid arithmetic on two void pointers.
10978static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10979 Expr *LHSExpr, Expr *RHSExpr) {
10980 S.Diag(Loc, S.getLangOpts().CPlusPlus
10981 ? diag::err_typecheck_pointer_arith_void_type
10982 : diag::ext_gnu_void_ptr)
10983 << 1 /* two pointers */ << LHSExpr->getSourceRange()
10984 << RHSExpr->getSourceRange();
10985}
10986
10987/// Diagnose invalid arithmetic on a void pointer.
10988static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10989 Expr *Pointer) {
10990 S.Diag(Loc, S.getLangOpts().CPlusPlus
10991 ? diag::err_typecheck_pointer_arith_void_type
10992 : diag::ext_gnu_void_ptr)
10993 << 0 /* one pointer */ << Pointer->getSourceRange();
10994}
10995
10996/// Diagnose invalid arithmetic on a null pointer.
10997///
10998/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10999/// idiom, which we recognize as a GNU extension.
11000///
11001static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
11002 Expr *Pointer, bool IsGNUIdiom) {
11003 if (IsGNUIdiom)
11004 S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
11005 << Pointer->getSourceRange();
11006 else
11007 S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
11008 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
11009}
11010
11011/// Diagnose invalid subraction on a null pointer.
11012///
11013static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
11014 Expr *Pointer, bool BothNull) {
11015 // Null - null is valid in C++ [expr.add]p7
11016 if (BothNull && S.getLangOpts().CPlusPlus)
11017 return;
11018
11019 // Is this s a macro from a system header?
11020 if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(loc: Loc))
11021 return;
11022
11023 S.DiagRuntimeBehavior(Loc, Pointer,
11024 S.PDiag(diag::warn_pointer_sub_null_ptr)
11025 << S.getLangOpts().CPlusPlus
11026 << Pointer->getSourceRange());
11027}
11028
11029/// Diagnose invalid arithmetic on two function pointers.
11030static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
11031 Expr *LHS, Expr *RHS) {
11032 assert(LHS->getType()->isAnyPointerType());
11033 assert(RHS->getType()->isAnyPointerType());
11034 S.Diag(Loc, S.getLangOpts().CPlusPlus
11035 ? diag::err_typecheck_pointer_arith_function_type
11036 : diag::ext_gnu_ptr_func_arith)
11037 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
11038 // We only show the second type if it differs from the first.
11039 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
11040 RHS->getType())
11041 << RHS->getType()->getPointeeType()
11042 << LHS->getSourceRange() << RHS->getSourceRange();
11043}
11044
11045/// Diagnose invalid arithmetic on a function pointer.
11046static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
11047 Expr *Pointer) {
11048 assert(Pointer->getType()->isAnyPointerType());
11049 S.Diag(Loc, S.getLangOpts().CPlusPlus
11050 ? diag::err_typecheck_pointer_arith_function_type
11051 : diag::ext_gnu_ptr_func_arith)
11052 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
11053 << 0 /* one pointer, so only one type */
11054 << Pointer->getSourceRange();
11055}
11056
11057/// Emit error if Operand is incomplete pointer type
11058///
11059/// \returns True if pointer has incomplete type
11060static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
11061 Expr *Operand) {
11062 QualType ResType = Operand->getType();
11063 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11064 ResType = ResAtomicType->getValueType();
11065
11066 assert(ResType->isAnyPointerType());
11067 QualType PointeeTy = ResType->getPointeeType();
11068 return S.RequireCompleteSizedType(
11069 Loc, PointeeTy,
11070 diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
11071 Operand->getSourceRange());
11072}
11073
11074/// Check the validity of an arithmetic pointer operand.
11075///
11076/// If the operand has pointer type, this code will check for pointer types
11077/// which are invalid in arithmetic operations. These will be diagnosed
11078/// appropriately, including whether or not the use is supported as an
11079/// extension.
11080///
11081/// \returns True when the operand is valid to use (even if as an extension).
11082static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
11083 Expr *Operand) {
11084 QualType ResType = Operand->getType();
11085 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11086 ResType = ResAtomicType->getValueType();
11087
11088 if (!ResType->isAnyPointerType()) return true;
11089
11090 QualType PointeeTy = ResType->getPointeeType();
11091 if (PointeeTy->isVoidType()) {
11092 diagnoseArithmeticOnVoidPointer(S, Loc, Pointer: Operand);
11093 return !S.getLangOpts().CPlusPlus;
11094 }
11095 if (PointeeTy->isFunctionType()) {
11096 diagnoseArithmeticOnFunctionPointer(S, Loc, Pointer: Operand);
11097 return !S.getLangOpts().CPlusPlus;
11098 }
11099
11100 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
11101
11102 return true;
11103}
11104
11105/// Check the validity of a binary arithmetic operation w.r.t. pointer
11106/// operands.
11107///
11108/// This routine will diagnose any invalid arithmetic on pointer operands much
11109/// like \see checkArithmeticOpPointerOperand. However, it has special logic
11110/// for emitting a single diagnostic even for operations where both LHS and RHS
11111/// are (potentially problematic) pointers.
11112///
11113/// \returns True when the operand is valid to use (even if as an extension).
11114static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
11115 Expr *LHSExpr, Expr *RHSExpr) {
11116 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
11117 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
11118 if (!isLHSPointer && !isRHSPointer) return true;
11119
11120 QualType LHSPointeeTy, RHSPointeeTy;
11121 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
11122 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
11123
11124 // if both are pointers check if operation is valid wrt address spaces
11125 if (isLHSPointer && isRHSPointer) {
11126 if (!LHSPointeeTy.isAddressSpaceOverlapping(T: RHSPointeeTy,
11127 Ctx: S.getASTContext())) {
11128 S.Diag(Loc,
11129 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11130 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
11131 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
11132 return false;
11133 }
11134 }
11135
11136 // Check for arithmetic on pointers to incomplete types.
11137 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
11138 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
11139 if (isLHSVoidPtr || isRHSVoidPtr) {
11140 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, Pointer: LHSExpr);
11141 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, Pointer: RHSExpr);
11142 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
11143
11144 return !S.getLangOpts().CPlusPlus;
11145 }
11146
11147 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
11148 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
11149 if (isLHSFuncPtr || isRHSFuncPtr) {
11150 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, Pointer: LHSExpr);
11151 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
11152 Pointer: RHSExpr);
11153 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHS: LHSExpr, RHS: RHSExpr);
11154
11155 return !S.getLangOpts().CPlusPlus;
11156 }
11157
11158 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, Operand: LHSExpr))
11159 return false;
11160 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, Operand: RHSExpr))
11161 return false;
11162
11163 return true;
11164}
11165
11166/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11167/// literal.
11168static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
11169 Expr *LHSExpr, Expr *RHSExpr) {
11170 StringLiteral* StrExpr = dyn_cast<StringLiteral>(Val: LHSExpr->IgnoreImpCasts());
11171 Expr* IndexExpr = RHSExpr;
11172 if (!StrExpr) {
11173 StrExpr = dyn_cast<StringLiteral>(Val: RHSExpr->IgnoreImpCasts());
11174 IndexExpr = LHSExpr;
11175 }
11176
11177 bool IsStringPlusInt = StrExpr &&
11178 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
11179 if (!IsStringPlusInt || IndexExpr->isValueDependent())
11180 return;
11181
11182 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11183 Self.Diag(OpLoc, diag::warn_string_plus_int)
11184 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
11185
11186 // Only print a fixit for "str" + int, not for int + "str".
11187 if (IndexExpr == RHSExpr) {
11188 SourceLocation EndLoc = Self.getLocForEndOfToken(Loc: RHSExpr->getEndLoc());
11189 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11190 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11191 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11192 << FixItHint::CreateInsertion(EndLoc, "]");
11193 } else
11194 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11195}
11196
11197/// Emit a warning when adding a char literal to a string.
11198static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
11199 Expr *LHSExpr, Expr *RHSExpr) {
11200 const Expr *StringRefExpr = LHSExpr;
11201 const CharacterLiteral *CharExpr =
11202 dyn_cast<CharacterLiteral>(Val: RHSExpr->IgnoreImpCasts());
11203
11204 if (!CharExpr) {
11205 CharExpr = dyn_cast<CharacterLiteral>(Val: LHSExpr->IgnoreImpCasts());
11206 StringRefExpr = RHSExpr;
11207 }
11208
11209 if (!CharExpr || !StringRefExpr)
11210 return;
11211
11212 const QualType StringType = StringRefExpr->getType();
11213
11214 // Return if not a PointerType.
11215 if (!StringType->isAnyPointerType())
11216 return;
11217
11218 // Return if not a CharacterType.
11219 if (!StringType->getPointeeType()->isAnyCharacterType())
11220 return;
11221
11222 ASTContext &Ctx = Self.getASTContext();
11223 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11224
11225 const QualType CharType = CharExpr->getType();
11226 if (!CharType->isAnyCharacterType() &&
11227 CharType->isIntegerType() &&
11228 llvm::isUIntN(N: Ctx.getCharWidth(), x: CharExpr->getValue())) {
11229 Self.Diag(OpLoc, diag::warn_string_plus_char)
11230 << DiagRange << Ctx.CharTy;
11231 } else {
11232 Self.Diag(OpLoc, diag::warn_string_plus_char)
11233 << DiagRange << CharExpr->getType();
11234 }
11235
11236 // Only print a fixit for str + char, not for char + str.
11237 if (isa<CharacterLiteral>(Val: RHSExpr->IgnoreImpCasts())) {
11238 SourceLocation EndLoc = Self.getLocForEndOfToken(Loc: RHSExpr->getEndLoc());
11239 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11240 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11241 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11242 << FixItHint::CreateInsertion(EndLoc, "]");
11243 } else {
11244 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11245 }
11246}
11247
11248/// Emit error when two pointers are incompatible.
11249static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
11250 Expr *LHSExpr, Expr *RHSExpr) {
11251 assert(LHSExpr->getType()->isAnyPointerType());
11252 assert(RHSExpr->getType()->isAnyPointerType());
11253 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
11254 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
11255 << RHSExpr->getSourceRange();
11256}
11257
11258// C99 6.5.6
11259QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
11260 SourceLocation Loc, BinaryOperatorKind Opc,
11261 QualType* CompLHSTy) {
11262 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
11263
11264 if (LHS.get()->getType()->isVectorType() ||
11265 RHS.get()->getType()->isVectorType()) {
11266 QualType compType =
11267 CheckVectorOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy,
11268 /*AllowBothBool*/ getLangOpts().AltiVec,
11269 /*AllowBoolConversions*/ getLangOpts().ZVector,
11270 /*AllowBooleanOperation*/ AllowBoolOperation: false,
11271 /*ReportInvalid*/ true);
11272 if (CompLHSTy) *CompLHSTy = compType;
11273 return compType;
11274 }
11275
11276 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11277 RHS.get()->getType()->isSveVLSBuiltinType()) {
11278 QualType compType = CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy,
11279 OperationKind: ArithConvKind::Arithmetic);
11280 if (CompLHSTy)
11281 *CompLHSTy = compType;
11282 return compType;
11283 }
11284
11285 if (LHS.get()->getType()->isConstantMatrixType() ||
11286 RHS.get()->getType()->isConstantMatrixType()) {
11287 QualType compType =
11288 CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy);
11289 if (CompLHSTy)
11290 *CompLHSTy = compType;
11291 return compType;
11292 }
11293
11294 QualType compType = UsualArithmeticConversions(
11295 LHS, RHS, Loc,
11296 ACK: CompLHSTy ? ArithConvKind::CompAssign : ArithConvKind::Arithmetic);
11297 if (LHS.isInvalid() || RHS.isInvalid())
11298 return QualType();
11299
11300 // Diagnose "string literal" '+' int and string '+' "char literal".
11301 if (Opc == BO_Add) {
11302 diagnoseStringPlusInt(Self&: *this, OpLoc: Loc, LHSExpr: LHS.get(), RHSExpr: RHS.get());
11303 diagnoseStringPlusChar(Self&: *this, OpLoc: Loc, LHSExpr: LHS.get(), RHSExpr: RHS.get());
11304 }
11305
11306 // handle the common case first (both operands are arithmetic).
11307 if (!compType.isNull() && compType->isArithmeticType()) {
11308 if (CompLHSTy) *CompLHSTy = compType;
11309 return compType;
11310 }
11311
11312 // Type-checking. Ultimately the pointer's going to be in PExp;
11313 // note that we bias towards the LHS being the pointer.
11314 Expr *PExp = LHS.get(), *IExp = RHS.get();
11315
11316 bool isObjCPointer;
11317 if (PExp->getType()->isPointerType()) {
11318 isObjCPointer = false;
11319 } else if (PExp->getType()->isObjCObjectPointerType()) {
11320 isObjCPointer = true;
11321 } else {
11322 std::swap(a&: PExp, b&: IExp);
11323 if (PExp->getType()->isPointerType()) {
11324 isObjCPointer = false;
11325 } else if (PExp->getType()->isObjCObjectPointerType()) {
11326 isObjCPointer = true;
11327 } else {
11328 return InvalidOperands(Loc, LHS, RHS);
11329 }
11330 }
11331 assert(PExp->getType()->isAnyPointerType());
11332
11333 if (!IExp->getType()->isIntegerType())
11334 return InvalidOperands(Loc, LHS, RHS);
11335
11336 // Adding to a null pointer results in undefined behavior.
11337 if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11338 Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNotNull)) {
11339 // In C++ adding zero to a null pointer is defined.
11340 Expr::EvalResult KnownVal;
11341 if (!getLangOpts().CPlusPlus ||
11342 (!IExp->isValueDependent() &&
11343 (!IExp->EvaluateAsInt(Result&: KnownVal, Ctx: Context) ||
11344 KnownVal.Val.getInt() != 0))) {
11345 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11346 bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11347 Ctx&: Context, Opc: BO_Add, LHS: PExp, RHS: IExp);
11348 diagnoseArithmeticOnNullPointer(S&: *this, Loc, Pointer: PExp, IsGNUIdiom);
11349 }
11350 }
11351
11352 if (!checkArithmeticOpPointerOperand(S&: *this, Loc, Operand: PExp))
11353 return QualType();
11354
11355 if (isObjCPointer && checkArithmeticOnObjCPointer(S&: *this, opLoc: Loc, op: PExp))
11356 return QualType();
11357
11358 // Arithmetic on label addresses is normally allowed, except when we add
11359 // a ptrauth signature to the addresses.
11360 if (isa<AddrLabelExpr>(Val: PExp) && getLangOpts().PointerAuthIndirectGotos) {
11361 Diag(Loc, diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
11362 << /*addition*/ 1;
11363 return QualType();
11364 }
11365
11366 // Check array bounds for pointer arithemtic
11367 CheckArrayAccess(BaseExpr: PExp, IndexExpr: IExp);
11368
11369 if (CompLHSTy) {
11370 QualType LHSTy = Context.isPromotableBitField(E: LHS.get());
11371 if (LHSTy.isNull()) {
11372 LHSTy = LHS.get()->getType();
11373 if (Context.isPromotableIntegerType(T: LHSTy))
11374 LHSTy = Context.getPromotedIntegerType(PromotableType: LHSTy);
11375 }
11376 *CompLHSTy = LHSTy;
11377 }
11378
11379 return PExp->getType();
11380}
11381
11382// C99 6.5.6
11383QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11384 SourceLocation Loc,
11385 QualType* CompLHSTy) {
11386 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
11387
11388 if (LHS.get()->getType()->isVectorType() ||
11389 RHS.get()->getType()->isVectorType()) {
11390 QualType compType =
11391 CheckVectorOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy,
11392 /*AllowBothBool*/ getLangOpts().AltiVec,
11393 /*AllowBoolConversions*/ getLangOpts().ZVector,
11394 /*AllowBooleanOperation*/ AllowBoolOperation: false,
11395 /*ReportInvalid*/ true);
11396 if (CompLHSTy) *CompLHSTy = compType;
11397 return compType;
11398 }
11399
11400 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11401 RHS.get()->getType()->isSveVLSBuiltinType()) {
11402 QualType compType = CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy,
11403 OperationKind: ArithConvKind::Arithmetic);
11404 if (CompLHSTy)
11405 *CompLHSTy = compType;
11406 return compType;
11407 }
11408
11409 if (LHS.get()->getType()->isConstantMatrixType() ||
11410 RHS.get()->getType()->isConstantMatrixType()) {
11411 QualType compType =
11412 CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy);
11413 if (CompLHSTy)
11414 *CompLHSTy = compType;
11415 return compType;
11416 }
11417
11418 QualType compType = UsualArithmeticConversions(
11419 LHS, RHS, Loc,
11420 ACK: CompLHSTy ? ArithConvKind::CompAssign : ArithConvKind::Arithmetic);
11421 if (LHS.isInvalid() || RHS.isInvalid())
11422 return QualType();
11423
11424 // Enforce type constraints: C99 6.5.6p3.
11425
11426 // Handle the common case first (both operands are arithmetic).
11427 if (!compType.isNull() && compType->isArithmeticType()) {
11428 if (CompLHSTy) *CompLHSTy = compType;
11429 return compType;
11430 }
11431
11432 // Either ptr - int or ptr - ptr.
11433 if (LHS.get()->getType()->isAnyPointerType()) {
11434 QualType lpointee = LHS.get()->getType()->getPointeeType();
11435
11436 // Diagnose bad cases where we step over interface counts.
11437 if (LHS.get()->getType()->isObjCObjectPointerType() &&
11438 checkArithmeticOnObjCPointer(S&: *this, opLoc: Loc, op: LHS.get()))
11439 return QualType();
11440
11441 // Arithmetic on label addresses is normally allowed, except when we add
11442 // a ptrauth signature to the addresses.
11443 if (isa<AddrLabelExpr>(Val: LHS.get()) &&
11444 getLangOpts().PointerAuthIndirectGotos) {
11445 Diag(Loc, diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
11446 << /*subtraction*/ 0;
11447 return QualType();
11448 }
11449
11450 // The result type of a pointer-int computation is the pointer type.
11451 if (RHS.get()->getType()->isIntegerType()) {
11452 // Subtracting from a null pointer should produce a warning.
11453 // The last argument to the diagnose call says this doesn't match the
11454 // GNU int-to-pointer idiom.
11455 if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Ctx&: Context,
11456 NPC: Expr::NPC_ValueDependentIsNotNull)) {
11457 // In C++ adding zero to a null pointer is defined.
11458 Expr::EvalResult KnownVal;
11459 if (!getLangOpts().CPlusPlus ||
11460 (!RHS.get()->isValueDependent() &&
11461 (!RHS.get()->EvaluateAsInt(Result&: KnownVal, Ctx: Context) ||
11462 KnownVal.Val.getInt() != 0))) {
11463 diagnoseArithmeticOnNullPointer(S&: *this, Loc, Pointer: LHS.get(), IsGNUIdiom: false);
11464 }
11465 }
11466
11467 if (!checkArithmeticOpPointerOperand(S&: *this, Loc, Operand: LHS.get()))
11468 return QualType();
11469
11470 // Check array bounds for pointer arithemtic
11471 CheckArrayAccess(BaseExpr: LHS.get(), IndexExpr: RHS.get(), /*ArraySubscriptExpr*/ASE: nullptr,
11472 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11473
11474 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11475 return LHS.get()->getType();
11476 }
11477
11478 // Handle pointer-pointer subtractions.
11479 if (const PointerType *RHSPTy
11480 = RHS.get()->getType()->getAs<PointerType>()) {
11481 QualType rpointee = RHSPTy->getPointeeType();
11482
11483 if (getLangOpts().CPlusPlus) {
11484 // Pointee types must be the same: C++ [expr.add]
11485 if (!Context.hasSameUnqualifiedType(T1: lpointee, T2: rpointee)) {
11486 diagnosePointerIncompatibility(S&: *this, Loc, LHSExpr: LHS.get(), RHSExpr: RHS.get());
11487 }
11488 } else {
11489 // Pointee types must be compatible C99 6.5.6p3
11490 if (!Context.typesAreCompatible(
11491 T1: Context.getCanonicalType(T: lpointee).getUnqualifiedType(),
11492 T2: Context.getCanonicalType(T: rpointee).getUnqualifiedType())) {
11493 diagnosePointerIncompatibility(S&: *this, Loc, LHSExpr: LHS.get(), RHSExpr: RHS.get());
11494 return QualType();
11495 }
11496 }
11497
11498 if (!checkArithmeticBinOpPointerOperands(S&: *this, Loc,
11499 LHSExpr: LHS.get(), RHSExpr: RHS.get()))
11500 return QualType();
11501
11502 bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11503 Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNotNull);
11504 bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11505 Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNotNull);
11506
11507 // Subtracting nullptr or from nullptr is suspect
11508 if (LHSIsNullPtr)
11509 diagnoseSubtractionOnNullPointer(S&: *this, Loc, Pointer: LHS.get(), BothNull: RHSIsNullPtr);
11510 if (RHSIsNullPtr)
11511 diagnoseSubtractionOnNullPointer(S&: *this, Loc, Pointer: RHS.get(), BothNull: LHSIsNullPtr);
11512
11513 // The pointee type may have zero size. As an extension, a structure or
11514 // union may have zero size or an array may have zero length. In this
11515 // case subtraction does not make sense.
11516 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
11517 CharUnits ElementSize = Context.getTypeSizeInChars(T: rpointee);
11518 if (ElementSize.isZero()) {
11519 Diag(Loc,diag::warn_sub_ptr_zero_size_types)
11520 << rpointee.getUnqualifiedType()
11521 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11522 }
11523 }
11524
11525 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11526 return Context.getPointerDiffType();
11527 }
11528 }
11529
11530 return InvalidOperands(Loc, LHS, RHS);
11531}
11532
11533static bool isScopedEnumerationType(QualType T) {
11534 if (const EnumType *ET = T->getAs<EnumType>())
11535 return ET->getDecl()->isScoped();
11536 return false;
11537}
11538
11539static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11540 SourceLocation Loc, BinaryOperatorKind Opc,
11541 QualType LHSType) {
11542 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11543 // so skip remaining warnings as we don't want to modify values within Sema.
11544 if (S.getLangOpts().OpenCL)
11545 return;
11546
11547 if (Opc == BO_Shr &&
11548 LHS.get()->IgnoreParenImpCasts()->getType()->isBooleanType())
11549 S.Diag(Loc, diag::warn_shift_bool) << LHS.get()->getSourceRange();
11550
11551 // Check right/shifter operand
11552 Expr::EvalResult RHSResult;
11553 if (RHS.get()->isValueDependent() ||
11554 !RHS.get()->EvaluateAsInt(Result&: RHSResult, Ctx: S.Context))
11555 return;
11556 llvm::APSInt Right = RHSResult.Val.getInt();
11557
11558 if (Right.isNegative()) {
11559 S.DiagRuntimeBehavior(Loc, RHS.get(),
11560 S.PDiag(diag::warn_shift_negative)
11561 << RHS.get()->getSourceRange());
11562 return;
11563 }
11564
11565 QualType LHSExprType = LHS.get()->getType();
11566 uint64_t LeftSize = S.Context.getTypeSize(T: LHSExprType);
11567 if (LHSExprType->isBitIntType())
11568 LeftSize = S.Context.getIntWidth(T: LHSExprType);
11569 else if (LHSExprType->isFixedPointType()) {
11570 auto FXSema = S.Context.getFixedPointSemantics(Ty: LHSExprType);
11571 LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11572 }
11573 if (Right.uge(RHS: LeftSize)) {
11574 S.DiagRuntimeBehavior(Loc, RHS.get(),
11575 S.PDiag(diag::warn_shift_gt_typewidth)
11576 << RHS.get()->getSourceRange());
11577 return;
11578 }
11579
11580 // FIXME: We probably need to handle fixed point types specially here.
11581 if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11582 return;
11583
11584 // When left shifting an ICE which is signed, we can check for overflow which
11585 // according to C++ standards prior to C++2a has undefined behavior
11586 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11587 // more than the maximum value representable in the result type, so never
11588 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11589 // expression is still probably a bug.)
11590 Expr::EvalResult LHSResult;
11591 if (LHS.get()->isValueDependent() ||
11592 LHSType->hasUnsignedIntegerRepresentation() ||
11593 !LHS.get()->EvaluateAsInt(Result&: LHSResult, Ctx: S.Context))
11594 return;
11595 llvm::APSInt Left = LHSResult.Val.getInt();
11596
11597 // Don't warn if signed overflow is defined, then all the rest of the
11598 // diagnostics will not be triggered because the behavior is defined.
11599 // Also don't warn in C++20 mode (and newer), as signed left shifts
11600 // always wrap and never overflow.
11601 if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
11602 return;
11603
11604 // If LHS does not have a non-negative value then, the
11605 // behavior is undefined before C++2a. Warn about it.
11606 if (Left.isNegative()) {
11607 S.DiagRuntimeBehavior(Loc, LHS.get(),
11608 S.PDiag(diag::warn_shift_lhs_negative)
11609 << LHS.get()->getSourceRange());
11610 return;
11611 }
11612
11613 llvm::APInt ResultBits =
11614 static_cast<llvm::APInt &>(Right) + Left.getSignificantBits();
11615 if (ResultBits.ule(RHS: LeftSize))
11616 return;
11617 llvm::APSInt Result = Left.extend(width: ResultBits.getLimitedValue());
11618 Result = Result.shl(ShiftAmt: Right);
11619
11620 // Print the bit representation of the signed integer as an unsigned
11621 // hexadecimal number.
11622 SmallString<40> HexResult;
11623 Result.toString(Str&: HexResult, Radix: 16, /*Signed =*/false, /*Literal =*/formatAsCLiteral: true);
11624
11625 // If we are only missing a sign bit, this is less likely to result in actual
11626 // bugs -- if the result is cast back to an unsigned type, it will have the
11627 // expected value. Thus we place this behind a different warning that can be
11628 // turned off separately if needed.
11629 if (ResultBits - 1 == LeftSize) {
11630 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
11631 << HexResult << LHSType
11632 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11633 return;
11634 }
11635
11636 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
11637 << HexResult.str() << Result.getSignificantBits() << LHSType
11638 << Left.getBitWidth() << LHS.get()->getSourceRange()
11639 << RHS.get()->getSourceRange();
11640}
11641
11642/// Return the resulting type when a vector is shifted
11643/// by a scalar or vector shift amount.
11644static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11645 SourceLocation Loc, bool IsCompAssign) {
11646 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11647 if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11648 !LHS.get()->getType()->isVectorType()) {
11649 S.Diag(Loc, diag::err_shift_rhs_only_vector)
11650 << RHS.get()->getType() << LHS.get()->getType()
11651 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11652 return QualType();
11653 }
11654
11655 if (!IsCompAssign) {
11656 LHS = S.UsualUnaryConversions(E: LHS.get());
11657 if (LHS.isInvalid()) return QualType();
11658 }
11659
11660 RHS = S.UsualUnaryConversions(E: RHS.get());
11661 if (RHS.isInvalid()) return QualType();
11662
11663 QualType LHSType = LHS.get()->getType();
11664 // Note that LHS might be a scalar because the routine calls not only in
11665 // OpenCL case.
11666 const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11667 QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11668
11669 // Note that RHS might not be a vector.
11670 QualType RHSType = RHS.get()->getType();
11671 const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11672 QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11673
11674 // Do not allow shifts for boolean vectors.
11675 if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
11676 (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
11677 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11678 << LHS.get()->getType() << RHS.get()->getType()
11679 << LHS.get()->getSourceRange();
11680 return QualType();
11681 }
11682
11683 // The operands need to be integers.
11684 if (!LHSEleType->isIntegerType()) {
11685 S.Diag(Loc, diag::err_typecheck_expect_int)
11686 << LHS.get()->getType() << LHS.get()->getSourceRange();
11687 return QualType();
11688 }
11689
11690 if (!RHSEleType->isIntegerType()) {
11691 S.Diag(Loc, diag::err_typecheck_expect_int)
11692 << RHS.get()->getType() << RHS.get()->getSourceRange();
11693 return QualType();
11694 }
11695
11696 if (!LHSVecTy) {
11697 assert(RHSVecTy);
11698 if (IsCompAssign)
11699 return RHSType;
11700 if (LHSEleType != RHSEleType) {
11701 LHS = S.ImpCastExprToType(E: LHS.get(),Type: RHSEleType, CK: CK_IntegralCast);
11702 LHSEleType = RHSEleType;
11703 }
11704 QualType VecTy =
11705 S.Context.getExtVectorType(VectorType: LHSEleType, NumElts: RHSVecTy->getNumElements());
11706 LHS = S.ImpCastExprToType(E: LHS.get(), Type: VecTy, CK: CK_VectorSplat);
11707 LHSType = VecTy;
11708 } else if (RHSVecTy) {
11709 // OpenCL v1.1 s6.3.j says that for vector types, the operators
11710 // are applied component-wise. So if RHS is a vector, then ensure
11711 // that the number of elements is the same as LHS...
11712 if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11713 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11714 << LHS.get()->getType() << RHS.get()->getType()
11715 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11716 return QualType();
11717 }
11718 if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11719 const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11720 const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11721 if (LHSBT != RHSBT &&
11722 S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
11723 S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
11724 << LHS.get()->getType() << RHS.get()->getType()
11725 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11726 }
11727 }
11728 } else {
11729 // ...else expand RHS to match the number of elements in LHS.
11730 QualType VecTy =
11731 S.Context.getExtVectorType(VectorType: RHSEleType, NumElts: LHSVecTy->getNumElements());
11732 RHS = S.ImpCastExprToType(E: RHS.get(), Type: VecTy, CK: CK_VectorSplat);
11733 }
11734
11735 return LHSType;
11736}
11737
11738static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
11739 ExprResult &RHS, SourceLocation Loc,
11740 bool IsCompAssign) {
11741 if (!IsCompAssign) {
11742 LHS = S.UsualUnaryConversions(E: LHS.get());
11743 if (LHS.isInvalid())
11744 return QualType();
11745 }
11746
11747 RHS = S.UsualUnaryConversions(E: RHS.get());
11748 if (RHS.isInvalid())
11749 return QualType();
11750
11751 QualType LHSType = LHS.get()->getType();
11752 const BuiltinType *LHSBuiltinTy = LHSType->castAs<BuiltinType>();
11753 QualType LHSEleType = LHSType->isSveVLSBuiltinType()
11754 ? LHSBuiltinTy->getSveEltType(S.getASTContext())
11755 : LHSType;
11756
11757 // Note that RHS might not be a vector
11758 QualType RHSType = RHS.get()->getType();
11759 const BuiltinType *RHSBuiltinTy = RHSType->castAs<BuiltinType>();
11760 QualType RHSEleType = RHSType->isSveVLSBuiltinType()
11761 ? RHSBuiltinTy->getSveEltType(S.getASTContext())
11762 : RHSType;
11763
11764 if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11765 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
11766 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11767 << LHSType << RHSType << LHS.get()->getSourceRange();
11768 return QualType();
11769 }
11770
11771 if (!LHSEleType->isIntegerType()) {
11772 S.Diag(Loc, diag::err_typecheck_expect_int)
11773 << LHS.get()->getType() << LHS.get()->getSourceRange();
11774 return QualType();
11775 }
11776
11777 if (!RHSEleType->isIntegerType()) {
11778 S.Diag(Loc, diag::err_typecheck_expect_int)
11779 << RHS.get()->getType() << RHS.get()->getSourceRange();
11780 return QualType();
11781 }
11782
11783 if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
11784 (S.Context.getBuiltinVectorTypeInfo(VecTy: LHSBuiltinTy).EC !=
11785 S.Context.getBuiltinVectorTypeInfo(VecTy: RHSBuiltinTy).EC)) {
11786 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11787 << LHSType << RHSType << LHS.get()->getSourceRange()
11788 << RHS.get()->getSourceRange();
11789 return QualType();
11790 }
11791
11792 if (!LHSType->isSveVLSBuiltinType()) {
11793 assert(RHSType->isSveVLSBuiltinType());
11794 if (IsCompAssign)
11795 return RHSType;
11796 if (LHSEleType != RHSEleType) {
11797 LHS = S.ImpCastExprToType(E: LHS.get(), Type: RHSEleType, CK: clang::CK_IntegralCast);
11798 LHSEleType = RHSEleType;
11799 }
11800 const llvm::ElementCount VecSize =
11801 S.Context.getBuiltinVectorTypeInfo(VecTy: RHSBuiltinTy).EC;
11802 QualType VecTy =
11803 S.Context.getScalableVectorType(EltTy: LHSEleType, NumElts: VecSize.getKnownMinValue());
11804 LHS = S.ImpCastExprToType(E: LHS.get(), Type: VecTy, CK: clang::CK_VectorSplat);
11805 LHSType = VecTy;
11806 } else if (RHSBuiltinTy && RHSBuiltinTy->isSveVLSBuiltinType()) {
11807 if (S.Context.getTypeSize(RHSBuiltinTy) !=
11808 S.Context.getTypeSize(LHSBuiltinTy)) {
11809 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11810 << LHSType << RHSType << LHS.get()->getSourceRange()
11811 << RHS.get()->getSourceRange();
11812 return QualType();
11813 }
11814 } else {
11815 const llvm::ElementCount VecSize =
11816 S.Context.getBuiltinVectorTypeInfo(VecTy: LHSBuiltinTy).EC;
11817 if (LHSEleType != RHSEleType) {
11818 RHS = S.ImpCastExprToType(E: RHS.get(), Type: LHSEleType, CK: clang::CK_IntegralCast);
11819 RHSEleType = LHSEleType;
11820 }
11821 QualType VecTy =
11822 S.Context.getScalableVectorType(EltTy: RHSEleType, NumElts: VecSize.getKnownMinValue());
11823 RHS = S.ImpCastExprToType(E: RHS.get(), Type: VecTy, CK: CK_VectorSplat);
11824 }
11825
11826 return LHSType;
11827}
11828
11829// C99 6.5.7
11830QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11831 SourceLocation Loc, BinaryOperatorKind Opc,
11832 bool IsCompAssign) {
11833 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
11834
11835 // Vector shifts promote their scalar inputs to vector type.
11836 if (LHS.get()->getType()->isVectorType() ||
11837 RHS.get()->getType()->isVectorType()) {
11838 if (LangOpts.ZVector) {
11839 // The shift operators for the z vector extensions work basically
11840 // like general shifts, except that neither the LHS nor the RHS is
11841 // allowed to be a "vector bool".
11842 if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11843 if (LHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11844 return InvalidOperands(Loc, LHS, RHS);
11845 if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11846 if (RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11847 return InvalidOperands(Loc, LHS, RHS);
11848 }
11849 return checkVectorShift(S&: *this, LHS, RHS, Loc, IsCompAssign);
11850 }
11851
11852 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11853 RHS.get()->getType()->isSveVLSBuiltinType())
11854 return checkSizelessVectorShift(S&: *this, LHS, RHS, Loc, IsCompAssign);
11855
11856 // Shifts don't perform usual arithmetic conversions, they just do integer
11857 // promotions on each operand. C99 6.5.7p3
11858
11859 // For the LHS, do usual unary conversions, but then reset them away
11860 // if this is a compound assignment.
11861 ExprResult OldLHS = LHS;
11862 LHS = UsualUnaryConversions(E: LHS.get());
11863 if (LHS.isInvalid())
11864 return QualType();
11865 QualType LHSType = LHS.get()->getType();
11866 if (IsCompAssign) LHS = OldLHS;
11867
11868 // The RHS is simpler.
11869 RHS = UsualUnaryConversions(E: RHS.get());
11870 if (RHS.isInvalid())
11871 return QualType();
11872 QualType RHSType = RHS.get()->getType();
11873
11874 // C99 6.5.7p2: Each of the operands shall have integer type.
11875 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11876 if ((!LHSType->isFixedPointOrIntegerType() &&
11877 !LHSType->hasIntegerRepresentation()) ||
11878 !RHSType->hasIntegerRepresentation())
11879 return InvalidOperands(Loc, LHS, RHS);
11880
11881 // C++0x: Don't allow scoped enums. FIXME: Use something better than
11882 // hasIntegerRepresentation() above instead of this.
11883 if (isScopedEnumerationType(T: LHSType) ||
11884 isScopedEnumerationType(T: RHSType)) {
11885 return InvalidOperands(Loc, LHS, RHS);
11886 }
11887 DiagnoseBadShiftValues(S&: *this, LHS, RHS, Loc, Opc, LHSType);
11888
11889 // "The type of the result is that of the promoted left operand."
11890 return LHSType;
11891}
11892
11893/// Diagnose bad pointer comparisons.
11894static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11895 ExprResult &LHS, ExprResult &RHS,
11896 bool IsError) {
11897 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11898 : diag::ext_typecheck_comparison_of_distinct_pointers)
11899 << LHS.get()->getType() << RHS.get()->getType()
11900 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11901}
11902
11903/// Returns false if the pointers are converted to a composite type,
11904/// true otherwise.
11905static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11906 ExprResult &LHS, ExprResult &RHS) {
11907 // C++ [expr.rel]p2:
11908 // [...] Pointer conversions (4.10) and qualification
11909 // conversions (4.4) are performed on pointer operands (or on
11910 // a pointer operand and a null pointer constant) to bring
11911 // them to their composite pointer type. [...]
11912 //
11913 // C++ [expr.eq]p1 uses the same notion for (in)equality
11914 // comparisons of pointers.
11915
11916 QualType LHSType = LHS.get()->getType();
11917 QualType RHSType = RHS.get()->getType();
11918 assert(LHSType->isPointerType() || RHSType->isPointerType() ||
11919 LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
11920
11921 QualType T = S.FindCompositePointerType(Loc, E1&: LHS, E2&: RHS);
11922 if (T.isNull()) {
11923 if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11924 (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11925 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/IsError: true);
11926 else
11927 S.InvalidOperands(Loc, LHS, RHS);
11928 return true;
11929 }
11930
11931 return false;
11932}
11933
11934static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11935 ExprResult &LHS,
11936 ExprResult &RHS,
11937 bool IsError) {
11938 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11939 : diag::ext_typecheck_comparison_of_fptr_to_void)
11940 << LHS.get()->getType() << RHS.get()->getType()
11941 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11942}
11943
11944static bool isObjCObjectLiteral(ExprResult &E) {
11945 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11946 case Stmt::ObjCArrayLiteralClass:
11947 case Stmt::ObjCDictionaryLiteralClass:
11948 case Stmt::ObjCStringLiteralClass:
11949 case Stmt::ObjCBoxedExprClass:
11950 return true;
11951 default:
11952 // Note that ObjCBoolLiteral is NOT an object literal!
11953 return false;
11954 }
11955}
11956
11957static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11958 const ObjCObjectPointerType *Type =
11959 LHS->getType()->getAs<ObjCObjectPointerType>();
11960
11961 // If this is not actually an Objective-C object, bail out.
11962 if (!Type)
11963 return false;
11964
11965 // Get the LHS object's interface type.
11966 QualType InterfaceType = Type->getPointeeType();
11967
11968 // If the RHS isn't an Objective-C object, bail out.
11969 if (!RHS->getType()->isObjCObjectPointerType())
11970 return false;
11971
11972 // Try to find the -isEqual: method.
11973 Selector IsEqualSel = S.ObjC().NSAPIObj->getIsEqualSelector();
11974 ObjCMethodDecl *Method =
11975 S.ObjC().LookupMethodInObjectType(Sel: IsEqualSel, Ty: InterfaceType,
11976 /*IsInstance=*/true);
11977 if (!Method) {
11978 if (Type->isObjCIdType()) {
11979 // For 'id', just check the global pool.
11980 Method =
11981 S.ObjC().LookupInstanceMethodInGlobalPool(Sel: IsEqualSel, R: SourceRange(),
11982 /*receiverId=*/receiverIdOrClass: true);
11983 } else {
11984 // Check protocols.
11985 Method = S.ObjC().LookupMethodInQualifiedType(Sel: IsEqualSel, OPT: Type,
11986 /*IsInstance=*/true);
11987 }
11988 }
11989
11990 if (!Method)
11991 return false;
11992
11993 QualType T = Method->parameters()[0]->getType();
11994 if (!T->isObjCObjectPointerType())
11995 return false;
11996
11997 QualType R = Method->getReturnType();
11998 if (!R->isScalarType())
11999 return false;
12000
12001 return true;
12002}
12003
12004static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
12005 ExprResult &LHS, ExprResult &RHS,
12006 BinaryOperator::Opcode Opc){
12007 Expr *Literal;
12008 Expr *Other;
12009 if (isObjCObjectLiteral(E&: LHS)) {
12010 Literal = LHS.get();
12011 Other = RHS.get();
12012 } else {
12013 Literal = RHS.get();
12014 Other = LHS.get();
12015 }
12016
12017 // Don't warn on comparisons against nil.
12018 Other = Other->IgnoreParenCasts();
12019 if (Other->isNullPointerConstant(Ctx&: S.getASTContext(),
12020 NPC: Expr::NPC_ValueDependentIsNotNull))
12021 return;
12022
12023 // This should be kept in sync with warn_objc_literal_comparison.
12024 // LK_String should always be after the other literals, since it has its own
12025 // warning flag.
12026 SemaObjC::ObjCLiteralKind LiteralKind = S.ObjC().CheckLiteralKind(FromE: Literal);
12027 assert(LiteralKind != SemaObjC::LK_Block);
12028 if (LiteralKind == SemaObjC::LK_None) {
12029 llvm_unreachable("Unknown Objective-C object literal kind");
12030 }
12031
12032 if (LiteralKind == SemaObjC::LK_String)
12033 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
12034 << Literal->getSourceRange();
12035 else
12036 S.Diag(Loc, diag::warn_objc_literal_comparison)
12037 << LiteralKind << Literal->getSourceRange();
12038
12039 if (BinaryOperator::isEqualityOp(Opc) &&
12040 hasIsEqualMethod(S, LHS: LHS.get(), RHS: RHS.get())) {
12041 SourceLocation Start = LHS.get()->getBeginLoc();
12042 SourceLocation End = S.getLocForEndOfToken(Loc: RHS.get()->getEndLoc());
12043 CharSourceRange OpRange =
12044 CharSourceRange::getCharRange(B: Loc, E: S.getLocForEndOfToken(Loc));
12045
12046 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
12047 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
12048 << FixItHint::CreateReplacement(OpRange, " isEqual:")
12049 << FixItHint::CreateInsertion(End, "]");
12050 }
12051}
12052
12053/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
12054static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
12055 ExprResult &RHS, SourceLocation Loc,
12056 BinaryOperatorKind Opc) {
12057 // Check that left hand side is !something.
12058 UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: LHS.get()->IgnoreImpCasts());
12059 if (!UO || UO->getOpcode() != UO_LNot) return;
12060
12061 // Only check if the right hand side is non-bool arithmetic type.
12062 if (RHS.get()->isKnownToHaveBooleanValue()) return;
12063
12064 // Make sure that the something in !something is not bool.
12065 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
12066 if (SubExpr->isKnownToHaveBooleanValue()) return;
12067
12068 // Emit warning.
12069 bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
12070 S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
12071 << Loc << IsBitwiseOp;
12072
12073 // First note suggest !(x < y)
12074 SourceLocation FirstOpen = SubExpr->getBeginLoc();
12075 SourceLocation FirstClose = RHS.get()->getEndLoc();
12076 FirstClose = S.getLocForEndOfToken(Loc: FirstClose);
12077 if (FirstClose.isInvalid())
12078 FirstOpen = SourceLocation();
12079 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
12080 << IsBitwiseOp
12081 << FixItHint::CreateInsertion(FirstOpen, "(")
12082 << FixItHint::CreateInsertion(FirstClose, ")");
12083
12084 // Second note suggests (!x) < y
12085 SourceLocation SecondOpen = LHS.get()->getBeginLoc();
12086 SourceLocation SecondClose = LHS.get()->getEndLoc();
12087 SecondClose = S.getLocForEndOfToken(Loc: SecondClose);
12088 if (SecondClose.isInvalid())
12089 SecondOpen = SourceLocation();
12090 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
12091 << FixItHint::CreateInsertion(SecondOpen, "(")
12092 << FixItHint::CreateInsertion(SecondClose, ")");
12093}
12094
12095// Returns true if E refers to a non-weak array.
12096static bool checkForArray(const Expr *E) {
12097 const ValueDecl *D = nullptr;
12098 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Val: E)) {
12099 D = DR->getDecl();
12100 } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(Val: E)) {
12101 if (Mem->isImplicitAccess())
12102 D = Mem->getMemberDecl();
12103 }
12104 if (!D)
12105 return false;
12106 return D->getType()->isArrayType() && !D->isWeak();
12107}
12108
12109/// Detect patterns ptr + size >= ptr and ptr + size < ptr, where ptr is a
12110/// pointer and size is an unsigned integer. Return whether the result is
12111/// always true/false.
12112static std::optional<bool> isTautologicalBoundsCheck(Sema &S, const Expr *LHS,
12113 const Expr *RHS,
12114 BinaryOperatorKind Opc) {
12115 if (!LHS->getType()->isPointerType() ||
12116 S.getLangOpts().PointerOverflowDefined)
12117 return std::nullopt;
12118
12119 // Canonicalize to >= or < predicate.
12120 switch (Opc) {
12121 case BO_GE:
12122 case BO_LT:
12123 break;
12124 case BO_GT:
12125 std::swap(a&: LHS, b&: RHS);
12126 Opc = BO_LT;
12127 break;
12128 case BO_LE:
12129 std::swap(a&: LHS, b&: RHS);
12130 Opc = BO_GE;
12131 break;
12132 default:
12133 return std::nullopt;
12134 }
12135
12136 auto *BO = dyn_cast<BinaryOperator>(Val: LHS);
12137 if (!BO || BO->getOpcode() != BO_Add)
12138 return std::nullopt;
12139
12140 Expr *Other;
12141 if (Expr::isSameComparisonOperand(E1: BO->getLHS(), E2: RHS))
12142 Other = BO->getRHS();
12143 else if (Expr::isSameComparisonOperand(E1: BO->getRHS(), E2: RHS))
12144 Other = BO->getLHS();
12145 else
12146 return std::nullopt;
12147
12148 if (!Other->getType()->isUnsignedIntegerType())
12149 return std::nullopt;
12150
12151 return Opc == BO_GE;
12152}
12153
12154/// Diagnose some forms of syntactically-obvious tautological comparison.
12155static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
12156 Expr *LHS, Expr *RHS,
12157 BinaryOperatorKind Opc) {
12158 Expr *LHSStripped = LHS->IgnoreParenImpCasts();
12159 Expr *RHSStripped = RHS->IgnoreParenImpCasts();
12160
12161 QualType LHSType = LHS->getType();
12162 QualType RHSType = RHS->getType();
12163 if (LHSType->hasFloatingRepresentation() ||
12164 (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
12165 S.inTemplateInstantiation())
12166 return;
12167
12168 // WebAssembly Tables cannot be compared, therefore shouldn't emit
12169 // Tautological diagnostics.
12170 if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType())
12171 return;
12172
12173 // Comparisons between two array types are ill-formed for operator<=>, so
12174 // we shouldn't emit any additional warnings about it.
12175 if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
12176 return;
12177
12178 // For non-floating point types, check for self-comparisons of the form
12179 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12180 // often indicate logic errors in the program.
12181 //
12182 // NOTE: Don't warn about comparison expressions resulting from macro
12183 // expansion. Also don't warn about comparisons which are only self
12184 // comparisons within a template instantiation. The warnings should catch
12185 // obvious cases in the definition of the template anyways. The idea is to
12186 // warn when the typed comparison operator will always evaluate to the same
12187 // result.
12188
12189 // Used for indexing into %select in warn_comparison_always
12190 enum {
12191 AlwaysConstant,
12192 AlwaysTrue,
12193 AlwaysFalse,
12194 AlwaysEqual, // std::strong_ordering::equal from operator<=>
12195 };
12196
12197 // C++1a [array.comp]:
12198 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12199 // operands of array type.
12200 // C++2a [depr.array.comp]:
12201 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12202 // operands of array type are deprecated.
12203 if (S.getLangOpts().CPlusPlus && LHSStripped->getType()->isArrayType() &&
12204 RHSStripped->getType()->isArrayType()) {
12205 auto IsDeprArrayComparionIgnored =
12206 S.getDiagnostics().isIgnored(diag::warn_depr_array_comparison, Loc);
12207 auto DiagID = S.getLangOpts().CPlusPlus26
12208 ? diag::warn_array_comparison_cxx26
12209 : !S.getLangOpts().CPlusPlus20 || IsDeprArrayComparionIgnored
12210 ? diag::warn_array_comparison
12211 : diag::warn_depr_array_comparison;
12212 S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
12213 << LHSStripped->getType() << RHSStripped->getType();
12214 // Carry on to produce the tautological comparison warning, if this
12215 // expression is potentially-evaluated, we can resolve the array to a
12216 // non-weak declaration, and so on.
12217 }
12218
12219 if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
12220 if (Expr::isSameComparisonOperand(E1: LHS, E2: RHS)) {
12221 unsigned Result;
12222 switch (Opc) {
12223 case BO_EQ:
12224 case BO_LE:
12225 case BO_GE:
12226 Result = AlwaysTrue;
12227 break;
12228 case BO_NE:
12229 case BO_LT:
12230 case BO_GT:
12231 Result = AlwaysFalse;
12232 break;
12233 case BO_Cmp:
12234 Result = AlwaysEqual;
12235 break;
12236 default:
12237 Result = AlwaysConstant;
12238 break;
12239 }
12240 S.DiagRuntimeBehavior(Loc, nullptr,
12241 S.PDiag(diag::warn_comparison_always)
12242 << 0 /*self-comparison*/
12243 << Result);
12244 } else if (checkForArray(E: LHSStripped) && checkForArray(E: RHSStripped)) {
12245 // What is it always going to evaluate to?
12246 unsigned Result;
12247 switch (Opc) {
12248 case BO_EQ: // e.g. array1 == array2
12249 Result = AlwaysFalse;
12250 break;
12251 case BO_NE: // e.g. array1 != array2
12252 Result = AlwaysTrue;
12253 break;
12254 default: // e.g. array1 <= array2
12255 // The best we can say is 'a constant'
12256 Result = AlwaysConstant;
12257 break;
12258 }
12259 S.DiagRuntimeBehavior(Loc, nullptr,
12260 S.PDiag(diag::warn_comparison_always)
12261 << 1 /*array comparison*/
12262 << Result);
12263 } else if (std::optional<bool> Res =
12264 isTautologicalBoundsCheck(S, LHS, RHS, Opc)) {
12265 S.DiagRuntimeBehavior(Loc, nullptr,
12266 S.PDiag(diag::warn_comparison_always)
12267 << 2 /*pointer comparison*/
12268 << (*Res ? AlwaysTrue : AlwaysFalse));
12269 }
12270 }
12271
12272 if (isa<CastExpr>(Val: LHSStripped))
12273 LHSStripped = LHSStripped->IgnoreParenCasts();
12274 if (isa<CastExpr>(Val: RHSStripped))
12275 RHSStripped = RHSStripped->IgnoreParenCasts();
12276
12277 // Warn about comparisons against a string constant (unless the other
12278 // operand is null); the user probably wants string comparison function.
12279 Expr *LiteralString = nullptr;
12280 Expr *LiteralStringStripped = nullptr;
12281 if ((isa<StringLiteral>(Val: LHSStripped) || isa<ObjCEncodeExpr>(Val: LHSStripped)) &&
12282 !RHSStripped->isNullPointerConstant(Ctx&: S.Context,
12283 NPC: Expr::NPC_ValueDependentIsNull)) {
12284 LiteralString = LHS;
12285 LiteralStringStripped = LHSStripped;
12286 } else if ((isa<StringLiteral>(Val: RHSStripped) ||
12287 isa<ObjCEncodeExpr>(Val: RHSStripped)) &&
12288 !LHSStripped->isNullPointerConstant(Ctx&: S.Context,
12289 NPC: Expr::NPC_ValueDependentIsNull)) {
12290 LiteralString = RHS;
12291 LiteralStringStripped = RHSStripped;
12292 }
12293
12294 if (LiteralString) {
12295 S.DiagRuntimeBehavior(Loc, nullptr,
12296 S.PDiag(diag::warn_stringcompare)
12297 << isa<ObjCEncodeExpr>(LiteralStringStripped)
12298 << LiteralString->getSourceRange());
12299 }
12300}
12301
12302static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12303 switch (CK) {
12304 default: {
12305#ifndef NDEBUG
12306 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12307 << "\n";
12308#endif
12309 llvm_unreachable("unhandled cast kind");
12310 }
12311 case CK_UserDefinedConversion:
12312 return ICK_Identity;
12313 case CK_LValueToRValue:
12314 return ICK_Lvalue_To_Rvalue;
12315 case CK_ArrayToPointerDecay:
12316 return ICK_Array_To_Pointer;
12317 case CK_FunctionToPointerDecay:
12318 return ICK_Function_To_Pointer;
12319 case CK_IntegralCast:
12320 return ICK_Integral_Conversion;
12321 case CK_FloatingCast:
12322 return ICK_Floating_Conversion;
12323 case CK_IntegralToFloating:
12324 case CK_FloatingToIntegral:
12325 return ICK_Floating_Integral;
12326 case CK_IntegralComplexCast:
12327 case CK_FloatingComplexCast:
12328 case CK_FloatingComplexToIntegralComplex:
12329 case CK_IntegralComplexToFloatingComplex:
12330 return ICK_Complex_Conversion;
12331 case CK_FloatingComplexToReal:
12332 case CK_FloatingRealToComplex:
12333 case CK_IntegralComplexToReal:
12334 case CK_IntegralRealToComplex:
12335 return ICK_Complex_Real;
12336 case CK_HLSLArrayRValue:
12337 return ICK_HLSL_Array_RValue;
12338 }
12339}
12340
12341static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12342 QualType FromType,
12343 SourceLocation Loc) {
12344 // Check for a narrowing implicit conversion.
12345 StandardConversionSequence SCS;
12346 SCS.setAsIdentityConversion();
12347 SCS.setToType(Idx: 0, T: FromType);
12348 SCS.setToType(Idx: 1, T: ToType);
12349 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E))
12350 SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
12351
12352 APValue PreNarrowingValue;
12353 QualType PreNarrowingType;
12354 switch (SCS.getNarrowingKind(Context&: S.Context, Converted: E, ConstantValue&: PreNarrowingValue,
12355 ConstantType&: PreNarrowingType,
12356 /*IgnoreFloatToIntegralConversion*/ true)) {
12357 case NK_Dependent_Narrowing:
12358 // Implicit conversion to a narrower type, but the expression is
12359 // value-dependent so we can't tell whether it's actually narrowing.
12360 case NK_Not_Narrowing:
12361 return false;
12362
12363 case NK_Constant_Narrowing:
12364 // Implicit conversion to a narrower type, and the value is not a constant
12365 // expression.
12366 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12367 << /*Constant*/ 1
12368 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
12369 return true;
12370
12371 case NK_Variable_Narrowing:
12372 // Implicit conversion to a narrower type, and the value is not a constant
12373 // expression.
12374 case NK_Type_Narrowing:
12375 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12376 << /*Constant*/ 0 << FromType << ToType;
12377 // TODO: It's not a constant expression, but what if the user intended it
12378 // to be? Can we produce notes to help them figure out why it isn't?
12379 return true;
12380 }
12381 llvm_unreachable("unhandled case in switch");
12382}
12383
12384static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12385 ExprResult &LHS,
12386 ExprResult &RHS,
12387 SourceLocation Loc) {
12388 QualType LHSType = LHS.get()->getType();
12389 QualType RHSType = RHS.get()->getType();
12390 // Dig out the original argument type and expression before implicit casts
12391 // were applied. These are the types/expressions we need to check the
12392 // [expr.spaceship] requirements against.
12393 ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12394 ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12395 QualType LHSStrippedType = LHSStripped.get()->getType();
12396 QualType RHSStrippedType = RHSStripped.get()->getType();
12397
12398 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12399 // other is not, the program is ill-formed.
12400 if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12401 S.InvalidOperands(Loc, LHS&: LHSStripped, RHS&: RHSStripped);
12402 return QualType();
12403 }
12404
12405 // FIXME: Consider combining this with checkEnumArithmeticConversions.
12406 int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12407 RHSStrippedType->isEnumeralType();
12408 if (NumEnumArgs == 1) {
12409 bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12410 QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12411 if (OtherTy->hasFloatingRepresentation()) {
12412 S.InvalidOperands(Loc, LHS&: LHSStripped, RHS&: RHSStripped);
12413 return QualType();
12414 }
12415 }
12416 if (NumEnumArgs == 2) {
12417 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12418 // type E, the operator yields the result of converting the operands
12419 // to the underlying type of E and applying <=> to the converted operands.
12420 if (!S.Context.hasSameUnqualifiedType(T1: LHSStrippedType, T2: RHSStrippedType)) {
12421 S.InvalidOperands(Loc, LHS, RHS);
12422 return QualType();
12423 }
12424 QualType IntType =
12425 LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12426 assert(IntType->isArithmeticType());
12427
12428 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12429 // promote the boolean type, and all other promotable integer types, to
12430 // avoid this.
12431 if (S.Context.isPromotableIntegerType(T: IntType))
12432 IntType = S.Context.getPromotedIntegerType(PromotableType: IntType);
12433
12434 LHS = S.ImpCastExprToType(E: LHS.get(), Type: IntType, CK: CK_IntegralCast);
12435 RHS = S.ImpCastExprToType(E: RHS.get(), Type: IntType, CK: CK_IntegralCast);
12436 LHSType = RHSType = IntType;
12437 }
12438
12439 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12440 // usual arithmetic conversions are applied to the operands.
12441 QualType Type =
12442 S.UsualArithmeticConversions(LHS, RHS, Loc, ACK: ArithConvKind::Comparison);
12443 if (LHS.isInvalid() || RHS.isInvalid())
12444 return QualType();
12445 if (Type.isNull())
12446 return S.InvalidOperands(Loc, LHS, RHS);
12447
12448 std::optional<ComparisonCategoryType> CCT =
12449 getComparisonCategoryForBuiltinCmp(T: Type);
12450 if (!CCT)
12451 return S.InvalidOperands(Loc, LHS, RHS);
12452
12453 bool HasNarrowing = checkThreeWayNarrowingConversion(
12454 S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
12455 HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
12456 RHS.get()->getBeginLoc());
12457 if (HasNarrowing)
12458 return QualType();
12459
12460 assert(!Type.isNull() && "composite type for <=> has not been set");
12461
12462 return S.CheckComparisonCategoryType(
12463 Kind: *CCT, Loc, Usage: Sema::ComparisonCategoryUsage::OperatorInExpression);
12464}
12465
12466static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
12467 ExprResult &RHS,
12468 SourceLocation Loc,
12469 BinaryOperatorKind Opc) {
12470 if (Opc == BO_Cmp)
12471 return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
12472
12473 // C99 6.5.8p3 / C99 6.5.9p4
12474 QualType Type =
12475 S.UsualArithmeticConversions(LHS, RHS, Loc, ACK: ArithConvKind::Comparison);
12476 if (LHS.isInvalid() || RHS.isInvalid())
12477 return QualType();
12478 if (Type.isNull())
12479 return S.InvalidOperands(Loc, LHS, RHS);
12480 assert(Type->isArithmeticType() || Type->isEnumeralType());
12481
12482 if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
12483 return S.InvalidOperands(Loc, LHS, RHS);
12484
12485 // Check for comparisons of floating point operands using != and ==.
12486 if (Type->hasFloatingRepresentation())
12487 S.CheckFloatComparison(Loc, LHS: LHS.get(), RHS: RHS.get(), Opcode: Opc);
12488
12489 // The result of comparisons is 'bool' in C++, 'int' in C.
12490 return S.Context.getLogicalOperationType();
12491}
12492
12493void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
12494 if (!NullE.get()->getType()->isAnyPointerType())
12495 return;
12496 int NullValue = PP.isMacroDefined(Id: "NULL") ? 0 : 1;
12497 if (!E.get()->getType()->isAnyPointerType() &&
12498 E.get()->isNullPointerConstant(Ctx&: Context,
12499 NPC: Expr::NPC_ValueDependentIsNotNull) ==
12500 Expr::NPCK_ZeroExpression) {
12501 if (const auto *CL = dyn_cast<CharacterLiteral>(Val: E.get())) {
12502 if (CL->getValue() == 0)
12503 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12504 << NullValue
12505 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12506 NullValue ? "NULL" : "(void *)0");
12507 } else if (const auto *CE = dyn_cast<CStyleCastExpr>(Val: E.get())) {
12508 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
12509 QualType T = Context.getCanonicalType(T: TI->getType()).getUnqualifiedType();
12510 if (T == Context.CharTy)
12511 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12512 << NullValue
12513 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12514 NullValue ? "NULL" : "(void *)0");
12515 }
12516 }
12517}
12518
12519// C99 6.5.8, C++ [expr.rel]
12520QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
12521 SourceLocation Loc,
12522 BinaryOperatorKind Opc) {
12523 bool IsRelational = BinaryOperator::isRelationalOp(Opc);
12524 bool IsThreeWay = Opc == BO_Cmp;
12525 bool IsOrdered = IsRelational || IsThreeWay;
12526 auto IsAnyPointerType = [](ExprResult E) {
12527 QualType Ty = E.get()->getType();
12528 return Ty->isPointerType() || Ty->isMemberPointerType();
12529 };
12530
12531 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
12532 // type, array-to-pointer, ..., conversions are performed on both operands to
12533 // bring them to their composite type.
12534 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
12535 // any type-related checks.
12536 if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
12537 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
12538 if (LHS.isInvalid())
12539 return QualType();
12540 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
12541 if (RHS.isInvalid())
12542 return QualType();
12543 } else {
12544 LHS = DefaultLvalueConversion(E: LHS.get());
12545 if (LHS.isInvalid())
12546 return QualType();
12547 RHS = DefaultLvalueConversion(E: RHS.get());
12548 if (RHS.isInvalid())
12549 return QualType();
12550 }
12551
12552 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/true);
12553 if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
12554 CheckPtrComparisonWithNullChar(E&: LHS, NullE&: RHS);
12555 CheckPtrComparisonWithNullChar(E&: RHS, NullE&: LHS);
12556 }
12557
12558 // Handle vector comparisons separately.
12559 if (LHS.get()->getType()->isVectorType() ||
12560 RHS.get()->getType()->isVectorType())
12561 return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
12562
12563 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12564 RHS.get()->getType()->isSveVLSBuiltinType())
12565 return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
12566
12567 diagnoseLogicalNotOnLHSofCheck(S&: *this, LHS, RHS, Loc, Opc);
12568 diagnoseTautologicalComparison(S&: *this, Loc, LHS: LHS.get(), RHS: RHS.get(), Opc);
12569
12570 QualType LHSType = LHS.get()->getType();
12571 QualType RHSType = RHS.get()->getType();
12572 if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
12573 (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
12574 return checkArithmeticOrEnumeralCompare(S&: *this, LHS, RHS, Loc, Opc);
12575
12576 if ((LHSType->isPointerType() &&
12577 LHSType->getPointeeType().isWebAssemblyReferenceType()) ||
12578 (RHSType->isPointerType() &&
12579 RHSType->getPointeeType().isWebAssemblyReferenceType()))
12580 return InvalidOperands(Loc, LHS, RHS);
12581
12582 const Expr::NullPointerConstantKind LHSNullKind =
12583 LHS.get()->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull);
12584 const Expr::NullPointerConstantKind RHSNullKind =
12585 RHS.get()->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull);
12586 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
12587 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
12588
12589 auto computeResultTy = [&]() {
12590 if (Opc != BO_Cmp)
12591 return Context.getLogicalOperationType();
12592 assert(getLangOpts().CPlusPlus);
12593 assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
12594
12595 QualType CompositeTy = LHS.get()->getType();
12596 assert(!CompositeTy->isReferenceType());
12597
12598 std::optional<ComparisonCategoryType> CCT =
12599 getComparisonCategoryForBuiltinCmp(T: CompositeTy);
12600 if (!CCT)
12601 return InvalidOperands(Loc, LHS, RHS);
12602
12603 if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
12604 // P0946R0: Comparisons between a null pointer constant and an object
12605 // pointer result in std::strong_equality, which is ill-formed under
12606 // P1959R0.
12607 Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
12608 << (LHSIsNull ? LHS.get()->getSourceRange()
12609 : RHS.get()->getSourceRange());
12610 return QualType();
12611 }
12612
12613 return CheckComparisonCategoryType(
12614 Kind: *CCT, Loc, Usage: ComparisonCategoryUsage::OperatorInExpression);
12615 };
12616
12617 if (!IsOrdered && LHSIsNull != RHSIsNull) {
12618 bool IsEquality = Opc == BO_EQ;
12619 if (RHSIsNull)
12620 DiagnoseAlwaysNonNullPointer(E: LHS.get(), NullType: RHSNullKind, IsEqual: IsEquality,
12621 Range: RHS.get()->getSourceRange());
12622 else
12623 DiagnoseAlwaysNonNullPointer(E: RHS.get(), NullType: LHSNullKind, IsEqual: IsEquality,
12624 Range: LHS.get()->getSourceRange());
12625 }
12626
12627 if (IsOrdered && LHSType->isFunctionPointerType() &&
12628 RHSType->isFunctionPointerType()) {
12629 // Valid unless a relational comparison of function pointers
12630 bool IsError = Opc == BO_Cmp;
12631 auto DiagID =
12632 IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
12633 : getLangOpts().CPlusPlus
12634 ? diag::warn_typecheck_ordered_comparison_of_function_pointers
12635 : diag::ext_typecheck_ordered_comparison_of_function_pointers;
12636 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
12637 << RHS.get()->getSourceRange();
12638 if (IsError)
12639 return QualType();
12640 }
12641
12642 if ((LHSType->isIntegerType() && !LHSIsNull) ||
12643 (RHSType->isIntegerType() && !RHSIsNull)) {
12644 // Skip normal pointer conversion checks in this case; we have better
12645 // diagnostics for this below.
12646 } else if (getLangOpts().CPlusPlus) {
12647 // Equality comparison of a function pointer to a void pointer is invalid,
12648 // but we allow it as an extension.
12649 // FIXME: If we really want to allow this, should it be part of composite
12650 // pointer type computation so it works in conditionals too?
12651 if (!IsOrdered &&
12652 ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
12653 (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
12654 // This is a gcc extension compatibility comparison.
12655 // In a SFINAE context, we treat this as a hard error to maintain
12656 // conformance with the C++ standard.
12657 diagnoseFunctionPointerToVoidComparison(
12658 S&: *this, Loc, LHS, RHS, /*isError*/ IsError: (bool)isSFINAEContext());
12659
12660 if (isSFINAEContext())
12661 return QualType();
12662
12663 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
12664 return computeResultTy();
12665 }
12666
12667 // C++ [expr.eq]p2:
12668 // If at least one operand is a pointer [...] bring them to their
12669 // composite pointer type.
12670 // C++ [expr.spaceship]p6
12671 // If at least one of the operands is of pointer type, [...] bring them
12672 // to their composite pointer type.
12673 // C++ [expr.rel]p2:
12674 // If both operands are pointers, [...] bring them to their composite
12675 // pointer type.
12676 // For <=>, the only valid non-pointer types are arrays and functions, and
12677 // we already decayed those, so this is really the same as the relational
12678 // comparison rule.
12679 if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
12680 (IsOrdered ? 2 : 1) &&
12681 (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
12682 RHSType->isObjCObjectPointerType()))) {
12683 if (convertPointersToCompositeType(S&: *this, Loc, LHS, RHS))
12684 return QualType();
12685 return computeResultTy();
12686 }
12687 } else if (LHSType->isPointerType() &&
12688 RHSType->isPointerType()) { // C99 6.5.8p2
12689 // All of the following pointer-related warnings are GCC extensions, except
12690 // when handling null pointer constants.
12691 QualType LCanPointeeTy =
12692 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12693 QualType RCanPointeeTy =
12694 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12695
12696 // C99 6.5.9p2 and C99 6.5.8p2
12697 if (Context.typesAreCompatible(T1: LCanPointeeTy.getUnqualifiedType(),
12698 T2: RCanPointeeTy.getUnqualifiedType())) {
12699 if (IsRelational) {
12700 // Pointers both need to point to complete or incomplete types
12701 if ((LCanPointeeTy->isIncompleteType() !=
12702 RCanPointeeTy->isIncompleteType()) &&
12703 !getLangOpts().C11) {
12704 Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
12705 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12706 << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12707 << RCanPointeeTy->isIncompleteType();
12708 }
12709 }
12710 } else if (!IsRelational &&
12711 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12712 // Valid unless comparison between non-null pointer and function pointer
12713 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12714 && !LHSIsNull && !RHSIsNull)
12715 diagnoseFunctionPointerToVoidComparison(S&: *this, Loc, LHS, RHS,
12716 /*isError*/IsError: false);
12717 } else {
12718 // Invalid
12719 diagnoseDistinctPointerComparison(S&: *this, Loc, LHS, RHS, /*isError*/IsError: false);
12720 }
12721 if (LCanPointeeTy != RCanPointeeTy) {
12722 // Treat NULL constant as a special case in OpenCL.
12723 if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12724 if (!LCanPointeeTy.isAddressSpaceOverlapping(T: RCanPointeeTy,
12725 Ctx: getASTContext())) {
12726 Diag(Loc,
12727 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12728 << LHSType << RHSType << 0 /* comparison */
12729 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12730 }
12731 }
12732 LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12733 LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12734 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12735 : CK_BitCast;
12736
12737 const FunctionType *LFn = LCanPointeeTy->getAs<FunctionType>();
12738 const FunctionType *RFn = RCanPointeeTy->getAs<FunctionType>();
12739 bool LHSHasCFIUncheckedCallee = LFn && LFn->getCFIUncheckedCalleeAttr();
12740 bool RHSHasCFIUncheckedCallee = RFn && RFn->getCFIUncheckedCalleeAttr();
12741 bool ChangingCFIUncheckedCallee =
12742 LHSHasCFIUncheckedCallee != RHSHasCFIUncheckedCallee;
12743
12744 if (LHSIsNull && !RHSIsNull)
12745 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: Kind);
12746 else if (!ChangingCFIUncheckedCallee)
12747 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: Kind);
12748 }
12749 return computeResultTy();
12750 }
12751
12752
12753 // C++ [expr.eq]p4:
12754 // Two operands of type std::nullptr_t or one operand of type
12755 // std::nullptr_t and the other a null pointer constant compare
12756 // equal.
12757 // C23 6.5.9p5:
12758 // If both operands have type nullptr_t or one operand has type nullptr_t
12759 // and the other is a null pointer constant, they compare equal if the
12760 // former is a null pointer.
12761 if (!IsOrdered && LHSIsNull && RHSIsNull) {
12762 if (LHSType->isNullPtrType()) {
12763 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12764 return computeResultTy();
12765 }
12766 if (RHSType->isNullPtrType()) {
12767 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12768 return computeResultTy();
12769 }
12770 }
12771
12772 if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
12773 // C23 6.5.9p6:
12774 // Otherwise, at least one operand is a pointer. If one is a pointer and
12775 // the other is a null pointer constant or has type nullptr_t, they
12776 // compare equal
12777 if (LHSIsNull && RHSType->isPointerType()) {
12778 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12779 return computeResultTy();
12780 }
12781 if (RHSIsNull && LHSType->isPointerType()) {
12782 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12783 return computeResultTy();
12784 }
12785 }
12786
12787 // Comparison of Objective-C pointers and block pointers against nullptr_t.
12788 // These aren't covered by the composite pointer type rules.
12789 if (!IsOrdered && RHSType->isNullPtrType() &&
12790 (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12791 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12792 return computeResultTy();
12793 }
12794 if (!IsOrdered && LHSType->isNullPtrType() &&
12795 (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12796 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12797 return computeResultTy();
12798 }
12799
12800 if (getLangOpts().CPlusPlus) {
12801 if (IsRelational &&
12802 ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12803 (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12804 // HACK: Relational comparison of nullptr_t against a pointer type is
12805 // invalid per DR583, but we allow it within std::less<> and friends,
12806 // since otherwise common uses of it break.
12807 // FIXME: Consider removing this hack once LWG fixes std::less<> and
12808 // friends to have std::nullptr_t overload candidates.
12809 DeclContext *DC = CurContext;
12810 if (isa<FunctionDecl>(Val: DC))
12811 DC = DC->getParent();
12812 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: DC)) {
12813 if (CTSD->isInStdNamespace() &&
12814 llvm::StringSwitch<bool>(CTSD->getName())
12815 .Cases(S0: "less", S1: "less_equal", S2: "greater", S3: "greater_equal", Value: true)
12816 .Default(Value: false)) {
12817 if (RHSType->isNullPtrType())
12818 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12819 else
12820 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12821 return computeResultTy();
12822 }
12823 }
12824 }
12825
12826 // C++ [expr.eq]p2:
12827 // If at least one operand is a pointer to member, [...] bring them to
12828 // their composite pointer type.
12829 if (!IsOrdered &&
12830 (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12831 if (convertPointersToCompositeType(S&: *this, Loc, LHS, RHS))
12832 return QualType();
12833 else
12834 return computeResultTy();
12835 }
12836 }
12837
12838 // Handle block pointer types.
12839 if (!IsOrdered && LHSType->isBlockPointerType() &&
12840 RHSType->isBlockPointerType()) {
12841 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12842 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12843
12844 if (!LHSIsNull && !RHSIsNull &&
12845 !Context.typesAreCompatible(T1: lpointee, T2: rpointee)) {
12846 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12847 << LHSType << RHSType << LHS.get()->getSourceRange()
12848 << RHS.get()->getSourceRange();
12849 }
12850 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
12851 return computeResultTy();
12852 }
12853
12854 // Allow block pointers to be compared with null pointer constants.
12855 if (!IsOrdered
12856 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12857 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12858 if (!LHSIsNull && !RHSIsNull) {
12859 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12860 ->getPointeeType()->isVoidType())
12861 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12862 ->getPointeeType()->isVoidType())))
12863 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12864 << LHSType << RHSType << LHS.get()->getSourceRange()
12865 << RHS.get()->getSourceRange();
12866 }
12867 if (LHSIsNull && !RHSIsNull)
12868 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType,
12869 CK: RHSType->isPointerType() ? CK_BitCast
12870 : CK_AnyPointerToBlockPointerCast);
12871 else
12872 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType,
12873 CK: LHSType->isPointerType() ? CK_BitCast
12874 : CK_AnyPointerToBlockPointerCast);
12875 return computeResultTy();
12876 }
12877
12878 if (LHSType->isObjCObjectPointerType() ||
12879 RHSType->isObjCObjectPointerType()) {
12880 const PointerType *LPT = LHSType->getAs<PointerType>();
12881 const PointerType *RPT = RHSType->getAs<PointerType>();
12882 if (LPT || RPT) {
12883 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12884 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12885
12886 if (!LPtrToVoid && !RPtrToVoid &&
12887 !Context.typesAreCompatible(T1: LHSType, T2: RHSType)) {
12888 diagnoseDistinctPointerComparison(S&: *this, Loc, LHS, RHS,
12889 /*isError*/IsError: false);
12890 }
12891 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12892 // the RHS, but we have test coverage for this behavior.
12893 // FIXME: Consider using convertPointersToCompositeType in C++.
12894 if (LHSIsNull && !RHSIsNull) {
12895 Expr *E = LHS.get();
12896 if (getLangOpts().ObjCAutoRefCount)
12897 ObjC().CheckObjCConversion(castRange: SourceRange(), castType: RHSType, op&: E,
12898 CCK: CheckedConversionKind::Implicit);
12899 LHS = ImpCastExprToType(E, Type: RHSType,
12900 CK: RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12901 }
12902 else {
12903 Expr *E = RHS.get();
12904 if (getLangOpts().ObjCAutoRefCount)
12905 ObjC().CheckObjCConversion(castRange: SourceRange(), castType: LHSType, op&: E,
12906 CCK: CheckedConversionKind::Implicit,
12907 /*Diagnose=*/true,
12908 /*DiagnoseCFAudited=*/false, Opc);
12909 RHS = ImpCastExprToType(E, Type: LHSType,
12910 CK: LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12911 }
12912 return computeResultTy();
12913 }
12914 if (LHSType->isObjCObjectPointerType() &&
12915 RHSType->isObjCObjectPointerType()) {
12916 if (!Context.areComparableObjCPointerTypes(LHS: LHSType, RHS: RHSType))
12917 diagnoseDistinctPointerComparison(S&: *this, Loc, LHS, RHS,
12918 /*isError*/IsError: false);
12919 if (isObjCObjectLiteral(E&: LHS) || isObjCObjectLiteral(E&: RHS))
12920 diagnoseObjCLiteralComparison(S&: *this, Loc, LHS, RHS, Opc);
12921
12922 if (LHSIsNull && !RHSIsNull)
12923 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_BitCast);
12924 else
12925 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
12926 return computeResultTy();
12927 }
12928
12929 if (!IsOrdered && LHSType->isBlockPointerType() &&
12930 RHSType->isBlockCompatibleObjCPointerType(ctx&: Context)) {
12931 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType,
12932 CK: CK_BlockPointerToObjCPointerCast);
12933 return computeResultTy();
12934 } else if (!IsOrdered &&
12935 LHSType->isBlockCompatibleObjCPointerType(ctx&: Context) &&
12936 RHSType->isBlockPointerType()) {
12937 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType,
12938 CK: CK_BlockPointerToObjCPointerCast);
12939 return computeResultTy();
12940 }
12941 }
12942 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12943 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12944 unsigned DiagID = 0;
12945 bool isError = false;
12946 if (LangOpts.DebuggerSupport) {
12947 // Under a debugger, allow the comparison of pointers to integers,
12948 // since users tend to want to compare addresses.
12949 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12950 (RHSIsNull && RHSType->isIntegerType())) {
12951 if (IsOrdered) {
12952 isError = getLangOpts().CPlusPlus;
12953 DiagID =
12954 isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12955 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12956 }
12957 } else if (getLangOpts().CPlusPlus) {
12958 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12959 isError = true;
12960 } else if (IsOrdered)
12961 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12962 else
12963 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12964
12965 if (DiagID) {
12966 Diag(Loc, DiagID)
12967 << LHSType << RHSType << LHS.get()->getSourceRange()
12968 << RHS.get()->getSourceRange();
12969 if (isError)
12970 return QualType();
12971 }
12972
12973 if (LHSType->isIntegerType())
12974 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType,
12975 CK: LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12976 else
12977 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType,
12978 CK: RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12979 return computeResultTy();
12980 }
12981
12982 // Handle block pointers.
12983 if (!IsOrdered && RHSIsNull
12984 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12985 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12986 return computeResultTy();
12987 }
12988 if (!IsOrdered && LHSIsNull
12989 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12990 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12991 return computeResultTy();
12992 }
12993
12994 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
12995 if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12996 return computeResultTy();
12997 }
12998
12999 if (LHSType->isQueueT() && RHSType->isQueueT()) {
13000 return computeResultTy();
13001 }
13002
13003 if (LHSIsNull && RHSType->isQueueT()) {
13004 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
13005 return computeResultTy();
13006 }
13007
13008 if (LHSType->isQueueT() && RHSIsNull) {
13009 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
13010 return computeResultTy();
13011 }
13012 }
13013
13014 return InvalidOperands(Loc, LHS, RHS);
13015}
13016
13017QualType Sema::GetSignedVectorType(QualType V) {
13018 const VectorType *VTy = V->castAs<VectorType>();
13019 unsigned TypeSize = Context.getTypeSize(T: VTy->getElementType());
13020
13021 if (isa<ExtVectorType>(Val: VTy)) {
13022 if (VTy->isExtVectorBoolType())
13023 return Context.getExtVectorType(VectorType: Context.BoolTy, NumElts: VTy->getNumElements());
13024 if (TypeSize == Context.getTypeSize(Context.CharTy))
13025 return Context.getExtVectorType(VectorType: Context.CharTy, NumElts: VTy->getNumElements());
13026 if (TypeSize == Context.getTypeSize(Context.ShortTy))
13027 return Context.getExtVectorType(VectorType: Context.ShortTy, NumElts: VTy->getNumElements());
13028 if (TypeSize == Context.getTypeSize(Context.IntTy))
13029 return Context.getExtVectorType(VectorType: Context.IntTy, NumElts: VTy->getNumElements());
13030 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13031 return Context.getExtVectorType(VectorType: Context.Int128Ty, NumElts: VTy->getNumElements());
13032 if (TypeSize == Context.getTypeSize(Context.LongTy))
13033 return Context.getExtVectorType(VectorType: Context.LongTy, NumElts: VTy->getNumElements());
13034 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
13035 "Unhandled vector element size in vector compare");
13036 return Context.getExtVectorType(VectorType: Context.LongLongTy, NumElts: VTy->getNumElements());
13037 }
13038
13039 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13040 return Context.getVectorType(VectorType: Context.Int128Ty, NumElts: VTy->getNumElements(),
13041 VecKind: VectorKind::Generic);
13042 if (TypeSize == Context.getTypeSize(Context.LongLongTy))
13043 return Context.getVectorType(VectorType: Context.LongLongTy, NumElts: VTy->getNumElements(),
13044 VecKind: VectorKind::Generic);
13045 if (TypeSize == Context.getTypeSize(Context.LongTy))
13046 return Context.getVectorType(VectorType: Context.LongTy, NumElts: VTy->getNumElements(),
13047 VecKind: VectorKind::Generic);
13048 if (TypeSize == Context.getTypeSize(Context.IntTy))
13049 return Context.getVectorType(VectorType: Context.IntTy, NumElts: VTy->getNumElements(),
13050 VecKind: VectorKind::Generic);
13051 if (TypeSize == Context.getTypeSize(Context.ShortTy))
13052 return Context.getVectorType(VectorType: Context.ShortTy, NumElts: VTy->getNumElements(),
13053 VecKind: VectorKind::Generic);
13054 assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
13055 "Unhandled vector element size in vector compare");
13056 return Context.getVectorType(VectorType: Context.CharTy, NumElts: VTy->getNumElements(),
13057 VecKind: VectorKind::Generic);
13058}
13059
13060QualType Sema::GetSignedSizelessVectorType(QualType V) {
13061 const BuiltinType *VTy = V->castAs<BuiltinType>();
13062 assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
13063
13064 const QualType ETy = V->getSveEltType(Ctx: Context);
13065 const auto TypeSize = Context.getTypeSize(T: ETy);
13066
13067 const QualType IntTy = Context.getIntTypeForBitwidth(DestWidth: TypeSize, Signed: true);
13068 const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VecTy: VTy).EC;
13069 return Context.getScalableVectorType(EltTy: IntTy, NumElts: VecSize.getKnownMinValue());
13070}
13071
13072QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
13073 SourceLocation Loc,
13074 BinaryOperatorKind Opc) {
13075 if (Opc == BO_Cmp) {
13076 Diag(Loc, diag::err_three_way_vector_comparison);
13077 return QualType();
13078 }
13079
13080 // Check to make sure we're operating on vectors of the same type and width,
13081 // Allowing one side to be a scalar of element type.
13082 QualType vType =
13083 CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ IsCompAssign: false,
13084 /*AllowBothBool*/ true,
13085 /*AllowBoolConversions*/ getLangOpts().ZVector,
13086 /*AllowBooleanOperation*/ AllowBoolOperation: true,
13087 /*ReportInvalid*/ true);
13088 if (vType.isNull())
13089 return vType;
13090
13091 QualType LHSType = LHS.get()->getType();
13092
13093 // Determine the return type of a vector compare. By default clang will return
13094 // a scalar for all vector compares except vector bool and vector pixel.
13095 // With the gcc compiler we will always return a vector type and with the xl
13096 // compiler we will always return a scalar type. This switch allows choosing
13097 // which behavior is prefered.
13098 if (getLangOpts().AltiVec) {
13099 switch (getLangOpts().getAltivecSrcCompat()) {
13100 case LangOptions::AltivecSrcCompatKind::Mixed:
13101 // If AltiVec, the comparison results in a numeric type, i.e.
13102 // bool for C++, int for C
13103 if (vType->castAs<VectorType>()->getVectorKind() ==
13104 VectorKind::AltiVecVector)
13105 return Context.getLogicalOperationType();
13106 else
13107 Diag(Loc, diag::warn_deprecated_altivec_src_compat);
13108 break;
13109 case LangOptions::AltivecSrcCompatKind::GCC:
13110 // For GCC we always return the vector type.
13111 break;
13112 case LangOptions::AltivecSrcCompatKind::XL:
13113 return Context.getLogicalOperationType();
13114 break;
13115 }
13116 }
13117
13118 // For non-floating point types, check for self-comparisons of the form
13119 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
13120 // often indicate logic errors in the program.
13121 diagnoseTautologicalComparison(S&: *this, Loc, LHS: LHS.get(), RHS: RHS.get(), Opc);
13122
13123 // Check for comparisons of floating point operands using != and ==.
13124 if (LHSType->hasFloatingRepresentation()) {
13125 assert(RHS.get()->getType()->hasFloatingRepresentation());
13126 CheckFloatComparison(Loc, LHS: LHS.get(), RHS: RHS.get(), Opcode: Opc);
13127 }
13128
13129 // Return a signed type for the vector.
13130 return GetSignedVectorType(V: vType);
13131}
13132
13133QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
13134 ExprResult &RHS,
13135 SourceLocation Loc,
13136 BinaryOperatorKind Opc) {
13137 if (Opc == BO_Cmp) {
13138 Diag(Loc, diag::err_three_way_vector_comparison);
13139 return QualType();
13140 }
13141
13142 // Check to make sure we're operating on vectors of the same type and width,
13143 // Allowing one side to be a scalar of element type.
13144 QualType vType = CheckSizelessVectorOperands(
13145 LHS, RHS, Loc, /*isCompAssign*/ IsCompAssign: false, OperationKind: ArithConvKind::Comparison);
13146
13147 if (vType.isNull())
13148 return vType;
13149
13150 QualType LHSType = LHS.get()->getType();
13151
13152 // For non-floating point types, check for self-comparisons of the form
13153 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
13154 // often indicate logic errors in the program.
13155 diagnoseTautologicalComparison(S&: *this, Loc, LHS: LHS.get(), RHS: RHS.get(), Opc);
13156
13157 // Check for comparisons of floating point operands using != and ==.
13158 if (LHSType->hasFloatingRepresentation()) {
13159 assert(RHS.get()->getType()->hasFloatingRepresentation());
13160 CheckFloatComparison(Loc, LHS: LHS.get(), RHS: RHS.get(), Opcode: Opc);
13161 }
13162
13163 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
13164 const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
13165
13166 if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
13167 RHSBuiltinTy->isSVEBool())
13168 return LHSType;
13169
13170 // Return a signed type for the vector.
13171 return GetSignedSizelessVectorType(V: vType);
13172}
13173
13174static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
13175 const ExprResult &XorRHS,
13176 const SourceLocation Loc) {
13177 // Do not diagnose macros.
13178 if (Loc.isMacroID())
13179 return;
13180
13181 // Do not diagnose if both LHS and RHS are macros.
13182 if (XorLHS.get()->getExprLoc().isMacroID() &&
13183 XorRHS.get()->getExprLoc().isMacroID())
13184 return;
13185
13186 bool Negative = false;
13187 bool ExplicitPlus = false;
13188 const auto *LHSInt = dyn_cast<IntegerLiteral>(Val: XorLHS.get());
13189 const auto *RHSInt = dyn_cast<IntegerLiteral>(Val: XorRHS.get());
13190
13191 if (!LHSInt)
13192 return;
13193 if (!RHSInt) {
13194 // Check negative literals.
13195 if (const auto *UO = dyn_cast<UnaryOperator>(Val: XorRHS.get())) {
13196 UnaryOperatorKind Opc = UO->getOpcode();
13197 if (Opc != UO_Minus && Opc != UO_Plus)
13198 return;
13199 RHSInt = dyn_cast<IntegerLiteral>(Val: UO->getSubExpr());
13200 if (!RHSInt)
13201 return;
13202 Negative = (Opc == UO_Minus);
13203 ExplicitPlus = !Negative;
13204 } else {
13205 return;
13206 }
13207 }
13208
13209 const llvm::APInt &LeftSideValue = LHSInt->getValue();
13210 llvm::APInt RightSideValue = RHSInt->getValue();
13211 if (LeftSideValue != 2 && LeftSideValue != 10)
13212 return;
13213
13214 if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
13215 return;
13216
13217 CharSourceRange ExprRange = CharSourceRange::getCharRange(
13218 B: LHSInt->getBeginLoc(), E: S.getLocForEndOfToken(Loc: RHSInt->getLocation()));
13219 llvm::StringRef ExprStr =
13220 Lexer::getSourceText(Range: ExprRange, SM: S.getSourceManager(), LangOpts: S.getLangOpts());
13221
13222 CharSourceRange XorRange =
13223 CharSourceRange::getCharRange(B: Loc, E: S.getLocForEndOfToken(Loc));
13224 llvm::StringRef XorStr =
13225 Lexer::getSourceText(Range: XorRange, SM: S.getSourceManager(), LangOpts: S.getLangOpts());
13226 // Do not diagnose if xor keyword/macro is used.
13227 if (XorStr == "xor")
13228 return;
13229
13230 std::string LHSStr = std::string(Lexer::getSourceText(
13231 Range: CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
13232 SM: S.getSourceManager(), LangOpts: S.getLangOpts()));
13233 std::string RHSStr = std::string(Lexer::getSourceText(
13234 Range: CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
13235 SM: S.getSourceManager(), LangOpts: S.getLangOpts()));
13236
13237 if (Negative) {
13238 RightSideValue = -RightSideValue;
13239 RHSStr = "-" + RHSStr;
13240 } else if (ExplicitPlus) {
13241 RHSStr = "+" + RHSStr;
13242 }
13243
13244 StringRef LHSStrRef = LHSStr;
13245 StringRef RHSStrRef = RHSStr;
13246 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13247 // literals.
13248 if (LHSStrRef.starts_with(Prefix: "0b") || LHSStrRef.starts_with(Prefix: "0B") ||
13249 RHSStrRef.starts_with(Prefix: "0b") || RHSStrRef.starts_with(Prefix: "0B") ||
13250 LHSStrRef.starts_with(Prefix: "0x") || LHSStrRef.starts_with(Prefix: "0X") ||
13251 RHSStrRef.starts_with(Prefix: "0x") || RHSStrRef.starts_with(Prefix: "0X") ||
13252 (LHSStrRef.size() > 1 && LHSStrRef.starts_with(Prefix: "0")) ||
13253 (RHSStrRef.size() > 1 && RHSStrRef.starts_with(Prefix: "0")) ||
13254 LHSStrRef.contains(C: '\'') || RHSStrRef.contains(C: '\''))
13255 return;
13256
13257 bool SuggestXor =
13258 S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined(Id: "xor");
13259 const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
13260 int64_t RightSideIntValue = RightSideValue.getSExtValue();
13261 if (LeftSideValue == 2 && RightSideIntValue >= 0) {
13262 std::string SuggestedExpr = "1 << " + RHSStr;
13263 bool Overflow = false;
13264 llvm::APInt One = (LeftSideValue - 1);
13265 llvm::APInt PowValue = One.sshl_ov(Amt: RightSideValue, Overflow);
13266 if (Overflow) {
13267 if (RightSideIntValue < 64)
13268 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13269 << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
13270 << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
13271 else if (RightSideIntValue == 64)
13272 S.Diag(Loc, diag::warn_xor_used_as_pow)
13273 << ExprStr << toString(XorValue, 10, true);
13274 else
13275 return;
13276 } else {
13277 S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
13278 << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
13279 << toString(PowValue, 10, true)
13280 << FixItHint::CreateReplacement(
13281 ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
13282 }
13283
13284 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13285 << ("0x2 ^ " + RHSStr) << SuggestXor;
13286 } else if (LeftSideValue == 10) {
13287 std::string SuggestedValue = "1e" + std::to_string(val: RightSideIntValue);
13288 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13289 << ExprStr << toString(XorValue, 10, true) << SuggestedValue
13290 << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
13291 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13292 << ("0xA ^ " + RHSStr) << SuggestXor;
13293 }
13294}
13295
13296QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13297 SourceLocation Loc,
13298 BinaryOperatorKind Opc) {
13299 // Ensure that either both operands are of the same vector type, or
13300 // one operand is of a vector type and the other is of its element type.
13301 QualType vType = CheckVectorOperands(LHS, RHS, Loc, IsCompAssign: false,
13302 /*AllowBothBool*/ true,
13303 /*AllowBoolConversions*/ false,
13304 /*AllowBooleanOperation*/ AllowBoolOperation: false,
13305 /*ReportInvalid*/ false);
13306 if (vType.isNull())
13307 return InvalidOperands(Loc, LHS, RHS);
13308 if (getLangOpts().OpenCL &&
13309 getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13310 vType->hasFloatingRepresentation())
13311 return InvalidOperands(Loc, LHS, RHS);
13312 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13313 // usage of the logical operators && and || with vectors in C. This
13314 // check could be notionally dropped.
13315 if (!getLangOpts().CPlusPlus &&
13316 !(isa<ExtVectorType>(Val: vType->getAs<VectorType>())))
13317 return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13318 // Beginning with HLSL 2021, HLSL disallows logical operators on vector
13319 // operands and instead requires the use of the `and`, `or`, `any`, `all`, and
13320 // `select` functions.
13321 if (getLangOpts().HLSL &&
13322 getLangOpts().getHLSLVersion() >= LangOptionsBase::HLSL_2021) {
13323 (void)InvalidOperands(Loc, LHS, RHS);
13324 HLSL().emitLogicalOperatorFixIt(LHS: LHS.get(), RHS: RHS.get(), Opc);
13325 return QualType();
13326 }
13327
13328 return GetSignedVectorType(V: LHS.get()->getType());
13329}
13330
13331QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13332 SourceLocation Loc,
13333 bool IsCompAssign) {
13334 if (!IsCompAssign) {
13335 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
13336 if (LHS.isInvalid())
13337 return QualType();
13338 }
13339 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
13340 if (RHS.isInvalid())
13341 return QualType();
13342
13343 // For conversion purposes, we ignore any qualifiers.
13344 // For example, "const float" and "float" are equivalent.
13345 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13346 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13347
13348 const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13349 const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13350 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13351
13352 if (Context.hasSameType(T1: LHSType, T2: RHSType))
13353 return Context.getCommonSugaredType(X: LHSType, Y: RHSType);
13354
13355 // Type conversion may change LHS/RHS. Keep copies to the original results, in
13356 // case we have to return InvalidOperands.
13357 ExprResult OriginalLHS = LHS;
13358 ExprResult OriginalRHS = RHS;
13359 if (LHSMatType && !RHSMatType) {
13360 RHS = tryConvertExprToType(E: RHS.get(), Ty: LHSMatType->getElementType());
13361 if (!RHS.isInvalid())
13362 return LHSType;
13363
13364 return InvalidOperands(Loc, LHS&: OriginalLHS, RHS&: OriginalRHS);
13365 }
13366
13367 if (!LHSMatType && RHSMatType) {
13368 LHS = tryConvertExprToType(E: LHS.get(), Ty: RHSMatType->getElementType());
13369 if (!LHS.isInvalid())
13370 return RHSType;
13371 return InvalidOperands(Loc, LHS&: OriginalLHS, RHS&: OriginalRHS);
13372 }
13373
13374 return InvalidOperands(Loc, LHS, RHS);
13375}
13376
13377QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13378 SourceLocation Loc,
13379 bool IsCompAssign) {
13380 if (!IsCompAssign) {
13381 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
13382 if (LHS.isInvalid())
13383 return QualType();
13384 }
13385 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
13386 if (RHS.isInvalid())
13387 return QualType();
13388
13389 auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13390 auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13391 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13392
13393 if (LHSMatType && RHSMatType) {
13394 if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13395 return InvalidOperands(Loc, LHS, RHS);
13396
13397 if (Context.hasSameType(LHSMatType, RHSMatType))
13398 return Context.getCommonSugaredType(
13399 X: LHS.get()->getType().getUnqualifiedType(),
13400 Y: RHS.get()->getType().getUnqualifiedType());
13401
13402 QualType LHSELTy = LHSMatType->getElementType(),
13403 RHSELTy = RHSMatType->getElementType();
13404 if (!Context.hasSameType(T1: LHSELTy, T2: RHSELTy))
13405 return InvalidOperands(Loc, LHS, RHS);
13406
13407 return Context.getConstantMatrixType(
13408 ElementType: Context.getCommonSugaredType(X: LHSELTy, Y: RHSELTy),
13409 NumRows: LHSMatType->getNumRows(), NumColumns: RHSMatType->getNumColumns());
13410 }
13411 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13412}
13413
13414static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13415 switch (Opc) {
13416 default:
13417 return false;
13418 case BO_And:
13419 case BO_AndAssign:
13420 case BO_Or:
13421 case BO_OrAssign:
13422 case BO_Xor:
13423 case BO_XorAssign:
13424 return true;
13425 }
13426}
13427
13428inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13429 SourceLocation Loc,
13430 BinaryOperatorKind Opc) {
13431 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
13432
13433 bool IsCompAssign =
13434 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13435
13436 bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13437
13438 if (LHS.get()->getType()->isVectorType() ||
13439 RHS.get()->getType()->isVectorType()) {
13440 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13441 RHS.get()->getType()->hasIntegerRepresentation())
13442 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13443 /*AllowBothBool*/ true,
13444 /*AllowBoolConversions*/ getLangOpts().ZVector,
13445 /*AllowBooleanOperation*/ AllowBoolOperation: LegalBoolVecOperator,
13446 /*ReportInvalid*/ true);
13447 return InvalidOperands(Loc, LHS, RHS);
13448 }
13449
13450 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13451 RHS.get()->getType()->isSveVLSBuiltinType()) {
13452 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13453 RHS.get()->getType()->hasIntegerRepresentation())
13454 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13455 OperationKind: ArithConvKind::BitwiseOp);
13456 return InvalidOperands(Loc, LHS, RHS);
13457 }
13458
13459 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13460 RHS.get()->getType()->isSveVLSBuiltinType()) {
13461 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13462 RHS.get()->getType()->hasIntegerRepresentation())
13463 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13464 OperationKind: ArithConvKind::BitwiseOp);
13465 return InvalidOperands(Loc, LHS, RHS);
13466 }
13467
13468 if (Opc == BO_And)
13469 diagnoseLogicalNotOnLHSofCheck(S&: *this, LHS, RHS, Loc, Opc);
13470
13471 if (LHS.get()->getType()->hasFloatingRepresentation() ||
13472 RHS.get()->getType()->hasFloatingRepresentation())
13473 return InvalidOperands(Loc, LHS, RHS);
13474
13475 ExprResult LHSResult = LHS, RHSResult = RHS;
13476 QualType compType = UsualArithmeticConversions(
13477 LHS&: LHSResult, RHS&: RHSResult, Loc,
13478 ACK: IsCompAssign ? ArithConvKind::CompAssign : ArithConvKind::BitwiseOp);
13479 if (LHSResult.isInvalid() || RHSResult.isInvalid())
13480 return QualType();
13481 LHS = LHSResult.get();
13482 RHS = RHSResult.get();
13483
13484 if (Opc == BO_Xor)
13485 diagnoseXorMisusedAsPow(S&: *this, XorLHS: LHS, XorRHS: RHS, Loc);
13486
13487 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
13488 return compType;
13489 return InvalidOperands(Loc, LHS, RHS);
13490}
13491
13492// C99 6.5.[13,14]
13493inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13494 SourceLocation Loc,
13495 BinaryOperatorKind Opc) {
13496 // Check vector operands differently.
13497 if (LHS.get()->getType()->isVectorType() ||
13498 RHS.get()->getType()->isVectorType())
13499 return CheckVectorLogicalOperands(LHS, RHS, Loc, Opc);
13500
13501 bool EnumConstantInBoolContext = false;
13502 for (const ExprResult &HS : {LHS, RHS}) {
13503 if (const auto *DREHS = dyn_cast<DeclRefExpr>(Val: HS.get())) {
13504 const auto *ECDHS = dyn_cast<EnumConstantDecl>(Val: DREHS->getDecl());
13505 if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
13506 EnumConstantInBoolContext = true;
13507 }
13508 }
13509
13510 if (EnumConstantInBoolContext)
13511 Diag(Loc, diag::warn_enum_constant_in_bool_context);
13512
13513 // WebAssembly tables can't be used with logical operators.
13514 QualType LHSTy = LHS.get()->getType();
13515 QualType RHSTy = RHS.get()->getType();
13516 const auto *LHSATy = dyn_cast<ArrayType>(Val&: LHSTy);
13517 const auto *RHSATy = dyn_cast<ArrayType>(Val&: RHSTy);
13518 if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) ||
13519 (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) {
13520 return InvalidOperands(Loc, LHS, RHS);
13521 }
13522
13523 // Diagnose cases where the user write a logical and/or but probably meant a
13524 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
13525 // is a constant.
13526 if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
13527 !LHS.get()->getType()->isBooleanType() &&
13528 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
13529 // Don't warn in macros or template instantiations.
13530 !Loc.isMacroID() && !inTemplateInstantiation()) {
13531 // If the RHS can be constant folded, and if it constant folds to something
13532 // that isn't 0 or 1 (which indicate a potential logical operation that
13533 // happened to fold to true/false) then warn.
13534 // Parens on the RHS are ignored.
13535 Expr::EvalResult EVResult;
13536 if (RHS.get()->EvaluateAsInt(Result&: EVResult, Ctx: Context)) {
13537 llvm::APSInt Result = EVResult.Val.getInt();
13538 if ((getLangOpts().CPlusPlus && !RHS.get()->getType()->isBooleanType() &&
13539 !RHS.get()->getExprLoc().isMacroID()) ||
13540 (Result != 0 && Result != 1)) {
13541 Diag(Loc, diag::warn_logical_instead_of_bitwise)
13542 << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
13543 // Suggest replacing the logical operator with the bitwise version
13544 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
13545 << (Opc == BO_LAnd ? "&" : "|")
13546 << FixItHint::CreateReplacement(
13547 SourceRange(Loc, getLocForEndOfToken(Loc)),
13548 Opc == BO_LAnd ? "&" : "|");
13549 if (Opc == BO_LAnd)
13550 // Suggest replacing "Foo() && kNonZero" with "Foo()"
13551 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
13552 << FixItHint::CreateRemoval(
13553 SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
13554 RHS.get()->getEndLoc()));
13555 }
13556 }
13557 }
13558
13559 if (!Context.getLangOpts().CPlusPlus) {
13560 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
13561 // not operate on the built-in scalar and vector float types.
13562 if (Context.getLangOpts().OpenCL &&
13563 Context.getLangOpts().OpenCLVersion < 120) {
13564 if (LHS.get()->getType()->isFloatingType() ||
13565 RHS.get()->getType()->isFloatingType())
13566 return InvalidOperands(Loc, LHS, RHS);
13567 }
13568
13569 LHS = UsualUnaryConversions(E: LHS.get());
13570 if (LHS.isInvalid())
13571 return QualType();
13572
13573 RHS = UsualUnaryConversions(E: RHS.get());
13574 if (RHS.isInvalid())
13575 return QualType();
13576
13577 if (!LHS.get()->getType()->isScalarType() ||
13578 !RHS.get()->getType()->isScalarType())
13579 return InvalidOperands(Loc, LHS, RHS);
13580
13581 return Context.IntTy;
13582 }
13583
13584 // The following is safe because we only use this method for
13585 // non-overloadable operands.
13586
13587 // C++ [expr.log.and]p1
13588 // C++ [expr.log.or]p1
13589 // The operands are both contextually converted to type bool.
13590 ExprResult LHSRes = PerformContextuallyConvertToBool(From: LHS.get());
13591 if (LHSRes.isInvalid())
13592 return InvalidOperands(Loc, LHS, RHS);
13593 LHS = LHSRes;
13594
13595 ExprResult RHSRes = PerformContextuallyConvertToBool(From: RHS.get());
13596 if (RHSRes.isInvalid())
13597 return InvalidOperands(Loc, LHS, RHS);
13598 RHS = RHSRes;
13599
13600 // C++ [expr.log.and]p2
13601 // C++ [expr.log.or]p2
13602 // The result is a bool.
13603 return Context.BoolTy;
13604}
13605
13606static bool IsReadonlyMessage(Expr *E, Sema &S) {
13607 const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E);
13608 if (!ME) return false;
13609 if (!isa<FieldDecl>(Val: ME->getMemberDecl())) return false;
13610 ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
13611 Val: ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
13612 if (!Base) return false;
13613 return Base->getMethodDecl() != nullptr;
13614}
13615
13616/// Is the given expression (which must be 'const') a reference to a
13617/// variable which was originally non-const, but which has become
13618/// 'const' due to being captured within a block?
13619enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
13620static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
13621 assert(E->isLValue() && E->getType().isConstQualified());
13622 E = E->IgnoreParens();
13623
13624 // Must be a reference to a declaration from an enclosing scope.
13625 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E);
13626 if (!DRE) return NCCK_None;
13627 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
13628
13629 ValueDecl *Value = dyn_cast<ValueDecl>(Val: DRE->getDecl());
13630
13631 // The declaration must be a value which is not declared 'const'.
13632 if (!Value || Value->getType().isConstQualified())
13633 return NCCK_None;
13634
13635 BindingDecl *Binding = dyn_cast<BindingDecl>(Val: Value);
13636 if (Binding) {
13637 assert(S.getLangOpts().CPlusPlus && "BindingDecl outside of C++?");
13638 assert(!isa<BlockDecl>(Binding->getDeclContext()));
13639 return NCCK_Lambda;
13640 }
13641
13642 VarDecl *Var = dyn_cast<VarDecl>(Val: Value);
13643 if (!Var)
13644 return NCCK_None;
13645
13646 assert(Var->hasLocalStorage() && "capture added 'const' to non-local?");
13647
13648 // Decide whether the first capture was for a block or a lambda.
13649 DeclContext *DC = S.CurContext, *Prev = nullptr;
13650 // Decide whether the first capture was for a block or a lambda.
13651 while (DC) {
13652 // For init-capture, it is possible that the variable belongs to the
13653 // template pattern of the current context.
13654 if (auto *FD = dyn_cast<FunctionDecl>(Val: DC))
13655 if (Var->isInitCapture() &&
13656 FD->getTemplateInstantiationPattern() == Var->getDeclContext())
13657 break;
13658 if (DC == Var->getDeclContext())
13659 break;
13660 Prev = DC;
13661 DC = DC->getParent();
13662 }
13663 // Unless we have an init-capture, we've gone one step too far.
13664 if (!Var->isInitCapture())
13665 DC = Prev;
13666 return (isa<BlockDecl>(Val: DC) ? NCCK_Block : NCCK_Lambda);
13667}
13668
13669static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
13670 Ty = Ty.getNonReferenceType();
13671 if (IsDereference && Ty->isPointerType())
13672 Ty = Ty->getPointeeType();
13673 return !Ty.isConstQualified();
13674}
13675
13676// Update err_typecheck_assign_const and note_typecheck_assign_const
13677// when this enum is changed.
13678enum {
13679 ConstFunction,
13680 ConstVariable,
13681 ConstMember,
13682 ConstMethod,
13683 NestedConstMember,
13684 ConstUnknown, // Keep as last element
13685};
13686
13687/// Emit the "read-only variable not assignable" error and print notes to give
13688/// more information about why the variable is not assignable, such as pointing
13689/// to the declaration of a const variable, showing that a method is const, or
13690/// that the function is returning a const reference.
13691static void DiagnoseConstAssignment(Sema &S, const Expr *E,
13692 SourceLocation Loc) {
13693 SourceRange ExprRange = E->getSourceRange();
13694
13695 // Only emit one error on the first const found. All other consts will emit
13696 // a note to the error.
13697 bool DiagnosticEmitted = false;
13698
13699 // Track if the current expression is the result of a dereference, and if the
13700 // next checked expression is the result of a dereference.
13701 bool IsDereference = false;
13702 bool NextIsDereference = false;
13703
13704 // Loop to process MemberExpr chains.
13705 while (true) {
13706 IsDereference = NextIsDereference;
13707
13708 E = E->IgnoreImplicit()->IgnoreParenImpCasts();
13709 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E)) {
13710 NextIsDereference = ME->isArrow();
13711 const ValueDecl *VD = ME->getMemberDecl();
13712 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Val: VD)) {
13713 // Mutable fields can be modified even if the class is const.
13714 if (Field->isMutable()) {
13715 assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
13716 break;
13717 }
13718
13719 if (!IsTypeModifiable(Field->getType(), IsDereference)) {
13720 if (!DiagnosticEmitted) {
13721 S.Diag(Loc, diag::err_typecheck_assign_const)
13722 << ExprRange << ConstMember << false /*static*/ << Field
13723 << Field->getType();
13724 DiagnosticEmitted = true;
13725 }
13726 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13727 << ConstMember << false /*static*/ << Field << Field->getType()
13728 << Field->getSourceRange();
13729 }
13730 E = ME->getBase();
13731 continue;
13732 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(Val: VD)) {
13733 if (VDecl->getType().isConstQualified()) {
13734 if (!DiagnosticEmitted) {
13735 S.Diag(Loc, diag::err_typecheck_assign_const)
13736 << ExprRange << ConstMember << true /*static*/ << VDecl
13737 << VDecl->getType();
13738 DiagnosticEmitted = true;
13739 }
13740 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13741 << ConstMember << true /*static*/ << VDecl << VDecl->getType()
13742 << VDecl->getSourceRange();
13743 }
13744 // Static fields do not inherit constness from parents.
13745 break;
13746 }
13747 break; // End MemberExpr
13748 } else if (const ArraySubscriptExpr *ASE =
13749 dyn_cast<ArraySubscriptExpr>(Val: E)) {
13750 E = ASE->getBase()->IgnoreParenImpCasts();
13751 continue;
13752 } else if (const ExtVectorElementExpr *EVE =
13753 dyn_cast<ExtVectorElementExpr>(Val: E)) {
13754 E = EVE->getBase()->IgnoreParenImpCasts();
13755 continue;
13756 }
13757 break;
13758 }
13759
13760 if (const CallExpr *CE = dyn_cast<CallExpr>(Val: E)) {
13761 // Function calls
13762 const FunctionDecl *FD = CE->getDirectCallee();
13763 if (FD && !IsTypeModifiable(Ty: FD->getReturnType(), IsDereference)) {
13764 if (!DiagnosticEmitted) {
13765 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13766 << ConstFunction << FD;
13767 DiagnosticEmitted = true;
13768 }
13769 S.Diag(FD->getReturnTypeSourceRange().getBegin(),
13770 diag::note_typecheck_assign_const)
13771 << ConstFunction << FD << FD->getReturnType()
13772 << FD->getReturnTypeSourceRange();
13773 }
13774 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) {
13775 // Point to variable declaration.
13776 if (const ValueDecl *VD = DRE->getDecl()) {
13777 if (!IsTypeModifiable(Ty: VD->getType(), IsDereference)) {
13778 if (!DiagnosticEmitted) {
13779 S.Diag(Loc, diag::err_typecheck_assign_const)
13780 << ExprRange << ConstVariable << VD << VD->getType();
13781 DiagnosticEmitted = true;
13782 }
13783 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13784 << ConstVariable << VD << VD->getType() << VD->getSourceRange();
13785 }
13786 }
13787 } else if (isa<CXXThisExpr>(Val: E)) {
13788 if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
13789 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: DC)) {
13790 if (MD->isConst()) {
13791 if (!DiagnosticEmitted) {
13792 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13793 << ConstMethod << MD;
13794 DiagnosticEmitted = true;
13795 }
13796 S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
13797 << ConstMethod << MD << MD->getSourceRange();
13798 }
13799 }
13800 }
13801 }
13802
13803 if (DiagnosticEmitted)
13804 return;
13805
13806 // Can't determine a more specific message, so display the generic error.
13807 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
13808}
13809
13810enum OriginalExprKind {
13811 OEK_Variable,
13812 OEK_Member,
13813 OEK_LValue
13814};
13815
13816static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
13817 const RecordType *Ty,
13818 SourceLocation Loc, SourceRange Range,
13819 OriginalExprKind OEK,
13820 bool &DiagnosticEmitted) {
13821 std::vector<const RecordType *> RecordTypeList;
13822 RecordTypeList.push_back(x: Ty);
13823 unsigned NextToCheckIndex = 0;
13824 // We walk the record hierarchy breadth-first to ensure that we print
13825 // diagnostics in field nesting order.
13826 while (RecordTypeList.size() > NextToCheckIndex) {
13827 bool IsNested = NextToCheckIndex > 0;
13828 for (const FieldDecl *Field :
13829 RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
13830 // First, check every field for constness.
13831 QualType FieldTy = Field->getType();
13832 if (FieldTy.isConstQualified()) {
13833 if (!DiagnosticEmitted) {
13834 S.Diag(Loc, diag::err_typecheck_assign_const)
13835 << Range << NestedConstMember << OEK << VD
13836 << IsNested << Field;
13837 DiagnosticEmitted = true;
13838 }
13839 S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
13840 << NestedConstMember << IsNested << Field
13841 << FieldTy << Field->getSourceRange();
13842 }
13843
13844 // Then we append it to the list to check next in order.
13845 FieldTy = FieldTy.getCanonicalType();
13846 if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
13847 if (!llvm::is_contained(RecordTypeList, FieldRecTy))
13848 RecordTypeList.push_back(FieldRecTy);
13849 }
13850 }
13851 ++NextToCheckIndex;
13852 }
13853}
13854
13855/// Emit an error for the case where a record we are trying to assign to has a
13856/// const-qualified field somewhere in its hierarchy.
13857static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
13858 SourceLocation Loc) {
13859 QualType Ty = E->getType();
13860 assert(Ty->isRecordType() && "lvalue was not record?");
13861 SourceRange Range = E->getSourceRange();
13862 const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13863 bool DiagEmitted = false;
13864
13865 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E))
13866 DiagnoseRecursiveConstFields(S, VD: ME->getMemberDecl(), Ty: RTy, Loc,
13867 Range, OEK: OEK_Member, DiagnosticEmitted&: DiagEmitted);
13868 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E))
13869 DiagnoseRecursiveConstFields(S, VD: DRE->getDecl(), Ty: RTy, Loc,
13870 Range, OEK: OEK_Variable, DiagnosticEmitted&: DiagEmitted);
13871 else
13872 DiagnoseRecursiveConstFields(S, VD: nullptr, Ty: RTy, Loc,
13873 Range, OEK: OEK_LValue, DiagnosticEmitted&: DiagEmitted);
13874 if (!DiagEmitted)
13875 DiagnoseConstAssignment(S, E, Loc);
13876}
13877
13878/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
13879/// emit an error and return true. If so, return false.
13880static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13881 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
13882
13883 S.CheckShadowingDeclModification(E, Loc);
13884
13885 SourceLocation OrigLoc = Loc;
13886 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(Ctx&: S.Context,
13887 Loc: &Loc);
13888 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13889 IsLV = Expr::MLV_InvalidMessageExpression;
13890 if (IsLV == Expr::MLV_Valid)
13891 return false;
13892
13893 unsigned DiagID = 0;
13894 bool NeedType = false;
13895 switch (IsLV) { // C99 6.5.16p2
13896 case Expr::MLV_ConstQualified:
13897 // Use a specialized diagnostic when we're assigning to an object
13898 // from an enclosing function or block.
13899 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13900 if (NCCK == NCCK_Block)
13901 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13902 else
13903 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13904 break;
13905 }
13906
13907 // In ARC, use some specialized diagnostics for occasions where we
13908 // infer 'const'. These are always pseudo-strong variables.
13909 if (S.getLangOpts().ObjCAutoRefCount) {
13910 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenCasts());
13911 if (declRef && isa<VarDecl>(Val: declRef->getDecl())) {
13912 VarDecl *var = cast<VarDecl>(Val: declRef->getDecl());
13913
13914 // Use the normal diagnostic if it's pseudo-__strong but the
13915 // user actually wrote 'const'.
13916 if (var->isARCPseudoStrong() &&
13917 (!var->getTypeSourceInfo() ||
13918 !var->getTypeSourceInfo()->getType().isConstQualified())) {
13919 // There are three pseudo-strong cases:
13920 // - self
13921 ObjCMethodDecl *method = S.getCurMethodDecl();
13922 if (method && var == method->getSelfDecl()) {
13923 DiagID = method->isClassMethod()
13924 ? diag::err_typecheck_arc_assign_self_class_method
13925 : diag::err_typecheck_arc_assign_self;
13926
13927 // - Objective-C externally_retained attribute.
13928 } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13929 isa<ParmVarDecl>(var)) {
13930 DiagID = diag::err_typecheck_arc_assign_externally_retained;
13931
13932 // - fast enumeration variables
13933 } else {
13934 DiagID = diag::err_typecheck_arr_assign_enumeration;
13935 }
13936
13937 SourceRange Assign;
13938 if (Loc != OrigLoc)
13939 Assign = SourceRange(OrigLoc, OrigLoc);
13940 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13941 // We need to preserve the AST regardless, so migration tool
13942 // can do its job.
13943 return false;
13944 }
13945 }
13946 }
13947
13948 // If none of the special cases above are triggered, then this is a
13949 // simple const assignment.
13950 if (DiagID == 0) {
13951 DiagnoseConstAssignment(S, E, Loc);
13952 return true;
13953 }
13954
13955 break;
13956 case Expr::MLV_ConstAddrSpace:
13957 DiagnoseConstAssignment(S, E, Loc);
13958 return true;
13959 case Expr::MLV_ConstQualifiedField:
13960 DiagnoseRecursiveConstFields(S, E, Loc);
13961 return true;
13962 case Expr::MLV_ArrayType:
13963 case Expr::MLV_ArrayTemporary:
13964 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
13965 NeedType = true;
13966 break;
13967 case Expr::MLV_NotObjectType:
13968 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
13969 NeedType = true;
13970 break;
13971 case Expr::MLV_LValueCast:
13972 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
13973 break;
13974 case Expr::MLV_Valid:
13975 llvm_unreachable("did not take early return for MLV_Valid");
13976 case Expr::MLV_InvalidExpression:
13977 case Expr::MLV_MemberFunction:
13978 case Expr::MLV_ClassTemporary:
13979 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
13980 break;
13981 case Expr::MLV_IncompleteType:
13982 case Expr::MLV_IncompleteVoidType:
13983 return S.RequireCompleteType(Loc, E->getType(),
13984 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
13985 case Expr::MLV_DuplicateVectorComponents:
13986 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
13987 break;
13988 case Expr::MLV_NoSetterProperty:
13989 llvm_unreachable("readonly properties should be processed differently");
13990 case Expr::MLV_InvalidMessageExpression:
13991 DiagID = diag::err_readonly_message_assignment;
13992 break;
13993 case Expr::MLV_SubObjCPropertySetting:
13994 DiagID = diag::err_no_subobject_property_setting;
13995 break;
13996 }
13997
13998 SourceRange Assign;
13999 if (Loc != OrigLoc)
14000 Assign = SourceRange(OrigLoc, OrigLoc);
14001 if (NeedType)
14002 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
14003 else
14004 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14005 return true;
14006}
14007
14008static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
14009 SourceLocation Loc,
14010 Sema &Sema) {
14011 if (Sema.inTemplateInstantiation())
14012 return;
14013 if (Sema.isUnevaluatedContext())
14014 return;
14015 if (Loc.isInvalid() || Loc.isMacroID())
14016 return;
14017 if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
14018 return;
14019
14020 // C / C++ fields
14021 MemberExpr *ML = dyn_cast<MemberExpr>(Val: LHSExpr);
14022 MemberExpr *MR = dyn_cast<MemberExpr>(Val: RHSExpr);
14023 if (ML && MR) {
14024 if (!(isa<CXXThisExpr>(Val: ML->getBase()) && isa<CXXThisExpr>(Val: MR->getBase())))
14025 return;
14026 const ValueDecl *LHSDecl =
14027 cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
14028 const ValueDecl *RHSDecl =
14029 cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
14030 if (LHSDecl != RHSDecl)
14031 return;
14032 if (LHSDecl->getType().isVolatileQualified())
14033 return;
14034 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14035 if (RefTy->getPointeeType().isVolatileQualified())
14036 return;
14037
14038 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
14039 }
14040
14041 // Objective-C instance variables
14042 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(Val: LHSExpr);
14043 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(Val: RHSExpr);
14044 if (OL && OR && OL->getDecl() == OR->getDecl()) {
14045 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(Val: OL->getBase()->IgnoreImpCasts());
14046 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(Val: OR->getBase()->IgnoreImpCasts());
14047 if (RL && RR && RL->getDecl() == RR->getDecl())
14048 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
14049 }
14050}
14051
14052// C99 6.5.16.1
14053QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
14054 SourceLocation Loc,
14055 QualType CompoundType,
14056 BinaryOperatorKind Opc) {
14057 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
14058
14059 // Verify that LHS is a modifiable lvalue, and emit error if not.
14060 if (CheckForModifiableLvalue(E: LHSExpr, Loc, S&: *this))
14061 return QualType();
14062
14063 QualType LHSType = LHSExpr->getType();
14064 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
14065 CompoundType;
14066
14067 if (RHS.isUsable()) {
14068 // Even if this check fails don't return early to allow the best
14069 // possible error recovery and to allow any subsequent diagnostics to
14070 // work.
14071 const ValueDecl *Assignee = nullptr;
14072 bool ShowFullyQualifiedAssigneeName = false;
14073 // In simple cases describe what is being assigned to
14074 if (auto *DR = dyn_cast<DeclRefExpr>(Val: LHSExpr->IgnoreParenCasts())) {
14075 Assignee = DR->getDecl();
14076 } else if (auto *ME = dyn_cast<MemberExpr>(Val: LHSExpr->IgnoreParenCasts())) {
14077 Assignee = ME->getMemberDecl();
14078 ShowFullyQualifiedAssigneeName = true;
14079 }
14080
14081 BoundsSafetyCheckAssignmentToCountAttrPtr(
14082 LHSTy: LHSType, RHSExpr: RHS.get(), Action: AssignmentAction::Assigning, Loc, Assignee,
14083 ShowFullyQualifiedAssigneeName);
14084 }
14085
14086 // OpenCL v1.2 s6.1.1.1 p2:
14087 // The half data type can only be used to declare a pointer to a buffer that
14088 // contains half values
14089 if (getLangOpts().OpenCL &&
14090 !getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16", LO: getLangOpts()) &&
14091 LHSType->isHalfType()) {
14092 Diag(Loc, diag::err_opencl_half_load_store) << 1
14093 << LHSType.getUnqualifiedType();
14094 return QualType();
14095 }
14096
14097 // WebAssembly tables can't be used on RHS of an assignment expression.
14098 if (RHSType->isWebAssemblyTableType()) {
14099 Diag(Loc, diag::err_wasm_table_art) << 0;
14100 return QualType();
14101 }
14102
14103 AssignConvertType ConvTy;
14104 if (CompoundType.isNull()) {
14105 Expr *RHSCheck = RHS.get();
14106
14107 CheckIdentityFieldAssignment(LHSExpr, RHSExpr: RHSCheck, Loc, Sema&: *this);
14108
14109 QualType LHSTy(LHSType);
14110 ConvTy = CheckSingleAssignmentConstraints(LHSType: LHSTy, CallerRHS&: RHS);
14111 if (RHS.isInvalid())
14112 return QualType();
14113 // Special case of NSObject attributes on c-style pointer types.
14114 if (ConvTy == AssignConvertType::IncompatiblePointer &&
14115 ((Context.isObjCNSObjectType(Ty: LHSType) &&
14116 RHSType->isObjCObjectPointerType()) ||
14117 (Context.isObjCNSObjectType(Ty: RHSType) &&
14118 LHSType->isObjCObjectPointerType())))
14119 ConvTy = AssignConvertType::Compatible;
14120
14121 if (IsAssignConvertCompatible(ConvTy) && LHSType->isObjCObjectType())
14122 Diag(Loc, diag::err_objc_object_assignment) << LHSType;
14123
14124 // If the RHS is a unary plus or minus, check to see if they = and + are
14125 // right next to each other. If so, the user may have typo'd "x =+ 4"
14126 // instead of "x += 4".
14127 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: RHSCheck))
14128 RHSCheck = ICE->getSubExpr();
14129 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: RHSCheck)) {
14130 if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
14131 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
14132 // Only if the two operators are exactly adjacent.
14133 Loc.getLocWithOffset(Offset: 1) == UO->getOperatorLoc() &&
14134 // And there is a space or other character before the subexpr of the
14135 // unary +/-. We don't want to warn on "x=-1".
14136 Loc.getLocWithOffset(Offset: 2) != UO->getSubExpr()->getBeginLoc() &&
14137 UO->getSubExpr()->getBeginLoc().isFileID()) {
14138 Diag(Loc, diag::warn_not_compound_assign)
14139 << (UO->getOpcode() == UO_Plus ? "+" : "-")
14140 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
14141 }
14142 }
14143
14144 if (IsAssignConvertCompatible(ConvTy)) {
14145 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
14146 // Warn about retain cycles where a block captures the LHS, but
14147 // not if the LHS is a simple variable into which the block is
14148 // being stored...unless that variable can be captured by reference!
14149 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
14150 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: InnerLHS);
14151 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
14152 ObjC().checkRetainCycles(receiver: LHSExpr, argument: RHS.get());
14153 }
14154
14155 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
14156 LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
14157 // It is safe to assign a weak reference into a strong variable.
14158 // Although this code can still have problems:
14159 // id x = self.weakProp;
14160 // id y = self.weakProp;
14161 // we do not warn to warn spuriously when 'x' and 'y' are on separate
14162 // paths through the function. This should be revisited if
14163 // -Wrepeated-use-of-weak is made flow-sensitive.
14164 // For ObjCWeak only, we do not warn if the assign is to a non-weak
14165 // variable, which will be valid for the current autorelease scope.
14166 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
14167 RHS.get()->getBeginLoc()))
14168 getCurFunction()->markSafeWeakUse(E: RHS.get());
14169
14170 } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
14171 checkUnsafeExprAssigns(Loc, LHS: LHSExpr, RHS: RHS.get());
14172 }
14173 }
14174 } else {
14175 // Compound assignment "x += y"
14176 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
14177 }
14178
14179 if (DiagnoseAssignmentResult(ConvTy, Loc, DstType: LHSType, SrcType: RHSType, SrcExpr: RHS.get(),
14180 Action: AssignmentAction::Assigning))
14181 return QualType();
14182
14183 CheckForNullPointerDereference(S&: *this, E: LHSExpr);
14184
14185 AssignedEntity AE{.LHS: LHSExpr};
14186 checkAssignmentLifetime(SemaRef&: *this, Entity: AE, Init: RHS.get());
14187
14188 if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
14189 if (CompoundType.isNull()) {
14190 // C++2a [expr.ass]p5:
14191 // A simple-assignment whose left operand is of a volatile-qualified
14192 // type is deprecated unless the assignment is either a discarded-value
14193 // expression or an unevaluated operand
14194 ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(Elt: LHSExpr);
14195 }
14196 }
14197
14198 // C11 6.5.16p3: The type of an assignment expression is the type of the
14199 // left operand would have after lvalue conversion.
14200 // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
14201 // qualified type, the value has the unqualified version of the type of the
14202 // lvalue; additionally, if the lvalue has atomic type, the value has the
14203 // non-atomic version of the type of the lvalue.
14204 // C++ 5.17p1: the type of the assignment expression is that of its left
14205 // operand.
14206 return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
14207}
14208
14209// Scenarios to ignore if expression E is:
14210// 1. an explicit cast expression into void
14211// 2. a function call expression that returns void
14212static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
14213 E = E->IgnoreParens();
14214
14215 if (const CastExpr *CE = dyn_cast<CastExpr>(Val: E)) {
14216 if (CE->getCastKind() == CK_ToVoid) {
14217 return true;
14218 }
14219
14220 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
14221 if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
14222 CE->getSubExpr()->getType()->isDependentType()) {
14223 return true;
14224 }
14225 }
14226
14227 if (const auto *CE = dyn_cast<CallExpr>(Val: E))
14228 return CE->getCallReturnType(Ctx: Context)->isVoidType();
14229 return false;
14230}
14231
14232void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
14233 // No warnings in macros
14234 if (Loc.isMacroID())
14235 return;
14236
14237 // Don't warn in template instantiations.
14238 if (inTemplateInstantiation())
14239 return;
14240
14241 // Scope isn't fine-grained enough to explicitly list the specific cases, so
14242 // instead, skip more than needed, then call back into here with the
14243 // CommaVisitor in SemaStmt.cpp.
14244 // The listed locations are the initialization and increment portions
14245 // of a for loop. The additional checks are on the condition of
14246 // if statements, do/while loops, and for loops.
14247 // Differences in scope flags for C89 mode requires the extra logic.
14248 const unsigned ForIncrementFlags =
14249 getLangOpts().C99 || getLangOpts().CPlusPlus
14250 ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
14251 : Scope::ContinueScope | Scope::BreakScope;
14252 const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
14253 const unsigned ScopeFlags = getCurScope()->getFlags();
14254 if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
14255 (ScopeFlags & ForInitFlags) == ForInitFlags)
14256 return;
14257
14258 // If there are multiple comma operators used together, get the RHS of the
14259 // of the comma operator as the LHS.
14260 while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: LHS)) {
14261 if (BO->getOpcode() != BO_Comma)
14262 break;
14263 LHS = BO->getRHS();
14264 }
14265
14266 // Only allow some expressions on LHS to not warn.
14267 if (IgnoreCommaOperand(E: LHS, Context))
14268 return;
14269
14270 Diag(Loc, diag::warn_comma_operator);
14271 Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
14272 << LHS->getSourceRange()
14273 << FixItHint::CreateInsertion(LHS->getBeginLoc(),
14274 LangOpts.CPlusPlus ? "static_cast<void>("
14275 : "(void)(")
14276 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
14277 ")");
14278}
14279
14280// C99 6.5.17
14281static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
14282 SourceLocation Loc) {
14283 LHS = S.CheckPlaceholderExpr(E: LHS.get());
14284 RHS = S.CheckPlaceholderExpr(E: RHS.get());
14285 if (LHS.isInvalid() || RHS.isInvalid())
14286 return QualType();
14287
14288 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14289 // operands, but not unary promotions.
14290 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14291
14292 // So we treat the LHS as a ignored value, and in C++ we allow the
14293 // containing site to determine what should be done with the RHS.
14294 LHS = S.IgnoredValueConversions(E: LHS.get());
14295 if (LHS.isInvalid())
14296 return QualType();
14297
14298 S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
14299
14300 if (!S.getLangOpts().CPlusPlus) {
14301 RHS = S.DefaultFunctionArrayLvalueConversion(E: RHS.get());
14302 if (RHS.isInvalid())
14303 return QualType();
14304 if (!RHS.get()->getType()->isVoidType())
14305 S.RequireCompleteType(Loc, RHS.get()->getType(),
14306 diag::err_incomplete_type);
14307 }
14308
14309 if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
14310 S.DiagnoseCommaOperator(LHS: LHS.get(), Loc);
14311
14312 return RHS.get()->getType();
14313}
14314
14315/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14316/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
14317static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
14318 ExprValueKind &VK,
14319 ExprObjectKind &OK,
14320 SourceLocation OpLoc, bool IsInc,
14321 bool IsPrefix) {
14322 QualType ResType = Op->getType();
14323 // Atomic types can be used for increment / decrement where the non-atomic
14324 // versions can, so ignore the _Atomic() specifier for the purpose of
14325 // checking.
14326 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
14327 ResType = ResAtomicType->getValueType();
14328
14329 assert(!ResType.isNull() && "no type for increment/decrement expression");
14330
14331 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14332 // Decrement of bool is not allowed.
14333 if (!IsInc) {
14334 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
14335 return QualType();
14336 }
14337 // Increment of bool sets it to true, but is deprecated.
14338 S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14339 : diag::warn_increment_bool)
14340 << Op->getSourceRange();
14341 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14342 // Error on enum increments and decrements in C++ mode
14343 S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
14344 return QualType();
14345 } else if (ResType->isRealType()) {
14346 // OK!
14347 } else if (ResType->isPointerType()) {
14348 // C99 6.5.2.4p2, 6.5.6p2
14349 if (!checkArithmeticOpPointerOperand(S, Loc: OpLoc, Operand: Op))
14350 return QualType();
14351 } else if (ResType->isObjCObjectPointerType()) {
14352 // On modern runtimes, ObjC pointer arithmetic is forbidden.
14353 // Otherwise, we just need a complete type.
14354 if (checkArithmeticIncompletePointerType(S, Loc: OpLoc, Operand: Op) ||
14355 checkArithmeticOnObjCPointer(S, opLoc: OpLoc, op: Op))
14356 return QualType();
14357 } else if (ResType->isAnyComplexType()) {
14358 // C99 does not support ++/-- on complex types, we allow as an extension.
14359 S.Diag(OpLoc, S.getLangOpts().C2y ? diag::warn_c2y_compat_increment_complex
14360 : diag::ext_c2y_increment_complex)
14361 << IsInc << Op->getSourceRange();
14362 } else if (ResType->isPlaceholderType()) {
14363 ExprResult PR = S.CheckPlaceholderExpr(E: Op);
14364 if (PR.isInvalid()) return QualType();
14365 return CheckIncrementDecrementOperand(S, Op: PR.get(), VK, OK, OpLoc,
14366 IsInc, IsPrefix);
14367 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14368 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14369 } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14370 (ResType->castAs<VectorType>()->getVectorKind() !=
14371 VectorKind::AltiVecBool)) {
14372 // The z vector extensions allow ++ and -- for non-bool vectors.
14373 } else if (S.getLangOpts().OpenCL && ResType->isVectorType() &&
14374 ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14375 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14376 } else {
14377 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
14378 << ResType << int(IsInc) << Op->getSourceRange();
14379 return QualType();
14380 }
14381 // At this point, we know we have a real, complex or pointer type.
14382 // Now make sure the operand is a modifiable lvalue.
14383 if (CheckForModifiableLvalue(E: Op, Loc: OpLoc, S))
14384 return QualType();
14385 if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14386 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14387 // An operand with volatile-qualified type is deprecated
14388 S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
14389 << IsInc << ResType;
14390 }
14391 // In C++, a prefix increment is the same type as the operand. Otherwise
14392 // (in C or with postfix), the increment is the unqualified type of the
14393 // operand.
14394 if (IsPrefix && S.getLangOpts().CPlusPlus) {
14395 VK = VK_LValue;
14396 OK = Op->getObjectKind();
14397 return ResType;
14398 } else {
14399 VK = VK_PRValue;
14400 return ResType.getUnqualifiedType();
14401 }
14402}
14403
14404/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14405/// This routine allows us to typecheck complex/recursive expressions
14406/// where the declaration is needed for type checking. We only need to
14407/// handle cases when the expression references a function designator
14408/// or is an lvalue. Here are some examples:
14409/// - &(x) => x
14410/// - &*****f => f for f a function designator.
14411/// - &s.xx => s
14412/// - &s.zz[1].yy -> s, if zz is an array
14413/// - *(x + 1) -> x, if x is an array
14414/// - &"123"[2] -> 0
14415/// - & __real__ x -> x
14416///
14417/// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14418/// members.
14419static ValueDecl *getPrimaryDecl(Expr *E) {
14420 switch (E->getStmtClass()) {
14421 case Stmt::DeclRefExprClass:
14422 return cast<DeclRefExpr>(Val: E)->getDecl();
14423 case Stmt::MemberExprClass:
14424 // If this is an arrow operator, the address is an offset from
14425 // the base's value, so the object the base refers to is
14426 // irrelevant.
14427 if (cast<MemberExpr>(Val: E)->isArrow())
14428 return nullptr;
14429 // Otherwise, the expression refers to a part of the base
14430 return getPrimaryDecl(E: cast<MemberExpr>(Val: E)->getBase());
14431 case Stmt::ArraySubscriptExprClass: {
14432 // FIXME: This code shouldn't be necessary! We should catch the implicit
14433 // promotion of register arrays earlier.
14434 Expr* Base = cast<ArraySubscriptExpr>(Val: E)->getBase();
14435 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Val: Base)) {
14436 if (ICE->getSubExpr()->getType()->isArrayType())
14437 return getPrimaryDecl(ICE->getSubExpr());
14438 }
14439 return nullptr;
14440 }
14441 case Stmt::UnaryOperatorClass: {
14442 UnaryOperator *UO = cast<UnaryOperator>(Val: E);
14443
14444 switch(UO->getOpcode()) {
14445 case UO_Real:
14446 case UO_Imag:
14447 case UO_Extension:
14448 return getPrimaryDecl(E: UO->getSubExpr());
14449 default:
14450 return nullptr;
14451 }
14452 }
14453 case Stmt::ParenExprClass:
14454 return getPrimaryDecl(E: cast<ParenExpr>(Val: E)->getSubExpr());
14455 case Stmt::ImplicitCastExprClass:
14456 // If the result of an implicit cast is an l-value, we care about
14457 // the sub-expression; otherwise, the result here doesn't matter.
14458 return getPrimaryDecl(cast<ImplicitCastExpr>(Val: E)->getSubExpr());
14459 case Stmt::CXXUuidofExprClass:
14460 return cast<CXXUuidofExpr>(Val: E)->getGuidDecl();
14461 default:
14462 return nullptr;
14463 }
14464}
14465
14466namespace {
14467enum {
14468 AO_Bit_Field = 0,
14469 AO_Vector_Element = 1,
14470 AO_Property_Expansion = 2,
14471 AO_Register_Variable = 3,
14472 AO_Matrix_Element = 4,
14473 AO_No_Error = 5
14474};
14475}
14476/// Diagnose invalid operand for address of operations.
14477///
14478/// \param Type The type of operand which cannot have its address taken.
14479static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14480 Expr *E, unsigned Type) {
14481 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
14482}
14483
14484bool Sema::CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
14485 const Expr *Op,
14486 const CXXMethodDecl *MD) {
14487 const auto *DRE = cast<DeclRefExpr>(Val: Op->IgnoreParens());
14488
14489 if (Op != DRE)
14490 return Diag(OpLoc, diag::err_parens_pointer_member_function)
14491 << Op->getSourceRange();
14492
14493 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
14494 if (isa<CXXDestructorDecl>(MD))
14495 return Diag(OpLoc, diag::err_typecheck_addrof_dtor)
14496 << DRE->getSourceRange();
14497
14498 if (DRE->getQualifier())
14499 return false;
14500
14501 if (MD->getParent()->getName().empty())
14502 return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14503 << DRE->getSourceRange();
14504
14505 SmallString<32> Str;
14506 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
14507 return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14508 << DRE->getSourceRange()
14509 << FixItHint::CreateInsertion(DRE->getSourceRange().getBegin(), Qual);
14510}
14511
14512QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
14513 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
14514 if (PTy->getKind() == BuiltinType::Overload) {
14515 Expr *E = OrigOp.get()->IgnoreParens();
14516 if (!isa<OverloadExpr>(Val: E)) {
14517 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
14518 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
14519 << OrigOp.get()->getSourceRange();
14520 return QualType();
14521 }
14522
14523 OverloadExpr *Ovl = cast<OverloadExpr>(Val: E);
14524 if (isa<UnresolvedMemberExpr>(Val: Ovl))
14525 if (!ResolveSingleFunctionTemplateSpecialization(ovl: Ovl)) {
14526 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14527 << OrigOp.get()->getSourceRange();
14528 return QualType();
14529 }
14530
14531 return Context.OverloadTy;
14532 }
14533
14534 if (PTy->getKind() == BuiltinType::UnknownAny)
14535 return Context.UnknownAnyTy;
14536
14537 if (PTy->getKind() == BuiltinType::BoundMember) {
14538 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14539 << OrigOp.get()->getSourceRange();
14540 return QualType();
14541 }
14542
14543 OrigOp = CheckPlaceholderExpr(E: OrigOp.get());
14544 if (OrigOp.isInvalid()) return QualType();
14545 }
14546
14547 if (OrigOp.get()->isTypeDependent())
14548 return Context.DependentTy;
14549
14550 assert(!OrigOp.get()->hasPlaceholderType());
14551
14552 // Make sure to ignore parentheses in subsequent checks
14553 Expr *op = OrigOp.get()->IgnoreParens();
14554
14555 // In OpenCL captures for blocks called as lambda functions
14556 // are located in the private address space. Blocks used in
14557 // enqueue_kernel can be located in a different address space
14558 // depending on a vendor implementation. Thus preventing
14559 // taking an address of the capture to avoid invalid AS casts.
14560 if (LangOpts.OpenCL) {
14561 auto* VarRef = dyn_cast<DeclRefExpr>(Val: op);
14562 if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
14563 Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
14564 return QualType();
14565 }
14566 }
14567
14568 if (getLangOpts().C99) {
14569 // Implement C99-only parts of addressof rules.
14570 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(Val: op)) {
14571 if (uOp->getOpcode() == UO_Deref)
14572 // Per C99 6.5.3.2, the address of a deref always returns a valid result
14573 // (assuming the deref expression is valid).
14574 return uOp->getSubExpr()->getType();
14575 }
14576 // Technically, there should be a check for array subscript
14577 // expressions here, but the result of one is always an lvalue anyway.
14578 }
14579 ValueDecl *dcl = getPrimaryDecl(E: op);
14580
14581 if (auto *FD = dyn_cast_or_null<FunctionDecl>(Val: dcl))
14582 if (!checkAddressOfFunctionIsAvailable(Function: FD, /*Complain=*/true,
14583 Loc: op->getBeginLoc()))
14584 return QualType();
14585
14586 Expr::LValueClassification lval = op->ClassifyLValue(Ctx&: Context);
14587 unsigned AddressOfError = AO_No_Error;
14588
14589 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
14590 bool sfinae = (bool)isSFINAEContext();
14591 Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
14592 : diag::ext_typecheck_addrof_temporary)
14593 << op->getType() << op->getSourceRange();
14594 if (sfinae)
14595 return QualType();
14596 // Materialize the temporary as an lvalue so that we can take its address.
14597 OrigOp = op =
14598 CreateMaterializeTemporaryExpr(T: op->getType(), Temporary: OrigOp.get(), BoundToLvalueReference: true);
14599 } else if (isa<ObjCSelectorExpr>(Val: op)) {
14600 return Context.getPointerType(T: op->getType());
14601 } else if (lval == Expr::LV_MemberFunction) {
14602 // If it's an instance method, make a member pointer.
14603 // The expression must have exactly the form &A::foo.
14604
14605 // If the underlying expression isn't a decl ref, give up.
14606 if (!isa<DeclRefExpr>(Val: op)) {
14607 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14608 << OrigOp.get()->getSourceRange();
14609 return QualType();
14610 }
14611 DeclRefExpr *DRE = cast<DeclRefExpr>(Val: op);
14612 CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: DRE->getDecl());
14613
14614 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, Op: OrigOp.get(), MD);
14615 QualType MPTy = Context.getMemberPointerType(
14616 T: op->getType(), Qualifier: DRE->getQualifier(), Cls: MD->getParent());
14617
14618 if (getLangOpts().PointerAuthCalls && MD->isVirtual() &&
14619 !isUnevaluatedContext() && !MPTy->isDependentType()) {
14620 // When pointer authentication is enabled, argument and return types of
14621 // vitual member functions must be complete. This is because vitrual
14622 // member function pointers are implemented using virtual dispatch
14623 // thunks and the thunks cannot be emitted if the argument or return
14624 // types are incomplete.
14625 auto ReturnOrParamTypeIsIncomplete = [&](QualType T,
14626 SourceLocation DeclRefLoc,
14627 SourceLocation RetArgTypeLoc) {
14628 if (RequireCompleteType(DeclRefLoc, T, diag::err_incomplete_type)) {
14629 Diag(DeclRefLoc,
14630 diag::note_ptrauth_virtual_function_pointer_incomplete_arg_ret);
14631 Diag(RetArgTypeLoc,
14632 diag::note_ptrauth_virtual_function_incomplete_arg_ret_type)
14633 << T;
14634 return true;
14635 }
14636 return false;
14637 };
14638 QualType RetTy = MD->getReturnType();
14639 bool IsIncomplete =
14640 !RetTy->isVoidType() &&
14641 ReturnOrParamTypeIsIncomplete(
14642 RetTy, OpLoc, MD->getReturnTypeSourceRange().getBegin());
14643 for (auto *PVD : MD->parameters())
14644 IsIncomplete |= ReturnOrParamTypeIsIncomplete(PVD->getType(), OpLoc,
14645 PVD->getBeginLoc());
14646 if (IsIncomplete)
14647 return QualType();
14648 }
14649
14650 // Under the MS ABI, lock down the inheritance model now.
14651 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14652 (void)isCompleteType(Loc: OpLoc, T: MPTy);
14653 return MPTy;
14654 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
14655 // C99 6.5.3.2p1
14656 // The operand must be either an l-value or a function designator
14657 if (!op->getType()->isFunctionType()) {
14658 // Use a special diagnostic for loads from property references.
14659 if (isa<PseudoObjectExpr>(Val: op)) {
14660 AddressOfError = AO_Property_Expansion;
14661 } else {
14662 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
14663 << op->getType() << op->getSourceRange();
14664 return QualType();
14665 }
14666 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: op)) {
14667 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Val: DRE->getDecl()))
14668 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, Op: OrigOp.get(), MD);
14669 }
14670
14671 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
14672 // The operand cannot be a bit-field
14673 AddressOfError = AO_Bit_Field;
14674 } else if (op->getObjectKind() == OK_VectorComponent) {
14675 // The operand cannot be an element of a vector
14676 AddressOfError = AO_Vector_Element;
14677 } else if (op->getObjectKind() == OK_MatrixComponent) {
14678 // The operand cannot be an element of a matrix.
14679 AddressOfError = AO_Matrix_Element;
14680 } else if (dcl) { // C99 6.5.3.2p1
14681 // We have an lvalue with a decl. Make sure the decl is not declared
14682 // with the register storage-class specifier.
14683 if (const VarDecl *vd = dyn_cast<VarDecl>(Val: dcl)) {
14684 // in C++ it is not error to take address of a register
14685 // variable (c++03 7.1.1P3)
14686 if (vd->getStorageClass() == SC_Register &&
14687 !getLangOpts().CPlusPlus) {
14688 AddressOfError = AO_Register_Variable;
14689 }
14690 } else if (isa<MSPropertyDecl>(Val: dcl)) {
14691 AddressOfError = AO_Property_Expansion;
14692 } else if (isa<FunctionTemplateDecl>(Val: dcl)) {
14693 return Context.OverloadTy;
14694 } else if (isa<FieldDecl>(Val: dcl) || isa<IndirectFieldDecl>(Val: dcl)) {
14695 // Okay: we can take the address of a field.
14696 // Could be a pointer to member, though, if there is an explicit
14697 // scope qualifier for the class.
14698
14699 // [C++26] [expr.prim.id.general]
14700 // If an id-expression E denotes a non-static non-type member
14701 // of some class C [...] and if E is a qualified-id, E is
14702 // not the un-parenthesized operand of the unary & operator [...]
14703 // the id-expression is transformed into a class member access expression.
14704 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: op);
14705 DRE && DRE->getQualifier() && !isa<ParenExpr>(Val: OrigOp.get())) {
14706 DeclContext *Ctx = dcl->getDeclContext();
14707 if (Ctx && Ctx->isRecord()) {
14708 if (dcl->getType()->isReferenceType()) {
14709 Diag(OpLoc,
14710 diag::err_cannot_form_pointer_to_member_of_reference_type)
14711 << dcl->getDeclName() << dcl->getType();
14712 return QualType();
14713 }
14714
14715 while (cast<RecordDecl>(Val: Ctx)->isAnonymousStructOrUnion())
14716 Ctx = Ctx->getParent();
14717
14718 QualType MPTy = Context.getMemberPointerType(
14719 T: op->getType(), Qualifier: DRE->getQualifier(), Cls: cast<CXXRecordDecl>(Val: Ctx));
14720 // Under the MS ABI, lock down the inheritance model now.
14721 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14722 (void)isCompleteType(Loc: OpLoc, T: MPTy);
14723 return MPTy;
14724 }
14725 }
14726 } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
14727 MSGuidDecl, UnnamedGlobalConstantDecl>(Val: dcl))
14728 llvm_unreachable("Unknown/unexpected decl type");
14729 }
14730
14731 if (AddressOfError != AO_No_Error) {
14732 diagnoseAddressOfInvalidType(S&: *this, Loc: OpLoc, E: op, Type: AddressOfError);
14733 return QualType();
14734 }
14735
14736 if (lval == Expr::LV_IncompleteVoidType) {
14737 // Taking the address of a void variable is technically illegal, but we
14738 // allow it in cases which are otherwise valid.
14739 // Example: "extern void x; void* y = &x;".
14740 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
14741 }
14742
14743 // If the operand has type "type", the result has type "pointer to type".
14744 if (op->getType()->isObjCObjectType())
14745 return Context.getObjCObjectPointerType(OIT: op->getType());
14746
14747 // Cannot take the address of WebAssembly references or tables.
14748 if (Context.getTargetInfo().getTriple().isWasm()) {
14749 QualType OpTy = op->getType();
14750 if (OpTy.isWebAssemblyReferenceType()) {
14751 Diag(OpLoc, diag::err_wasm_ca_reference)
14752 << 1 << OrigOp.get()->getSourceRange();
14753 return QualType();
14754 }
14755 if (OpTy->isWebAssemblyTableType()) {
14756 Diag(OpLoc, diag::err_wasm_table_pr)
14757 << 1 << OrigOp.get()->getSourceRange();
14758 return QualType();
14759 }
14760 }
14761
14762 CheckAddressOfPackedMember(rhs: op);
14763
14764 return Context.getPointerType(T: op->getType());
14765}
14766
14767static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
14768 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Exp);
14769 if (!DRE)
14770 return;
14771 const Decl *D = DRE->getDecl();
14772 if (!D)
14773 return;
14774 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Val: D);
14775 if (!Param)
14776 return;
14777 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
14778 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
14779 return;
14780 if (FunctionScopeInfo *FD = S.getCurFunction())
14781 FD->ModifiedNonNullParams.insert(Ptr: Param);
14782}
14783
14784/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
14785static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
14786 SourceLocation OpLoc,
14787 bool IsAfterAmp = false) {
14788 ExprResult ConvResult = S.UsualUnaryConversions(E: Op);
14789 if (ConvResult.isInvalid())
14790 return QualType();
14791 Op = ConvResult.get();
14792 QualType OpTy = Op->getType();
14793 QualType Result;
14794
14795 if (isa<CXXReinterpretCastExpr>(Val: Op)) {
14796 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
14797 S.CheckCompatibleReinterpretCast(SrcType: OpOrigType, DestType: OpTy, /*IsDereference*/true,
14798 Range: Op->getSourceRange());
14799 }
14800
14801 if (const PointerType *PT = OpTy->getAs<PointerType>())
14802 {
14803 Result = PT->getPointeeType();
14804 }
14805 else if (const ObjCObjectPointerType *OPT =
14806 OpTy->getAs<ObjCObjectPointerType>())
14807 Result = OPT->getPointeeType();
14808 else {
14809 ExprResult PR = S.CheckPlaceholderExpr(E: Op);
14810 if (PR.isInvalid()) return QualType();
14811 if (PR.get() != Op)
14812 return CheckIndirectionOperand(S, Op: PR.get(), VK, OpLoc);
14813 }
14814
14815 if (Result.isNull()) {
14816 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
14817 << OpTy << Op->getSourceRange();
14818 return QualType();
14819 }
14820
14821 if (Result->isVoidType()) {
14822 // C++ [expr.unary.op]p1:
14823 // [...] the expression to which [the unary * operator] is applied shall
14824 // be a pointer to an object type, or a pointer to a function type
14825 LangOptions LO = S.getLangOpts();
14826 if (LO.CPlusPlus)
14827 S.Diag(OpLoc, diag::err_typecheck_indirection_through_void_pointer_cpp)
14828 << OpTy << Op->getSourceRange();
14829 else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
14830 S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
14831 << OpTy << Op->getSourceRange();
14832 }
14833
14834 // Dereferences are usually l-values...
14835 VK = VK_LValue;
14836
14837 // ...except that certain expressions are never l-values in C.
14838 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
14839 VK = VK_PRValue;
14840
14841 return Result;
14842}
14843
14844BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
14845 BinaryOperatorKind Opc;
14846 switch (Kind) {
14847 default: llvm_unreachable("Unknown binop!");
14848 case tok::periodstar: Opc = BO_PtrMemD; break;
14849 case tok::arrowstar: Opc = BO_PtrMemI; break;
14850 case tok::star: Opc = BO_Mul; break;
14851 case tok::slash: Opc = BO_Div; break;
14852 case tok::percent: Opc = BO_Rem; break;
14853 case tok::plus: Opc = BO_Add; break;
14854 case tok::minus: Opc = BO_Sub; break;
14855 case tok::lessless: Opc = BO_Shl; break;
14856 case tok::greatergreater: Opc = BO_Shr; break;
14857 case tok::lessequal: Opc = BO_LE; break;
14858 case tok::less: Opc = BO_LT; break;
14859 case tok::greaterequal: Opc = BO_GE; break;
14860 case tok::greater: Opc = BO_GT; break;
14861 case tok::exclaimequal: Opc = BO_NE; break;
14862 case tok::equalequal: Opc = BO_EQ; break;
14863 case tok::spaceship: Opc = BO_Cmp; break;
14864 case tok::amp: Opc = BO_And; break;
14865 case tok::caret: Opc = BO_Xor; break;
14866 case tok::pipe: Opc = BO_Or; break;
14867 case tok::ampamp: Opc = BO_LAnd; break;
14868 case tok::pipepipe: Opc = BO_LOr; break;
14869 case tok::equal: Opc = BO_Assign; break;
14870 case tok::starequal: Opc = BO_MulAssign; break;
14871 case tok::slashequal: Opc = BO_DivAssign; break;
14872 case tok::percentequal: Opc = BO_RemAssign; break;
14873 case tok::plusequal: Opc = BO_AddAssign; break;
14874 case tok::minusequal: Opc = BO_SubAssign; break;
14875 case tok::lesslessequal: Opc = BO_ShlAssign; break;
14876 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
14877 case tok::ampequal: Opc = BO_AndAssign; break;
14878 case tok::caretequal: Opc = BO_XorAssign; break;
14879 case tok::pipeequal: Opc = BO_OrAssign; break;
14880 case tok::comma: Opc = BO_Comma; break;
14881 }
14882 return Opc;
14883}
14884
14885static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
14886 tok::TokenKind Kind) {
14887 UnaryOperatorKind Opc;
14888 switch (Kind) {
14889 default: llvm_unreachable("Unknown unary op!");
14890 case tok::plusplus: Opc = UO_PreInc; break;
14891 case tok::minusminus: Opc = UO_PreDec; break;
14892 case tok::amp: Opc = UO_AddrOf; break;
14893 case tok::star: Opc = UO_Deref; break;
14894 case tok::plus: Opc = UO_Plus; break;
14895 case tok::minus: Opc = UO_Minus; break;
14896 case tok::tilde: Opc = UO_Not; break;
14897 case tok::exclaim: Opc = UO_LNot; break;
14898 case tok::kw___real: Opc = UO_Real; break;
14899 case tok::kw___imag: Opc = UO_Imag; break;
14900 case tok::kw___extension__: Opc = UO_Extension; break;
14901 }
14902 return Opc;
14903}
14904
14905const FieldDecl *
14906Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
14907 // Explore the case for adding 'this->' to the LHS of a self assignment, very
14908 // common for setters.
14909 // struct A {
14910 // int X;
14911 // -void setX(int X) { X = X; }
14912 // +void setX(int X) { this->X = X; }
14913 // };
14914
14915 // Only consider parameters for self assignment fixes.
14916 if (!isa<ParmVarDecl>(Val: SelfAssigned))
14917 return nullptr;
14918 const auto *Method =
14919 dyn_cast_or_null<CXXMethodDecl>(Val: getCurFunctionDecl(AllowLambda: true));
14920 if (!Method)
14921 return nullptr;
14922
14923 const CXXRecordDecl *Parent = Method->getParent();
14924 // In theory this is fixable if the lambda explicitly captures this, but
14925 // that's added complexity that's rarely going to be used.
14926 if (Parent->isLambda())
14927 return nullptr;
14928
14929 // FIXME: Use an actual Lookup operation instead of just traversing fields
14930 // in order to get base class fields.
14931 auto Field =
14932 llvm::find_if(Parent->fields(),
14933 [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
14934 return F->getDeclName() == Name;
14935 });
14936 return (Field != Parent->field_end()) ? *Field : nullptr;
14937}
14938
14939/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
14940/// This warning suppressed in the event of macro expansions.
14941static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
14942 SourceLocation OpLoc, bool IsBuiltin) {
14943 if (S.inTemplateInstantiation())
14944 return;
14945 if (S.isUnevaluatedContext())
14946 return;
14947 if (OpLoc.isInvalid() || OpLoc.isMacroID())
14948 return;
14949 LHSExpr = LHSExpr->IgnoreParenImpCasts();
14950 RHSExpr = RHSExpr->IgnoreParenImpCasts();
14951 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(Val: LHSExpr);
14952 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(Val: RHSExpr);
14953 if (!LHSDeclRef || !RHSDeclRef ||
14954 LHSDeclRef->getLocation().isMacroID() ||
14955 RHSDeclRef->getLocation().isMacroID())
14956 return;
14957 const ValueDecl *LHSDecl =
14958 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
14959 const ValueDecl *RHSDecl =
14960 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
14961 if (LHSDecl != RHSDecl)
14962 return;
14963 if (LHSDecl->getType().isVolatileQualified())
14964 return;
14965 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14966 if (RefTy->getPointeeType().isVolatileQualified())
14967 return;
14968
14969 auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
14970 : diag::warn_self_assignment_overloaded)
14971 << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14972 << RHSExpr->getSourceRange();
14973 if (const FieldDecl *SelfAssignField =
14974 S.getSelfAssignmentClassMemberCandidate(SelfAssigned: RHSDecl))
14975 Diag << 1 << SelfAssignField
14976 << FixItHint::CreateInsertion(InsertionLoc: LHSDeclRef->getBeginLoc(), Code: "this->");
14977 else
14978 Diag << 0;
14979}
14980
14981/// Check if a bitwise-& is performed on an Objective-C pointer. This
14982/// is usually indicative of introspection within the Objective-C pointer.
14983static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14984 SourceLocation OpLoc) {
14985 if (!S.getLangOpts().ObjC)
14986 return;
14987
14988 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14989 const Expr *LHS = L.get();
14990 const Expr *RHS = R.get();
14991
14992 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14993 ObjCPointerExpr = LHS;
14994 OtherExpr = RHS;
14995 }
14996 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14997 ObjCPointerExpr = RHS;
14998 OtherExpr = LHS;
14999 }
15000
15001 // This warning is deliberately made very specific to reduce false
15002 // positives with logic that uses '&' for hashing. This logic mainly
15003 // looks for code trying to introspect into tagged pointers, which
15004 // code should generally never do.
15005 if (ObjCPointerExpr && isa<IntegerLiteral>(Val: OtherExpr->IgnoreParenCasts())) {
15006 unsigned Diag = diag::warn_objc_pointer_masking;
15007 // Determine if we are introspecting the result of performSelectorXXX.
15008 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
15009 // Special case messages to -performSelector and friends, which
15010 // can return non-pointer values boxed in a pointer value.
15011 // Some clients may wish to silence warnings in this subcase.
15012 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Val: Ex)) {
15013 Selector S = ME->getSelector();
15014 StringRef SelArg0 = S.getNameForSlot(argIndex: 0);
15015 if (SelArg0.starts_with("performSelector"))
15016 Diag = diag::warn_objc_pointer_masking_performSelector;
15017 }
15018
15019 S.Diag(OpLoc, Diag)
15020 << ObjCPointerExpr->getSourceRange();
15021 }
15022}
15023
15024static NamedDecl *getDeclFromExpr(Expr *E) {
15025 if (!E)
15026 return nullptr;
15027 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
15028 return DRE->getDecl();
15029 if (auto *ME = dyn_cast<MemberExpr>(Val: E))
15030 return ME->getMemberDecl();
15031 if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(Val: E))
15032 return IRE->getDecl();
15033 return nullptr;
15034}
15035
15036// This helper function promotes a binary operator's operands (which are of a
15037// half vector type) to a vector of floats and then truncates the result to
15038// a vector of either half or short.
15039static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
15040 BinaryOperatorKind Opc, QualType ResultTy,
15041 ExprValueKind VK, ExprObjectKind OK,
15042 bool IsCompAssign, SourceLocation OpLoc,
15043 FPOptionsOverride FPFeatures) {
15044 auto &Context = S.getASTContext();
15045 assert((isVector(ResultTy, Context.HalfTy) ||
15046 isVector(ResultTy, Context.ShortTy)) &&
15047 "Result must be a vector of half or short");
15048 assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
15049 isVector(RHS.get()->getType(), Context.HalfTy) &&
15050 "both operands expected to be a half vector");
15051
15052 RHS = convertVector(RHS.get(), Context.FloatTy, S);
15053 QualType BinOpResTy = RHS.get()->getType();
15054
15055 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
15056 // change BinOpResTy to a vector of ints.
15057 if (isVector(ResultTy, Context.ShortTy))
15058 BinOpResTy = S.GetSignedVectorType(V: BinOpResTy);
15059
15060 if (IsCompAssign)
15061 return CompoundAssignOperator::Create(C: Context, lhs: LHS.get(), rhs: RHS.get(), opc: Opc,
15062 ResTy: ResultTy, VK, OK, opLoc: OpLoc, FPFeatures,
15063 CompLHSType: BinOpResTy, CompResultType: BinOpResTy);
15064
15065 LHS = convertVector(LHS.get(), Context.FloatTy, S);
15066 auto *BO = BinaryOperator::Create(C: Context, lhs: LHS.get(), rhs: RHS.get(), opc: Opc,
15067 ResTy: BinOpResTy, VK, OK, opLoc: OpLoc, FPFeatures);
15068 return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
15069}
15070
15071static std::pair<ExprResult, ExprResult>
15072CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
15073 Expr *RHSExpr) {
15074 ExprResult LHS = LHSExpr, RHS = RHSExpr;
15075 if (!S.Context.isDependenceAllowed()) {
15076 // C cannot handle TypoExpr nodes on either side of a binop because it
15077 // doesn't handle dependent types properly, so make sure any TypoExprs have
15078 // been dealt with before checking the operands.
15079 LHS = S.CorrectDelayedTyposInExpr(ER: LHS);
15080 RHS = S.CorrectDelayedTyposInExpr(
15081 RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
15082 [Opc, LHS](Expr *E) {
15083 if (Opc != BO_Assign)
15084 return ExprResult(E);
15085 // Avoid correcting the RHS to the same Expr as the LHS.
15086 Decl *D = getDeclFromExpr(E);
15087 return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
15088 });
15089 }
15090 return std::make_pair(x&: LHS, y&: RHS);
15091}
15092
15093/// Returns true if conversion between vectors of halfs and vectors of floats
15094/// is needed.
15095static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
15096 Expr *E0, Expr *E1 = nullptr) {
15097 if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
15098 Ctx.getTargetInfo().useFP16ConversionIntrinsics())
15099 return false;
15100
15101 auto HasVectorOfHalfType = [&Ctx](Expr *E) {
15102 QualType Ty = E->IgnoreImplicit()->getType();
15103
15104 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
15105 // to vectors of floats. Although the element type of the vectors is __fp16,
15106 // the vectors shouldn't be treated as storage-only types. See the
15107 // discussion here: https://reviews.llvm.org/rG825235c140e7
15108 if (const VectorType *VT = Ty->getAs<VectorType>()) {
15109 if (VT->getVectorKind() == VectorKind::Neon)
15110 return false;
15111 return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
15112 }
15113 return false;
15114 };
15115
15116 return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
15117}
15118
15119ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
15120 BinaryOperatorKind Opc, Expr *LHSExpr,
15121 Expr *RHSExpr, bool ForFoldExpression) {
15122 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(Val: RHSExpr)) {
15123 // The syntax only allows initializer lists on the RHS of assignment,
15124 // so we don't need to worry about accepting invalid code for
15125 // non-assignment operators.
15126 // C++11 5.17p9:
15127 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
15128 // of x = {} is x = T().
15129 InitializationKind Kind = InitializationKind::CreateDirectList(
15130 RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15131 InitializedEntity Entity =
15132 InitializedEntity::InitializeTemporary(Type: LHSExpr->getType());
15133 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
15134 ExprResult Init = InitSeq.Perform(S&: *this, Entity, Kind, Args: RHSExpr);
15135 if (Init.isInvalid())
15136 return Init;
15137 RHSExpr = Init.get();
15138 }
15139
15140 ExprResult LHS = LHSExpr, RHS = RHSExpr;
15141 QualType ResultTy; // Result type of the binary operator.
15142 // The following two variables are used for compound assignment operators
15143 QualType CompLHSTy; // Type of LHS after promotions for computation
15144 QualType CompResultTy; // Type of computation result
15145 ExprValueKind VK = VK_PRValue;
15146 ExprObjectKind OK = OK_Ordinary;
15147 bool ConvertHalfVec = false;
15148
15149 std::tie(args&: LHS, args&: RHS) = CorrectDelayedTyposInBinOp(S&: *this, Opc, LHSExpr, RHSExpr);
15150 if (!LHS.isUsable() || !RHS.isUsable())
15151 return ExprError();
15152
15153 if (getLangOpts().OpenCL) {
15154 QualType LHSTy = LHSExpr->getType();
15155 QualType RHSTy = RHSExpr->getType();
15156 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
15157 // the ATOMIC_VAR_INIT macro.
15158 if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
15159 SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15160 if (BO_Assign == Opc)
15161 Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
15162 else
15163 ResultTy = InvalidOperands(Loc: OpLoc, LHS, RHS);
15164 return ExprError();
15165 }
15166
15167 // OpenCL special types - image, sampler, pipe, and blocks are to be used
15168 // only with a builtin functions and therefore should be disallowed here.
15169 if (LHSTy->isImageType() || RHSTy->isImageType() ||
15170 LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
15171 LHSTy->isPipeType() || RHSTy->isPipeType() ||
15172 LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
15173 ResultTy = InvalidOperands(Loc: OpLoc, LHS, RHS);
15174 return ExprError();
15175 }
15176 }
15177
15178 checkTypeSupport(Ty: LHSExpr->getType(), Loc: OpLoc, /*ValueDecl*/ D: nullptr);
15179 checkTypeSupport(Ty: RHSExpr->getType(), Loc: OpLoc, /*ValueDecl*/ D: nullptr);
15180
15181 switch (Opc) {
15182 case BO_Assign:
15183 ResultTy = CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: QualType(), Opc);
15184 if (getLangOpts().CPlusPlus &&
15185 LHS.get()->getObjectKind() != OK_ObjCProperty) {
15186 VK = LHS.get()->getValueKind();
15187 OK = LHS.get()->getObjectKind();
15188 }
15189 if (!ResultTy.isNull()) {
15190 DiagnoseSelfAssignment(S&: *this, LHSExpr: LHS.get(), RHSExpr: RHS.get(), OpLoc, IsBuiltin: true);
15191 DiagnoseSelfMove(LHSExpr: LHS.get(), RHSExpr: RHS.get(), OpLoc);
15192
15193 // Avoid copying a block to the heap if the block is assigned to a local
15194 // auto variable that is declared in the same scope as the block. This
15195 // optimization is unsafe if the local variable is declared in an outer
15196 // scope. For example:
15197 //
15198 // BlockTy b;
15199 // {
15200 // b = ^{...};
15201 // }
15202 // // It is unsafe to invoke the block here if it wasn't copied to the
15203 // // heap.
15204 // b();
15205
15206 if (auto *BE = dyn_cast<BlockExpr>(Val: RHS.get()->IgnoreParens()))
15207 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: LHS.get()->IgnoreParens()))
15208 if (auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()))
15209 if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
15210 BE->getBlockDecl()->setCanAvoidCopyToHeap();
15211
15212 if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
15213 checkNonTrivialCUnion(QT: LHS.get()->getType(), Loc: LHS.get()->getExprLoc(),
15214 UseContext: NonTrivialCUnionContext::Assignment, NonTrivialKind: NTCUK_Copy);
15215 }
15216 RecordModifiableNonNullParam(S&: *this, Exp: LHS.get());
15217 break;
15218 case BO_PtrMemD:
15219 case BO_PtrMemI:
15220 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
15221 isIndirect: Opc == BO_PtrMemI);
15222 break;
15223 case BO_Mul:
15224 case BO_Div:
15225 ConvertHalfVec = true;
15226 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, Loc: OpLoc, IsCompAssign: false,
15227 IsDiv: Opc == BO_Div);
15228 break;
15229 case BO_Rem:
15230 ResultTy = CheckRemainderOperands(LHS, RHS, Loc: OpLoc);
15231 break;
15232 case BO_Add:
15233 ConvertHalfVec = true;
15234 ResultTy = CheckAdditionOperands(LHS, RHS, Loc: OpLoc, Opc);
15235 break;
15236 case BO_Sub:
15237 ConvertHalfVec = true;
15238 ResultTy = CheckSubtractionOperands(LHS, RHS, Loc: OpLoc);
15239 break;
15240 case BO_Shl:
15241 case BO_Shr:
15242 ResultTy = CheckShiftOperands(LHS, RHS, Loc: OpLoc, Opc);
15243 break;
15244 case BO_LE:
15245 case BO_LT:
15246 case BO_GE:
15247 case BO_GT:
15248 ConvertHalfVec = true;
15249 ResultTy = CheckCompareOperands(LHS, RHS, Loc: OpLoc, Opc);
15250
15251 if (const auto *BI = dyn_cast<BinaryOperator>(LHSExpr);
15252 !ForFoldExpression && BI && BI->isComparisonOp())
15253 Diag(OpLoc, diag::warn_consecutive_comparison)
15254 << BI->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc);
15255
15256 break;
15257 case BO_EQ:
15258 case BO_NE:
15259 ConvertHalfVec = true;
15260 ResultTy = CheckCompareOperands(LHS, RHS, Loc: OpLoc, Opc);
15261 break;
15262 case BO_Cmp:
15263 ConvertHalfVec = true;
15264 ResultTy = CheckCompareOperands(LHS, RHS, Loc: OpLoc, Opc);
15265 assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
15266 break;
15267 case BO_And:
15268 checkObjCPointerIntrospection(S&: *this, L&: LHS, R&: RHS, OpLoc);
15269 [[fallthrough]];
15270 case BO_Xor:
15271 case BO_Or:
15272 ResultTy = CheckBitwiseOperands(LHS, RHS, Loc: OpLoc, Opc);
15273 break;
15274 case BO_LAnd:
15275 case BO_LOr:
15276 ConvertHalfVec = true;
15277 ResultTy = CheckLogicalOperands(LHS, RHS, Loc: OpLoc, Opc);
15278 break;
15279 case BO_MulAssign:
15280 case BO_DivAssign:
15281 ConvertHalfVec = true;
15282 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, Loc: OpLoc, IsCompAssign: true,
15283 IsDiv: Opc == BO_DivAssign);
15284 CompLHSTy = CompResultTy;
15285 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15286 ResultTy =
15287 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
15288 break;
15289 case BO_RemAssign:
15290 CompResultTy = CheckRemainderOperands(LHS, RHS, Loc: OpLoc, IsCompAssign: true);
15291 CompLHSTy = CompResultTy;
15292 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15293 ResultTy =
15294 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
15295 break;
15296 case BO_AddAssign:
15297 ConvertHalfVec = true;
15298 CompResultTy = CheckAdditionOperands(LHS, RHS, Loc: OpLoc, Opc, CompLHSTy: &CompLHSTy);
15299 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15300 ResultTy =
15301 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
15302 break;
15303 case BO_SubAssign:
15304 ConvertHalfVec = true;
15305 CompResultTy = CheckSubtractionOperands(LHS, RHS, Loc: OpLoc, CompLHSTy: &CompLHSTy);
15306 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15307 ResultTy =
15308 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
15309 break;
15310 case BO_ShlAssign:
15311 case BO_ShrAssign:
15312 CompResultTy = CheckShiftOperands(LHS, RHS, Loc: OpLoc, Opc, IsCompAssign: true);
15313 CompLHSTy = CompResultTy;
15314 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15315 ResultTy =
15316 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
15317 break;
15318 case BO_AndAssign:
15319 case BO_OrAssign: // fallthrough
15320 DiagnoseSelfAssignment(S&: *this, LHSExpr: LHS.get(), RHSExpr: RHS.get(), OpLoc, IsBuiltin: true);
15321 [[fallthrough]];
15322 case BO_XorAssign:
15323 CompResultTy = CheckBitwiseOperands(LHS, RHS, Loc: OpLoc, Opc);
15324 CompLHSTy = CompResultTy;
15325 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15326 ResultTy =
15327 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
15328 break;
15329 case BO_Comma:
15330 ResultTy = CheckCommaOperands(S&: *this, LHS, RHS, Loc: OpLoc);
15331 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15332 VK = RHS.get()->getValueKind();
15333 OK = RHS.get()->getObjectKind();
15334 }
15335 break;
15336 }
15337 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15338 return ExprError();
15339
15340 // Some of the binary operations require promoting operands of half vector to
15341 // float vectors and truncating the result back to half vector. For now, we do
15342 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15343 // arm64).
15344 assert(
15345 (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
15346 isVector(LHS.get()->getType(), Context.HalfTy)) &&
15347 "both sides are half vectors or neither sides are");
15348 ConvertHalfVec =
15349 needsConversionOfHalfVec(OpRequiresConversion: ConvertHalfVec, Ctx&: Context, E0: LHS.get(), E1: RHS.get());
15350
15351 // Check for array bounds violations for both sides of the BinaryOperator
15352 CheckArrayAccess(E: LHS.get());
15353 CheckArrayAccess(E: RHS.get());
15354
15355 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(Val: LHS.get()->IgnoreParenCasts())) {
15356 NamedDecl *ObjectSetClass = LookupSingleName(S: TUScope,
15357 Name: &Context.Idents.get(Name: "object_setClass"),
15358 Loc: SourceLocation(), NameKind: LookupOrdinaryName);
15359 if (ObjectSetClass && isa<ObjCIsaExpr>(Val: LHS.get())) {
15360 SourceLocation RHSLocEnd = getLocForEndOfToken(Loc: RHS.get()->getEndLoc());
15361 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
15362 << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
15363 "object_setClass(")
15364 << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
15365 ",")
15366 << FixItHint::CreateInsertion(RHSLocEnd, ")");
15367 }
15368 else
15369 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
15370 }
15371 else if (const ObjCIvarRefExpr *OIRE =
15372 dyn_cast<ObjCIvarRefExpr>(Val: LHS.get()->IgnoreParenCasts()))
15373 DiagnoseDirectIsaAccess(S&: *this, OIRE, AssignLoc: OpLoc, RHS: RHS.get());
15374
15375 // Opc is not a compound assignment if CompResultTy is null.
15376 if (CompResultTy.isNull()) {
15377 if (ConvertHalfVec)
15378 return convertHalfVecBinOp(S&: *this, LHS, RHS, Opc, ResultTy, VK, OK, IsCompAssign: false,
15379 OpLoc, FPFeatures: CurFPFeatureOverrides());
15380 return BinaryOperator::Create(C: Context, lhs: LHS.get(), rhs: RHS.get(), opc: Opc, ResTy: ResultTy,
15381 VK, OK, opLoc: OpLoc, FPFeatures: CurFPFeatureOverrides());
15382 }
15383
15384 // Handle compound assignments.
15385 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15386 OK_ObjCProperty) {
15387 VK = VK_LValue;
15388 OK = LHS.get()->getObjectKind();
15389 }
15390
15391 // The LHS is not converted to the result type for fixed-point compound
15392 // assignment as the common type is computed on demand. Reset the CompLHSTy
15393 // to the LHS type we would have gotten after unary conversions.
15394 if (CompResultTy->isFixedPointType())
15395 CompLHSTy = UsualUnaryConversions(E: LHS.get()).get()->getType();
15396
15397 if (ConvertHalfVec)
15398 return convertHalfVecBinOp(S&: *this, LHS, RHS, Opc, ResultTy, VK, OK, IsCompAssign: true,
15399 OpLoc, FPFeatures: CurFPFeatureOverrides());
15400
15401 return CompoundAssignOperator::Create(
15402 C: Context, lhs: LHS.get(), rhs: RHS.get(), opc: Opc, ResTy: ResultTy, VK, OK, opLoc: OpLoc,
15403 FPFeatures: CurFPFeatureOverrides(), CompLHSType: CompLHSTy, CompResultType: CompResultTy);
15404}
15405
15406/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15407/// operators are mixed in a way that suggests that the programmer forgot that
15408/// comparison operators have higher precedence. The most typical example of
15409/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
15410static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15411 SourceLocation OpLoc, Expr *LHSExpr,
15412 Expr *RHSExpr) {
15413 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(Val: LHSExpr);
15414 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(Val: RHSExpr);
15415
15416 // Check that one of the sides is a comparison operator and the other isn't.
15417 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15418 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15419 if (isLeftComp == isRightComp)
15420 return;
15421
15422 // Bitwise operations are sometimes used as eager logical ops.
15423 // Don't diagnose this.
15424 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15425 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15426 if (isLeftBitwise || isRightBitwise)
15427 return;
15428
15429 SourceRange DiagRange = isLeftComp
15430 ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15431 : SourceRange(OpLoc, RHSExpr->getEndLoc());
15432 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15433 SourceRange ParensRange =
15434 isLeftComp
15435 ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15436 : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15437
15438 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15439 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15440 SuggestParentheses(Self, OpLoc,
15441 Self.PDiag(diag::note_precedence_silence) << OpStr,
15442 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15443 SuggestParentheses(Self, OpLoc,
15444 Self.PDiag(diag::note_precedence_bitwise_first)
15445 << BinaryOperator::getOpcodeStr(Opc),
15446 ParensRange);
15447}
15448
15449/// It accepts a '&&' expr that is inside a '||' one.
15450/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15451/// in parentheses.
15452static void
15453EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15454 BinaryOperator *Bop) {
15455 assert(Bop->getOpcode() == BO_LAnd);
15456 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15457 << Bop->getSourceRange() << OpLoc;
15458 SuggestParentheses(Self, Bop->getOperatorLoc(),
15459 Self.PDiag(diag::note_precedence_silence)
15460 << Bop->getOpcodeStr(),
15461 Bop->getSourceRange());
15462}
15463
15464/// Look for '&&' in the left hand of a '||' expr.
15465static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15466 Expr *LHSExpr, Expr *RHSExpr) {
15467 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: LHSExpr)) {
15468 if (Bop->getOpcode() == BO_LAnd) {
15469 // If it's "string_literal && a || b" don't warn since the precedence
15470 // doesn't matter.
15471 if (!isa<StringLiteral>(Val: Bop->getLHS()->IgnoreParenImpCasts()))
15472 return EmitDiagnosticForLogicalAndInLogicalOr(Self&: S, OpLoc, Bop);
15473 } else if (Bop->getOpcode() == BO_LOr) {
15474 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Val: Bop->getRHS())) {
15475 // If it's "a || b && string_literal || c" we didn't warn earlier for
15476 // "a || b && string_literal", but warn now.
15477 if (RBop->getOpcode() == BO_LAnd &&
15478 isa<StringLiteral>(Val: RBop->getRHS()->IgnoreParenImpCasts()))
15479 return EmitDiagnosticForLogicalAndInLogicalOr(Self&: S, OpLoc, Bop: RBop);
15480 }
15481 }
15482 }
15483}
15484
15485/// Look for '&&' in the right hand of a '||' expr.
15486static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15487 Expr *LHSExpr, Expr *RHSExpr) {
15488 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: RHSExpr)) {
15489 if (Bop->getOpcode() == BO_LAnd) {
15490 // If it's "a || b && string_literal" don't warn since the precedence
15491 // doesn't matter.
15492 if (!isa<StringLiteral>(Val: Bop->getRHS()->IgnoreParenImpCasts()))
15493 return EmitDiagnosticForLogicalAndInLogicalOr(Self&: S, OpLoc, Bop);
15494 }
15495 }
15496}
15497
15498/// Look for bitwise op in the left or right hand of a bitwise op with
15499/// lower precedence and emit a diagnostic together with a fixit hint that wraps
15500/// the '&' expression in parentheses.
15501static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15502 SourceLocation OpLoc, Expr *SubExpr) {
15503 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: SubExpr)) {
15504 if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15505 S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15506 << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15507 << Bop->getSourceRange() << OpLoc;
15508 SuggestParentheses(S, Bop->getOperatorLoc(),
15509 S.PDiag(diag::note_precedence_silence)
15510 << Bop->getOpcodeStr(),
15511 Bop->getSourceRange());
15512 }
15513 }
15514}
15515
15516static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15517 Expr *SubExpr, StringRef Shift) {
15518 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: SubExpr)) {
15519 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15520 StringRef Op = Bop->getOpcodeStr();
15521 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
15522 << Bop->getSourceRange() << OpLoc << Shift << Op;
15523 SuggestParentheses(S, Bop->getOperatorLoc(),
15524 S.PDiag(diag::note_precedence_silence) << Op,
15525 Bop->getSourceRange());
15526 }
15527 }
15528}
15529
15530static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15531 Expr *LHSExpr, Expr *RHSExpr) {
15532 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(Val: LHSExpr);
15533 if (!OCE)
15534 return;
15535
15536 FunctionDecl *FD = OCE->getDirectCallee();
15537 if (!FD || !FD->isOverloadedOperator())
15538 return;
15539
15540 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
15541 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
15542 return;
15543
15544 S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
15545 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
15546 << (Kind == OO_LessLess);
15547 SuggestParentheses(S, OCE->getOperatorLoc(),
15548 S.PDiag(diag::note_precedence_silence)
15549 << (Kind == OO_LessLess ? "<<" : ">>"),
15550 OCE->getSourceRange());
15551 SuggestParentheses(
15552 S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
15553 SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
15554}
15555
15556/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15557/// precedence.
15558static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
15559 SourceLocation OpLoc, Expr *LHSExpr,
15560 Expr *RHSExpr){
15561 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15562 if (BinaryOperator::isBitwiseOp(Opc))
15563 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
15564
15565 // Diagnose "arg1 & arg2 | arg3"
15566 if ((Opc == BO_Or || Opc == BO_Xor) &&
15567 !OpLoc.isMacroID()/* Don't warn in macros. */) {
15568 DiagnoseBitwiseOpInBitwiseOp(S&: Self, Opc, OpLoc, SubExpr: LHSExpr);
15569 DiagnoseBitwiseOpInBitwiseOp(S&: Self, Opc, OpLoc, SubExpr: RHSExpr);
15570 }
15571
15572 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15573 // We don't warn for 'assert(a || b && "bad")' since this is safe.
15574 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
15575 DiagnoseLogicalAndInLogicalOrLHS(S&: Self, OpLoc, LHSExpr, RHSExpr);
15576 DiagnoseLogicalAndInLogicalOrRHS(S&: Self, OpLoc, LHSExpr, RHSExpr);
15577 }
15578
15579 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Ctx: Self.getASTContext()))
15580 || Opc == BO_Shr) {
15581 StringRef Shift = BinaryOperator::getOpcodeStr(Op: Opc);
15582 DiagnoseAdditionInShift(S&: Self, OpLoc, SubExpr: LHSExpr, Shift);
15583 DiagnoseAdditionInShift(S&: Self, OpLoc, SubExpr: RHSExpr, Shift);
15584 }
15585
15586 // Warn on overloaded shift operators and comparisons, such as:
15587 // cout << 5 == 4;
15588 if (BinaryOperator::isComparisonOp(Opc))
15589 DiagnoseShiftCompare(S&: Self, OpLoc, LHSExpr, RHSExpr);
15590}
15591
15592ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
15593 tok::TokenKind Kind,
15594 Expr *LHSExpr, Expr *RHSExpr) {
15595 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
15596 assert(LHSExpr && "ActOnBinOp(): missing left expression");
15597 assert(RHSExpr && "ActOnBinOp(): missing right expression");
15598
15599 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
15600 DiagnoseBinOpPrecedence(Self&: *this, Opc, OpLoc: TokLoc, LHSExpr, RHSExpr);
15601
15602 BuiltinCountedByRefKind K = BinaryOperator::isAssignmentOp(Opc)
15603 ? BuiltinCountedByRefKind::Assignment
15604 : BuiltinCountedByRefKind::BinaryExpr;
15605
15606 CheckInvalidBuiltinCountedByRef(E: LHSExpr, K);
15607 CheckInvalidBuiltinCountedByRef(E: RHSExpr, K);
15608
15609 return BuildBinOp(S, OpLoc: TokLoc, Opc, LHSExpr, RHSExpr);
15610}
15611
15612void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
15613 UnresolvedSetImpl &Functions) {
15614 OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
15615 if (OverOp != OO_None && OverOp != OO_Equal)
15616 LookupOverloadedOperatorName(Op: OverOp, S, Functions);
15617
15618 // In C++20 onwards, we may have a second operator to look up.
15619 if (getLangOpts().CPlusPlus20) {
15620 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Kind: OverOp))
15621 LookupOverloadedOperatorName(Op: ExtraOp, S, Functions);
15622 }
15623}
15624
15625/// Build an overloaded binary operator expression in the given scope.
15626static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
15627 BinaryOperatorKind Opc,
15628 Expr *LHS, Expr *RHS) {
15629 switch (Opc) {
15630 case BO_Assign:
15631 // In the non-overloaded case, we warn about self-assignment (x = x) for
15632 // both simple assignment and certain compound assignments where algebra
15633 // tells us the operation yields a constant result. When the operator is
15634 // overloaded, we can't do the latter because we don't want to assume that
15635 // those algebraic identities still apply; for example, a path-building
15636 // library might use operator/= to append paths. But it's still reasonable
15637 // to assume that simple assignment is just moving/copying values around
15638 // and so self-assignment is likely a bug.
15639 DiagnoseSelfAssignment(S, LHSExpr: LHS, RHSExpr: RHS, OpLoc, IsBuiltin: false);
15640 [[fallthrough]];
15641 case BO_DivAssign:
15642 case BO_RemAssign:
15643 case BO_SubAssign:
15644 case BO_AndAssign:
15645 case BO_OrAssign:
15646 case BO_XorAssign:
15647 CheckIdentityFieldAssignment(LHSExpr: LHS, RHSExpr: RHS, Loc: OpLoc, Sema&: S);
15648 break;
15649 default:
15650 break;
15651 }
15652
15653 // Find all of the overloaded operators visible from this point.
15654 UnresolvedSet<16> Functions;
15655 S.LookupBinOp(S: Sc, OpLoc, Opc, Functions);
15656
15657 // Build the (potentially-overloaded, potentially-dependent)
15658 // binary operation.
15659 return S.CreateOverloadedBinOp(OpLoc, Opc, Fns: Functions, LHS, RHS);
15660}
15661
15662ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
15663 BinaryOperatorKind Opc, Expr *LHSExpr,
15664 Expr *RHSExpr, bool ForFoldExpression) {
15665 ExprResult LHS, RHS;
15666 std::tie(args&: LHS, args&: RHS) = CorrectDelayedTyposInBinOp(S&: *this, Opc, LHSExpr, RHSExpr);
15667 if (!LHS.isUsable() || !RHS.isUsable())
15668 return ExprError();
15669 LHSExpr = LHS.get();
15670 RHSExpr = RHS.get();
15671
15672 // We want to end up calling one of SemaPseudoObject::checkAssignment
15673 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
15674 // both expressions are overloadable or either is type-dependent),
15675 // or CreateBuiltinBinOp (in any other case). We also want to get
15676 // any placeholder types out of the way.
15677
15678 // Handle pseudo-objects in the LHS.
15679 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
15680 // Assignments with a pseudo-object l-value need special analysis.
15681 if (pty->getKind() == BuiltinType::PseudoObject &&
15682 BinaryOperator::isAssignmentOp(Opc))
15683 return PseudoObject().checkAssignment(S, OpLoc, Opcode: Opc, LHS: LHSExpr, RHS: RHSExpr);
15684
15685 // Don't resolve overloads if the other type is overloadable.
15686 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
15687 // We can't actually test that if we still have a placeholder,
15688 // though. Fortunately, none of the exceptions we see in that
15689 // code below are valid when the LHS is an overload set. Note
15690 // that an overload set can be dependently-typed, but it never
15691 // instantiates to having an overloadable type.
15692 ExprResult resolvedRHS = CheckPlaceholderExpr(E: RHSExpr);
15693 if (resolvedRHS.isInvalid()) return ExprError();
15694 RHSExpr = resolvedRHS.get();
15695
15696 if (RHSExpr->isTypeDependent() ||
15697 RHSExpr->getType()->isOverloadableType())
15698 return BuildOverloadedBinOp(S&: *this, Sc: S, OpLoc, Opc, LHS: LHSExpr, RHS: RHSExpr);
15699 }
15700
15701 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
15702 // template, diagnose the missing 'template' keyword instead of diagnosing
15703 // an invalid use of a bound member function.
15704 //
15705 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
15706 // to C++1z [over.over]/1.4, but we already checked for that case above.
15707 if (Opc == BO_LT && inTemplateInstantiation() &&
15708 (pty->getKind() == BuiltinType::BoundMember ||
15709 pty->getKind() == BuiltinType::Overload)) {
15710 auto *OE = dyn_cast<OverloadExpr>(Val: LHSExpr);
15711 if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
15712 llvm::any_of(Range: OE->decls(), P: [](NamedDecl *ND) {
15713 return isa<FunctionTemplateDecl>(Val: ND);
15714 })) {
15715 Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
15716 : OE->getNameLoc(),
15717 diag::err_template_kw_missing)
15718 << OE->getName().getAsIdentifierInfo();
15719 return ExprError();
15720 }
15721 }
15722
15723 ExprResult LHS = CheckPlaceholderExpr(E: LHSExpr);
15724 if (LHS.isInvalid()) return ExprError();
15725 LHSExpr = LHS.get();
15726 }
15727
15728 // Handle pseudo-objects in the RHS.
15729 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
15730 // An overload in the RHS can potentially be resolved by the type
15731 // being assigned to.
15732 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
15733 if (getLangOpts().CPlusPlus &&
15734 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15735 LHSExpr->getType()->isOverloadableType()))
15736 return BuildOverloadedBinOp(S&: *this, Sc: S, OpLoc, Opc, LHS: LHSExpr, RHS: RHSExpr);
15737
15738 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr,
15739 ForFoldExpression);
15740 }
15741
15742 // Don't resolve overloads if the other type is overloadable.
15743 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
15744 LHSExpr->getType()->isOverloadableType())
15745 return BuildOverloadedBinOp(S&: *this, Sc: S, OpLoc, Opc, LHS: LHSExpr, RHS: RHSExpr);
15746
15747 ExprResult resolvedRHS = CheckPlaceholderExpr(E: RHSExpr);
15748 if (!resolvedRHS.isUsable()) return ExprError();
15749 RHSExpr = resolvedRHS.get();
15750 }
15751
15752 if (getLangOpts().CPlusPlus) {
15753 // Otherwise, build an overloaded op if either expression is type-dependent
15754 // or has an overloadable type.
15755 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15756 LHSExpr->getType()->isOverloadableType() ||
15757 RHSExpr->getType()->isOverloadableType())
15758 return BuildOverloadedBinOp(S&: *this, Sc: S, OpLoc, Opc, LHS: LHSExpr, RHS: RHSExpr);
15759 }
15760
15761 if (getLangOpts().RecoveryAST &&
15762 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
15763 assert(!getLangOpts().CPlusPlus);
15764 assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
15765 "Should only occur in error-recovery path.");
15766 if (BinaryOperator::isCompoundAssignmentOp(Opc))
15767 // C [6.15.16] p3:
15768 // An assignment expression has the value of the left operand after the
15769 // assignment, but is not an lvalue.
15770 return CompoundAssignOperator::Create(
15771 C: Context, lhs: LHSExpr, rhs: RHSExpr, opc: Opc,
15772 ResTy: LHSExpr->getType().getUnqualifiedType(), VK: VK_PRValue, OK: OK_Ordinary,
15773 opLoc: OpLoc, FPFeatures: CurFPFeatureOverrides());
15774 QualType ResultType;
15775 switch (Opc) {
15776 case BO_Assign:
15777 ResultType = LHSExpr->getType().getUnqualifiedType();
15778 break;
15779 case BO_LT:
15780 case BO_GT:
15781 case BO_LE:
15782 case BO_GE:
15783 case BO_EQ:
15784 case BO_NE:
15785 case BO_LAnd:
15786 case BO_LOr:
15787 // These operators have a fixed result type regardless of operands.
15788 ResultType = Context.IntTy;
15789 break;
15790 case BO_Comma:
15791 ResultType = RHSExpr->getType();
15792 break;
15793 default:
15794 ResultType = Context.DependentTy;
15795 break;
15796 }
15797 return BinaryOperator::Create(C: Context, lhs: LHSExpr, rhs: RHSExpr, opc: Opc, ResTy: ResultType,
15798 VK: VK_PRValue, OK: OK_Ordinary, opLoc: OpLoc,
15799 FPFeatures: CurFPFeatureOverrides());
15800 }
15801
15802 // Build a built-in binary operation.
15803 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr, ForFoldExpression);
15804}
15805
15806static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
15807 if (T.isNull() || T->isDependentType())
15808 return false;
15809
15810 if (!Ctx.isPromotableIntegerType(T))
15811 return true;
15812
15813 return Ctx.getIntWidth(T) >= Ctx.getIntWidth(T: Ctx.IntTy);
15814}
15815
15816ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
15817 UnaryOperatorKind Opc, Expr *InputExpr,
15818 bool IsAfterAmp) {
15819 ExprResult Input = InputExpr;
15820 ExprValueKind VK = VK_PRValue;
15821 ExprObjectKind OK = OK_Ordinary;
15822 QualType resultType;
15823 bool CanOverflow = false;
15824
15825 bool ConvertHalfVec = false;
15826 if (getLangOpts().OpenCL) {
15827 QualType Ty = InputExpr->getType();
15828 // The only legal unary operation for atomics is '&'.
15829 if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
15830 // OpenCL special types - image, sampler, pipe, and blocks are to be used
15831 // only with a builtin functions and therefore should be disallowed here.
15832 (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
15833 || Ty->isBlockPointerType())) {
15834 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15835 << InputExpr->getType()
15836 << Input.get()->getSourceRange());
15837 }
15838 }
15839
15840 if (getLangOpts().HLSL && OpLoc.isValid()) {
15841 if (Opc == UO_AddrOf)
15842 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
15843 if (Opc == UO_Deref)
15844 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
15845 }
15846
15847 if (InputExpr->isTypeDependent() &&
15848 InputExpr->getType()->isSpecificBuiltinType(K: BuiltinType::Dependent)) {
15849 resultType = Context.DependentTy;
15850 } else {
15851 switch (Opc) {
15852 case UO_PreInc:
15853 case UO_PreDec:
15854 case UO_PostInc:
15855 case UO_PostDec:
15856 resultType =
15857 CheckIncrementDecrementOperand(S&: *this, Op: Input.get(), VK, OK, OpLoc,
15858 IsInc: Opc == UO_PreInc || Opc == UO_PostInc,
15859 IsPrefix: Opc == UO_PreInc || Opc == UO_PreDec);
15860 CanOverflow = isOverflowingIntegerType(Ctx&: Context, T: resultType);
15861 break;
15862 case UO_AddrOf:
15863 resultType = CheckAddressOfOperand(OrigOp&: Input, OpLoc);
15864 CheckAddressOfNoDeref(E: InputExpr);
15865 RecordModifiableNonNullParam(S&: *this, Exp: InputExpr);
15866 break;
15867 case UO_Deref: {
15868 Input = DefaultFunctionArrayLvalueConversion(E: Input.get());
15869 if (Input.isInvalid())
15870 return ExprError();
15871 resultType =
15872 CheckIndirectionOperand(S&: *this, Op: Input.get(), VK, OpLoc, IsAfterAmp);
15873 break;
15874 }
15875 case UO_Plus:
15876 case UO_Minus:
15877 CanOverflow = Opc == UO_Minus &&
15878 isOverflowingIntegerType(Ctx&: Context, T: Input.get()->getType());
15879 Input = UsualUnaryConversions(E: Input.get());
15880 if (Input.isInvalid())
15881 return ExprError();
15882 // Unary plus and minus require promoting an operand of half vector to a
15883 // float vector and truncating the result back to a half vector. For now,
15884 // we do this only when HalfArgsAndReturns is set (that is, when the
15885 // target is arm or arm64).
15886 ConvertHalfVec = needsConversionOfHalfVec(OpRequiresConversion: true, Ctx&: Context, E0: Input.get());
15887
15888 // If the operand is a half vector, promote it to a float vector.
15889 if (ConvertHalfVec)
15890 Input = convertVector(Input.get(), Context.FloatTy, *this);
15891 resultType = Input.get()->getType();
15892 if (resultType->isArithmeticType()) // C99 6.5.3.3p1
15893 break;
15894 else if (resultType->isVectorType() &&
15895 // The z vector extensions don't allow + or - with bool vectors.
15896 (!Context.getLangOpts().ZVector ||
15897 resultType->castAs<VectorType>()->getVectorKind() !=
15898 VectorKind::AltiVecBool))
15899 break;
15900 else if (resultType->isSveVLSBuiltinType()) // SVE vectors allow + and -
15901 break;
15902 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
15903 Opc == UO_Plus && resultType->isPointerType())
15904 break;
15905
15906 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15907 << resultType << Input.get()->getSourceRange());
15908
15909 case UO_Not: // bitwise complement
15910 Input = UsualUnaryConversions(E: Input.get());
15911 if (Input.isInvalid())
15912 return ExprError();
15913 resultType = Input.get()->getType();
15914 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
15915 if (resultType->isComplexType() || resultType->isComplexIntegerType())
15916 // C99 does not support '~' for complex conjugation.
15917 Diag(OpLoc, diag::ext_integer_complement_complex)
15918 << resultType << Input.get()->getSourceRange();
15919 else if (resultType->hasIntegerRepresentation())
15920 break;
15921 else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
15922 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
15923 // on vector float types.
15924 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15925 if (!T->isIntegerType())
15926 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15927 << resultType << Input.get()->getSourceRange());
15928 } else {
15929 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15930 << resultType << Input.get()->getSourceRange());
15931 }
15932 break;
15933
15934 case UO_LNot: // logical negation
15935 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
15936 Input = DefaultFunctionArrayLvalueConversion(E: Input.get());
15937 if (Input.isInvalid())
15938 return ExprError();
15939 resultType = Input.get()->getType();
15940
15941 // Though we still have to promote half FP to float...
15942 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
15943 Input = ImpCastExprToType(E: Input.get(), Type: Context.FloatTy, CK: CK_FloatingCast)
15944 .get();
15945 resultType = Context.FloatTy;
15946 }
15947
15948 // WebAsembly tables can't be used in unary expressions.
15949 if (resultType->isPointerType() &&
15950 resultType->getPointeeType().isWebAssemblyReferenceType()) {
15951 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15952 << resultType << Input.get()->getSourceRange());
15953 }
15954
15955 if (resultType->isScalarType() && !isScopedEnumerationType(T: resultType)) {
15956 // C99 6.5.3.3p1: ok, fallthrough;
15957 if (Context.getLangOpts().CPlusPlus) {
15958 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
15959 // operand contextually converted to bool.
15960 Input = ImpCastExprToType(E: Input.get(), Type: Context.BoolTy,
15961 CK: ScalarTypeToBooleanCastKind(ScalarTy: resultType));
15962 } else if (Context.getLangOpts().OpenCL &&
15963 Context.getLangOpts().OpenCLVersion < 120) {
15964 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15965 // operate on scalar float types.
15966 if (!resultType->isIntegerType() && !resultType->isPointerType())
15967 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15968 << resultType << Input.get()->getSourceRange());
15969 }
15970 } else if (resultType->isExtVectorType()) {
15971 if (Context.getLangOpts().OpenCL &&
15972 Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
15973 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15974 // operate on vector float types.
15975 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15976 if (!T->isIntegerType())
15977 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15978 << resultType << Input.get()->getSourceRange());
15979 }
15980 // Vector logical not returns the signed variant of the operand type.
15981 resultType = GetSignedVectorType(V: resultType);
15982 break;
15983 } else if (Context.getLangOpts().CPlusPlus &&
15984 resultType->isVectorType()) {
15985 const VectorType *VTy = resultType->castAs<VectorType>();
15986 if (VTy->getVectorKind() != VectorKind::Generic)
15987 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15988 << resultType << Input.get()->getSourceRange());
15989
15990 // Vector logical not returns the signed variant of the operand type.
15991 resultType = GetSignedVectorType(V: resultType);
15992 break;
15993 } else {
15994 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15995 << resultType << Input.get()->getSourceRange());
15996 }
15997
15998 // LNot always has type int. C99 6.5.3.3p5.
15999 // In C++, it's bool. C++ 5.3.1p8
16000 resultType = Context.getLogicalOperationType();
16001 break;
16002 case UO_Real:
16003 case UO_Imag:
16004 resultType = CheckRealImagOperand(S&: *this, V&: Input, Loc: OpLoc, IsReal: Opc == UO_Real);
16005 // _Real maps ordinary l-values into ordinary l-values. _Imag maps
16006 // ordinary complex l-values to ordinary l-values and all other values to
16007 // r-values.
16008 if (Input.isInvalid())
16009 return ExprError();
16010 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
16011 if (Input.get()->isGLValue() &&
16012 Input.get()->getObjectKind() == OK_Ordinary)
16013 VK = Input.get()->getValueKind();
16014 } else if (!getLangOpts().CPlusPlus) {
16015 // In C, a volatile scalar is read by __imag. In C++, it is not.
16016 Input = DefaultLvalueConversion(E: Input.get());
16017 }
16018 break;
16019 case UO_Extension:
16020 resultType = Input.get()->getType();
16021 VK = Input.get()->getValueKind();
16022 OK = Input.get()->getObjectKind();
16023 break;
16024 case UO_Coawait:
16025 // It's unnecessary to represent the pass-through operator co_await in the
16026 // AST; just return the input expression instead.
16027 assert(!Input.get()->getType()->isDependentType() &&
16028 "the co_await expression must be non-dependant before "
16029 "building operator co_await");
16030 return Input;
16031 }
16032 }
16033 if (resultType.isNull() || Input.isInvalid())
16034 return ExprError();
16035
16036 // Check for array bounds violations in the operand of the UnaryOperator,
16037 // except for the '*' and '&' operators that have to be handled specially
16038 // by CheckArrayAccess (as there are special cases like &array[arraysize]
16039 // that are explicitly defined as valid by the standard).
16040 if (Opc != UO_AddrOf && Opc != UO_Deref)
16041 CheckArrayAccess(E: Input.get());
16042
16043 auto *UO =
16044 UnaryOperator::Create(C: Context, input: Input.get(), opc: Opc, type: resultType, VK, OK,
16045 l: OpLoc, CanOverflow, FPFeatures: CurFPFeatureOverrides());
16046
16047 if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
16048 !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
16049 !isUnevaluatedContext())
16050 ExprEvalContexts.back().PossibleDerefs.insert(UO);
16051
16052 // Convert the result back to a half vector.
16053 if (ConvertHalfVec)
16054 return convertVector(UO, Context.HalfTy, *this);
16055 return UO;
16056}
16057
16058bool Sema::isQualifiedMemberAccess(Expr *E) {
16059 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) {
16060 if (!DRE->getQualifier())
16061 return false;
16062
16063 ValueDecl *VD = DRE->getDecl();
16064 if (!VD->isCXXClassMember())
16065 return false;
16066
16067 if (isa<FieldDecl>(Val: VD) || isa<IndirectFieldDecl>(Val: VD))
16068 return true;
16069 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: VD))
16070 return Method->isImplicitObjectMemberFunction();
16071
16072 return false;
16073 }
16074
16075 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Val: E)) {
16076 if (!ULE->getQualifier())
16077 return false;
16078
16079 for (NamedDecl *D : ULE->decls()) {
16080 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
16081 if (Method->isImplicitObjectMemberFunction())
16082 return true;
16083 } else {
16084 // Overload set does not contain methods.
16085 break;
16086 }
16087 }
16088
16089 return false;
16090 }
16091
16092 return false;
16093}
16094
16095ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
16096 UnaryOperatorKind Opc, Expr *Input,
16097 bool IsAfterAmp) {
16098 // First things first: handle placeholders so that the
16099 // overloaded-operator check considers the right type.
16100 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
16101 // Increment and decrement of pseudo-object references.
16102 if (pty->getKind() == BuiltinType::PseudoObject &&
16103 UnaryOperator::isIncrementDecrementOp(Op: Opc))
16104 return PseudoObject().checkIncDec(S, OpLoc, Opcode: Opc, Op: Input);
16105
16106 // extension is always a builtin operator.
16107 if (Opc == UO_Extension)
16108 return CreateBuiltinUnaryOp(OpLoc, Opc, InputExpr: Input);
16109
16110 // & gets special logic for several kinds of placeholder.
16111 // The builtin code knows what to do.
16112 if (Opc == UO_AddrOf &&
16113 (pty->getKind() == BuiltinType::Overload ||
16114 pty->getKind() == BuiltinType::UnknownAny ||
16115 pty->getKind() == BuiltinType::BoundMember))
16116 return CreateBuiltinUnaryOp(OpLoc, Opc, InputExpr: Input);
16117
16118 // Anything else needs to be handled now.
16119 ExprResult Result = CheckPlaceholderExpr(E: Input);
16120 if (Result.isInvalid()) return ExprError();
16121 Input = Result.get();
16122 }
16123
16124 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
16125 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
16126 !(Opc == UO_AddrOf && isQualifiedMemberAccess(E: Input))) {
16127 // Find all of the overloaded operators visible from this point.
16128 UnresolvedSet<16> Functions;
16129 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
16130 if (S && OverOp != OO_None)
16131 LookupOverloadedOperatorName(Op: OverOp, S, Functions);
16132
16133 return CreateOverloadedUnaryOp(OpLoc, Opc, Fns: Functions, input: Input);
16134 }
16135
16136 return CreateBuiltinUnaryOp(OpLoc, Opc, InputExpr: Input, IsAfterAmp);
16137}
16138
16139ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
16140 Expr *Input, bool IsAfterAmp) {
16141 return BuildUnaryOp(S, OpLoc, Opc: ConvertTokenKindToUnaryOpcode(Kind: Op), Input,
16142 IsAfterAmp);
16143}
16144
16145ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
16146 LabelDecl *TheDecl) {
16147 TheDecl->markUsed(Context);
16148 // Create the AST node. The address of a label always has type 'void*'.
16149 auto *Res = new (Context) AddrLabelExpr(
16150 OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy));
16151
16152 if (getCurFunction())
16153 getCurFunction()->AddrLabels.push_back(Elt: Res);
16154
16155 return Res;
16156}
16157
16158void Sema::ActOnStartStmtExpr() {
16159 PushExpressionEvaluationContext(NewContext: ExprEvalContexts.back().Context);
16160 // Make sure we diagnose jumping into a statement expression.
16161 setFunctionHasBranchProtectedScope();
16162}
16163
16164void Sema::ActOnStmtExprError() {
16165 // Note that function is also called by TreeTransform when leaving a
16166 // StmtExpr scope without rebuilding anything.
16167
16168 DiscardCleanupsInEvaluationContext();
16169 PopExpressionEvaluationContext();
16170}
16171
16172ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
16173 SourceLocation RPLoc) {
16174 return BuildStmtExpr(LPLoc, SubStmt, RPLoc, TemplateDepth: getTemplateDepth(S));
16175}
16176
16177ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
16178 SourceLocation RPLoc, unsigned TemplateDepth) {
16179 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
16180 CompoundStmt *Compound = cast<CompoundStmt>(Val: SubStmt);
16181
16182 if (hasAnyUnrecoverableErrorsInThisFunction())
16183 DiscardCleanupsInEvaluationContext();
16184 assert(!Cleanup.exprNeedsCleanups() &&
16185 "cleanups within StmtExpr not correctly bound!");
16186 PopExpressionEvaluationContext();
16187
16188 // FIXME: there are a variety of strange constraints to enforce here, for
16189 // example, it is not possible to goto into a stmt expression apparently.
16190 // More semantic analysis is needed.
16191
16192 // If there are sub-stmts in the compound stmt, take the type of the last one
16193 // as the type of the stmtexpr.
16194 QualType Ty = Context.VoidTy;
16195 bool StmtExprMayBindToTemp = false;
16196 if (!Compound->body_empty()) {
16197 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
16198 if (const auto *LastStmt =
16199 dyn_cast<ValueStmt>(Val: Compound->getStmtExprResult())) {
16200 if (const Expr *Value = LastStmt->getExprStmt()) {
16201 StmtExprMayBindToTemp = true;
16202 Ty = Value->getType();
16203 }
16204 }
16205 }
16206
16207 // FIXME: Check that expression type is complete/non-abstract; statement
16208 // expressions are not lvalues.
16209 Expr *ResStmtExpr =
16210 new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
16211 if (StmtExprMayBindToTemp)
16212 return MaybeBindToTemporary(E: ResStmtExpr);
16213 return ResStmtExpr;
16214}
16215
16216ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
16217 if (ER.isInvalid())
16218 return ExprError();
16219
16220 // Do function/array conversion on the last expression, but not
16221 // lvalue-to-rvalue. However, initialize an unqualified type.
16222 ER = DefaultFunctionArrayConversion(E: ER.get());
16223 if (ER.isInvalid())
16224 return ExprError();
16225 Expr *E = ER.get();
16226
16227 if (E->isTypeDependent())
16228 return E;
16229
16230 // In ARC, if the final expression ends in a consume, splice
16231 // the consume out and bind it later. In the alternate case
16232 // (when dealing with a retainable type), the result
16233 // initialization will create a produce. In both cases the
16234 // result will be +1, and we'll need to balance that out with
16235 // a bind.
16236 auto *Cast = dyn_cast<ImplicitCastExpr>(Val: E);
16237 if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
16238 return Cast->getSubExpr();
16239
16240 // FIXME: Provide a better location for the initialization.
16241 return PerformCopyInitialization(
16242 Entity: InitializedEntity::InitializeStmtExprResult(
16243 ReturnLoc: E->getBeginLoc(), Type: E->getType().getAtomicUnqualifiedType()),
16244 EqualLoc: SourceLocation(), Init: E);
16245}
16246
16247ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
16248 TypeSourceInfo *TInfo,
16249 ArrayRef<OffsetOfComponent> Components,
16250 SourceLocation RParenLoc) {
16251 QualType ArgTy = TInfo->getType();
16252 bool Dependent = ArgTy->isDependentType();
16253 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
16254
16255 // We must have at least one component that refers to the type, and the first
16256 // one is known to be a field designator. Verify that the ArgTy represents
16257 // a struct/union/class.
16258 if (!Dependent && !ArgTy->isRecordType())
16259 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
16260 << ArgTy << TypeRange);
16261
16262 // Type must be complete per C99 7.17p3 because a declaring a variable
16263 // with an incomplete type would be ill-formed.
16264 if (!Dependent
16265 && RequireCompleteType(BuiltinLoc, ArgTy,
16266 diag::err_offsetof_incomplete_type, TypeRange))
16267 return ExprError();
16268
16269 bool DidWarnAboutNonPOD = false;
16270 QualType CurrentType = ArgTy;
16271 SmallVector<OffsetOfNode, 4> Comps;
16272 SmallVector<Expr*, 4> Exprs;
16273 for (const OffsetOfComponent &OC : Components) {
16274 if (OC.isBrackets) {
16275 // Offset of an array sub-field. TODO: Should we allow vector elements?
16276 if (!CurrentType->isDependentType()) {
16277 const ArrayType *AT = Context.getAsArrayType(T: CurrentType);
16278 if(!AT)
16279 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
16280 << CurrentType);
16281 CurrentType = AT->getElementType();
16282 } else
16283 CurrentType = Context.DependentTy;
16284
16285 ExprResult IdxRval = DefaultLvalueConversion(E: static_cast<Expr*>(OC.U.E));
16286 if (IdxRval.isInvalid())
16287 return ExprError();
16288 Expr *Idx = IdxRval.get();
16289
16290 // The expression must be an integral expression.
16291 // FIXME: An integral constant expression?
16292 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
16293 !Idx->getType()->isIntegerType())
16294 return ExprError(
16295 Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
16296 << Idx->getSourceRange());
16297
16298 // Record this array index.
16299 Comps.push_back(Elt: OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
16300 Exprs.push_back(Elt: Idx);
16301 continue;
16302 }
16303
16304 // Offset of a field.
16305 if (CurrentType->isDependentType()) {
16306 // We have the offset of a field, but we can't look into the dependent
16307 // type. Just record the identifier of the field.
16308 Comps.push_back(Elt: OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16309 CurrentType = Context.DependentTy;
16310 continue;
16311 }
16312
16313 // We need to have a complete type to look into.
16314 if (RequireCompleteType(OC.LocStart, CurrentType,
16315 diag::err_offsetof_incomplete_type))
16316 return ExprError();
16317
16318 // Look for the designated field.
16319 const RecordType *RC = CurrentType->getAs<RecordType>();
16320 if (!RC)
16321 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
16322 << CurrentType);
16323 RecordDecl *RD = RC->getDecl();
16324
16325 // C++ [lib.support.types]p5:
16326 // The macro offsetof accepts a restricted set of type arguments in this
16327 // International Standard. type shall be a POD structure or a POD union
16328 // (clause 9).
16329 // C++11 [support.types]p4:
16330 // If type is not a standard-layout class (Clause 9), the results are
16331 // undefined.
16332 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(Val: RD)) {
16333 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16334 unsigned DiagID =
16335 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16336 : diag::ext_offsetof_non_pod_type;
16337
16338 if (!IsSafe && !DidWarnAboutNonPOD && !isUnevaluatedContext()) {
16339 Diag(BuiltinLoc, DiagID)
16340 << SourceRange(Components[0].LocStart, OC.LocEnd) << CurrentType;
16341 DidWarnAboutNonPOD = true;
16342 }
16343 }
16344
16345 // Look for the field.
16346 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16347 LookupQualifiedName(R, RD);
16348 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16349 IndirectFieldDecl *IndirectMemberDecl = nullptr;
16350 if (!MemberDecl) {
16351 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16352 MemberDecl = IndirectMemberDecl->getAnonField();
16353 }
16354
16355 if (!MemberDecl) {
16356 // Lookup could be ambiguous when looking up a placeholder variable
16357 // __builtin_offsetof(S, _).
16358 // In that case we would already have emitted a diagnostic
16359 if (!R.isAmbiguous())
16360 Diag(BuiltinLoc, diag::err_no_member)
16361 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd);
16362 return ExprError();
16363 }
16364
16365 // C99 7.17p3:
16366 // (If the specified member is a bit-field, the behavior is undefined.)
16367 //
16368 // We diagnose this as an error.
16369 if (MemberDecl->isBitField()) {
16370 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
16371 << MemberDecl->getDeclName()
16372 << SourceRange(BuiltinLoc, RParenLoc);
16373 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
16374 return ExprError();
16375 }
16376
16377 RecordDecl *Parent = MemberDecl->getParent();
16378 if (IndirectMemberDecl)
16379 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
16380
16381 // If the member was found in a base class, introduce OffsetOfNodes for
16382 // the base class indirections.
16383 CXXBasePaths Paths;
16384 if (IsDerivedFrom(Loc: OC.LocStart, Derived: CurrentType, Base: Context.getTypeDeclType(Parent),
16385 Paths)) {
16386 if (Paths.getDetectedVirtual()) {
16387 Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16388 << MemberDecl->getDeclName()
16389 << SourceRange(BuiltinLoc, RParenLoc);
16390 return ExprError();
16391 }
16392
16393 CXXBasePath &Path = Paths.front();
16394 for (const CXXBasePathElement &B : Path)
16395 Comps.push_back(Elt: OffsetOfNode(B.Base));
16396 }
16397
16398 if (IndirectMemberDecl) {
16399 for (auto *FI : IndirectMemberDecl->chain()) {
16400 assert(isa<FieldDecl>(FI));
16401 Comps.push_back(Elt: OffsetOfNode(OC.LocStart,
16402 cast<FieldDecl>(Val: FI), OC.LocEnd));
16403 }
16404 } else
16405 Comps.push_back(Elt: OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16406
16407 CurrentType = MemberDecl->getType().getNonReferenceType();
16408 }
16409
16410 return OffsetOfExpr::Create(C: Context, type: Context.getSizeType(), OperatorLoc: BuiltinLoc, tsi: TInfo,
16411 comps: Comps, exprs: Exprs, RParenLoc);
16412}
16413
16414ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16415 SourceLocation BuiltinLoc,
16416 SourceLocation TypeLoc,
16417 ParsedType ParsedArgTy,
16418 ArrayRef<OffsetOfComponent> Components,
16419 SourceLocation RParenLoc) {
16420
16421 TypeSourceInfo *ArgTInfo;
16422 QualType ArgTy = GetTypeFromParser(Ty: ParsedArgTy, TInfo: &ArgTInfo);
16423 if (ArgTy.isNull())
16424 return ExprError();
16425
16426 if (!ArgTInfo)
16427 ArgTInfo = Context.getTrivialTypeSourceInfo(T: ArgTy, Loc: TypeLoc);
16428
16429 return BuildBuiltinOffsetOf(BuiltinLoc, TInfo: ArgTInfo, Components, RParenLoc);
16430}
16431
16432
16433ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16434 Expr *CondExpr,
16435 Expr *LHSExpr, Expr *RHSExpr,
16436 SourceLocation RPLoc) {
16437 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16438
16439 ExprValueKind VK = VK_PRValue;
16440 ExprObjectKind OK = OK_Ordinary;
16441 QualType resType;
16442 bool CondIsTrue = false;
16443 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16444 resType = Context.DependentTy;
16445 } else {
16446 // The conditional expression is required to be a constant expression.
16447 llvm::APSInt condEval(32);
16448 ExprResult CondICE = VerifyIntegerConstantExpression(
16449 CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16450 if (CondICE.isInvalid())
16451 return ExprError();
16452 CondExpr = CondICE.get();
16453 CondIsTrue = condEval.getZExtValue();
16454
16455 // If the condition is > zero, then the AST type is the same as the LHSExpr.
16456 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16457
16458 resType = ActiveExpr->getType();
16459 VK = ActiveExpr->getValueKind();
16460 OK = ActiveExpr->getObjectKind();
16461 }
16462
16463 return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16464 resType, VK, OK, RPLoc, CondIsTrue);
16465}
16466
16467//===----------------------------------------------------------------------===//
16468// Clang Extensions.
16469//===----------------------------------------------------------------------===//
16470
16471void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16472 BlockDecl *Block = BlockDecl::Create(C&: Context, DC: CurContext, L: CaretLoc);
16473
16474 if (LangOpts.CPlusPlus) {
16475 MangleNumberingContext *MCtx;
16476 Decl *ManglingContextDecl;
16477 std::tie(args&: MCtx, args&: ManglingContextDecl) =
16478 getCurrentMangleNumberContext(DC: Block->getDeclContext());
16479 if (MCtx) {
16480 unsigned ManglingNumber = MCtx->getManglingNumber(BD: Block);
16481 Block->setBlockMangling(Number: ManglingNumber, Ctx: ManglingContextDecl);
16482 }
16483 }
16484
16485 PushBlockScope(BlockScope: CurScope, Block);
16486 CurContext->addDecl(Block);
16487 if (CurScope)
16488 PushDeclContext(CurScope, Block);
16489 else
16490 CurContext = Block;
16491
16492 getCurBlock()->HasImplicitReturnType = true;
16493
16494 // Enter a new evaluation context to insulate the block from any
16495 // cleanups from the enclosing full-expression.
16496 PushExpressionEvaluationContext(
16497 NewContext: ExpressionEvaluationContext::PotentiallyEvaluated);
16498}
16499
16500void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16501 Scope *CurScope) {
16502 assert(ParamInfo.getIdentifier() == nullptr &&
16503 "block-id should have no identifier!");
16504 assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16505 BlockScopeInfo *CurBlock = getCurBlock();
16506
16507 TypeSourceInfo *Sig = GetTypeForDeclarator(D&: ParamInfo);
16508 QualType T = Sig->getType();
16509 DiagnoseUnexpandedParameterPack(Loc: CaretLoc, T: Sig, UPPC: UPPC_Block);
16510
16511 // GetTypeForDeclarator always produces a function type for a block
16512 // literal signature. Furthermore, it is always a FunctionProtoType
16513 // unless the function was written with a typedef.
16514 assert(T->isFunctionType() &&
16515 "GetTypeForDeclarator made a non-function block signature");
16516
16517 // Look for an explicit signature in that function type.
16518 FunctionProtoTypeLoc ExplicitSignature;
16519
16520 if ((ExplicitSignature = Sig->getTypeLoc()
16521 .getAsAdjusted<FunctionProtoTypeLoc>())) {
16522
16523 // Check whether that explicit signature was synthesized by
16524 // GetTypeForDeclarator. If so, don't save that as part of the
16525 // written signature.
16526 if (ExplicitSignature.getLocalRangeBegin() ==
16527 ExplicitSignature.getLocalRangeEnd()) {
16528 // This would be much cheaper if we stored TypeLocs instead of
16529 // TypeSourceInfos.
16530 TypeLoc Result = ExplicitSignature.getReturnLoc();
16531 unsigned Size = Result.getFullDataSize();
16532 Sig = Context.CreateTypeSourceInfo(T: Result.getType(), Size);
16533 Sig->getTypeLoc().initializeFullCopy(Other: Result, Size);
16534
16535 ExplicitSignature = FunctionProtoTypeLoc();
16536 }
16537 }
16538
16539 CurBlock->TheDecl->setSignatureAsWritten(Sig);
16540 CurBlock->FunctionType = T;
16541
16542 const auto *Fn = T->castAs<FunctionType>();
16543 QualType RetTy = Fn->getReturnType();
16544 bool isVariadic =
16545 (isa<FunctionProtoType>(Val: Fn) && cast<FunctionProtoType>(Val: Fn)->isVariadic());
16546
16547 CurBlock->TheDecl->setIsVariadic(isVariadic);
16548
16549 // Context.DependentTy is used as a placeholder for a missing block
16550 // return type. TODO: what should we do with declarators like:
16551 // ^ * { ... }
16552 // If the answer is "apply template argument deduction"....
16553 if (RetTy != Context.DependentTy) {
16554 CurBlock->ReturnType = RetTy;
16555 CurBlock->TheDecl->setBlockMissingReturnType(false);
16556 CurBlock->HasImplicitReturnType = false;
16557 }
16558
16559 // Push block parameters from the declarator if we had them.
16560 SmallVector<ParmVarDecl*, 8> Params;
16561 if (ExplicitSignature) {
16562 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
16563 ParmVarDecl *Param = ExplicitSignature.getParam(I);
16564 if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
16565 !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
16566 // Diagnose this as an extension in C17 and earlier.
16567 if (!getLangOpts().C23)
16568 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
16569 }
16570 Params.push_back(Elt: Param);
16571 }
16572
16573 // Fake up parameter variables if we have a typedef, like
16574 // ^ fntype { ... }
16575 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
16576 for (const auto &I : Fn->param_types()) {
16577 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
16578 CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
16579 Params.push_back(Elt: Param);
16580 }
16581 }
16582
16583 // Set the parameters on the block decl.
16584 if (!Params.empty()) {
16585 CurBlock->TheDecl->setParams(Params);
16586 CheckParmsForFunctionDef(Parameters: CurBlock->TheDecl->parameters(),
16587 /*CheckParameterNames=*/false);
16588 }
16589
16590 // Finally we can process decl attributes.
16591 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
16592
16593 // Put the parameter variables in scope.
16594 for (auto *AI : CurBlock->TheDecl->parameters()) {
16595 AI->setOwningFunction(CurBlock->TheDecl);
16596
16597 // If this has an identifier, add it to the scope stack.
16598 if (AI->getIdentifier()) {
16599 CheckShadow(CurBlock->TheScope, AI);
16600
16601 PushOnScopeChains(AI, CurBlock->TheScope);
16602 }
16603
16604 if (AI->isInvalidDecl())
16605 CurBlock->TheDecl->setInvalidDecl();
16606 }
16607}
16608
16609void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
16610 // Leave the expression-evaluation context.
16611 DiscardCleanupsInEvaluationContext();
16612 PopExpressionEvaluationContext();
16613
16614 // Pop off CurBlock, handle nested blocks.
16615 PopDeclContext();
16616 PopFunctionScopeInfo();
16617}
16618
16619ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
16620 Stmt *Body, Scope *CurScope) {
16621 // If blocks are disabled, emit an error.
16622 if (!LangOpts.Blocks)
16623 Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
16624
16625 // Leave the expression-evaluation context.
16626 if (hasAnyUnrecoverableErrorsInThisFunction())
16627 DiscardCleanupsInEvaluationContext();
16628 assert(!Cleanup.exprNeedsCleanups() &&
16629 "cleanups within block not correctly bound!");
16630 PopExpressionEvaluationContext();
16631
16632 BlockScopeInfo *BSI = cast<BlockScopeInfo>(Val: FunctionScopes.back());
16633 BlockDecl *BD = BSI->TheDecl;
16634
16635 maybeAddDeclWithEffects(D: BD);
16636
16637 if (BSI->HasImplicitReturnType)
16638 deduceClosureReturnType(*BSI);
16639
16640 QualType RetTy = Context.VoidTy;
16641 if (!BSI->ReturnType.isNull())
16642 RetTy = BSI->ReturnType;
16643
16644 bool NoReturn = BD->hasAttr<NoReturnAttr>();
16645 QualType BlockTy;
16646
16647 // If the user wrote a function type in some form, try to use that.
16648 if (!BSI->FunctionType.isNull()) {
16649 const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
16650
16651 FunctionType::ExtInfo Ext = FTy->getExtInfo();
16652 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(noReturn: true);
16653
16654 // Turn protoless block types into nullary block types.
16655 if (isa<FunctionNoProtoType>(Val: FTy)) {
16656 FunctionProtoType::ExtProtoInfo EPI;
16657 EPI.ExtInfo = Ext;
16658 BlockTy = Context.getFunctionType(ResultTy: RetTy, Args: {}, EPI);
16659
16660 // Otherwise, if we don't need to change anything about the function type,
16661 // preserve its sugar structure.
16662 } else if (FTy->getReturnType() == RetTy &&
16663 (!NoReturn || FTy->getNoReturnAttr())) {
16664 BlockTy = BSI->FunctionType;
16665
16666 // Otherwise, make the minimal modifications to the function type.
16667 } else {
16668 const FunctionProtoType *FPT = cast<FunctionProtoType>(Val: FTy);
16669 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
16670 EPI.TypeQuals = Qualifiers();
16671 EPI.ExtInfo = Ext;
16672 BlockTy = Context.getFunctionType(ResultTy: RetTy, Args: FPT->getParamTypes(), EPI);
16673 }
16674
16675 // If we don't have a function type, just build one from nothing.
16676 } else {
16677 FunctionProtoType::ExtProtoInfo EPI;
16678 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(noReturn: NoReturn);
16679 BlockTy = Context.getFunctionType(ResultTy: RetTy, Args: {}, EPI);
16680 }
16681
16682 DiagnoseUnusedParameters(Parameters: BD->parameters());
16683 BlockTy = Context.getBlockPointerType(T: BlockTy);
16684
16685 // If needed, diagnose invalid gotos and switches in the block.
16686 if (getCurFunction()->NeedsScopeChecking() &&
16687 !PP.isCodeCompletionEnabled())
16688 DiagnoseInvalidJumps(cast<CompoundStmt>(Val: Body));
16689
16690 BD->setBody(cast<CompoundStmt>(Val: Body));
16691
16692 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
16693 DiagnoseUnguardedAvailabilityViolations(BD);
16694
16695 // Try to apply the named return value optimization. We have to check again
16696 // if we can do this, though, because blocks keep return statements around
16697 // to deduce an implicit return type.
16698 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
16699 !BD->isDependentContext())
16700 computeNRVO(Body, BSI);
16701
16702 if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
16703 RetTy.hasNonTrivialToPrimitiveCopyCUnion())
16704 checkNonTrivialCUnion(QT: RetTy, Loc: BD->getCaretLocation(),
16705 UseContext: NonTrivialCUnionContext::FunctionReturn,
16706 NonTrivialKind: NTCUK_Destruct | NTCUK_Copy);
16707
16708 PopDeclContext();
16709
16710 // Set the captured variables on the block.
16711 SmallVector<BlockDecl::Capture, 4> Captures;
16712 for (Capture &Cap : BSI->Captures) {
16713 if (Cap.isInvalid() || Cap.isThisCapture())
16714 continue;
16715 // Cap.getVariable() is always a VarDecl because
16716 // blocks cannot capture structured bindings or other ValueDecl kinds.
16717 auto *Var = cast<VarDecl>(Val: Cap.getVariable());
16718 Expr *CopyExpr = nullptr;
16719 if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
16720 if (const RecordType *Record =
16721 Cap.getCaptureType()->getAs<RecordType>()) {
16722 // The capture logic needs the destructor, so make sure we mark it.
16723 // Usually this is unnecessary because most local variables have
16724 // their destructors marked at declaration time, but parameters are
16725 // an exception because it's technically only the call site that
16726 // actually requires the destructor.
16727 if (isa<ParmVarDecl>(Val: Var))
16728 FinalizeVarWithDestructor(VD: Var, DeclInitType: Record);
16729
16730 // Enter a separate potentially-evaluated context while building block
16731 // initializers to isolate their cleanups from those of the block
16732 // itself.
16733 // FIXME: Is this appropriate even when the block itself occurs in an
16734 // unevaluated operand?
16735 EnterExpressionEvaluationContext EvalContext(
16736 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16737
16738 SourceLocation Loc = Cap.getLocation();
16739
16740 ExprResult Result = BuildDeclarationNameExpr(
16741 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
16742
16743 // According to the blocks spec, the capture of a variable from
16744 // the stack requires a const copy constructor. This is not true
16745 // of the copy/move done to move a __block variable to the heap.
16746 if (!Result.isInvalid() &&
16747 !Result.get()->getType().isConstQualified()) {
16748 Result = ImpCastExprToType(E: Result.get(),
16749 Type: Result.get()->getType().withConst(),
16750 CK: CK_NoOp, VK: VK_LValue);
16751 }
16752
16753 if (!Result.isInvalid()) {
16754 Result = PerformCopyInitialization(
16755 Entity: InitializedEntity::InitializeBlock(BlockVarLoc: Var->getLocation(),
16756 Type: Cap.getCaptureType()),
16757 EqualLoc: Loc, Init: Result.get());
16758 }
16759
16760 // Build a full-expression copy expression if initialization
16761 // succeeded and used a non-trivial constructor. Recover from
16762 // errors by pretending that the copy isn't necessary.
16763 if (!Result.isInvalid() &&
16764 !cast<CXXConstructExpr>(Val: Result.get())->getConstructor()
16765 ->isTrivial()) {
16766 Result = MaybeCreateExprWithCleanups(SubExpr: Result);
16767 CopyExpr = Result.get();
16768 }
16769 }
16770 }
16771
16772 BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
16773 CopyExpr);
16774 Captures.push_back(Elt: NewCap);
16775 }
16776 BD->setCaptures(Context, Captures, CapturesCXXThis: BSI->CXXThisCaptureIndex != 0);
16777
16778 // Pop the block scope now but keep it alive to the end of this function.
16779 AnalysisBasedWarnings::Policy WP =
16780 AnalysisWarnings.getPolicyInEffectAt(Loc: Body->getEndLoc());
16781 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
16782
16783 BlockExpr *Result = new (Context)
16784 BlockExpr(BD, BlockTy, BSI->ContainsUnexpandedParameterPack);
16785
16786 // If the block isn't obviously global, i.e. it captures anything at
16787 // all, then we need to do a few things in the surrounding context:
16788 if (Result->getBlockDecl()->hasCaptures()) {
16789 // First, this expression has a new cleanup object.
16790 ExprCleanupObjects.push_back(Elt: Result->getBlockDecl());
16791 Cleanup.setExprNeedsCleanups(true);
16792
16793 // It also gets a branch-protected scope if any of the captured
16794 // variables needs destruction.
16795 for (const auto &CI : Result->getBlockDecl()->captures()) {
16796 const VarDecl *var = CI.getVariable();
16797 if (var->getType().isDestructedType() != QualType::DK_none) {
16798 setFunctionHasBranchProtectedScope();
16799 break;
16800 }
16801 }
16802 }
16803
16804 if (getCurFunction())
16805 getCurFunction()->addBlock(BD);
16806
16807 // This can happen if the block's return type is deduced, but
16808 // the return expression is invalid.
16809 if (BD->isInvalidDecl())
16810 return CreateRecoveryExpr(Begin: Result->getBeginLoc(), End: Result->getEndLoc(),
16811 SubExprs: {Result}, T: Result->getType());
16812 return Result;
16813}
16814
16815ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
16816 SourceLocation RPLoc) {
16817 TypeSourceInfo *TInfo;
16818 GetTypeFromParser(Ty, TInfo: &TInfo);
16819 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
16820}
16821
16822ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
16823 Expr *E, TypeSourceInfo *TInfo,
16824 SourceLocation RPLoc) {
16825 Expr *OrigExpr = E;
16826 bool IsMS = false;
16827
16828 // CUDA device code does not support varargs.
16829 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
16830 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(Val: CurContext)) {
16831 CUDAFunctionTarget T = CUDA().IdentifyTarget(D: F);
16832 if (T == CUDAFunctionTarget::Global || T == CUDAFunctionTarget::Device ||
16833 T == CUDAFunctionTarget::HostDevice)
16834 return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
16835 }
16836 }
16837
16838 // NVPTX does not support va_arg expression.
16839 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
16840 Context.getTargetInfo().getTriple().isNVPTX())
16841 targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
16842
16843 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
16844 // as Microsoft ABI on an actual Microsoft platform, where
16845 // __builtin_ms_va_list and __builtin_va_list are the same.)
16846 if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
16847 Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
16848 QualType MSVaListType = Context.getBuiltinMSVaListType();
16849 if (Context.hasSameType(T1: MSVaListType, T2: E->getType())) {
16850 if (CheckForModifiableLvalue(E, Loc: BuiltinLoc, S&: *this))
16851 return ExprError();
16852 IsMS = true;
16853 }
16854 }
16855
16856 // Get the va_list type
16857 QualType VaListType = Context.getBuiltinVaListType();
16858 if (!IsMS) {
16859 if (VaListType->isArrayType()) {
16860 // Deal with implicit array decay; for example, on x86-64,
16861 // va_list is an array, but it's supposed to decay to
16862 // a pointer for va_arg.
16863 VaListType = Context.getArrayDecayedType(T: VaListType);
16864 // Make sure the input expression also decays appropriately.
16865 ExprResult Result = UsualUnaryConversions(E);
16866 if (Result.isInvalid())
16867 return ExprError();
16868 E = Result.get();
16869 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
16870 // If va_list is a record type and we are compiling in C++ mode,
16871 // check the argument using reference binding.
16872 InitializedEntity Entity = InitializedEntity::InitializeParameter(
16873 Context, Type: Context.getLValueReferenceType(T: VaListType), Consumed: false);
16874 ExprResult Init = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: E);
16875 if (Init.isInvalid())
16876 return ExprError();
16877 E = Init.getAs<Expr>();
16878 } else {
16879 // Otherwise, the va_list argument must be an l-value because
16880 // it is modified by va_arg.
16881 if (!E->isTypeDependent() &&
16882 CheckForModifiableLvalue(E, Loc: BuiltinLoc, S&: *this))
16883 return ExprError();
16884 }
16885 }
16886
16887 if (!IsMS && !E->isTypeDependent() &&
16888 !Context.hasSameType(VaListType, E->getType()))
16889 return ExprError(
16890 Diag(E->getBeginLoc(),
16891 diag::err_first_argument_to_va_arg_not_of_type_va_list)
16892 << OrigExpr->getType() << E->getSourceRange());
16893
16894 if (!TInfo->getType()->isDependentType()) {
16895 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
16896 diag::err_second_parameter_to_va_arg_incomplete,
16897 TInfo->getTypeLoc()))
16898 return ExprError();
16899
16900 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
16901 TInfo->getType(),
16902 diag::err_second_parameter_to_va_arg_abstract,
16903 TInfo->getTypeLoc()))
16904 return ExprError();
16905
16906 if (!TInfo->getType().isPODType(Context)) {
16907 Diag(TInfo->getTypeLoc().getBeginLoc(),
16908 TInfo->getType()->isObjCLifetimeType()
16909 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
16910 : diag::warn_second_parameter_to_va_arg_not_pod)
16911 << TInfo->getType()
16912 << TInfo->getTypeLoc().getSourceRange();
16913 }
16914
16915 if (TInfo->getType()->isArrayType()) {
16916 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
16917 PDiag(diag::warn_second_parameter_to_va_arg_array)
16918 << TInfo->getType()
16919 << TInfo->getTypeLoc().getSourceRange());
16920 }
16921
16922 // Check for va_arg where arguments of the given type will be promoted
16923 // (i.e. this va_arg is guaranteed to have undefined behavior).
16924 QualType PromoteType;
16925 if (Context.isPromotableIntegerType(T: TInfo->getType())) {
16926 PromoteType = Context.getPromotedIntegerType(PromotableType: TInfo->getType());
16927 // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
16928 // and C23 7.16.1.1p2 says, in part:
16929 // If type is not compatible with the type of the actual next argument
16930 // (as promoted according to the default argument promotions), the
16931 // behavior is undefined, except for the following cases:
16932 // - both types are pointers to qualified or unqualified versions of
16933 // compatible types;
16934 // - one type is compatible with a signed integer type, the other
16935 // type is compatible with the corresponding unsigned integer type,
16936 // and the value is representable in both types;
16937 // - one type is pointer to qualified or unqualified void and the
16938 // other is a pointer to a qualified or unqualified character type;
16939 // - or, the type of the next argument is nullptr_t and type is a
16940 // pointer type that has the same representation and alignment
16941 // requirements as a pointer to a character type.
16942 // Given that type compatibility is the primary requirement (ignoring
16943 // qualifications), you would think we could call typesAreCompatible()
16944 // directly to test this. However, in C++, that checks for *same type*,
16945 // which causes false positives when passing an enumeration type to
16946 // va_arg. Instead, get the underlying type of the enumeration and pass
16947 // that.
16948 QualType UnderlyingType = TInfo->getType();
16949 if (const auto *ET = UnderlyingType->getAs<EnumType>())
16950 UnderlyingType = ET->getDecl()->getIntegerType();
16951 if (Context.typesAreCompatible(T1: PromoteType, T2: UnderlyingType,
16952 /*CompareUnqualified*/ true))
16953 PromoteType = QualType();
16954
16955 // If the types are still not compatible, we need to test whether the
16956 // promoted type and the underlying type are the same except for
16957 // signedness. Ask the AST for the correctly corresponding type and see
16958 // if that's compatible.
16959 if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
16960 PromoteType->isUnsignedIntegerType() !=
16961 UnderlyingType->isUnsignedIntegerType()) {
16962 UnderlyingType =
16963 UnderlyingType->isUnsignedIntegerType()
16964 ? Context.getCorrespondingSignedType(T: UnderlyingType)
16965 : Context.getCorrespondingUnsignedType(T: UnderlyingType);
16966 if (Context.typesAreCompatible(T1: PromoteType, T2: UnderlyingType,
16967 /*CompareUnqualified*/ true))
16968 PromoteType = QualType();
16969 }
16970 }
16971 if (TInfo->getType()->isSpecificBuiltinType(K: BuiltinType::Float))
16972 PromoteType = Context.DoubleTy;
16973 if (!PromoteType.isNull())
16974 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
16975 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
16976 << TInfo->getType()
16977 << PromoteType
16978 << TInfo->getTypeLoc().getSourceRange());
16979 }
16980
16981 QualType T = TInfo->getType().getNonLValueExprType(Context);
16982 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
16983}
16984
16985ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
16986 // The type of __null will be int or long, depending on the size of
16987 // pointers on the target.
16988 QualType Ty;
16989 unsigned pw = Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default);
16990 if (pw == Context.getTargetInfo().getIntWidth())
16991 Ty = Context.IntTy;
16992 else if (pw == Context.getTargetInfo().getLongWidth())
16993 Ty = Context.LongTy;
16994 else if (pw == Context.getTargetInfo().getLongLongWidth())
16995 Ty = Context.LongLongTy;
16996 else {
16997 llvm_unreachable("I don't know size of pointer!");
16998 }
16999
17000 return new (Context) GNUNullExpr(Ty, TokenLoc);
17001}
17002
17003static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
17004 CXXRecordDecl *ImplDecl = nullptr;
17005
17006 // Fetch the std::source_location::__impl decl.
17007 if (NamespaceDecl *Std = S.getStdNamespace()) {
17008 LookupResult ResultSL(S, &S.PP.getIdentifierTable().get(Name: "source_location"),
17009 Loc, Sema::LookupOrdinaryName);
17010 if (S.LookupQualifiedName(ResultSL, Std)) {
17011 if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
17012 LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get(Name: "__impl"),
17013 Loc, Sema::LookupOrdinaryName);
17014 if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
17015 S.LookupQualifiedName(ResultImpl, SLDecl)) {
17016 ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
17017 }
17018 }
17019 }
17020 }
17021
17022 if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
17023 S.Diag(Loc, diag::err_std_source_location_impl_not_found);
17024 return nullptr;
17025 }
17026
17027 // Verify that __impl is a trivial struct type, with no base classes, and with
17028 // only the four expected fields.
17029 if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
17030 ImplDecl->getNumBases() != 0) {
17031 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17032 return nullptr;
17033 }
17034
17035 unsigned Count = 0;
17036 for (FieldDecl *F : ImplDecl->fields()) {
17037 StringRef Name = F->getName();
17038
17039 if (Name == "_M_file_name") {
17040 if (F->getType() !=
17041 S.Context.getPointerType(S.Context.CharTy.withConst()))
17042 break;
17043 Count++;
17044 } else if (Name == "_M_function_name") {
17045 if (F->getType() !=
17046 S.Context.getPointerType(S.Context.CharTy.withConst()))
17047 break;
17048 Count++;
17049 } else if (Name == "_M_line") {
17050 if (!F->getType()->isIntegerType())
17051 break;
17052 Count++;
17053 } else if (Name == "_M_column") {
17054 if (!F->getType()->isIntegerType())
17055 break;
17056 Count++;
17057 } else {
17058 Count = 100; // invalid
17059 break;
17060 }
17061 }
17062 if (Count != 4) {
17063 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17064 return nullptr;
17065 }
17066
17067 return ImplDecl;
17068}
17069
17070ExprResult Sema::ActOnSourceLocExpr(SourceLocIdentKind Kind,
17071 SourceLocation BuiltinLoc,
17072 SourceLocation RPLoc) {
17073 QualType ResultTy;
17074 switch (Kind) {
17075 case SourceLocIdentKind::File:
17076 case SourceLocIdentKind::FileName:
17077 case SourceLocIdentKind::Function:
17078 case SourceLocIdentKind::FuncSig: {
17079 QualType ArrTy = Context.getStringLiteralArrayType(EltTy: Context.CharTy, Length: 0);
17080 ResultTy =
17081 Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
17082 break;
17083 }
17084 case SourceLocIdentKind::Line:
17085 case SourceLocIdentKind::Column:
17086 ResultTy = Context.UnsignedIntTy;
17087 break;
17088 case SourceLocIdentKind::SourceLocStruct:
17089 if (!StdSourceLocationImplDecl) {
17090 StdSourceLocationImplDecl =
17091 LookupStdSourceLocationImpl(S&: *this, Loc: BuiltinLoc);
17092 if (!StdSourceLocationImplDecl)
17093 return ExprError();
17094 }
17095 ResultTy = Context.getPointerType(
17096 T: Context.getRecordType(Decl: StdSourceLocationImplDecl).withConst());
17097 break;
17098 }
17099
17100 return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext: CurContext);
17101}
17102
17103ExprResult Sema::BuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
17104 SourceLocation BuiltinLoc,
17105 SourceLocation RPLoc,
17106 DeclContext *ParentContext) {
17107 return new (Context)
17108 SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
17109}
17110
17111ExprResult Sema::ActOnEmbedExpr(SourceLocation EmbedKeywordLoc,
17112 StringLiteral *BinaryData, StringRef FileName) {
17113 EmbedDataStorage *Data = new (Context) EmbedDataStorage;
17114 Data->BinaryData = BinaryData;
17115 Data->FileName = FileName;
17116 return new (Context)
17117 EmbedExpr(Context, EmbedKeywordLoc, Data, /*NumOfElements=*/0,
17118 Data->getDataElementCount());
17119}
17120
17121static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
17122 const Expr *SrcExpr) {
17123 if (!DstType->isFunctionPointerType() ||
17124 !SrcExpr->getType()->isFunctionType())
17125 return false;
17126
17127 auto *DRE = dyn_cast<DeclRefExpr>(Val: SrcExpr->IgnoreParenImpCasts());
17128 if (!DRE)
17129 return false;
17130
17131 auto *FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl());
17132 if (!FD)
17133 return false;
17134
17135 return !S.checkAddressOfFunctionIsAvailable(Function: FD,
17136 /*Complain=*/true,
17137 Loc: SrcExpr->getBeginLoc());
17138}
17139
17140bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
17141 SourceLocation Loc,
17142 QualType DstType, QualType SrcType,
17143 Expr *SrcExpr, AssignmentAction Action,
17144 bool *Complained) {
17145 if (Complained)
17146 *Complained = false;
17147
17148 // Decode the result (notice that AST's are still created for extensions).
17149 bool CheckInferredResultType = false;
17150 bool isInvalid = false;
17151 unsigned DiagKind = 0;
17152 ConversionFixItGenerator ConvHints;
17153 bool MayHaveConvFixit = false;
17154 bool MayHaveFunctionDiff = false;
17155 const ObjCInterfaceDecl *IFace = nullptr;
17156 const ObjCProtocolDecl *PDecl = nullptr;
17157
17158 switch (ConvTy) {
17159 case AssignConvertType::Compatible:
17160 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
17161 return false;
17162 case AssignConvertType::CompatibleVoidPtrToNonVoidPtr:
17163 // Still a valid conversion, but we may want to diagnose for C++
17164 // compatibility reasons.
17165 DiagKind = diag::warn_compatible_implicit_pointer_conv;
17166 break;
17167 case AssignConvertType::PointerToInt:
17168 if (getLangOpts().CPlusPlus) {
17169 DiagKind = diag::err_typecheck_convert_pointer_int;
17170 isInvalid = true;
17171 } else {
17172 DiagKind = diag::ext_typecheck_convert_pointer_int;
17173 }
17174 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
17175 MayHaveConvFixit = true;
17176 break;
17177 case AssignConvertType::IntToPointer:
17178 if (getLangOpts().CPlusPlus) {
17179 DiagKind = diag::err_typecheck_convert_int_pointer;
17180 isInvalid = true;
17181 } else {
17182 DiagKind = diag::ext_typecheck_convert_int_pointer;
17183 }
17184 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
17185 MayHaveConvFixit = true;
17186 break;
17187 case AssignConvertType::IncompatibleFunctionPointerStrict:
17188 DiagKind =
17189 diag::warn_typecheck_convert_incompatible_function_pointer_strict;
17190 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
17191 MayHaveConvFixit = true;
17192 break;
17193 case AssignConvertType::IncompatibleFunctionPointer:
17194 if (getLangOpts().CPlusPlus) {
17195 DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
17196 isInvalid = true;
17197 } else {
17198 DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
17199 }
17200 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
17201 MayHaveConvFixit = true;
17202 break;
17203 case AssignConvertType::IncompatiblePointer:
17204 if (Action == AssignmentAction::Passing_CFAudited) {
17205 DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
17206 } else if (getLangOpts().CPlusPlus) {
17207 DiagKind = diag::err_typecheck_convert_incompatible_pointer;
17208 isInvalid = true;
17209 } else {
17210 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
17211 }
17212 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
17213 SrcType->isObjCObjectPointerType();
17214 if (CheckInferredResultType) {
17215 SrcType = SrcType.getUnqualifiedType();
17216 DstType = DstType.getUnqualifiedType();
17217 } else {
17218 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
17219 }
17220 MayHaveConvFixit = true;
17221 break;
17222 case AssignConvertType::IncompatiblePointerSign:
17223 if (getLangOpts().CPlusPlus) {
17224 DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
17225 isInvalid = true;
17226 } else {
17227 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
17228 }
17229 break;
17230 case AssignConvertType::FunctionVoidPointer:
17231 if (getLangOpts().CPlusPlus) {
17232 DiagKind = diag::err_typecheck_convert_pointer_void_func;
17233 isInvalid = true;
17234 } else {
17235 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
17236 }
17237 break;
17238 case AssignConvertType::IncompatiblePointerDiscardsQualifiers: {
17239 // Perform array-to-pointer decay if necessary.
17240 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(T: SrcType);
17241
17242 isInvalid = true;
17243
17244 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
17245 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
17246 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
17247 DiagKind = diag::err_typecheck_incompatible_address_space;
17248 break;
17249 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
17250 DiagKind = diag::err_typecheck_incompatible_ownership;
17251 break;
17252 } else if (!lhq.getPointerAuth().isEquivalent(Other: rhq.getPointerAuth())) {
17253 DiagKind = diag::err_typecheck_incompatible_ptrauth;
17254 break;
17255 }
17256
17257 llvm_unreachable("unknown error case for discarding qualifiers!");
17258 // fallthrough
17259 }
17260 case AssignConvertType::CompatiblePointerDiscardsQualifiers:
17261 // If the qualifiers lost were because we were applying the
17262 // (deprecated) C++ conversion from a string literal to a char*
17263 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
17264 // Ideally, this check would be performed in
17265 // checkPointerTypesForAssignment. However, that would require a
17266 // bit of refactoring (so that the second argument is an
17267 // expression, rather than a type), which should be done as part
17268 // of a larger effort to fix checkPointerTypesForAssignment for
17269 // C++ semantics.
17270 if (getLangOpts().CPlusPlus &&
17271 IsStringLiteralToNonConstPointerConversion(From: SrcExpr, ToType: DstType))
17272 return false;
17273 if (getLangOpts().CPlusPlus) {
17274 DiagKind = diag::err_typecheck_convert_discards_qualifiers;
17275 isInvalid = true;
17276 } else {
17277 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
17278 }
17279
17280 break;
17281 case AssignConvertType::IncompatibleNestedPointerQualifiers:
17282 if (getLangOpts().CPlusPlus) {
17283 isInvalid = true;
17284 DiagKind = diag::err_nested_pointer_qualifier_mismatch;
17285 } else {
17286 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
17287 }
17288 break;
17289 case AssignConvertType::IncompatibleNestedPointerAddressSpaceMismatch:
17290 DiagKind = diag::err_typecheck_incompatible_nested_address_space;
17291 isInvalid = true;
17292 break;
17293 case AssignConvertType::IntToBlockPointer:
17294 DiagKind = diag::err_int_to_block_pointer;
17295 isInvalid = true;
17296 break;
17297 case AssignConvertType::IncompatibleBlockPointer:
17298 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
17299 isInvalid = true;
17300 break;
17301 case AssignConvertType::IncompatibleObjCQualifiedId: {
17302 if (SrcType->isObjCQualifiedIdType()) {
17303 const ObjCObjectPointerType *srcOPT =
17304 SrcType->castAs<ObjCObjectPointerType>();
17305 for (auto *srcProto : srcOPT->quals()) {
17306 PDecl = srcProto;
17307 break;
17308 }
17309 if (const ObjCInterfaceType *IFaceT =
17310 DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17311 IFace = IFaceT->getDecl();
17312 }
17313 else if (DstType->isObjCQualifiedIdType()) {
17314 const ObjCObjectPointerType *dstOPT =
17315 DstType->castAs<ObjCObjectPointerType>();
17316 for (auto *dstProto : dstOPT->quals()) {
17317 PDecl = dstProto;
17318 break;
17319 }
17320 if (const ObjCInterfaceType *IFaceT =
17321 SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17322 IFace = IFaceT->getDecl();
17323 }
17324 if (getLangOpts().CPlusPlus) {
17325 DiagKind = diag::err_incompatible_qualified_id;
17326 isInvalid = true;
17327 } else {
17328 DiagKind = diag::warn_incompatible_qualified_id;
17329 }
17330 break;
17331 }
17332 case AssignConvertType::IncompatibleVectors:
17333 if (getLangOpts().CPlusPlus) {
17334 DiagKind = diag::err_incompatible_vectors;
17335 isInvalid = true;
17336 } else {
17337 DiagKind = diag::warn_incompatible_vectors;
17338 }
17339 break;
17340 case AssignConvertType::IncompatibleObjCWeakRef:
17341 DiagKind = diag::err_arc_weak_unavailable_assign;
17342 isInvalid = true;
17343 break;
17344 case AssignConvertType::Incompatible:
17345 if (maybeDiagnoseAssignmentToFunction(S&: *this, DstType, SrcExpr)) {
17346 if (Complained)
17347 *Complained = true;
17348 return true;
17349 }
17350
17351 DiagKind = diag::err_typecheck_convert_incompatible;
17352 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
17353 MayHaveConvFixit = true;
17354 isInvalid = true;
17355 MayHaveFunctionDiff = true;
17356 break;
17357 }
17358
17359 QualType FirstType, SecondType;
17360 switch (Action) {
17361 case AssignmentAction::Assigning:
17362 case AssignmentAction::Initializing:
17363 // The destination type comes first.
17364 FirstType = DstType;
17365 SecondType = SrcType;
17366 break;
17367
17368 case AssignmentAction::Returning:
17369 case AssignmentAction::Passing:
17370 case AssignmentAction::Passing_CFAudited:
17371 case AssignmentAction::Converting:
17372 case AssignmentAction::Sending:
17373 case AssignmentAction::Casting:
17374 // The source type comes first.
17375 FirstType = SrcType;
17376 SecondType = DstType;
17377 break;
17378 }
17379
17380 PartialDiagnostic FDiag = PDiag(DiagKind);
17381 AssignmentAction ActionForDiag = Action;
17382 if (Action == AssignmentAction::Passing_CFAudited)
17383 ActionForDiag = AssignmentAction::Passing;
17384
17385 FDiag << FirstType << SecondType << ActionForDiag
17386 << SrcExpr->getSourceRange();
17387
17388 if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17389 DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17390 auto isPlainChar = [](const clang::Type *Type) {
17391 return Type->isSpecificBuiltinType(K: BuiltinType::Char_S) ||
17392 Type->isSpecificBuiltinType(K: BuiltinType::Char_U);
17393 };
17394 FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17395 isPlainChar(SecondType->getPointeeOrArrayElementType()));
17396 }
17397
17398 // If we can fix the conversion, suggest the FixIts.
17399 if (!ConvHints.isNull()) {
17400 for (FixItHint &H : ConvHints.Hints)
17401 FDiag << H;
17402 }
17403
17404 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17405
17406 if (MayHaveFunctionDiff)
17407 HandleFunctionTypeMismatch(PDiag&: FDiag, FromType: SecondType, ToType: FirstType);
17408
17409 Diag(Loc, FDiag);
17410 if ((DiagKind == diag::warn_incompatible_qualified_id ||
17411 DiagKind == diag::err_incompatible_qualified_id) &&
17412 PDecl && IFace && !IFace->hasDefinition())
17413 Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17414 << IFace << PDecl;
17415
17416 if (SecondType == Context.OverloadTy)
17417 NoteAllOverloadCandidates(OverloadExpr::find(E: SrcExpr).Expression,
17418 FirstType, /*TakingAddress=*/true);
17419
17420 if (CheckInferredResultType)
17421 ObjC().EmitRelatedResultTypeNote(E: SrcExpr);
17422
17423 if (Action == AssignmentAction::Returning &&
17424 ConvTy == AssignConvertType::IncompatiblePointer)
17425 ObjC().EmitRelatedResultTypeNoteForReturn(destType: DstType);
17426
17427 if (Complained)
17428 *Complained = true;
17429 return isInvalid;
17430}
17431
17432ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17433 llvm::APSInt *Result,
17434 AllowFoldKind CanFold) {
17435 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17436 public:
17437 SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17438 QualType T) override {
17439 return S.Diag(Loc, diag::err_ice_not_integral)
17440 << T << S.LangOpts.CPlusPlus;
17441 }
17442 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17443 return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17444 }
17445 } Diagnoser;
17446
17447 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17448}
17449
17450ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17451 llvm::APSInt *Result,
17452 unsigned DiagID,
17453 AllowFoldKind CanFold) {
17454 class IDDiagnoser : public VerifyICEDiagnoser {
17455 unsigned DiagID;
17456
17457 public:
17458 IDDiagnoser(unsigned DiagID)
17459 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17460
17461 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17462 return S.Diag(Loc, DiagID);
17463 }
17464 } Diagnoser(DiagID);
17465
17466 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17467}
17468
17469Sema::SemaDiagnosticBuilder
17470Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17471 QualType T) {
17472 return diagnoseNotICE(S, Loc);
17473}
17474
17475Sema::SemaDiagnosticBuilder
17476Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17477 return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17478}
17479
17480ExprResult
17481Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17482 VerifyICEDiagnoser &Diagnoser,
17483 AllowFoldKind CanFold) {
17484 SourceLocation DiagLoc = E->getBeginLoc();
17485
17486 if (getLangOpts().CPlusPlus11) {
17487 // C++11 [expr.const]p5:
17488 // If an expression of literal class type is used in a context where an
17489 // integral constant expression is required, then that class type shall
17490 // have a single non-explicit conversion function to an integral or
17491 // unscoped enumeration type
17492 ExprResult Converted;
17493 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
17494 VerifyICEDiagnoser &BaseDiagnoser;
17495 public:
17496 CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
17497 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
17498 BaseDiagnoser.Suppress, true),
17499 BaseDiagnoser(BaseDiagnoser) {}
17500
17501 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
17502 QualType T) override {
17503 return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
17504 }
17505
17506 SemaDiagnosticBuilder diagnoseIncomplete(
17507 Sema &S, SourceLocation Loc, QualType T) override {
17508 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
17509 }
17510
17511 SemaDiagnosticBuilder diagnoseExplicitConv(
17512 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17513 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
17514 }
17515
17516 SemaDiagnosticBuilder noteExplicitConv(
17517 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17518 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17519 << ConvTy->isEnumeralType() << ConvTy;
17520 }
17521
17522 SemaDiagnosticBuilder diagnoseAmbiguous(
17523 Sema &S, SourceLocation Loc, QualType T) override {
17524 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
17525 }
17526
17527 SemaDiagnosticBuilder noteAmbiguous(
17528 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17529 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17530 << ConvTy->isEnumeralType() << ConvTy;
17531 }
17532
17533 SemaDiagnosticBuilder diagnoseConversion(
17534 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17535 llvm_unreachable("conversion functions are permitted");
17536 }
17537 } ConvertDiagnoser(Diagnoser);
17538
17539 Converted = PerformContextualImplicitConversion(Loc: DiagLoc, FromE: E,
17540 Converter&: ConvertDiagnoser);
17541 if (Converted.isInvalid())
17542 return Converted;
17543 E = Converted.get();
17544 // The 'explicit' case causes us to get a RecoveryExpr. Give up here so we
17545 // don't try to evaluate it later. We also don't want to return the
17546 // RecoveryExpr here, as it results in this call succeeding, thus callers of
17547 // this function will attempt to use 'Value'.
17548 if (isa<RecoveryExpr>(Val: E))
17549 return ExprError();
17550 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
17551 return ExprError();
17552 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17553 // An ICE must be of integral or unscoped enumeration type.
17554 if (!Diagnoser.Suppress)
17555 Diagnoser.diagnoseNotICEType(S&: *this, Loc: DiagLoc, T: E->getType())
17556 << E->getSourceRange();
17557 return ExprError();
17558 }
17559
17560 ExprResult RValueExpr = DefaultLvalueConversion(E);
17561 if (RValueExpr.isInvalid())
17562 return ExprError();
17563
17564 E = RValueExpr.get();
17565
17566 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
17567 // in the non-ICE case.
17568 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Ctx: Context)) {
17569 SmallVector<PartialDiagnosticAt, 8> Notes;
17570 if (Result)
17571 *Result = E->EvaluateKnownConstIntCheckOverflow(Ctx: Context, Diag: &Notes);
17572 if (!isa<ConstantExpr>(Val: E))
17573 E = Result ? ConstantExpr::Create(Context, E, Result: APValue(*Result))
17574 : ConstantExpr::Create(Context, E);
17575
17576 if (Notes.empty())
17577 return E;
17578
17579 // If our only note is the usual "invalid subexpression" note, just point
17580 // the caret at its location rather than producing an essentially
17581 // redundant note.
17582 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17583 diag::note_invalid_subexpr_in_const_expr) {
17584 DiagLoc = Notes[0].first;
17585 Notes.clear();
17586 }
17587
17588 if (getLangOpts().CPlusPlus) {
17589 if (!Diagnoser.Suppress) {
17590 Diagnoser.diagnoseNotICE(S&: *this, Loc: DiagLoc) << E->getSourceRange();
17591 for (const PartialDiagnosticAt &Note : Notes)
17592 Diag(Note.first, Note.second);
17593 }
17594 return ExprError();
17595 }
17596
17597 Diagnoser.diagnoseFold(S&: *this, Loc: DiagLoc) << E->getSourceRange();
17598 for (const PartialDiagnosticAt &Note : Notes)
17599 Diag(Note.first, Note.second);
17600
17601 return E;
17602 }
17603
17604 Expr::EvalResult EvalResult;
17605 SmallVector<PartialDiagnosticAt, 8> Notes;
17606 EvalResult.Diag = &Notes;
17607
17608 // Try to evaluate the expression, and produce diagnostics explaining why it's
17609 // not a constant expression as a side-effect.
17610 bool Folded =
17611 E->EvaluateAsRValue(Result&: EvalResult, Ctx: Context, /*isConstantContext*/ InConstantContext: true) &&
17612 EvalResult.Val.isInt() && !EvalResult.HasSideEffects &&
17613 (!getLangOpts().CPlusPlus || !EvalResult.HasUndefinedBehavior);
17614
17615 if (!isa<ConstantExpr>(Val: E))
17616 E = ConstantExpr::Create(Context, E, Result: EvalResult.Val);
17617
17618 // In C++11, we can rely on diagnostics being produced for any expression
17619 // which is not a constant expression. If no diagnostics were produced, then
17620 // this is a constant expression.
17621 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
17622 if (Result)
17623 *Result = EvalResult.Val.getInt();
17624 return E;
17625 }
17626
17627 // If our only note is the usual "invalid subexpression" note, just point
17628 // the caret at its location rather than producing an essentially
17629 // redundant note.
17630 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17631 diag::note_invalid_subexpr_in_const_expr) {
17632 DiagLoc = Notes[0].first;
17633 Notes.clear();
17634 }
17635
17636 if (!Folded || CanFold == AllowFoldKind::No) {
17637 if (!Diagnoser.Suppress) {
17638 Diagnoser.diagnoseNotICE(S&: *this, Loc: DiagLoc) << E->getSourceRange();
17639 for (const PartialDiagnosticAt &Note : Notes)
17640 Diag(Note.first, Note.second);
17641 }
17642
17643 return ExprError();
17644 }
17645
17646 Diagnoser.diagnoseFold(S&: *this, Loc: DiagLoc) << E->getSourceRange();
17647 for (const PartialDiagnosticAt &Note : Notes)
17648 Diag(Note.first, Note.second);
17649
17650 if (Result)
17651 *Result = EvalResult.Val.getInt();
17652 return E;
17653}
17654
17655namespace {
17656 // Handle the case where we conclude a expression which we speculatively
17657 // considered to be unevaluated is actually evaluated.
17658 class TransformToPE : public TreeTransform<TransformToPE> {
17659 typedef TreeTransform<TransformToPE> BaseTransform;
17660
17661 public:
17662 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
17663
17664 // Make sure we redo semantic analysis
17665 bool AlwaysRebuild() { return true; }
17666 bool ReplacingOriginal() { return true; }
17667
17668 // We need to special-case DeclRefExprs referring to FieldDecls which
17669 // are not part of a member pointer formation; normal TreeTransforming
17670 // doesn't catch this case because of the way we represent them in the AST.
17671 // FIXME: This is a bit ugly; is it really the best way to handle this
17672 // case?
17673 //
17674 // Error on DeclRefExprs referring to FieldDecls.
17675 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17676 if (isa<FieldDecl>(E->getDecl()) &&
17677 !SemaRef.isUnevaluatedContext())
17678 return SemaRef.Diag(E->getLocation(),
17679 diag::err_invalid_non_static_member_use)
17680 << E->getDecl() << E->getSourceRange();
17681
17682 return BaseTransform::TransformDeclRefExpr(E);
17683 }
17684
17685 // Exception: filter out member pointer formation
17686 ExprResult TransformUnaryOperator(UnaryOperator *E) {
17687 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
17688 return E;
17689
17690 return BaseTransform::TransformUnaryOperator(E);
17691 }
17692
17693 // The body of a lambda-expression is in a separate expression evaluation
17694 // context so never needs to be transformed.
17695 // FIXME: Ideally we wouldn't transform the closure type either, and would
17696 // just recreate the capture expressions and lambda expression.
17697 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
17698 return SkipLambdaBody(E, Body);
17699 }
17700 };
17701}
17702
17703ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
17704 assert(isUnevaluatedContext() &&
17705 "Should only transform unevaluated expressions");
17706 ExprEvalContexts.back().Context =
17707 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
17708 if (isUnevaluatedContext())
17709 return E;
17710 return TransformToPE(*this).TransformExpr(E);
17711}
17712
17713TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
17714 assert(isUnevaluatedContext() &&
17715 "Should only transform unevaluated expressions");
17716 ExprEvalContexts.back().Context = parentEvaluationContext().Context;
17717 if (isUnevaluatedContext())
17718 return TInfo;
17719 return TransformToPE(*this).TransformType(TInfo);
17720}
17721
17722void
17723Sema::PushExpressionEvaluationContext(
17724 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
17725 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17726 ExprEvalContexts.emplace_back(Args&: NewContext, Args: ExprCleanupObjects.size(), Args&: Cleanup,
17727 Args&: LambdaContextDecl, Args&: ExprContext);
17728
17729 // Discarded statements and immediate contexts nested in other
17730 // discarded statements or immediate context are themselves
17731 // a discarded statement or an immediate context, respectively.
17732 ExprEvalContexts.back().InDiscardedStatement =
17733 parentEvaluationContext().isDiscardedStatementContext();
17734
17735 // C++23 [expr.const]/p15
17736 // An expression or conversion is in an immediate function context if [...]
17737 // it is a subexpression of a manifestly constant-evaluated expression or
17738 // conversion.
17739 const auto &Prev = parentEvaluationContext();
17740 ExprEvalContexts.back().InImmediateFunctionContext =
17741 Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated();
17742
17743 ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
17744 Prev.InImmediateEscalatingFunctionContext;
17745
17746 Cleanup.reset();
17747 if (!MaybeODRUseExprs.empty())
17748 std::swap(LHS&: MaybeODRUseExprs, RHS&: ExprEvalContexts.back().SavedMaybeODRUseExprs);
17749}
17750
17751void
17752Sema::PushExpressionEvaluationContext(
17753 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
17754 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17755 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
17756 PushExpressionEvaluationContext(NewContext, LambdaContextDecl: ClosureContextDecl, ExprContext);
17757}
17758
17759void Sema::PushExpressionEvaluationContextForFunction(
17760 ExpressionEvaluationContext NewContext, FunctionDecl *FD) {
17761 // [expr.const]/p14.1
17762 // An expression or conversion is in an immediate function context if it is
17763 // potentially evaluated and either: its innermost enclosing non-block scope
17764 // is a function parameter scope of an immediate function.
17765 PushExpressionEvaluationContext(
17766 NewContext: FD && FD->isConsteval()
17767 ? ExpressionEvaluationContext::ImmediateFunctionContext
17768 : NewContext);
17769 const Sema::ExpressionEvaluationContextRecord &Parent =
17770 parentEvaluationContext();
17771 Sema::ExpressionEvaluationContextRecord &Current = currentEvaluationContext();
17772
17773 Current.InDiscardedStatement = false;
17774
17775 if (FD) {
17776
17777 // Each ExpressionEvaluationContextRecord also keeps track of whether the
17778 // context is nested in an immediate function context, so smaller contexts
17779 // that appear inside immediate functions (like variable initializers) are
17780 // considered to be inside an immediate function context even though by
17781 // themselves they are not immediate function contexts. But when a new
17782 // function is entered, we need to reset this tracking, since the entered
17783 // function might be not an immediate function.
17784
17785 Current.InImmediateEscalatingFunctionContext =
17786 getLangOpts().CPlusPlus20 && FD->isImmediateEscalating();
17787
17788 if (isLambdaMethod(FD))
17789 Current.InImmediateFunctionContext =
17790 FD->isConsteval() ||
17791 (isLambdaMethod(FD) && (Parent.isConstantEvaluated() ||
17792 Parent.isImmediateFunctionContext()));
17793 else
17794 Current.InImmediateFunctionContext = FD->isConsteval();
17795 }
17796}
17797
17798namespace {
17799
17800const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
17801 PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
17802 if (const auto *E = dyn_cast<UnaryOperator>(Val: PossibleDeref)) {
17803 if (E->getOpcode() == UO_Deref)
17804 return CheckPossibleDeref(S, PossibleDeref: E->getSubExpr());
17805 } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(Val: PossibleDeref)) {
17806 return CheckPossibleDeref(S, PossibleDeref: E->getBase());
17807 } else if (const auto *E = dyn_cast<MemberExpr>(Val: PossibleDeref)) {
17808 return CheckPossibleDeref(S, PossibleDeref: E->getBase());
17809 } else if (const auto E = dyn_cast<DeclRefExpr>(Val: PossibleDeref)) {
17810 QualType Inner;
17811 QualType Ty = E->getType();
17812 if (const auto *Ptr = Ty->getAs<PointerType>())
17813 Inner = Ptr->getPointeeType();
17814 else if (const auto *Arr = S.Context.getAsArrayType(Ty))
17815 Inner = Arr->getElementType();
17816 else
17817 return nullptr;
17818
17819 if (Inner->hasAttr(attr::NoDeref))
17820 return E;
17821 }
17822 return nullptr;
17823}
17824
17825} // namespace
17826
17827void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
17828 for (const Expr *E : Rec.PossibleDerefs) {
17829 const DeclRefExpr *DeclRef = CheckPossibleDeref(S&: *this, PossibleDeref: E);
17830 if (DeclRef) {
17831 const ValueDecl *Decl = DeclRef->getDecl();
17832 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
17833 << Decl->getName() << E->getSourceRange();
17834 Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
17835 } else {
17836 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
17837 << E->getSourceRange();
17838 }
17839 }
17840 Rec.PossibleDerefs.clear();
17841}
17842
17843void Sema::CheckUnusedVolatileAssignment(Expr *E) {
17844 if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
17845 return;
17846
17847 // Note: ignoring parens here is not justified by the standard rules, but
17848 // ignoring parentheses seems like a more reasonable approach, and this only
17849 // drives a deprecation warning so doesn't affect conformance.
17850 if (auto *BO = dyn_cast<BinaryOperator>(Val: E->IgnoreParenImpCasts())) {
17851 if (BO->getOpcode() == BO_Assign) {
17852 auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
17853 llvm::erase(C&: LHSs, V: BO->getLHS());
17854 }
17855 }
17856}
17857
17858void Sema::MarkExpressionAsImmediateEscalating(Expr *E) {
17859 assert(getLangOpts().CPlusPlus20 &&
17860 ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17861 "Cannot mark an immediate escalating expression outside of an "
17862 "immediate escalating context");
17863 if (auto *Call = dyn_cast<CallExpr>(Val: E->IgnoreImplicit());
17864 Call && Call->getCallee()) {
17865 if (auto *DeclRef =
17866 dyn_cast<DeclRefExpr>(Val: Call->getCallee()->IgnoreImplicit()))
17867 DeclRef->setIsImmediateEscalating(true);
17868 } else if (auto *Ctr = dyn_cast<CXXConstructExpr>(Val: E->IgnoreImplicit())) {
17869 Ctr->setIsImmediateEscalating(true);
17870 } else if (auto *DeclRef = dyn_cast<DeclRefExpr>(Val: E->IgnoreImplicit())) {
17871 DeclRef->setIsImmediateEscalating(true);
17872 } else {
17873 assert(false && "expected an immediately escalating expression");
17874 }
17875 if (FunctionScopeInfo *FI = getCurFunction())
17876 FI->FoundImmediateEscalatingExpression = true;
17877}
17878
17879ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
17880 if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
17881 !Decl->isImmediateFunction() || isAlwaysConstantEvaluatedContext() ||
17882 isCheckingDefaultArgumentOrInitializer() ||
17883 RebuildingImmediateInvocation || isImmediateFunctionContext())
17884 return E;
17885
17886 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
17887 /// It's OK if this fails; we'll also remove this in
17888 /// HandleImmediateInvocations, but catching it here allows us to avoid
17889 /// walking the AST looking for it in simple cases.
17890 if (auto *Call = dyn_cast<CallExpr>(Val: E.get()->IgnoreImplicit()))
17891 if (auto *DeclRef =
17892 dyn_cast<DeclRefExpr>(Val: Call->getCallee()->IgnoreImplicit()))
17893 ExprEvalContexts.back().ReferenceToConsteval.erase(Ptr: DeclRef);
17894
17895 // C++23 [expr.const]/p16
17896 // An expression or conversion is immediate-escalating if it is not initially
17897 // in an immediate function context and it is [...] an immediate invocation
17898 // that is not a constant expression and is not a subexpression of an
17899 // immediate invocation.
17900 APValue Cached;
17901 auto CheckConstantExpressionAndKeepResult = [&]() {
17902 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17903 Expr::EvalResult Eval;
17904 Eval.Diag = &Notes;
17905 bool Res = E.get()->EvaluateAsConstantExpr(
17906 Result&: Eval, Ctx: getASTContext(), Kind: ConstantExprKind::ImmediateInvocation);
17907 if (Res && Notes.empty()) {
17908 Cached = std::move(Eval.Val);
17909 return true;
17910 }
17911 return false;
17912 };
17913
17914 if (!E.get()->isValueDependent() &&
17915 ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17916 !CheckConstantExpressionAndKeepResult()) {
17917 MarkExpressionAsImmediateEscalating(E: E.get());
17918 return E;
17919 }
17920
17921 if (Cleanup.exprNeedsCleanups()) {
17922 // Since an immediate invocation is a full expression itself - it requires
17923 // an additional ExprWithCleanups node, but it can participate to a bigger
17924 // full expression which actually requires cleanups to be run after so
17925 // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
17926 // may discard cleanups for outer expression too early.
17927
17928 // Note that ExprWithCleanups created here must always have empty cleanup
17929 // objects:
17930 // - compound literals do not create cleanup objects in C++ and immediate
17931 // invocations are C++-only.
17932 // - blocks are not allowed inside constant expressions and compiler will
17933 // issue an error if they appear there.
17934 //
17935 // Hence, in correct code any cleanup objects created inside current
17936 // evaluation context must be outside the immediate invocation.
17937 E = ExprWithCleanups::Create(C: getASTContext(), subexpr: E.get(),
17938 CleanupsHaveSideEffects: Cleanup.cleanupsHaveSideEffects(), objects: {});
17939 }
17940
17941 ConstantExpr *Res = ConstantExpr::Create(
17942 Context: getASTContext(), E: E.get(),
17943 Storage: ConstantExpr::getStorageKind(T: Decl->getReturnType().getTypePtr(),
17944 Context: getASTContext()),
17945 /*IsImmediateInvocation*/ true);
17946 if (Cached.hasValue())
17947 Res->MoveIntoResult(Value&: Cached, Context: getASTContext());
17948 /// Value-dependent constant expressions should not be immediately
17949 /// evaluated until they are instantiated.
17950 if (!Res->isValueDependent())
17951 ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Args&: Res, Args: 0);
17952 return Res;
17953}
17954
17955static void EvaluateAndDiagnoseImmediateInvocation(
17956 Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
17957 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17958 Expr::EvalResult Eval;
17959 Eval.Diag = &Notes;
17960 ConstantExpr *CE = Candidate.getPointer();
17961 bool Result = CE->EvaluateAsConstantExpr(
17962 Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
17963 if (!Result || !Notes.empty()) {
17964 SemaRef.FailedImmediateInvocations.insert(Ptr: CE);
17965 Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
17966 if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
17967 InnerExpr = FunctionalCast->getSubExpr()->IgnoreImplicit();
17968 FunctionDecl *FD = nullptr;
17969 if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
17970 FD = cast<FunctionDecl>(Call->getCalleeDecl());
17971 else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
17972 FD = Call->getConstructor();
17973 else if (auto *Cast = dyn_cast<CastExpr>(InnerExpr))
17974 FD = dyn_cast_or_null<FunctionDecl>(Cast->getConversionFunction());
17975
17976 assert(FD && FD->isImmediateFunction() &&
17977 "could not find an immediate function in this expression");
17978 if (FD->isInvalidDecl())
17979 return;
17980 SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call)
17981 << FD << FD->isConsteval();
17982 if (auto Context =
17983 SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17984 SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
17985 << Context->Decl;
17986 SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
17987 }
17988 if (!FD->isConsteval())
17989 SemaRef.DiagnoseImmediateEscalatingReason(FD);
17990 for (auto &Note : Notes)
17991 SemaRef.Diag(Note.first, Note.second);
17992 return;
17993 }
17994 CE->MoveIntoResult(Value&: Eval.Val, Context: SemaRef.getASTContext());
17995}
17996
17997static void RemoveNestedImmediateInvocation(
17998 Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
17999 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
18000 struct ComplexRemove : TreeTransform<ComplexRemove> {
18001 using Base = TreeTransform<ComplexRemove>;
18002 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18003 SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
18004 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
18005 CurrentII;
18006 ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
18007 SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
18008 SmallVector<Sema::ImmediateInvocationCandidate,
18009 4>::reverse_iterator Current)
18010 : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
18011 void RemoveImmediateInvocation(ConstantExpr* E) {
18012 auto It = std::find_if(first: CurrentII, last: IISet.rend(),
18013 pred: [E](Sema::ImmediateInvocationCandidate Elem) {
18014 return Elem.getPointer() == E;
18015 });
18016 // It is possible that some subexpression of the current immediate
18017 // invocation was handled from another expression evaluation context. Do
18018 // not handle the current immediate invocation if some of its
18019 // subexpressions failed before.
18020 if (It == IISet.rend()) {
18021 if (SemaRef.FailedImmediateInvocations.contains(Ptr: E))
18022 CurrentII->setInt(1);
18023 } else {
18024 It->setInt(1); // Mark as deleted
18025 }
18026 }
18027 ExprResult TransformConstantExpr(ConstantExpr *E) {
18028 if (!E->isImmediateInvocation())
18029 return Base::TransformConstantExpr(E);
18030 RemoveImmediateInvocation(E);
18031 return Base::TransformExpr(E->getSubExpr());
18032 }
18033 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
18034 /// we need to remove its DeclRefExpr from the DRSet.
18035 ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
18036 DRSet.erase(Ptr: cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
18037 return Base::TransformCXXOperatorCallExpr(E);
18038 }
18039 /// Base::TransformUserDefinedLiteral doesn't preserve the
18040 /// UserDefinedLiteral node.
18041 ExprResult TransformUserDefinedLiteral(UserDefinedLiteral *E) { return E; }
18042 /// Base::TransformInitializer skips ConstantExpr so we need to visit them
18043 /// here.
18044 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
18045 if (!Init)
18046 return Init;
18047
18048 // We cannot use IgnoreImpCasts because we need to preserve
18049 // full expressions.
18050 while (true) {
18051 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Init))
18052 Init = ICE->getSubExpr();
18053 else if (auto *ICE = dyn_cast<MaterializeTemporaryExpr>(Val: Init))
18054 Init = ICE->getSubExpr();
18055 else
18056 break;
18057 }
18058 /// ConstantExprs are the first layer of implicit node to be removed so if
18059 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
18060 if (auto *CE = dyn_cast<ConstantExpr>(Val: Init);
18061 CE && CE->isImmediateInvocation())
18062 RemoveImmediateInvocation(E: CE);
18063 return Base::TransformInitializer(Init, NotCopyInit);
18064 }
18065 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
18066 DRSet.erase(Ptr: E);
18067 return E;
18068 }
18069 ExprResult TransformLambdaExpr(LambdaExpr *E) {
18070 // Do not rebuild lambdas to avoid creating a new type.
18071 // Lambdas have already been processed inside their eval contexts.
18072 return E;
18073 }
18074 bool AlwaysRebuild() { return false; }
18075 bool ReplacingOriginal() { return true; }
18076 bool AllowSkippingCXXConstructExpr() {
18077 bool Res = AllowSkippingFirstCXXConstructExpr;
18078 AllowSkippingFirstCXXConstructExpr = true;
18079 return Res;
18080 }
18081 bool AllowSkippingFirstCXXConstructExpr = true;
18082 } Transformer(SemaRef, Rec.ReferenceToConsteval,
18083 Rec.ImmediateInvocationCandidates, It);
18084
18085 /// CXXConstructExpr with a single argument are getting skipped by
18086 /// TreeTransform in some situtation because they could be implicit. This
18087 /// can only occur for the top-level CXXConstructExpr because it is used
18088 /// nowhere in the expression being transformed therefore will not be rebuilt.
18089 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
18090 /// skipping the first CXXConstructExpr.
18091 if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
18092 Transformer.AllowSkippingFirstCXXConstructExpr = false;
18093
18094 ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
18095 // The result may not be usable in case of previous compilation errors.
18096 // In this case evaluation of the expression may result in crash so just
18097 // don't do anything further with the result.
18098 if (Res.isUsable()) {
18099 Res = SemaRef.MaybeCreateExprWithCleanups(SubExpr: Res);
18100 It->getPointer()->setSubExpr(Res.get());
18101 }
18102}
18103
18104static void
18105HandleImmediateInvocations(Sema &SemaRef,
18106 Sema::ExpressionEvaluationContextRecord &Rec) {
18107 if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
18108 Rec.ReferenceToConsteval.size() == 0) ||
18109 Rec.isImmediateFunctionContext() || SemaRef.RebuildingImmediateInvocation)
18110 return;
18111
18112 /// When we have more than 1 ImmediateInvocationCandidates or previously
18113 /// failed immediate invocations, we need to check for nested
18114 /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
18115 /// Otherwise we only need to remove ReferenceToConsteval in the immediate
18116 /// invocation.
18117 if (Rec.ImmediateInvocationCandidates.size() > 1 ||
18118 !SemaRef.FailedImmediateInvocations.empty()) {
18119
18120 /// Prevent sema calls during the tree transform from adding pointers that
18121 /// are already in the sets.
18122 llvm::SaveAndRestore DisableIITracking(
18123 SemaRef.RebuildingImmediateInvocation, true);
18124
18125 /// Prevent diagnostic during tree transfrom as they are duplicates
18126 Sema::TentativeAnalysisScope DisableDiag(SemaRef);
18127
18128 for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
18129 It != Rec.ImmediateInvocationCandidates.rend(); It++)
18130 if (!It->getInt())
18131 RemoveNestedImmediateInvocation(SemaRef, Rec, It);
18132 } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
18133 Rec.ReferenceToConsteval.size()) {
18134 struct SimpleRemove : DynamicRecursiveASTVisitor {
18135 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18136 SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
18137 bool VisitDeclRefExpr(DeclRefExpr *E) override {
18138 DRSet.erase(Ptr: E);
18139 return DRSet.size();
18140 }
18141 } Visitor(Rec.ReferenceToConsteval);
18142 Visitor.TraverseStmt(
18143 Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
18144 }
18145 for (auto CE : Rec.ImmediateInvocationCandidates)
18146 if (!CE.getInt())
18147 EvaluateAndDiagnoseImmediateInvocation(SemaRef, Candidate: CE);
18148 for (auto *DR : Rec.ReferenceToConsteval) {
18149 // If the expression is immediate escalating, it is not an error;
18150 // The outer context itself becomes immediate and further errors,
18151 // if any, will be handled by DiagnoseImmediateEscalatingReason.
18152 if (DR->isImmediateEscalating())
18153 continue;
18154 auto *FD = cast<FunctionDecl>(Val: DR->getDecl());
18155 const NamedDecl *ND = FD;
18156 if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: ND);
18157 MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD)))
18158 ND = MD->getParent();
18159
18160 // C++23 [expr.const]/p16
18161 // An expression or conversion is immediate-escalating if it is not
18162 // initially in an immediate function context and it is [...] a
18163 // potentially-evaluated id-expression that denotes an immediate function
18164 // that is not a subexpression of an immediate invocation.
18165 bool ImmediateEscalating = false;
18166 bool IsPotentiallyEvaluated =
18167 Rec.Context ==
18168 Sema::ExpressionEvaluationContext::PotentiallyEvaluated ||
18169 Rec.Context ==
18170 Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed;
18171 if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated)
18172 ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext;
18173
18174 if (!Rec.InImmediateEscalatingFunctionContext ||
18175 (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) {
18176 SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
18177 << ND << isa<CXXRecordDecl>(ND) << FD->isConsteval();
18178 if (!FD->getBuiltinID())
18179 SemaRef.Diag(ND->getLocation(), diag::note_declared_at);
18180 if (auto Context =
18181 SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18182 SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
18183 << Context->Decl;
18184 SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
18185 }
18186 if (FD->isImmediateEscalating() && !FD->isConsteval())
18187 SemaRef.DiagnoseImmediateEscalatingReason(FD);
18188
18189 } else {
18190 SemaRef.MarkExpressionAsImmediateEscalating(DR);
18191 }
18192 }
18193}
18194
18195void Sema::PopExpressionEvaluationContext() {
18196 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
18197 unsigned NumTypos = Rec.NumTypos;
18198
18199 if (!Rec.Lambdas.empty()) {
18200 using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
18201 if (!getLangOpts().CPlusPlus20 &&
18202 (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
18203 Rec.isUnevaluated() ||
18204 (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
18205 unsigned D;
18206 if (Rec.isUnevaluated()) {
18207 // C++11 [expr.prim.lambda]p2:
18208 // A lambda-expression shall not appear in an unevaluated operand
18209 // (Clause 5).
18210 D = diag::err_lambda_unevaluated_operand;
18211 } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
18212 // C++1y [expr.const]p2:
18213 // A conditional-expression e is a core constant expression unless the
18214 // evaluation of e, following the rules of the abstract machine, would
18215 // evaluate [...] a lambda-expression.
18216 D = diag::err_lambda_in_constant_expression;
18217 } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
18218 // C++17 [expr.prim.lamda]p2:
18219 // A lambda-expression shall not appear [...] in a template-argument.
18220 D = diag::err_lambda_in_invalid_context;
18221 } else
18222 llvm_unreachable("Couldn't infer lambda error message.");
18223
18224 for (const auto *L : Rec.Lambdas)
18225 Diag(L->getBeginLoc(), D);
18226 }
18227 }
18228
18229 // Append the collected materialized temporaries into previous context before
18230 // exit if the previous also is a lifetime extending context.
18231 if (getLangOpts().CPlusPlus23 && Rec.InLifetimeExtendingContext &&
18232 parentEvaluationContext().InLifetimeExtendingContext &&
18233 !Rec.ForRangeLifetimeExtendTemps.empty()) {
18234 parentEvaluationContext().ForRangeLifetimeExtendTemps.append(
18235 RHS: Rec.ForRangeLifetimeExtendTemps);
18236 }
18237
18238 WarnOnPendingNoDerefs(Rec);
18239 HandleImmediateInvocations(SemaRef&: *this, Rec);
18240
18241 // Warn on any volatile-qualified simple-assignments that are not discarded-
18242 // value expressions nor unevaluated operands (those cases get removed from
18243 // this list by CheckUnusedVolatileAssignment).
18244 for (auto *BO : Rec.VolatileAssignmentLHSs)
18245 Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
18246 << BO->getType();
18247
18248 // When are coming out of an unevaluated context, clear out any
18249 // temporaries that we may have created as part of the evaluation of
18250 // the expression in that context: they aren't relevant because they
18251 // will never be constructed.
18252 if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
18253 ExprCleanupObjects.erase(CS: ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
18254 CE: ExprCleanupObjects.end());
18255 Cleanup = Rec.ParentCleanup;
18256 CleanupVarDeclMarking();
18257 std::swap(LHS&: MaybeODRUseExprs, RHS&: Rec.SavedMaybeODRUseExprs);
18258 // Otherwise, merge the contexts together.
18259 } else {
18260 Cleanup.mergeFrom(Rhs: Rec.ParentCleanup);
18261 MaybeODRUseExprs.insert_range(R&: Rec.SavedMaybeODRUseExprs);
18262 }
18263
18264 // Pop the current expression evaluation context off the stack.
18265 ExprEvalContexts.pop_back();
18266
18267 // The global expression evaluation context record is never popped.
18268 ExprEvalContexts.back().NumTypos += NumTypos;
18269}
18270
18271void Sema::DiscardCleanupsInEvaluationContext() {
18272 ExprCleanupObjects.erase(
18273 CS: ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
18274 CE: ExprCleanupObjects.end());
18275 Cleanup.reset();
18276 MaybeODRUseExprs.clear();
18277}
18278
18279ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
18280 ExprResult Result = CheckPlaceholderExpr(E);
18281 if (Result.isInvalid())
18282 return ExprError();
18283 E = Result.get();
18284 if (!E->getType()->isVariablyModifiedType())
18285 return E;
18286 return TransformToPotentiallyEvaluated(E);
18287}
18288
18289/// Are we in a context that is potentially constant evaluated per C++20
18290/// [expr.const]p12?
18291static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
18292 /// C++2a [expr.const]p12:
18293 // An expression or conversion is potentially constant evaluated if it is
18294 switch (SemaRef.ExprEvalContexts.back().Context) {
18295 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18296 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18297
18298 // -- a manifestly constant-evaluated expression,
18299 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18300 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18301 case Sema::ExpressionEvaluationContext::DiscardedStatement:
18302 // -- a potentially-evaluated expression,
18303 case Sema::ExpressionEvaluationContext::UnevaluatedList:
18304 // -- an immediate subexpression of a braced-init-list,
18305
18306 // -- [FIXME] an expression of the form & cast-expression that occurs
18307 // within a templated entity
18308 // -- a subexpression of one of the above that is not a subexpression of
18309 // a nested unevaluated operand.
18310 return true;
18311
18312 case Sema::ExpressionEvaluationContext::Unevaluated:
18313 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18314 // Expressions in this context are never evaluated.
18315 return false;
18316 }
18317 llvm_unreachable("Invalid context");
18318}
18319
18320/// Return true if this function has a calling convention that requires mangling
18321/// in the size of the parameter pack.
18322static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
18323 // These manglings are only applicable for targets whcih use Microsoft
18324 // mangling scheme for C.
18325 if (!S.Context.getTargetInfo().shouldUseMicrosoftCCforMangling())
18326 return false;
18327
18328 // If this is C++ and this isn't an extern "C" function, parameters do not
18329 // need to be complete. In this case, C++ mangling will apply, which doesn't
18330 // use the size of the parameters.
18331 if (S.getLangOpts().CPlusPlus && !FD->isExternC())
18332 return false;
18333
18334 // Stdcall, fastcall, and vectorcall need this special treatment.
18335 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18336 switch (CC) {
18337 case CC_X86StdCall:
18338 case CC_X86FastCall:
18339 case CC_X86VectorCall:
18340 return true;
18341 default:
18342 break;
18343 }
18344 return false;
18345}
18346
18347/// Require that all of the parameter types of function be complete. Normally,
18348/// parameter types are only required to be complete when a function is called
18349/// or defined, but to mangle functions with certain calling conventions, the
18350/// mangler needs to know the size of the parameter list. In this situation,
18351/// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
18352/// the function as _foo@0, i.e. zero bytes of parameters, which will usually
18353/// result in a linker error. Clang doesn't implement this behavior, and instead
18354/// attempts to error at compile time.
18355static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
18356 SourceLocation Loc) {
18357 class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
18358 FunctionDecl *FD;
18359 ParmVarDecl *Param;
18360
18361 public:
18362 ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
18363 : FD(FD), Param(Param) {}
18364
18365 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18366 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18367 StringRef CCName;
18368 switch (CC) {
18369 case CC_X86StdCall:
18370 CCName = "stdcall";
18371 break;
18372 case CC_X86FastCall:
18373 CCName = "fastcall";
18374 break;
18375 case CC_X86VectorCall:
18376 CCName = "vectorcall";
18377 break;
18378 default:
18379 llvm_unreachable("CC does not need mangling");
18380 }
18381
18382 S.Diag(Loc, diag::err_cconv_incomplete_param_type)
18383 << Param->getDeclName() << FD->getDeclName() << CCName;
18384 }
18385 };
18386
18387 for (ParmVarDecl *Param : FD->parameters()) {
18388 ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
18389 S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
18390 }
18391}
18392
18393namespace {
18394enum class OdrUseContext {
18395 /// Declarations in this context are not odr-used.
18396 None,
18397 /// Declarations in this context are formally odr-used, but this is a
18398 /// dependent context.
18399 Dependent,
18400 /// Declarations in this context are odr-used but not actually used (yet).
18401 FormallyOdrUsed,
18402 /// Declarations in this context are used.
18403 Used
18404};
18405}
18406
18407/// Are we within a context in which references to resolved functions or to
18408/// variables result in odr-use?
18409static OdrUseContext isOdrUseContext(Sema &SemaRef) {
18410 const Sema::ExpressionEvaluationContextRecord &Context =
18411 SemaRef.currentEvaluationContext();
18412
18413 if (Context.isUnevaluated())
18414 return OdrUseContext::None;
18415
18416 if (SemaRef.CurContext->isDependentContext())
18417 return OdrUseContext::Dependent;
18418
18419 if (Context.isDiscardedStatementContext())
18420 return OdrUseContext::FormallyOdrUsed;
18421
18422 else if (Context.Context ==
18423 Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed)
18424 return OdrUseContext::FormallyOdrUsed;
18425
18426 return OdrUseContext::Used;
18427}
18428
18429static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
18430 if (!Func->isConstexpr())
18431 return false;
18432
18433 if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
18434 return true;
18435 auto *CCD = dyn_cast<CXXConstructorDecl>(Val: Func);
18436 return CCD && CCD->getInheritedConstructor();
18437}
18438
18439void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
18440 bool MightBeOdrUse) {
18441 assert(Func && "No function?");
18442
18443 Func->setReferenced();
18444
18445 // Recursive functions aren't really used until they're used from some other
18446 // context.
18447 bool IsRecursiveCall = CurContext == Func;
18448
18449 // C++11 [basic.def.odr]p3:
18450 // A function whose name appears as a potentially-evaluated expression is
18451 // odr-used if it is the unique lookup result or the selected member of a
18452 // set of overloaded functions [...].
18453 //
18454 // We (incorrectly) mark overload resolution as an unevaluated context, so we
18455 // can just check that here.
18456 OdrUseContext OdrUse =
18457 MightBeOdrUse ? isOdrUseContext(SemaRef&: *this) : OdrUseContext::None;
18458 if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
18459 OdrUse = OdrUseContext::FormallyOdrUsed;
18460
18461 // Trivial default constructors and destructors are never actually used.
18462 // FIXME: What about other special members?
18463 if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
18464 OdrUse == OdrUseContext::Used) {
18465 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: Func))
18466 if (Constructor->isDefaultConstructor())
18467 OdrUse = OdrUseContext::FormallyOdrUsed;
18468 if (isa<CXXDestructorDecl>(Val: Func))
18469 OdrUse = OdrUseContext::FormallyOdrUsed;
18470 }
18471
18472 // C++20 [expr.const]p12:
18473 // A function [...] is needed for constant evaluation if it is [...] a
18474 // constexpr function that is named by an expression that is potentially
18475 // constant evaluated
18476 bool NeededForConstantEvaluation =
18477 isPotentiallyConstantEvaluatedContext(SemaRef&: *this) &&
18478 isImplicitlyDefinableConstexprFunction(Func);
18479
18480 // Determine whether we require a function definition to exist, per
18481 // C++11 [temp.inst]p3:
18482 // Unless a function template specialization has been explicitly
18483 // instantiated or explicitly specialized, the function template
18484 // specialization is implicitly instantiated when the specialization is
18485 // referenced in a context that requires a function definition to exist.
18486 // C++20 [temp.inst]p7:
18487 // The existence of a definition of a [...] function is considered to
18488 // affect the semantics of the program if the [...] function is needed for
18489 // constant evaluation by an expression
18490 // C++20 [basic.def.odr]p10:
18491 // Every program shall contain exactly one definition of every non-inline
18492 // function or variable that is odr-used in that program outside of a
18493 // discarded statement
18494 // C++20 [special]p1:
18495 // The implementation will implicitly define [defaulted special members]
18496 // if they are odr-used or needed for constant evaluation.
18497 //
18498 // Note that we skip the implicit instantiation of templates that are only
18499 // used in unused default arguments or by recursive calls to themselves.
18500 // This is formally non-conforming, but seems reasonable in practice.
18501 bool NeedDefinition =
18502 !IsRecursiveCall &&
18503 (OdrUse == OdrUseContext::Used ||
18504 (NeededForConstantEvaluation && !Func->isPureVirtual()));
18505
18506 // C++14 [temp.expl.spec]p6:
18507 // If a template [...] is explicitly specialized then that specialization
18508 // shall be declared before the first use of that specialization that would
18509 // cause an implicit instantiation to take place, in every translation unit
18510 // in which such a use occurs
18511 if (NeedDefinition &&
18512 (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18513 Func->getMemberSpecializationInfo()))
18514 checkSpecializationReachability(Loc, Func);
18515
18516 if (getLangOpts().CUDA)
18517 CUDA().CheckCall(Loc, Callee: Func);
18518
18519 // If we need a definition, try to create one.
18520 if (NeedDefinition && !Func->getBody()) {
18521 runWithSufficientStackSpace(Loc, Fn: [&] {
18522 if (CXXConstructorDecl *Constructor =
18523 dyn_cast<CXXConstructorDecl>(Val: Func)) {
18524 Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18525 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18526 if (Constructor->isDefaultConstructor()) {
18527 if (Constructor->isTrivial() &&
18528 !Constructor->hasAttr<DLLExportAttr>())
18529 return;
18530 DefineImplicitDefaultConstructor(CurrentLocation: Loc, Constructor);
18531 } else if (Constructor->isCopyConstructor()) {
18532 DefineImplicitCopyConstructor(CurrentLocation: Loc, Constructor);
18533 } else if (Constructor->isMoveConstructor()) {
18534 DefineImplicitMoveConstructor(CurrentLocation: Loc, Constructor);
18535 }
18536 } else if (Constructor->getInheritedConstructor()) {
18537 DefineInheritingConstructor(UseLoc: Loc, Constructor);
18538 }
18539 } else if (CXXDestructorDecl *Destructor =
18540 dyn_cast<CXXDestructorDecl>(Val: Func)) {
18541 Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18542 if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18543 if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18544 return;
18545 DefineImplicitDestructor(CurrentLocation: Loc, Destructor);
18546 }
18547 if (Destructor->isVirtual() && getLangOpts().AppleKext)
18548 MarkVTableUsed(Loc, Class: Destructor->getParent());
18549 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Val: Func)) {
18550 if (MethodDecl->isOverloadedOperator() &&
18551 MethodDecl->getOverloadedOperator() == OO_Equal) {
18552 MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
18553 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18554 if (MethodDecl->isCopyAssignmentOperator())
18555 DefineImplicitCopyAssignment(CurrentLocation: Loc, MethodDecl);
18556 else if (MethodDecl->isMoveAssignmentOperator())
18557 DefineImplicitMoveAssignment(CurrentLocation: Loc, MethodDecl);
18558 }
18559 } else if (isa<CXXConversionDecl>(Val: MethodDecl) &&
18560 MethodDecl->getParent()->isLambda()) {
18561 CXXConversionDecl *Conversion =
18562 cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
18563 if (Conversion->isLambdaToBlockPointerConversion())
18564 DefineImplicitLambdaToBlockPointerConversion(CurrentLoc: Loc, Conv: Conversion);
18565 else
18566 DefineImplicitLambdaToFunctionPointerConversion(CurrentLoc: Loc, Conv: Conversion);
18567 } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
18568 MarkVTableUsed(Loc, Class: MethodDecl->getParent());
18569 }
18570
18571 if (Func->isDefaulted() && !Func->isDeleted()) {
18572 DefaultedComparisonKind DCK = getDefaultedComparisonKind(FD: Func);
18573 if (DCK != DefaultedComparisonKind::None)
18574 DefineDefaultedComparison(Loc, FD: Func, DCK);
18575 }
18576
18577 // Implicit instantiation of function templates and member functions of
18578 // class templates.
18579 if (Func->isImplicitlyInstantiable()) {
18580 TemplateSpecializationKind TSK =
18581 Func->getTemplateSpecializationKindForInstantiation();
18582 SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
18583 bool FirstInstantiation = PointOfInstantiation.isInvalid();
18584 if (FirstInstantiation) {
18585 PointOfInstantiation = Loc;
18586 if (auto *MSI = Func->getMemberSpecializationInfo())
18587 MSI->setPointOfInstantiation(Loc);
18588 // FIXME: Notify listener.
18589 else
18590 Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18591 } else if (TSK != TSK_ImplicitInstantiation) {
18592 // Use the point of use as the point of instantiation, instead of the
18593 // point of explicit instantiation (which we track as the actual point
18594 // of instantiation). This gives better backtraces in diagnostics.
18595 PointOfInstantiation = Loc;
18596 }
18597
18598 if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
18599 Func->isConstexpr()) {
18600 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
18601 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
18602 CodeSynthesisContexts.size())
18603 PendingLocalImplicitInstantiations.push_back(
18604 std::make_pair(x&: Func, y&: PointOfInstantiation));
18605 else if (Func->isConstexpr())
18606 // Do not defer instantiations of constexpr functions, to avoid the
18607 // expression evaluator needing to call back into Sema if it sees a
18608 // call to such a function.
18609 InstantiateFunctionDefinition(PointOfInstantiation, Function: Func);
18610 else {
18611 Func->setInstantiationIsPending(true);
18612 PendingInstantiations.push_back(
18613 std::make_pair(x&: Func, y&: PointOfInstantiation));
18614 if (llvm::isTimeTraceVerbose()) {
18615 llvm::timeTraceAddInstantEvent(Name: "DeferInstantiation", Detail: [&] {
18616 std::string Name;
18617 llvm::raw_string_ostream OS(Name);
18618 Func->getNameForDiagnostic(OS, Policy: getPrintingPolicy(),
18619 /*Qualified=*/true);
18620 return Name;
18621 });
18622 }
18623 // Notify the consumer that a function was implicitly instantiated.
18624 Consumer.HandleCXXImplicitFunctionInstantiation(D: Func);
18625 }
18626 }
18627 } else {
18628 // Walk redefinitions, as some of them may be instantiable.
18629 for (auto *i : Func->redecls()) {
18630 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
18631 MarkFunctionReferenced(Loc, i, MightBeOdrUse);
18632 }
18633 }
18634 });
18635 }
18636
18637 // If a constructor was defined in the context of a default parameter
18638 // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
18639 // context), its initializers may not be referenced yet.
18640 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Val: Func)) {
18641 EnterExpressionEvaluationContext EvalContext(
18642 *this,
18643 Constructor->isImmediateFunction()
18644 ? ExpressionEvaluationContext::ImmediateFunctionContext
18645 : ExpressionEvaluationContext::PotentiallyEvaluated,
18646 Constructor);
18647 for (CXXCtorInitializer *Init : Constructor->inits()) {
18648 if (Init->isInClassMemberInitializer())
18649 runWithSufficientStackSpace(Loc: Init->getSourceLocation(), Fn: [&]() {
18650 MarkDeclarationsReferencedInExpr(E: Init->getInit());
18651 });
18652 }
18653 }
18654
18655 // C++14 [except.spec]p17:
18656 // An exception-specification is considered to be needed when:
18657 // - the function is odr-used or, if it appears in an unevaluated operand,
18658 // would be odr-used if the expression were potentially-evaluated;
18659 //
18660 // Note, we do this even if MightBeOdrUse is false. That indicates that the
18661 // function is a pure virtual function we're calling, and in that case the
18662 // function was selected by overload resolution and we need to resolve its
18663 // exception specification for a different reason.
18664 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
18665 if (FPT && isUnresolvedExceptionSpec(ESpecType: FPT->getExceptionSpecType()))
18666 ResolveExceptionSpec(Loc, FPT);
18667
18668 // A callee could be called by a host function then by a device function.
18669 // If we only try recording once, we will miss recording the use on device
18670 // side. Therefore keep trying until it is recorded.
18671 if (LangOpts.OffloadImplicitHostDeviceTemplates && LangOpts.CUDAIsDevice &&
18672 !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.count(Func))
18673 CUDA().RecordImplicitHostDeviceFuncUsedByDevice(FD: Func);
18674
18675 // If this is the first "real" use, act on that.
18676 if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
18677 // Keep track of used but undefined functions.
18678 if (!Func->isDefined() && !Func->isInAnotherModuleUnit()) {
18679 if (mightHaveNonExternalLinkage(Func))
18680 UndefinedButUsed.insert(std::make_pair(x: Func->getCanonicalDecl(), y&: Loc));
18681 else if (Func->getMostRecentDecl()->isInlined() &&
18682 !LangOpts.GNUInline &&
18683 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
18684 UndefinedButUsed.insert(std::make_pair(x: Func->getCanonicalDecl(), y&: Loc));
18685 else if (isExternalWithNoLinkageType(Func))
18686 UndefinedButUsed.insert(std::make_pair(x: Func->getCanonicalDecl(), y&: Loc));
18687 }
18688
18689 // Some x86 Windows calling conventions mangle the size of the parameter
18690 // pack into the name. Computing the size of the parameters requires the
18691 // parameter types to be complete. Check that now.
18692 if (funcHasParameterSizeMangling(S&: *this, FD: Func))
18693 CheckCompleteParameterTypesForMangler(S&: *this, FD: Func, Loc);
18694
18695 // In the MS C++ ABI, the compiler emits destructor variants where they are
18696 // used. If the destructor is used here but defined elsewhere, mark the
18697 // virtual base destructors referenced. If those virtual base destructors
18698 // are inline, this will ensure they are defined when emitting the complete
18699 // destructor variant. This checking may be redundant if the destructor is
18700 // provided later in this TU.
18701 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18702 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Val: Func)) {
18703 CXXRecordDecl *Parent = Dtor->getParent();
18704 if (Parent->getNumVBases() > 0 && !Dtor->getBody())
18705 CheckCompleteDestructorVariant(CurrentLocation: Loc, Dtor);
18706 }
18707 }
18708
18709 Func->markUsed(Context);
18710 }
18711}
18712
18713/// Directly mark a variable odr-used. Given a choice, prefer to use
18714/// MarkVariableReferenced since it does additional checks and then
18715/// calls MarkVarDeclODRUsed.
18716/// If the variable must be captured:
18717/// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
18718/// - else capture it in the DeclContext that maps to the
18719/// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
18720static void
18721MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
18722 const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
18723 // Keep track of used but undefined variables.
18724 // FIXME: We shouldn't suppress this warning for static data members.
18725 VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
18726 assert(Var && "expected a capturable variable");
18727
18728 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
18729 (!Var->isExternallyVisible() || Var->isInline() ||
18730 SemaRef.isExternalWithNoLinkageType(Var)) &&
18731 !(Var->isStaticDataMember() && Var->hasInit())) {
18732 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
18733 if (old.isInvalid())
18734 old = Loc;
18735 }
18736 QualType CaptureType, DeclRefType;
18737 if (SemaRef.LangOpts.OpenMP)
18738 SemaRef.OpenMP().tryCaptureOpenMPLambdas(V);
18739 SemaRef.tryCaptureVariable(Var: V, Loc, Kind: TryCaptureKind::Implicit,
18740 /*EllipsisLoc*/ SourceLocation(),
18741 /*BuildAndDiagnose*/ true, CaptureType,
18742 DeclRefType, FunctionScopeIndexToStopAt);
18743
18744 if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
18745 auto *FD = dyn_cast_or_null<FunctionDecl>(Val: SemaRef.CurContext);
18746 auto VarTarget = SemaRef.CUDA().IdentifyTarget(D: Var);
18747 auto UserTarget = SemaRef.CUDA().IdentifyTarget(D: FD);
18748 if (VarTarget == SemaCUDA::CVT_Host &&
18749 (UserTarget == CUDAFunctionTarget::Device ||
18750 UserTarget == CUDAFunctionTarget::HostDevice ||
18751 UserTarget == CUDAFunctionTarget::Global)) {
18752 // Diagnose ODR-use of host global variables in device functions.
18753 // Reference of device global variables in host functions is allowed
18754 // through shadow variables therefore it is not diagnosed.
18755 if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) {
18756 SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
18757 << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
18758 SemaRef.targetDiag(Var->getLocation(),
18759 Var->getType().isConstQualified()
18760 ? diag::note_cuda_const_var_unpromoted
18761 : diag::note_cuda_host_var);
18762 }
18763 } else if (VarTarget == SemaCUDA::CVT_Device &&
18764 !Var->hasAttr<CUDASharedAttr>() &&
18765 (UserTarget == CUDAFunctionTarget::Host ||
18766 UserTarget == CUDAFunctionTarget::HostDevice)) {
18767 // Record a CUDA/HIP device side variable if it is ODR-used
18768 // by host code. This is done conservatively, when the variable is
18769 // referenced in any of the following contexts:
18770 // - a non-function context
18771 // - a host function
18772 // - a host device function
18773 // This makes the ODR-use of the device side variable by host code to
18774 // be visible in the device compilation for the compiler to be able to
18775 // emit template variables instantiated by host code only and to
18776 // externalize the static device side variable ODR-used by host code.
18777 if (!Var->hasExternalStorage())
18778 SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
18779 else if (SemaRef.LangOpts.GPURelocatableDeviceCode &&
18780 (!FD || (!FD->getDescribedFunctionTemplate() &&
18781 SemaRef.getASTContext().GetGVALinkageForFunction(FD) ==
18782 GVA_StrongExternal)))
18783 SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
18784 }
18785 }
18786
18787 V->markUsed(SemaRef.Context);
18788}
18789
18790void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
18791 SourceLocation Loc,
18792 unsigned CapturingScopeIndex) {
18793 MarkVarDeclODRUsed(V: Capture, Loc, SemaRef&: *this, FunctionScopeIndexToStopAt: &CapturingScopeIndex);
18794}
18795
18796void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
18797 ValueDecl *var) {
18798 DeclContext *VarDC = var->getDeclContext();
18799
18800 // If the parameter still belongs to the translation unit, then
18801 // we're actually just using one parameter in the declaration of
18802 // the next.
18803 if (isa<ParmVarDecl>(Val: var) &&
18804 isa<TranslationUnitDecl>(Val: VarDC))
18805 return;
18806
18807 // For C code, don't diagnose about capture if we're not actually in code
18808 // right now; it's impossible to write a non-constant expression outside of
18809 // function context, so we'll get other (more useful) diagnostics later.
18810 //
18811 // For C++, things get a bit more nasty... it would be nice to suppress this
18812 // diagnostic for certain cases like using a local variable in an array bound
18813 // for a member of a local class, but the correct predicate is not obvious.
18814 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
18815 return;
18816
18817 unsigned ValueKind = isa<BindingDecl>(Val: var) ? 1 : 0;
18818 unsigned ContextKind = 3; // unknown
18819 if (isa<CXXMethodDecl>(Val: VarDC) &&
18820 cast<CXXRecordDecl>(Val: VarDC->getParent())->isLambda()) {
18821 ContextKind = 2;
18822 } else if (isa<FunctionDecl>(Val: VarDC)) {
18823 ContextKind = 0;
18824 } else if (isa<BlockDecl>(Val: VarDC)) {
18825 ContextKind = 1;
18826 }
18827
18828 S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
18829 << var << ValueKind << ContextKind << VarDC;
18830 S.Diag(var->getLocation(), diag::note_entity_declared_at)
18831 << var;
18832
18833 // FIXME: Add additional diagnostic info about class etc. which prevents
18834 // capture.
18835}
18836
18837static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
18838 ValueDecl *Var,
18839 bool &SubCapturesAreNested,
18840 QualType &CaptureType,
18841 QualType &DeclRefType) {
18842 // Check whether we've already captured it.
18843 if (CSI->CaptureMap.count(Val: Var)) {
18844 // If we found a capture, any subcaptures are nested.
18845 SubCapturesAreNested = true;
18846
18847 // Retrieve the capture type for this variable.
18848 CaptureType = CSI->getCapture(Var).getCaptureType();
18849
18850 // Compute the type of an expression that refers to this variable.
18851 DeclRefType = CaptureType.getNonReferenceType();
18852
18853 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
18854 // are mutable in the sense that user can change their value - they are
18855 // private instances of the captured declarations.
18856 const Capture &Cap = CSI->getCapture(Var);
18857 // C++ [expr.prim.lambda]p10:
18858 // The type of such a data member is [...] an lvalue reference to the
18859 // referenced function type if the entity is a reference to a function.
18860 // [...]
18861 if (Cap.isCopyCapture() && !DeclRefType->isFunctionType() &&
18862 !(isa<LambdaScopeInfo>(Val: CSI) &&
18863 !cast<LambdaScopeInfo>(Val: CSI)->lambdaCaptureShouldBeConst()) &&
18864 !(isa<CapturedRegionScopeInfo>(Val: CSI) &&
18865 cast<CapturedRegionScopeInfo>(Val: CSI)->CapRegionKind == CR_OpenMP))
18866 DeclRefType.addConst();
18867 return true;
18868 }
18869 return false;
18870}
18871
18872// Only block literals, captured statements, and lambda expressions can
18873// capture; other scopes don't work.
18874static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
18875 ValueDecl *Var,
18876 SourceLocation Loc,
18877 const bool Diagnose,
18878 Sema &S) {
18879 if (isa<BlockDecl>(Val: DC) || isa<CapturedDecl>(Val: DC) || isLambdaCallOperator(DC))
18880 return getLambdaAwareParentOfDeclContext(DC);
18881
18882 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
18883 if (Underlying) {
18884 if (Underlying->hasLocalStorage() && Diagnose)
18885 diagnoseUncapturableValueReferenceOrBinding(S, loc: Loc, var: Var);
18886 }
18887 return nullptr;
18888}
18889
18890// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18891// certain types of variables (unnamed, variably modified types etc.)
18892// so check for eligibility.
18893static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
18894 SourceLocation Loc, const bool Diagnose,
18895 Sema &S) {
18896
18897 assert((isa<VarDecl, BindingDecl>(Var)) &&
18898 "Only variables and structured bindings can be captured");
18899
18900 bool IsBlock = isa<BlockScopeInfo>(Val: CSI);
18901 bool IsLambda = isa<LambdaScopeInfo>(Val: CSI);
18902
18903 // Lambdas are not allowed to capture unnamed variables
18904 // (e.g. anonymous unions).
18905 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
18906 // assuming that's the intent.
18907 if (IsLambda && !Var->getDeclName()) {
18908 if (Diagnose) {
18909 S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
18910 S.Diag(Var->getLocation(), diag::note_declared_at);
18911 }
18912 return false;
18913 }
18914
18915 // Prohibit variably-modified types in blocks; they're difficult to deal with.
18916 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
18917 if (Diagnose) {
18918 S.Diag(Loc, diag::err_ref_vm_type);
18919 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18920 }
18921 return false;
18922 }
18923 // Prohibit structs with flexible array members too.
18924 // We cannot capture what is in the tail end of the struct.
18925 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
18926 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
18927 if (Diagnose) {
18928 if (IsBlock)
18929 S.Diag(Loc, diag::err_ref_flexarray_type);
18930 else
18931 S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
18932 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18933 }
18934 return false;
18935 }
18936 }
18937 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18938 // Lambdas and captured statements are not allowed to capture __block
18939 // variables; they don't support the expected semantics.
18940 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(Val: CSI))) {
18941 if (Diagnose) {
18942 S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
18943 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18944 }
18945 return false;
18946 }
18947 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
18948 if (S.getLangOpts().OpenCL && IsBlock &&
18949 Var->getType()->isBlockPointerType()) {
18950 if (Diagnose)
18951 S.Diag(Loc, diag::err_opencl_block_ref_block);
18952 return false;
18953 }
18954
18955 if (isa<BindingDecl>(Val: Var)) {
18956 if (!IsLambda || !S.getLangOpts().CPlusPlus) {
18957 if (Diagnose)
18958 diagnoseUncapturableValueReferenceOrBinding(S, loc: Loc, var: Var);
18959 return false;
18960 } else if (Diagnose && S.getLangOpts().CPlusPlus) {
18961 S.Diag(Loc, S.LangOpts.CPlusPlus20
18962 ? diag::warn_cxx17_compat_capture_binding
18963 : diag::ext_capture_binding)
18964 << Var;
18965 S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
18966 }
18967 }
18968
18969 return true;
18970}
18971
18972// Returns true if the capture by block was successful.
18973static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
18974 SourceLocation Loc, const bool BuildAndDiagnose,
18975 QualType &CaptureType, QualType &DeclRefType,
18976 const bool Nested, Sema &S, bool Invalid) {
18977 bool ByRef = false;
18978
18979 // Blocks are not allowed to capture arrays, excepting OpenCL.
18980 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
18981 // (decayed to pointers).
18982 if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
18983 if (BuildAndDiagnose) {
18984 S.Diag(Loc, diag::err_ref_array_type);
18985 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18986 Invalid = true;
18987 } else {
18988 return false;
18989 }
18990 }
18991
18992 // Forbid the block-capture of autoreleasing variables.
18993 if (!Invalid &&
18994 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18995 if (BuildAndDiagnose) {
18996 S.Diag(Loc, diag::err_arc_autoreleasing_capture)
18997 << /*block*/ 0;
18998 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18999 Invalid = true;
19000 } else {
19001 return false;
19002 }
19003 }
19004
19005 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
19006 if (const auto *PT = CaptureType->getAs<PointerType>()) {
19007 QualType PointeeTy = PT->getPointeeType();
19008
19009 if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
19010 PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
19011 !S.Context.hasDirectOwnershipQualifier(Ty: PointeeTy)) {
19012 if (BuildAndDiagnose) {
19013 SourceLocation VarLoc = Var->getLocation();
19014 S.Diag(Loc, diag::warn_block_capture_autoreleasing);
19015 S.Diag(VarLoc, diag::note_declare_parameter_strong);
19016 }
19017 }
19018 }
19019
19020 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
19021 if (HasBlocksAttr || CaptureType->isReferenceType() ||
19022 (S.getLangOpts().OpenMP && S.OpenMP().isOpenMPCapturedDecl(D: Var))) {
19023 // Block capture by reference does not change the capture or
19024 // declaration reference types.
19025 ByRef = true;
19026 } else {
19027 // Block capture by copy introduces 'const'.
19028 CaptureType = CaptureType.getNonReferenceType().withConst();
19029 DeclRefType = CaptureType;
19030 }
19031
19032 // Actually capture the variable.
19033 if (BuildAndDiagnose)
19034 BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
19035 CaptureType, Invalid);
19036
19037 return !Invalid;
19038}
19039
19040/// Capture the given variable in the captured region.
19041static bool captureInCapturedRegion(
19042 CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
19043 const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
19044 const bool RefersToCapturedVariable, TryCaptureKind Kind, bool IsTopScope,
19045 Sema &S, bool Invalid) {
19046 // By default, capture variables by reference.
19047 bool ByRef = true;
19048 if (IsTopScope && Kind != TryCaptureKind::Implicit) {
19049 ByRef = (Kind == TryCaptureKind::ExplicitByRef);
19050 } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
19051 // Using an LValue reference type is consistent with Lambdas (see below).
19052 if (S.OpenMP().isOpenMPCapturedDecl(D: Var)) {
19053 bool HasConst = DeclRefType.isConstQualified();
19054 DeclRefType = DeclRefType.getUnqualifiedType();
19055 // Don't lose diagnostics about assignments to const.
19056 if (HasConst)
19057 DeclRefType.addConst();
19058 }
19059 // Do not capture firstprivates in tasks.
19060 if (S.OpenMP().isOpenMPPrivateDecl(Var, RSI->OpenMPLevel,
19061 RSI->OpenMPCaptureLevel) != OMPC_unknown)
19062 return true;
19063 ByRef = S.OpenMP().isOpenMPCapturedByRef(D: Var, Level: RSI->OpenMPLevel,
19064 OpenMPCaptureLevel: RSI->OpenMPCaptureLevel);
19065 }
19066
19067 if (ByRef)
19068 CaptureType = S.Context.getLValueReferenceType(T: DeclRefType);
19069 else
19070 CaptureType = DeclRefType;
19071
19072 // Actually capture the variable.
19073 if (BuildAndDiagnose)
19074 RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
19075 Loc, SourceLocation(), CaptureType, Invalid);
19076
19077 return !Invalid;
19078}
19079
19080/// Capture the given variable in the lambda.
19081static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
19082 SourceLocation Loc, const bool BuildAndDiagnose,
19083 QualType &CaptureType, QualType &DeclRefType,
19084 const bool RefersToCapturedVariable,
19085 const TryCaptureKind Kind,
19086 SourceLocation EllipsisLoc, const bool IsTopScope,
19087 Sema &S, bool Invalid) {
19088 // Determine whether we are capturing by reference or by value.
19089 bool ByRef = false;
19090 if (IsTopScope && Kind != TryCaptureKind::Implicit) {
19091 ByRef = (Kind == TryCaptureKind::ExplicitByRef);
19092 } else {
19093 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
19094 }
19095
19096 if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() &&
19097 CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) {
19098 S.Diag(Loc, diag::err_wasm_ca_reference) << 0;
19099 Invalid = true;
19100 }
19101
19102 // Compute the type of the field that will capture this variable.
19103 if (ByRef) {
19104 // C++11 [expr.prim.lambda]p15:
19105 // An entity is captured by reference if it is implicitly or
19106 // explicitly captured but not captured by copy. It is
19107 // unspecified whether additional unnamed non-static data
19108 // members are declared in the closure type for entities
19109 // captured by reference.
19110 //
19111 // FIXME: It is not clear whether we want to build an lvalue reference
19112 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
19113 // to do the former, while EDG does the latter. Core issue 1249 will
19114 // clarify, but for now we follow GCC because it's a more permissive and
19115 // easily defensible position.
19116 CaptureType = S.Context.getLValueReferenceType(T: DeclRefType);
19117 } else {
19118 // C++11 [expr.prim.lambda]p14:
19119 // For each entity captured by copy, an unnamed non-static
19120 // data member is declared in the closure type. The
19121 // declaration order of these members is unspecified. The type
19122 // of such a data member is the type of the corresponding
19123 // captured entity if the entity is not a reference to an
19124 // object, or the referenced type otherwise. [Note: If the
19125 // captured entity is a reference to a function, the
19126 // corresponding data member is also a reference to a
19127 // function. - end note ]
19128 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
19129 if (!RefType->getPointeeType()->isFunctionType())
19130 CaptureType = RefType->getPointeeType();
19131 }
19132
19133 // Forbid the lambda copy-capture of autoreleasing variables.
19134 if (!Invalid &&
19135 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
19136 if (BuildAndDiagnose) {
19137 S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
19138 S.Diag(Var->getLocation(), diag::note_previous_decl)
19139 << Var->getDeclName();
19140 Invalid = true;
19141 } else {
19142 return false;
19143 }
19144 }
19145
19146 // Make sure that by-copy captures are of a complete and non-abstract type.
19147 if (!Invalid && BuildAndDiagnose) {
19148 if (!CaptureType->isDependentType() &&
19149 S.RequireCompleteSizedType(
19150 Loc, CaptureType,
19151 diag::err_capture_of_incomplete_or_sizeless_type,
19152 Var->getDeclName()))
19153 Invalid = true;
19154 else if (S.RequireNonAbstractType(Loc, CaptureType,
19155 diag::err_capture_of_abstract_type))
19156 Invalid = true;
19157 }
19158 }
19159
19160 // Compute the type of a reference to this captured variable.
19161 if (ByRef)
19162 DeclRefType = CaptureType.getNonReferenceType();
19163 else {
19164 // C++ [expr.prim.lambda]p5:
19165 // The closure type for a lambda-expression has a public inline
19166 // function call operator [...]. This function call operator is
19167 // declared const (9.3.1) if and only if the lambda-expression's
19168 // parameter-declaration-clause is not followed by mutable.
19169 DeclRefType = CaptureType.getNonReferenceType();
19170 bool Const = LSI->lambdaCaptureShouldBeConst();
19171 // C++ [expr.prim.lambda]p10:
19172 // The type of such a data member is [...] an lvalue reference to the
19173 // referenced function type if the entity is a reference to a function.
19174 // [...]
19175 if (Const && !CaptureType->isReferenceType() &&
19176 !DeclRefType->isFunctionType())
19177 DeclRefType.addConst();
19178 }
19179
19180 // Add the capture.
19181 if (BuildAndDiagnose)
19182 LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
19183 Loc, EllipsisLoc, CaptureType, Invalid);
19184
19185 return !Invalid;
19186}
19187
19188static bool canCaptureVariableByCopy(ValueDecl *Var,
19189 const ASTContext &Context) {
19190 // Offer a Copy fix even if the type is dependent.
19191 if (Var->getType()->isDependentType())
19192 return true;
19193 QualType T = Var->getType().getNonReferenceType();
19194 if (T.isTriviallyCopyableType(Context))
19195 return true;
19196 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
19197
19198 if (!(RD = RD->getDefinition()))
19199 return false;
19200 if (RD->hasSimpleCopyConstructor())
19201 return true;
19202 if (RD->hasUserDeclaredCopyConstructor())
19203 for (CXXConstructorDecl *Ctor : RD->ctors())
19204 if (Ctor->isCopyConstructor())
19205 return !Ctor->isDeleted();
19206 }
19207 return false;
19208}
19209
19210/// Create up to 4 fix-its for explicit reference and value capture of \p Var or
19211/// default capture. Fixes may be omitted if they aren't allowed by the
19212/// standard, for example we can't emit a default copy capture fix-it if we
19213/// already explicitly copy capture capture another variable.
19214static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
19215 ValueDecl *Var) {
19216 assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
19217 // Don't offer Capture by copy of default capture by copy fixes if Var is
19218 // known not to be copy constructible.
19219 bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Context: Sema.getASTContext());
19220
19221 SmallString<32> FixBuffer;
19222 StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
19223 if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
19224 SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
19225 if (ShouldOfferCopyFix) {
19226 // Offer fixes to insert an explicit capture for the variable.
19227 // [] -> [VarName]
19228 // [OtherCapture] -> [OtherCapture, VarName]
19229 FixBuffer.assign({Separator, Var->getName()});
19230 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19231 << Var << /*value*/ 0
19232 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19233 }
19234 // As above but capture by reference.
19235 FixBuffer.assign({Separator, "&", Var->getName()});
19236 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19237 << Var << /*reference*/ 1
19238 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19239 }
19240
19241 // Only try to offer default capture if there are no captures excluding this
19242 // and init captures.
19243 // [this]: OK.
19244 // [X = Y]: OK.
19245 // [&A, &B]: Don't offer.
19246 // [A, B]: Don't offer.
19247 if (llvm::any_of(Range&: LSI->Captures, P: [](Capture &C) {
19248 return !C.isThisCapture() && !C.isInitCapture();
19249 }))
19250 return;
19251
19252 // The default capture specifiers, '=' or '&', must appear first in the
19253 // capture body.
19254 SourceLocation DefaultInsertLoc =
19255 LSI->IntroducerRange.getBegin().getLocWithOffset(Offset: 1);
19256
19257 if (ShouldOfferCopyFix) {
19258 bool CanDefaultCopyCapture = true;
19259 // [=, *this] OK since c++17
19260 // [=, this] OK since c++20
19261 if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
19262 CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
19263 ? LSI->getCXXThisCapture().isCopyCapture()
19264 : false;
19265 // We can't use default capture by copy if any captures already specified
19266 // capture by copy.
19267 if (CanDefaultCopyCapture && llvm::none_of(Range&: LSI->Captures, P: [](Capture &C) {
19268 return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
19269 })) {
19270 FixBuffer.assign(Refs: {"=", Separator});
19271 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19272 << /*value*/ 0
19273 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19274 }
19275 }
19276
19277 // We can't use default capture by reference if any captures already specified
19278 // capture by reference.
19279 if (llvm::none_of(Range&: LSI->Captures, P: [](Capture &C) {
19280 return !C.isInitCapture() && C.isReferenceCapture() &&
19281 !C.isThisCapture();
19282 })) {
19283 FixBuffer.assign(Refs: {"&", Separator});
19284 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19285 << /*reference*/ 1
19286 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19287 }
19288}
19289
19290bool Sema::tryCaptureVariable(
19291 ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
19292 SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
19293 QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
19294 // An init-capture is notionally from the context surrounding its
19295 // declaration, but its parent DC is the lambda class.
19296 DeclContext *VarDC = Var->getDeclContext();
19297 DeclContext *DC = CurContext;
19298
19299 // Skip past RequiresExprBodys because they don't constitute function scopes.
19300 while (DC->isRequiresExprBody())
19301 DC = DC->getParent();
19302
19303 // tryCaptureVariable is called every time a DeclRef is formed,
19304 // it can therefore have non-negigible impact on performances.
19305 // For local variables and when there is no capturing scope,
19306 // we can bailout early.
19307 if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC))
19308 return true;
19309
19310 // Exception: Function parameters are not tied to the function's DeclContext
19311 // until we enter the function definition. Capturing them anyway would result
19312 // in an out-of-bounds error while traversing DC and its parents.
19313 if (isa<ParmVarDecl>(Val: Var) && !VarDC->isFunctionOrMethod())
19314 return true;
19315
19316 const auto *VD = dyn_cast<VarDecl>(Val: Var);
19317 if (VD) {
19318 if (VD->isInitCapture())
19319 VarDC = VarDC->getParent();
19320 } else {
19321 VD = Var->getPotentiallyDecomposedVarDecl();
19322 }
19323 assert(VD && "Cannot capture a null variable");
19324
19325 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
19326 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
19327 // We need to sync up the Declaration Context with the
19328 // FunctionScopeIndexToStopAt
19329 if (FunctionScopeIndexToStopAt) {
19330 assert(!FunctionScopes.empty() && "No function scopes to stop at?");
19331 unsigned FSIndex = FunctionScopes.size() - 1;
19332 // When we're parsing the lambda parameter list, the current DeclContext is
19333 // NOT the lambda but its parent. So move away the current LSI before
19334 // aligning DC and FunctionScopeIndexToStopAt.
19335 if (auto *LSI = dyn_cast<LambdaScopeInfo>(Val: FunctionScopes[FSIndex]);
19336 FSIndex && LSI && !LSI->AfterParameterList)
19337 --FSIndex;
19338 assert(MaxFunctionScopesIndex <= FSIndex &&
19339 "FunctionScopeIndexToStopAt should be no greater than FSIndex into "
19340 "FunctionScopes.");
19341 while (FSIndex != MaxFunctionScopesIndex) {
19342 DC = getLambdaAwareParentOfDeclContext(DC);
19343 --FSIndex;
19344 }
19345 }
19346
19347 // Capture global variables if it is required to use private copy of this
19348 // variable.
19349 bool IsGlobal = !VD->hasLocalStorage();
19350 if (IsGlobal && !(LangOpts.OpenMP &&
19351 OpenMP().isOpenMPCapturedDecl(D: Var, /*CheckScopeInfo=*/true,
19352 StopAt: MaxFunctionScopesIndex)))
19353 return true;
19354
19355 if (isa<VarDecl>(Val: Var))
19356 Var = cast<VarDecl>(Var->getCanonicalDecl());
19357
19358 // Walk up the stack to determine whether we can capture the variable,
19359 // performing the "simple" checks that don't depend on type. We stop when
19360 // we've either hit the declared scope of the variable or find an existing
19361 // capture of that variable. We start from the innermost capturing-entity
19362 // (the DC) and ensure that all intervening capturing-entities
19363 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
19364 // declcontext can either capture the variable or have already captured
19365 // the variable.
19366 CaptureType = Var->getType();
19367 DeclRefType = CaptureType.getNonReferenceType();
19368 bool Nested = false;
19369 bool Explicit = (Kind != TryCaptureKind::Implicit);
19370 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
19371 do {
19372
19373 LambdaScopeInfo *LSI = nullptr;
19374 if (!FunctionScopes.empty())
19375 LSI = dyn_cast_or_null<LambdaScopeInfo>(
19376 Val: FunctionScopes[FunctionScopesIndex]);
19377
19378 bool IsInScopeDeclarationContext =
19379 !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator;
19380
19381 if (LSI && !LSI->AfterParameterList) {
19382 // This allows capturing parameters from a default value which does not
19383 // seems correct
19384 if (isa<ParmVarDecl>(Val: Var) && !Var->getDeclContext()->isFunctionOrMethod())
19385 return true;
19386 }
19387 // If the variable is declared in the current context, there is no need to
19388 // capture it.
19389 if (IsInScopeDeclarationContext &&
19390 FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC)
19391 return true;
19392
19393 // Only block literals, captured statements, and lambda expressions can
19394 // capture; other scopes don't work.
19395 DeclContext *ParentDC =
19396 !IsInScopeDeclarationContext
19397 ? DC->getParent()
19398 : getParentOfCapturingContextOrNull(DC, Var, Loc: ExprLoc,
19399 Diagnose: BuildAndDiagnose, S&: *this);
19400 // We need to check for the parent *first* because, if we *have*
19401 // private-captured a global variable, we need to recursively capture it in
19402 // intermediate blocks, lambdas, etc.
19403 if (!ParentDC) {
19404 if (IsGlobal) {
19405 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
19406 break;
19407 }
19408 return true;
19409 }
19410
19411 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
19412 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(Val: FSI);
19413
19414 // Check whether we've already captured it.
19415 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, SubCapturesAreNested&: Nested, CaptureType,
19416 DeclRefType)) {
19417 CSI->getCapture(Var).markUsed(IsODRUse: BuildAndDiagnose);
19418 break;
19419 }
19420
19421 // When evaluating some attributes (like enable_if) we might refer to a
19422 // function parameter appertaining to the same declaration as that
19423 // attribute.
19424 if (const auto *Parm = dyn_cast<ParmVarDecl>(Val: Var);
19425 Parm && Parm->getDeclContext() == DC)
19426 return true;
19427
19428 // If we are instantiating a generic lambda call operator body,
19429 // we do not want to capture new variables. What was captured
19430 // during either a lambdas transformation or initial parsing
19431 // should be used.
19432 if (isGenericLambdaCallOperatorSpecialization(DC)) {
19433 if (BuildAndDiagnose) {
19434 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(Val: CSI);
19435 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
19436 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19437 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19438 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19439 buildLambdaCaptureFixit(Sema&: *this, LSI, Var);
19440 } else
19441 diagnoseUncapturableValueReferenceOrBinding(S&: *this, loc: ExprLoc, var: Var);
19442 }
19443 return true;
19444 }
19445
19446 // Try to capture variable-length arrays types.
19447 if (Var->getType()->isVariablyModifiedType()) {
19448 // We're going to walk down into the type and look for VLA
19449 // expressions.
19450 QualType QTy = Var->getType();
19451 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Val: Var))
19452 QTy = PVD->getOriginalType();
19453 captureVariablyModifiedType(Context, T: QTy, CSI);
19454 }
19455
19456 if (getLangOpts().OpenMP) {
19457 if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(Val: CSI)) {
19458 // OpenMP private variables should not be captured in outer scope, so
19459 // just break here. Similarly, global variables that are captured in a
19460 // target region should not be captured outside the scope of the region.
19461 if (RSI->CapRegionKind == CR_OpenMP) {
19462 // FIXME: We should support capturing structured bindings in OpenMP.
19463 if (isa<BindingDecl>(Val: Var)) {
19464 if (BuildAndDiagnose) {
19465 Diag(ExprLoc, diag::err_capture_binding_openmp) << Var;
19466 Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19467 }
19468 return true;
19469 }
19470 OpenMPClauseKind IsOpenMPPrivateDecl = OpenMP().isOpenMPPrivateDecl(
19471 Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
19472 // If the variable is private (i.e. not captured) and has variably
19473 // modified type, we still need to capture the type for correct
19474 // codegen in all regions, associated with the construct. Currently,
19475 // it is captured in the innermost captured region only.
19476 if (IsOpenMPPrivateDecl != OMPC_unknown &&
19477 Var->getType()->isVariablyModifiedType()) {
19478 QualType QTy = Var->getType();
19479 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Val: Var))
19480 QTy = PVD->getOriginalType();
19481 for (int I = 1,
19482 E = OpenMP().getNumberOfConstructScopes(Level: RSI->OpenMPLevel);
19483 I < E; ++I) {
19484 auto *OuterRSI = cast<CapturedRegionScopeInfo>(
19485 Val: FunctionScopes[FunctionScopesIndex - I]);
19486 assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
19487 "Wrong number of captured regions associated with the "
19488 "OpenMP construct.");
19489 captureVariablyModifiedType(Context, QTy, OuterRSI);
19490 }
19491 }
19492 bool IsTargetCap =
19493 IsOpenMPPrivateDecl != OMPC_private &&
19494 OpenMP().isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
19495 RSI->OpenMPCaptureLevel);
19496 // Do not capture global if it is not privatized in outer regions.
19497 bool IsGlobalCap =
19498 IsGlobal && OpenMP().isOpenMPGlobalCapturedDecl(
19499 D: Var, Level: RSI->OpenMPLevel, CaptureLevel: RSI->OpenMPCaptureLevel);
19500
19501 // When we detect target captures we are looking from inside the
19502 // target region, therefore we need to propagate the capture from the
19503 // enclosing region. Therefore, the capture is not initially nested.
19504 if (IsTargetCap)
19505 OpenMP().adjustOpenMPTargetScopeIndex(FunctionScopesIndex,
19506 Level: RSI->OpenMPLevel);
19507
19508 if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
19509 (IsGlobal && !IsGlobalCap)) {
19510 Nested = !IsTargetCap;
19511 bool HasConst = DeclRefType.isConstQualified();
19512 DeclRefType = DeclRefType.getUnqualifiedType();
19513 // Don't lose diagnostics about assignments to const.
19514 if (HasConst)
19515 DeclRefType.addConst();
19516 CaptureType = Context.getLValueReferenceType(T: DeclRefType);
19517 break;
19518 }
19519 }
19520 }
19521 }
19522 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
19523 // No capture-default, and this is not an explicit capture
19524 // so cannot capture this variable.
19525 if (BuildAndDiagnose) {
19526 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19527 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19528 auto *LSI = cast<LambdaScopeInfo>(Val: CSI);
19529 if (LSI->Lambda) {
19530 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19531 buildLambdaCaptureFixit(Sema&: *this, LSI, Var);
19532 }
19533 // FIXME: If we error out because an outer lambda can not implicitly
19534 // capture a variable that an inner lambda explicitly captures, we
19535 // should have the inner lambda do the explicit capture - because
19536 // it makes for cleaner diagnostics later. This would purely be done
19537 // so that the diagnostic does not misleadingly claim that a variable
19538 // can not be captured by a lambda implicitly even though it is captured
19539 // explicitly. Suggestion:
19540 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19541 // at the function head
19542 // - cache the StartingDeclContext - this must be a lambda
19543 // - captureInLambda in the innermost lambda the variable.
19544 }
19545 return true;
19546 }
19547 Explicit = false;
19548 FunctionScopesIndex--;
19549 if (IsInScopeDeclarationContext)
19550 DC = ParentDC;
19551 } while (!VarDC->Equals(DC));
19552
19553 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19554 // computing the type of the capture at each step, checking type-specific
19555 // requirements, and adding captures if requested.
19556 // If the variable had already been captured previously, we start capturing
19557 // at the lambda nested within that one.
19558 bool Invalid = false;
19559 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
19560 ++I) {
19561 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(Val: FunctionScopes[I]);
19562
19563 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19564 // certain types of variables (unnamed, variably modified types etc.)
19565 // so check for eligibility.
19566 if (!Invalid)
19567 Invalid =
19568 !isVariableCapturable(CSI, Var, Loc: ExprLoc, Diagnose: BuildAndDiagnose, S&: *this);
19569
19570 // After encountering an error, if we're actually supposed to capture, keep
19571 // capturing in nested contexts to suppress any follow-on diagnostics.
19572 if (Invalid && !BuildAndDiagnose)
19573 return true;
19574
19575 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(Val: CSI)) {
19576 Invalid = !captureInBlock(BSI, Var, Loc: ExprLoc, BuildAndDiagnose, CaptureType,
19577 DeclRefType, Nested, S&: *this, Invalid);
19578 Nested = true;
19579 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(Val: CSI)) {
19580 Invalid = !captureInCapturedRegion(
19581 RSI, Var, Loc: ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, RefersToCapturedVariable: Nested,
19582 Kind, /*IsTopScope*/ I == N - 1, S&: *this, Invalid);
19583 Nested = true;
19584 } else {
19585 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(Val: CSI);
19586 Invalid =
19587 !captureInLambda(LSI, Var, Loc: ExprLoc, BuildAndDiagnose, CaptureType,
19588 DeclRefType, RefersToCapturedVariable: Nested, Kind, EllipsisLoc,
19589 /*IsTopScope*/ I == N - 1, S&: *this, Invalid);
19590 Nested = true;
19591 }
19592
19593 if (Invalid && !BuildAndDiagnose)
19594 return true;
19595 }
19596 return Invalid;
19597}
19598
19599bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
19600 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
19601 QualType CaptureType;
19602 QualType DeclRefType;
19603 return tryCaptureVariable(Var, ExprLoc: Loc, Kind, EllipsisLoc,
19604 /*BuildAndDiagnose=*/true, CaptureType,
19605 DeclRefType, FunctionScopeIndexToStopAt: nullptr);
19606}
19607
19608bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
19609 QualType CaptureType;
19610 QualType DeclRefType;
19611 return !tryCaptureVariable(
19612 Var, ExprLoc: Loc, Kind: TryCaptureKind::Implicit, EllipsisLoc: SourceLocation(),
19613 /*BuildAndDiagnose=*/false, CaptureType, DeclRefType, FunctionScopeIndexToStopAt: nullptr);
19614}
19615
19616QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
19617 assert(Var && "Null value cannot be captured");
19618
19619 QualType CaptureType;
19620 QualType DeclRefType;
19621
19622 // Determine whether we can capture this variable.
19623 if (tryCaptureVariable(Var, ExprLoc: Loc, Kind: TryCaptureKind::Implicit, EllipsisLoc: SourceLocation(),
19624 /*BuildAndDiagnose=*/false, CaptureType, DeclRefType,
19625 FunctionScopeIndexToStopAt: nullptr))
19626 return QualType();
19627
19628 return DeclRefType;
19629}
19630
19631namespace {
19632// Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
19633// The produced TemplateArgumentListInfo* points to data stored within this
19634// object, so should only be used in contexts where the pointer will not be
19635// used after the CopiedTemplateArgs object is destroyed.
19636class CopiedTemplateArgs {
19637 bool HasArgs;
19638 TemplateArgumentListInfo TemplateArgStorage;
19639public:
19640 template<typename RefExpr>
19641 CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
19642 if (HasArgs)
19643 E->copyTemplateArgumentsInto(TemplateArgStorage);
19644 }
19645 operator TemplateArgumentListInfo*()
19646#ifdef __has_cpp_attribute
19647#if __has_cpp_attribute(clang::lifetimebound)
19648 [[clang::lifetimebound]]
19649#endif
19650#endif
19651 {
19652 return HasArgs ? &TemplateArgStorage : nullptr;
19653 }
19654};
19655}
19656
19657/// Walk the set of potential results of an expression and mark them all as
19658/// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19659///
19660/// \return A new expression if we found any potential results, ExprEmpty() if
19661/// not, and ExprError() if we diagnosed an error.
19662static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
19663 NonOdrUseReason NOUR) {
19664 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19665 // an object that satisfies the requirements for appearing in a
19666 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19667 // is immediately applied." This function handles the lvalue-to-rvalue
19668 // conversion part.
19669 //
19670 // If we encounter a node that claims to be an odr-use but shouldn't be, we
19671 // transform it into the relevant kind of non-odr-use node and rebuild the
19672 // tree of nodes leading to it.
19673 //
19674 // This is a mini-TreeTransform that only transforms a restricted subset of
19675 // nodes (and only certain operands of them).
19676
19677 // Rebuild a subexpression.
19678 auto Rebuild = [&](Expr *Sub) {
19679 return rebuildPotentialResultsAsNonOdrUsed(S, E: Sub, NOUR);
19680 };
19681
19682 // Check whether a potential result satisfies the requirements of NOUR.
19683 auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
19684 // Any entity other than a VarDecl is always odr-used whenever it's named
19685 // in a potentially-evaluated expression.
19686 auto *VD = dyn_cast<VarDecl>(Val: D);
19687 if (!VD)
19688 return true;
19689
19690 // C++2a [basic.def.odr]p4:
19691 // A variable x whose name appears as a potentially-evalauted expression
19692 // e is odr-used by e unless
19693 // -- x is a reference that is usable in constant expressions, or
19694 // -- x is a variable of non-reference type that is usable in constant
19695 // expressions and has no mutable subobjects, and e is an element of
19696 // the set of potential results of an expression of
19697 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
19698 // conversion is applied, or
19699 // -- x is a variable of non-reference type, and e is an element of the
19700 // set of potential results of a discarded-value expression to which
19701 // the lvalue-to-rvalue conversion is not applied
19702 //
19703 // We check the first bullet and the "potentially-evaluated" condition in
19704 // BuildDeclRefExpr. We check the type requirements in the second bullet
19705 // in CheckLValueToRValueConversionOperand below.
19706 switch (NOUR) {
19707 case NOUR_None:
19708 case NOUR_Unevaluated:
19709 llvm_unreachable("unexpected non-odr-use-reason");
19710
19711 case NOUR_Constant:
19712 // Constant references were handled when they were built.
19713 if (VD->getType()->isReferenceType())
19714 return true;
19715 if (auto *RD = VD->getType()->getAsCXXRecordDecl())
19716 if (RD->hasDefinition() && RD->hasMutableFields())
19717 return true;
19718 if (!VD->isUsableInConstantExpressions(C: S.Context))
19719 return true;
19720 break;
19721
19722 case NOUR_Discarded:
19723 if (VD->getType()->isReferenceType())
19724 return true;
19725 break;
19726 }
19727 return false;
19728 };
19729
19730 // Check whether this expression may be odr-used in CUDA/HIP.
19731 auto MaybeCUDAODRUsed = [&]() -> bool {
19732 if (!S.LangOpts.CUDA)
19733 return false;
19734 LambdaScopeInfo *LSI = S.getCurLambda();
19735 if (!LSI)
19736 return false;
19737 auto *DRE = dyn_cast<DeclRefExpr>(Val: E);
19738 if (!DRE)
19739 return false;
19740 auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl());
19741 if (!VD)
19742 return false;
19743 return LSI->CUDAPotentialODRUsedVars.count(Ptr: VD);
19744 };
19745
19746 // Mark that this expression does not constitute an odr-use.
19747 auto MarkNotOdrUsed = [&] {
19748 if (!MaybeCUDAODRUsed()) {
19749 S.MaybeODRUseExprs.remove(X: E);
19750 if (LambdaScopeInfo *LSI = S.getCurLambda())
19751 LSI->markVariableExprAsNonODRUsed(CapturingVarExpr: E);
19752 }
19753 };
19754
19755 // C++2a [basic.def.odr]p2:
19756 // The set of potential results of an expression e is defined as follows:
19757 switch (E->getStmtClass()) {
19758 // -- If e is an id-expression, ...
19759 case Expr::DeclRefExprClass: {
19760 auto *DRE = cast<DeclRefExpr>(Val: E);
19761 if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
19762 break;
19763
19764 // Rebuild as a non-odr-use DeclRefExpr.
19765 MarkNotOdrUsed();
19766 return DeclRefExpr::Create(
19767 S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
19768 DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
19769 DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
19770 DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
19771 }
19772
19773 case Expr::FunctionParmPackExprClass: {
19774 auto *FPPE = cast<FunctionParmPackExpr>(Val: E);
19775 // If any of the declarations in the pack is odr-used, then the expression
19776 // as a whole constitutes an odr-use.
19777 for (ValueDecl *D : *FPPE)
19778 if (IsPotentialResultOdrUsed(D))
19779 return ExprEmpty();
19780
19781 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
19782 // nothing cares about whether we marked this as an odr-use, but it might
19783 // be useful for non-compiler tools.
19784 MarkNotOdrUsed();
19785 break;
19786 }
19787
19788 // -- If e is a subscripting operation with an array operand...
19789 case Expr::ArraySubscriptExprClass: {
19790 auto *ASE = cast<ArraySubscriptExpr>(Val: E);
19791 Expr *OldBase = ASE->getBase()->IgnoreImplicit();
19792 if (!OldBase->getType()->isArrayType())
19793 break;
19794 ExprResult Base = Rebuild(OldBase);
19795 if (!Base.isUsable())
19796 return Base;
19797 Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
19798 Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
19799 SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
19800 return S.ActOnArraySubscriptExpr(S: nullptr, base: LHS, lbLoc: LBracketLoc, ArgExprs: RHS,
19801 rbLoc: ASE->getRBracketLoc());
19802 }
19803
19804 case Expr::MemberExprClass: {
19805 auto *ME = cast<MemberExpr>(Val: E);
19806 // -- If e is a class member access expression [...] naming a non-static
19807 // data member...
19808 if (isa<FieldDecl>(Val: ME->getMemberDecl())) {
19809 ExprResult Base = Rebuild(ME->getBase());
19810 if (!Base.isUsable())
19811 return Base;
19812 return MemberExpr::Create(
19813 C: S.Context, Base: Base.get(), IsArrow: ME->isArrow(), OperatorLoc: ME->getOperatorLoc(),
19814 QualifierLoc: ME->getQualifierLoc(), TemplateKWLoc: ME->getTemplateKeywordLoc(),
19815 MemberDecl: ME->getMemberDecl(), FoundDecl: ME->getFoundDecl(), MemberNameInfo: ME->getMemberNameInfo(),
19816 TemplateArgs: CopiedTemplateArgs(ME), T: ME->getType(), VK: ME->getValueKind(),
19817 OK: ME->getObjectKind(), NOUR: ME->isNonOdrUse());
19818 }
19819
19820 if (ME->getMemberDecl()->isCXXInstanceMember())
19821 break;
19822
19823 // -- If e is a class member access expression naming a static data member,
19824 // ...
19825 if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
19826 break;
19827
19828 // Rebuild as a non-odr-use MemberExpr.
19829 MarkNotOdrUsed();
19830 return MemberExpr::Create(
19831 C: S.Context, Base: ME->getBase(), IsArrow: ME->isArrow(), OperatorLoc: ME->getOperatorLoc(),
19832 QualifierLoc: ME->getQualifierLoc(), TemplateKWLoc: ME->getTemplateKeywordLoc(), MemberDecl: ME->getMemberDecl(),
19833 FoundDecl: ME->getFoundDecl(), MemberNameInfo: ME->getMemberNameInfo(), TemplateArgs: CopiedTemplateArgs(ME),
19834 T: ME->getType(), VK: ME->getValueKind(), OK: ME->getObjectKind(), NOUR);
19835 }
19836
19837 case Expr::BinaryOperatorClass: {
19838 auto *BO = cast<BinaryOperator>(Val: E);
19839 Expr *LHS = BO->getLHS();
19840 Expr *RHS = BO->getRHS();
19841 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
19842 if (BO->getOpcode() == BO_PtrMemD) {
19843 ExprResult Sub = Rebuild(LHS);
19844 if (!Sub.isUsable())
19845 return Sub;
19846 BO->setLHS(Sub.get());
19847 // -- If e is a comma expression, ...
19848 } else if (BO->getOpcode() == BO_Comma) {
19849 ExprResult Sub = Rebuild(RHS);
19850 if (!Sub.isUsable())
19851 return Sub;
19852 BO->setRHS(Sub.get());
19853 } else {
19854 break;
19855 }
19856 return ExprResult(BO);
19857 }
19858
19859 // -- If e has the form (e1)...
19860 case Expr::ParenExprClass: {
19861 auto *PE = cast<ParenExpr>(Val: E);
19862 ExprResult Sub = Rebuild(PE->getSubExpr());
19863 if (!Sub.isUsable())
19864 return Sub;
19865 return S.ActOnParenExpr(L: PE->getLParen(), R: PE->getRParen(), E: Sub.get());
19866 }
19867
19868 // -- If e is a glvalue conditional expression, ...
19869 // We don't apply this to a binary conditional operator. FIXME: Should we?
19870 case Expr::ConditionalOperatorClass: {
19871 auto *CO = cast<ConditionalOperator>(Val: E);
19872 ExprResult LHS = Rebuild(CO->getLHS());
19873 if (LHS.isInvalid())
19874 return ExprError();
19875 ExprResult RHS = Rebuild(CO->getRHS());
19876 if (RHS.isInvalid())
19877 return ExprError();
19878 if (!LHS.isUsable() && !RHS.isUsable())
19879 return ExprEmpty();
19880 if (!LHS.isUsable())
19881 LHS = CO->getLHS();
19882 if (!RHS.isUsable())
19883 RHS = CO->getRHS();
19884 return S.ActOnConditionalOp(QuestionLoc: CO->getQuestionLoc(), ColonLoc: CO->getColonLoc(),
19885 CondExpr: CO->getCond(), LHSExpr: LHS.get(), RHSExpr: RHS.get());
19886 }
19887
19888 // [Clang extension]
19889 // -- If e has the form __extension__ e1...
19890 case Expr::UnaryOperatorClass: {
19891 auto *UO = cast<UnaryOperator>(Val: E);
19892 if (UO->getOpcode() != UO_Extension)
19893 break;
19894 ExprResult Sub = Rebuild(UO->getSubExpr());
19895 if (!Sub.isUsable())
19896 return Sub;
19897 return S.BuildUnaryOp(S: nullptr, OpLoc: UO->getOperatorLoc(), Opc: UO_Extension,
19898 Input: Sub.get());
19899 }
19900
19901 // [Clang extension]
19902 // -- If e has the form _Generic(...), the set of potential results is the
19903 // union of the sets of potential results of the associated expressions.
19904 case Expr::GenericSelectionExprClass: {
19905 auto *GSE = cast<GenericSelectionExpr>(Val: E);
19906
19907 SmallVector<Expr *, 4> AssocExprs;
19908 bool AnyChanged = false;
19909 for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
19910 ExprResult AssocExpr = Rebuild(OrigAssocExpr);
19911 if (AssocExpr.isInvalid())
19912 return ExprError();
19913 if (AssocExpr.isUsable()) {
19914 AssocExprs.push_back(Elt: AssocExpr.get());
19915 AnyChanged = true;
19916 } else {
19917 AssocExprs.push_back(Elt: OrigAssocExpr);
19918 }
19919 }
19920
19921 void *ExOrTy = nullptr;
19922 bool IsExpr = GSE->isExprPredicate();
19923 if (IsExpr)
19924 ExOrTy = GSE->getControllingExpr();
19925 else
19926 ExOrTy = GSE->getControllingType();
19927 return AnyChanged ? S.CreateGenericSelectionExpr(
19928 KeyLoc: GSE->getGenericLoc(), DefaultLoc: GSE->getDefaultLoc(),
19929 RParenLoc: GSE->getRParenLoc(), PredicateIsExpr: IsExpr, ControllingExprOrType: ExOrTy,
19930 Types: GSE->getAssocTypeSourceInfos(), Exprs: AssocExprs)
19931 : ExprEmpty();
19932 }
19933
19934 // [Clang extension]
19935 // -- If e has the form __builtin_choose_expr(...), the set of potential
19936 // results is the union of the sets of potential results of the
19937 // second and third subexpressions.
19938 case Expr::ChooseExprClass: {
19939 auto *CE = cast<ChooseExpr>(Val: E);
19940
19941 ExprResult LHS = Rebuild(CE->getLHS());
19942 if (LHS.isInvalid())
19943 return ExprError();
19944
19945 ExprResult RHS = Rebuild(CE->getLHS());
19946 if (RHS.isInvalid())
19947 return ExprError();
19948
19949 if (!LHS.get() && !RHS.get())
19950 return ExprEmpty();
19951 if (!LHS.isUsable())
19952 LHS = CE->getLHS();
19953 if (!RHS.isUsable())
19954 RHS = CE->getRHS();
19955
19956 return S.ActOnChooseExpr(BuiltinLoc: CE->getBuiltinLoc(), CondExpr: CE->getCond(), LHSExpr: LHS.get(),
19957 RHSExpr: RHS.get(), RPLoc: CE->getRParenLoc());
19958 }
19959
19960 // Step through non-syntactic nodes.
19961 case Expr::ConstantExprClass: {
19962 auto *CE = cast<ConstantExpr>(Val: E);
19963 ExprResult Sub = Rebuild(CE->getSubExpr());
19964 if (!Sub.isUsable())
19965 return Sub;
19966 return ConstantExpr::Create(Context: S.Context, E: Sub.get());
19967 }
19968
19969 // We could mostly rely on the recursive rebuilding to rebuild implicit
19970 // casts, but not at the top level, so rebuild them here.
19971 case Expr::ImplicitCastExprClass: {
19972 auto *ICE = cast<ImplicitCastExpr>(Val: E);
19973 // Only step through the narrow set of cast kinds we expect to encounter.
19974 // Anything else suggests we've left the region in which potential results
19975 // can be found.
19976 switch (ICE->getCastKind()) {
19977 case CK_NoOp:
19978 case CK_DerivedToBase:
19979 case CK_UncheckedDerivedToBase: {
19980 ExprResult Sub = Rebuild(ICE->getSubExpr());
19981 if (!Sub.isUsable())
19982 return Sub;
19983 CXXCastPath Path(ICE->path());
19984 return S.ImpCastExprToType(E: Sub.get(), Type: ICE->getType(), CK: ICE->getCastKind(),
19985 VK: ICE->getValueKind(), BasePath: &Path);
19986 }
19987
19988 default:
19989 break;
19990 }
19991 break;
19992 }
19993
19994 default:
19995 break;
19996 }
19997
19998 // Can't traverse through this node. Nothing to do.
19999 return ExprEmpty();
20000}
20001
20002ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
20003 // Check whether the operand is or contains an object of non-trivial C union
20004 // type.
20005 if (E->getType().isVolatileQualified() &&
20006 (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
20007 E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
20008 checkNonTrivialCUnion(QT: E->getType(), Loc: E->getExprLoc(),
20009 UseContext: NonTrivialCUnionContext::LValueToRValueVolatile,
20010 NonTrivialKind: NTCUK_Destruct | NTCUK_Copy);
20011
20012 // C++2a [basic.def.odr]p4:
20013 // [...] an expression of non-volatile-qualified non-class type to which
20014 // the lvalue-to-rvalue conversion is applied [...]
20015 if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
20016 return E;
20017
20018 ExprResult Result =
20019 rebuildPotentialResultsAsNonOdrUsed(S&: *this, E, NOUR: NOUR_Constant);
20020 if (Result.isInvalid())
20021 return ExprError();
20022 return Result.get() ? Result : E;
20023}
20024
20025ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
20026 Res = CorrectDelayedTyposInExpr(ER: Res);
20027
20028 if (!Res.isUsable())
20029 return Res;
20030
20031 // If a constant-expression is a reference to a variable where we delay
20032 // deciding whether it is an odr-use, just assume we will apply the
20033 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
20034 // (a non-type template argument), we have special handling anyway.
20035 return CheckLValueToRValueConversionOperand(E: Res.get());
20036}
20037
20038void Sema::CleanupVarDeclMarking() {
20039 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
20040 // call.
20041 MaybeODRUseExprSet LocalMaybeODRUseExprs;
20042 std::swap(LHS&: LocalMaybeODRUseExprs, RHS&: MaybeODRUseExprs);
20043
20044 for (Expr *E : LocalMaybeODRUseExprs) {
20045 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) {
20046 MarkVarDeclODRUsed(cast<VarDecl>(Val: DRE->getDecl()),
20047 DRE->getLocation(), *this);
20048 } else if (auto *ME = dyn_cast<MemberExpr>(Val: E)) {
20049 MarkVarDeclODRUsed(cast<VarDecl>(Val: ME->getMemberDecl()), ME->getMemberLoc(),
20050 *this);
20051 } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(Val: E)) {
20052 for (ValueDecl *VD : *FP)
20053 MarkVarDeclODRUsed(V: VD, Loc: FP->getParameterPackLocation(), SemaRef&: *this);
20054 } else {
20055 llvm_unreachable("Unexpected expression");
20056 }
20057 }
20058
20059 assert(MaybeODRUseExprs.empty() &&
20060 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
20061}
20062
20063static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
20064 ValueDecl *Var, Expr *E) {
20065 VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
20066 if (!VD)
20067 return;
20068
20069 const bool RefersToEnclosingScope =
20070 (SemaRef.CurContext != VD->getDeclContext() &&
20071 VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
20072 if (RefersToEnclosingScope) {
20073 LambdaScopeInfo *const LSI =
20074 SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
20075 if (LSI && (!LSI->CallOperator ||
20076 !LSI->CallOperator->Encloses(DC: Var->getDeclContext()))) {
20077 // If a variable could potentially be odr-used, defer marking it so
20078 // until we finish analyzing the full expression for any
20079 // lvalue-to-rvalue
20080 // or discarded value conversions that would obviate odr-use.
20081 // Add it to the list of potential captures that will be analyzed
20082 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
20083 // unless the variable is a reference that was initialized by a constant
20084 // expression (this will never need to be captured or odr-used).
20085 //
20086 // FIXME: We can simplify this a lot after implementing P0588R1.
20087 assert(E && "Capture variable should be used in an expression.");
20088 if (!Var->getType()->isReferenceType() ||
20089 !VD->isUsableInConstantExpressions(C: SemaRef.Context))
20090 LSI->addPotentialCapture(VarExpr: E->IgnoreParens());
20091 }
20092 }
20093}
20094
20095static void DoMarkVarDeclReferenced(
20096 Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
20097 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20098 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
20099 isa<FunctionParmPackExpr>(E)) &&
20100 "Invalid Expr argument to DoMarkVarDeclReferenced");
20101 Var->setReferenced();
20102
20103 if (Var->isInvalidDecl())
20104 return;
20105
20106 auto *MSI = Var->getMemberSpecializationInfo();
20107 TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
20108 : Var->getTemplateSpecializationKind();
20109
20110 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20111 bool UsableInConstantExpr =
20112 Var->mightBeUsableInConstantExpressions(C: SemaRef.Context);
20113
20114 if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
20115 RefsMinusAssignments.insert(KV: {Var, 0}).first->getSecond()++;
20116 }
20117
20118 // C++20 [expr.const]p12:
20119 // A variable [...] is needed for constant evaluation if it is [...] a
20120 // variable whose name appears as a potentially constant evaluated
20121 // expression that is either a contexpr variable or is of non-volatile
20122 // const-qualified integral type or of reference type
20123 bool NeededForConstantEvaluation =
20124 isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
20125
20126 bool NeedDefinition =
20127 OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
20128
20129 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
20130 "Can't instantiate a partial template specialization.");
20131
20132 // If this might be a member specialization of a static data member, check
20133 // the specialization is visible. We already did the checks for variable
20134 // template specializations when we created them.
20135 if (NeedDefinition && TSK != TSK_Undeclared &&
20136 !isa<VarTemplateSpecializationDecl>(Val: Var))
20137 SemaRef.checkSpecializationVisibility(Loc, Var);
20138
20139 // Perform implicit instantiation of static data members, static data member
20140 // templates of class templates, and variable template specializations. Delay
20141 // instantiations of variable templates, except for those that could be used
20142 // in a constant expression.
20143 if (NeedDefinition && isTemplateInstantiation(Kind: TSK)) {
20144 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
20145 // instantiation declaration if a variable is usable in a constant
20146 // expression (among other cases).
20147 bool TryInstantiating =
20148 TSK == TSK_ImplicitInstantiation ||
20149 (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
20150
20151 if (TryInstantiating) {
20152 SourceLocation PointOfInstantiation =
20153 MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
20154 bool FirstInstantiation = PointOfInstantiation.isInvalid();
20155 if (FirstInstantiation) {
20156 PointOfInstantiation = Loc;
20157 if (MSI)
20158 MSI->setPointOfInstantiation(PointOfInstantiation);
20159 // FIXME: Notify listener.
20160 else
20161 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
20162 }
20163
20164 if (UsableInConstantExpr || Var->getType()->isUndeducedType()) {
20165 // Do not defer instantiations of variables that could be used in a
20166 // constant expression.
20167 // The type deduction also needs a complete initializer.
20168 SemaRef.runWithSufficientStackSpace(Loc: PointOfInstantiation, Fn: [&] {
20169 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
20170 });
20171
20172 // The size of an incomplete array type can be updated by
20173 // instantiating the initializer. The DeclRefExpr's type should be
20174 // updated accordingly too, or users of it would be confused!
20175 if (E)
20176 SemaRef.getCompletedType(E);
20177
20178 // Re-set the member to trigger a recomputation of the dependence bits
20179 // for the expression.
20180 if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(Val: E))
20181 DRE->setDecl(DRE->getDecl());
20182 else if (auto *ME = dyn_cast_or_null<MemberExpr>(Val: E))
20183 ME->setMemberDecl(ME->getMemberDecl());
20184 } else if (FirstInstantiation) {
20185 SemaRef.PendingInstantiations
20186 .push_back(std::make_pair(x&: Var, y&: PointOfInstantiation));
20187 } else {
20188 bool Inserted = false;
20189 for (auto &I : SemaRef.SavedPendingInstantiations) {
20190 auto Iter = llvm::find_if(
20191 Range&: I, P: [Var](const Sema::PendingImplicitInstantiation &P) {
20192 return P.first == Var;
20193 });
20194 if (Iter != I.end()) {
20195 SemaRef.PendingInstantiations.push_back(x: *Iter);
20196 I.erase(position: Iter);
20197 Inserted = true;
20198 break;
20199 }
20200 }
20201
20202 // FIXME: For a specialization of a variable template, we don't
20203 // distinguish between "declaration and type implicitly instantiated"
20204 // and "implicit instantiation of definition requested", so we have
20205 // no direct way to avoid enqueueing the pending instantiation
20206 // multiple times.
20207 if (isa<VarTemplateSpecializationDecl>(Val: Var) && !Inserted)
20208 SemaRef.PendingInstantiations
20209 .push_back(std::make_pair(x&: Var, y&: PointOfInstantiation));
20210 }
20211 }
20212 }
20213
20214 // C++2a [basic.def.odr]p4:
20215 // A variable x whose name appears as a potentially-evaluated expression e
20216 // is odr-used by e unless
20217 // -- x is a reference that is usable in constant expressions
20218 // -- x is a variable of non-reference type that is usable in constant
20219 // expressions and has no mutable subobjects [FIXME], and e is an
20220 // element of the set of potential results of an expression of
20221 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
20222 // conversion is applied
20223 // -- x is a variable of non-reference type, and e is an element of the set
20224 // of potential results of a discarded-value expression to which the
20225 // lvalue-to-rvalue conversion is not applied [FIXME]
20226 //
20227 // We check the first part of the second bullet here, and
20228 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
20229 // FIXME: To get the third bullet right, we need to delay this even for
20230 // variables that are not usable in constant expressions.
20231
20232 // If we already know this isn't an odr-use, there's nothing more to do.
20233 if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(Val: E))
20234 if (DRE->isNonOdrUse())
20235 return;
20236 if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(Val: E))
20237 if (ME->isNonOdrUse())
20238 return;
20239
20240 switch (OdrUse) {
20241 case OdrUseContext::None:
20242 // In some cases, a variable may not have been marked unevaluated, if it
20243 // appears in a defaukt initializer.
20244 assert((!E || isa<FunctionParmPackExpr>(E) ||
20245 SemaRef.isUnevaluatedContext()) &&
20246 "missing non-odr-use marking for unevaluated decl ref");
20247 break;
20248
20249 case OdrUseContext::FormallyOdrUsed:
20250 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
20251 // behavior.
20252 break;
20253
20254 case OdrUseContext::Used:
20255 // If we might later find that this expression isn't actually an odr-use,
20256 // delay the marking.
20257 if (E && Var->isUsableInConstantExpressions(C: SemaRef.Context))
20258 SemaRef.MaybeODRUseExprs.insert(X: E);
20259 else
20260 MarkVarDeclODRUsed(Var, Loc, SemaRef);
20261 break;
20262
20263 case OdrUseContext::Dependent:
20264 // If this is a dependent context, we don't need to mark variables as
20265 // odr-used, but we may still need to track them for lambda capture.
20266 // FIXME: Do we also need to do this inside dependent typeid expressions
20267 // (which are modeled as unevaluated at this point)?
20268 DoMarkPotentialCapture(SemaRef, Loc, Var, E);
20269 break;
20270 }
20271}
20272
20273static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
20274 BindingDecl *BD, Expr *E) {
20275 BD->setReferenced();
20276
20277 if (BD->isInvalidDecl())
20278 return;
20279
20280 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20281 if (OdrUse == OdrUseContext::Used) {
20282 QualType CaptureType, DeclRefType;
20283 SemaRef.tryCaptureVariable(BD, Loc, TryCaptureKind::Implicit,
20284 /*EllipsisLoc*/ SourceLocation(),
20285 /*BuildAndDiagnose*/ true, CaptureType,
20286 DeclRefType,
20287 /*FunctionScopeIndexToStopAt*/ nullptr);
20288 } else if (OdrUse == OdrUseContext::Dependent) {
20289 DoMarkPotentialCapture(SemaRef, Loc, BD, E);
20290 }
20291}
20292
20293void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
20294 DoMarkVarDeclReferenced(SemaRef&: *this, Loc, Var, E: nullptr, RefsMinusAssignments);
20295}
20296
20297// C++ [temp.dep.expr]p3:
20298// An id-expression is type-dependent if it contains:
20299// - an identifier associated by name lookup with an entity captured by copy
20300// in a lambda-expression that has an explicit object parameter whose type
20301// is dependent ([dcl.fct]),
20302static void FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(
20303 Sema &SemaRef, ValueDecl *D, Expr *E) {
20304 auto *ID = dyn_cast<DeclRefExpr>(Val: E);
20305 if (!ID || ID->isTypeDependent() || !ID->refersToEnclosingVariableOrCapture())
20306 return;
20307
20308 // If any enclosing lambda with a dependent explicit object parameter either
20309 // explicitly captures the variable by value, or has a capture default of '='
20310 // and does not capture the variable by reference, then the type of the DRE
20311 // is dependent on the type of that lambda's explicit object parameter.
20312 auto IsDependent = [&]() {
20313 for (auto *Scope : llvm::reverse(C&: SemaRef.FunctionScopes)) {
20314 auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Val: Scope);
20315 if (!LSI)
20316 continue;
20317
20318 if (LSI->Lambda && !LSI->Lambda->Encloses(SemaRef.CurContext) &&
20319 LSI->AfterParameterList)
20320 return false;
20321
20322 const auto *MD = LSI->CallOperator;
20323 if (MD->getType().isNull())
20324 continue;
20325
20326 const auto *Ty = MD->getType()->getAs<FunctionProtoType>();
20327 if (!Ty || !MD->isExplicitObjectMemberFunction() ||
20328 !Ty->getParamType(0)->isDependentType())
20329 continue;
20330
20331 if (auto *C = LSI->CaptureMap.count(D) ? &LSI->getCapture(D) : nullptr) {
20332 if (C->isCopyCapture())
20333 return true;
20334 continue;
20335 }
20336
20337 if (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByval)
20338 return true;
20339 }
20340 return false;
20341 }();
20342
20343 ID->setCapturedByCopyInLambdaWithExplicitObjectParameter(
20344 Set: IsDependent, Context: SemaRef.getASTContext());
20345}
20346
20347static void
20348MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
20349 bool MightBeOdrUse,
20350 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20351 if (SemaRef.OpenMP().isInOpenMPDeclareTargetContext())
20352 SemaRef.OpenMP().checkDeclIsAllowedInOpenMPTarget(E, D);
20353
20354 if (VarDecl *Var = dyn_cast<VarDecl>(Val: D)) {
20355 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
20356 if (SemaRef.getLangOpts().CPlusPlus)
20357 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20358 Var, E);
20359 return;
20360 }
20361
20362 if (BindingDecl *Decl = dyn_cast<BindingDecl>(Val: D)) {
20363 DoMarkBindingDeclReferenced(SemaRef, Loc, BD: Decl, E);
20364 if (SemaRef.getLangOpts().CPlusPlus)
20365 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20366 Decl, E);
20367 return;
20368 }
20369 SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
20370
20371 // If this is a call to a method via a cast, also mark the method in the
20372 // derived class used in case codegen can devirtualize the call.
20373 const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E);
20374 if (!ME)
20375 return;
20376 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: ME->getMemberDecl());
20377 if (!MD)
20378 return;
20379 // Only attempt to devirtualize if this is truly a virtual call.
20380 bool IsVirtualCall = MD->isVirtual() &&
20381 ME->performsVirtualDispatch(LO: SemaRef.getLangOpts());
20382 if (!IsVirtualCall)
20383 return;
20384
20385 // If it's possible to devirtualize the call, mark the called function
20386 // referenced.
20387 CXXMethodDecl *DM = MD->getDevirtualizedMethod(
20388 Base: ME->getBase(), IsAppleKext: SemaRef.getLangOpts().AppleKext);
20389 if (DM)
20390 SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
20391}
20392
20393void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
20394 // [basic.def.odr] (CWG 1614)
20395 // A function is named by an expression or conversion [...]
20396 // unless it is a pure virtual function and either the expression is not an
20397 // id-expression naming the function with an explicitly qualified name or
20398 // the expression forms a pointer to member
20399 bool OdrUse = true;
20400 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: E->getDecl()))
20401 if (Method->isVirtual() &&
20402 !Method->getDevirtualizedMethod(Base, IsAppleKext: getLangOpts().AppleKext))
20403 OdrUse = false;
20404
20405 if (auto *FD = dyn_cast<FunctionDecl>(Val: E->getDecl())) {
20406 if (!isUnevaluatedContext() && !isConstantEvaluatedContext() &&
20407 !isImmediateFunctionContext() &&
20408 !isCheckingDefaultArgumentOrInitializer() &&
20409 FD->isImmediateFunction() && !RebuildingImmediateInvocation &&
20410 !FD->isDependentContext())
20411 ExprEvalContexts.back().ReferenceToConsteval.insert(Ptr: E);
20412 }
20413 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
20414 RefsMinusAssignments);
20415}
20416
20417void Sema::MarkMemberReferenced(MemberExpr *E) {
20418 // C++11 [basic.def.odr]p2:
20419 // A non-overloaded function whose name appears as a potentially-evaluated
20420 // expression or a member of a set of candidate functions, if selected by
20421 // overload resolution when referred to from a potentially-evaluated
20422 // expression, is odr-used, unless it is a pure virtual function and its
20423 // name is not explicitly qualified.
20424 bool MightBeOdrUse = true;
20425 if (E->performsVirtualDispatch(LO: getLangOpts())) {
20426 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: E->getMemberDecl()))
20427 if (Method->isPureVirtual())
20428 MightBeOdrUse = false;
20429 }
20430 SourceLocation Loc =
20431 E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
20432 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
20433 RefsMinusAssignments);
20434}
20435
20436void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
20437 for (ValueDecl *VD : *E)
20438 MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
20439 RefsMinusAssignments);
20440}
20441
20442/// Perform marking for a reference to an arbitrary declaration. It
20443/// marks the declaration referenced, and performs odr-use checking for
20444/// functions and variables. This method should not be used when building a
20445/// normal expression which refers to a variable.
20446void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
20447 bool MightBeOdrUse) {
20448 if (MightBeOdrUse) {
20449 if (auto *VD = dyn_cast<VarDecl>(Val: D)) {
20450 MarkVariableReferenced(Loc, Var: VD);
20451 return;
20452 }
20453 }
20454 if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
20455 MarkFunctionReferenced(Loc, Func: FD, MightBeOdrUse);
20456 return;
20457 }
20458 D->setReferenced();
20459}
20460
20461namespace {
20462 // Mark all of the declarations used by a type as referenced.
20463 // FIXME: Not fully implemented yet! We need to have a better understanding
20464 // of when we're entering a context we should not recurse into.
20465 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20466 // TreeTransforms rebuilding the type in a new context. Rather than
20467 // duplicating the TreeTransform logic, we should consider reusing it here.
20468 // Currently that causes problems when rebuilding LambdaExprs.
20469class MarkReferencedDecls : public DynamicRecursiveASTVisitor {
20470 Sema &S;
20471 SourceLocation Loc;
20472
20473public:
20474 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) {}
20475
20476 bool TraverseTemplateArgument(const TemplateArgument &Arg) override;
20477};
20478}
20479
20480bool MarkReferencedDecls::TraverseTemplateArgument(
20481 const TemplateArgument &Arg) {
20482 {
20483 // A non-type template argument is a constant-evaluated context.
20484 EnterExpressionEvaluationContext Evaluated(
20485 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
20486 if (Arg.getKind() == TemplateArgument::Declaration) {
20487 if (Decl *D = Arg.getAsDecl())
20488 S.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse: true);
20489 } else if (Arg.getKind() == TemplateArgument::Expression) {
20490 S.MarkDeclarationsReferencedInExpr(E: Arg.getAsExpr(), SkipLocalVariables: false);
20491 }
20492 }
20493
20494 return DynamicRecursiveASTVisitor::TraverseTemplateArgument(Arg);
20495}
20496
20497void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
20498 MarkReferencedDecls Marker(*this, Loc);
20499 Marker.TraverseType(T);
20500}
20501
20502namespace {
20503/// Helper class that marks all of the declarations referenced by
20504/// potentially-evaluated subexpressions as "referenced".
20505class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
20506public:
20507 typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
20508 bool SkipLocalVariables;
20509 ArrayRef<const Expr *> StopAt;
20510
20511 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
20512 ArrayRef<const Expr *> StopAt)
20513 : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
20514
20515 void visitUsedDecl(SourceLocation Loc, Decl *D) {
20516 S.MarkFunctionReferenced(Loc, Func: cast<FunctionDecl>(Val: D));
20517 }
20518
20519 void Visit(Expr *E) {
20520 if (llvm::is_contained(Range&: StopAt, Element: E))
20521 return;
20522 Inherited::Visit(E);
20523 }
20524
20525 void VisitConstantExpr(ConstantExpr *E) {
20526 // Don't mark declarations within a ConstantExpression, as this expression
20527 // will be evaluated and folded to a value.
20528 }
20529
20530 void VisitDeclRefExpr(DeclRefExpr *E) {
20531 // If we were asked not to visit local variables, don't.
20532 if (SkipLocalVariables) {
20533 if (VarDecl *VD = dyn_cast<VarDecl>(Val: E->getDecl()))
20534 if (VD->hasLocalStorage())
20535 return;
20536 }
20537
20538 // FIXME: This can trigger the instantiation of the initializer of a
20539 // variable, which can cause the expression to become value-dependent
20540 // or error-dependent. Do we need to propagate the new dependence bits?
20541 S.MarkDeclRefReferenced(E);
20542 }
20543
20544 void VisitMemberExpr(MemberExpr *E) {
20545 S.MarkMemberReferenced(E);
20546 Visit(E: E->getBase());
20547 }
20548};
20549} // namespace
20550
20551void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
20552 bool SkipLocalVariables,
20553 ArrayRef<const Expr*> StopAt) {
20554 EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
20555}
20556
20557/// Emit a diagnostic when statements are reachable.
20558/// FIXME: check for reachability even in expressions for which we don't build a
20559/// CFG (eg, in the initializer of a global or in a constant expression).
20560/// For example,
20561/// namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
20562bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
20563 const PartialDiagnostic &PD) {
20564 if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
20565 if (!FunctionScopes.empty())
20566 FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
20567 Elt: sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
20568 return true;
20569 }
20570
20571 // The initializer of a constexpr variable or of the first declaration of a
20572 // static data member is not syntactically a constant evaluated constant,
20573 // but nonetheless is always required to be a constant expression, so we
20574 // can skip diagnosing.
20575 // FIXME: Using the mangling context here is a hack.
20576 if (auto *VD = dyn_cast_or_null<VarDecl>(
20577 Val: ExprEvalContexts.back().ManglingContextDecl)) {
20578 if (VD->isConstexpr() ||
20579 (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
20580 return false;
20581 // FIXME: For any other kind of variable, we should build a CFG for its
20582 // initializer and check whether the context in question is reachable.
20583 }
20584
20585 Diag(Loc, PD);
20586 return true;
20587}
20588
20589/// Emit a diagnostic that describes an effect on the run-time behavior
20590/// of the program being compiled.
20591///
20592/// This routine emits the given diagnostic when the code currently being
20593/// type-checked is "potentially evaluated", meaning that there is a
20594/// possibility that the code will actually be executable. Code in sizeof()
20595/// expressions, code used only during overload resolution, etc., are not
20596/// potentially evaluated. This routine will suppress such diagnostics or,
20597/// in the absolutely nutty case of potentially potentially evaluated
20598/// expressions (C++ typeid), queue the diagnostic to potentially emit it
20599/// later.
20600///
20601/// This routine should be used for all diagnostics that describe the run-time
20602/// behavior of a program, such as passing a non-POD value through an ellipsis.
20603/// Failure to do so will likely result in spurious diagnostics or failures
20604/// during overload resolution or within sizeof/alignof/typeof/typeid.
20605bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
20606 const PartialDiagnostic &PD) {
20607
20608 if (ExprEvalContexts.back().isDiscardedStatementContext())
20609 return false;
20610
20611 switch (ExprEvalContexts.back().Context) {
20612 case ExpressionEvaluationContext::Unevaluated:
20613 case ExpressionEvaluationContext::UnevaluatedList:
20614 case ExpressionEvaluationContext::UnevaluatedAbstract:
20615 case ExpressionEvaluationContext::DiscardedStatement:
20616 // The argument will never be evaluated, so don't complain.
20617 break;
20618
20619 case ExpressionEvaluationContext::ConstantEvaluated:
20620 case ExpressionEvaluationContext::ImmediateFunctionContext:
20621 // Relevant diagnostics should be produced by constant evaluation.
20622 break;
20623
20624 case ExpressionEvaluationContext::PotentiallyEvaluated:
20625 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
20626 return DiagIfReachable(Loc, Stmts, PD);
20627 }
20628
20629 return false;
20630}
20631
20632bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
20633 const PartialDiagnostic &PD) {
20634 return DiagRuntimeBehavior(
20635 Loc, Stmts: Statement ? llvm::ArrayRef(Statement) : llvm::ArrayRef<Stmt *>(),
20636 PD);
20637}
20638
20639bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
20640 CallExpr *CE, FunctionDecl *FD) {
20641 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
20642 return false;
20643
20644 // If we're inside a decltype's expression, don't check for a valid return
20645 // type or construct temporaries until we know whether this is the last call.
20646 if (ExprEvalContexts.back().ExprContext ==
20647 ExpressionEvaluationContextRecord::EK_Decltype) {
20648 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(Elt: CE);
20649 return false;
20650 }
20651
20652 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
20653 FunctionDecl *FD;
20654 CallExpr *CE;
20655
20656 public:
20657 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
20658 : FD(FD), CE(CE) { }
20659
20660 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
20661 if (!FD) {
20662 S.Diag(Loc, diag::err_call_incomplete_return)
20663 << T << CE->getSourceRange();
20664 return;
20665 }
20666
20667 S.Diag(Loc, diag::err_call_function_incomplete_return)
20668 << CE->getSourceRange() << FD << T;
20669 S.Diag(FD->getLocation(), diag::note_entity_declared_at)
20670 << FD->getDeclName();
20671 }
20672 } Diagnoser(FD, CE);
20673
20674 if (RequireCompleteType(Loc, T: ReturnType, Diagnoser))
20675 return true;
20676
20677 return false;
20678}
20679
20680// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
20681// will prevent this condition from triggering, which is what we want.
20682void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
20683 SourceLocation Loc;
20684
20685 unsigned diagnostic = diag::warn_condition_is_assignment;
20686 bool IsOrAssign = false;
20687
20688 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(Val: E)) {
20689 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
20690 return;
20691
20692 IsOrAssign = Op->getOpcode() == BO_OrAssign;
20693
20694 // Greylist some idioms by putting them into a warning subcategory.
20695 if (ObjCMessageExpr *ME
20696 = dyn_cast<ObjCMessageExpr>(Val: Op->getRHS()->IgnoreParenCasts())) {
20697 Selector Sel = ME->getSelector();
20698
20699 // self = [<foo> init...]
20700 if (ObjC().isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
20701 diagnostic = diag::warn_condition_is_idiomatic_assignment;
20702
20703 // <foo> = [<bar> nextObject]
20704 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
20705 diagnostic = diag::warn_condition_is_idiomatic_assignment;
20706 }
20707
20708 Loc = Op->getOperatorLoc();
20709 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(Val: E)) {
20710 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
20711 return;
20712
20713 IsOrAssign = Op->getOperator() == OO_PipeEqual;
20714 Loc = Op->getOperatorLoc();
20715 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Val: E))
20716 return DiagnoseAssignmentAsCondition(E: POE->getSyntacticForm());
20717 else {
20718 // Not an assignment.
20719 return;
20720 }
20721
20722 Diag(Loc, diagnostic) << E->getSourceRange();
20723
20724 SourceLocation Open = E->getBeginLoc();
20725 SourceLocation Close = getLocForEndOfToken(Loc: E->getSourceRange().getEnd());
20726 Diag(Loc, diag::note_condition_assign_silence)
20727 << FixItHint::CreateInsertion(Open, "(")
20728 << FixItHint::CreateInsertion(Close, ")");
20729
20730 if (IsOrAssign)
20731 Diag(Loc, diag::note_condition_or_assign_to_comparison)
20732 << FixItHint::CreateReplacement(Loc, "!=");
20733 else
20734 Diag(Loc, diag::note_condition_assign_to_comparison)
20735 << FixItHint::CreateReplacement(Loc, "==");
20736}
20737
20738void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
20739 // Don't warn if the parens came from a macro.
20740 SourceLocation parenLoc = ParenE->getBeginLoc();
20741 if (parenLoc.isInvalid() || parenLoc.isMacroID())
20742 return;
20743 // Don't warn for dependent expressions.
20744 if (ParenE->isTypeDependent())
20745 return;
20746
20747 Expr *E = ParenE->IgnoreParens();
20748 if (ParenE->isProducedByFoldExpansion() && ParenE->getSubExpr() == E)
20749 return;
20750
20751 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(Val: E))
20752 if (opE->getOpcode() == BO_EQ &&
20753 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Ctx&: Context)
20754 == Expr::MLV_Valid) {
20755 SourceLocation Loc = opE->getOperatorLoc();
20756
20757 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
20758 SourceRange ParenERange = ParenE->getSourceRange();
20759 Diag(Loc, diag::note_equality_comparison_silence)
20760 << FixItHint::CreateRemoval(ParenERange.getBegin())
20761 << FixItHint::CreateRemoval(ParenERange.getEnd());
20762 Diag(Loc, diag::note_equality_comparison_to_assign)
20763 << FixItHint::CreateReplacement(Loc, "=");
20764 }
20765}
20766
20767ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
20768 bool IsConstexpr) {
20769 DiagnoseAssignmentAsCondition(E);
20770 if (ParenExpr *parenE = dyn_cast<ParenExpr>(Val: E))
20771 DiagnoseEqualityWithExtraParens(ParenE: parenE);
20772
20773 ExprResult result = CheckPlaceholderExpr(E);
20774 if (result.isInvalid()) return ExprError();
20775 E = result.get();
20776
20777 if (!E->isTypeDependent()) {
20778 if (getLangOpts().CPlusPlus)
20779 return CheckCXXBooleanCondition(CondExpr: E, IsConstexpr); // C++ 6.4p4
20780
20781 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
20782 if (ERes.isInvalid())
20783 return ExprError();
20784 E = ERes.get();
20785
20786 QualType T = E->getType();
20787 if (!T->isScalarType()) { // C99 6.8.4.1p1
20788 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
20789 << T << E->getSourceRange();
20790 return ExprError();
20791 }
20792 CheckBoolLikeConversion(E, CC: Loc);
20793 }
20794
20795 return E;
20796}
20797
20798Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
20799 Expr *SubExpr, ConditionKind CK,
20800 bool MissingOK) {
20801 // MissingOK indicates whether having no condition expression is valid
20802 // (for loop) or invalid (e.g. while loop).
20803 if (!SubExpr)
20804 return MissingOK ? ConditionResult() : ConditionError();
20805
20806 ExprResult Cond;
20807 switch (CK) {
20808 case ConditionKind::Boolean:
20809 Cond = CheckBooleanCondition(Loc, E: SubExpr);
20810 break;
20811
20812 case ConditionKind::ConstexprIf:
20813 Cond = CheckBooleanCondition(Loc, E: SubExpr, IsConstexpr: true);
20814 break;
20815
20816 case ConditionKind::Switch:
20817 Cond = CheckSwitchCondition(SwitchLoc: Loc, Cond: SubExpr);
20818 break;
20819 }
20820 if (Cond.isInvalid()) {
20821 Cond = CreateRecoveryExpr(Begin: SubExpr->getBeginLoc(), End: SubExpr->getEndLoc(),
20822 SubExprs: {SubExpr}, T: PreferredConditionType(K: CK));
20823 if (!Cond.get())
20824 return ConditionError();
20825 }
20826 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
20827 FullExprArg FullExpr = MakeFullExpr(Arg: Cond.get(), CC: Loc);
20828 if (!FullExpr.get())
20829 return ConditionError();
20830
20831 return ConditionResult(*this, nullptr, FullExpr,
20832 CK == ConditionKind::ConstexprIf);
20833}
20834
20835namespace {
20836 /// A visitor for rebuilding a call to an __unknown_any expression
20837 /// to have an appropriate type.
20838 struct RebuildUnknownAnyFunction
20839 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
20840
20841 Sema &S;
20842
20843 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
20844
20845 ExprResult VisitStmt(Stmt *S) {
20846 llvm_unreachable("unexpected statement!");
20847 }
20848
20849 ExprResult VisitExpr(Expr *E) {
20850 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
20851 << E->getSourceRange();
20852 return ExprError();
20853 }
20854
20855 /// Rebuild an expression which simply semantically wraps another
20856 /// expression which it shares the type and value kind of.
20857 template <class T> ExprResult rebuildSugarExpr(T *E) {
20858 ExprResult SubResult = Visit(E->getSubExpr());
20859 if (SubResult.isInvalid()) return ExprError();
20860
20861 Expr *SubExpr = SubResult.get();
20862 E->setSubExpr(SubExpr);
20863 E->setType(SubExpr->getType());
20864 E->setValueKind(SubExpr->getValueKind());
20865 assert(E->getObjectKind() == OK_Ordinary);
20866 return E;
20867 }
20868
20869 ExprResult VisitParenExpr(ParenExpr *E) {
20870 return rebuildSugarExpr(E);
20871 }
20872
20873 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20874 return rebuildSugarExpr(E);
20875 }
20876
20877 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20878 ExprResult SubResult = Visit(E->getSubExpr());
20879 if (SubResult.isInvalid()) return ExprError();
20880
20881 Expr *SubExpr = SubResult.get();
20882 E->setSubExpr(SubExpr);
20883 E->setType(S.Context.getPointerType(T: SubExpr->getType()));
20884 assert(E->isPRValue());
20885 assert(E->getObjectKind() == OK_Ordinary);
20886 return E;
20887 }
20888
20889 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
20890 if (!isa<FunctionDecl>(Val: VD)) return VisitExpr(E);
20891
20892 E->setType(VD->getType());
20893
20894 assert(E->isPRValue());
20895 if (S.getLangOpts().CPlusPlus &&
20896 !(isa<CXXMethodDecl>(Val: VD) &&
20897 cast<CXXMethodDecl>(Val: VD)->isInstance()))
20898 E->setValueKind(VK_LValue);
20899
20900 return E;
20901 }
20902
20903 ExprResult VisitMemberExpr(MemberExpr *E) {
20904 return resolveDecl(E, E->getMemberDecl());
20905 }
20906
20907 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20908 return resolveDecl(E, E->getDecl());
20909 }
20910 };
20911}
20912
20913/// Given a function expression of unknown-any type, try to rebuild it
20914/// to have a function type.
20915static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
20916 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
20917 if (Result.isInvalid()) return ExprError();
20918 return S.DefaultFunctionArrayConversion(E: Result.get());
20919}
20920
20921namespace {
20922 /// A visitor for rebuilding an expression of type __unknown_anytype
20923 /// into one which resolves the type directly on the referring
20924 /// expression. Strict preservation of the original source
20925 /// structure is not a goal.
20926 struct RebuildUnknownAnyExpr
20927 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
20928
20929 Sema &S;
20930
20931 /// The current destination type.
20932 QualType DestType;
20933
20934 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
20935 : S(S), DestType(CastType) {}
20936
20937 ExprResult VisitStmt(Stmt *S) {
20938 llvm_unreachable("unexpected statement!");
20939 }
20940
20941 ExprResult VisitExpr(Expr *E) {
20942 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20943 << E->getSourceRange();
20944 return ExprError();
20945 }
20946
20947 ExprResult VisitCallExpr(CallExpr *E);
20948 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
20949
20950 /// Rebuild an expression which simply semantically wraps another
20951 /// expression which it shares the type and value kind of.
20952 template <class T> ExprResult rebuildSugarExpr(T *E) {
20953 ExprResult SubResult = Visit(E->getSubExpr());
20954 if (SubResult.isInvalid()) return ExprError();
20955 Expr *SubExpr = SubResult.get();
20956 E->setSubExpr(SubExpr);
20957 E->setType(SubExpr->getType());
20958 E->setValueKind(SubExpr->getValueKind());
20959 assert(E->getObjectKind() == OK_Ordinary);
20960 return E;
20961 }
20962
20963 ExprResult VisitParenExpr(ParenExpr *E) {
20964 return rebuildSugarExpr(E);
20965 }
20966
20967 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20968 return rebuildSugarExpr(E);
20969 }
20970
20971 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20972 const PointerType *Ptr = DestType->getAs<PointerType>();
20973 if (!Ptr) {
20974 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
20975 << E->getSourceRange();
20976 return ExprError();
20977 }
20978
20979 if (isa<CallExpr>(Val: E->getSubExpr())) {
20980 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
20981 << E->getSourceRange();
20982 return ExprError();
20983 }
20984
20985 assert(E->isPRValue());
20986 assert(E->getObjectKind() == OK_Ordinary);
20987 E->setType(DestType);
20988
20989 // Build the sub-expression as if it were an object of the pointee type.
20990 DestType = Ptr->getPointeeType();
20991 ExprResult SubResult = Visit(E->getSubExpr());
20992 if (SubResult.isInvalid()) return ExprError();
20993 E->setSubExpr(SubResult.get());
20994 return E;
20995 }
20996
20997 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
20998
20999 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
21000
21001 ExprResult VisitMemberExpr(MemberExpr *E) {
21002 return resolveDecl(E, E->getMemberDecl());
21003 }
21004
21005 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
21006 return resolveDecl(E, E->getDecl());
21007 }
21008 };
21009}
21010
21011/// Rebuilds a call expression which yielded __unknown_anytype.
21012ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
21013 Expr *CalleeExpr = E->getCallee();
21014
21015 enum FnKind {
21016 FK_MemberFunction,
21017 FK_FunctionPointer,
21018 FK_BlockPointer
21019 };
21020
21021 FnKind Kind;
21022 QualType CalleeType = CalleeExpr->getType();
21023 if (CalleeType == S.Context.BoundMemberTy) {
21024 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
21025 Kind = FK_MemberFunction;
21026 CalleeType = Expr::findBoundMemberType(expr: CalleeExpr);
21027 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
21028 CalleeType = Ptr->getPointeeType();
21029 Kind = FK_FunctionPointer;
21030 } else {
21031 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
21032 Kind = FK_BlockPointer;
21033 }
21034 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
21035
21036 // Verify that this is a legal result type of a function.
21037 if ((DestType->isArrayType() && !S.getLangOpts().allowArrayReturnTypes()) ||
21038 DestType->isFunctionType()) {
21039 unsigned diagID = diag::err_func_returning_array_function;
21040 if (Kind == FK_BlockPointer)
21041 diagID = diag::err_block_returning_array_function;
21042
21043 S.Diag(E->getExprLoc(), diagID)
21044 << DestType->isFunctionType() << DestType;
21045 return ExprError();
21046 }
21047
21048 // Otherwise, go ahead and set DestType as the call's result.
21049 E->setType(DestType.getNonLValueExprType(S.Context));
21050 E->setValueKind(Expr::getValueKindForType(DestType));
21051 assert(E->getObjectKind() == OK_Ordinary);
21052
21053 // Rebuild the function type, replacing the result type with DestType.
21054 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(Val: FnType);
21055 if (Proto) {
21056 // __unknown_anytype(...) is a special case used by the debugger when
21057 // it has no idea what a function's signature is.
21058 //
21059 // We want to build this call essentially under the K&R
21060 // unprototyped rules, but making a FunctionNoProtoType in C++
21061 // would foul up all sorts of assumptions. However, we cannot
21062 // simply pass all arguments as variadic arguments, nor can we
21063 // portably just call the function under a non-variadic type; see
21064 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
21065 // However, it turns out that in practice it is generally safe to
21066 // call a function declared as "A foo(B,C,D);" under the prototype
21067 // "A foo(B,C,D,...);". The only known exception is with the
21068 // Windows ABI, where any variadic function is implicitly cdecl
21069 // regardless of its normal CC. Therefore we change the parameter
21070 // types to match the types of the arguments.
21071 //
21072 // This is a hack, but it is far superior to moving the
21073 // corresponding target-specific code from IR-gen to Sema/AST.
21074
21075 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
21076 SmallVector<QualType, 8> ArgTypes;
21077 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
21078 ArgTypes.reserve(N: E->getNumArgs());
21079 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
21080 ArgTypes.push_back(Elt: S.Context.getReferenceQualifiedType(e: E->getArg(Arg: i)));
21081 }
21082 ParamTypes = ArgTypes;
21083 }
21084 DestType = S.Context.getFunctionType(DestType, ParamTypes,
21085 Proto->getExtProtoInfo());
21086 } else {
21087 DestType = S.Context.getFunctionNoProtoType(DestType,
21088 FnType->getExtInfo());
21089 }
21090
21091 // Rebuild the appropriate pointer-to-function type.
21092 switch (Kind) {
21093 case FK_MemberFunction:
21094 // Nothing to do.
21095 break;
21096
21097 case FK_FunctionPointer:
21098 DestType = S.Context.getPointerType(DestType);
21099 break;
21100
21101 case FK_BlockPointer:
21102 DestType = S.Context.getBlockPointerType(DestType);
21103 break;
21104 }
21105
21106 // Finally, we can recurse.
21107 ExprResult CalleeResult = Visit(CalleeExpr);
21108 if (!CalleeResult.isUsable()) return ExprError();
21109 E->setCallee(CalleeResult.get());
21110
21111 // Bind a temporary if necessary.
21112 return S.MaybeBindToTemporary(E);
21113}
21114
21115ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
21116 // Verify that this is a legal result type of a call.
21117 if (DestType->isArrayType() || DestType->isFunctionType()) {
21118 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
21119 << DestType->isFunctionType() << DestType;
21120 return ExprError();
21121 }
21122
21123 // Rewrite the method result type if available.
21124 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
21125 assert(Method->getReturnType() == S.Context.UnknownAnyTy);
21126 Method->setReturnType(DestType);
21127 }
21128
21129 // Change the type of the message.
21130 E->setType(DestType.getNonReferenceType());
21131 E->setValueKind(Expr::getValueKindForType(DestType));
21132
21133 return S.MaybeBindToTemporary(E);
21134}
21135
21136ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
21137 // The only case we should ever see here is a function-to-pointer decay.
21138 if (E->getCastKind() == CK_FunctionToPointerDecay) {
21139 assert(E->isPRValue());
21140 assert(E->getObjectKind() == OK_Ordinary);
21141
21142 E->setType(DestType);
21143
21144 // Rebuild the sub-expression as the pointee (function) type.
21145 DestType = DestType->castAs<PointerType>()->getPointeeType();
21146
21147 ExprResult Result = Visit(E->getSubExpr());
21148 if (!Result.isUsable()) return ExprError();
21149
21150 E->setSubExpr(Result.get());
21151 return E;
21152 } else if (E->getCastKind() == CK_LValueToRValue) {
21153 assert(E->isPRValue());
21154 assert(E->getObjectKind() == OK_Ordinary);
21155
21156 assert(isa<BlockPointerType>(E->getType()));
21157
21158 E->setType(DestType);
21159
21160 // The sub-expression has to be a lvalue reference, so rebuild it as such.
21161 DestType = S.Context.getLValueReferenceType(DestType);
21162
21163 ExprResult Result = Visit(E->getSubExpr());
21164 if (!Result.isUsable()) return ExprError();
21165
21166 E->setSubExpr(Result.get());
21167 return E;
21168 } else {
21169 llvm_unreachable("Unhandled cast type!");
21170 }
21171}
21172
21173ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
21174 ExprValueKind ValueKind = VK_LValue;
21175 QualType Type = DestType;
21176
21177 // We know how to make this work for certain kinds of decls:
21178
21179 // - functions
21180 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: VD)) {
21181 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
21182 DestType = Ptr->getPointeeType();
21183 ExprResult Result = resolveDecl(E, VD);
21184 if (Result.isInvalid()) return ExprError();
21185 return S.ImpCastExprToType(E: Result.get(), Type, CK: CK_FunctionToPointerDecay,
21186 VK: VK_PRValue);
21187 }
21188
21189 if (!Type->isFunctionType()) {
21190 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
21191 << VD << E->getSourceRange();
21192 return ExprError();
21193 }
21194 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
21195 // We must match the FunctionDecl's type to the hack introduced in
21196 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
21197 // type. See the lengthy commentary in that routine.
21198 QualType FDT = FD->getType();
21199 const FunctionType *FnType = FDT->castAs<FunctionType>();
21200 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(Val: FnType);
21201 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E);
21202 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
21203 SourceLocation Loc = FD->getLocation();
21204 FunctionDecl *NewFD = FunctionDecl::Create(
21205 S.Context, FD->getDeclContext(), Loc, Loc,
21206 FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
21207 SC_None, S.getCurFPFeatures().isFPConstrained(),
21208 false /*isInlineSpecified*/, FD->hasPrototype(),
21209 /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
21210
21211 if (FD->getQualifier())
21212 NewFD->setQualifierInfo(FD->getQualifierLoc());
21213
21214 SmallVector<ParmVarDecl*, 16> Params;
21215 for (const auto &AI : FT->param_types()) {
21216 ParmVarDecl *Param =
21217 S.BuildParmVarDeclForTypedef(FD, Loc, AI);
21218 Param->setScopeInfo(scopeDepth: 0, parameterIndex: Params.size());
21219 Params.push_back(Elt: Param);
21220 }
21221 NewFD->setParams(Params);
21222 DRE->setDecl(NewFD);
21223 VD = DRE->getDecl();
21224 }
21225 }
21226
21227 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD))
21228 if (MD->isInstance()) {
21229 ValueKind = VK_PRValue;
21230 Type = S.Context.BoundMemberTy;
21231 }
21232
21233 // Function references aren't l-values in C.
21234 if (!S.getLangOpts().CPlusPlus)
21235 ValueKind = VK_PRValue;
21236
21237 // - variables
21238 } else if (isa<VarDecl>(Val: VD)) {
21239 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
21240 Type = RefTy->getPointeeType();
21241 } else if (Type->isFunctionType()) {
21242 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
21243 << VD << E->getSourceRange();
21244 return ExprError();
21245 }
21246
21247 // - nothing else
21248 } else {
21249 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
21250 << VD << E->getSourceRange();
21251 return ExprError();
21252 }
21253
21254 // Modifying the declaration like this is friendly to IR-gen but
21255 // also really dangerous.
21256 VD->setType(DestType);
21257 E->setType(Type);
21258 E->setValueKind(ValueKind);
21259 return E;
21260}
21261
21262ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
21263 Expr *CastExpr, CastKind &CastKind,
21264 ExprValueKind &VK, CXXCastPath &Path) {
21265 // The type we're casting to must be either void or complete.
21266 if (!CastType->isVoidType() &&
21267 RequireCompleteType(TypeRange.getBegin(), CastType,
21268 diag::err_typecheck_cast_to_incomplete))
21269 return ExprError();
21270
21271 // Rewrite the casted expression from scratch.
21272 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
21273 if (!result.isUsable()) return ExprError();
21274
21275 CastExpr = result.get();
21276 VK = CastExpr->getValueKind();
21277 CastKind = CK_NoOp;
21278
21279 return CastExpr;
21280}
21281
21282ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
21283 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
21284}
21285
21286ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
21287 Expr *arg, QualType &paramType) {
21288 // If the syntactic form of the argument is not an explicit cast of
21289 // any sort, just do default argument promotion.
21290 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(Val: arg->IgnoreParens());
21291 if (!castArg) {
21292 ExprResult result = DefaultArgumentPromotion(E: arg);
21293 if (result.isInvalid()) return ExprError();
21294 paramType = result.get()->getType();
21295 return result;
21296 }
21297
21298 // Otherwise, use the type that was written in the explicit cast.
21299 assert(!arg->hasPlaceholderType());
21300 paramType = castArg->getTypeAsWritten();
21301
21302 // Copy-initialize a parameter of that type.
21303 InitializedEntity entity =
21304 InitializedEntity::InitializeParameter(Context, Type: paramType,
21305 /*consumed*/ Consumed: false);
21306 return PerformCopyInitialization(Entity: entity, EqualLoc: callLoc, Init: arg);
21307}
21308
21309static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
21310 Expr *orig = E;
21311 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
21312 while (true) {
21313 E = E->IgnoreParenImpCasts();
21314 if (CallExpr *call = dyn_cast<CallExpr>(Val: E)) {
21315 E = call->getCallee();
21316 diagID = diag::err_uncasted_call_of_unknown_any;
21317 } else {
21318 break;
21319 }
21320 }
21321
21322 SourceLocation loc;
21323 NamedDecl *d;
21324 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(Val: E)) {
21325 loc = ref->getLocation();
21326 d = ref->getDecl();
21327 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(Val: E)) {
21328 loc = mem->getMemberLoc();
21329 d = mem->getMemberDecl();
21330 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(Val: E)) {
21331 diagID = diag::err_uncasted_call_of_unknown_any;
21332 loc = msg->getSelectorStartLoc();
21333 d = msg->getMethodDecl();
21334 if (!d) {
21335 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
21336 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
21337 << orig->getSourceRange();
21338 return ExprError();
21339 }
21340 } else {
21341 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
21342 << E->getSourceRange();
21343 return ExprError();
21344 }
21345
21346 S.Diag(loc, diagID) << d << orig->getSourceRange();
21347
21348 // Never recoverable.
21349 return ExprError();
21350}
21351
21352ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
21353 if (!Context.isDependenceAllowed()) {
21354 // C cannot handle TypoExpr nodes on either side of a binop because it
21355 // doesn't handle dependent types properly, so make sure any TypoExprs have
21356 // been dealt with before checking the operands.
21357 ExprResult Result = CorrectDelayedTyposInExpr(E);
21358 if (!Result.isUsable()) return ExprError();
21359 E = Result.get();
21360 }
21361
21362 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
21363 if (!placeholderType) return E;
21364
21365 switch (placeholderType->getKind()) {
21366 case BuiltinType::UnresolvedTemplate: {
21367 auto *ULE = cast<UnresolvedLookupExpr>(Val: E);
21368 const DeclarationNameInfo &NameInfo = ULE->getNameInfo();
21369 // There's only one FoundDecl for UnresolvedTemplate type. See
21370 // BuildTemplateIdExpr.
21371 NamedDecl *Temp = *ULE->decls_begin();
21372 const bool IsTypeAliasTemplateDecl = isa<TypeAliasTemplateDecl>(Val: Temp);
21373
21374 NestedNameSpecifier *NNS = ULE->getQualifierLoc().getNestedNameSpecifier();
21375 // FIXME: AssumedTemplate is not very appropriate for error recovery here,
21376 // as it models only the unqualified-id case, where this case can clearly be
21377 // qualified. Thus we can't just qualify an assumed template.
21378 TemplateName TN;
21379 if (auto *TD = dyn_cast<TemplateDecl>(Temp))
21380 TN = Context.getQualifiedTemplateName(NNS, TemplateKeyword: ULE->hasTemplateKeyword(),
21381 Template: TemplateName(TD));
21382 else
21383 TN = Context.getAssumedTemplateName(Name: NameInfo.getName());
21384
21385 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
21386 << TN << ULE->getSourceRange() << IsTypeAliasTemplateDecl;
21387 Diag(Temp->getLocation(), diag::note_referenced_type_template)
21388 << IsTypeAliasTemplateDecl;
21389
21390 TemplateArgumentListInfo TAL(ULE->getLAngleLoc(), ULE->getRAngleLoc());
21391 bool HasAnyDependentTA = false;
21392 for (const TemplateArgumentLoc &Arg : ULE->template_arguments()) {
21393 HasAnyDependentTA |= Arg.getArgument().isDependent();
21394 TAL.addArgument(Arg);
21395 }
21396
21397 QualType TST;
21398 {
21399 SFINAETrap Trap(*this);
21400 TST = CheckTemplateIdType(Template: TN, TemplateLoc: NameInfo.getBeginLoc(), TemplateArgs&: TAL);
21401 }
21402 if (TST.isNull())
21403 TST = Context.getTemplateSpecializationType(
21404 TN, ULE->template_arguments(), /*CanonicalArgs=*/std::nullopt,
21405 HasAnyDependentTA ? Context.DependentTy : Context.IntTy);
21406 QualType ET =
21407 Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS, NamedType: TST);
21408 return CreateRecoveryExpr(Begin: NameInfo.getBeginLoc(), End: NameInfo.getEndLoc(), SubExprs: {},
21409 T: ET);
21410 }
21411
21412 // Overloaded expressions.
21413 case BuiltinType::Overload: {
21414 // Try to resolve a single function template specialization.
21415 // This is obligatory.
21416 ExprResult Result = E;
21417 if (ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr&: Result, DoFunctionPointerConversion: false))
21418 return Result;
21419
21420 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
21421 // leaves Result unchanged on failure.
21422 Result = E;
21423 if (resolveAndFixAddressOfSingleOverloadCandidate(SrcExpr&: Result))
21424 return Result;
21425
21426 // If that failed, try to recover with a call.
21427 tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
21428 /*complain*/ true);
21429 return Result;
21430 }
21431
21432 // Bound member functions.
21433 case BuiltinType::BoundMember: {
21434 ExprResult result = E;
21435 const Expr *BME = E->IgnoreParens();
21436 PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
21437 // Try to give a nicer diagnostic if it is a bound member that we recognize.
21438 if (isa<CXXPseudoDestructorExpr>(Val: BME)) {
21439 PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
21440 } else if (const auto *ME = dyn_cast<MemberExpr>(Val: BME)) {
21441 if (ME->getMemberNameInfo().getName().getNameKind() ==
21442 DeclarationName::CXXDestructorName)
21443 PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
21444 }
21445 tryToRecoverWithCall(E&: result, PD,
21446 /*complain*/ ForceComplain: true);
21447 return result;
21448 }
21449
21450 // ARC unbridged casts.
21451 case BuiltinType::ARCUnbridgedCast: {
21452 Expr *realCast = ObjC().stripARCUnbridgedCast(e: E);
21453 ObjC().diagnoseARCUnbridgedCast(e: realCast);
21454 return realCast;
21455 }
21456
21457 // Expressions of unknown type.
21458 case BuiltinType::UnknownAny:
21459 return diagnoseUnknownAnyExpr(S&: *this, E);
21460
21461 // Pseudo-objects.
21462 case BuiltinType::PseudoObject:
21463 return PseudoObject().checkRValue(E);
21464
21465 case BuiltinType::BuiltinFn: {
21466 // Accept __noop without parens by implicitly converting it to a call expr.
21467 auto *DRE = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenImpCasts());
21468 if (DRE) {
21469 auto *FD = cast<FunctionDecl>(Val: DRE->getDecl());
21470 unsigned BuiltinID = FD->getBuiltinID();
21471 if (BuiltinID == Builtin::BI__noop) {
21472 E = ImpCastExprToType(E, Type: Context.getPointerType(FD->getType()),
21473 CK: CK_BuiltinFnToFnPtr)
21474 .get();
21475 return CallExpr::Create(Ctx: Context, Fn: E, /*Args=*/{}, Ty: Context.IntTy,
21476 VK: VK_PRValue, RParenLoc: SourceLocation(),
21477 FPFeatures: FPOptionsOverride());
21478 }
21479
21480 if (Context.BuiltinInfo.isInStdNamespace(ID: BuiltinID)) {
21481 // Any use of these other than a direct call is ill-formed as of C++20,
21482 // because they are not addressable functions. In earlier language
21483 // modes, warn and force an instantiation of the real body.
21484 Diag(E->getBeginLoc(),
21485 getLangOpts().CPlusPlus20
21486 ? diag::err_use_of_unaddressable_function
21487 : diag::warn_cxx20_compat_use_of_unaddressable_function);
21488 if (FD->isImplicitlyInstantiable()) {
21489 // Require a definition here because a normal attempt at
21490 // instantiation for a builtin will be ignored, and we won't try
21491 // again later. We assume that the definition of the template
21492 // precedes this use.
21493 InstantiateFunctionDefinition(PointOfInstantiation: E->getBeginLoc(), Function: FD,
21494 /*Recursive=*/false,
21495 /*DefinitionRequired=*/true,
21496 /*AtEndOfTU=*/false);
21497 }
21498 // Produce a properly-typed reference to the function.
21499 CXXScopeSpec SS;
21500 SS.Adopt(Other: DRE->getQualifierLoc());
21501 TemplateArgumentListInfo TemplateArgs;
21502 DRE->copyTemplateArgumentsInto(List&: TemplateArgs);
21503 return BuildDeclRefExpr(
21504 FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
21505 DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
21506 DRE->getTemplateKeywordLoc(),
21507 DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
21508 }
21509 }
21510
21511 Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
21512 return ExprError();
21513 }
21514
21515 case BuiltinType::IncompleteMatrixIdx:
21516 Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
21517 ->getRowIdx()
21518 ->getBeginLoc(),
21519 diag::err_matrix_incomplete_index);
21520 return ExprError();
21521
21522 // Expressions of unknown type.
21523 case BuiltinType::ArraySection:
21524 Diag(E->getBeginLoc(), diag::err_array_section_use)
21525 << cast<ArraySectionExpr>(E)->isOMPArraySection();
21526 return ExprError();
21527
21528 // Expressions of unknown type.
21529 case BuiltinType::OMPArrayShaping:
21530 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
21531
21532 case BuiltinType::OMPIterator:
21533 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
21534
21535 // Everything else should be impossible.
21536#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21537 case BuiltinType::Id:
21538#include "clang/Basic/OpenCLImageTypes.def"
21539#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21540 case BuiltinType::Id:
21541#include "clang/Basic/OpenCLExtensionTypes.def"
21542#define SVE_TYPE(Name, Id, SingletonId) \
21543 case BuiltinType::Id:
21544#include "clang/Basic/AArch64ACLETypes.def"
21545#define PPC_VECTOR_TYPE(Name, Id, Size) \
21546 case BuiltinType::Id:
21547#include "clang/Basic/PPCTypes.def"
21548#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21549#include "clang/Basic/RISCVVTypes.def"
21550#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21551#include "clang/Basic/WebAssemblyReferenceTypes.def"
21552#define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id:
21553#include "clang/Basic/AMDGPUTypes.def"
21554#define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21555#include "clang/Basic/HLSLIntangibleTypes.def"
21556#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21557#define PLACEHOLDER_TYPE(Id, SingletonId)
21558#include "clang/AST/BuiltinTypes.def"
21559 break;
21560 }
21561
21562 llvm_unreachable("invalid placeholder type!");
21563}
21564
21565bool Sema::CheckCaseExpression(Expr *E) {
21566 if (E->isTypeDependent())
21567 return true;
21568 if (E->isValueDependent() || E->isIntegerConstantExpr(Ctx: Context))
21569 return E->getType()->isIntegralOrEnumerationType();
21570 return false;
21571}
21572
21573ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
21574 ArrayRef<Expr *> SubExprs, QualType T) {
21575 if (!Context.getLangOpts().RecoveryAST)
21576 return ExprError();
21577
21578 if (isSFINAEContext())
21579 return ExprError();
21580
21581 if (T.isNull() || T->isUndeducedType() ||
21582 !Context.getLangOpts().RecoveryASTType)
21583 // We don't know the concrete type, fallback to dependent type.
21584 T = Context.DependentTy;
21585
21586 return RecoveryExpr::Create(Ctx&: Context, T, BeginLoc: Begin, EndLoc: End, SubExprs);
21587}
21588

Provided by KDAB

Privacy Policy
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more

source code of clang/lib/Sema/SemaExpr.cpp