1//===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===---------------------------------------------------------------------===//
8//
9// This pass performs peephole optimizations to clean up ugly code
10// sequences at the MachineInstruction layer. It runs at the end of
11// the SSA phases, following VSX swap removal. A pass of dead code
12// elimination follows this one for quick clean-up of any dead
13// instructions introduced here. Although we could do this as callbacks
14// from the generic peephole pass, this would have a couple of bad
15// effects: it might remove optimization opportunities for VSX swap
16// removal, and it would miss cleanups made possible following VSX
17// swap removal.
18//
19// NOTE: We run the verifier after this pass in Asserts/Debug builds so it
20// is important to keep the code valid after transformations.
21// Common causes of errors stem from violating the contract specified
22// by kill flags. Whenever a transformation changes the live range of
23// a register, that register should be added to the work list using
24// addRegToUpdate(RegsToUpdate, <Reg>). Furthermore, if a transformation
25// is changing the definition of a register (i.e. removing the single
26// definition of the original vreg), it needs to provide a dummy
27// definition of that register using addDummyDef(<MBB>, <Reg>).
28//===---------------------------------------------------------------------===//
29
30#include "MCTargetDesc/PPCMCTargetDesc.h"
31#include "MCTargetDesc/PPCPredicates.h"
32#include "PPC.h"
33#include "PPCInstrBuilder.h"
34#include "PPCInstrInfo.h"
35#include "PPCMachineFunctionInfo.h"
36#include "PPCTargetMachine.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/CodeGen/LiveVariables.h"
39#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
40#include "llvm/CodeGen/MachineDominators.h"
41#include "llvm/CodeGen/MachineFrameInfo.h"
42#include "llvm/CodeGen/MachineFunctionPass.h"
43#include "llvm/CodeGen/MachineInstrBuilder.h"
44#include "llvm/CodeGen/MachinePostDominators.h"
45#include "llvm/CodeGen/MachineRegisterInfo.h"
46#include "llvm/InitializePasses.h"
47#include "llvm/Support/Debug.h"
48
49using namespace llvm;
50
51#define DEBUG_TYPE "ppc-mi-peepholes"
52
53STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
54STATISTIC(MultiTOCSaves,
55 "Number of functions with multiple TOC saves that must be kept");
56STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
57STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
58STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
59STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
60STATISTIC(NumConvertedToImmediateForm,
61 "Number of instructions converted to their immediate form");
62STATISTIC(NumFunctionsEnteredInMIPeephole,
63 "Number of functions entered in PPC MI Peepholes");
64STATISTIC(NumFixedPointIterations,
65 "Number of fixed-point iterations converting reg-reg instructions "
66 "to reg-imm ones");
67STATISTIC(NumRotatesCollapsed,
68 "Number of pairs of rotate left, clear left/right collapsed");
69STATISTIC(NumEXTSWAndSLDICombined,
70 "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
71STATISTIC(NumLoadImmZeroFoldedAndRemoved,
72 "Number of LI(8) reg, 0 that are folded to r0 and removed");
73
74static cl::opt<bool>
75FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(Val: true),
76 cl::desc("Iterate to a fixed point when attempting to "
77 "convert reg-reg instructions to reg-imm"));
78
79static cl::opt<bool>
80ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(Val: true),
81 cl::desc("Convert eligible reg+reg instructions to reg+imm"));
82
83static cl::opt<bool>
84 EnableSExtElimination("ppc-eliminate-signext",
85 cl::desc("enable elimination of sign-extensions"),
86 cl::init(Val: true), cl::Hidden);
87
88static cl::opt<bool>
89 EnableZExtElimination("ppc-eliminate-zeroext",
90 cl::desc("enable elimination of zero-extensions"),
91 cl::init(Val: true), cl::Hidden);
92
93static cl::opt<bool>
94 EnableTrapOptimization("ppc-opt-conditional-trap",
95 cl::desc("enable optimization of conditional traps"),
96 cl::init(Val: false), cl::Hidden);
97
98namespace {
99
100struct PPCMIPeephole : public MachineFunctionPass {
101
102 static char ID;
103 const PPCInstrInfo *TII;
104 MachineFunction *MF;
105 MachineRegisterInfo *MRI;
106 LiveVariables *LV;
107
108 PPCMIPeephole() : MachineFunctionPass(ID) {
109 initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
110 }
111
112private:
113 MachineDominatorTree *MDT;
114 MachinePostDominatorTree *MPDT;
115 MachineBlockFrequencyInfo *MBFI;
116 BlockFrequency EntryFreq;
117 SmallSet<Register, 16> RegsToUpdate;
118
119 // Initialize class variables.
120 void initialize(MachineFunction &MFParm);
121
122 // Perform peepholes.
123 bool simplifyCode();
124
125 // Perform peepholes.
126 bool eliminateRedundantCompare();
127 bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
128 bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
129 bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI,
130 MachineInstr *&ToErase);
131 void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
132 MachineInstr *MI);
133
134 // A number of transformations will eliminate the definition of a register
135 // as all of its uses will be removed. However, this leaves a register
136 // without a definition for LiveVariables. Such transformations should
137 // use this function to provide a dummy definition of the register that
138 // will simply be removed by DCE.
139 void addDummyDef(MachineBasicBlock &MBB, MachineInstr *At, Register Reg) {
140 BuildMI(MBB, At, At->getDebugLoc(), TII->get(PPC::IMPLICIT_DEF), Reg);
141 }
142 void addRegToUpdateWithLine(Register Reg, int Line);
143 void convertUnprimedAccPHIs(const PPCInstrInfo *TII, MachineRegisterInfo *MRI,
144 SmallVectorImpl<MachineInstr *> &PHIs,
145 Register Dst);
146
147public:
148
149 void getAnalysisUsage(AnalysisUsage &AU) const override {
150 AU.addRequired<LiveVariables>();
151 AU.addRequired<MachineDominatorTree>();
152 AU.addRequired<MachinePostDominatorTree>();
153 AU.addRequired<MachineBlockFrequencyInfo>();
154 AU.addPreserved<LiveVariables>();
155 AU.addPreserved<MachineDominatorTree>();
156 AU.addPreserved<MachinePostDominatorTree>();
157 AU.addPreserved<MachineBlockFrequencyInfo>();
158 MachineFunctionPass::getAnalysisUsage(AU);
159 }
160
161 // Main entry point for this pass.
162 bool runOnMachineFunction(MachineFunction &MF) override {
163 initialize(MFParm&: MF);
164 // At this point, TOC pointer should not be used in a function that uses
165 // PC-Relative addressing.
166 assert((MF.getRegInfo().use_empty(PPC::X2) ||
167 !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) &&
168 "TOC pointer used in a function using PC-Relative addressing!");
169 if (skipFunction(F: MF.getFunction()))
170 return false;
171 bool Changed = simplifyCode();
172#ifndef NDEBUG
173 if (Changed)
174 MF.verify(p: this, Banner: "Error in PowerPC MI Peephole optimization, compile with "
175 "-mllvm -disable-ppc-peephole");
176#endif
177 return Changed;
178 }
179};
180
181#define addRegToUpdate(R) addRegToUpdateWithLine(R, __LINE__)
182void PPCMIPeephole::addRegToUpdateWithLine(Register Reg, int Line) {
183 if (!Register::isVirtualRegister(Reg))
184 return;
185 if (RegsToUpdate.insert(V: Reg).second)
186 LLVM_DEBUG(dbgs() << "Adding register: " << Register::virtReg2Index(Reg)
187 << " on line " << Line
188 << " for re-computation of kill flags\n");
189}
190
191// Initialize class variables.
192void PPCMIPeephole::initialize(MachineFunction &MFParm) {
193 MF = &MFParm;
194 MRI = &MF->getRegInfo();
195 MDT = &getAnalysis<MachineDominatorTree>();
196 MPDT = &getAnalysis<MachinePostDominatorTree>();
197 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
198 LV = &getAnalysis<LiveVariables>();
199 EntryFreq = MBFI->getEntryFreq();
200 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
201 RegsToUpdate.clear();
202 LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
203 LLVM_DEBUG(MF->dump());
204}
205
206static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
207 MachineRegisterInfo *MRI) {
208 assert(Op && "Invalid Operand!");
209 if (!Op->isReg())
210 return nullptr;
211
212 Register Reg = Op->getReg();
213 if (!Reg.isVirtual())
214 return nullptr;
215
216 return MRI->getVRegDef(Reg);
217}
218
219// This function returns number of known zero bits in output of MI
220// starting from the most significant bit.
221static unsigned getKnownLeadingZeroCount(const unsigned Reg,
222 const PPCInstrInfo *TII,
223 const MachineRegisterInfo *MRI) {
224 MachineInstr *MI = MRI->getVRegDef(Reg);
225 unsigned Opcode = MI->getOpcode();
226 if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
227 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
228 return MI->getOperand(i: 3).getImm();
229
230 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
231 MI->getOperand(i: 3).getImm() <= 63 - MI->getOperand(i: 2).getImm())
232 return MI->getOperand(i: 3).getImm();
233
234 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
235 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
236 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
237 MI->getOperand(i: 3).getImm() <= MI->getOperand(i: 4).getImm())
238 return 32 + MI->getOperand(i: 3).getImm();
239
240 if (Opcode == PPC::ANDI_rec) {
241 uint16_t Imm = MI->getOperand(i: 2).getImm();
242 return 48 + llvm::countl_zero(Val: Imm);
243 }
244
245 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
246 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
247 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
248 // The result ranges from 0 to 32.
249 return 58;
250
251 if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
252 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
253 // The result ranges from 0 to 64.
254 return 57;
255
256 if (Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
257 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
258 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
259 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
260 return 48;
261
262 if (Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
263 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
264 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
265 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
266 return 56;
267
268 if (Opcode == PPC::AND || Opcode == PPC::AND8 || Opcode == PPC::AND_rec ||
269 Opcode == PPC::AND8_rec)
270 return std::max(
271 a: getKnownLeadingZeroCount(Reg: MI->getOperand(i: 1).getReg(), TII, MRI),
272 b: getKnownLeadingZeroCount(Reg: MI->getOperand(i: 2).getReg(), TII, MRI));
273
274 if (Opcode == PPC::OR || Opcode == PPC::OR8 || Opcode == PPC::XOR ||
275 Opcode == PPC::XOR8 || Opcode == PPC::OR_rec ||
276 Opcode == PPC::OR8_rec || Opcode == PPC::XOR_rec ||
277 Opcode == PPC::XOR8_rec)
278 return std::min(
279 a: getKnownLeadingZeroCount(Reg: MI->getOperand(i: 1).getReg(), TII, MRI),
280 b: getKnownLeadingZeroCount(Reg: MI->getOperand(i: 2).getReg(), TII, MRI));
281
282 if (TII->isZeroExtended(Reg, MRI))
283 return 32;
284
285 return 0;
286}
287
288// This function maintains a map for the pairs <TOC Save Instr, Keep>
289// Each time a new TOC save is encountered, it checks if any of the existing
290// ones are dominated by the new one. If so, it marks the existing one as
291// redundant by setting it's entry in the map as false. It then adds the new
292// instruction to the map with either true or false depending on if any
293// existing instructions dominated the new one.
294void PPCMIPeephole::UpdateTOCSaves(
295 std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
296 assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
297 // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part,
298 // here only support it under ELFv2.
299 if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) {
300 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
301
302 MachineBasicBlock *Entry = &MF->front();
303 BlockFrequency CurrBlockFreq = MBFI->getBlockFreq(MBB: MI->getParent());
304
305 // If the block in which the TOC save resides is in a block that
306 // post-dominates Entry, or a block that is hotter than entry (keep in mind
307 // that early MachineLICM has already run so the TOC save won't be hoisted)
308 // we can just do the save in the prologue.
309 if (CurrBlockFreq > EntryFreq || MPDT->dominates(A: MI->getParent(), B: Entry))
310 FI->setMustSaveTOC(true);
311
312 // If we are saving the TOC in the prologue, all the TOC saves can be
313 // removed from the code.
314 if (FI->mustSaveTOC()) {
315 for (auto &TOCSave : TOCSaves)
316 TOCSave.second = false;
317 // Add new instruction to map.
318 TOCSaves[MI] = false;
319 return;
320 }
321 }
322
323 bool Keep = true;
324 for (auto &I : TOCSaves) {
325 MachineInstr *CurrInst = I.first;
326 // If new instruction dominates an existing one, mark existing one as
327 // redundant.
328 if (I.second && MDT->dominates(A: MI, B: CurrInst))
329 I.second = false;
330 // Check if the new instruction is redundant.
331 if (MDT->dominates(A: CurrInst, B: MI)) {
332 Keep = false;
333 break;
334 }
335 }
336 // Add new instruction to map.
337 TOCSaves[MI] = Keep;
338}
339
340// This function returns a list of all PHI nodes in the tree starting from
341// the RootPHI node. We perform a BFS traversal to get an ordered list of nodes.
342// The list initially only contains the root PHI. When we visit a PHI node, we
343// add it to the list. We continue to look for other PHI node operands while
344// there are nodes to visit in the list. The function returns false if the
345// optimization cannot be applied on this tree.
346static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI,
347 MachineInstr *RootPHI,
348 SmallVectorImpl<MachineInstr *> &PHIs) {
349 PHIs.push_back(Elt: RootPHI);
350 unsigned VisitedIndex = 0;
351 while (VisitedIndex < PHIs.size()) {
352 MachineInstr *VisitedPHI = PHIs[VisitedIndex];
353 for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands();
354 PHIOp != NumOps; PHIOp += 2) {
355 Register RegOp = VisitedPHI->getOperand(i: PHIOp).getReg();
356 if (!RegOp.isVirtual())
357 return false;
358 MachineInstr *Instr = MRI->getVRegDef(Reg: RegOp);
359 // While collecting the PHI nodes, we check if they can be converted (i.e.
360 // all the operands are either copies, implicit defs or PHI nodes).
361 unsigned Opcode = Instr->getOpcode();
362 if (Opcode == PPC::COPY) {
363 Register Reg = Instr->getOperand(i: 1).getReg();
364 if (!Reg.isVirtual() || MRI->getRegClass(Reg) != &PPC::ACCRCRegClass)
365 return false;
366 } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI)
367 return false;
368 // If we detect a cycle in the PHI nodes, we exit. It would be
369 // possible to change cycles as well, but that would add a lot
370 // of complexity for a case that is unlikely to occur with MMA
371 // code.
372 if (Opcode != PPC::PHI)
373 continue;
374 if (llvm::is_contained(Range&: PHIs, Element: Instr))
375 return false;
376 PHIs.push_back(Elt: Instr);
377 }
378 VisitedIndex++;
379 }
380 return true;
381}
382
383// This function changes the unprimed accumulator PHI nodes in the PHIs list to
384// primed accumulator PHI nodes. The list is traversed in reverse order to
385// change all the PHI operands of a PHI node before changing the node itself.
386// We keep a map to associate each changed PHI node to its non-changed form.
387void PPCMIPeephole::convertUnprimedAccPHIs(
388 const PPCInstrInfo *TII, MachineRegisterInfo *MRI,
389 SmallVectorImpl<MachineInstr *> &PHIs, Register Dst) {
390 DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap;
391 for (MachineInstr *PHI : llvm::reverse(C&: PHIs)) {
392 SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps;
393 // We check if the current PHI node can be changed by looking at its
394 // operands. If all the operands are either copies from primed
395 // accumulators, implicit definitions or other unprimed accumulator
396 // PHI nodes, we change it.
397 for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
398 PHIOp += 2) {
399 Register RegOp = PHI->getOperand(i: PHIOp).getReg();
400 MachineInstr *PHIInput = MRI->getVRegDef(Reg: RegOp);
401 unsigned Opcode = PHIInput->getOpcode();
402 assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF ||
403 Opcode == PPC::PHI) &&
404 "Unexpected instruction");
405 if (Opcode == PPC::COPY) {
406 assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) ==
407 &PPC::ACCRCRegClass &&
408 "Unexpected register class");
409 PHIOps.push_back(Elt: {PHIInput->getOperand(i: 1), PHI->getOperand(i: PHIOp + 1)});
410 } else if (Opcode == PPC::IMPLICIT_DEF) {
411 Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
412 BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(),
413 TII->get(PPC::IMPLICIT_DEF), AccReg);
414 PHIOps.push_back(Elt: {MachineOperand::CreateReg(Reg: AccReg, isDef: false),
415 PHI->getOperand(i: PHIOp + 1)});
416 } else if (Opcode == PPC::PHI) {
417 // We found a PHI operand. At this point we know this operand
418 // has already been changed so we get its associated changed form
419 // from the map.
420 assert(ChangedPHIMap.count(PHIInput) == 1 &&
421 "This PHI node should have already been changed.");
422 MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(Val: PHIInput);
423 PHIOps.push_back(Elt: {MachineOperand::CreateReg(
424 Reg: PrimedAccPHI->getOperand(i: 0).getReg(), isDef: false),
425 PHI->getOperand(i: PHIOp + 1)});
426 }
427 }
428 Register AccReg = Dst;
429 // If the PHI node we are changing is the root node, the register it defines
430 // will be the destination register of the original copy (of the PHI def).
431 // For all other PHI's in the list, we need to create another primed
432 // accumulator virtual register as the PHI will no longer define the
433 // unprimed accumulator.
434 if (PHI != PHIs[0])
435 AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
436 MachineInstrBuilder NewPHI = BuildMI(
437 *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg);
438 for (auto RegMBB : PHIOps) {
439 NewPHI.add(MO: RegMBB.first).add(MO: RegMBB.second);
440 if (MRI->isSSA())
441 addRegToUpdate(RegMBB.first.getReg());
442 }
443 ChangedPHIMap[PHI] = NewPHI.getInstr();
444 LLVM_DEBUG(dbgs() << "Converting PHI: ");
445 LLVM_DEBUG(PHI->dump());
446 LLVM_DEBUG(dbgs() << "To: ");
447 LLVM_DEBUG(NewPHI.getInstr()->dump());
448 }
449}
450
451// Perform peephole optimizations.
452bool PPCMIPeephole::simplifyCode() {
453 bool Simplified = false;
454 bool TrapOpt = false;
455 MachineInstr* ToErase = nullptr;
456 std::map<MachineInstr *, bool> TOCSaves;
457 const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
458 NumFunctionsEnteredInMIPeephole++;
459 if (ConvertRegReg) {
460 // Fixed-point conversion of reg/reg instructions fed by load-immediate
461 // into reg/imm instructions. FIXME: This is expensive, control it with
462 // an option.
463 bool SomethingChanged = false;
464 do {
465 NumFixedPointIterations++;
466 SomethingChanged = false;
467 for (MachineBasicBlock &MBB : *MF) {
468 for (MachineInstr &MI : MBB) {
469 if (MI.isDebugInstr())
470 continue;
471
472 SmallSet<Register, 4> RRToRIRegsToUpdate;
473 if (!TII->convertToImmediateForm(MI, RRToRIRegsToUpdate))
474 continue;
475 for (Register R : RRToRIRegsToUpdate)
476 addRegToUpdate(R);
477 // The updated instruction may now have new register operands.
478 // Conservatively add them to recompute the flags as well.
479 for (const MachineOperand &MO : MI.operands())
480 if (MO.isReg())
481 addRegToUpdate(MO.getReg());
482 // We don't erase anything in case the def has other uses. Let DCE
483 // remove it if it can be removed.
484 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
485 LLVM_DEBUG(MI.dump());
486 NumConvertedToImmediateForm++;
487 SomethingChanged = true;
488 Simplified = true;
489 continue;
490 }
491 }
492 } while (SomethingChanged && FixedPointRegToImm);
493 }
494
495 // Since we are deleting this instruction, we need to run LiveVariables
496 // on any of its definitions that are marked as needing an update since
497 // we can't run LiveVariables on a deleted register. This only needs
498 // to be done for defs since uses will have their own defining
499 // instructions so we won't be running LiveVariables on a deleted reg.
500 auto recomputeLVForDyingInstr = [&]() {
501 if (RegsToUpdate.empty())
502 return;
503 for (MachineOperand &MO : ToErase->operands()) {
504 if (!MO.isReg() || !MO.isDef() || !RegsToUpdate.count(V: MO.getReg()))
505 continue;
506 Register RegToUpdate = MO.getReg();
507 RegsToUpdate.erase(V: RegToUpdate);
508 // If some transformation has introduced an additional definition of
509 // this register (breaking SSA), we can safely convert this def to
510 // a def of an invalid register as the instruction is going away.
511 if (!MRI->getUniqueVRegDef(RegToUpdate))
512 MO.setReg(PPC::NoRegister);
513 LV->recomputeForSingleDefVirtReg(Reg: RegToUpdate);
514 }
515 };
516
517 for (MachineBasicBlock &MBB : *MF) {
518 for (MachineInstr &MI : MBB) {
519
520 // If the previous instruction was marked for elimination,
521 // remove it now.
522 if (ToErase) {
523 LLVM_DEBUG(dbgs() << "Deleting instruction: ");
524 LLVM_DEBUG(ToErase->dump());
525 recomputeLVForDyingInstr();
526 ToErase->eraseFromParent();
527 ToErase = nullptr;
528 }
529 // If a conditional trap instruction got optimized to an
530 // unconditional trap, eliminate all the instructions after
531 // the trap.
532 if (EnableTrapOptimization && TrapOpt) {
533 ToErase = &MI;
534 continue;
535 }
536
537 // Ignore debug instructions.
538 if (MI.isDebugInstr())
539 continue;
540
541 // Per-opcode peepholes.
542 switch (MI.getOpcode()) {
543
544 default:
545 break;
546 case PPC::COPY: {
547 Register Src = MI.getOperand(i: 1).getReg();
548 Register Dst = MI.getOperand(i: 0).getReg();
549 if (!Src.isVirtual() || !Dst.isVirtual())
550 break;
551 if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass ||
552 MRI->getRegClass(Dst) != &PPC::ACCRCRegClass)
553 break;
554
555 // We are copying an unprimed accumulator to a primed accumulator.
556 // If the input to the copy is a PHI that is fed only by (i) copies in
557 // the other direction (ii) implicitly defined unprimed accumulators or
558 // (iii) other PHI nodes satisfying (i) and (ii), we can change
559 // the PHI to a PHI on primed accumulators (as long as we also change
560 // its operands). To detect and change such copies, we first get a list
561 // of all the PHI nodes starting from the root PHI node in BFS order.
562 // We then visit all these PHI nodes to check if they can be changed to
563 // primed accumulator PHI nodes and if so, we change them.
564 MachineInstr *RootPHI = MRI->getVRegDef(Reg: Src);
565 if (RootPHI->getOpcode() != PPC::PHI)
566 break;
567
568 SmallVector<MachineInstr *, 4> PHIs;
569 if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs))
570 break;
571
572 convertUnprimedAccPHIs(TII, MRI, PHIs, Dst);
573
574 ToErase = &MI;
575 break;
576 }
577 case PPC::LI:
578 case PPC::LI8: {
579 // If we are materializing a zero, look for any use operands for which
580 // zero means immediate zero. All such operands can be replaced with
581 // PPC::ZERO.
582 if (!MI.getOperand(i: 1).isImm() || MI.getOperand(i: 1).getImm() != 0)
583 break;
584 Register MIDestReg = MI.getOperand(i: 0).getReg();
585 bool Folded = false;
586 for (MachineInstr& UseMI : MRI->use_instructions(Reg: MIDestReg))
587 Folded |= TII->onlyFoldImmediate(UseMI, DefMI&: MI, Reg: MIDestReg);
588 if (MRI->use_nodbg_empty(RegNo: MIDestReg)) {
589 ++NumLoadImmZeroFoldedAndRemoved;
590 ToErase = &MI;
591 }
592 if (Folded)
593 addRegToUpdate(MIDestReg);
594 Simplified |= Folded;
595 break;
596 }
597 case PPC::STW:
598 case PPC::STD: {
599 MachineFrameInfo &MFI = MF->getFrameInfo();
600 if (MFI.hasVarSizedObjects() ||
601 (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
602 !MF->getSubtarget<PPCSubtarget>().isAIXABI()))
603 break;
604 // When encountering a TOC save instruction, call UpdateTOCSaves
605 // to add it to the TOCSaves map and mark any existing TOC saves
606 // it dominates as redundant.
607 if (TII->isTOCSaveMI(MI))
608 UpdateTOCSaves(TOCSaves, MI: &MI);
609 break;
610 }
611 case PPC::XXPERMDI: {
612 // Perform simplifications of 2x64 vector swaps and splats.
613 // A swap is identified by an immediate value of 2, and a splat
614 // is identified by an immediate value of 0 or 3.
615 int Immed = MI.getOperand(i: 3).getImm();
616
617 if (Immed == 1)
618 break;
619
620 // For each of these simplifications, we need the two source
621 // regs to match. Unfortunately, MachineCSE ignores COPY and
622 // SUBREG_TO_REG, so for example we can see
623 // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
624 // We have to look through chains of COPY and SUBREG_TO_REG
625 // to find the real source values for comparison.
626 Register TrueReg1 =
627 TRI->lookThruCopyLike(SrcReg: MI.getOperand(i: 1).getReg(), MRI);
628 Register TrueReg2 =
629 TRI->lookThruCopyLike(SrcReg: MI.getOperand(i: 2).getReg(), MRI);
630
631 if (!(TrueReg1 == TrueReg2 && TrueReg1.isVirtual()))
632 break;
633
634 MachineInstr *DefMI = MRI->getVRegDef(Reg: TrueReg1);
635
636 if (!DefMI)
637 break;
638
639 unsigned DefOpc = DefMI->getOpcode();
640
641 // If this is a splat fed by a splatting load, the splat is
642 // redundant. Replace with a copy. This doesn't happen directly due
643 // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
644 // a load of a double to a vector of 64-bit integers.
645 auto isConversionOfLoadAndSplat = [=]() -> bool {
646 if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
647 return false;
648 Register FeedReg1 =
649 TRI->lookThruCopyLike(SrcReg: DefMI->getOperand(i: 1).getReg(), MRI);
650 if (FeedReg1.isVirtual()) {
651 MachineInstr *LoadMI = MRI->getVRegDef(Reg: FeedReg1);
652 if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
653 return true;
654 }
655 return false;
656 };
657 if ((Immed == 0 || Immed == 3) &&
658 (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
659 LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
660 "to load-and-splat/copy: ");
661 LLVM_DEBUG(MI.dump());
662 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
663 MI.getOperand(0).getReg())
664 .add(MI.getOperand(1));
665 addRegToUpdate(MI.getOperand(1).getReg());
666 ToErase = &MI;
667 Simplified = true;
668 }
669
670 // If this is a splat or a swap fed by another splat, we
671 // can replace it with a copy.
672 if (DefOpc == PPC::XXPERMDI) {
673 Register DefReg1 = DefMI->getOperand(i: 1).getReg();
674 Register DefReg2 = DefMI->getOperand(i: 2).getReg();
675 unsigned DefImmed = DefMI->getOperand(i: 3).getImm();
676
677 // If the two inputs are not the same register, check to see if
678 // they originate from the same virtual register after only
679 // copy-like instructions.
680 if (DefReg1 != DefReg2) {
681 Register FeedReg1 = TRI->lookThruCopyLike(SrcReg: DefReg1, MRI);
682 Register FeedReg2 = TRI->lookThruCopyLike(SrcReg: DefReg2, MRI);
683
684 if (!(FeedReg1 == FeedReg2 && FeedReg1.isVirtual()))
685 break;
686 }
687
688 if (DefImmed == 0 || DefImmed == 3) {
689 LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
690 "to splat/copy: ");
691 LLVM_DEBUG(MI.dump());
692 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
693 MI.getOperand(0).getReg())
694 .add(MI.getOperand(1));
695 addRegToUpdate(MI.getOperand(1).getReg());
696 ToErase = &MI;
697 Simplified = true;
698 }
699
700 // If this is a splat fed by a swap, we can simplify modify
701 // the splat to splat the other value from the swap's input
702 // parameter.
703 else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
704 LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
705 LLVM_DEBUG(MI.dump());
706 addRegToUpdate(MI.getOperand(1).getReg());
707 addRegToUpdate(MI.getOperand(2).getReg());
708 MI.getOperand(i: 1).setReg(DefReg1);
709 MI.getOperand(i: 2).setReg(DefReg2);
710 MI.getOperand(i: 3).setImm(3 - Immed);
711 addRegToUpdate(DefReg1);
712 addRegToUpdate(DefReg2);
713 Simplified = true;
714 }
715
716 // If this is a swap fed by a swap, we can replace it
717 // with a copy from the first swap's input.
718 else if (Immed == 2 && DefImmed == 2) {
719 LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
720 LLVM_DEBUG(MI.dump());
721 addRegToUpdate(MI.getOperand(1).getReg());
722 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
723 MI.getOperand(0).getReg())
724 .add(DefMI->getOperand(1));
725 addRegToUpdate(DefMI->getOperand(0).getReg());
726 addRegToUpdate(DefMI->getOperand(1).getReg());
727 ToErase = &MI;
728 Simplified = true;
729 }
730 } else if ((Immed == 0 || Immed == 3 || Immed == 2) &&
731 DefOpc == PPC::XXPERMDIs &&
732 (DefMI->getOperand(2).getImm() == 0 ||
733 DefMI->getOperand(2).getImm() == 3)) {
734 ToErase = &MI;
735 Simplified = true;
736 // Swap of a splat, convert to copy.
737 if (Immed == 2) {
738 LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): ");
739 LLVM_DEBUG(MI.dump());
740 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
741 MI.getOperand(0).getReg())
742 .add(MI.getOperand(1));
743 addRegToUpdate(MI.getOperand(1).getReg());
744 break;
745 }
746 // Splat fed by another splat - switch the output of the first
747 // and remove the second.
748 DefMI->getOperand(i: 0).setReg(MI.getOperand(i: 0).getReg());
749 LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
750 LLVM_DEBUG(MI.dump());
751 } else if (Immed == 2 &&
752 (DefOpc == PPC::VSPLTB || DefOpc == PPC::VSPLTH ||
753 DefOpc == PPC::VSPLTW || DefOpc == PPC::XXSPLTW ||
754 DefOpc == PPC::VSPLTISB || DefOpc == PPC::VSPLTISH ||
755 DefOpc == PPC::VSPLTISW)) {
756 // Swap of various vector splats, convert to copy.
757 ToErase = &MI;
758 Simplified = true;
759 LLVM_DEBUG(dbgs() << "Optimizing swap(vsplt(is)?[b|h|w]|xxspltw) => "
760 "copy(vsplt(is)?[b|h|w]|xxspltw): ");
761 LLVM_DEBUG(MI.dump());
762 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
763 MI.getOperand(0).getReg())
764 .add(MI.getOperand(1));
765 addRegToUpdate(MI.getOperand(1).getReg());
766 } else if ((Immed == 0 || Immed == 3 || Immed == 2) &&
767 TII->isLoadFromConstantPool(I: DefMI)) {
768 const Constant *C = TII->getConstantFromConstantPool(I: DefMI);
769 if (C && C->getType()->isVectorTy() && C->getSplatValue()) {
770 ToErase = &MI;
771 Simplified = true;
772 LLVM_DEBUG(dbgs()
773 << "Optimizing swap(splat pattern from constant-pool) "
774 "=> copy(splat pattern from constant-pool): ");
775 LLVM_DEBUG(MI.dump());
776 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
777 MI.getOperand(0).getReg())
778 .add(MI.getOperand(1));
779 addRegToUpdate(MI.getOperand(1).getReg());
780 }
781 }
782 break;
783 }
784 case PPC::VSPLTB:
785 case PPC::VSPLTH:
786 case PPC::XXSPLTW: {
787 unsigned MyOpcode = MI.getOpcode();
788 unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
789 Register TrueReg =
790 TRI->lookThruCopyLike(SrcReg: MI.getOperand(i: OpNo).getReg(), MRI);
791 if (!TrueReg.isVirtual())
792 break;
793 MachineInstr *DefMI = MRI->getVRegDef(Reg: TrueReg);
794 if (!DefMI)
795 break;
796 unsigned DefOpcode = DefMI->getOpcode();
797 auto isConvertOfSplat = [=]() -> bool {
798 if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
799 return false;
800 Register ConvReg = DefMI->getOperand(i: 1).getReg();
801 if (!ConvReg.isVirtual())
802 return false;
803 MachineInstr *Splt = MRI->getVRegDef(Reg: ConvReg);
804 return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
805 Splt->getOpcode() == PPC::XXSPLTW);
806 };
807 bool AlreadySplat = (MyOpcode == DefOpcode) ||
808 (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
809 (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
810 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
811 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
812 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
813 (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
814 // If the instruction[s] that feed this splat have already splat
815 // the value, this splat is redundant.
816 if (AlreadySplat) {
817 LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
818 LLVM_DEBUG(MI.dump());
819 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
820 MI.getOperand(0).getReg())
821 .add(MI.getOperand(OpNo));
822 addRegToUpdate(MI.getOperand(OpNo).getReg());
823 ToErase = &MI;
824 Simplified = true;
825 }
826 // Splat fed by a shift. Usually when we align value to splat into
827 // vector element zero.
828 if (DefOpcode == PPC::XXSLDWI) {
829 Register ShiftRes = DefMI->getOperand(i: 0).getReg();
830 Register ShiftOp1 = DefMI->getOperand(i: 1).getReg();
831 Register ShiftOp2 = DefMI->getOperand(i: 2).getReg();
832 unsigned ShiftImm = DefMI->getOperand(i: 3).getImm();
833 unsigned SplatImm =
834 MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm();
835 if (ShiftOp1 == ShiftOp2) {
836 unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
837 if (MRI->hasOneNonDBGUse(RegNo: ShiftRes)) {
838 LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
839 LLVM_DEBUG(DefMI->dump());
840 ToErase = DefMI;
841 }
842 Simplified = true;
843 LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
844 << " to " << NewElem << " in instruction: ");
845 LLVM_DEBUG(MI.dump());
846 addRegToUpdate(MI.getOperand(OpNo).getReg());
847 addRegToUpdate(ShiftOp1);
848 MI.getOperand(i: OpNo).setReg(ShiftOp1);
849 MI.getOperand(i: 2).setImm(NewElem);
850 }
851 }
852 break;
853 }
854 case PPC::XVCVDPSP: {
855 // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
856 Register TrueReg =
857 TRI->lookThruCopyLike(SrcReg: MI.getOperand(i: 1).getReg(), MRI);
858 if (!TrueReg.isVirtual())
859 break;
860 MachineInstr *DefMI = MRI->getVRegDef(Reg: TrueReg);
861
862 // This can occur when building a vector of single precision or integer
863 // values.
864 if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
865 Register DefsReg1 =
866 TRI->lookThruCopyLike(SrcReg: DefMI->getOperand(i: 1).getReg(), MRI);
867 Register DefsReg2 =
868 TRI->lookThruCopyLike(SrcReg: DefMI->getOperand(i: 2).getReg(), MRI);
869 if (!DefsReg1.isVirtual() || !DefsReg2.isVirtual())
870 break;
871 MachineInstr *P1 = MRI->getVRegDef(Reg: DefsReg1);
872 MachineInstr *P2 = MRI->getVRegDef(Reg: DefsReg2);
873
874 if (!P1 || !P2)
875 break;
876
877 // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
878 // and set any uses of that FRSP/XSRSP (in this MI) to the source of
879 // the FRSP/XSRSP.
880 auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
881 unsigned Opc = RoundInstr->getOpcode();
882 if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
883 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
884 Simplified = true;
885 Register ConvReg1 = RoundInstr->getOperand(i: 1).getReg();
886 Register FRSPDefines = RoundInstr->getOperand(i: 0).getReg();
887 MachineInstr &Use = *(MRI->use_instr_nodbg_begin(RegNo: FRSPDefines));
888 for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
889 if (Use.getOperand(i).isReg() &&
890 Use.getOperand(i).getReg() == FRSPDefines)
891 Use.getOperand(i).setReg(ConvReg1);
892 LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
893 LLVM_DEBUG(RoundInstr->dump());
894 LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
895 LLVM_DEBUG(MI.dump());
896 LLVM_DEBUG(dbgs() << "Through instruction:\n");
897 LLVM_DEBUG(DefMI->dump());
898 addRegToUpdate(ConvReg1);
899 addRegToUpdate(FRSPDefines);
900 ToErase = RoundInstr;
901 }
902 };
903
904 // If the input to XVCVDPSP is a vector that was built (even
905 // partially) out of FRSP's, the FRSP(s) can safely be removed
906 // since this instruction performs the same operation.
907 if (P1 != P2) {
908 removeFRSPIfPossible(P1);
909 removeFRSPIfPossible(P2);
910 break;
911 }
912 removeFRSPIfPossible(P1);
913 }
914 break;
915 }
916 case PPC::EXTSH:
917 case PPC::EXTSH8:
918 case PPC::EXTSH8_32_64: {
919 if (!EnableSExtElimination) break;
920 Register NarrowReg = MI.getOperand(i: 1).getReg();
921 if (!NarrowReg.isVirtual())
922 break;
923
924 MachineInstr *SrcMI = MRI->getVRegDef(Reg: NarrowReg);
925 unsigned SrcOpcode = SrcMI->getOpcode();
926 // If we've used a zero-extending load that we will sign-extend,
927 // just do a sign-extending load.
928 if (SrcOpcode == PPC::LHZ || SrcOpcode == PPC::LHZX) {
929 if (!MRI->hasOneNonDBGUse(RegNo: SrcMI->getOperand(i: 0).getReg()))
930 break;
931 // Determine the new opcode. We need to make sure that if the original
932 // instruction has a 64 bit opcode we keep using a 64 bit opcode.
933 // Likewise if the source is X-Form the new opcode should also be
934 // X-Form.
935 unsigned Opc = PPC::LHA;
936 bool SourceIsXForm = SrcOpcode == PPC::LHZX;
937 bool MIIs64Bit = MI.getOpcode() == PPC::EXTSH8 ||
938 MI.getOpcode() == PPC::EXTSH8_32_64;
939
940 if (SourceIsXForm && MIIs64Bit)
941 Opc = PPC::LHAX8;
942 else if (SourceIsXForm && !MIIs64Bit)
943 Opc = PPC::LHAX;
944 else if (MIIs64Bit)
945 Opc = PPC::LHA8;
946
947 addRegToUpdate(NarrowReg);
948 addRegToUpdate(MI.getOperand(0).getReg());
949
950 // We are removing a definition of NarrowReg which will cause
951 // problems in AliveBlocks. Add an implicit def that will be
952 // removed so that AliveBlocks are updated correctly.
953 addDummyDef(MBB, At: &MI, Reg: NarrowReg);
954 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
955 LLVM_DEBUG(SrcMI->dump());
956 LLVM_DEBUG(dbgs() << "and sign-extension\n");
957 LLVM_DEBUG(MI.dump());
958 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
959 SrcMI->setDesc(TII->get(Opc));
960 SrcMI->getOperand(i: 0).setReg(MI.getOperand(i: 0).getReg());
961 ToErase = &MI;
962 Simplified = true;
963 NumEliminatedSExt++;
964 }
965 break;
966 }
967 case PPC::EXTSW:
968 case PPC::EXTSW_32:
969 case PPC::EXTSW_32_64: {
970 if (!EnableSExtElimination) break;
971 Register NarrowReg = MI.getOperand(i: 1).getReg();
972 if (!NarrowReg.isVirtual())
973 break;
974
975 MachineInstr *SrcMI = MRI->getVRegDef(Reg: NarrowReg);
976 unsigned SrcOpcode = SrcMI->getOpcode();
977 // If we've used a zero-extending load that we will sign-extend,
978 // just do a sign-extending load.
979 if (SrcOpcode == PPC::LWZ || SrcOpcode == PPC::LWZX) {
980 if (!MRI->hasOneNonDBGUse(RegNo: SrcMI->getOperand(i: 0).getReg()))
981 break;
982
983 // The transformation from a zero-extending load to a sign-extending
984 // load is only legal when the displacement is a multiple of 4.
985 // If the displacement is not at least 4 byte aligned, don't perform
986 // the transformation.
987 bool IsWordAligned = false;
988 if (SrcMI->getOperand(i: 1).isGlobal()) {
989 const GlobalObject *GO =
990 dyn_cast<GlobalObject>(Val: SrcMI->getOperand(i: 1).getGlobal());
991 if (GO && GO->getAlign() && *GO->getAlign() >= 4 &&
992 (SrcMI->getOperand(i: 1).getOffset() % 4 == 0))
993 IsWordAligned = true;
994 } else if (SrcMI->getOperand(i: 1).isImm()) {
995 int64_t Value = SrcMI->getOperand(i: 1).getImm();
996 if (Value % 4 == 0)
997 IsWordAligned = true;
998 }
999
1000 // Determine the new opcode. We need to make sure that if the original
1001 // instruction has a 64 bit opcode we keep using a 64 bit opcode.
1002 // Likewise if the source is X-Form the new opcode should also be
1003 // X-Form.
1004 unsigned Opc = PPC::LWA_32;
1005 bool SourceIsXForm = SrcOpcode == PPC::LWZX;
1006 bool MIIs64Bit = MI.getOpcode() == PPC::EXTSW ||
1007 MI.getOpcode() == PPC::EXTSW_32_64;
1008
1009 if (SourceIsXForm && MIIs64Bit)
1010 Opc = PPC::LWAX;
1011 else if (SourceIsXForm && !MIIs64Bit)
1012 Opc = PPC::LWAX_32;
1013 else if (MIIs64Bit)
1014 Opc = PPC::LWA;
1015
1016 if (!IsWordAligned && (Opc == PPC::LWA || Opc == PPC::LWA_32))
1017 break;
1018
1019 addRegToUpdate(NarrowReg);
1020 addRegToUpdate(MI.getOperand(0).getReg());
1021
1022 // We are removing a definition of NarrowReg which will cause
1023 // problems in AliveBlocks. Add an implicit def that will be
1024 // removed so that AliveBlocks are updated correctly.
1025 addDummyDef(MBB, At: &MI, Reg: NarrowReg);
1026 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
1027 LLVM_DEBUG(SrcMI->dump());
1028 LLVM_DEBUG(dbgs() << "and sign-extension\n");
1029 LLVM_DEBUG(MI.dump());
1030 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
1031 SrcMI->setDesc(TII->get(Opc));
1032 SrcMI->getOperand(i: 0).setReg(MI.getOperand(i: 0).getReg());
1033 ToErase = &MI;
1034 Simplified = true;
1035 NumEliminatedSExt++;
1036 } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
1037 TII->isSignExtended(NarrowReg, MRI)) {
1038 // We can eliminate EXTSW if the input is known to be already
1039 // sign-extended.
1040 LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
1041 Register TmpReg =
1042 MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
1043 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
1044 TmpReg);
1045 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
1046 MI.getOperand(0).getReg())
1047 .addReg(TmpReg)
1048 .addReg(NarrowReg)
1049 .addImm(PPC::sub_32);
1050 ToErase = &MI;
1051 Simplified = true;
1052 NumEliminatedSExt++;
1053 }
1054 break;
1055 }
1056 case PPC::RLDICL: {
1057 // We can eliminate RLDICL (e.g. for zero-extension)
1058 // if all bits to clear are already zero in the input.
1059 // This code assume following code sequence for zero-extension.
1060 // %6 = COPY %5:sub_32; (optional)
1061 // %8 = IMPLICIT_DEF;
1062 // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
1063 if (!EnableZExtElimination) break;
1064
1065 if (MI.getOperand(i: 2).getImm() != 0)
1066 break;
1067
1068 Register SrcReg = MI.getOperand(i: 1).getReg();
1069 if (!SrcReg.isVirtual())
1070 break;
1071
1072 MachineInstr *SrcMI = MRI->getVRegDef(Reg: SrcReg);
1073 if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
1074 SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
1075 break;
1076
1077 MachineInstr *ImpDefMI, *SubRegMI;
1078 ImpDefMI = MRI->getVRegDef(Reg: SrcMI->getOperand(i: 1).getReg());
1079 SubRegMI = MRI->getVRegDef(Reg: SrcMI->getOperand(i: 2).getReg());
1080 if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
1081
1082 SrcMI = SubRegMI;
1083 if (SubRegMI->getOpcode() == PPC::COPY) {
1084 Register CopyReg = SubRegMI->getOperand(i: 1).getReg();
1085 if (CopyReg.isVirtual())
1086 SrcMI = MRI->getVRegDef(Reg: CopyReg);
1087 }
1088 if (!SrcMI->getOperand(i: 0).isReg())
1089 break;
1090
1091 unsigned KnownZeroCount =
1092 getKnownLeadingZeroCount(Reg: SrcMI->getOperand(i: 0).getReg(), TII, MRI);
1093 if (MI.getOperand(i: 3).getImm() <= KnownZeroCount) {
1094 LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
1095 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
1096 MI.getOperand(0).getReg())
1097 .addReg(SrcReg);
1098 addRegToUpdate(SrcReg);
1099 ToErase = &MI;
1100 Simplified = true;
1101 NumEliminatedZExt++;
1102 }
1103 break;
1104 }
1105
1106 // TODO: Any instruction that has an immediate form fed only by a PHI
1107 // whose operands are all load immediate can be folded away. We currently
1108 // do this for ADD instructions, but should expand it to arithmetic and
1109 // binary instructions with immediate forms in the future.
1110 case PPC::ADD4:
1111 case PPC::ADD8: {
1112 auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
1113 assert(PhiOp && "Invalid Operand!");
1114 MachineInstr *DefPhiMI = getVRegDefOrNull(Op: PhiOp, MRI);
1115
1116 return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
1117 MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
1118 };
1119
1120 auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
1121 MachineOperand *PhiOp) {
1122 assert(PhiOp && "Invalid Operand!");
1123 assert(DominatorOp && "Invalid Operand!");
1124 MachineInstr *DefPhiMI = getVRegDefOrNull(Op: PhiOp, MRI);
1125 MachineInstr *DefDomMI = getVRegDefOrNull(Op: DominatorOp, MRI);
1126
1127 // Note: the vregs only show up at odd indices position of PHI Node,
1128 // the even indices position save the BB info.
1129 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
1130 MachineInstr *LiMI =
1131 getVRegDefOrNull(Op: &DefPhiMI->getOperand(i), MRI);
1132 if (!LiMI ||
1133 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
1134 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
1135 !MDT->dominates(DefDomMI, LiMI))
1136 return false;
1137 }
1138
1139 return true;
1140 };
1141
1142 MachineOperand Op1 = MI.getOperand(i: 1);
1143 MachineOperand Op2 = MI.getOperand(i: 2);
1144 if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
1145 std::swap(a&: Op1, b&: Op2);
1146 else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
1147 break; // We don't have an ADD fed by LI's that can be transformed
1148
1149 // Now we know that Op1 is the PHI node and Op2 is the dominator
1150 Register DominatorReg = Op2.getReg();
1151
1152 const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
1153 ? &PPC::G8RC_and_G8RC_NOX0RegClass
1154 : &PPC::GPRC_and_GPRC_NOR0RegClass;
1155 MRI->setRegClass(Reg: DominatorReg, RC: TRC);
1156
1157 // replace LIs with ADDIs
1158 MachineInstr *DefPhiMI = getVRegDefOrNull(Op: &Op1, MRI);
1159 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
1160 MachineInstr *LiMI = getVRegDefOrNull(Op: &DefPhiMI->getOperand(i), MRI);
1161 LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
1162 LLVM_DEBUG(LiMI->dump());
1163
1164 // There could be repeated registers in the PHI, e.g: %1 =
1165 // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
1166 // already replaced the def instruction, skip.
1167 if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
1168 continue;
1169
1170 assert((LiMI->getOpcode() == PPC::LI ||
1171 LiMI->getOpcode() == PPC::LI8) &&
1172 "Invalid Opcode!");
1173 auto LiImm = LiMI->getOperand(i: 1).getImm(); // save the imm of LI
1174 LiMI->removeOperand(OpNo: 1); // remove the imm of LI
1175 LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
1176 : PPC::ADDI8));
1177 MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
1178 .addReg(RegNo: DominatorReg)
1179 .addImm(Val: LiImm); // restore the imm of LI
1180 LLVM_DEBUG(LiMI->dump());
1181 }
1182
1183 // Replace ADD with COPY
1184 LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
1185 LLVM_DEBUG(MI.dump());
1186 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
1187 MI.getOperand(0).getReg())
1188 .add(Op1);
1189 addRegToUpdate(Op1.getReg());
1190 addRegToUpdate(Op2.getReg());
1191 ToErase = &MI;
1192 Simplified = true;
1193 NumOptADDLIs++;
1194 break;
1195 }
1196 case PPC::RLDICR: {
1197 Simplified |= emitRLDICWhenLoweringJumpTables(MI, ToErase) ||
1198 combineSEXTAndSHL(MI, ToErase);
1199 break;
1200 }
1201 case PPC::ANDI_rec:
1202 case PPC::ANDI8_rec:
1203 case PPC::ANDIS_rec:
1204 case PPC::ANDIS8_rec: {
1205 Register TrueReg =
1206 TRI->lookThruCopyLike(SrcReg: MI.getOperand(i: 1).getReg(), MRI);
1207 if (!TrueReg.isVirtual() || !MRI->hasOneNonDBGUse(RegNo: TrueReg))
1208 break;
1209
1210 MachineInstr *SrcMI = MRI->getVRegDef(Reg: TrueReg);
1211 if (!SrcMI)
1212 break;
1213
1214 unsigned SrcOpCode = SrcMI->getOpcode();
1215 if (SrcOpCode != PPC::RLDICL && SrcOpCode != PPC::RLDICR)
1216 break;
1217
1218 Register SrcReg, DstReg;
1219 SrcReg = SrcMI->getOperand(i: 1).getReg();
1220 DstReg = MI.getOperand(i: 1).getReg();
1221 const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(Reg: SrcReg);
1222 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Reg: DstReg);
1223 if (DstRC != SrcRC)
1224 break;
1225
1226 uint64_t AndImm = MI.getOperand(i: 2).getImm();
1227 if (MI.getOpcode() == PPC::ANDIS_rec ||
1228 MI.getOpcode() == PPC::ANDIS8_rec)
1229 AndImm <<= 16;
1230 uint64_t LZeroAndImm = llvm::countl_zero<uint64_t>(Val: AndImm);
1231 uint64_t RZeroAndImm = llvm::countr_zero<uint64_t>(Val: AndImm);
1232 uint64_t ImmSrc = SrcMI->getOperand(i: 3).getImm();
1233
1234 // We can transfer `RLDICL/RLDICR + ANDI_rec/ANDIS_rec` to `ANDI_rec 0`
1235 // if all bits to AND are already zero in the input.
1236 bool PatternResultZero =
1237 (SrcOpCode == PPC::RLDICL && (RZeroAndImm + ImmSrc > 63)) ||
1238 (SrcOpCode == PPC::RLDICR && LZeroAndImm > ImmSrc);
1239
1240 // We can eliminate RLDICL/RLDICR if it's used to clear bits and all
1241 // bits cleared will be ANDed with 0 by ANDI_rec/ANDIS_rec.
1242 bool PatternRemoveRotate =
1243 SrcMI->getOperand(2).getImm() == 0 &&
1244 ((SrcOpCode == PPC::RLDICL && LZeroAndImm >= ImmSrc) ||
1245 (SrcOpCode == PPC::RLDICR && (RZeroAndImm + ImmSrc > 63)));
1246
1247 if (!PatternResultZero && !PatternRemoveRotate)
1248 break;
1249
1250 LLVM_DEBUG(dbgs() << "Combining pair: ");
1251 LLVM_DEBUG(SrcMI->dump());
1252 LLVM_DEBUG(MI.dump());
1253 if (PatternResultZero)
1254 MI.getOperand(i: 2).setImm(0);
1255 MI.getOperand(i: 1).setReg(SrcMI->getOperand(i: 1).getReg());
1256 LLVM_DEBUG(dbgs() << "To: ");
1257 LLVM_DEBUG(MI.dump());
1258 addRegToUpdate(MI.getOperand(1).getReg());
1259 addRegToUpdate(SrcMI->getOperand(0).getReg());
1260 Simplified = true;
1261 break;
1262 }
1263 case PPC::RLWINM:
1264 case PPC::RLWINM_rec:
1265 case PPC::RLWINM8:
1266 case PPC::RLWINM8_rec: {
1267 // We might replace operand 1 of the instruction which will
1268 // require we recompute kill flags for it.
1269 Register OrigOp1Reg = MI.getOperand(1).isReg()
1270 ? MI.getOperand(1).getReg()
1271 : PPC::NoRegister;
1272 Simplified = TII->combineRLWINM(MI, ToErase: &ToErase);
1273 if (Simplified) {
1274 addRegToUpdate(OrigOp1Reg);
1275 if (MI.getOperand(i: 1).isReg())
1276 addRegToUpdate(MI.getOperand(1).getReg());
1277 ++NumRotatesCollapsed;
1278 }
1279 break;
1280 }
1281 // We will replace TD/TW/TDI/TWI with an unconditional trap if it will
1282 // always trap, we will delete the node if it will never trap.
1283 case PPC::TDI:
1284 case PPC::TWI:
1285 case PPC::TD:
1286 case PPC::TW: {
1287 if (!EnableTrapOptimization) break;
1288 MachineInstr *LiMI1 = getVRegDefOrNull(Op: &MI.getOperand(i: 1), MRI);
1289 MachineInstr *LiMI2 = getVRegDefOrNull(Op: &MI.getOperand(i: 2), MRI);
1290 bool IsOperand2Immediate = MI.getOperand(i: 2).isImm();
1291 // We can only do the optimization if we can get immediates
1292 // from both operands
1293 if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI ||
1294 LiMI1->getOpcode() == PPC::LI8)))
1295 break;
1296 if (!IsOperand2Immediate &&
1297 !(LiMI2 && (LiMI2->getOpcode() == PPC::LI ||
1298 LiMI2->getOpcode() == PPC::LI8)))
1299 break;
1300
1301 auto ImmOperand0 = MI.getOperand(i: 0).getImm();
1302 auto ImmOperand1 = LiMI1->getOperand(i: 1).getImm();
1303 auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(i: 2).getImm()
1304 : LiMI2->getOperand(i: 1).getImm();
1305
1306 // We will replace the MI with an unconditional trap if it will always
1307 // trap.
1308 if ((ImmOperand0 == 31) ||
1309 ((ImmOperand0 & 0x10) &&
1310 ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) ||
1311 ((ImmOperand0 & 0x8) &&
1312 ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) ||
1313 ((ImmOperand0 & 0x2) &&
1314 ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) ||
1315 ((ImmOperand0 & 0x1) &&
1316 ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) ||
1317 ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) {
1318 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::TRAP));
1319 TrapOpt = true;
1320 }
1321 // We will delete the MI if it will never trap.
1322 ToErase = &MI;
1323 Simplified = true;
1324 break;
1325 }
1326 }
1327 }
1328
1329 // If the last instruction was marked for elimination,
1330 // remove it now.
1331 if (ToErase) {
1332 recomputeLVForDyingInstr();
1333 ToErase->eraseFromParent();
1334 ToErase = nullptr;
1335 }
1336 // Reset TrapOpt to false at the end of the basic block.
1337 if (EnableTrapOptimization)
1338 TrapOpt = false;
1339 }
1340
1341 // Eliminate all the TOC save instructions which are redundant.
1342 Simplified |= eliminateRedundantTOCSaves(TOCSaves);
1343 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
1344 if (FI->mustSaveTOC())
1345 NumTOCSavesInPrologue++;
1346
1347 // We try to eliminate redundant compare instruction.
1348 Simplified |= eliminateRedundantCompare();
1349
1350 // If we have made any modifications and added any registers to the set of
1351 // registers for which we need to update the kill flags, do so by recomputing
1352 // LiveVariables for those registers.
1353 for (Register Reg : RegsToUpdate) {
1354 if (!MRI->reg_empty(RegNo: Reg))
1355 LV->recomputeForSingleDefVirtReg(Reg);
1356 }
1357 return Simplified;
1358}
1359
1360// helper functions for eliminateRedundantCompare
1361static bool isEqOrNe(MachineInstr *BI) {
1362 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(i: 0).getImm();
1363 unsigned PredCond = PPC::getPredicateCondition(Opcode: Pred);
1364 return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
1365}
1366
1367static bool isSupportedCmpOp(unsigned opCode) {
1368 return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
1369 opCode == PPC::CMPLW || opCode == PPC::CMPW ||
1370 opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
1371 opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
1372}
1373
1374static bool is64bitCmpOp(unsigned opCode) {
1375 return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
1376 opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
1377}
1378
1379static bool isSignedCmpOp(unsigned opCode) {
1380 return (opCode == PPC::CMPD || opCode == PPC::CMPW ||
1381 opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1382}
1383
1384static unsigned getSignedCmpOpCode(unsigned opCode) {
1385 if (opCode == PPC::CMPLD) return PPC::CMPD;
1386 if (opCode == PPC::CMPLW) return PPC::CMPW;
1387 if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1388 if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1389 return opCode;
1390}
1391
1392// We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1393// (LT x) to (LE x-1)
1394static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1395 uint64_t Imm = CMPI->getOperand(i: 2).getImm();
1396 bool SignedCmp = isSignedCmpOp(opCode: CMPI->getOpcode());
1397 if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1398 return 0;
1399
1400 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(i: 0).getImm();
1401 unsigned PredCond = PPC::getPredicateCondition(Opcode: Pred);
1402 unsigned PredHint = PPC::getPredicateHint(Opcode: Pred);
1403 if (PredCond == PPC::PRED_GE)
1404 return PPC::getPredicate(Condition: PPC::PRED_GT, Hint: PredHint);
1405 if (PredCond == PPC::PRED_LT)
1406 return PPC::getPredicate(Condition: PPC::PRED_LE, Hint: PredHint);
1407
1408 return 0;
1409}
1410
1411// We can increment immediate x in (GT x) by changing it to (GE x+1) or
1412// (LE x) to (LT x+1)
1413static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1414 uint64_t Imm = CMPI->getOperand(i: 2).getImm();
1415 bool SignedCmp = isSignedCmpOp(opCode: CMPI->getOpcode());
1416 if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1417 return 0;
1418
1419 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(i: 0).getImm();
1420 unsigned PredCond = PPC::getPredicateCondition(Opcode: Pred);
1421 unsigned PredHint = PPC::getPredicateHint(Opcode: Pred);
1422 if (PredCond == PPC::PRED_GT)
1423 return PPC::getPredicate(Condition: PPC::PRED_GE, Hint: PredHint);
1424 if (PredCond == PPC::PRED_LE)
1425 return PPC::getPredicate(Condition: PPC::PRED_LT, Hint: PredHint);
1426
1427 return 0;
1428}
1429
1430// This takes a Phi node and returns a register value for the specified BB.
1431static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1432 MachineBasicBlock *MBB) {
1433 for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1434 MachineOperand &MO = Phi->getOperand(i: I);
1435 if (MO.getMBB() == MBB)
1436 return Phi->getOperand(i: I-1).getReg();
1437 }
1438 llvm_unreachable("invalid src basic block for this Phi node\n");
1439 return 0;
1440}
1441
1442// This function tracks the source of the register through register copy.
1443// If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1444// assuming that the control comes from BB1 into BB2.
1445static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1446 MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1447 unsigned SrcReg = Reg;
1448 while (true) {
1449 unsigned NextReg = SrcReg;
1450 MachineInstr *Inst = MRI->getVRegDef(Reg: SrcReg);
1451 if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1452 NextReg = getIncomingRegForBlock(Phi: Inst, MBB: BB1);
1453 // We track through PHI only once to avoid infinite loop.
1454 BB1 = nullptr;
1455 }
1456 else if (Inst->isFullCopy())
1457 NextReg = Inst->getOperand(i: 1).getReg();
1458 if (NextReg == SrcReg || !Register::isVirtualRegister(Reg: NextReg))
1459 break;
1460 SrcReg = NextReg;
1461 }
1462 return SrcReg;
1463}
1464
1465static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1466 MachineBasicBlock *&PredMBB,
1467 MachineBasicBlock *&MBBtoMoveCmp,
1468 MachineRegisterInfo *MRI) {
1469
1470 auto isEligibleBB = [&](MachineBasicBlock &BB) {
1471 auto BII = BB.getFirstInstrTerminator();
1472 // We optimize BBs ending with a conditional branch.
1473 // We check only for BCC here, not BCCLR, because BCCLR
1474 // will be formed only later in the pipeline.
1475 if (BB.succ_size() == 2 &&
1476 BII != BB.instr_end() &&
1477 (*BII).getOpcode() == PPC::BCC &&
1478 (*BII).getOperand(1).isReg()) {
1479 // We optimize only if the condition code is used only by one BCC.
1480 Register CndReg = (*BII).getOperand(i: 1).getReg();
1481 if (!CndReg.isVirtual() || !MRI->hasOneNonDBGUse(RegNo: CndReg))
1482 return false;
1483
1484 MachineInstr *CMPI = MRI->getVRegDef(Reg: CndReg);
1485 // We assume compare and branch are in the same BB for ease of analysis.
1486 if (CMPI->getParent() != &BB)
1487 return false;
1488
1489 // We skip this BB if a physical register is used in comparison.
1490 for (MachineOperand &MO : CMPI->operands())
1491 if (MO.isReg() && !MO.getReg().isVirtual())
1492 return false;
1493
1494 return true;
1495 }
1496 return false;
1497 };
1498
1499 // If this BB has more than one successor, we can create a new BB and
1500 // move the compare instruction in the new BB.
1501 // So far, we do not move compare instruction to a BB having multiple
1502 // successors to avoid potentially increasing code size.
1503 auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1504 return BB.succ_size() == 1;
1505 };
1506
1507 if (!isEligibleBB(MBB))
1508 return false;
1509
1510 unsigned NumPredBBs = MBB.pred_size();
1511 if (NumPredBBs == 1) {
1512 MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1513 if (isEligibleBB(*TmpMBB)) {
1514 PredMBB = TmpMBB;
1515 MBBtoMoveCmp = nullptr;
1516 return true;
1517 }
1518 }
1519 else if (NumPredBBs == 2) {
1520 // We check for partially redundant case.
1521 // So far, we support cases with only two predecessors
1522 // to avoid increasing the number of instructions.
1523 MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1524 MachineBasicBlock *Pred1MBB = *PI;
1525 MachineBasicBlock *Pred2MBB = *(PI+1);
1526
1527 if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1528 // We assume Pred1MBB is the BB containing the compare to be merged and
1529 // Pred2MBB is the BB to which we will append a compare instruction.
1530 // Proceed as is if Pred1MBB is different from MBB.
1531 }
1532 else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1533 // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1534 std::swap(a&: Pred1MBB, b&: Pred2MBB);
1535 }
1536 else return false;
1537
1538 if (Pred1MBB == &MBB)
1539 return false;
1540
1541 // Here, Pred2MBB is the BB to which we need to append a compare inst.
1542 // We cannot move the compare instruction if operands are not available
1543 // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1544 MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1545 MachineInstr *CMPI = MRI->getVRegDef(Reg: BI->getOperand(i: 1).getReg());
1546 for (int I = 1; I <= 2; I++)
1547 if (CMPI->getOperand(i: I).isReg()) {
1548 MachineInstr *Inst = MRI->getVRegDef(Reg: CMPI->getOperand(i: I).getReg());
1549 if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1550 return false;
1551 }
1552
1553 PredMBB = Pred1MBB;
1554 MBBtoMoveCmp = Pred2MBB;
1555 return true;
1556 }
1557
1558 return false;
1559}
1560
1561// This function will iterate over the input map containing a pair of TOC save
1562// instruction and a flag. The flag will be set to false if the TOC save is
1563// proven redundant. This function will erase from the basic block all the TOC
1564// saves marked as redundant.
1565bool PPCMIPeephole::eliminateRedundantTOCSaves(
1566 std::map<MachineInstr *, bool> &TOCSaves) {
1567 bool Simplified = false;
1568 int NumKept = 0;
1569 for (auto TOCSave : TOCSaves) {
1570 if (!TOCSave.second) {
1571 TOCSave.first->eraseFromParent();
1572 RemoveTOCSave++;
1573 Simplified = true;
1574 } else {
1575 NumKept++;
1576 }
1577 }
1578
1579 if (NumKept > 1)
1580 MultiTOCSaves++;
1581
1582 return Simplified;
1583}
1584
1585// If multiple conditional branches are executed based on the (essentially)
1586// same comparison, we merge compare instructions into one and make multiple
1587// conditional branches on this comparison.
1588// For example,
1589// if (a == 0) { ... }
1590// else if (a < 0) { ... }
1591// can be executed by one compare and two conditional branches instead of
1592// two pairs of a compare and a conditional branch.
1593//
1594// This method merges two compare instructions in two MBBs and modifies the
1595// compare and conditional branch instructions if needed.
1596// For the above example, the input for this pass looks like:
1597// cmplwi r3, 0
1598// beq 0, .LBB0_3
1599// cmpwi r3, -1
1600// bgt 0, .LBB0_4
1601// So, before merging two compares, we need to modify these instructions as
1602// cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
1603// beq 0, .LBB0_3
1604// cmpwi r3, 0 ; greather than -1 means greater or equal to 0
1605// bge 0, .LBB0_4
1606
1607bool PPCMIPeephole::eliminateRedundantCompare() {
1608 bool Simplified = false;
1609
1610 for (MachineBasicBlock &MBB2 : *MF) {
1611 MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1612
1613 // For fully redundant case, we select two basic blocks MBB1 and MBB2
1614 // as an optimization target if
1615 // - both MBBs end with a conditional branch,
1616 // - MBB1 is the only predecessor of MBB2, and
1617 // - compare does not take a physical register as a operand in both MBBs.
1618 // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1619 //
1620 // As partially redundant case, we additionally handle if MBB2 has one
1621 // additional predecessor, which has only one successor (MBB2).
1622 // In this case, we move the compare instruction originally in MBB2 into
1623 // MBBtoMoveCmp. This partially redundant case is typically appear by
1624 // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1625 //
1626 // Overview of CFG of related basic blocks
1627 // Fully redundant case Partially redundant case
1628 // -------- ---------------- --------
1629 // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ)
1630 // -------- ---------------- --------
1631 // | \ (w/ 1 succ) \ | \
1632 // | \ \ | \
1633 // | \ |
1634 // -------- --------
1635 // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred
1636 // -------- and 2 succ) -------- and 2 succ)
1637 // | \ | \
1638 // | \ | \
1639 //
1640 if (!eligibleForCompareElimination(MBB&: MBB2, PredMBB&: MBB1, MBBtoMoveCmp, MRI))
1641 continue;
1642
1643 MachineInstr *BI1 = &*MBB1->getFirstInstrTerminator();
1644 MachineInstr *CMPI1 = MRI->getVRegDef(Reg: BI1->getOperand(i: 1).getReg());
1645
1646 MachineInstr *BI2 = &*MBB2.getFirstInstrTerminator();
1647 MachineInstr *CMPI2 = MRI->getVRegDef(Reg: BI2->getOperand(i: 1).getReg());
1648 bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1649
1650 // We cannot optimize an unsupported compare opcode or
1651 // a mix of 32-bit and 64-bit comparisons
1652 if (!isSupportedCmpOp(opCode: CMPI1->getOpcode()) ||
1653 !isSupportedCmpOp(opCode: CMPI2->getOpcode()) ||
1654 is64bitCmpOp(opCode: CMPI1->getOpcode()) != is64bitCmpOp(opCode: CMPI2->getOpcode()))
1655 continue;
1656
1657 unsigned NewOpCode = 0;
1658 unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1659 int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1660 bool SwapOperands = false;
1661
1662 if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1663 // Typically, unsigned comparison is used for equality check, but
1664 // we replace it with a signed comparison if the comparison
1665 // to be merged is a signed comparison.
1666 // In other cases of opcode mismatch, we cannot optimize this.
1667
1668 // We cannot change opcode when comparing against an immediate
1669 // if the most significant bit of the immediate is one
1670 // due to the difference in sign extension.
1671 auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1672 if (!I->getOperand(i: 2).isImm())
1673 return false;
1674 int16_t Imm = (int16_t)I->getOperand(i: 2).getImm();
1675 return Imm < 0;
1676 };
1677
1678 if (isEqOrNe(BI: BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1679 CMPI1->getOpcode() == getSignedCmpOpCode(opCode: CMPI2->getOpcode()))
1680 NewOpCode = CMPI1->getOpcode();
1681 else if (isEqOrNe(BI: BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1682 getSignedCmpOpCode(opCode: CMPI1->getOpcode()) == CMPI2->getOpcode())
1683 NewOpCode = CMPI2->getOpcode();
1684 else continue;
1685 }
1686
1687 if (CMPI1->getOperand(i: 2).isReg() && CMPI2->getOperand(i: 2).isReg()) {
1688 // In case of comparisons between two registers, these two registers
1689 // must be same to merge two comparisons.
1690 unsigned Cmp1Operand1 = getSrcVReg(Reg: CMPI1->getOperand(i: 1).getReg(),
1691 BB1: nullptr, BB2: nullptr, MRI);
1692 unsigned Cmp1Operand2 = getSrcVReg(Reg: CMPI1->getOperand(i: 2).getReg(),
1693 BB1: nullptr, BB2: nullptr, MRI);
1694 unsigned Cmp2Operand1 = getSrcVReg(Reg: CMPI2->getOperand(i: 1).getReg(),
1695 BB1: MBB1, BB2: &MBB2, MRI);
1696 unsigned Cmp2Operand2 = getSrcVReg(Reg: CMPI2->getOperand(i: 2).getReg(),
1697 BB1: MBB1, BB2: &MBB2, MRI);
1698
1699 if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1700 // Same pair of registers in the same order; ready to merge as is.
1701 }
1702 else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1703 // Same pair of registers in different order.
1704 // We reverse the predicate to merge compare instructions.
1705 PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(i: 0).getImm();
1706 NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Opcode: Pred);
1707 // In case of partial redundancy, we need to swap operands
1708 // in another compare instruction.
1709 SwapOperands = true;
1710 }
1711 else continue;
1712 }
1713 else if (CMPI1->getOperand(i: 2).isImm() && CMPI2->getOperand(i: 2).isImm()) {
1714 // In case of comparisons between a register and an immediate,
1715 // the operand register must be same for two compare instructions.
1716 unsigned Cmp1Operand1 = getSrcVReg(Reg: CMPI1->getOperand(i: 1).getReg(),
1717 BB1: nullptr, BB2: nullptr, MRI);
1718 unsigned Cmp2Operand1 = getSrcVReg(Reg: CMPI2->getOperand(i: 1).getReg(),
1719 BB1: MBB1, BB2: &MBB2, MRI);
1720 if (Cmp1Operand1 != Cmp2Operand1)
1721 continue;
1722
1723 NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(i: 2).getImm();
1724 NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(i: 2).getImm();
1725
1726 // If immediate are not same, we try to adjust by changing predicate;
1727 // e.g. GT imm means GE (imm+1).
1728 if (Imm1 != Imm2 && (!isEqOrNe(BI: BI2) || !isEqOrNe(BI: BI1))) {
1729 int Diff = Imm1 - Imm2;
1730 if (Diff < -2 || Diff > 2)
1731 continue;
1732
1733 unsigned PredToInc1 = getPredicateToIncImm(BI: BI1, CMPI: CMPI1);
1734 unsigned PredToDec1 = getPredicateToDecImm(BI: BI1, CMPI: CMPI1);
1735 unsigned PredToInc2 = getPredicateToIncImm(BI: BI2, CMPI: CMPI2);
1736 unsigned PredToDec2 = getPredicateToDecImm(BI: BI2, CMPI: CMPI2);
1737 if (Diff == 2) {
1738 if (PredToInc2 && PredToDec1) {
1739 NewPredicate2 = PredToInc2;
1740 NewPredicate1 = PredToDec1;
1741 NewImm2++;
1742 NewImm1--;
1743 }
1744 }
1745 else if (Diff == 1) {
1746 if (PredToInc2) {
1747 NewImm2++;
1748 NewPredicate2 = PredToInc2;
1749 }
1750 else if (PredToDec1) {
1751 NewImm1--;
1752 NewPredicate1 = PredToDec1;
1753 }
1754 }
1755 else if (Diff == -1) {
1756 if (PredToDec2) {
1757 NewImm2--;
1758 NewPredicate2 = PredToDec2;
1759 }
1760 else if (PredToInc1) {
1761 NewImm1++;
1762 NewPredicate1 = PredToInc1;
1763 }
1764 }
1765 else if (Diff == -2) {
1766 if (PredToDec2 && PredToInc1) {
1767 NewPredicate2 = PredToDec2;
1768 NewPredicate1 = PredToInc1;
1769 NewImm2--;
1770 NewImm1++;
1771 }
1772 }
1773 }
1774
1775 // We cannot merge two compares if the immediates are not same.
1776 if (NewImm2 != NewImm1)
1777 continue;
1778 }
1779
1780 LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1781 LLVM_DEBUG(CMPI1->dump());
1782 LLVM_DEBUG(BI1->dump());
1783 LLVM_DEBUG(CMPI2->dump());
1784 LLVM_DEBUG(BI2->dump());
1785 for (const MachineOperand &MO : CMPI1->operands())
1786 if (MO.isReg())
1787 addRegToUpdate(MO.getReg());
1788 for (const MachineOperand &MO : CMPI2->operands())
1789 if (MO.isReg())
1790 addRegToUpdate(MO.getReg());
1791
1792 // We adjust opcode, predicates and immediate as we determined above.
1793 if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1794 CMPI1->setDesc(TII->get(NewOpCode));
1795 }
1796 if (NewPredicate1) {
1797 BI1->getOperand(i: 0).setImm(NewPredicate1);
1798 }
1799 if (NewPredicate2) {
1800 BI2->getOperand(i: 0).setImm(NewPredicate2);
1801 }
1802 if (NewImm1 != Imm1) {
1803 CMPI1->getOperand(i: 2).setImm(NewImm1);
1804 }
1805
1806 if (IsPartiallyRedundant) {
1807 // We touch up the compare instruction in MBB2 and move it to
1808 // a previous BB to handle partially redundant case.
1809 if (SwapOperands) {
1810 Register Op1 = CMPI2->getOperand(i: 1).getReg();
1811 Register Op2 = CMPI2->getOperand(i: 2).getReg();
1812 CMPI2->getOperand(i: 1).setReg(Op2);
1813 CMPI2->getOperand(i: 2).setReg(Op1);
1814 }
1815 if (NewImm2 != Imm2)
1816 CMPI2->getOperand(i: 2).setImm(NewImm2);
1817
1818 for (int I = 1; I <= 2; I++) {
1819 if (CMPI2->getOperand(i: I).isReg()) {
1820 MachineInstr *Inst = MRI->getVRegDef(Reg: CMPI2->getOperand(i: I).getReg());
1821 if (Inst->getParent() != &MBB2)
1822 continue;
1823
1824 assert(Inst->getOpcode() == PPC::PHI &&
1825 "We cannot support if an operand comes from this BB.");
1826 unsigned SrcReg = getIncomingRegForBlock(Phi: Inst, MBB: MBBtoMoveCmp);
1827 CMPI2->getOperand(i: I).setReg(SrcReg);
1828 addRegToUpdate(SrcReg);
1829 }
1830 }
1831 auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1832 MBBtoMoveCmp->splice(Where: I, Other: &MBB2, From: MachineBasicBlock::iterator(CMPI2));
1833
1834 DebugLoc DL = CMPI2->getDebugLoc();
1835 Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1836 BuildMI(MBB2, MBB2.begin(), DL,
1837 TII->get(PPC::PHI), NewVReg)
1838 .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1839 .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1840 BI2->getOperand(i: 1).setReg(NewVReg);
1841 addRegToUpdate(NewVReg);
1842 }
1843 else {
1844 // We finally eliminate compare instruction in MBB2.
1845 // We do not need to treat CMPI2 specially here in terms of re-computing
1846 // live variables even though it is being deleted because:
1847 // - It defines a register that has a single use (already checked in
1848 // eligibleForCompareElimination())
1849 // - The only user (BI2) is no longer using it so the register is dead (no
1850 // def, no uses)
1851 // - We do not attempt to recompute live variables for dead registers
1852 BI2->getOperand(i: 1).setReg(BI1->getOperand(i: 1).getReg());
1853 CMPI2->eraseFromParent();
1854 }
1855
1856 LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1857 LLVM_DEBUG(CMPI1->dump());
1858 LLVM_DEBUG(BI1->dump());
1859 LLVM_DEBUG(BI2->dump());
1860 if (IsPartiallyRedundant) {
1861 LLVM_DEBUG(dbgs() << "The following compare is moved into "
1862 << printMBBReference(*MBBtoMoveCmp)
1863 << " to handle partial redundancy.\n");
1864 LLVM_DEBUG(CMPI2->dump());
1865 }
1866 Simplified = true;
1867 }
1868
1869 return Simplified;
1870}
1871
1872// We miss the opportunity to emit an RLDIC when lowering jump tables
1873// since ISEL sees only a single basic block. When selecting, the clear
1874// and shift left will be in different blocks.
1875bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI,
1876 MachineInstr *&ToErase) {
1877 if (MI.getOpcode() != PPC::RLDICR)
1878 return false;
1879
1880 Register SrcReg = MI.getOperand(i: 1).getReg();
1881 if (!SrcReg.isVirtual())
1882 return false;
1883
1884 MachineInstr *SrcMI = MRI->getVRegDef(Reg: SrcReg);
1885 if (SrcMI->getOpcode() != PPC::RLDICL)
1886 return false;
1887
1888 MachineOperand MOpSHSrc = SrcMI->getOperand(i: 2);
1889 MachineOperand MOpMBSrc = SrcMI->getOperand(i: 3);
1890 MachineOperand MOpSHMI = MI.getOperand(i: 2);
1891 MachineOperand MOpMEMI = MI.getOperand(i: 3);
1892 if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1893 MOpMEMI.isImm()))
1894 return false;
1895
1896 uint64_t SHSrc = MOpSHSrc.getImm();
1897 uint64_t MBSrc = MOpMBSrc.getImm();
1898 uint64_t SHMI = MOpSHMI.getImm();
1899 uint64_t MEMI = MOpMEMI.getImm();
1900 uint64_t NewSH = SHSrc + SHMI;
1901 uint64_t NewMB = MBSrc - SHMI;
1902 if (NewMB > 63 || NewSH > 63)
1903 return false;
1904
1905 // The bits cleared with RLDICL are [0, MBSrc).
1906 // The bits cleared with RLDICR are (MEMI, 63].
1907 // After the sequence, the bits cleared are:
1908 // [0, MBSrc-SHMI) and (MEMI, 63).
1909 //
1910 // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1911 if ((63 - NewSH) != MEMI)
1912 return false;
1913
1914 LLVM_DEBUG(dbgs() << "Converting pair: ");
1915 LLVM_DEBUG(SrcMI->dump());
1916 LLVM_DEBUG(MI.dump());
1917
1918 MI.setDesc(TII->get(PPC::RLDIC));
1919 MI.getOperand(i: 1).setReg(SrcMI->getOperand(i: 1).getReg());
1920 MI.getOperand(i: 2).setImm(NewSH);
1921 MI.getOperand(i: 3).setImm(NewMB);
1922 addRegToUpdate(MI.getOperand(1).getReg());
1923 addRegToUpdate(SrcMI->getOperand(0).getReg());
1924
1925 LLVM_DEBUG(dbgs() << "To: ");
1926 LLVM_DEBUG(MI.dump());
1927 NumRotatesCollapsed++;
1928 // If SrcReg has no non-debug use it's safe to delete its def SrcMI.
1929 if (MRI->use_nodbg_empty(RegNo: SrcReg)) {
1930 assert(!SrcMI->hasImplicitDef() &&
1931 "Not expecting an implicit def with this instr.");
1932 ToErase = SrcMI;
1933 }
1934 return true;
1935}
1936
1937// For case in LLVM IR
1938// entry:
1939// %iconv = sext i32 %index to i64
1940// br i1 undef label %true, label %false
1941// true:
1942// %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1943// ...
1944// PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1945// different BBs when conducting instruction selection. We can do a peephole
1946// optimization to combine these two instructions into extswsli after
1947// instruction selection.
1948bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1949 MachineInstr *&ToErase) {
1950 if (MI.getOpcode() != PPC::RLDICR)
1951 return false;
1952
1953 if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1954 return false;
1955
1956 assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1957
1958 MachineOperand MOpSHMI = MI.getOperand(i: 2);
1959 MachineOperand MOpMEMI = MI.getOperand(i: 3);
1960 if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1961 return false;
1962
1963 uint64_t SHMI = MOpSHMI.getImm();
1964 uint64_t MEMI = MOpMEMI.getImm();
1965 if (SHMI + MEMI != 63)
1966 return false;
1967
1968 Register SrcReg = MI.getOperand(i: 1).getReg();
1969 if (!SrcReg.isVirtual())
1970 return false;
1971
1972 MachineInstr *SrcMI = MRI->getVRegDef(Reg: SrcReg);
1973 if (SrcMI->getOpcode() != PPC::EXTSW &&
1974 SrcMI->getOpcode() != PPC::EXTSW_32_64)
1975 return false;
1976
1977 // If the register defined by extsw has more than one use, combination is not
1978 // needed.
1979 if (!MRI->hasOneNonDBGUse(RegNo: SrcReg))
1980 return false;
1981
1982 assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1983 assert(SrcMI->getOperand(1).isReg() &&
1984 "EXTSW's second operand should be a register");
1985 if (!SrcMI->getOperand(i: 1).getReg().isVirtual())
1986 return false;
1987
1988 LLVM_DEBUG(dbgs() << "Combining pair: ");
1989 LLVM_DEBUG(SrcMI->dump());
1990 LLVM_DEBUG(MI.dump());
1991
1992 MachineInstr *NewInstr =
1993 BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1994 SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1995 : TII->get(PPC::EXTSWSLI_32_64),
1996 MI.getOperand(0).getReg())
1997 .add(SrcMI->getOperand(1))
1998 .add(MOpSHMI);
1999 (void)NewInstr;
2000
2001 LLVM_DEBUG(dbgs() << "TO: ");
2002 LLVM_DEBUG(NewInstr->dump());
2003 ++NumEXTSWAndSLDICombined;
2004 ToErase = &MI;
2005 // SrcMI, which is extsw, is of no use now, but we don't erase it here so we
2006 // can recompute its kill flags. We run DCE immediately after this pass
2007 // to clean up dead instructions such as this.
2008 addRegToUpdate(NewInstr->getOperand(1).getReg());
2009 addRegToUpdate(SrcMI->getOperand(0).getReg());
2010 return true;
2011}
2012
2013} // end default namespace
2014
2015INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
2016 "PowerPC MI Peephole Optimization", false, false)
2017INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
2018INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
2019INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
2020INITIALIZE_PASS_DEPENDENCY(LiveVariables)
2021INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
2022 "PowerPC MI Peephole Optimization", false, false)
2023
2024char PPCMIPeephole::ID = 0;
2025FunctionPass*
2026llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
2027

source code of llvm/lib/Target/PowerPC/PPCMIPeephole.cpp