1//===-- AVRRegisterInfo.cpp - AVR Register Information --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the AVR implementation of the TargetRegisterInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "AVRRegisterInfo.h"
14
15#include "llvm/ADT/BitVector.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineInstrBuilder.h"
19#include "llvm/CodeGen/MachineRegisterInfo.h"
20#include "llvm/CodeGen/TargetFrameLowering.h"
21#include "llvm/IR/Function.h"
22
23#include "AVR.h"
24#include "AVRInstrInfo.h"
25#include "AVRMachineFunctionInfo.h"
26#include "AVRTargetMachine.h"
27#include "MCTargetDesc/AVRMCTargetDesc.h"
28
29#define GET_REGINFO_TARGET_DESC
30#include "AVRGenRegisterInfo.inc"
31
32namespace llvm {
33
34AVRRegisterInfo::AVRRegisterInfo() : AVRGenRegisterInfo(0) {}
35
36const uint16_t *
37AVRRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
38 const AVRMachineFunctionInfo *AFI = MF->getInfo<AVRMachineFunctionInfo>();
39 const AVRSubtarget &STI = MF->getSubtarget<AVRSubtarget>();
40 if (STI.hasTinyEncoding())
41 return AFI->isInterruptOrSignalHandler() ? CSR_InterruptsTiny_SaveList
42 : CSR_NormalTiny_SaveList;
43 else
44 return AFI->isInterruptOrSignalHandler() ? CSR_Interrupts_SaveList
45 : CSR_Normal_SaveList;
46}
47
48const uint32_t *
49AVRRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
50 CallingConv::ID CC) const {
51 const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
52 return STI.hasTinyEncoding() ? CSR_NormalTiny_RegMask : CSR_Normal_RegMask;
53}
54
55BitVector AVRRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
56 BitVector Reserved(getNumRegs());
57
58 // Reserve the intermediate result registers r1 and r2
59 // The result of instructions like 'mul' is always stored here.
60 // R0/R1/R1R0 are always reserved on both avr and avrtiny.
61 Reserved.set(AVR::R0);
62 Reserved.set(AVR::R1);
63 Reserved.set(AVR::R1R0);
64
65 // Reserve the stack pointer.
66 Reserved.set(AVR::SPL);
67 Reserved.set(AVR::SPH);
68 Reserved.set(AVR::SP);
69
70 // Reserve R2~R17 only on avrtiny.
71 if (MF.getSubtarget<AVRSubtarget>().hasTinyEncoding()) {
72 // Reserve 8-bit registers R2~R15, Rtmp(R16) and Zero(R17).
73 for (unsigned Reg = AVR::R2; Reg <= AVR::R17; Reg++)
74 Reserved.set(Reg);
75 // Reserve 16-bit registers R3R2~R18R17.
76 for (unsigned Reg = AVR::R3R2; Reg <= AVR::R18R17; Reg++)
77 Reserved.set(Reg);
78 }
79
80 // We tenatively reserve the frame pointer register r29:r28 because the
81 // function may require one, but we cannot tell until register allocation
82 // is complete, which can be too late.
83 //
84 // Instead we just unconditionally reserve the Y register.
85 //
86 // TODO: Write a pass to enumerate functions which reserved the Y register
87 // but didn't end up needing a frame pointer. In these, we can
88 // convert one or two of the spills inside to use the Y register.
89 Reserved.set(AVR::R28);
90 Reserved.set(AVR::R29);
91 Reserved.set(AVR::R29R28);
92
93 return Reserved;
94}
95
96const TargetRegisterClass *
97AVRRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
98 const MachineFunction &MF) const {
99 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
100 if (TRI->isTypeLegalForClass(*RC, MVT::i16)) {
101 return &AVR::DREGSRegClass;
102 }
103
104 if (TRI->isTypeLegalForClass(*RC, MVT::i8)) {
105 return &AVR::GPR8RegClass;
106 }
107
108 llvm_unreachable("Invalid register size");
109}
110
111/// Fold a frame offset shared between two add instructions into a single one.
112static void foldFrameOffset(MachineBasicBlock::iterator &II, int &Offset,
113 Register DstReg) {
114 MachineInstr &MI = *II;
115 int Opcode = MI.getOpcode();
116
117 // Don't bother trying if the next instruction is not an add or a sub.
118 if ((Opcode != AVR::SUBIWRdK) && (Opcode != AVR::ADIWRdK)) {
119 return;
120 }
121
122 // Check that DstReg matches with next instruction, otherwise the instruction
123 // is not related to stack address manipulation.
124 if (DstReg != MI.getOperand(i: 0).getReg()) {
125 return;
126 }
127
128 // Add the offset in the next instruction to our offset.
129 switch (Opcode) {
130 case AVR::SUBIWRdK:
131 Offset += -MI.getOperand(i: 2).getImm();
132 break;
133 case AVR::ADIWRdK:
134 Offset += MI.getOperand(i: 2).getImm();
135 break;
136 }
137
138 // Finally remove the instruction.
139 II++;
140 MI.eraseFromParent();
141}
142
143bool AVRRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
144 int SPAdj, unsigned FIOperandNum,
145 RegScavenger *RS) const {
146 assert(SPAdj == 0 && "Unexpected SPAdj value");
147
148 MachineInstr &MI = *II;
149 DebugLoc dl = MI.getDebugLoc();
150 MachineBasicBlock &MBB = *MI.getParent();
151 const MachineFunction &MF = *MBB.getParent();
152 const AVRTargetMachine &TM = (const AVRTargetMachine &)MF.getTarget();
153 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
154 const MachineFrameInfo &MFI = MF.getFrameInfo();
155 const TargetFrameLowering *TFI = TM.getSubtargetImpl()->getFrameLowering();
156 const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
157 int FrameIndex = MI.getOperand(i: FIOperandNum).getIndex();
158 int Offset = MFI.getObjectOffset(ObjectIdx: FrameIndex);
159
160 // Add one to the offset because SP points to an empty slot.
161 Offset += MFI.getStackSize() - TFI->getOffsetOfLocalArea() + 1;
162 // Fold incoming offset.
163 Offset += MI.getOperand(i: FIOperandNum + 1).getImm();
164
165 // This is actually "load effective address" of the stack slot
166 // instruction. We have only two-address instructions, thus we need to
167 // expand it into move + add.
168 if (MI.getOpcode() == AVR::FRMIDX) {
169 Register DstReg = MI.getOperand(i: 0).getReg();
170 assert(DstReg != AVR::R29R28 && "Dest reg cannot be the frame pointer");
171
172 // Copy the frame pointer.
173 if (STI.hasMOVW()) {
174 BuildMI(MBB, MI, dl, TII.get(AVR::MOVWRdRr), DstReg)
175 .addReg(AVR::R29R28);
176 } else {
177 Register DstLoReg, DstHiReg;
178 splitReg(Reg: DstReg, LoReg&: DstLoReg, HiReg&: DstHiReg);
179 BuildMI(MBB, MI, dl, TII.get(AVR::MOVRdRr), DstLoReg)
180 .addReg(AVR::R28);
181 BuildMI(MBB, MI, dl, TII.get(AVR::MOVRdRr), DstHiReg)
182 .addReg(AVR::R29);
183 }
184
185 assert(Offset > 0 && "Invalid offset");
186
187 // We need to materialize the offset via an add instruction.
188 unsigned Opcode;
189
190 II++; // Skip over the FRMIDX instruction.
191
192 // Generally, to load a frame address two add instructions are emitted that
193 // could get folded into a single one:
194 // movw r31:r30, r29:r28
195 // adiw r31:r30, 29
196 // adiw r31:r30, 16
197 // to:
198 // movw r31:r30, r29:r28
199 // adiw r31:r30, 45
200 if (II != MBB.end())
201 foldFrameOffset(II, Offset, DstReg);
202
203 // Select the best opcode based on DstReg and the offset size.
204 switch (DstReg) {
205 case AVR::R25R24:
206 case AVR::R27R26:
207 case AVR::R31R30: {
208 if (isUInt<6>(Offset) && STI.hasADDSUBIW()) {
209 Opcode = AVR::ADIWRdK;
210 break;
211 }
212 [[fallthrough]];
213 }
214 default: {
215 // This opcode will get expanded into a pair of subi/sbci.
216 Opcode = AVR::SUBIWRdK;
217 Offset = -Offset;
218 break;
219 }
220 }
221
222 MachineInstr *New = BuildMI(BB&: MBB, I: II, MIMD: dl, MCID: TII.get(Opcode), DestReg: DstReg)
223 .addReg(RegNo: DstReg, flags: RegState::Kill)
224 .addImm(Val: Offset);
225 New->getOperand(i: 3).setIsDead();
226
227 MI.eraseFromParent(); // remove FRMIDX
228
229 return false;
230 }
231
232 // On most AVRs, we can use an offset up to 62 for load/store with
233 // displacement (63 for byte values, 62 for word values). However, the
234 // "reduced tiny" cores don't support load/store with displacement. So for
235 // them, we force an offset of 0 meaning that any positive offset will require
236 // adjusting the frame pointer.
237 int MaxOffset = STI.hasTinyEncoding() ? 0 : 62;
238
239 // If the offset is too big we have to adjust and restore the frame pointer
240 // to materialize a valid load/store with displacement.
241 //: TODO: consider using only one adiw/sbiw chain for more than one frame
242 //: index
243 if (Offset > MaxOffset) {
244 unsigned AddOpc = AVR::ADIWRdK, SubOpc = AVR::SBIWRdK;
245 int AddOffset = Offset - MaxOffset;
246
247 // For huge offsets where adiw/sbiw cannot be used use a pair of subi/sbci.
248 if ((Offset - MaxOffset) > 63 || !STI.hasADDSUBIW()) {
249 AddOpc = AVR::SUBIWRdK;
250 SubOpc = AVR::SUBIWRdK;
251 AddOffset = -AddOffset;
252 }
253
254 // It is possible that the spiller places this frame instruction in between
255 // a compare and branch, invalidating the contents of SREG set by the
256 // compare instruction because of the add/sub pairs. Conservatively save and
257 // restore SREG before and after each add/sub pair.
258 BuildMI(MBB, II, dl, TII.get(AVR::INRdA), STI.getTmpRegister())
259 .addImm(STI.getIORegSREG());
260
261 MachineInstr *New = BuildMI(MBB, II, dl, TII.get(AddOpc), AVR::R29R28)
262 .addReg(AVR::R29R28, RegState::Kill)
263 .addImm(AddOffset);
264 New->getOperand(i: 3).setIsDead();
265
266 // Restore SREG.
267 BuildMI(MBB, std::next(II), dl, TII.get(AVR::OUTARr))
268 .addImm(STI.getIORegSREG())
269 .addReg(STI.getTmpRegister(), RegState::Kill);
270
271 // No need to set SREG as dead here otherwise if the next instruction is a
272 // cond branch it will be using a dead register.
273 BuildMI(MBB, std::next(II), dl, TII.get(SubOpc), AVR::R29R28)
274 .addReg(AVR::R29R28, RegState::Kill)
275 .addImm(Offset - MaxOffset);
276
277 Offset = MaxOffset;
278 }
279
280 MI.getOperand(FIOperandNum).ChangeToRegister(AVR::R29R28, false);
281 assert(isUInt<6>(Offset) && "Offset is out of range");
282 MI.getOperand(i: FIOperandNum + 1).ChangeToImmediate(ImmVal: Offset);
283 return false;
284}
285
286Register AVRRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
287 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
288 if (TFI->hasFP(MF)) {
289 // The Y pointer register
290 return AVR::R28;
291 }
292
293 return AVR::SP;
294}
295
296const TargetRegisterClass *
297AVRRegisterInfo::getPointerRegClass(const MachineFunction &MF,
298 unsigned Kind) const {
299 // FIXME: Currently we're using avr-gcc as reference, so we restrict
300 // ptrs to Y and Z regs. Though avr-gcc has buggy implementation
301 // of memory constraint, so we can fix it and bit avr-gcc here ;-)
302 return &AVR::PTRDISPREGSRegClass;
303}
304
305void AVRRegisterInfo::splitReg(Register Reg, Register &LoReg,
306 Register &HiReg) const {
307 assert(AVR::DREGSRegClass.contains(Reg) && "can only split 16-bit registers");
308
309 LoReg = getSubReg(Reg, AVR::sub_lo);
310 HiReg = getSubReg(Reg, AVR::sub_hi);
311}
312
313bool AVRRegisterInfo::shouldCoalesce(
314 MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg,
315 const TargetRegisterClass *DstRC, unsigned DstSubReg,
316 const TargetRegisterClass *NewRC, LiveIntervals &LIS) const {
317 if (this->getRegClass(AVR::PTRDISPREGSRegClassID)->hasSubClassEq(NewRC)) {
318 return false;
319 }
320
321 return TargetRegisterInfo::shouldCoalesce(MI, SrcRC, SubReg, DstRC, DstSubReg,
322 NewRC, LIS);
323}
324
325} // end of namespace llvm
326

source code of llvm/lib/Target/AVR/AVRRegisterInfo.cpp