1 | use std::cell::{Cell, UnsafeCell}; |
2 | use std::cmp; |
3 | use std::fmt; |
4 | use std::iter::FromIterator; |
5 | use std::marker::PhantomData; |
6 | use std::mem::{self, ManuallyDrop, MaybeUninit}; |
7 | use std::ptr; |
8 | use std::sync::atomic::{self, AtomicIsize, AtomicPtr, AtomicUsize, Ordering}; |
9 | use std::sync::Arc; |
10 | |
11 | use crate::epoch::{self, Atomic, Owned}; |
12 | use crate::utils::{Backoff, CachePadded}; |
13 | |
14 | // Minimum buffer capacity. |
15 | const MIN_CAP: usize = 64; |
16 | // Maximum number of tasks that can be stolen in `steal_batch()` and `steal_batch_and_pop()`. |
17 | const MAX_BATCH: usize = 32; |
18 | // If a buffer of at least this size is retired, thread-local garbage is flushed so that it gets |
19 | // deallocated as soon as possible. |
20 | const FLUSH_THRESHOLD_BYTES: usize = 1 << 10; |
21 | |
22 | /// A buffer that holds tasks in a worker queue. |
23 | /// |
24 | /// This is just a pointer to the buffer and its length - dropping an instance of this struct will |
25 | /// *not* deallocate the buffer. |
26 | struct Buffer<T> { |
27 | /// Pointer to the allocated memory. |
28 | ptr: *mut T, |
29 | |
30 | /// Capacity of the buffer. Always a power of two. |
31 | cap: usize, |
32 | } |
33 | |
34 | unsafe impl<T> Send for Buffer<T> {} |
35 | |
36 | impl<T> Buffer<T> { |
37 | /// Allocates a new buffer with the specified capacity. |
38 | fn alloc(cap: usize) -> Buffer<T> { |
39 | debug_assert_eq!(cap, cap.next_power_of_two()); |
40 | |
41 | let mut v = ManuallyDrop::new(Vec::with_capacity(cap)); |
42 | let ptr = v.as_mut_ptr(); |
43 | |
44 | Buffer { ptr, cap } |
45 | } |
46 | |
47 | /// Deallocates the buffer. |
48 | unsafe fn dealloc(self) { |
49 | drop(Vec::from_raw_parts(self.ptr, 0, self.cap)); |
50 | } |
51 | |
52 | /// Returns a pointer to the task at the specified `index`. |
53 | unsafe fn at(&self, index: isize) -> *mut T { |
54 | // `self.cap` is always a power of two. |
55 | // We do all the loads at `MaybeUninit` because we might realize, after loading, that we |
56 | // don't actually have the right to access this memory. |
57 | self.ptr.offset(index & (self.cap - 1) as isize) |
58 | } |
59 | |
60 | /// Writes `task` into the specified `index`. |
61 | /// |
62 | /// This method might be concurrently called with another `read` at the same index, which is |
63 | /// technically speaking a data race and therefore UB. We should use an atomic store here, but |
64 | /// that would be more expensive and difficult to implement generically for all types `T`. |
65 | /// Hence, as a hack, we use a volatile write instead. |
66 | unsafe fn write(&self, index: isize, task: MaybeUninit<T>) { |
67 | ptr::write_volatile(self.at(index).cast::<MaybeUninit<T>>(), task) |
68 | } |
69 | |
70 | /// Reads a task from the specified `index`. |
71 | /// |
72 | /// This method might be concurrently called with another `write` at the same index, which is |
73 | /// technically speaking a data race and therefore UB. We should use an atomic load here, but |
74 | /// that would be more expensive and difficult to implement generically for all types `T`. |
75 | /// Hence, as a hack, we use a volatile load instead. |
76 | unsafe fn read(&self, index: isize) -> MaybeUninit<T> { |
77 | ptr::read_volatile(self.at(index).cast::<MaybeUninit<T>>()) |
78 | } |
79 | } |
80 | |
81 | impl<T> Clone for Buffer<T> { |
82 | fn clone(&self) -> Buffer<T> { |
83 | Buffer { |
84 | ptr: self.ptr, |
85 | cap: self.cap, |
86 | } |
87 | } |
88 | } |
89 | |
90 | impl<T> Copy for Buffer<T> {} |
91 | |
92 | /// Internal queue data shared between the worker and stealers. |
93 | /// |
94 | /// The implementation is based on the following work: |
95 | /// |
96 | /// 1. [Chase and Lev. Dynamic circular work-stealing deque. SPAA 2005.][chase-lev] |
97 | /// 2. [Le, Pop, Cohen, and Nardelli. Correct and efficient work-stealing for weak memory models. |
98 | /// PPoPP 2013.][weak-mem] |
99 | /// 3. [Norris and Demsky. CDSchecker: checking concurrent data structures written with C/C++ |
100 | /// atomics. OOPSLA 2013.][checker] |
101 | /// |
102 | /// [chase-lev]: https://dl.acm.org/citation.cfm?id=1073974 |
103 | /// [weak-mem]: https://dl.acm.org/citation.cfm?id=2442524 |
104 | /// [checker]: https://dl.acm.org/citation.cfm?id=2509514 |
105 | struct Inner<T> { |
106 | /// The front index. |
107 | front: AtomicIsize, |
108 | |
109 | /// The back index. |
110 | back: AtomicIsize, |
111 | |
112 | /// The underlying buffer. |
113 | buffer: CachePadded<Atomic<Buffer<T>>>, |
114 | } |
115 | |
116 | impl<T> Drop for Inner<T> { |
117 | fn drop(&mut self) { |
118 | // Load the back index, front index, and buffer. |
119 | let b: isize = *self.back.get_mut(); |
120 | let f: isize = *self.front.get_mut(); |
121 | |
122 | unsafe { |
123 | let buffer: Shared<'_, Buffer> = self.buffer.load(ord:Ordering::Relaxed, epoch::unprotected()); |
124 | |
125 | // Go through the buffer from front to back and drop all tasks in the queue. |
126 | let mut i: isize = f; |
127 | while i != b { |
128 | buffer.deref().at(index:i).drop_in_place(); |
129 | i = i.wrapping_add(1); |
130 | } |
131 | |
132 | // Free the memory allocated by the buffer. |
133 | buffer.into_owned().into_box().dealloc(); |
134 | } |
135 | } |
136 | } |
137 | |
138 | /// Worker queue flavor: FIFO or LIFO. |
139 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
140 | enum Flavor { |
141 | /// The first-in first-out flavor. |
142 | Fifo, |
143 | |
144 | /// The last-in first-out flavor. |
145 | Lifo, |
146 | } |
147 | |
148 | /// A worker queue. |
149 | /// |
150 | /// This is a FIFO or LIFO queue that is owned by a single thread, but other threads may steal |
151 | /// tasks from it. Task schedulers typically create a single worker queue per thread. |
152 | /// |
153 | /// # Examples |
154 | /// |
155 | /// A FIFO worker: |
156 | /// |
157 | /// ``` |
158 | /// use crossbeam_deque::{Steal, Worker}; |
159 | /// |
160 | /// let w = Worker::new_fifo(); |
161 | /// let s = w.stealer(); |
162 | /// |
163 | /// w.push(1); |
164 | /// w.push(2); |
165 | /// w.push(3); |
166 | /// |
167 | /// assert_eq!(s.steal(), Steal::Success(1)); |
168 | /// assert_eq!(w.pop(), Some(2)); |
169 | /// assert_eq!(w.pop(), Some(3)); |
170 | /// ``` |
171 | /// |
172 | /// A LIFO worker: |
173 | /// |
174 | /// ``` |
175 | /// use crossbeam_deque::{Steal, Worker}; |
176 | /// |
177 | /// let w = Worker::new_lifo(); |
178 | /// let s = w.stealer(); |
179 | /// |
180 | /// w.push(1); |
181 | /// w.push(2); |
182 | /// w.push(3); |
183 | /// |
184 | /// assert_eq!(s.steal(), Steal::Success(1)); |
185 | /// assert_eq!(w.pop(), Some(3)); |
186 | /// assert_eq!(w.pop(), Some(2)); |
187 | /// ``` |
188 | pub struct Worker<T> { |
189 | /// A reference to the inner representation of the queue. |
190 | inner: Arc<CachePadded<Inner<T>>>, |
191 | |
192 | /// A copy of `inner.buffer` for quick access. |
193 | buffer: Cell<Buffer<T>>, |
194 | |
195 | /// The flavor of the queue. |
196 | flavor: Flavor, |
197 | |
198 | /// Indicates that the worker cannot be shared among threads. |
199 | _marker: PhantomData<*mut ()>, // !Send + !Sync |
200 | } |
201 | |
202 | unsafe impl<T: Send> Send for Worker<T> {} |
203 | |
204 | impl<T> Worker<T> { |
205 | /// Creates a FIFO worker queue. |
206 | /// |
207 | /// Tasks are pushed and popped from opposite ends. |
208 | /// |
209 | /// # Examples |
210 | /// |
211 | /// ``` |
212 | /// use crossbeam_deque::Worker; |
213 | /// |
214 | /// let w = Worker::<i32>::new_fifo(); |
215 | /// ``` |
216 | pub fn new_fifo() -> Worker<T> { |
217 | let buffer = Buffer::alloc(MIN_CAP); |
218 | |
219 | let inner = Arc::new(CachePadded::new(Inner { |
220 | front: AtomicIsize::new(0), |
221 | back: AtomicIsize::new(0), |
222 | buffer: CachePadded::new(Atomic::new(buffer)), |
223 | })); |
224 | |
225 | Worker { |
226 | inner, |
227 | buffer: Cell::new(buffer), |
228 | flavor: Flavor::Fifo, |
229 | _marker: PhantomData, |
230 | } |
231 | } |
232 | |
233 | /// Creates a LIFO worker queue. |
234 | /// |
235 | /// Tasks are pushed and popped from the same end. |
236 | /// |
237 | /// # Examples |
238 | /// |
239 | /// ``` |
240 | /// use crossbeam_deque::Worker; |
241 | /// |
242 | /// let w = Worker::<i32>::new_lifo(); |
243 | /// ``` |
244 | pub fn new_lifo() -> Worker<T> { |
245 | let buffer = Buffer::alloc(MIN_CAP); |
246 | |
247 | let inner = Arc::new(CachePadded::new(Inner { |
248 | front: AtomicIsize::new(0), |
249 | back: AtomicIsize::new(0), |
250 | buffer: CachePadded::new(Atomic::new(buffer)), |
251 | })); |
252 | |
253 | Worker { |
254 | inner, |
255 | buffer: Cell::new(buffer), |
256 | flavor: Flavor::Lifo, |
257 | _marker: PhantomData, |
258 | } |
259 | } |
260 | |
261 | /// Creates a stealer for this queue. |
262 | /// |
263 | /// The returned stealer can be shared among threads and cloned. |
264 | /// |
265 | /// # Examples |
266 | /// |
267 | /// ``` |
268 | /// use crossbeam_deque::Worker; |
269 | /// |
270 | /// let w = Worker::<i32>::new_lifo(); |
271 | /// let s = w.stealer(); |
272 | /// ``` |
273 | pub fn stealer(&self) -> Stealer<T> { |
274 | Stealer { |
275 | inner: self.inner.clone(), |
276 | flavor: self.flavor, |
277 | } |
278 | } |
279 | |
280 | /// Resizes the internal buffer to the new capacity of `new_cap`. |
281 | #[cold ] |
282 | unsafe fn resize(&self, new_cap: usize) { |
283 | // Load the back index, front index, and buffer. |
284 | let b = self.inner.back.load(Ordering::Relaxed); |
285 | let f = self.inner.front.load(Ordering::Relaxed); |
286 | let buffer = self.buffer.get(); |
287 | |
288 | // Allocate a new buffer and copy data from the old buffer to the new one. |
289 | let new = Buffer::alloc(new_cap); |
290 | let mut i = f; |
291 | while i != b { |
292 | ptr::copy_nonoverlapping(buffer.at(i), new.at(i), 1); |
293 | i = i.wrapping_add(1); |
294 | } |
295 | |
296 | let guard = &epoch::pin(); |
297 | |
298 | // Replace the old buffer with the new one. |
299 | self.buffer.replace(new); |
300 | let old = |
301 | self.inner |
302 | .buffer |
303 | .swap(Owned::new(new).into_shared(guard), Ordering::Release, guard); |
304 | |
305 | // Destroy the old buffer later. |
306 | guard.defer_unchecked(move || old.into_owned().into_box().dealloc()); |
307 | |
308 | // If the buffer is very large, then flush the thread-local garbage in order to deallocate |
309 | // it as soon as possible. |
310 | if mem::size_of::<T>() * new_cap >= FLUSH_THRESHOLD_BYTES { |
311 | guard.flush(); |
312 | } |
313 | } |
314 | |
315 | /// Reserves enough capacity so that `reserve_cap` tasks can be pushed without growing the |
316 | /// buffer. |
317 | fn reserve(&self, reserve_cap: usize) { |
318 | if reserve_cap > 0 { |
319 | // Compute the current length. |
320 | let b = self.inner.back.load(Ordering::Relaxed); |
321 | let f = self.inner.front.load(Ordering::SeqCst); |
322 | let len = b.wrapping_sub(f) as usize; |
323 | |
324 | // The current capacity. |
325 | let cap = self.buffer.get().cap; |
326 | |
327 | // Is there enough capacity to push `reserve_cap` tasks? |
328 | if cap - len < reserve_cap { |
329 | // Keep doubling the capacity as much as is needed. |
330 | let mut new_cap = cap * 2; |
331 | while new_cap - len < reserve_cap { |
332 | new_cap *= 2; |
333 | } |
334 | |
335 | // Resize the buffer. |
336 | unsafe { |
337 | self.resize(new_cap); |
338 | } |
339 | } |
340 | } |
341 | } |
342 | |
343 | /// Returns `true` if the queue is empty. |
344 | /// |
345 | /// ``` |
346 | /// use crossbeam_deque::Worker; |
347 | /// |
348 | /// let w = Worker::new_lifo(); |
349 | /// |
350 | /// assert!(w.is_empty()); |
351 | /// w.push(1); |
352 | /// assert!(!w.is_empty()); |
353 | /// ``` |
354 | pub fn is_empty(&self) -> bool { |
355 | let b = self.inner.back.load(Ordering::Relaxed); |
356 | let f = self.inner.front.load(Ordering::SeqCst); |
357 | b.wrapping_sub(f) <= 0 |
358 | } |
359 | |
360 | /// Returns the number of tasks in the deque. |
361 | /// |
362 | /// ``` |
363 | /// use crossbeam_deque::Worker; |
364 | /// |
365 | /// let w = Worker::new_lifo(); |
366 | /// |
367 | /// assert_eq!(w.len(), 0); |
368 | /// w.push(1); |
369 | /// assert_eq!(w.len(), 1); |
370 | /// w.push(1); |
371 | /// assert_eq!(w.len(), 2); |
372 | /// ``` |
373 | pub fn len(&self) -> usize { |
374 | let b = self.inner.back.load(Ordering::Relaxed); |
375 | let f = self.inner.front.load(Ordering::SeqCst); |
376 | b.wrapping_sub(f).max(0) as usize |
377 | } |
378 | |
379 | /// Pushes a task into the queue. |
380 | /// |
381 | /// # Examples |
382 | /// |
383 | /// ``` |
384 | /// use crossbeam_deque::Worker; |
385 | /// |
386 | /// let w = Worker::new_lifo(); |
387 | /// w.push(1); |
388 | /// w.push(2); |
389 | /// ``` |
390 | pub fn push(&self, task: T) { |
391 | // Load the back index, front index, and buffer. |
392 | let b = self.inner.back.load(Ordering::Relaxed); |
393 | let f = self.inner.front.load(Ordering::Acquire); |
394 | let mut buffer = self.buffer.get(); |
395 | |
396 | // Calculate the length of the queue. |
397 | let len = b.wrapping_sub(f); |
398 | |
399 | // Is the queue full? |
400 | if len >= buffer.cap as isize { |
401 | // Yes. Grow the underlying buffer. |
402 | unsafe { |
403 | self.resize(2 * buffer.cap); |
404 | } |
405 | buffer = self.buffer.get(); |
406 | } |
407 | |
408 | // Write `task` into the slot. |
409 | unsafe { |
410 | buffer.write(b, MaybeUninit::new(task)); |
411 | } |
412 | |
413 | atomic::fence(Ordering::Release); |
414 | |
415 | // Increment the back index. |
416 | // |
417 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data |
418 | // races because it doesn't understand fences. |
419 | self.inner.back.store(b.wrapping_add(1), Ordering::Release); |
420 | } |
421 | |
422 | /// Pops a task from the queue. |
423 | /// |
424 | /// # Examples |
425 | /// |
426 | /// ``` |
427 | /// use crossbeam_deque::Worker; |
428 | /// |
429 | /// let w = Worker::new_fifo(); |
430 | /// w.push(1); |
431 | /// w.push(2); |
432 | /// |
433 | /// assert_eq!(w.pop(), Some(1)); |
434 | /// assert_eq!(w.pop(), Some(2)); |
435 | /// assert_eq!(w.pop(), None); |
436 | /// ``` |
437 | pub fn pop(&self) -> Option<T> { |
438 | // Load the back and front index. |
439 | let b = self.inner.back.load(Ordering::Relaxed); |
440 | let f = self.inner.front.load(Ordering::Relaxed); |
441 | |
442 | // Calculate the length of the queue. |
443 | let len = b.wrapping_sub(f); |
444 | |
445 | // Is the queue empty? |
446 | if len <= 0 { |
447 | return None; |
448 | } |
449 | |
450 | match self.flavor { |
451 | // Pop from the front of the queue. |
452 | Flavor::Fifo => { |
453 | // Try incrementing the front index to pop the task. |
454 | let f = self.inner.front.fetch_add(1, Ordering::SeqCst); |
455 | let new_f = f.wrapping_add(1); |
456 | |
457 | if b.wrapping_sub(new_f) < 0 { |
458 | self.inner.front.store(f, Ordering::Relaxed); |
459 | return None; |
460 | } |
461 | |
462 | unsafe { |
463 | // Read the popped task. |
464 | let buffer = self.buffer.get(); |
465 | let task = buffer.read(f).assume_init(); |
466 | |
467 | // Shrink the buffer if `len - 1` is less than one fourth of the capacity. |
468 | if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 { |
469 | self.resize(buffer.cap / 2); |
470 | } |
471 | |
472 | Some(task) |
473 | } |
474 | } |
475 | |
476 | // Pop from the back of the queue. |
477 | Flavor::Lifo => { |
478 | // Decrement the back index. |
479 | let b = b.wrapping_sub(1); |
480 | self.inner.back.store(b, Ordering::Relaxed); |
481 | |
482 | atomic::fence(Ordering::SeqCst); |
483 | |
484 | // Load the front index. |
485 | let f = self.inner.front.load(Ordering::Relaxed); |
486 | |
487 | // Compute the length after the back index was decremented. |
488 | let len = b.wrapping_sub(f); |
489 | |
490 | if len < 0 { |
491 | // The queue is empty. Restore the back index to the original task. |
492 | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); |
493 | None |
494 | } else { |
495 | // Read the task to be popped. |
496 | let buffer = self.buffer.get(); |
497 | let mut task = unsafe { Some(buffer.read(b)) }; |
498 | |
499 | // Are we popping the last task from the queue? |
500 | if len == 0 { |
501 | // Try incrementing the front index. |
502 | if self |
503 | .inner |
504 | .front |
505 | .compare_exchange( |
506 | f, |
507 | f.wrapping_add(1), |
508 | Ordering::SeqCst, |
509 | Ordering::Relaxed, |
510 | ) |
511 | .is_err() |
512 | { |
513 | // Failed. We didn't pop anything. Reset to `None`. |
514 | task.take(); |
515 | } |
516 | |
517 | // Restore the back index to the original task. |
518 | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); |
519 | } else { |
520 | // Shrink the buffer if `len` is less than one fourth of the capacity. |
521 | if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 { |
522 | unsafe { |
523 | self.resize(buffer.cap / 2); |
524 | } |
525 | } |
526 | } |
527 | |
528 | task.map(|t| unsafe { t.assume_init() }) |
529 | } |
530 | } |
531 | } |
532 | } |
533 | } |
534 | |
535 | impl<T> fmt::Debug for Worker<T> { |
536 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
537 | f.pad("Worker { .. }" ) |
538 | } |
539 | } |
540 | |
541 | /// A stealer handle of a worker queue. |
542 | /// |
543 | /// Stealers can be shared among threads. |
544 | /// |
545 | /// Task schedulers typically have a single worker queue per worker thread. |
546 | /// |
547 | /// # Examples |
548 | /// |
549 | /// ``` |
550 | /// use crossbeam_deque::{Steal, Worker}; |
551 | /// |
552 | /// let w = Worker::new_lifo(); |
553 | /// w.push(1); |
554 | /// w.push(2); |
555 | /// |
556 | /// let s = w.stealer(); |
557 | /// assert_eq!(s.steal(), Steal::Success(1)); |
558 | /// assert_eq!(s.steal(), Steal::Success(2)); |
559 | /// assert_eq!(s.steal(), Steal::Empty); |
560 | /// ``` |
561 | pub struct Stealer<T> { |
562 | /// A reference to the inner representation of the queue. |
563 | inner: Arc<CachePadded<Inner<T>>>, |
564 | |
565 | /// The flavor of the queue. |
566 | flavor: Flavor, |
567 | } |
568 | |
569 | unsafe impl<T: Send> Send for Stealer<T> {} |
570 | unsafe impl<T: Send> Sync for Stealer<T> {} |
571 | |
572 | impl<T> Stealer<T> { |
573 | /// Returns `true` if the queue is empty. |
574 | /// |
575 | /// ``` |
576 | /// use crossbeam_deque::Worker; |
577 | /// |
578 | /// let w = Worker::new_lifo(); |
579 | /// let s = w.stealer(); |
580 | /// |
581 | /// assert!(s.is_empty()); |
582 | /// w.push(1); |
583 | /// assert!(!s.is_empty()); |
584 | /// ``` |
585 | pub fn is_empty(&self) -> bool { |
586 | let f = self.inner.front.load(Ordering::Acquire); |
587 | atomic::fence(Ordering::SeqCst); |
588 | let b = self.inner.back.load(Ordering::Acquire); |
589 | b.wrapping_sub(f) <= 0 |
590 | } |
591 | |
592 | /// Returns the number of tasks in the deque. |
593 | /// |
594 | /// ``` |
595 | /// use crossbeam_deque::Worker; |
596 | /// |
597 | /// let w = Worker::new_lifo(); |
598 | /// let s = w.stealer(); |
599 | /// |
600 | /// assert_eq!(s.len(), 0); |
601 | /// w.push(1); |
602 | /// assert_eq!(s.len(), 1); |
603 | /// w.push(2); |
604 | /// assert_eq!(s.len(), 2); |
605 | /// ``` |
606 | pub fn len(&self) -> usize { |
607 | let f = self.inner.front.load(Ordering::Acquire); |
608 | atomic::fence(Ordering::SeqCst); |
609 | let b = self.inner.back.load(Ordering::Acquire); |
610 | b.wrapping_sub(f).max(0) as usize |
611 | } |
612 | |
613 | /// Steals a task from the queue. |
614 | /// |
615 | /// # Examples |
616 | /// |
617 | /// ``` |
618 | /// use crossbeam_deque::{Steal, Worker}; |
619 | /// |
620 | /// let w = Worker::new_lifo(); |
621 | /// w.push(1); |
622 | /// w.push(2); |
623 | /// |
624 | /// let s = w.stealer(); |
625 | /// assert_eq!(s.steal(), Steal::Success(1)); |
626 | /// assert_eq!(s.steal(), Steal::Success(2)); |
627 | /// ``` |
628 | pub fn steal(&self) -> Steal<T> { |
629 | // Load the front index. |
630 | let f = self.inner.front.load(Ordering::Acquire); |
631 | |
632 | // A SeqCst fence is needed here. |
633 | // |
634 | // If the current thread is already pinned (reentrantly), we must manually issue the |
635 | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't |
636 | // have to. |
637 | if epoch::is_pinned() { |
638 | atomic::fence(Ordering::SeqCst); |
639 | } |
640 | |
641 | let guard = &epoch::pin(); |
642 | |
643 | // Load the back index. |
644 | let b = self.inner.back.load(Ordering::Acquire); |
645 | |
646 | // Is the queue empty? |
647 | if b.wrapping_sub(f) <= 0 { |
648 | return Steal::Empty; |
649 | } |
650 | |
651 | // Load the buffer and read the task at the front. |
652 | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); |
653 | let task = unsafe { buffer.deref().read(f) }; |
654 | |
655 | // Try incrementing the front index to steal the task. |
656 | // If the buffer has been swapped or the increment fails, we retry. |
657 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
658 | || self |
659 | .inner |
660 | .front |
661 | .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) |
662 | .is_err() |
663 | { |
664 | // We didn't steal this task, forget it. |
665 | return Steal::Retry; |
666 | } |
667 | |
668 | // Return the stolen task. |
669 | Steal::Success(unsafe { task.assume_init() }) |
670 | } |
671 | |
672 | /// Steals a batch of tasks and pushes them into another worker. |
673 | /// |
674 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
675 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
676 | /// |
677 | /// # Examples |
678 | /// |
679 | /// ``` |
680 | /// use crossbeam_deque::Worker; |
681 | /// |
682 | /// let w1 = Worker::new_fifo(); |
683 | /// w1.push(1); |
684 | /// w1.push(2); |
685 | /// w1.push(3); |
686 | /// w1.push(4); |
687 | /// |
688 | /// let s = w1.stealer(); |
689 | /// let w2 = Worker::new_fifo(); |
690 | /// |
691 | /// let _ = s.steal_batch(&w2); |
692 | /// assert_eq!(w2.pop(), Some(1)); |
693 | /// assert_eq!(w2.pop(), Some(2)); |
694 | /// ``` |
695 | pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> { |
696 | self.steal_batch_with_limit(dest, MAX_BATCH) |
697 | } |
698 | |
699 | /// Steals no more than `limit` of tasks and pushes them into another worker. |
700 | /// |
701 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
702 | /// steal around half of the tasks in the queue, but also not more than the given limit. |
703 | /// |
704 | /// # Examples |
705 | /// |
706 | /// ``` |
707 | /// use crossbeam_deque::Worker; |
708 | /// |
709 | /// let w1 = Worker::new_fifo(); |
710 | /// w1.push(1); |
711 | /// w1.push(2); |
712 | /// w1.push(3); |
713 | /// w1.push(4); |
714 | /// w1.push(5); |
715 | /// w1.push(6); |
716 | /// |
717 | /// let s = w1.stealer(); |
718 | /// let w2 = Worker::new_fifo(); |
719 | /// |
720 | /// let _ = s.steal_batch_with_limit(&w2, 2); |
721 | /// assert_eq!(w2.pop(), Some(1)); |
722 | /// assert_eq!(w2.pop(), Some(2)); |
723 | /// assert_eq!(w2.pop(), None); |
724 | /// |
725 | /// w1.push(7); |
726 | /// w1.push(8); |
727 | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
728 | /// // half of the elements are currently popped, but the number of popped elements is considered |
729 | /// // an implementation detail that may be changed in the future. |
730 | /// let _ = s.steal_batch_with_limit(&w2, std::usize::MAX); |
731 | /// assert_eq!(w2.len(), 3); |
732 | /// ``` |
733 | pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> { |
734 | assert!(limit > 0); |
735 | if Arc::ptr_eq(&self.inner, &dest.inner) { |
736 | if dest.is_empty() { |
737 | return Steal::Empty; |
738 | } else { |
739 | return Steal::Success(()); |
740 | } |
741 | } |
742 | |
743 | // Load the front index. |
744 | let mut f = self.inner.front.load(Ordering::Acquire); |
745 | |
746 | // A SeqCst fence is needed here. |
747 | // |
748 | // If the current thread is already pinned (reentrantly), we must manually issue the |
749 | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't |
750 | // have to. |
751 | if epoch::is_pinned() { |
752 | atomic::fence(Ordering::SeqCst); |
753 | } |
754 | |
755 | let guard = &epoch::pin(); |
756 | |
757 | // Load the back index. |
758 | let b = self.inner.back.load(Ordering::Acquire); |
759 | |
760 | // Is the queue empty? |
761 | let len = b.wrapping_sub(f); |
762 | if len <= 0 { |
763 | return Steal::Empty; |
764 | } |
765 | |
766 | // Reserve capacity for the stolen batch. |
767 | let batch_size = cmp::min((len as usize + 1) / 2, limit); |
768 | dest.reserve(batch_size); |
769 | let mut batch_size = batch_size as isize; |
770 | |
771 | // Get the destination buffer and back index. |
772 | let dest_buffer = dest.buffer.get(); |
773 | let mut dest_b = dest.inner.back.load(Ordering::Relaxed); |
774 | |
775 | // Load the buffer. |
776 | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); |
777 | |
778 | match self.flavor { |
779 | // Steal a batch of tasks from the front at once. |
780 | Flavor::Fifo => { |
781 | // Copy the batch from the source to the destination buffer. |
782 | match dest.flavor { |
783 | Flavor::Fifo => { |
784 | for i in 0..batch_size { |
785 | unsafe { |
786 | let task = buffer.deref().read(f.wrapping_add(i)); |
787 | dest_buffer.write(dest_b.wrapping_add(i), task); |
788 | } |
789 | } |
790 | } |
791 | Flavor::Lifo => { |
792 | for i in 0..batch_size { |
793 | unsafe { |
794 | let task = buffer.deref().read(f.wrapping_add(i)); |
795 | dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task); |
796 | } |
797 | } |
798 | } |
799 | } |
800 | |
801 | // Try incrementing the front index to steal the batch. |
802 | // If the buffer has been swapped or the increment fails, we retry. |
803 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
804 | || self |
805 | .inner |
806 | .front |
807 | .compare_exchange( |
808 | f, |
809 | f.wrapping_add(batch_size), |
810 | Ordering::SeqCst, |
811 | Ordering::Relaxed, |
812 | ) |
813 | .is_err() |
814 | { |
815 | return Steal::Retry; |
816 | } |
817 | |
818 | dest_b = dest_b.wrapping_add(batch_size); |
819 | } |
820 | |
821 | // Steal a batch of tasks from the front one by one. |
822 | Flavor::Lifo => { |
823 | // This loop may modify the batch_size, which triggers a clippy lint warning. |
824 | // Use a new variable to avoid the warning, and to make it clear we aren't |
825 | // modifying the loop exit condition during iteration. |
826 | let original_batch_size = batch_size; |
827 | |
828 | for i in 0..original_batch_size { |
829 | // If this is not the first steal, check whether the queue is empty. |
830 | if i > 0 { |
831 | // We've already got the current front index. Now execute the fence to |
832 | // synchronize with other threads. |
833 | atomic::fence(Ordering::SeqCst); |
834 | |
835 | // Load the back index. |
836 | let b = self.inner.back.load(Ordering::Acquire); |
837 | |
838 | // Is the queue empty? |
839 | if b.wrapping_sub(f) <= 0 { |
840 | batch_size = i; |
841 | break; |
842 | } |
843 | } |
844 | |
845 | // Read the task at the front. |
846 | let task = unsafe { buffer.deref().read(f) }; |
847 | |
848 | // Try incrementing the front index to steal the task. |
849 | // If the buffer has been swapped or the increment fails, we retry. |
850 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
851 | || self |
852 | .inner |
853 | .front |
854 | .compare_exchange( |
855 | f, |
856 | f.wrapping_add(1), |
857 | Ordering::SeqCst, |
858 | Ordering::Relaxed, |
859 | ) |
860 | .is_err() |
861 | { |
862 | // We didn't steal this task, forget it and break from the loop. |
863 | batch_size = i; |
864 | break; |
865 | } |
866 | |
867 | // Write the stolen task into the destination buffer. |
868 | unsafe { |
869 | dest_buffer.write(dest_b, task); |
870 | } |
871 | |
872 | // Move the source front index and the destination back index one step forward. |
873 | f = f.wrapping_add(1); |
874 | dest_b = dest_b.wrapping_add(1); |
875 | } |
876 | |
877 | // If we didn't steal anything, the operation needs to be retried. |
878 | if batch_size == 0 { |
879 | return Steal::Retry; |
880 | } |
881 | |
882 | // If stealing into a FIFO queue, stolen tasks need to be reversed. |
883 | if dest.flavor == Flavor::Fifo { |
884 | for i in 0..batch_size / 2 { |
885 | unsafe { |
886 | let i1 = dest_b.wrapping_sub(batch_size - i); |
887 | let i2 = dest_b.wrapping_sub(i + 1); |
888 | let t1 = dest_buffer.read(i1); |
889 | let t2 = dest_buffer.read(i2); |
890 | dest_buffer.write(i1, t2); |
891 | dest_buffer.write(i2, t1); |
892 | } |
893 | } |
894 | } |
895 | } |
896 | } |
897 | |
898 | atomic::fence(Ordering::Release); |
899 | |
900 | // Update the back index in the destination queue. |
901 | // |
902 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data |
903 | // races because it doesn't understand fences. |
904 | dest.inner.back.store(dest_b, Ordering::Release); |
905 | |
906 | // Return with success. |
907 | Steal::Success(()) |
908 | } |
909 | |
910 | /// Steals a batch of tasks, pushes them into another worker, and pops a task from that worker. |
911 | /// |
912 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
913 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
914 | /// |
915 | /// # Examples |
916 | /// |
917 | /// ``` |
918 | /// use crossbeam_deque::{Steal, Worker}; |
919 | /// |
920 | /// let w1 = Worker::new_fifo(); |
921 | /// w1.push(1); |
922 | /// w1.push(2); |
923 | /// w1.push(3); |
924 | /// w1.push(4); |
925 | /// |
926 | /// let s = w1.stealer(); |
927 | /// let w2 = Worker::new_fifo(); |
928 | /// |
929 | /// assert_eq!(s.steal_batch_and_pop(&w2), Steal::Success(1)); |
930 | /// assert_eq!(w2.pop(), Some(2)); |
931 | /// ``` |
932 | pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> { |
933 | self.steal_batch_with_limit_and_pop(dest, MAX_BATCH) |
934 | } |
935 | |
936 | /// Steals no more than `limit` of tasks, pushes them into another worker, and pops a task from |
937 | /// that worker. |
938 | /// |
939 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
940 | /// steal around half of the tasks in the queue, but also not more than the given limit. |
941 | /// |
942 | /// # Examples |
943 | /// |
944 | /// ``` |
945 | /// use crossbeam_deque::{Steal, Worker}; |
946 | /// |
947 | /// let w1 = Worker::new_fifo(); |
948 | /// w1.push(1); |
949 | /// w1.push(2); |
950 | /// w1.push(3); |
951 | /// w1.push(4); |
952 | /// w1.push(5); |
953 | /// w1.push(6); |
954 | /// |
955 | /// let s = w1.stealer(); |
956 | /// let w2 = Worker::new_fifo(); |
957 | /// |
958 | /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, 2), Steal::Success(1)); |
959 | /// assert_eq!(w2.pop(), Some(2)); |
960 | /// assert_eq!(w2.pop(), None); |
961 | /// |
962 | /// w1.push(7); |
963 | /// w1.push(8); |
964 | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
965 | /// // half of the elements are currently popped, but the number of popped elements is considered |
966 | /// // an implementation detail that may be changed in the future. |
967 | /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, std::usize::MAX), Steal::Success(3)); |
968 | /// assert_eq!(w2.pop(), Some(4)); |
969 | /// assert_eq!(w2.pop(), Some(5)); |
970 | /// assert_eq!(w2.pop(), None); |
971 | /// ``` |
972 | pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> { |
973 | assert!(limit > 0); |
974 | if Arc::ptr_eq(&self.inner, &dest.inner) { |
975 | match dest.pop() { |
976 | None => return Steal::Empty, |
977 | Some(task) => return Steal::Success(task), |
978 | } |
979 | } |
980 | |
981 | // Load the front index. |
982 | let mut f = self.inner.front.load(Ordering::Acquire); |
983 | |
984 | // A SeqCst fence is needed here. |
985 | // |
986 | // If the current thread is already pinned (reentrantly), we must manually issue the |
987 | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't |
988 | // have to. |
989 | if epoch::is_pinned() { |
990 | atomic::fence(Ordering::SeqCst); |
991 | } |
992 | |
993 | let guard = &epoch::pin(); |
994 | |
995 | // Load the back index. |
996 | let b = self.inner.back.load(Ordering::Acquire); |
997 | |
998 | // Is the queue empty? |
999 | let len = b.wrapping_sub(f); |
1000 | if len <= 0 { |
1001 | return Steal::Empty; |
1002 | } |
1003 | |
1004 | // Reserve capacity for the stolen batch. |
1005 | let batch_size = cmp::min((len as usize - 1) / 2, limit - 1); |
1006 | dest.reserve(batch_size); |
1007 | let mut batch_size = batch_size as isize; |
1008 | |
1009 | // Get the destination buffer and back index. |
1010 | let dest_buffer = dest.buffer.get(); |
1011 | let mut dest_b = dest.inner.back.load(Ordering::Relaxed); |
1012 | |
1013 | // Load the buffer |
1014 | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); |
1015 | |
1016 | // Read the task at the front. |
1017 | let mut task = unsafe { buffer.deref().read(f) }; |
1018 | |
1019 | match self.flavor { |
1020 | // Steal a batch of tasks from the front at once. |
1021 | Flavor::Fifo => { |
1022 | // Copy the batch from the source to the destination buffer. |
1023 | match dest.flavor { |
1024 | Flavor::Fifo => { |
1025 | for i in 0..batch_size { |
1026 | unsafe { |
1027 | let task = buffer.deref().read(f.wrapping_add(i + 1)); |
1028 | dest_buffer.write(dest_b.wrapping_add(i), task); |
1029 | } |
1030 | } |
1031 | } |
1032 | Flavor::Lifo => { |
1033 | for i in 0..batch_size { |
1034 | unsafe { |
1035 | let task = buffer.deref().read(f.wrapping_add(i + 1)); |
1036 | dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task); |
1037 | } |
1038 | } |
1039 | } |
1040 | } |
1041 | |
1042 | // Try incrementing the front index to steal the task. |
1043 | // If the buffer has been swapped or the increment fails, we retry. |
1044 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
1045 | || self |
1046 | .inner |
1047 | .front |
1048 | .compare_exchange( |
1049 | f, |
1050 | f.wrapping_add(batch_size + 1), |
1051 | Ordering::SeqCst, |
1052 | Ordering::Relaxed, |
1053 | ) |
1054 | .is_err() |
1055 | { |
1056 | // We didn't steal this task, forget it. |
1057 | return Steal::Retry; |
1058 | } |
1059 | |
1060 | dest_b = dest_b.wrapping_add(batch_size); |
1061 | } |
1062 | |
1063 | // Steal a batch of tasks from the front one by one. |
1064 | Flavor::Lifo => { |
1065 | // Try incrementing the front index to steal the task. |
1066 | if self |
1067 | .inner |
1068 | .front |
1069 | .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) |
1070 | .is_err() |
1071 | { |
1072 | // We didn't steal this task, forget it. |
1073 | return Steal::Retry; |
1074 | } |
1075 | |
1076 | // Move the front index one step forward. |
1077 | f = f.wrapping_add(1); |
1078 | |
1079 | // Repeat the same procedure for the batch steals. |
1080 | // |
1081 | // This loop may modify the batch_size, which triggers a clippy lint warning. |
1082 | // Use a new variable to avoid the warning, and to make it clear we aren't |
1083 | // modifying the loop exit condition during iteration. |
1084 | let original_batch_size = batch_size; |
1085 | for i in 0..original_batch_size { |
1086 | // We've already got the current front index. Now execute the fence to |
1087 | // synchronize with other threads. |
1088 | atomic::fence(Ordering::SeqCst); |
1089 | |
1090 | // Load the back index. |
1091 | let b = self.inner.back.load(Ordering::Acquire); |
1092 | |
1093 | // Is the queue empty? |
1094 | if b.wrapping_sub(f) <= 0 { |
1095 | batch_size = i; |
1096 | break; |
1097 | } |
1098 | |
1099 | // Read the task at the front. |
1100 | let tmp = unsafe { buffer.deref().read(f) }; |
1101 | |
1102 | // Try incrementing the front index to steal the task. |
1103 | // If the buffer has been swapped or the increment fails, we retry. |
1104 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
1105 | || self |
1106 | .inner |
1107 | .front |
1108 | .compare_exchange( |
1109 | f, |
1110 | f.wrapping_add(1), |
1111 | Ordering::SeqCst, |
1112 | Ordering::Relaxed, |
1113 | ) |
1114 | .is_err() |
1115 | { |
1116 | // We didn't steal this task, forget it and break from the loop. |
1117 | batch_size = i; |
1118 | break; |
1119 | } |
1120 | |
1121 | // Write the previously stolen task into the destination buffer. |
1122 | unsafe { |
1123 | dest_buffer.write(dest_b, mem::replace(&mut task, tmp)); |
1124 | } |
1125 | |
1126 | // Move the source front index and the destination back index one step forward. |
1127 | f = f.wrapping_add(1); |
1128 | dest_b = dest_b.wrapping_add(1); |
1129 | } |
1130 | |
1131 | // If stealing into a FIFO queue, stolen tasks need to be reversed. |
1132 | if dest.flavor == Flavor::Fifo { |
1133 | for i in 0..batch_size / 2 { |
1134 | unsafe { |
1135 | let i1 = dest_b.wrapping_sub(batch_size - i); |
1136 | let i2 = dest_b.wrapping_sub(i + 1); |
1137 | let t1 = dest_buffer.read(i1); |
1138 | let t2 = dest_buffer.read(i2); |
1139 | dest_buffer.write(i1, t2); |
1140 | dest_buffer.write(i2, t1); |
1141 | } |
1142 | } |
1143 | } |
1144 | } |
1145 | } |
1146 | |
1147 | atomic::fence(Ordering::Release); |
1148 | |
1149 | // Update the back index in the destination queue. |
1150 | // |
1151 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data |
1152 | // races because it doesn't understand fences. |
1153 | dest.inner.back.store(dest_b, Ordering::Release); |
1154 | |
1155 | // Return with success. |
1156 | Steal::Success(unsafe { task.assume_init() }) |
1157 | } |
1158 | } |
1159 | |
1160 | impl<T> Clone for Stealer<T> { |
1161 | fn clone(&self) -> Stealer<T> { |
1162 | Stealer { |
1163 | inner: self.inner.clone(), |
1164 | flavor: self.flavor, |
1165 | } |
1166 | } |
1167 | } |
1168 | |
1169 | impl<T> fmt::Debug for Stealer<T> { |
1170 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1171 | f.pad("Stealer { .. }" ) |
1172 | } |
1173 | } |
1174 | |
1175 | // Bits indicating the state of a slot: |
1176 | // * If a task has been written into the slot, `WRITE` is set. |
1177 | // * If a task has been read from the slot, `READ` is set. |
1178 | // * If the block is being destroyed, `DESTROY` is set. |
1179 | const WRITE: usize = 1; |
1180 | const READ: usize = 2; |
1181 | const DESTROY: usize = 4; |
1182 | |
1183 | // Each block covers one "lap" of indices. |
1184 | const LAP: usize = 64; |
1185 | // The maximum number of values a block can hold. |
1186 | const BLOCK_CAP: usize = LAP - 1; |
1187 | // How many lower bits are reserved for metadata. |
1188 | const SHIFT: usize = 1; |
1189 | // Indicates that the block is not the last one. |
1190 | const HAS_NEXT: usize = 1; |
1191 | |
1192 | /// A slot in a block. |
1193 | struct Slot<T> { |
1194 | /// The task. |
1195 | task: UnsafeCell<MaybeUninit<T>>, |
1196 | |
1197 | /// The state of the slot. |
1198 | state: AtomicUsize, |
1199 | } |
1200 | |
1201 | impl<T> Slot<T> { |
1202 | const UNINIT: Self = Self { |
1203 | task: UnsafeCell::new(MaybeUninit::uninit()), |
1204 | state: AtomicUsize::new(0), |
1205 | }; |
1206 | |
1207 | /// Waits until a task is written into the slot. |
1208 | fn wait_write(&self) { |
1209 | let backoff: Backoff = Backoff::new(); |
1210 | while self.state.load(order:Ordering::Acquire) & WRITE == 0 { |
1211 | backoff.snooze(); |
1212 | } |
1213 | } |
1214 | } |
1215 | |
1216 | /// A block in a linked list. |
1217 | /// |
1218 | /// Each block in the list can hold up to `BLOCK_CAP` values. |
1219 | struct Block<T> { |
1220 | /// The next block in the linked list. |
1221 | next: AtomicPtr<Block<T>>, |
1222 | |
1223 | /// Slots for values. |
1224 | slots: [Slot<T>; BLOCK_CAP], |
1225 | } |
1226 | |
1227 | impl<T> Block<T> { |
1228 | /// Creates an empty block that starts at `start_index`. |
1229 | fn new() -> Block<T> { |
1230 | Self { |
1231 | next: AtomicPtr::new(ptr::null_mut()), |
1232 | slots: [Slot::UNINIT; BLOCK_CAP], |
1233 | } |
1234 | } |
1235 | |
1236 | /// Waits until the next pointer is set. |
1237 | fn wait_next(&self) -> *mut Block<T> { |
1238 | let backoff = Backoff::new(); |
1239 | loop { |
1240 | let next = self.next.load(Ordering::Acquire); |
1241 | if !next.is_null() { |
1242 | return next; |
1243 | } |
1244 | backoff.snooze(); |
1245 | } |
1246 | } |
1247 | |
1248 | /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block. |
1249 | unsafe fn destroy(this: *mut Block<T>, count: usize) { |
1250 | // It is not necessary to set the `DESTROY` bit in the last slot because that slot has |
1251 | // begun destruction of the block. |
1252 | for i in (0..count).rev() { |
1253 | let slot = (*this).slots.get_unchecked(i); |
1254 | |
1255 | // Mark the `DESTROY` bit if a thread is still using the slot. |
1256 | if slot.state.load(Ordering::Acquire) & READ == 0 |
1257 | && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0 |
1258 | { |
1259 | // If a thread is still using the slot, it will continue destruction of the block. |
1260 | return; |
1261 | } |
1262 | } |
1263 | |
1264 | // No thread is using the block, now it is safe to destroy it. |
1265 | drop(Box::from_raw(this)); |
1266 | } |
1267 | } |
1268 | |
1269 | /// A position in a queue. |
1270 | struct Position<T> { |
1271 | /// The index in the queue. |
1272 | index: AtomicUsize, |
1273 | |
1274 | /// The block in the linked list. |
1275 | block: AtomicPtr<Block<T>>, |
1276 | } |
1277 | |
1278 | /// An injector queue. |
1279 | /// |
1280 | /// This is a FIFO queue that can be shared among multiple threads. Task schedulers typically have |
1281 | /// a single injector queue, which is the entry point for new tasks. |
1282 | /// |
1283 | /// # Examples |
1284 | /// |
1285 | /// ``` |
1286 | /// use crossbeam_deque::{Injector, Steal}; |
1287 | /// |
1288 | /// let q = Injector::new(); |
1289 | /// q.push(1); |
1290 | /// q.push(2); |
1291 | /// |
1292 | /// assert_eq!(q.steal(), Steal::Success(1)); |
1293 | /// assert_eq!(q.steal(), Steal::Success(2)); |
1294 | /// assert_eq!(q.steal(), Steal::Empty); |
1295 | /// ``` |
1296 | pub struct Injector<T> { |
1297 | /// The head of the queue. |
1298 | head: CachePadded<Position<T>>, |
1299 | |
1300 | /// The tail of the queue. |
1301 | tail: CachePadded<Position<T>>, |
1302 | |
1303 | /// Indicates that dropping a `Injector<T>` may drop values of type `T`. |
1304 | _marker: PhantomData<T>, |
1305 | } |
1306 | |
1307 | unsafe impl<T: Send> Send for Injector<T> {} |
1308 | unsafe impl<T: Send> Sync for Injector<T> {} |
1309 | |
1310 | impl<T> Default for Injector<T> { |
1311 | fn default() -> Self { |
1312 | let block: *mut Block = Box::into_raw(Box::new(Block::<T>::new())); |
1313 | Self { |
1314 | head: CachePadded::new(Position { |
1315 | block: AtomicPtr::new(block), |
1316 | index: AtomicUsize::new(0), |
1317 | }), |
1318 | tail: CachePadded::new(Position { |
1319 | block: AtomicPtr::new(block), |
1320 | index: AtomicUsize::new(0), |
1321 | }), |
1322 | _marker: PhantomData, |
1323 | } |
1324 | } |
1325 | } |
1326 | |
1327 | impl<T> Injector<T> { |
1328 | /// Creates a new injector queue. |
1329 | /// |
1330 | /// # Examples |
1331 | /// |
1332 | /// ``` |
1333 | /// use crossbeam_deque::Injector; |
1334 | /// |
1335 | /// let q = Injector::<i32>::new(); |
1336 | /// ``` |
1337 | pub fn new() -> Injector<T> { |
1338 | Self::default() |
1339 | } |
1340 | |
1341 | /// Pushes a task into the queue. |
1342 | /// |
1343 | /// # Examples |
1344 | /// |
1345 | /// ``` |
1346 | /// use crossbeam_deque::Injector; |
1347 | /// |
1348 | /// let w = Injector::new(); |
1349 | /// w.push(1); |
1350 | /// w.push(2); |
1351 | /// ``` |
1352 | pub fn push(&self, task: T) { |
1353 | let backoff = Backoff::new(); |
1354 | let mut tail = self.tail.index.load(Ordering::Acquire); |
1355 | let mut block = self.tail.block.load(Ordering::Acquire); |
1356 | let mut next_block = None; |
1357 | |
1358 | loop { |
1359 | // Calculate the offset of the index into the block. |
1360 | let offset = (tail >> SHIFT) % LAP; |
1361 | |
1362 | // If we reached the end of the block, wait until the next one is installed. |
1363 | if offset == BLOCK_CAP { |
1364 | backoff.snooze(); |
1365 | tail = self.tail.index.load(Ordering::Acquire); |
1366 | block = self.tail.block.load(Ordering::Acquire); |
1367 | continue; |
1368 | } |
1369 | |
1370 | // If we're going to have to install the next block, allocate it in advance in order to |
1371 | // make the wait for other threads as short as possible. |
1372 | if offset + 1 == BLOCK_CAP && next_block.is_none() { |
1373 | next_block = Some(Box::new(Block::<T>::new())); |
1374 | } |
1375 | |
1376 | let new_tail = tail + (1 << SHIFT); |
1377 | |
1378 | // Try advancing the tail forward. |
1379 | match self.tail.index.compare_exchange_weak( |
1380 | tail, |
1381 | new_tail, |
1382 | Ordering::SeqCst, |
1383 | Ordering::Acquire, |
1384 | ) { |
1385 | Ok(_) => unsafe { |
1386 | // If we've reached the end of the block, install the next one. |
1387 | if offset + 1 == BLOCK_CAP { |
1388 | let next_block = Box::into_raw(next_block.unwrap()); |
1389 | let next_index = new_tail.wrapping_add(1 << SHIFT); |
1390 | |
1391 | self.tail.block.store(next_block, Ordering::Release); |
1392 | self.tail.index.store(next_index, Ordering::Release); |
1393 | (*block).next.store(next_block, Ordering::Release); |
1394 | } |
1395 | |
1396 | // Write the task into the slot. |
1397 | let slot = (*block).slots.get_unchecked(offset); |
1398 | slot.task.get().write(MaybeUninit::new(task)); |
1399 | slot.state.fetch_or(WRITE, Ordering::Release); |
1400 | |
1401 | return; |
1402 | }, |
1403 | Err(t) => { |
1404 | tail = t; |
1405 | block = self.tail.block.load(Ordering::Acquire); |
1406 | backoff.spin(); |
1407 | } |
1408 | } |
1409 | } |
1410 | } |
1411 | |
1412 | /// Steals a task from the queue. |
1413 | /// |
1414 | /// # Examples |
1415 | /// |
1416 | /// ``` |
1417 | /// use crossbeam_deque::{Injector, Steal}; |
1418 | /// |
1419 | /// let q = Injector::new(); |
1420 | /// q.push(1); |
1421 | /// q.push(2); |
1422 | /// |
1423 | /// assert_eq!(q.steal(), Steal::Success(1)); |
1424 | /// assert_eq!(q.steal(), Steal::Success(2)); |
1425 | /// assert_eq!(q.steal(), Steal::Empty); |
1426 | /// ``` |
1427 | pub fn steal(&self) -> Steal<T> { |
1428 | let mut head; |
1429 | let mut block; |
1430 | let mut offset; |
1431 | |
1432 | let backoff = Backoff::new(); |
1433 | loop { |
1434 | head = self.head.index.load(Ordering::Acquire); |
1435 | block = self.head.block.load(Ordering::Acquire); |
1436 | |
1437 | // Calculate the offset of the index into the block. |
1438 | offset = (head >> SHIFT) % LAP; |
1439 | |
1440 | // If we reached the end of the block, wait until the next one is installed. |
1441 | if offset == BLOCK_CAP { |
1442 | backoff.snooze(); |
1443 | } else { |
1444 | break; |
1445 | } |
1446 | } |
1447 | |
1448 | let mut new_head = head + (1 << SHIFT); |
1449 | |
1450 | if new_head & HAS_NEXT == 0 { |
1451 | atomic::fence(Ordering::SeqCst); |
1452 | let tail = self.tail.index.load(Ordering::Relaxed); |
1453 | |
1454 | // If the tail equals the head, that means the queue is empty. |
1455 | if head >> SHIFT == tail >> SHIFT { |
1456 | return Steal::Empty; |
1457 | } |
1458 | |
1459 | // If head and tail are not in the same block, set `HAS_NEXT` in head. |
1460 | if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { |
1461 | new_head |= HAS_NEXT; |
1462 | } |
1463 | } |
1464 | |
1465 | // Try moving the head index forward. |
1466 | if self |
1467 | .head |
1468 | .index |
1469 | .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) |
1470 | .is_err() |
1471 | { |
1472 | return Steal::Retry; |
1473 | } |
1474 | |
1475 | unsafe { |
1476 | // If we've reached the end of the block, move to the next one. |
1477 | if offset + 1 == BLOCK_CAP { |
1478 | let next = (*block).wait_next(); |
1479 | let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); |
1480 | if !(*next).next.load(Ordering::Relaxed).is_null() { |
1481 | next_index |= HAS_NEXT; |
1482 | } |
1483 | |
1484 | self.head.block.store(next, Ordering::Release); |
1485 | self.head.index.store(next_index, Ordering::Release); |
1486 | } |
1487 | |
1488 | // Read the task. |
1489 | let slot = (*block).slots.get_unchecked(offset); |
1490 | slot.wait_write(); |
1491 | let task = slot.task.get().read().assume_init(); |
1492 | |
1493 | // Destroy the block if we've reached the end, or if another thread wanted to destroy |
1494 | // but couldn't because we were busy reading from the slot. |
1495 | if (offset + 1 == BLOCK_CAP) |
1496 | || (slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0) |
1497 | { |
1498 | Block::destroy(block, offset); |
1499 | } |
1500 | |
1501 | Steal::Success(task) |
1502 | } |
1503 | } |
1504 | |
1505 | /// Steals a batch of tasks and pushes them into a worker. |
1506 | /// |
1507 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
1508 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
1509 | /// |
1510 | /// # Examples |
1511 | /// |
1512 | /// ``` |
1513 | /// use crossbeam_deque::{Injector, Worker}; |
1514 | /// |
1515 | /// let q = Injector::new(); |
1516 | /// q.push(1); |
1517 | /// q.push(2); |
1518 | /// q.push(3); |
1519 | /// q.push(4); |
1520 | /// |
1521 | /// let w = Worker::new_fifo(); |
1522 | /// let _ = q.steal_batch(&w); |
1523 | /// assert_eq!(w.pop(), Some(1)); |
1524 | /// assert_eq!(w.pop(), Some(2)); |
1525 | /// ``` |
1526 | pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> { |
1527 | self.steal_batch_with_limit(dest, MAX_BATCH) |
1528 | } |
1529 | |
1530 | /// Steals no more than of tasks and pushes them into a worker. |
1531 | /// |
1532 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
1533 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
1534 | /// |
1535 | /// # Examples |
1536 | /// |
1537 | /// ``` |
1538 | /// use crossbeam_deque::{Injector, Worker}; |
1539 | /// |
1540 | /// let q = Injector::new(); |
1541 | /// q.push(1); |
1542 | /// q.push(2); |
1543 | /// q.push(3); |
1544 | /// q.push(4); |
1545 | /// q.push(5); |
1546 | /// q.push(6); |
1547 | /// |
1548 | /// let w = Worker::new_fifo(); |
1549 | /// let _ = q.steal_batch_with_limit(&w, 2); |
1550 | /// assert_eq!(w.pop(), Some(1)); |
1551 | /// assert_eq!(w.pop(), Some(2)); |
1552 | /// assert_eq!(w.pop(), None); |
1553 | /// |
1554 | /// q.push(7); |
1555 | /// q.push(8); |
1556 | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
1557 | /// // half of the elements are currently popped, but the number of popped elements is considered |
1558 | /// // an implementation detail that may be changed in the future. |
1559 | /// let _ = q.steal_batch_with_limit(&w, std::usize::MAX); |
1560 | /// assert_eq!(w.len(), 3); |
1561 | /// ``` |
1562 | pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> { |
1563 | assert!(limit > 0); |
1564 | let mut head; |
1565 | let mut block; |
1566 | let mut offset; |
1567 | |
1568 | let backoff = Backoff::new(); |
1569 | loop { |
1570 | head = self.head.index.load(Ordering::Acquire); |
1571 | block = self.head.block.load(Ordering::Acquire); |
1572 | |
1573 | // Calculate the offset of the index into the block. |
1574 | offset = (head >> SHIFT) % LAP; |
1575 | |
1576 | // If we reached the end of the block, wait until the next one is installed. |
1577 | if offset == BLOCK_CAP { |
1578 | backoff.snooze(); |
1579 | } else { |
1580 | break; |
1581 | } |
1582 | } |
1583 | |
1584 | let mut new_head = head; |
1585 | let advance; |
1586 | |
1587 | if new_head & HAS_NEXT == 0 { |
1588 | atomic::fence(Ordering::SeqCst); |
1589 | let tail = self.tail.index.load(Ordering::Relaxed); |
1590 | |
1591 | // If the tail equals the head, that means the queue is empty. |
1592 | if head >> SHIFT == tail >> SHIFT { |
1593 | return Steal::Empty; |
1594 | } |
1595 | |
1596 | // If head and tail are not in the same block, set `HAS_NEXT` in head. Also, calculate |
1597 | // the right batch size to steal. |
1598 | if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { |
1599 | new_head |= HAS_NEXT; |
1600 | // We can steal all tasks till the end of the block. |
1601 | advance = (BLOCK_CAP - offset).min(limit); |
1602 | } else { |
1603 | let len = (tail - head) >> SHIFT; |
1604 | // Steal half of the available tasks. |
1605 | advance = ((len + 1) / 2).min(limit); |
1606 | } |
1607 | } else { |
1608 | // We can steal all tasks till the end of the block. |
1609 | advance = (BLOCK_CAP - offset).min(limit); |
1610 | } |
1611 | |
1612 | new_head += advance << SHIFT; |
1613 | let new_offset = offset + advance; |
1614 | |
1615 | // Try moving the head index forward. |
1616 | if self |
1617 | .head |
1618 | .index |
1619 | .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) |
1620 | .is_err() |
1621 | { |
1622 | return Steal::Retry; |
1623 | } |
1624 | |
1625 | // Reserve capacity for the stolen batch. |
1626 | let batch_size = new_offset - offset; |
1627 | dest.reserve(batch_size); |
1628 | |
1629 | // Get the destination buffer and back index. |
1630 | let dest_buffer = dest.buffer.get(); |
1631 | let dest_b = dest.inner.back.load(Ordering::Relaxed); |
1632 | |
1633 | unsafe { |
1634 | // If we've reached the end of the block, move to the next one. |
1635 | if new_offset == BLOCK_CAP { |
1636 | let next = (*block).wait_next(); |
1637 | let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); |
1638 | if !(*next).next.load(Ordering::Relaxed).is_null() { |
1639 | next_index |= HAS_NEXT; |
1640 | } |
1641 | |
1642 | self.head.block.store(next, Ordering::Release); |
1643 | self.head.index.store(next_index, Ordering::Release); |
1644 | } |
1645 | |
1646 | // Copy values from the injector into the destination queue. |
1647 | match dest.flavor { |
1648 | Flavor::Fifo => { |
1649 | for i in 0..batch_size { |
1650 | // Read the task. |
1651 | let slot = (*block).slots.get_unchecked(offset + i); |
1652 | slot.wait_write(); |
1653 | let task = slot.task.get().read(); |
1654 | |
1655 | // Write it into the destination queue. |
1656 | dest_buffer.write(dest_b.wrapping_add(i as isize), task); |
1657 | } |
1658 | } |
1659 | |
1660 | Flavor::Lifo => { |
1661 | for i in 0..batch_size { |
1662 | // Read the task. |
1663 | let slot = (*block).slots.get_unchecked(offset + i); |
1664 | slot.wait_write(); |
1665 | let task = slot.task.get().read(); |
1666 | |
1667 | // Write it into the destination queue. |
1668 | dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task); |
1669 | } |
1670 | } |
1671 | } |
1672 | |
1673 | atomic::fence(Ordering::Release); |
1674 | |
1675 | // Update the back index in the destination queue. |
1676 | // |
1677 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report |
1678 | // data races because it doesn't understand fences. |
1679 | dest.inner |
1680 | .back |
1681 | .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release); |
1682 | |
1683 | // Destroy the block if we've reached the end, or if another thread wanted to destroy |
1684 | // but couldn't because we were busy reading from the slot. |
1685 | if new_offset == BLOCK_CAP { |
1686 | Block::destroy(block, offset); |
1687 | } else { |
1688 | for i in offset..new_offset { |
1689 | let slot = (*block).slots.get_unchecked(i); |
1690 | |
1691 | if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { |
1692 | Block::destroy(block, offset); |
1693 | break; |
1694 | } |
1695 | } |
1696 | } |
1697 | |
1698 | Steal::Success(()) |
1699 | } |
1700 | } |
1701 | |
1702 | /// Steals a batch of tasks, pushes them into a worker, and pops a task from that worker. |
1703 | /// |
1704 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
1705 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
1706 | /// |
1707 | /// # Examples |
1708 | /// |
1709 | /// ``` |
1710 | /// use crossbeam_deque::{Injector, Steal, Worker}; |
1711 | /// |
1712 | /// let q = Injector::new(); |
1713 | /// q.push(1); |
1714 | /// q.push(2); |
1715 | /// q.push(3); |
1716 | /// q.push(4); |
1717 | /// |
1718 | /// let w = Worker::new_fifo(); |
1719 | /// assert_eq!(q.steal_batch_and_pop(&w), Steal::Success(1)); |
1720 | /// assert_eq!(w.pop(), Some(2)); |
1721 | /// ``` |
1722 | pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> { |
1723 | // TODO: we use `MAX_BATCH + 1` as the hard limit for Injecter as the performance is slightly |
1724 | // better, but we may change it in the future to be compatible with the same method in Stealer. |
1725 | self.steal_batch_with_limit_and_pop(dest, MAX_BATCH + 1) |
1726 | } |
1727 | |
1728 | /// Steals no more than `limit` of tasks, pushes them into a worker, and pops a task from that worker. |
1729 | /// |
1730 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
1731 | /// steal around half of the tasks in the queue, but also not more than the given limit. |
1732 | /// |
1733 | /// # Examples |
1734 | /// |
1735 | /// ``` |
1736 | /// use crossbeam_deque::{Injector, Steal, Worker}; |
1737 | /// |
1738 | /// let q = Injector::new(); |
1739 | /// q.push(1); |
1740 | /// q.push(2); |
1741 | /// q.push(3); |
1742 | /// q.push(4); |
1743 | /// q.push(5); |
1744 | /// q.push(6); |
1745 | /// |
1746 | /// let w = Worker::new_fifo(); |
1747 | /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, 2), Steal::Success(1)); |
1748 | /// assert_eq!(w.pop(), Some(2)); |
1749 | /// assert_eq!(w.pop(), None); |
1750 | /// |
1751 | /// q.push(7); |
1752 | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
1753 | /// // half of the elements are currently popped, but the number of popped elements is considered |
1754 | /// // an implementation detail that may be changed in the future. |
1755 | /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, std::usize::MAX), Steal::Success(3)); |
1756 | /// assert_eq!(w.pop(), Some(4)); |
1757 | /// assert_eq!(w.pop(), Some(5)); |
1758 | /// assert_eq!(w.pop(), None); |
1759 | /// ``` |
1760 | pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> { |
1761 | assert!(limit > 0); |
1762 | let mut head; |
1763 | let mut block; |
1764 | let mut offset; |
1765 | |
1766 | let backoff = Backoff::new(); |
1767 | loop { |
1768 | head = self.head.index.load(Ordering::Acquire); |
1769 | block = self.head.block.load(Ordering::Acquire); |
1770 | |
1771 | // Calculate the offset of the index into the block. |
1772 | offset = (head >> SHIFT) % LAP; |
1773 | |
1774 | // If we reached the end of the block, wait until the next one is installed. |
1775 | if offset == BLOCK_CAP { |
1776 | backoff.snooze(); |
1777 | } else { |
1778 | break; |
1779 | } |
1780 | } |
1781 | |
1782 | let mut new_head = head; |
1783 | let advance; |
1784 | |
1785 | if new_head & HAS_NEXT == 0 { |
1786 | atomic::fence(Ordering::SeqCst); |
1787 | let tail = self.tail.index.load(Ordering::Relaxed); |
1788 | |
1789 | // If the tail equals the head, that means the queue is empty. |
1790 | if head >> SHIFT == tail >> SHIFT { |
1791 | return Steal::Empty; |
1792 | } |
1793 | |
1794 | // If head and tail are not in the same block, set `HAS_NEXT` in head. |
1795 | if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { |
1796 | new_head |= HAS_NEXT; |
1797 | // We can steal all tasks till the end of the block. |
1798 | advance = (BLOCK_CAP - offset).min(limit); |
1799 | } else { |
1800 | let len = (tail - head) >> SHIFT; |
1801 | // Steal half of the available tasks. |
1802 | advance = ((len + 1) / 2).min(limit); |
1803 | } |
1804 | } else { |
1805 | // We can steal all tasks till the end of the block. |
1806 | advance = (BLOCK_CAP - offset).min(limit); |
1807 | } |
1808 | |
1809 | new_head += advance << SHIFT; |
1810 | let new_offset = offset + advance; |
1811 | |
1812 | // Try moving the head index forward. |
1813 | if self |
1814 | .head |
1815 | .index |
1816 | .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) |
1817 | .is_err() |
1818 | { |
1819 | return Steal::Retry; |
1820 | } |
1821 | |
1822 | // Reserve capacity for the stolen batch. |
1823 | let batch_size = new_offset - offset - 1; |
1824 | dest.reserve(batch_size); |
1825 | |
1826 | // Get the destination buffer and back index. |
1827 | let dest_buffer = dest.buffer.get(); |
1828 | let dest_b = dest.inner.back.load(Ordering::Relaxed); |
1829 | |
1830 | unsafe { |
1831 | // If we've reached the end of the block, move to the next one. |
1832 | if new_offset == BLOCK_CAP { |
1833 | let next = (*block).wait_next(); |
1834 | let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); |
1835 | if !(*next).next.load(Ordering::Relaxed).is_null() { |
1836 | next_index |= HAS_NEXT; |
1837 | } |
1838 | |
1839 | self.head.block.store(next, Ordering::Release); |
1840 | self.head.index.store(next_index, Ordering::Release); |
1841 | } |
1842 | |
1843 | // Read the task. |
1844 | let slot = (*block).slots.get_unchecked(offset); |
1845 | slot.wait_write(); |
1846 | let task = slot.task.get().read(); |
1847 | |
1848 | match dest.flavor { |
1849 | Flavor::Fifo => { |
1850 | // Copy values from the injector into the destination queue. |
1851 | for i in 0..batch_size { |
1852 | // Read the task. |
1853 | let slot = (*block).slots.get_unchecked(offset + i + 1); |
1854 | slot.wait_write(); |
1855 | let task = slot.task.get().read(); |
1856 | |
1857 | // Write it into the destination queue. |
1858 | dest_buffer.write(dest_b.wrapping_add(i as isize), task); |
1859 | } |
1860 | } |
1861 | |
1862 | Flavor::Lifo => { |
1863 | // Copy values from the injector into the destination queue. |
1864 | for i in 0..batch_size { |
1865 | // Read the task. |
1866 | let slot = (*block).slots.get_unchecked(offset + i + 1); |
1867 | slot.wait_write(); |
1868 | let task = slot.task.get().read(); |
1869 | |
1870 | // Write it into the destination queue. |
1871 | dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task); |
1872 | } |
1873 | } |
1874 | } |
1875 | |
1876 | atomic::fence(Ordering::Release); |
1877 | |
1878 | // Update the back index in the destination queue. |
1879 | // |
1880 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report |
1881 | // data races because it doesn't understand fences. |
1882 | dest.inner |
1883 | .back |
1884 | .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release); |
1885 | |
1886 | // Destroy the block if we've reached the end, or if another thread wanted to destroy |
1887 | // but couldn't because we were busy reading from the slot. |
1888 | if new_offset == BLOCK_CAP { |
1889 | Block::destroy(block, offset); |
1890 | } else { |
1891 | for i in offset..new_offset { |
1892 | let slot = (*block).slots.get_unchecked(i); |
1893 | |
1894 | if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { |
1895 | Block::destroy(block, offset); |
1896 | break; |
1897 | } |
1898 | } |
1899 | } |
1900 | |
1901 | Steal::Success(task.assume_init()) |
1902 | } |
1903 | } |
1904 | |
1905 | /// Returns `true` if the queue is empty. |
1906 | /// |
1907 | /// # Examples |
1908 | /// |
1909 | /// ``` |
1910 | /// use crossbeam_deque::Injector; |
1911 | /// |
1912 | /// let q = Injector::new(); |
1913 | /// |
1914 | /// assert!(q.is_empty()); |
1915 | /// q.push(1); |
1916 | /// assert!(!q.is_empty()); |
1917 | /// ``` |
1918 | pub fn is_empty(&self) -> bool { |
1919 | let head = self.head.index.load(Ordering::SeqCst); |
1920 | let tail = self.tail.index.load(Ordering::SeqCst); |
1921 | head >> SHIFT == tail >> SHIFT |
1922 | } |
1923 | |
1924 | /// Returns the number of tasks in the queue. |
1925 | /// |
1926 | /// # Examples |
1927 | /// |
1928 | /// ``` |
1929 | /// use crossbeam_deque::Injector; |
1930 | /// |
1931 | /// let q = Injector::new(); |
1932 | /// |
1933 | /// assert_eq!(q.len(), 0); |
1934 | /// q.push(1); |
1935 | /// assert_eq!(q.len(), 1); |
1936 | /// q.push(1); |
1937 | /// assert_eq!(q.len(), 2); |
1938 | /// ``` |
1939 | pub fn len(&self) -> usize { |
1940 | loop { |
1941 | // Load the tail index, then load the head index. |
1942 | let mut tail = self.tail.index.load(Ordering::SeqCst); |
1943 | let mut head = self.head.index.load(Ordering::SeqCst); |
1944 | |
1945 | // If the tail index didn't change, we've got consistent indices to work with. |
1946 | if self.tail.index.load(Ordering::SeqCst) == tail { |
1947 | // Erase the lower bits. |
1948 | tail &= !((1 << SHIFT) - 1); |
1949 | head &= !((1 << SHIFT) - 1); |
1950 | |
1951 | // Fix up indices if they fall onto block ends. |
1952 | if (tail >> SHIFT) & (LAP - 1) == LAP - 1 { |
1953 | tail = tail.wrapping_add(1 << SHIFT); |
1954 | } |
1955 | if (head >> SHIFT) & (LAP - 1) == LAP - 1 { |
1956 | head = head.wrapping_add(1 << SHIFT); |
1957 | } |
1958 | |
1959 | // Rotate indices so that head falls into the first block. |
1960 | let lap = (head >> SHIFT) / LAP; |
1961 | tail = tail.wrapping_sub((lap * LAP) << SHIFT); |
1962 | head = head.wrapping_sub((lap * LAP) << SHIFT); |
1963 | |
1964 | // Remove the lower bits. |
1965 | tail >>= SHIFT; |
1966 | head >>= SHIFT; |
1967 | |
1968 | // Return the difference minus the number of blocks between tail and head. |
1969 | return tail - head - tail / LAP; |
1970 | } |
1971 | } |
1972 | } |
1973 | } |
1974 | |
1975 | impl<T> Drop for Injector<T> { |
1976 | fn drop(&mut self) { |
1977 | let mut head = *self.head.index.get_mut(); |
1978 | let mut tail = *self.tail.index.get_mut(); |
1979 | let mut block = *self.head.block.get_mut(); |
1980 | |
1981 | // Erase the lower bits. |
1982 | head &= !((1 << SHIFT) - 1); |
1983 | tail &= !((1 << SHIFT) - 1); |
1984 | |
1985 | unsafe { |
1986 | // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks. |
1987 | while head != tail { |
1988 | let offset = (head >> SHIFT) % LAP; |
1989 | |
1990 | if offset < BLOCK_CAP { |
1991 | // Drop the task in the slot. |
1992 | let slot = (*block).slots.get_unchecked(offset); |
1993 | let p = &mut *slot.task.get(); |
1994 | p.as_mut_ptr().drop_in_place(); |
1995 | } else { |
1996 | // Deallocate the block and move to the next one. |
1997 | let next = *(*block).next.get_mut(); |
1998 | drop(Box::from_raw(block)); |
1999 | block = next; |
2000 | } |
2001 | |
2002 | head = head.wrapping_add(1 << SHIFT); |
2003 | } |
2004 | |
2005 | // Deallocate the last remaining block. |
2006 | drop(Box::from_raw(block)); |
2007 | } |
2008 | } |
2009 | } |
2010 | |
2011 | impl<T> fmt::Debug for Injector<T> { |
2012 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
2013 | f.pad("Worker { .. }" ) |
2014 | } |
2015 | } |
2016 | |
2017 | /// Possible outcomes of a steal operation. |
2018 | /// |
2019 | /// # Examples |
2020 | /// |
2021 | /// There are lots of ways to chain results of steal operations together: |
2022 | /// |
2023 | /// ``` |
2024 | /// use crossbeam_deque::Steal::{self, Empty, Retry, Success}; |
2025 | /// |
2026 | /// let collect = |v: Vec<Steal<i32>>| v.into_iter().collect::<Steal<i32>>(); |
2027 | /// |
2028 | /// assert_eq!(collect(vec![Empty, Empty, Empty]), Empty); |
2029 | /// assert_eq!(collect(vec![Empty, Retry, Empty]), Retry); |
2030 | /// assert_eq!(collect(vec![Retry, Success(1), Empty]), Success(1)); |
2031 | /// |
2032 | /// assert_eq!(collect(vec![Empty, Empty]).or_else(|| Retry), Retry); |
2033 | /// assert_eq!(collect(vec![Retry, Empty]).or_else(|| Success(1)), Success(1)); |
2034 | /// ``` |
2035 | #[must_use ] |
2036 | #[derive (PartialEq, Eq, Copy, Clone)] |
2037 | pub enum Steal<T> { |
2038 | /// The queue was empty at the time of stealing. |
2039 | Empty, |
2040 | |
2041 | /// At least one task was successfully stolen. |
2042 | Success(T), |
2043 | |
2044 | /// The steal operation needs to be retried. |
2045 | Retry, |
2046 | } |
2047 | |
2048 | impl<T> Steal<T> { |
2049 | /// Returns `true` if the queue was empty at the time of stealing. |
2050 | /// |
2051 | /// # Examples |
2052 | /// |
2053 | /// ``` |
2054 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2055 | /// |
2056 | /// assert!(!Success(7).is_empty()); |
2057 | /// assert!(!Retry::<i32>.is_empty()); |
2058 | /// |
2059 | /// assert!(Empty::<i32>.is_empty()); |
2060 | /// ``` |
2061 | pub fn is_empty(&self) -> bool { |
2062 | match self { |
2063 | Steal::Empty => true, |
2064 | _ => false, |
2065 | } |
2066 | } |
2067 | |
2068 | /// Returns `true` if at least one task was stolen. |
2069 | /// |
2070 | /// # Examples |
2071 | /// |
2072 | /// ``` |
2073 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2074 | /// |
2075 | /// assert!(!Empty::<i32>.is_success()); |
2076 | /// assert!(!Retry::<i32>.is_success()); |
2077 | /// |
2078 | /// assert!(Success(7).is_success()); |
2079 | /// ``` |
2080 | pub fn is_success(&self) -> bool { |
2081 | match self { |
2082 | Steal::Success(_) => true, |
2083 | _ => false, |
2084 | } |
2085 | } |
2086 | |
2087 | /// Returns `true` if the steal operation needs to be retried. |
2088 | /// |
2089 | /// # Examples |
2090 | /// |
2091 | /// ``` |
2092 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2093 | /// |
2094 | /// assert!(!Empty::<i32>.is_retry()); |
2095 | /// assert!(!Success(7).is_retry()); |
2096 | /// |
2097 | /// assert!(Retry::<i32>.is_retry()); |
2098 | /// ``` |
2099 | pub fn is_retry(&self) -> bool { |
2100 | match self { |
2101 | Steal::Retry => true, |
2102 | _ => false, |
2103 | } |
2104 | } |
2105 | |
2106 | /// Returns the result of the operation, if successful. |
2107 | /// |
2108 | /// # Examples |
2109 | /// |
2110 | /// ``` |
2111 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2112 | /// |
2113 | /// assert_eq!(Empty::<i32>.success(), None); |
2114 | /// assert_eq!(Retry::<i32>.success(), None); |
2115 | /// |
2116 | /// assert_eq!(Success(7).success(), Some(7)); |
2117 | /// ``` |
2118 | pub fn success(self) -> Option<T> { |
2119 | match self { |
2120 | Steal::Success(res) => Some(res), |
2121 | _ => None, |
2122 | } |
2123 | } |
2124 | |
2125 | /// If no task was stolen, attempts another steal operation. |
2126 | /// |
2127 | /// Returns this steal result if it is `Success`. Otherwise, closure `f` is invoked and then: |
2128 | /// |
2129 | /// * If the second steal resulted in `Success`, it is returned. |
2130 | /// * If both steals were unsuccessful but any resulted in `Retry`, then `Retry` is returned. |
2131 | /// * If both resulted in `None`, then `None` is returned. |
2132 | /// |
2133 | /// # Examples |
2134 | /// |
2135 | /// ``` |
2136 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2137 | /// |
2138 | /// assert_eq!(Success(1).or_else(|| Success(2)), Success(1)); |
2139 | /// assert_eq!(Retry.or_else(|| Success(2)), Success(2)); |
2140 | /// |
2141 | /// assert_eq!(Retry.or_else(|| Empty), Retry::<i32>); |
2142 | /// assert_eq!(Empty.or_else(|| Retry), Retry::<i32>); |
2143 | /// |
2144 | /// assert_eq!(Empty.or_else(|| Empty), Empty::<i32>); |
2145 | /// ``` |
2146 | pub fn or_else<F>(self, f: F) -> Steal<T> |
2147 | where |
2148 | F: FnOnce() -> Steal<T>, |
2149 | { |
2150 | match self { |
2151 | Steal::Empty => f(), |
2152 | Steal::Success(_) => self, |
2153 | Steal::Retry => { |
2154 | if let Steal::Success(res) = f() { |
2155 | Steal::Success(res) |
2156 | } else { |
2157 | Steal::Retry |
2158 | } |
2159 | } |
2160 | } |
2161 | } |
2162 | } |
2163 | |
2164 | impl<T> fmt::Debug for Steal<T> { |
2165 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
2166 | match self { |
2167 | Steal::Empty => f.pad("Empty" ), |
2168 | Steal::Success(_) => f.pad("Success(..)" ), |
2169 | Steal::Retry => f.pad("Retry" ), |
2170 | } |
2171 | } |
2172 | } |
2173 | |
2174 | impl<T> FromIterator<Steal<T>> for Steal<T> { |
2175 | /// Consumes items until a `Success` is found and returns it. |
2176 | /// |
2177 | /// If no `Success` was found, but there was at least one `Retry`, then returns `Retry`. |
2178 | /// Otherwise, `Empty` is returned. |
2179 | fn from_iter<I>(iter: I) -> Steal<T> |
2180 | where |
2181 | I: IntoIterator<Item = Steal<T>>, |
2182 | { |
2183 | let mut retry = false; |
2184 | for s in iter { |
2185 | match &s { |
2186 | Steal::Empty => {} |
2187 | Steal::Success(_) => return s, |
2188 | Steal::Retry => retry = true, |
2189 | } |
2190 | } |
2191 | |
2192 | if retry { |
2193 | Steal::Retry |
2194 | } else { |
2195 | Steal::Empty |
2196 | } |
2197 | } |
2198 | } |
2199 | |