| 1 | #![ warn(missing_docs)] | 
| 2 | #![ crate_name= "itertools"] | 
|---|
| 3 | #![ cfg_attr(not(feature = "use_std"), no_std)] | 
|---|
| 4 |  | 
|---|
| 5 | //! Extra iterator adaptors, functions and macros. | 
|---|
| 6 | //! | 
|---|
| 7 | //! To extend [`Iterator`] with methods in this crate, import | 
|---|
| 8 | //! the [`Itertools`] trait: | 
|---|
| 9 | //! | 
|---|
| 10 | //! ``` | 
|---|
| 11 | //! use itertools::Itertools; | 
|---|
| 12 | //! ``` | 
|---|
| 13 | //! | 
|---|
| 14 | //! Now, new methods like [`interleave`](Itertools::interleave) | 
|---|
| 15 | //! are available on all iterators: | 
|---|
| 16 | //! | 
|---|
| 17 | //! ``` | 
|---|
| 18 | //! use itertools::Itertools; | 
|---|
| 19 | //! | 
|---|
| 20 | //! let it = (1..3).interleave(vec![-1, -2]); | 
|---|
| 21 | //! itertools::assert_equal(it, vec![1, -1, 2, -2]); | 
|---|
| 22 | //! ``` | 
|---|
| 23 | //! | 
|---|
| 24 | //! Most iterator methods are also provided as functions (with the benefit | 
|---|
| 25 | //! that they convert parameters using [`IntoIterator`]): | 
|---|
| 26 | //! | 
|---|
| 27 | //! ``` | 
|---|
| 28 | //! use itertools::interleave; | 
|---|
| 29 | //! | 
|---|
| 30 | //! for elt in interleave(&[1, 2, 3], &[2, 3, 4]) { | 
|---|
| 31 | //!     /* loop body */ | 
|---|
| 32 | //! } | 
|---|
| 33 | //! ``` | 
|---|
| 34 | //! | 
|---|
| 35 | //! ## Crate Features | 
|---|
| 36 | //! | 
|---|
| 37 | //! - `use_std` | 
|---|
| 38 | //!   - Enabled by default. | 
|---|
| 39 | //!   - Disable to compile itertools using `#![no_std]`. This disables | 
|---|
| 40 | //!     any items that depend on collections (like `group_by`, `unique`, | 
|---|
| 41 | //!     `kmerge`, `join` and many more). | 
|---|
| 42 | //! | 
|---|
| 43 | //! ## Rust Version | 
|---|
| 44 | //! | 
|---|
| 45 | //! This version of itertools requires Rust 1.43.1 or later. | 
|---|
| 46 |  | 
|---|
| 47 | #[ cfg(not(feature = "use_std"))] | 
|---|
| 48 | extern crate core as std; | 
|---|
| 49 |  | 
|---|
| 50 | #[ cfg(feature = "use_alloc")] | 
|---|
| 51 | extern crate alloc; | 
|---|
| 52 |  | 
|---|
| 53 | #[ cfg(feature = "use_alloc")] | 
|---|
| 54 | use alloc::{string::String, vec::Vec}; | 
|---|
| 55 |  | 
|---|
| 56 | pub use either::Either; | 
|---|
| 57 |  | 
|---|
| 58 | use core::borrow::Borrow; | 
|---|
| 59 | use std::cmp::Ordering; | 
|---|
| 60 | #[ cfg(feature = "use_std")] | 
|---|
| 61 | use std::collections::HashMap; | 
|---|
| 62 | #[ cfg(feature = "use_std")] | 
|---|
| 63 | use std::collections::HashSet; | 
|---|
| 64 | use std::fmt; | 
|---|
| 65 | #[ cfg(feature = "use_alloc")] | 
|---|
| 66 | use std::fmt::Write; | 
|---|
| 67 | #[ cfg(feature = "use_std")] | 
|---|
| 68 | use std::hash::Hash; | 
|---|
| 69 | use std::iter::{once, IntoIterator}; | 
|---|
| 70 | #[ cfg(feature = "use_alloc")] | 
|---|
| 71 | type VecIntoIter<T> = alloc::vec::IntoIter<T>; | 
|---|
| 72 | use std::iter::FromIterator; | 
|---|
| 73 |  | 
|---|
| 74 | #[ macro_use] | 
|---|
| 75 | mod impl_macros; | 
|---|
| 76 |  | 
|---|
| 77 | // for compatibility with no std and macros | 
|---|
| 78 | #[ doc(hidden)] | 
|---|
| 79 | pub use std::iter as __std_iter; | 
|---|
| 80 |  | 
|---|
| 81 | /// The concrete iterator types. | 
|---|
| 82 | pub mod structs { | 
|---|
| 83 | #[ cfg(feature = "use_alloc")] | 
|---|
| 84 | pub use crate::adaptors::MultiProduct; | 
|---|
| 85 | pub use crate::adaptors::{ | 
|---|
| 86 | Batching, Coalesce, Dedup, DedupBy, DedupByWithCount, DedupWithCount, FilterMapOk, | 
|---|
| 87 | FilterOk, Interleave, InterleaveShortest, MapInto, MapOk, Positions, Product, PutBack, | 
|---|
| 88 | TakeWhileRef, TupleCombinations, Update, WhileSome, | 
|---|
| 89 | }; | 
|---|
| 90 | #[ allow(deprecated)] | 
|---|
| 91 | pub use crate::adaptors::{MapResults, Step}; | 
|---|
| 92 | #[ cfg(feature = "use_alloc")] | 
|---|
| 93 | pub use crate::combinations::Combinations; | 
|---|
| 94 | #[ cfg(feature = "use_alloc")] | 
|---|
| 95 | pub use crate::combinations_with_replacement::CombinationsWithReplacement; | 
|---|
| 96 | pub use crate::cons_tuples_impl::ConsTuples; | 
|---|
| 97 | #[ cfg(feature = "use_std")] | 
|---|
| 98 | pub use crate::duplicates_impl::{Duplicates, DuplicatesBy}; | 
|---|
| 99 | pub use crate::exactly_one_err::ExactlyOneError; | 
|---|
| 100 | pub use crate::flatten_ok::FlattenOk; | 
|---|
| 101 | pub use crate::format::{Format, FormatWith}; | 
|---|
| 102 | #[ cfg(feature = "use_alloc")] | 
|---|
| 103 | pub use crate::groupbylazy::{Chunk, Chunks, Group, GroupBy, Groups, IntoChunks}; | 
|---|
| 104 | #[ cfg(feature = "use_std")] | 
|---|
| 105 | pub use crate::grouping_map::{GroupingMap, GroupingMapBy}; | 
|---|
| 106 | pub use crate::intersperse::{Intersperse, IntersperseWith}; | 
|---|
| 107 | #[ cfg(feature = "use_alloc")] | 
|---|
| 108 | pub use crate::kmerge_impl::{KMerge, KMergeBy}; | 
|---|
| 109 | pub use crate::merge_join::{Merge, MergeBy, MergeJoinBy}; | 
|---|
| 110 | #[ cfg(feature = "use_alloc")] | 
|---|
| 111 | pub use crate::multipeek_impl::MultiPeek; | 
|---|
| 112 | pub use crate::pad_tail::PadUsing; | 
|---|
| 113 | #[ cfg(feature = "use_alloc")] | 
|---|
| 114 | pub use crate::peek_nth::PeekNth; | 
|---|
| 115 | pub use crate::peeking_take_while::PeekingTakeWhile; | 
|---|
| 116 | #[ cfg(feature = "use_alloc")] | 
|---|
| 117 | pub use crate::permutations::Permutations; | 
|---|
| 118 | #[ cfg(feature = "use_alloc")] | 
|---|
| 119 | pub use crate::powerset::Powerset; | 
|---|
| 120 | pub use crate::process_results_impl::ProcessResults; | 
|---|
| 121 | #[ cfg(feature = "use_alloc")] | 
|---|
| 122 | pub use crate::put_back_n_impl::PutBackN; | 
|---|
| 123 | #[ cfg(feature = "use_alloc")] | 
|---|
| 124 | pub use crate::rciter_impl::RcIter; | 
|---|
| 125 | pub use crate::repeatn::RepeatN; | 
|---|
| 126 | #[ allow(deprecated)] | 
|---|
| 127 | pub use crate::sources::{Iterate, RepeatCall, Unfold}; | 
|---|
| 128 | pub use crate::take_while_inclusive::TakeWhileInclusive; | 
|---|
| 129 | #[ cfg(feature = "use_alloc")] | 
|---|
| 130 | pub use crate::tee::Tee; | 
|---|
| 131 | pub use crate::tuple_impl::{CircularTupleWindows, TupleBuffer, TupleWindows, Tuples}; | 
|---|
| 132 | #[ cfg(feature = "use_std")] | 
|---|
| 133 | pub use crate::unique_impl::{Unique, UniqueBy}; | 
|---|
| 134 | pub use crate::with_position::WithPosition; | 
|---|
| 135 | pub use crate::zip_eq_impl::ZipEq; | 
|---|
| 136 | pub use crate::zip_longest::ZipLongest; | 
|---|
| 137 | pub use crate::ziptuple::Zip; | 
|---|
| 138 | } | 
|---|
| 139 |  | 
|---|
| 140 | /// Traits helpful for using certain `Itertools` methods in generic contexts. | 
|---|
| 141 | pub mod traits { | 
|---|
| 142 | pub use crate::tuple_impl::HomogeneousTuple; | 
|---|
| 143 | } | 
|---|
| 144 |  | 
|---|
| 145 | pub use crate::concat_impl::concat; | 
|---|
| 146 | pub use crate::cons_tuples_impl::cons_tuples; | 
|---|
| 147 | pub use crate::diff::diff_with; | 
|---|
| 148 | pub use crate::diff::Diff; | 
|---|
| 149 | #[ cfg(feature = "use_alloc")] | 
|---|
| 150 | pub use crate::kmerge_impl::kmerge_by; | 
|---|
| 151 | pub use crate::minmax::MinMaxResult; | 
|---|
| 152 | pub use crate::peeking_take_while::PeekingNext; | 
|---|
| 153 | pub use crate::process_results_impl::process_results; | 
|---|
| 154 | pub use crate::repeatn::repeat_n; | 
|---|
| 155 | #[ allow(deprecated)] | 
|---|
| 156 | pub use crate::sources::{iterate, repeat_call, unfold}; | 
|---|
| 157 | #[ allow(deprecated)] | 
|---|
| 158 | pub use crate::structs::*; | 
|---|
| 159 | pub use crate::unziptuple::{multiunzip, MultiUnzip}; | 
|---|
| 160 | pub use crate::with_position::Position; | 
|---|
| 161 | pub use crate::ziptuple::multizip; | 
|---|
| 162 | mod adaptors; | 
|---|
| 163 | mod either_or_both; | 
|---|
| 164 | pub use crate::either_or_both::EitherOrBoth; | 
|---|
| 165 | #[ doc(hidden)] | 
|---|
| 166 | pub mod free; | 
|---|
| 167 | #[ doc(inline)] | 
|---|
| 168 | pub use crate::free::*; | 
|---|
| 169 | #[ cfg(feature = "use_alloc")] | 
|---|
| 170 | mod combinations; | 
|---|
| 171 | #[ cfg(feature = "use_alloc")] | 
|---|
| 172 | mod combinations_with_replacement; | 
|---|
| 173 | mod concat_impl; | 
|---|
| 174 | mod cons_tuples_impl; | 
|---|
| 175 | mod diff; | 
|---|
| 176 | #[ cfg(feature = "use_std")] | 
|---|
| 177 | mod duplicates_impl; | 
|---|
| 178 | mod exactly_one_err; | 
|---|
| 179 | #[ cfg(feature = "use_alloc")] | 
|---|
| 180 | mod extrema_set; | 
|---|
| 181 | mod flatten_ok; | 
|---|
| 182 | mod format; | 
|---|
| 183 | #[ cfg(feature = "use_alloc")] | 
|---|
| 184 | mod group_map; | 
|---|
| 185 | #[ cfg(feature = "use_alloc")] | 
|---|
| 186 | mod groupbylazy; | 
|---|
| 187 | #[ cfg(feature = "use_std")] | 
|---|
| 188 | mod grouping_map; | 
|---|
| 189 | mod intersperse; | 
|---|
| 190 | #[ cfg(feature = "use_alloc")] | 
|---|
| 191 | mod k_smallest; | 
|---|
| 192 | #[ cfg(feature = "use_alloc")] | 
|---|
| 193 | mod kmerge_impl; | 
|---|
| 194 | #[ cfg(feature = "use_alloc")] | 
|---|
| 195 | mod lazy_buffer; | 
|---|
| 196 | mod merge_join; | 
|---|
| 197 | mod minmax; | 
|---|
| 198 | #[ cfg(feature = "use_alloc")] | 
|---|
| 199 | mod multipeek_impl; | 
|---|
| 200 | mod pad_tail; | 
|---|
| 201 | #[ cfg(feature = "use_alloc")] | 
|---|
| 202 | mod peek_nth; | 
|---|
| 203 | mod peeking_take_while; | 
|---|
| 204 | #[ cfg(feature = "use_alloc")] | 
|---|
| 205 | mod permutations; | 
|---|
| 206 | #[ cfg(feature = "use_alloc")] | 
|---|
| 207 | mod powerset; | 
|---|
| 208 | mod process_results_impl; | 
|---|
| 209 | #[ cfg(feature = "use_alloc")] | 
|---|
| 210 | mod put_back_n_impl; | 
|---|
| 211 | #[ cfg(feature = "use_alloc")] | 
|---|
| 212 | mod rciter_impl; | 
|---|
| 213 | mod repeatn; | 
|---|
| 214 | mod size_hint; | 
|---|
| 215 | mod sources; | 
|---|
| 216 | mod take_while_inclusive; | 
|---|
| 217 | #[ cfg(feature = "use_alloc")] | 
|---|
| 218 | mod tee; | 
|---|
| 219 | mod tuple_impl; | 
|---|
| 220 | #[ cfg(feature = "use_std")] | 
|---|
| 221 | mod unique_impl; | 
|---|
| 222 | mod unziptuple; | 
|---|
| 223 | mod with_position; | 
|---|
| 224 | mod zip_eq_impl; | 
|---|
| 225 | mod zip_longest; | 
|---|
| 226 | mod ziptuple; | 
|---|
| 227 |  | 
|---|
| 228 | #[ macro_export] | 
|---|
| 229 | /// Create an iterator over the “cartesian product” of iterators. | 
|---|
| 230 | /// | 
|---|
| 231 | /// Iterator element type is like `(A, B, ..., E)` if formed | 
|---|
| 232 | /// from iterators `(I, J, ..., M)` with element types `I::Item = A`, `J::Item = B`, etc. | 
|---|
| 233 | /// | 
|---|
| 234 | /// ``` | 
|---|
| 235 | /// # use itertools::iproduct; | 
|---|
| 236 | /// # | 
|---|
| 237 | /// # fn main() { | 
|---|
| 238 | /// // Iterate over the coordinates of a 4 x 4 x 4 grid | 
|---|
| 239 | /// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3) | 
|---|
| 240 | /// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) { | 
|---|
| 241 | ///    // .. | 
|---|
| 242 | /// } | 
|---|
| 243 | /// # } | 
|---|
| 244 | /// ``` | 
|---|
| 245 | macro_rules! iproduct { | 
|---|
| 246 | (@flatten $I:expr,) => ( | 
|---|
| 247 | $I | 
|---|
| 248 | ); | 
|---|
| 249 | (@flatten $I:expr, $J:expr, $($K:expr,)*) => ( | 
|---|
| 250 | $crate::iproduct!(@flatten $crate::cons_tuples($crate::iproduct!($I, $J)), $($K,)*) | 
|---|
| 251 | ); | 
|---|
| 252 | ($I:expr) => ( | 
|---|
| 253 | $crate::__std_iter::IntoIterator::into_iter($I) | 
|---|
| 254 | ); | 
|---|
| 255 | ($I:expr, $J:expr) => ( | 
|---|
| 256 | $crate::Itertools::cartesian_product($crate::iproduct!($I), $crate::iproduct!($J)) | 
|---|
| 257 | ); | 
|---|
| 258 | ($I:expr, $J:expr, $($K:expr),+) => ( | 
|---|
| 259 | $crate::iproduct!(@flatten $crate::iproduct!($I, $J), $($K,)+) | 
|---|
| 260 | ); | 
|---|
| 261 | } | 
|---|
| 262 |  | 
|---|
| 263 | #[ macro_export] | 
|---|
| 264 | /// Create an iterator running multiple iterators in lockstep. | 
|---|
| 265 | /// | 
|---|
| 266 | /// The `izip!` iterator yields elements until any subiterator | 
|---|
| 267 | /// returns `None`. | 
|---|
| 268 | /// | 
|---|
| 269 | /// This is a version of the standard ``.zip()`` that's supporting more than | 
|---|
| 270 | /// two iterators. The iterator element type is a tuple with one element | 
|---|
| 271 | /// from each of the input iterators. Just like ``.zip()``, the iteration stops | 
|---|
| 272 | /// when the shortest of the inputs reaches its end. | 
|---|
| 273 | /// | 
|---|
| 274 | /// **Note:** The result of this macro is in the general case an iterator | 
|---|
| 275 | /// composed of repeated `.zip()` and a `.map()`; it has an anonymous type. | 
|---|
| 276 | /// The special cases of one and two arguments produce the equivalent of | 
|---|
| 277 | /// `$a.into_iter()` and `$a.into_iter().zip($b)` respectively. | 
|---|
| 278 | /// | 
|---|
| 279 | /// Prefer this macro `izip!()` over [`multizip`] for the performance benefits | 
|---|
| 280 | /// of using the standard library `.zip()`. | 
|---|
| 281 | /// | 
|---|
| 282 | /// ``` | 
|---|
| 283 | /// # use itertools::izip; | 
|---|
| 284 | /// # | 
|---|
| 285 | /// # fn main() { | 
|---|
| 286 | /// | 
|---|
| 287 | /// // iterate over three sequences side-by-side | 
|---|
| 288 | /// let mut results = [0, 0, 0, 0]; | 
|---|
| 289 | /// let inputs = [3, 7, 9, 6]; | 
|---|
| 290 | /// | 
|---|
| 291 | /// for (r, index, input) in izip!(&mut results, 0..10, &inputs) { | 
|---|
| 292 | ///     *r = index * 10 + input; | 
|---|
| 293 | /// } | 
|---|
| 294 | /// | 
|---|
| 295 | /// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]); | 
|---|
| 296 | /// # } | 
|---|
| 297 | /// ``` | 
|---|
| 298 | macro_rules! izip { | 
|---|
| 299 | // @closure creates a tuple-flattening closure for .map() call. usage: | 
|---|
| 300 | // @closure partial_pattern => partial_tuple , rest , of , iterators | 
|---|
| 301 | // eg. izip!( @closure ((a, b), c) => (a, b, c) , dd , ee ) | 
|---|
| 302 | ( @closure $p:pat => $tup:expr ) => { | 
|---|
| 303 | |$p| $tup | 
|---|
| 304 | }; | 
|---|
| 305 |  | 
|---|
| 306 | // The "b" identifier is a different identifier on each recursion level thanks to hygiene. | 
|---|
| 307 | ( @closure $p:pat => ( $($tup:tt)* ) , $_iter:expr $( , $tail:expr )* ) => { | 
|---|
| 308 | $crate::izip!(@closure ($p, b) => ( $($tup)*, b ) $( , $tail )*) | 
|---|
| 309 | }; | 
|---|
| 310 |  | 
|---|
| 311 | // unary | 
|---|
| 312 | ($first:expr $(,)*) => { | 
|---|
| 313 | $crate::__std_iter::IntoIterator::into_iter($first) | 
|---|
| 314 | }; | 
|---|
| 315 |  | 
|---|
| 316 | // binary | 
|---|
| 317 | ($first:expr, $second:expr $(,)*) => { | 
|---|
| 318 | $crate::izip!($first) | 
|---|
| 319 | .zip($second) | 
|---|
| 320 | }; | 
|---|
| 321 |  | 
|---|
| 322 | // n-ary where n > 2 | 
|---|
| 323 | ( $first:expr $( , $rest:expr )* $(,)* ) => { | 
|---|
| 324 | $crate::izip!($first) | 
|---|
| 325 | $( | 
|---|
| 326 | .zip($rest) | 
|---|
| 327 | )* | 
|---|
| 328 | .map( | 
|---|
| 329 | $crate::izip!(@closure a => (a) $( , $rest )*) | 
|---|
| 330 | ) | 
|---|
| 331 | }; | 
|---|
| 332 | } | 
|---|
| 333 |  | 
|---|
| 334 | #[ macro_export] | 
|---|
| 335 | /// [Chain][`chain`] zero or more iterators together into one sequence. | 
|---|
| 336 | /// | 
|---|
| 337 | /// The comma-separated arguments must implement [`IntoIterator`]. | 
|---|
| 338 | /// The final argument may be followed by a trailing comma. | 
|---|
| 339 | /// | 
|---|
| 340 | /// [`chain`]: Iterator::chain | 
|---|
| 341 | /// | 
|---|
| 342 | /// # Examples | 
|---|
| 343 | /// | 
|---|
| 344 | /// Empty invocations of `chain!` expand to an invocation of [`std::iter::empty`]: | 
|---|
| 345 | /// ``` | 
|---|
| 346 | /// use std::iter; | 
|---|
| 347 | /// use itertools::chain; | 
|---|
| 348 | /// | 
|---|
| 349 | /// let _: iter::Empty<()> = chain!(); | 
|---|
| 350 | /// let _: iter::Empty<i8> = chain!(); | 
|---|
| 351 | /// ``` | 
|---|
| 352 | /// | 
|---|
| 353 | /// Invocations of `chain!` with one argument expand to [`arg.into_iter()`](IntoIterator): | 
|---|
| 354 | /// ``` | 
|---|
| 355 | /// use std::{ops::Range, slice}; | 
|---|
| 356 | /// use itertools::chain; | 
|---|
| 357 | /// let _: <Range<_> as IntoIterator>::IntoIter = chain!((2..6),); // trailing comma optional! | 
|---|
| 358 | /// let _:     <&[_] as IntoIterator>::IntoIter = chain!(&[2, 3, 4]); | 
|---|
| 359 | /// ``` | 
|---|
| 360 | /// | 
|---|
| 361 | /// Invocations of `chain!` with multiple arguments [`.into_iter()`](IntoIterator) each | 
|---|
| 362 | /// argument, and then [`chain`] them together: | 
|---|
| 363 | /// ``` | 
|---|
| 364 | /// use std::{iter::*, ops::Range, slice}; | 
|---|
| 365 | /// use itertools::{assert_equal, chain}; | 
|---|
| 366 | /// | 
|---|
| 367 | /// // e.g., this: | 
|---|
| 368 | /// let with_macro:  Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> = | 
|---|
| 369 | ///     chain![once(&0), repeat(&1).take(2), &[2, 3, 5],]; | 
|---|
| 370 | /// | 
|---|
| 371 | /// // ...is equivalent to this: | 
|---|
| 372 | /// let with_method: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> = | 
|---|
| 373 | ///     once(&0) | 
|---|
| 374 | ///         .chain(repeat(&1).take(2)) | 
|---|
| 375 | ///         .chain(&[2, 3, 5]); | 
|---|
| 376 | /// | 
|---|
| 377 | /// assert_equal(with_macro, with_method); | 
|---|
| 378 | /// ``` | 
|---|
| 379 | macro_rules! chain { | 
|---|
| 380 | () => { | 
|---|
| 381 | core::iter::empty() | 
|---|
| 382 | }; | 
|---|
| 383 | ($first:expr $(, $rest:expr )* $(,)?) => { | 
|---|
| 384 | { | 
|---|
| 385 | let iter = core::iter::IntoIterator::into_iter($first); | 
|---|
| 386 | $( | 
|---|
| 387 | let iter = | 
|---|
| 388 | core::iter::Iterator::chain( | 
|---|
| 389 | iter, | 
|---|
| 390 | core::iter::IntoIterator::into_iter($rest)); | 
|---|
| 391 | )* | 
|---|
| 392 | iter | 
|---|
| 393 | } | 
|---|
| 394 | }; | 
|---|
| 395 | } | 
|---|
| 396 |  | 
|---|
| 397 | /// An [`Iterator`] blanket implementation that provides extra adaptors and | 
|---|
| 398 | /// methods. | 
|---|
| 399 | /// | 
|---|
| 400 | /// This trait defines a number of methods. They are divided into two groups: | 
|---|
| 401 | /// | 
|---|
| 402 | /// * *Adaptors* take an iterator and parameter as input, and return | 
|---|
| 403 | /// a new iterator value. These are listed first in the trait. An example | 
|---|
| 404 | /// of an adaptor is [`.interleave()`](Itertools::interleave) | 
|---|
| 405 | /// | 
|---|
| 406 | /// * *Regular methods* are those that don't return iterators and instead | 
|---|
| 407 | /// return a regular value of some other kind. | 
|---|
| 408 | /// [`.next_tuple()`](Itertools::next_tuple) is an example and the first regular | 
|---|
| 409 | /// method in the list. | 
|---|
| 410 | pub trait Itertools: Iterator { | 
|---|
| 411 | // adaptors | 
|---|
| 412 |  | 
|---|
| 413 | /// Alternate elements from two iterators until both have run out. | 
|---|
| 414 | /// | 
|---|
| 415 | /// Iterator element type is `Self::Item`. | 
|---|
| 416 | /// | 
|---|
| 417 | /// This iterator is *fused*. | 
|---|
| 418 | /// | 
|---|
| 419 | /// ``` | 
|---|
| 420 | /// use itertools::Itertools; | 
|---|
| 421 | /// | 
|---|
| 422 | /// let it = (1..7).interleave(vec![-1, -2]); | 
|---|
| 423 | /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]); | 
|---|
| 424 | /// ``` | 
|---|
| 425 | fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter> | 
|---|
| 426 | where | 
|---|
| 427 | J: IntoIterator<Item = Self::Item>, | 
|---|
| 428 | Self: Sized, | 
|---|
| 429 | { | 
|---|
| 430 | interleave(self, other) | 
|---|
| 431 | } | 
|---|
| 432 |  | 
|---|
| 433 | /// Alternate elements from two iterators until at least one of them has run | 
|---|
| 434 | /// out. | 
|---|
| 435 | /// | 
|---|
| 436 | /// Iterator element type is `Self::Item`. | 
|---|
| 437 | /// | 
|---|
| 438 | /// ``` | 
|---|
| 439 | /// use itertools::Itertools; | 
|---|
| 440 | /// | 
|---|
| 441 | /// let it = (1..7).interleave_shortest(vec![-1, -2]); | 
|---|
| 442 | /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3]); | 
|---|
| 443 | /// ``` | 
|---|
| 444 | fn interleave_shortest<J>(self, other: J) -> InterleaveShortest<Self, J::IntoIter> | 
|---|
| 445 | where | 
|---|
| 446 | J: IntoIterator<Item = Self::Item>, | 
|---|
| 447 | Self: Sized, | 
|---|
| 448 | { | 
|---|
| 449 | adaptors::interleave_shortest(self, other.into_iter()) | 
|---|
| 450 | } | 
|---|
| 451 |  | 
|---|
| 452 | /// An iterator adaptor to insert a particular value | 
|---|
| 453 | /// between each element of the adapted iterator. | 
|---|
| 454 | /// | 
|---|
| 455 | /// Iterator element type is `Self::Item`. | 
|---|
| 456 | /// | 
|---|
| 457 | /// This iterator is *fused*. | 
|---|
| 458 | /// | 
|---|
| 459 | /// ``` | 
|---|
| 460 | /// use itertools::Itertools; | 
|---|
| 461 | /// | 
|---|
| 462 | /// itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]); | 
|---|
| 463 | /// ``` | 
|---|
| 464 | fn intersperse(self, element: Self::Item) -> Intersperse<Self> | 
|---|
| 465 | where | 
|---|
| 466 | Self: Sized, | 
|---|
| 467 | Self::Item: Clone, | 
|---|
| 468 | { | 
|---|
| 469 | intersperse::intersperse(self, element) | 
|---|
| 470 | } | 
|---|
| 471 |  | 
|---|
| 472 | /// An iterator adaptor to insert a particular value created by a function | 
|---|
| 473 | /// between each element of the adapted iterator. | 
|---|
| 474 | /// | 
|---|
| 475 | /// Iterator element type is `Self::Item`. | 
|---|
| 476 | /// | 
|---|
| 477 | /// This iterator is *fused*. | 
|---|
| 478 | /// | 
|---|
| 479 | /// ``` | 
|---|
| 480 | /// use itertools::Itertools; | 
|---|
| 481 | /// | 
|---|
| 482 | /// let mut i = 10; | 
|---|
| 483 | /// itertools::assert_equal((0..3).intersperse_with(|| { i -= 1; i }), vec![0, 9, 1, 8, 2]); | 
|---|
| 484 | /// assert_eq!(i, 8); | 
|---|
| 485 | /// ``` | 
|---|
| 486 | fn intersperse_with<F>(self, element: F) -> IntersperseWith<Self, F> | 
|---|
| 487 | where | 
|---|
| 488 | Self: Sized, | 
|---|
| 489 | F: FnMut() -> Self::Item, | 
|---|
| 490 | { | 
|---|
| 491 | intersperse::intersperse_with(self, element) | 
|---|
| 492 | } | 
|---|
| 493 |  | 
|---|
| 494 | /// Create an iterator which iterates over both this and the specified | 
|---|
| 495 | /// iterator simultaneously, yielding pairs of two optional elements. | 
|---|
| 496 | /// | 
|---|
| 497 | /// This iterator is *fused*. | 
|---|
| 498 | /// | 
|---|
| 499 | /// As long as neither input iterator is exhausted yet, it yields two values | 
|---|
| 500 | /// via `EitherOrBoth::Both`. | 
|---|
| 501 | /// | 
|---|
| 502 | /// When the parameter iterator is exhausted, it only yields a value from the | 
|---|
| 503 | /// `self` iterator via `EitherOrBoth::Left`. | 
|---|
| 504 | /// | 
|---|
| 505 | /// When the `self` iterator is exhausted, it only yields a value from the | 
|---|
| 506 | /// parameter iterator via `EitherOrBoth::Right`. | 
|---|
| 507 | /// | 
|---|
| 508 | /// When both iterators return `None`, all further invocations of `.next()` | 
|---|
| 509 | /// will return `None`. | 
|---|
| 510 | /// | 
|---|
| 511 | /// Iterator element type is | 
|---|
| 512 | /// [`EitherOrBoth<Self::Item, J::Item>`](EitherOrBoth). | 
|---|
| 513 | /// | 
|---|
| 514 | /// ```rust | 
|---|
| 515 | /// use itertools::EitherOrBoth::{Both, Right}; | 
|---|
| 516 | /// use itertools::Itertools; | 
|---|
| 517 | /// let it = (0..1).zip_longest(1..3); | 
|---|
| 518 | /// itertools::assert_equal(it, vec![Both(0, 1), Right(2)]); | 
|---|
| 519 | /// ``` | 
|---|
| 520 | #[ inline] | 
|---|
| 521 | fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter> | 
|---|
| 522 | where | 
|---|
| 523 | J: IntoIterator, | 
|---|
| 524 | Self: Sized, | 
|---|
| 525 | { | 
|---|
| 526 | zip_longest::zip_longest(self, other.into_iter()) | 
|---|
| 527 | } | 
|---|
| 528 |  | 
|---|
| 529 | /// Create an iterator which iterates over both this and the specified | 
|---|
| 530 | /// iterator simultaneously, yielding pairs of elements. | 
|---|
| 531 | /// | 
|---|
| 532 | /// **Panics** if the iterators reach an end and they are not of equal | 
|---|
| 533 | /// lengths. | 
|---|
| 534 | #[ inline] | 
|---|
| 535 | fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter> | 
|---|
| 536 | where | 
|---|
| 537 | J: IntoIterator, | 
|---|
| 538 | Self: Sized, | 
|---|
| 539 | { | 
|---|
| 540 | zip_eq(self, other) | 
|---|
| 541 | } | 
|---|
| 542 |  | 
|---|
| 543 | /// A “meta iterator adaptor”. Its closure receives a reference to the | 
|---|
| 544 | /// iterator and may pick off as many elements as it likes, to produce the | 
|---|
| 545 | /// next iterator element. | 
|---|
| 546 | /// | 
|---|
| 547 | /// Iterator element type is `B`. | 
|---|
| 548 | /// | 
|---|
| 549 | /// ``` | 
|---|
| 550 | /// use itertools::Itertools; | 
|---|
| 551 | /// | 
|---|
| 552 | /// // An adaptor that gathers elements in pairs | 
|---|
| 553 | /// let pit = (0..4).batching(|it| { | 
|---|
| 554 | ///            match it.next() { | 
|---|
| 555 | ///                None => None, | 
|---|
| 556 | ///                Some(x) => match it.next() { | 
|---|
| 557 | ///                    None => None, | 
|---|
| 558 | ///                    Some(y) => Some((x, y)), | 
|---|
| 559 | ///                } | 
|---|
| 560 | ///            } | 
|---|
| 561 | ///        }); | 
|---|
| 562 | /// | 
|---|
| 563 | /// itertools::assert_equal(pit, vec![(0, 1), (2, 3)]); | 
|---|
| 564 | /// ``` | 
|---|
| 565 | /// | 
|---|
| 566 | fn batching<B, F>(self, f: F) -> Batching<Self, F> | 
|---|
| 567 | where | 
|---|
| 568 | F: FnMut(&mut Self) -> Option<B>, | 
|---|
| 569 | Self: Sized, | 
|---|
| 570 | { | 
|---|
| 571 | adaptors::batching(self, f) | 
|---|
| 572 | } | 
|---|
| 573 |  | 
|---|
| 574 | /// Return an *iterable* that can group iterator elements. | 
|---|
| 575 | /// Consecutive elements that map to the same key (“runs”), are assigned | 
|---|
| 576 | /// to the same group. | 
|---|
| 577 | /// | 
|---|
| 578 | /// `GroupBy` is the storage for the lazy grouping operation. | 
|---|
| 579 | /// | 
|---|
| 580 | /// If the groups are consumed in order, or if each group's iterator is | 
|---|
| 581 | /// dropped without keeping it around, then `GroupBy` uses no | 
|---|
| 582 | /// allocations.  It needs allocations only if several group iterators | 
|---|
| 583 | /// are alive at the same time. | 
|---|
| 584 | /// | 
|---|
| 585 | /// This type implements [`IntoIterator`] (it is **not** an iterator | 
|---|
| 586 | /// itself), because the group iterators need to borrow from this | 
|---|
| 587 | /// value. It should be stored in a local variable or temporary and | 
|---|
| 588 | /// iterated. | 
|---|
| 589 | /// | 
|---|
| 590 | /// Iterator element type is `(K, Group)`: the group's key and the | 
|---|
| 591 | /// group iterator. | 
|---|
| 592 | /// | 
|---|
| 593 | /// ``` | 
|---|
| 594 | /// use itertools::Itertools; | 
|---|
| 595 | /// | 
|---|
| 596 | /// // group data into runs of larger than zero or not. | 
|---|
| 597 | /// let data = vec![1, 3, -2, -2, 1, 0, 1, 2]; | 
|---|
| 598 | /// // groups:     |---->|------>|--------->| | 
|---|
| 599 | /// | 
|---|
| 600 | /// // Note: The `&` is significant here, `GroupBy` is iterable | 
|---|
| 601 | /// // only by reference. You can also call `.into_iter()` explicitly. | 
|---|
| 602 | /// let mut data_grouped = Vec::new(); | 
|---|
| 603 | /// for (key, group) in &data.into_iter().group_by(|elt| *elt >= 0) { | 
|---|
| 604 | ///     data_grouped.push((key, group.collect())); | 
|---|
| 605 | /// } | 
|---|
| 606 | /// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]); | 
|---|
| 607 | /// ``` | 
|---|
| 608 | #[ cfg(feature = "use_alloc")] | 
|---|
| 609 | fn group_by<K, F>(self, key: F) -> GroupBy<K, Self, F> | 
|---|
| 610 | where | 
|---|
| 611 | Self: Sized, | 
|---|
| 612 | F: FnMut(&Self::Item) -> K, | 
|---|
| 613 | K: PartialEq, | 
|---|
| 614 | { | 
|---|
| 615 | groupbylazy::new(self, key) | 
|---|
| 616 | } | 
|---|
| 617 |  | 
|---|
| 618 | /// Return an *iterable* that can chunk the iterator. | 
|---|
| 619 | /// | 
|---|
| 620 | /// Yield subiterators (chunks) that each yield a fixed number elements, | 
|---|
| 621 | /// determined by `size`. The last chunk will be shorter if there aren't | 
|---|
| 622 | /// enough elements. | 
|---|
| 623 | /// | 
|---|
| 624 | /// `IntoChunks` is based on `GroupBy`: it is iterable (implements | 
|---|
| 625 | /// `IntoIterator`, **not** `Iterator`), and it only buffers if several | 
|---|
| 626 | /// chunk iterators are alive at the same time. | 
|---|
| 627 | /// | 
|---|
| 628 | /// Iterator element type is `Chunk`, each chunk's iterator. | 
|---|
| 629 | /// | 
|---|
| 630 | /// **Panics** if `size` is 0. | 
|---|
| 631 | /// | 
|---|
| 632 | /// ``` | 
|---|
| 633 | /// use itertools::Itertools; | 
|---|
| 634 | /// | 
|---|
| 635 | /// let data = vec![1, 1, 2, -2, 6, 0, 3, 1]; | 
|---|
| 636 | /// //chunk size=3 |------->|-------->|--->| | 
|---|
| 637 | /// | 
|---|
| 638 | /// // Note: The `&` is significant here, `IntoChunks` is iterable | 
|---|
| 639 | /// // only by reference. You can also call `.into_iter()` explicitly. | 
|---|
| 640 | /// for chunk in &data.into_iter().chunks(3) { | 
|---|
| 641 | ///     // Check that the sum of each chunk is 4. | 
|---|
| 642 | ///     assert_eq!(4, chunk.sum()); | 
|---|
| 643 | /// } | 
|---|
| 644 | /// ``` | 
|---|
| 645 | #[ cfg(feature = "use_alloc")] | 
|---|
| 646 | fn chunks(self, size: usize) -> IntoChunks<Self> | 
|---|
| 647 | where | 
|---|
| 648 | Self: Sized, | 
|---|
| 649 | { | 
|---|
| 650 | assert!(size != 0); | 
|---|
| 651 | groupbylazy::new_chunks(self, size) | 
|---|
| 652 | } | 
|---|
| 653 |  | 
|---|
| 654 | /// Return an iterator over all contiguous windows producing tuples of | 
|---|
| 655 | /// a specific size (up to 12). | 
|---|
| 656 | /// | 
|---|
| 657 | /// `tuple_windows` clones the iterator elements so that they can be | 
|---|
| 658 | /// part of successive windows, this makes it most suited for iterators | 
|---|
| 659 | /// of references and other values that are cheap to copy. | 
|---|
| 660 | /// | 
|---|
| 661 | /// ``` | 
|---|
| 662 | /// use itertools::Itertools; | 
|---|
| 663 | /// let mut v = Vec::new(); | 
|---|
| 664 | /// | 
|---|
| 665 | /// // pairwise iteration | 
|---|
| 666 | /// for (a, b) in (1..5).tuple_windows() { | 
|---|
| 667 | ///     v.push((a, b)); | 
|---|
| 668 | /// } | 
|---|
| 669 | /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]); | 
|---|
| 670 | /// | 
|---|
| 671 | /// let mut it = (1..5).tuple_windows(); | 
|---|
| 672 | /// assert_eq!(Some((1, 2, 3)), it.next()); | 
|---|
| 673 | /// assert_eq!(Some((2, 3, 4)), it.next()); | 
|---|
| 674 | /// assert_eq!(None, it.next()); | 
|---|
| 675 | /// | 
|---|
| 676 | /// // this requires a type hint | 
|---|
| 677 | /// let it = (1..5).tuple_windows::<(_, _, _)>(); | 
|---|
| 678 | /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]); | 
|---|
| 679 | /// | 
|---|
| 680 | /// // you can also specify the complete type | 
|---|
| 681 | /// use itertools::TupleWindows; | 
|---|
| 682 | /// use std::ops::Range; | 
|---|
| 683 | /// | 
|---|
| 684 | /// let it: TupleWindows<Range<u32>, (u32, u32, u32)> = (1..5).tuple_windows(); | 
|---|
| 685 | /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]); | 
|---|
| 686 | /// ``` | 
|---|
| 687 | fn tuple_windows<T>(self) -> TupleWindows<Self, T> | 
|---|
| 688 | where | 
|---|
| 689 | Self: Sized + Iterator<Item = T::Item>, | 
|---|
| 690 | T: traits::HomogeneousTuple, | 
|---|
| 691 | T::Item: Clone, | 
|---|
| 692 | { | 
|---|
| 693 | tuple_impl::tuple_windows(self) | 
|---|
| 694 | } | 
|---|
| 695 |  | 
|---|
| 696 | /// Return an iterator over all windows, wrapping back to the first | 
|---|
| 697 | /// elements when the window would otherwise exceed the length of the | 
|---|
| 698 | /// iterator, producing tuples of a specific size (up to 12). | 
|---|
| 699 | /// | 
|---|
| 700 | /// `circular_tuple_windows` clones the iterator elements so that they can be | 
|---|
| 701 | /// part of successive windows, this makes it most suited for iterators | 
|---|
| 702 | /// of references and other values that are cheap to copy. | 
|---|
| 703 | /// | 
|---|
| 704 | /// ``` | 
|---|
| 705 | /// use itertools::Itertools; | 
|---|
| 706 | /// let mut v = Vec::new(); | 
|---|
| 707 | /// for (a, b) in (1..5).circular_tuple_windows() { | 
|---|
| 708 | ///     v.push((a, b)); | 
|---|
| 709 | /// } | 
|---|
| 710 | /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4), (4, 1)]); | 
|---|
| 711 | /// | 
|---|
| 712 | /// let mut it = (1..5).circular_tuple_windows(); | 
|---|
| 713 | /// assert_eq!(Some((1, 2, 3)), it.next()); | 
|---|
| 714 | /// assert_eq!(Some((2, 3, 4)), it.next()); | 
|---|
| 715 | /// assert_eq!(Some((3, 4, 1)), it.next()); | 
|---|
| 716 | /// assert_eq!(Some((4, 1, 2)), it.next()); | 
|---|
| 717 | /// assert_eq!(None, it.next()); | 
|---|
| 718 | /// | 
|---|
| 719 | /// // this requires a type hint | 
|---|
| 720 | /// let it = (1..5).circular_tuple_windows::<(_, _, _)>(); | 
|---|
| 721 | /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)]); | 
|---|
| 722 | /// ``` | 
|---|
| 723 | fn circular_tuple_windows<T>(self) -> CircularTupleWindows<Self, T> | 
|---|
| 724 | where | 
|---|
| 725 | Self: Sized + Clone + Iterator<Item = T::Item> + ExactSizeIterator, | 
|---|
| 726 | T: tuple_impl::TupleCollect + Clone, | 
|---|
| 727 | T::Item: Clone, | 
|---|
| 728 | { | 
|---|
| 729 | tuple_impl::circular_tuple_windows(self) | 
|---|
| 730 | } | 
|---|
| 731 | /// Return an iterator that groups the items in tuples of a specific size | 
|---|
| 732 | /// (up to 12). | 
|---|
| 733 | /// | 
|---|
| 734 | /// See also the method [`.next_tuple()`](Itertools::next_tuple). | 
|---|
| 735 | /// | 
|---|
| 736 | /// ``` | 
|---|
| 737 | /// use itertools::Itertools; | 
|---|
| 738 | /// let mut v = Vec::new(); | 
|---|
| 739 | /// for (a, b) in (1..5).tuples() { | 
|---|
| 740 | ///     v.push((a, b)); | 
|---|
| 741 | /// } | 
|---|
| 742 | /// assert_eq!(v, vec![(1, 2), (3, 4)]); | 
|---|
| 743 | /// | 
|---|
| 744 | /// let mut it = (1..7).tuples(); | 
|---|
| 745 | /// assert_eq!(Some((1, 2, 3)), it.next()); | 
|---|
| 746 | /// assert_eq!(Some((4, 5, 6)), it.next()); | 
|---|
| 747 | /// assert_eq!(None, it.next()); | 
|---|
| 748 | /// | 
|---|
| 749 | /// // this requires a type hint | 
|---|
| 750 | /// let it = (1..7).tuples::<(_, _, _)>(); | 
|---|
| 751 | /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]); | 
|---|
| 752 | /// | 
|---|
| 753 | /// // you can also specify the complete type | 
|---|
| 754 | /// use itertools::Tuples; | 
|---|
| 755 | /// use std::ops::Range; | 
|---|
| 756 | /// | 
|---|
| 757 | /// let it: Tuples<Range<u32>, (u32, u32, u32)> = (1..7).tuples(); | 
|---|
| 758 | /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]); | 
|---|
| 759 | /// ``` | 
|---|
| 760 | /// | 
|---|
| 761 | /// See also [`Tuples::into_buffer`]. | 
|---|
| 762 | fn tuples<T>(self) -> Tuples<Self, T> | 
|---|
| 763 | where | 
|---|
| 764 | Self: Sized + Iterator<Item = T::Item>, | 
|---|
| 765 | T: traits::HomogeneousTuple, | 
|---|
| 766 | { | 
|---|
| 767 | tuple_impl::tuples(self) | 
|---|
| 768 | } | 
|---|
| 769 |  | 
|---|
| 770 | /// Split into an iterator pair that both yield all elements from | 
|---|
| 771 | /// the original iterator. | 
|---|
| 772 | /// | 
|---|
| 773 | /// **Note:** If the iterator is clonable, prefer using that instead | 
|---|
| 774 | /// of using this method. Cloning is likely to be more efficient. | 
|---|
| 775 | /// | 
|---|
| 776 | /// Iterator element type is `Self::Item`. | 
|---|
| 777 | /// | 
|---|
| 778 | /// ``` | 
|---|
| 779 | /// use itertools::Itertools; | 
|---|
| 780 | /// let xs = vec![0, 1, 2, 3]; | 
|---|
| 781 | /// | 
|---|
| 782 | /// let (mut t1, t2) = xs.into_iter().tee(); | 
|---|
| 783 | /// itertools::assert_equal(t1.next(), Some(0)); | 
|---|
| 784 | /// itertools::assert_equal(t2, 0..4); | 
|---|
| 785 | /// itertools::assert_equal(t1, 1..4); | 
|---|
| 786 | /// ``` | 
|---|
| 787 | #[ cfg(feature = "use_alloc")] | 
|---|
| 788 | fn tee(self) -> (Tee<Self>, Tee<Self>) | 
|---|
| 789 | where | 
|---|
| 790 | Self: Sized, | 
|---|
| 791 | Self::Item: Clone, | 
|---|
| 792 | { | 
|---|
| 793 | tee::new(self) | 
|---|
| 794 | } | 
|---|
| 795 |  | 
|---|
| 796 | /// Return an iterator adaptor that steps `n` elements in the base iterator | 
|---|
| 797 | /// for each iteration. | 
|---|
| 798 | /// | 
|---|
| 799 | /// The iterator steps by yielding the next element from the base iterator, | 
|---|
| 800 | /// then skipping forward `n - 1` elements. | 
|---|
| 801 | /// | 
|---|
| 802 | /// Iterator element type is `Self::Item`. | 
|---|
| 803 | /// | 
|---|
| 804 | /// **Panics** if the step is 0. | 
|---|
| 805 | /// | 
|---|
| 806 | /// ``` | 
|---|
| 807 | /// use itertools::Itertools; | 
|---|
| 808 | /// | 
|---|
| 809 | /// let it = (0..8).step(3); | 
|---|
| 810 | /// itertools::assert_equal(it, vec![0, 3, 6]); | 
|---|
| 811 | /// ``` | 
|---|
| 812 | #[ deprecated(note = "Use std .step_by() instead", since = "0.8.0")] | 
|---|
| 813 | #[ allow(deprecated)] | 
|---|
| 814 | fn step(self, n: usize) -> Step<Self> | 
|---|
| 815 | where | 
|---|
| 816 | Self: Sized, | 
|---|
| 817 | { | 
|---|
| 818 | adaptors::step(self, n) | 
|---|
| 819 | } | 
|---|
| 820 |  | 
|---|
| 821 | /// Convert each item of the iterator using the [`Into`] trait. | 
|---|
| 822 | /// | 
|---|
| 823 | /// ```rust | 
|---|
| 824 | /// use itertools::Itertools; | 
|---|
| 825 | /// | 
|---|
| 826 | /// (1i32..42i32).map_into::<f64>().collect_vec(); | 
|---|
| 827 | /// ``` | 
|---|
| 828 | fn map_into<R>(self) -> MapInto<Self, R> | 
|---|
| 829 | where | 
|---|
| 830 | Self: Sized, | 
|---|
| 831 | Self::Item: Into<R>, | 
|---|
| 832 | { | 
|---|
| 833 | adaptors::map_into(self) | 
|---|
| 834 | } | 
|---|
| 835 |  | 
|---|
| 836 | /// See [`.map_ok()`](Itertools::map_ok). | 
|---|
| 837 | #[ deprecated(note = "Use .map_ok() instead", since = "0.10.0")] | 
|---|
| 838 | fn map_results<F, T, U, E>(self, f: F) -> MapOk<Self, F> | 
|---|
| 839 | where | 
|---|
| 840 | Self: Iterator<Item = Result<T, E>> + Sized, | 
|---|
| 841 | F: FnMut(T) -> U, | 
|---|
| 842 | { | 
|---|
| 843 | self.map_ok(f) | 
|---|
| 844 | } | 
|---|
| 845 |  | 
|---|
| 846 | /// Return an iterator adaptor that applies the provided closure | 
|---|
| 847 | /// to every `Result::Ok` value. `Result::Err` values are | 
|---|
| 848 | /// unchanged. | 
|---|
| 849 | /// | 
|---|
| 850 | /// ``` | 
|---|
| 851 | /// use itertools::Itertools; | 
|---|
| 852 | /// | 
|---|
| 853 | /// let input = vec![Ok(41), Err(false), Ok(11)]; | 
|---|
| 854 | /// let it = input.into_iter().map_ok(|i| i + 1); | 
|---|
| 855 | /// itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]); | 
|---|
| 856 | /// ``` | 
|---|
| 857 | fn map_ok<F, T, U, E>(self, f: F) -> MapOk<Self, F> | 
|---|
| 858 | where | 
|---|
| 859 | Self: Iterator<Item = Result<T, E>> + Sized, | 
|---|
| 860 | F: FnMut(T) -> U, | 
|---|
| 861 | { | 
|---|
| 862 | adaptors::map_ok(self, f) | 
|---|
| 863 | } | 
|---|
| 864 |  | 
|---|
| 865 | /// Return an iterator adaptor that filters every `Result::Ok` | 
|---|
| 866 | /// value with the provided closure. `Result::Err` values are | 
|---|
| 867 | /// unchanged. | 
|---|
| 868 | /// | 
|---|
| 869 | /// ``` | 
|---|
| 870 | /// use itertools::Itertools; | 
|---|
| 871 | /// | 
|---|
| 872 | /// let input = vec![Ok(22), Err(false), Ok(11)]; | 
|---|
| 873 | /// let it = input.into_iter().filter_ok(|&i| i > 20); | 
|---|
| 874 | /// itertools::assert_equal(it, vec![Ok(22), Err(false)]); | 
|---|
| 875 | /// ``` | 
|---|
| 876 | fn filter_ok<F, T, E>(self, f: F) -> FilterOk<Self, F> | 
|---|
| 877 | where | 
|---|
| 878 | Self: Iterator<Item = Result<T, E>> + Sized, | 
|---|
| 879 | F: FnMut(&T) -> bool, | 
|---|
| 880 | { | 
|---|
| 881 | adaptors::filter_ok(self, f) | 
|---|
| 882 | } | 
|---|
| 883 |  | 
|---|
| 884 | /// Return an iterator adaptor that filters and transforms every | 
|---|
| 885 | /// `Result::Ok` value with the provided closure. `Result::Err` | 
|---|
| 886 | /// values are unchanged. | 
|---|
| 887 | /// | 
|---|
| 888 | /// ``` | 
|---|
| 889 | /// use itertools::Itertools; | 
|---|
| 890 | /// | 
|---|
| 891 | /// let input = vec![Ok(22), Err(false), Ok(11)]; | 
|---|
| 892 | /// let it = input.into_iter().filter_map_ok(|i| if i > 20 { Some(i * 2) } else { None }); | 
|---|
| 893 | /// itertools::assert_equal(it, vec![Ok(44), Err(false)]); | 
|---|
| 894 | /// ``` | 
|---|
| 895 | fn filter_map_ok<F, T, U, E>(self, f: F) -> FilterMapOk<Self, F> | 
|---|
| 896 | where | 
|---|
| 897 | Self: Iterator<Item = Result<T, E>> + Sized, | 
|---|
| 898 | F: FnMut(T) -> Option<U>, | 
|---|
| 899 | { | 
|---|
| 900 | adaptors::filter_map_ok(self, f) | 
|---|
| 901 | } | 
|---|
| 902 |  | 
|---|
| 903 | /// Return an iterator adaptor that flattens every `Result::Ok` value into | 
|---|
| 904 | /// a series of `Result::Ok` values. `Result::Err` values are unchanged. | 
|---|
| 905 | /// | 
|---|
| 906 | /// This is useful when you have some common error type for your crate and | 
|---|
| 907 | /// need to propagate it upwards, but the `Result::Ok` case needs to be flattened. | 
|---|
| 908 | /// | 
|---|
| 909 | /// ``` | 
|---|
| 910 | /// use itertools::Itertools; | 
|---|
| 911 | /// | 
|---|
| 912 | /// let input = vec![Ok(0..2), Err(false), Ok(2..4)]; | 
|---|
| 913 | /// let it = input.iter().cloned().flatten_ok(); | 
|---|
| 914 | /// itertools::assert_equal(it.clone(), vec![Ok(0), Ok(1), Err(false), Ok(2), Ok(3)]); | 
|---|
| 915 | /// | 
|---|
| 916 | /// // This can also be used to propagate errors when collecting. | 
|---|
| 917 | /// let output_result: Result<Vec<i32>, bool> = it.collect(); | 
|---|
| 918 | /// assert_eq!(output_result, Err(false)); | 
|---|
| 919 | /// ``` | 
|---|
| 920 | fn flatten_ok<T, E>(self) -> FlattenOk<Self, T, E> | 
|---|
| 921 | where | 
|---|
| 922 | Self: Iterator<Item = Result<T, E>> + Sized, | 
|---|
| 923 | T: IntoIterator, | 
|---|
| 924 | { | 
|---|
| 925 | flatten_ok::flatten_ok(self) | 
|---|
| 926 | } | 
|---|
| 927 |  | 
|---|
| 928 | /// “Lift” a function of the values of the current iterator so as to process | 
|---|
| 929 | /// an iterator of `Result` values instead. | 
|---|
| 930 | /// | 
|---|
| 931 | /// `processor` is a closure that receives an adapted version of the iterator | 
|---|
| 932 | /// as the only argument — the adapted iterator produces elements of type `T`, | 
|---|
| 933 | /// as long as the original iterator produces `Ok` values. | 
|---|
| 934 | /// | 
|---|
| 935 | /// If the original iterable produces an error at any point, the adapted | 
|---|
| 936 | /// iterator ends and it will return the error iself. | 
|---|
| 937 | /// | 
|---|
| 938 | /// Otherwise, the return value from the closure is returned wrapped | 
|---|
| 939 | /// inside `Ok`. | 
|---|
| 940 | /// | 
|---|
| 941 | /// # Example | 
|---|
| 942 | /// | 
|---|
| 943 | /// ``` | 
|---|
| 944 | /// use itertools::Itertools; | 
|---|
| 945 | /// | 
|---|
| 946 | /// type Item = Result<i32, &'static str>; | 
|---|
| 947 | /// | 
|---|
| 948 | /// let first_values: Vec<Item> = vec![Ok(1), Ok(0), Ok(3)]; | 
|---|
| 949 | /// let second_values: Vec<Item> = vec![Ok(2), Ok(1), Err( "overflow")]; | 
|---|
| 950 | /// | 
|---|
| 951 | /// // “Lift” the iterator .max() method to work on the Ok-values. | 
|---|
| 952 | /// let first_max = first_values.into_iter().process_results(|iter| iter.max().unwrap_or(0)); | 
|---|
| 953 | /// let second_max = second_values.into_iter().process_results(|iter| iter.max().unwrap_or(0)); | 
|---|
| 954 | /// | 
|---|
| 955 | /// assert_eq!(first_max, Ok(3)); | 
|---|
| 956 | /// assert!(second_max.is_err()); | 
|---|
| 957 | /// ``` | 
|---|
| 958 | fn process_results<F, T, E, R>(self, processor: F) -> Result<R, E> | 
|---|
| 959 | where | 
|---|
| 960 | Self: Iterator<Item = Result<T, E>> + Sized, | 
|---|
| 961 | F: FnOnce(ProcessResults<Self, E>) -> R, | 
|---|
| 962 | { | 
|---|
| 963 | process_results(self, processor) | 
|---|
| 964 | } | 
|---|
| 965 |  | 
|---|
| 966 | /// Return an iterator adaptor that merges the two base iterators in | 
|---|
| 967 | /// ascending order.  If both base iterators are sorted (ascending), the | 
|---|
| 968 | /// result is sorted. | 
|---|
| 969 | /// | 
|---|
| 970 | /// Iterator element type is `Self::Item`. | 
|---|
| 971 | /// | 
|---|
| 972 | /// ``` | 
|---|
| 973 | /// use itertools::Itertools; | 
|---|
| 974 | /// | 
|---|
| 975 | /// let a = (0..11).step_by(3); | 
|---|
| 976 | /// let b = (0..11).step_by(5); | 
|---|
| 977 | /// let it = a.merge(b); | 
|---|
| 978 | /// itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]); | 
|---|
| 979 | /// ``` | 
|---|
| 980 | fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter> | 
|---|
| 981 | where | 
|---|
| 982 | Self: Sized, | 
|---|
| 983 | Self::Item: PartialOrd, | 
|---|
| 984 | J: IntoIterator<Item = Self::Item>, | 
|---|
| 985 | { | 
|---|
| 986 | merge(self, other) | 
|---|
| 987 | } | 
|---|
| 988 |  | 
|---|
| 989 | /// Return an iterator adaptor that merges the two base iterators in order. | 
|---|
| 990 | /// This is much like [`.merge()`](Itertools::merge) but allows for a custom ordering. | 
|---|
| 991 | /// | 
|---|
| 992 | /// This can be especially useful for sequences of tuples. | 
|---|
| 993 | /// | 
|---|
| 994 | /// Iterator element type is `Self::Item`. | 
|---|
| 995 | /// | 
|---|
| 996 | /// ``` | 
|---|
| 997 | /// use itertools::Itertools; | 
|---|
| 998 | /// | 
|---|
| 999 | /// let a = (0..).zip( "bc".chars()); | 
|---|
| 1000 | /// let b = (0..).zip( "ad".chars()); | 
|---|
| 1001 | /// let it = a.merge_by(b, |x, y| x.1 <= y.1); | 
|---|
| 1002 | /// itertools::assert_equal(it, vec![(0, 'a'), (0, 'b'), (1, 'c'), (1, 'd')]); | 
|---|
| 1003 | /// ``` | 
|---|
| 1004 |  | 
|---|
| 1005 | fn merge_by<J, F>(self, other: J, is_first: F) -> MergeBy<Self, J::IntoIter, F> | 
|---|
| 1006 | where | 
|---|
| 1007 | Self: Sized, | 
|---|
| 1008 | J: IntoIterator<Item = Self::Item>, | 
|---|
| 1009 | F: FnMut(&Self::Item, &Self::Item) -> bool, | 
|---|
| 1010 | { | 
|---|
| 1011 | merge_join::merge_by_new(self, other, is_first) | 
|---|
| 1012 | } | 
|---|
| 1013 |  | 
|---|
| 1014 | /// Create an iterator that merges items from both this and the specified | 
|---|
| 1015 | /// iterator in ascending order. | 
|---|
| 1016 | /// | 
|---|
| 1017 | /// The function can either return an `Ordering` variant or a boolean. | 
|---|
| 1018 | /// | 
|---|
| 1019 | /// If `cmp_fn` returns `Ordering`, | 
|---|
| 1020 | /// it chooses whether to pair elements based on the `Ordering` returned by the | 
|---|
| 1021 | /// specified compare function. At any point, inspecting the tip of the | 
|---|
| 1022 | /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type | 
|---|
| 1023 | /// `J::Item` respectively, the resulting iterator will: | 
|---|
| 1024 | /// | 
|---|
| 1025 | /// - Emit `EitherOrBoth::Left(i)` when `i < j`, | 
|---|
| 1026 | ///   and remove `i` from its source iterator | 
|---|
| 1027 | /// - Emit `EitherOrBoth::Right(j)` when `i > j`, | 
|---|
| 1028 | ///   and remove `j` from its source iterator | 
|---|
| 1029 | /// - Emit `EitherOrBoth::Both(i, j)` when  `i == j`, | 
|---|
| 1030 | ///   and remove both `i` and `j` from their respective source iterators | 
|---|
| 1031 | /// | 
|---|
| 1032 | /// ``` | 
|---|
| 1033 | /// use itertools::Itertools; | 
|---|
| 1034 | /// use itertools::EitherOrBoth::{Left, Right, Both}; | 
|---|
| 1035 | /// | 
|---|
| 1036 | /// let a = vec![0, 2, 4, 6, 1].into_iter(); | 
|---|
| 1037 | /// let b = (0..10).step_by(3); | 
|---|
| 1038 | /// | 
|---|
| 1039 | /// itertools::assert_equal( | 
|---|
| 1040 | ///     a.merge_join_by(b, |i, j| i.cmp(j)), | 
|---|
| 1041 | ///     vec![Both(0, 0), Left(2), Right(3), Left(4), Both(6, 6), Left(1), Right(9)] | 
|---|
| 1042 | /// ); | 
|---|
| 1043 | /// ``` | 
|---|
| 1044 | /// | 
|---|
| 1045 | /// If `cmp_fn` returns `bool`, | 
|---|
| 1046 | /// it chooses whether to pair elements based on the boolean returned by the | 
|---|
| 1047 | /// specified function. At any point, inspecting the tip of the | 
|---|
| 1048 | /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type | 
|---|
| 1049 | /// `J::Item` respectively, the resulting iterator will: | 
|---|
| 1050 | /// | 
|---|
| 1051 | /// - Emit `Either::Left(i)` when `true`, | 
|---|
| 1052 | ///   and remove `i` from its source iterator | 
|---|
| 1053 | /// - Emit `Either::Right(j)` when `false`, | 
|---|
| 1054 | ///   and remove `j` from its source iterator | 
|---|
| 1055 | /// | 
|---|
| 1056 | /// It is similar to the `Ordering` case if the first argument is considered | 
|---|
| 1057 | /// "less" than the second argument. | 
|---|
| 1058 | /// | 
|---|
| 1059 | /// ``` | 
|---|
| 1060 | /// use itertools::Itertools; | 
|---|
| 1061 | /// use itertools::Either::{Left, Right}; | 
|---|
| 1062 | /// | 
|---|
| 1063 | /// let a = vec![0, 2, 4, 6, 1].into_iter(); | 
|---|
| 1064 | /// let b = (0..10).step_by(3); | 
|---|
| 1065 | /// | 
|---|
| 1066 | /// itertools::assert_equal( | 
|---|
| 1067 | ///     a.merge_join_by(b, |i, j| i <= j), | 
|---|
| 1068 | ///     vec![Left(0), Right(0), Left(2), Right(3), Left(4), Left(6), Left(1), Right(6), Right(9)] | 
|---|
| 1069 | /// ); | 
|---|
| 1070 | /// ``` | 
|---|
| 1071 | #[ inline] | 
|---|
| 1072 | fn merge_join_by<J, F, T>(self, other: J, cmp_fn: F) -> MergeJoinBy<Self, J::IntoIter, F> | 
|---|
| 1073 | where | 
|---|
| 1074 | J: IntoIterator, | 
|---|
| 1075 | F: FnMut(&Self::Item, &J::Item) -> T, | 
|---|
| 1076 | Self: Sized, | 
|---|
| 1077 | { | 
|---|
| 1078 | merge_join_by(self, other, cmp_fn) | 
|---|
| 1079 | } | 
|---|
| 1080 |  | 
|---|
| 1081 | /// Return an iterator adaptor that flattens an iterator of iterators by | 
|---|
| 1082 | /// merging them in ascending order. | 
|---|
| 1083 | /// | 
|---|
| 1084 | /// If all base iterators are sorted (ascending), the result is sorted. | 
|---|
| 1085 | /// | 
|---|
| 1086 | /// Iterator element type is `Self::Item`. | 
|---|
| 1087 | /// | 
|---|
| 1088 | /// ``` | 
|---|
| 1089 | /// use itertools::Itertools; | 
|---|
| 1090 | /// | 
|---|
| 1091 | /// let a = (0..6).step_by(3); | 
|---|
| 1092 | /// let b = (1..6).step_by(3); | 
|---|
| 1093 | /// let c = (2..6).step_by(3); | 
|---|
| 1094 | /// let it = vec![a, b, c].into_iter().kmerge(); | 
|---|
| 1095 | /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]); | 
|---|
| 1096 | /// ``` | 
|---|
| 1097 | #[ cfg(feature = "use_alloc")] | 
|---|
| 1098 | fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter> | 
|---|
| 1099 | where | 
|---|
| 1100 | Self: Sized, | 
|---|
| 1101 | Self::Item: IntoIterator, | 
|---|
| 1102 | <Self::Item as IntoIterator>::Item: PartialOrd, | 
|---|
| 1103 | { | 
|---|
| 1104 | kmerge(self) | 
|---|
| 1105 | } | 
|---|
| 1106 |  | 
|---|
| 1107 | /// Return an iterator adaptor that flattens an iterator of iterators by | 
|---|
| 1108 | /// merging them according to the given closure. | 
|---|
| 1109 | /// | 
|---|
| 1110 | /// The closure `first` is called with two elements *a*, *b* and should | 
|---|
| 1111 | /// return `true` if *a* is ordered before *b*. | 
|---|
| 1112 | /// | 
|---|
| 1113 | /// If all base iterators are sorted according to `first`, the result is | 
|---|
| 1114 | /// sorted. | 
|---|
| 1115 | /// | 
|---|
| 1116 | /// Iterator element type is `Self::Item`. | 
|---|
| 1117 | /// | 
|---|
| 1118 | /// ``` | 
|---|
| 1119 | /// use itertools::Itertools; | 
|---|
| 1120 | /// | 
|---|
| 1121 | /// let a = vec![-1f64, 2., 3., -5., 6., -7.]; | 
|---|
| 1122 | /// let b = vec![0., 2., -4.]; | 
|---|
| 1123 | /// let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() < b.abs()); | 
|---|
| 1124 | /// assert_eq!(it.next(), Some(0.)); | 
|---|
| 1125 | /// assert_eq!(it.last(), Some(-7.)); | 
|---|
| 1126 | /// ``` | 
|---|
| 1127 | #[ cfg(feature = "use_alloc")] | 
|---|
| 1128 | fn kmerge_by<F>(self, first: F) -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F> | 
|---|
| 1129 | where | 
|---|
| 1130 | Self: Sized, | 
|---|
| 1131 | Self::Item: IntoIterator, | 
|---|
| 1132 | F: FnMut(&<Self::Item as IntoIterator>::Item, &<Self::Item as IntoIterator>::Item) -> bool, | 
|---|
| 1133 | { | 
|---|
| 1134 | kmerge_by(self, first) | 
|---|
| 1135 | } | 
|---|
| 1136 |  | 
|---|
| 1137 | /// Return an iterator adaptor that iterates over the cartesian product of | 
|---|
| 1138 | /// the element sets of two iterators `self` and `J`. | 
|---|
| 1139 | /// | 
|---|
| 1140 | /// Iterator element type is `(Self::Item, J::Item)`. | 
|---|
| 1141 | /// | 
|---|
| 1142 | /// ``` | 
|---|
| 1143 | /// use itertools::Itertools; | 
|---|
| 1144 | /// | 
|---|
| 1145 | /// let it = (0..2).cartesian_product( "αβ".chars()); | 
|---|
| 1146 | /// itertools::assert_equal(it, vec![(0, 'α'), (0, 'β'), (1, 'α'), (1, 'β')]); | 
|---|
| 1147 | /// ``` | 
|---|
| 1148 | fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter> | 
|---|
| 1149 | where | 
|---|
| 1150 | Self: Sized, | 
|---|
| 1151 | Self::Item: Clone, | 
|---|
| 1152 | J: IntoIterator, | 
|---|
| 1153 | J::IntoIter: Clone, | 
|---|
| 1154 | { | 
|---|
| 1155 | adaptors::cartesian_product(self, other.into_iter()) | 
|---|
| 1156 | } | 
|---|
| 1157 |  | 
|---|
| 1158 | /// Return an iterator adaptor that iterates over the cartesian product of | 
|---|
| 1159 | /// all subiterators returned by meta-iterator `self`. | 
|---|
| 1160 | /// | 
|---|
| 1161 | /// All provided iterators must yield the same `Item` type. To generate | 
|---|
| 1162 | /// the product of iterators yielding multiple types, use the | 
|---|
| 1163 | /// [`iproduct`] macro instead. | 
|---|
| 1164 | /// | 
|---|
| 1165 | /// | 
|---|
| 1166 | /// The iterator element type is `Vec<T>`, where `T` is the iterator element | 
|---|
| 1167 | /// of the subiterators. | 
|---|
| 1168 | /// | 
|---|
| 1169 | /// ``` | 
|---|
| 1170 | /// use itertools::Itertools; | 
|---|
| 1171 | /// let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2)) | 
|---|
| 1172 | ///     .multi_cartesian_product(); | 
|---|
| 1173 | /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 4])); | 
|---|
| 1174 | /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 5])); | 
|---|
| 1175 | /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 4])); | 
|---|
| 1176 | /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 5])); | 
|---|
| 1177 | /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 4])); | 
|---|
| 1178 | /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 5])); | 
|---|
| 1179 | /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 4])); | 
|---|
| 1180 | /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 5])); | 
|---|
| 1181 | /// assert_eq!(multi_prod.next(), None); | 
|---|
| 1182 | /// ``` | 
|---|
| 1183 | #[ cfg(feature = "use_alloc")] | 
|---|
| 1184 | fn multi_cartesian_product(self) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter> | 
|---|
| 1185 | where | 
|---|
| 1186 | Self: Sized, | 
|---|
| 1187 | Self::Item: IntoIterator, | 
|---|
| 1188 | <Self::Item as IntoIterator>::IntoIter: Clone, | 
|---|
| 1189 | <Self::Item as IntoIterator>::Item: Clone, | 
|---|
| 1190 | { | 
|---|
| 1191 | adaptors::multi_cartesian_product(self) | 
|---|
| 1192 | } | 
|---|
| 1193 |  | 
|---|
| 1194 | /// Return an iterator adaptor that uses the passed-in closure to | 
|---|
| 1195 | /// optionally merge together consecutive elements. | 
|---|
| 1196 | /// | 
|---|
| 1197 | /// The closure `f` is passed two elements, `previous` and `current` and may | 
|---|
| 1198 | /// return either (1) `Ok(combined)` to merge the two values or | 
|---|
| 1199 | /// (2) `Err((previous', current'))` to indicate they can't be merged. | 
|---|
| 1200 | /// In (2), the value `previous'` is emitted by the iterator. | 
|---|
| 1201 | /// Either (1) `combined` or (2) `current'` becomes the previous value | 
|---|
| 1202 | /// when coalesce continues with the next pair of elements to merge. The | 
|---|
| 1203 | /// value that remains at the end is also emitted by the iterator. | 
|---|
| 1204 | /// | 
|---|
| 1205 | /// Iterator element type is `Self::Item`. | 
|---|
| 1206 | /// | 
|---|
| 1207 | /// This iterator is *fused*. | 
|---|
| 1208 | /// | 
|---|
| 1209 | /// ``` | 
|---|
| 1210 | /// use itertools::Itertools; | 
|---|
| 1211 | /// | 
|---|
| 1212 | /// // sum same-sign runs together | 
|---|
| 1213 | /// let data = vec![-1., -2., -3., 3., 1., 0., -1.]; | 
|---|
| 1214 | /// itertools::assert_equal(data.into_iter().coalesce(|x, y| | 
|---|
| 1215 | ///         if (x >= 0.) == (y >= 0.) { | 
|---|
| 1216 | ///             Ok(x + y) | 
|---|
| 1217 | ///         } else { | 
|---|
| 1218 | ///             Err((x, y)) | 
|---|
| 1219 | ///         }), | 
|---|
| 1220 | ///         vec![-6., 4., -1.]); | 
|---|
| 1221 | /// ``` | 
|---|
| 1222 | fn coalesce<F>(self, f: F) -> Coalesce<Self, F> | 
|---|
| 1223 | where | 
|---|
| 1224 | Self: Sized, | 
|---|
| 1225 | F: FnMut(Self::Item, Self::Item) -> Result<Self::Item, (Self::Item, Self::Item)>, | 
|---|
| 1226 | { | 
|---|
| 1227 | adaptors::coalesce(self, f) | 
|---|
| 1228 | } | 
|---|
| 1229 |  | 
|---|
| 1230 | /// Remove duplicates from sections of consecutive identical elements. | 
|---|
| 1231 | /// If the iterator is sorted, all elements will be unique. | 
|---|
| 1232 | /// | 
|---|
| 1233 | /// Iterator element type is `Self::Item`. | 
|---|
| 1234 | /// | 
|---|
| 1235 | /// This iterator is *fused*. | 
|---|
| 1236 | /// | 
|---|
| 1237 | /// ``` | 
|---|
| 1238 | /// use itertools::Itertools; | 
|---|
| 1239 | /// | 
|---|
| 1240 | /// let data = vec![1., 1., 2., 3., 3., 2., 2.]; | 
|---|
| 1241 | /// itertools::assert_equal(data.into_iter().dedup(), | 
|---|
| 1242 | ///                         vec![1., 2., 3., 2.]); | 
|---|
| 1243 | /// ``` | 
|---|
| 1244 | fn dedup(self) -> Dedup<Self> | 
|---|
| 1245 | where | 
|---|
| 1246 | Self: Sized, | 
|---|
| 1247 | Self::Item: PartialEq, | 
|---|
| 1248 | { | 
|---|
| 1249 | adaptors::dedup(self) | 
|---|
| 1250 | } | 
|---|
| 1251 |  | 
|---|
| 1252 | /// Remove duplicates from sections of consecutive identical elements, | 
|---|
| 1253 | /// determining equality using a comparison function. | 
|---|
| 1254 | /// If the iterator is sorted, all elements will be unique. | 
|---|
| 1255 | /// | 
|---|
| 1256 | /// Iterator element type is `Self::Item`. | 
|---|
| 1257 | /// | 
|---|
| 1258 | /// This iterator is *fused*. | 
|---|
| 1259 | /// | 
|---|
| 1260 | /// ``` | 
|---|
| 1261 | /// use itertools::Itertools; | 
|---|
| 1262 | /// | 
|---|
| 1263 | /// let data = vec![(0, 1.), (1, 1.), (0, 2.), (0, 3.), (1, 3.), (1, 2.), (2, 2.)]; | 
|---|
| 1264 | /// itertools::assert_equal(data.into_iter().dedup_by(|x, y| x.1 == y.1), | 
|---|
| 1265 | ///                         vec![(0, 1.), (0, 2.), (0, 3.), (1, 2.)]); | 
|---|
| 1266 | /// ``` | 
|---|
| 1267 | fn dedup_by<Cmp>(self, cmp: Cmp) -> DedupBy<Self, Cmp> | 
|---|
| 1268 | where | 
|---|
| 1269 | Self: Sized, | 
|---|
| 1270 | Cmp: FnMut(&Self::Item, &Self::Item) -> bool, | 
|---|
| 1271 | { | 
|---|
| 1272 | adaptors::dedup_by(self, cmp) | 
|---|
| 1273 | } | 
|---|
| 1274 |  | 
|---|
| 1275 | /// Remove duplicates from sections of consecutive identical elements, while keeping a count of | 
|---|
| 1276 | /// how many repeated elements were present. | 
|---|
| 1277 | /// If the iterator is sorted, all elements will be unique. | 
|---|
| 1278 | /// | 
|---|
| 1279 | /// Iterator element type is `(usize, Self::Item)`. | 
|---|
| 1280 | /// | 
|---|
| 1281 | /// This iterator is *fused*. | 
|---|
| 1282 | /// | 
|---|
| 1283 | /// ``` | 
|---|
| 1284 | /// use itertools::Itertools; | 
|---|
| 1285 | /// | 
|---|
| 1286 | /// let data = vec![ 'a', 'a', 'b', 'c', 'c', 'b', 'b']; | 
|---|
| 1287 | /// itertools::assert_equal(data.into_iter().dedup_with_count(), | 
|---|
| 1288 | ///                         vec![(2, 'a'), (1, 'b'), (2, 'c'), (2, 'b')]); | 
|---|
| 1289 | /// ``` | 
|---|
| 1290 | fn dedup_with_count(self) -> DedupWithCount<Self> | 
|---|
| 1291 | where | 
|---|
| 1292 | Self: Sized, | 
|---|
| 1293 | { | 
|---|
| 1294 | adaptors::dedup_with_count(self) | 
|---|
| 1295 | } | 
|---|
| 1296 |  | 
|---|
| 1297 | /// Remove duplicates from sections of consecutive identical elements, while keeping a count of | 
|---|
| 1298 | /// how many repeated elements were present. | 
|---|
| 1299 | /// This will determine equality using a comparison function. | 
|---|
| 1300 | /// If the iterator is sorted, all elements will be unique. | 
|---|
| 1301 | /// | 
|---|
| 1302 | /// Iterator element type is `(usize, Self::Item)`. | 
|---|
| 1303 | /// | 
|---|
| 1304 | /// This iterator is *fused*. | 
|---|
| 1305 | /// | 
|---|
| 1306 | /// ``` | 
|---|
| 1307 | /// use itertools::Itertools; | 
|---|
| 1308 | /// | 
|---|
| 1309 | /// let data = vec![(0, 'a'), (1, 'a'), (0, 'b'), (0, 'c'), (1, 'c'), (1, 'b'), (2, 'b')]; | 
|---|
| 1310 | /// itertools::assert_equal(data.into_iter().dedup_by_with_count(|x, y| x.1 == y.1), | 
|---|
| 1311 | ///                         vec![(2, (0, 'a')), (1, (0, 'b')), (2, (0, 'c')), (2, (1, 'b'))]); | 
|---|
| 1312 | /// ``` | 
|---|
| 1313 | fn dedup_by_with_count<Cmp>(self, cmp: Cmp) -> DedupByWithCount<Self, Cmp> | 
|---|
| 1314 | where | 
|---|
| 1315 | Self: Sized, | 
|---|
| 1316 | Cmp: FnMut(&Self::Item, &Self::Item) -> bool, | 
|---|
| 1317 | { | 
|---|
| 1318 | adaptors::dedup_by_with_count(self, cmp) | 
|---|
| 1319 | } | 
|---|
| 1320 |  | 
|---|
| 1321 | /// Return an iterator adaptor that produces elements that appear more than once during the | 
|---|
| 1322 | /// iteration. Duplicates are detected using hash and equality. | 
|---|
| 1323 | /// | 
|---|
| 1324 | /// The iterator is stable, returning the duplicate items in the order in which they occur in | 
|---|
| 1325 | /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more | 
|---|
| 1326 | /// than twice, the second item is the item retained and the rest are discarded. | 
|---|
| 1327 | /// | 
|---|
| 1328 | /// ``` | 
|---|
| 1329 | /// use itertools::Itertools; | 
|---|
| 1330 | /// | 
|---|
| 1331 | /// let data = vec![10, 20, 30, 20, 40, 10, 50]; | 
|---|
| 1332 | /// itertools::assert_equal(data.into_iter().duplicates(), | 
|---|
| 1333 | ///                         vec![20, 10]); | 
|---|
| 1334 | /// ``` | 
|---|
| 1335 | #[ cfg(feature = "use_std")] | 
|---|
| 1336 | fn duplicates(self) -> Duplicates<Self> | 
|---|
| 1337 | where | 
|---|
| 1338 | Self: Sized, | 
|---|
| 1339 | Self::Item: Eq + Hash, | 
|---|
| 1340 | { | 
|---|
| 1341 | duplicates_impl::duplicates(self) | 
|---|
| 1342 | } | 
|---|
| 1343 |  | 
|---|
| 1344 | /// Return an iterator adaptor that produces elements that appear more than once during the | 
|---|
| 1345 | /// iteration. Duplicates are detected using hash and equality. | 
|---|
| 1346 | /// | 
|---|
| 1347 | /// Duplicates are detected by comparing the key they map to with the keying function `f` by | 
|---|
| 1348 | /// hash and equality. The keys are stored in a hash map in the iterator. | 
|---|
| 1349 | /// | 
|---|
| 1350 | /// The iterator is stable, returning the duplicate items in the order in which they occur in | 
|---|
| 1351 | /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more | 
|---|
| 1352 | /// than twice, the second item is the item retained and the rest are discarded. | 
|---|
| 1353 | /// | 
|---|
| 1354 | /// ``` | 
|---|
| 1355 | /// use itertools::Itertools; | 
|---|
| 1356 | /// | 
|---|
| 1357 | /// let data = vec![ "a", "bb", "aa", "c", "ccc"]; | 
|---|
| 1358 | /// itertools::assert_equal(data.into_iter().duplicates_by(|s| s.len()), | 
|---|
| 1359 | ///                         vec![ "aa", "c"]); | 
|---|
| 1360 | /// ``` | 
|---|
| 1361 | #[ cfg(feature = "use_std")] | 
|---|
| 1362 | fn duplicates_by<V, F>(self, f: F) -> DuplicatesBy<Self, V, F> | 
|---|
| 1363 | where | 
|---|
| 1364 | Self: Sized, | 
|---|
| 1365 | V: Eq + Hash, | 
|---|
| 1366 | F: FnMut(&Self::Item) -> V, | 
|---|
| 1367 | { | 
|---|
| 1368 | duplicates_impl::duplicates_by(self, f) | 
|---|
| 1369 | } | 
|---|
| 1370 |  | 
|---|
| 1371 | /// Return an iterator adaptor that filters out elements that have | 
|---|
| 1372 | /// already been produced once during the iteration. Duplicates | 
|---|
| 1373 | /// are detected using hash and equality. | 
|---|
| 1374 | /// | 
|---|
| 1375 | /// Clones of visited elements are stored in a hash set in the | 
|---|
| 1376 | /// iterator. | 
|---|
| 1377 | /// | 
|---|
| 1378 | /// The iterator is stable, returning the non-duplicate items in the order | 
|---|
| 1379 | /// in which they occur in the adapted iterator. In a set of duplicate | 
|---|
| 1380 | /// items, the first item encountered is the item retained. | 
|---|
| 1381 | /// | 
|---|
| 1382 | /// ``` | 
|---|
| 1383 | /// use itertools::Itertools; | 
|---|
| 1384 | /// | 
|---|
| 1385 | /// let data = vec![10, 20, 30, 20, 40, 10, 50]; | 
|---|
| 1386 | /// itertools::assert_equal(data.into_iter().unique(), | 
|---|
| 1387 | ///                         vec![10, 20, 30, 40, 50]); | 
|---|
| 1388 | /// ``` | 
|---|
| 1389 | #[ cfg(feature = "use_std")] | 
|---|
| 1390 | fn unique(self) -> Unique<Self> | 
|---|
| 1391 | where | 
|---|
| 1392 | Self: Sized, | 
|---|
| 1393 | Self::Item: Clone + Eq + Hash, | 
|---|
| 1394 | { | 
|---|
| 1395 | unique_impl::unique(self) | 
|---|
| 1396 | } | 
|---|
| 1397 |  | 
|---|
| 1398 | /// Return an iterator adaptor that filters out elements that have | 
|---|
| 1399 | /// already been produced once during the iteration. | 
|---|
| 1400 | /// | 
|---|
| 1401 | /// Duplicates are detected by comparing the key they map to | 
|---|
| 1402 | /// with the keying function `f` by hash and equality. | 
|---|
| 1403 | /// The keys are stored in a hash set in the iterator. | 
|---|
| 1404 | /// | 
|---|
| 1405 | /// The iterator is stable, returning the non-duplicate items in the order | 
|---|
| 1406 | /// in which they occur in the adapted iterator. In a set of duplicate | 
|---|
| 1407 | /// items, the first item encountered is the item retained. | 
|---|
| 1408 | /// | 
|---|
| 1409 | /// ``` | 
|---|
| 1410 | /// use itertools::Itertools; | 
|---|
| 1411 | /// | 
|---|
| 1412 | /// let data = vec![ "a", "bb", "aa", "c", "ccc"]; | 
|---|
| 1413 | /// itertools::assert_equal(data.into_iter().unique_by(|s| s.len()), | 
|---|
| 1414 | ///                         vec![ "a", "bb", "ccc"]); | 
|---|
| 1415 | /// ``` | 
|---|
| 1416 | #[ cfg(feature = "use_std")] | 
|---|
| 1417 | fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F> | 
|---|
| 1418 | where | 
|---|
| 1419 | Self: Sized, | 
|---|
| 1420 | V: Eq + Hash, | 
|---|
| 1421 | F: FnMut(&Self::Item) -> V, | 
|---|
| 1422 | { | 
|---|
| 1423 | unique_impl::unique_by(self, f) | 
|---|
| 1424 | } | 
|---|
| 1425 |  | 
|---|
| 1426 | /// Return an iterator adaptor that borrows from this iterator and | 
|---|
| 1427 | /// takes items while the closure `accept` returns `true`. | 
|---|
| 1428 | /// | 
|---|
| 1429 | /// This adaptor can only be used on iterators that implement `PeekingNext` | 
|---|
| 1430 | /// like `.peekable()`, `put_back` and a few other collection iterators. | 
|---|
| 1431 | /// | 
|---|
| 1432 | /// The last and rejected element (first `false`) is still available when | 
|---|
| 1433 | /// `peeking_take_while` is done. | 
|---|
| 1434 | /// | 
|---|
| 1435 | /// | 
|---|
| 1436 | /// See also [`.take_while_ref()`](Itertools::take_while_ref) | 
|---|
| 1437 | /// which is a similar adaptor. | 
|---|
| 1438 | fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<Self, F> | 
|---|
| 1439 | where | 
|---|
| 1440 | Self: Sized + PeekingNext, | 
|---|
| 1441 | F: FnMut(&Self::Item) -> bool, | 
|---|
| 1442 | { | 
|---|
| 1443 | peeking_take_while::peeking_take_while(self, accept) | 
|---|
| 1444 | } | 
|---|
| 1445 |  | 
|---|
| 1446 | /// Return an iterator adaptor that borrows from a `Clone`-able iterator | 
|---|
| 1447 | /// to only pick off elements while the predicate `accept` returns `true`. | 
|---|
| 1448 | /// | 
|---|
| 1449 | /// It uses the `Clone` trait to restore the original iterator so that the | 
|---|
| 1450 | /// last and rejected element (first `false`) is still available when | 
|---|
| 1451 | /// `take_while_ref` is done. | 
|---|
| 1452 | /// | 
|---|
| 1453 | /// ``` | 
|---|
| 1454 | /// use itertools::Itertools; | 
|---|
| 1455 | /// | 
|---|
| 1456 | /// let mut hexadecimals = "0123456789abcdef".chars(); | 
|---|
| 1457 | /// | 
|---|
| 1458 | /// let decimals = hexadecimals.take_while_ref(|c| c.is_numeric()) | 
|---|
| 1459 | ///                            .collect::<String>(); | 
|---|
| 1460 | /// assert_eq!(decimals, "0123456789"); | 
|---|
| 1461 | /// assert_eq!(hexadecimals.next(), Some( 'a')); | 
|---|
| 1462 | /// | 
|---|
| 1463 | /// ``` | 
|---|
| 1464 | fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<Self, F> | 
|---|
| 1465 | where | 
|---|
| 1466 | Self: Clone, | 
|---|
| 1467 | F: FnMut(&Self::Item) -> bool, | 
|---|
| 1468 | { | 
|---|
| 1469 | adaptors::take_while_ref(self, accept) | 
|---|
| 1470 | } | 
|---|
| 1471 |  | 
|---|
| 1472 | /// Returns an iterator adaptor that consumes elements while the given | 
|---|
| 1473 | /// predicate is `true`, *including* the element for which the predicate | 
|---|
| 1474 | /// first returned `false`. | 
|---|
| 1475 | /// | 
|---|
| 1476 | /// The [`.take_while()`][std::iter::Iterator::take_while] adaptor is useful | 
|---|
| 1477 | /// when you want items satisfying a predicate, but to know when to stop | 
|---|
| 1478 | /// taking elements, we have to consume that first element that doesn't | 
|---|
| 1479 | /// satisfy the predicate. This adaptor includes that element where | 
|---|
| 1480 | /// [`.take_while()`][std::iter::Iterator::take_while] would drop it. | 
|---|
| 1481 | /// | 
|---|
| 1482 | /// The [`.take_while_ref()`][crate::Itertools::take_while_ref] adaptor | 
|---|
| 1483 | /// serves a similar purpose, but this adaptor doesn't require [`Clone`]ing | 
|---|
| 1484 | /// the underlying elements. | 
|---|
| 1485 | /// | 
|---|
| 1486 | /// ```rust | 
|---|
| 1487 | /// # use itertools::Itertools; | 
|---|
| 1488 | /// let items = vec![1, 2, 3, 4, 5]; | 
|---|
| 1489 | /// let filtered: Vec<_> = items | 
|---|
| 1490 | ///     .into_iter() | 
|---|
| 1491 | ///     .take_while_inclusive(|&n| n % 3 != 0) | 
|---|
| 1492 | ///     .collect(); | 
|---|
| 1493 | /// | 
|---|
| 1494 | /// assert_eq!(filtered, vec![1, 2, 3]); | 
|---|
| 1495 | /// ``` | 
|---|
| 1496 | /// | 
|---|
| 1497 | /// ```rust | 
|---|
| 1498 | /// # use itertools::Itertools; | 
|---|
| 1499 | /// let items = vec![1, 2, 3, 4, 5]; | 
|---|
| 1500 | /// | 
|---|
| 1501 | /// let take_while_inclusive_result: Vec<_> = items | 
|---|
| 1502 | ///     .iter() | 
|---|
| 1503 | ///     .copied() | 
|---|
| 1504 | ///     .take_while_inclusive(|&n| n % 3 != 0) | 
|---|
| 1505 | ///     .collect(); | 
|---|
| 1506 | /// let take_while_result: Vec<_> = items | 
|---|
| 1507 | ///     .into_iter() | 
|---|
| 1508 | ///     .take_while(|&n| n % 3 != 0) | 
|---|
| 1509 | ///     .collect(); | 
|---|
| 1510 | /// | 
|---|
| 1511 | /// assert_eq!(take_while_inclusive_result, vec![1, 2, 3]); | 
|---|
| 1512 | /// assert_eq!(take_while_result, vec![1, 2]); | 
|---|
| 1513 | /// // both iterators have the same items remaining at this point---the 3 | 
|---|
| 1514 | /// // is lost from the `take_while` vec | 
|---|
| 1515 | /// ``` | 
|---|
| 1516 | /// | 
|---|
| 1517 | /// ```rust | 
|---|
| 1518 | /// # use itertools::Itertools; | 
|---|
| 1519 | /// #[derive(Debug, PartialEq)] | 
|---|
| 1520 | /// struct NoCloneImpl(i32); | 
|---|
| 1521 | /// | 
|---|
| 1522 | /// let non_clonable_items: Vec<_> = vec![1, 2, 3, 4, 5] | 
|---|
| 1523 | ///     .into_iter() | 
|---|
| 1524 | ///     .map(NoCloneImpl) | 
|---|
| 1525 | ///     .collect(); | 
|---|
| 1526 | /// let filtered: Vec<_> = non_clonable_items | 
|---|
| 1527 | ///     .into_iter() | 
|---|
| 1528 | ///     .take_while_inclusive(|n| n.0 % 3 != 0) | 
|---|
| 1529 | ///     .collect(); | 
|---|
| 1530 | /// let expected: Vec<_> = vec![1, 2, 3].into_iter().map(NoCloneImpl).collect(); | 
|---|
| 1531 | /// assert_eq!(filtered, expected); | 
|---|
| 1532 | fn take_while_inclusive<F>(self, accept: F) -> TakeWhileInclusive<Self, F> | 
|---|
| 1533 | where | 
|---|
| 1534 | Self: Sized, | 
|---|
| 1535 | F: FnMut(&Self::Item) -> bool, | 
|---|
| 1536 | { | 
|---|
| 1537 | take_while_inclusive::TakeWhileInclusive::new(self, accept) | 
|---|
| 1538 | } | 
|---|
| 1539 |  | 
|---|
| 1540 | /// Return an iterator adaptor that filters `Option<A>` iterator elements | 
|---|
| 1541 | /// and produces `A`. Stops on the first `None` encountered. | 
|---|
| 1542 | /// | 
|---|
| 1543 | /// Iterator element type is `A`, the unwrapped element. | 
|---|
| 1544 | /// | 
|---|
| 1545 | /// ``` | 
|---|
| 1546 | /// use itertools::Itertools; | 
|---|
| 1547 | /// | 
|---|
| 1548 | /// // List all hexadecimal digits | 
|---|
| 1549 | /// itertools::assert_equal( | 
|---|
| 1550 | ///     (0..).map(|i| std::char::from_digit(i, 16)).while_some(), | 
|---|
| 1551 | /// "0123456789abcdef".chars()); | 
|---|
| 1552 | /// | 
|---|
| 1553 | /// ``` | 
|---|
| 1554 | fn while_some<A>(self) -> WhileSome<Self> | 
|---|
| 1555 | where | 
|---|
| 1556 | Self: Sized + Iterator<Item = Option<A>>, | 
|---|
| 1557 | { | 
|---|
| 1558 | adaptors::while_some(self) | 
|---|
| 1559 | } | 
|---|
| 1560 |  | 
|---|
| 1561 | /// Return an iterator adaptor that iterates over the combinations of the | 
|---|
| 1562 | /// elements from an iterator. | 
|---|
| 1563 | /// | 
|---|
| 1564 | /// Iterator element can be any homogeneous tuple of type `Self::Item` with | 
|---|
| 1565 | /// size up to 12. | 
|---|
| 1566 | /// | 
|---|
| 1567 | /// ``` | 
|---|
| 1568 | /// use itertools::Itertools; | 
|---|
| 1569 | /// | 
|---|
| 1570 | /// let mut v = Vec::new(); | 
|---|
| 1571 | /// for (a, b) in (1..5).tuple_combinations() { | 
|---|
| 1572 | ///     v.push((a, b)); | 
|---|
| 1573 | /// } | 
|---|
| 1574 | /// assert_eq!(v, vec![(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]); | 
|---|
| 1575 | /// | 
|---|
| 1576 | /// let mut it = (1..5).tuple_combinations(); | 
|---|
| 1577 | /// assert_eq!(Some((1, 2, 3)), it.next()); | 
|---|
| 1578 | /// assert_eq!(Some((1, 2, 4)), it.next()); | 
|---|
| 1579 | /// assert_eq!(Some((1, 3, 4)), it.next()); | 
|---|
| 1580 | /// assert_eq!(Some((2, 3, 4)), it.next()); | 
|---|
| 1581 | /// assert_eq!(None, it.next()); | 
|---|
| 1582 | /// | 
|---|
| 1583 | /// // this requires a type hint | 
|---|
| 1584 | /// let it = (1..5).tuple_combinations::<(_, _, _)>(); | 
|---|
| 1585 | /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]); | 
|---|
| 1586 | /// | 
|---|
| 1587 | /// // you can also specify the complete type | 
|---|
| 1588 | /// use itertools::TupleCombinations; | 
|---|
| 1589 | /// use std::ops::Range; | 
|---|
| 1590 | /// | 
|---|
| 1591 | /// let it: TupleCombinations<Range<u32>, (u32, u32, u32)> = (1..5).tuple_combinations(); | 
|---|
| 1592 | /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]); | 
|---|
| 1593 | /// ``` | 
|---|
| 1594 | /// | 
|---|
| 1595 | /// # Guarantees | 
|---|
| 1596 | /// | 
|---|
| 1597 | /// If the adapted iterator is deterministic, | 
|---|
| 1598 | /// this iterator adapter yields items in a reliable order. | 
|---|
| 1599 | fn tuple_combinations<T>(self) -> TupleCombinations<Self, T> | 
|---|
| 1600 | where | 
|---|
| 1601 | Self: Sized + Clone, | 
|---|
| 1602 | Self::Item: Clone, | 
|---|
| 1603 | T: adaptors::HasCombination<Self>, | 
|---|
| 1604 | { | 
|---|
| 1605 | adaptors::tuple_combinations(self) | 
|---|
| 1606 | } | 
|---|
| 1607 |  | 
|---|
| 1608 | /// Return an iterator adaptor that iterates over the `k`-length combinations of | 
|---|
| 1609 | /// the elements from an iterator. | 
|---|
| 1610 | /// | 
|---|
| 1611 | /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration, | 
|---|
| 1612 | /// and clones the iterator elements. | 
|---|
| 1613 | /// | 
|---|
| 1614 | /// ``` | 
|---|
| 1615 | /// use itertools::Itertools; | 
|---|
| 1616 | /// | 
|---|
| 1617 | /// let it = (1..5).combinations(3); | 
|---|
| 1618 | /// itertools::assert_equal(it, vec![ | 
|---|
| 1619 | ///     vec![1, 2, 3], | 
|---|
| 1620 | ///     vec![1, 2, 4], | 
|---|
| 1621 | ///     vec![1, 3, 4], | 
|---|
| 1622 | ///     vec![2, 3, 4], | 
|---|
| 1623 | /// ]); | 
|---|
| 1624 | /// ``` | 
|---|
| 1625 | /// | 
|---|
| 1626 | /// Note: Combinations does not take into account the equality of the iterated values. | 
|---|
| 1627 | /// ``` | 
|---|
| 1628 | /// use itertools::Itertools; | 
|---|
| 1629 | /// | 
|---|
| 1630 | /// let it = vec![1, 2, 2].into_iter().combinations(2); | 
|---|
| 1631 | /// itertools::assert_equal(it, vec![ | 
|---|
| 1632 | ///     vec![1, 2], // Note: these are the same | 
|---|
| 1633 | ///     vec![1, 2], // Note: these are the same | 
|---|
| 1634 | ///     vec![2, 2], | 
|---|
| 1635 | /// ]); | 
|---|
| 1636 | /// ``` | 
|---|
| 1637 | /// | 
|---|
| 1638 | /// # Guarantees | 
|---|
| 1639 | /// | 
|---|
| 1640 | /// If the adapted iterator is deterministic, | 
|---|
| 1641 | /// this iterator adapter yields items in a reliable order. | 
|---|
| 1642 | #[ cfg(feature = "use_alloc")] | 
|---|
| 1643 | fn combinations(self, k: usize) -> Combinations<Self> | 
|---|
| 1644 | where | 
|---|
| 1645 | Self: Sized, | 
|---|
| 1646 | Self::Item: Clone, | 
|---|
| 1647 | { | 
|---|
| 1648 | combinations::combinations(self, k) | 
|---|
| 1649 | } | 
|---|
| 1650 |  | 
|---|
| 1651 | /// Return an iterator that iterates over the `k`-length combinations of | 
|---|
| 1652 | /// the elements from an iterator, with replacement. | 
|---|
| 1653 | /// | 
|---|
| 1654 | /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration, | 
|---|
| 1655 | /// and clones the iterator elements. | 
|---|
| 1656 | /// | 
|---|
| 1657 | /// ``` | 
|---|
| 1658 | /// use itertools::Itertools; | 
|---|
| 1659 | /// | 
|---|
| 1660 | /// let it = (1..4).combinations_with_replacement(2); | 
|---|
| 1661 | /// itertools::assert_equal(it, vec![ | 
|---|
| 1662 | ///     vec![1, 1], | 
|---|
| 1663 | ///     vec![1, 2], | 
|---|
| 1664 | ///     vec![1, 3], | 
|---|
| 1665 | ///     vec![2, 2], | 
|---|
| 1666 | ///     vec![2, 3], | 
|---|
| 1667 | ///     vec![3, 3], | 
|---|
| 1668 | /// ]); | 
|---|
| 1669 | /// ``` | 
|---|
| 1670 | #[ cfg(feature = "use_alloc")] | 
|---|
| 1671 | fn combinations_with_replacement(self, k: usize) -> CombinationsWithReplacement<Self> | 
|---|
| 1672 | where | 
|---|
| 1673 | Self: Sized, | 
|---|
| 1674 | Self::Item: Clone, | 
|---|
| 1675 | { | 
|---|
| 1676 | combinations_with_replacement::combinations_with_replacement(self, k) | 
|---|
| 1677 | } | 
|---|
| 1678 |  | 
|---|
| 1679 | /// Return an iterator adaptor that iterates over all k-permutations of the | 
|---|
| 1680 | /// elements from an iterator. | 
|---|
| 1681 | /// | 
|---|
| 1682 | /// Iterator element type is `Vec<Self::Item>` with length `k`. The iterator | 
|---|
| 1683 | /// produces a new Vec per iteration, and clones the iterator elements. | 
|---|
| 1684 | /// | 
|---|
| 1685 | /// If `k` is greater than the length of the input iterator, the resultant | 
|---|
| 1686 | /// iterator adaptor will be empty. | 
|---|
| 1687 | /// | 
|---|
| 1688 | /// If you are looking for permutations with replacements, | 
|---|
| 1689 | /// use `repeat_n(iter, k).multi_cartesian_product()` instead. | 
|---|
| 1690 | /// | 
|---|
| 1691 | /// ``` | 
|---|
| 1692 | /// use itertools::Itertools; | 
|---|
| 1693 | /// | 
|---|
| 1694 | /// let perms = (5..8).permutations(2); | 
|---|
| 1695 | /// itertools::assert_equal(perms, vec![ | 
|---|
| 1696 | ///     vec![5, 6], | 
|---|
| 1697 | ///     vec![5, 7], | 
|---|
| 1698 | ///     vec![6, 5], | 
|---|
| 1699 | ///     vec![6, 7], | 
|---|
| 1700 | ///     vec![7, 5], | 
|---|
| 1701 | ///     vec![7, 6], | 
|---|
| 1702 | /// ]); | 
|---|
| 1703 | /// ``` | 
|---|
| 1704 | /// | 
|---|
| 1705 | /// Note: Permutations does not take into account the equality of the iterated values. | 
|---|
| 1706 | /// | 
|---|
| 1707 | /// ``` | 
|---|
| 1708 | /// use itertools::Itertools; | 
|---|
| 1709 | /// | 
|---|
| 1710 | /// let it = vec![2, 2].into_iter().permutations(2); | 
|---|
| 1711 | /// itertools::assert_equal(it, vec![ | 
|---|
| 1712 | ///     vec![2, 2], // Note: these are the same | 
|---|
| 1713 | ///     vec![2, 2], // Note: these are the same | 
|---|
| 1714 | /// ]); | 
|---|
| 1715 | /// ``` | 
|---|
| 1716 | /// | 
|---|
| 1717 | /// Note: The source iterator is collected lazily, and will not be | 
|---|
| 1718 | /// re-iterated if the permutations adaptor is completed and re-iterated. | 
|---|
| 1719 | #[ cfg(feature = "use_alloc")] | 
|---|
| 1720 | fn permutations(self, k: usize) -> Permutations<Self> | 
|---|
| 1721 | where | 
|---|
| 1722 | Self: Sized, | 
|---|
| 1723 | Self::Item: Clone, | 
|---|
| 1724 | { | 
|---|
| 1725 | permutations::permutations(self, k) | 
|---|
| 1726 | } | 
|---|
| 1727 |  | 
|---|
| 1728 | /// Return an iterator that iterates through the powerset of the elements from an | 
|---|
| 1729 | /// iterator. | 
|---|
| 1730 | /// | 
|---|
| 1731 | /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new `Vec` | 
|---|
| 1732 | /// per iteration, and clones the iterator elements. | 
|---|
| 1733 | /// | 
|---|
| 1734 | /// The powerset of a set contains all subsets including the empty set and the full | 
|---|
| 1735 | /// input set. A powerset has length _2^n_ where _n_ is the length of the input | 
|---|
| 1736 | /// set. | 
|---|
| 1737 | /// | 
|---|
| 1738 | /// Each `Vec` produced by this iterator represents a subset of the elements | 
|---|
| 1739 | /// produced by the source iterator. | 
|---|
| 1740 | /// | 
|---|
| 1741 | /// ``` | 
|---|
| 1742 | /// use itertools::Itertools; | 
|---|
| 1743 | /// | 
|---|
| 1744 | /// let sets = (1..4).powerset().collect::<Vec<_>>(); | 
|---|
| 1745 | /// itertools::assert_equal(sets, vec![ | 
|---|
| 1746 | ///     vec![], | 
|---|
| 1747 | ///     vec![1], | 
|---|
| 1748 | ///     vec![2], | 
|---|
| 1749 | ///     vec![3], | 
|---|
| 1750 | ///     vec![1, 2], | 
|---|
| 1751 | ///     vec![1, 3], | 
|---|
| 1752 | ///     vec![2, 3], | 
|---|
| 1753 | ///     vec![1, 2, 3], | 
|---|
| 1754 | /// ]); | 
|---|
| 1755 | /// ``` | 
|---|
| 1756 | #[ cfg(feature = "use_alloc")] | 
|---|
| 1757 | fn powerset(self) -> Powerset<Self> | 
|---|
| 1758 | where | 
|---|
| 1759 | Self: Sized, | 
|---|
| 1760 | Self::Item: Clone, | 
|---|
| 1761 | { | 
|---|
| 1762 | powerset::powerset(self) | 
|---|
| 1763 | } | 
|---|
| 1764 |  | 
|---|
| 1765 | /// Return an iterator adaptor that pads the sequence to a minimum length of | 
|---|
| 1766 | /// `min` by filling missing elements using a closure `f`. | 
|---|
| 1767 | /// | 
|---|
| 1768 | /// Iterator element type is `Self::Item`. | 
|---|
| 1769 | /// | 
|---|
| 1770 | /// ``` | 
|---|
| 1771 | /// use itertools::Itertools; | 
|---|
| 1772 | /// | 
|---|
| 1773 | /// let it = (0..5).pad_using(10, |i| 2*i); | 
|---|
| 1774 | /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 10, 12, 14, 16, 18]); | 
|---|
| 1775 | /// | 
|---|
| 1776 | /// let it = (0..10).pad_using(5, |i| 2*i); | 
|---|
| 1777 | /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]); | 
|---|
| 1778 | /// | 
|---|
| 1779 | /// let it = (0..5).pad_using(10, |i| 2*i).rev(); | 
|---|
| 1780 | /// itertools::assert_equal(it, vec![18, 16, 14, 12, 10, 4, 3, 2, 1, 0]); | 
|---|
| 1781 | /// ``` | 
|---|
| 1782 | fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F> | 
|---|
| 1783 | where | 
|---|
| 1784 | Self: Sized, | 
|---|
| 1785 | F: FnMut(usize) -> Self::Item, | 
|---|
| 1786 | { | 
|---|
| 1787 | pad_tail::pad_using(self, min, f) | 
|---|
| 1788 | } | 
|---|
| 1789 |  | 
|---|
| 1790 | /// Return an iterator adaptor that combines each element with a `Position` to | 
|---|
| 1791 | /// ease special-case handling of the first or last elements. | 
|---|
| 1792 | /// | 
|---|
| 1793 | /// Iterator element type is | 
|---|
| 1794 | /// [`(Position, Self::Item)`](Position) | 
|---|
| 1795 | /// | 
|---|
| 1796 | /// ``` | 
|---|
| 1797 | /// use itertools::{Itertools, Position}; | 
|---|
| 1798 | /// | 
|---|
| 1799 | /// let it = (0..4).with_position(); | 
|---|
| 1800 | /// itertools::assert_equal(it, | 
|---|
| 1801 | ///                         vec![(Position::First, 0), | 
|---|
| 1802 | ///                              (Position::Middle, 1), | 
|---|
| 1803 | ///                              (Position::Middle, 2), | 
|---|
| 1804 | ///                              (Position::Last, 3)]); | 
|---|
| 1805 | /// | 
|---|
| 1806 | /// let it = (0..1).with_position(); | 
|---|
| 1807 | /// itertools::assert_equal(it, vec![(Position::Only, 0)]); | 
|---|
| 1808 | /// ``` | 
|---|
| 1809 | fn with_position(self) -> WithPosition<Self> | 
|---|
| 1810 | where | 
|---|
| 1811 | Self: Sized, | 
|---|
| 1812 | { | 
|---|
| 1813 | with_position::with_position(self) | 
|---|
| 1814 | } | 
|---|
| 1815 |  | 
|---|
| 1816 | /// Return an iterator adaptor that yields the indices of all elements | 
|---|
| 1817 | /// satisfying a predicate, counted from the start of the iterator. | 
|---|
| 1818 | /// | 
|---|
| 1819 | /// Equivalent to `iter.enumerate().filter(|(_, v)| predicate(*v)).map(|(i, _)| i)`. | 
|---|
| 1820 | /// | 
|---|
| 1821 | /// ``` | 
|---|
| 1822 | /// use itertools::Itertools; | 
|---|
| 1823 | /// | 
|---|
| 1824 | /// let data = vec![1, 2, 3, 3, 4, 6, 7, 9]; | 
|---|
| 1825 | /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 0), vec![1, 4, 5]); | 
|---|
| 1826 | /// | 
|---|
| 1827 | /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 1).rev(), vec![7, 6, 3, 2, 0]); | 
|---|
| 1828 | /// ``` | 
|---|
| 1829 | fn positions<P>(self, predicate: P) -> Positions<Self, P> | 
|---|
| 1830 | where | 
|---|
| 1831 | Self: Sized, | 
|---|
| 1832 | P: FnMut(Self::Item) -> bool, | 
|---|
| 1833 | { | 
|---|
| 1834 | adaptors::positions(self, predicate) | 
|---|
| 1835 | } | 
|---|
| 1836 |  | 
|---|
| 1837 | /// Return an iterator adaptor that applies a mutating function | 
|---|
| 1838 | /// to each element before yielding it. | 
|---|
| 1839 | /// | 
|---|
| 1840 | /// ``` | 
|---|
| 1841 | /// use itertools::Itertools; | 
|---|
| 1842 | /// | 
|---|
| 1843 | /// let input = vec![vec![1], vec![3, 2, 1]]; | 
|---|
| 1844 | /// let it = input.into_iter().update(|mut v| v.push(0)); | 
|---|
| 1845 | /// itertools::assert_equal(it, vec![vec![1, 0], vec![3, 2, 1, 0]]); | 
|---|
| 1846 | /// ``` | 
|---|
| 1847 | fn update<F>(self, updater: F) -> Update<Self, F> | 
|---|
| 1848 | where | 
|---|
| 1849 | Self: Sized, | 
|---|
| 1850 | F: FnMut(&mut Self::Item), | 
|---|
| 1851 | { | 
|---|
| 1852 | adaptors::update(self, updater) | 
|---|
| 1853 | } | 
|---|
| 1854 |  | 
|---|
| 1855 | // non-adaptor methods | 
|---|
| 1856 | /// Advances the iterator and returns the next items grouped in a tuple of | 
|---|
| 1857 | /// a specific size (up to 12). | 
|---|
| 1858 | /// | 
|---|
| 1859 | /// If there are enough elements to be grouped in a tuple, then the tuple is | 
|---|
| 1860 | /// returned inside `Some`, otherwise `None` is returned. | 
|---|
| 1861 | /// | 
|---|
| 1862 | /// ``` | 
|---|
| 1863 | /// use itertools::Itertools; | 
|---|
| 1864 | /// | 
|---|
| 1865 | /// let mut iter = 1..5; | 
|---|
| 1866 | /// | 
|---|
| 1867 | /// assert_eq!(Some((1, 2)), iter.next_tuple()); | 
|---|
| 1868 | /// ``` | 
|---|
| 1869 | fn next_tuple<T>(&mut self) -> Option<T> | 
|---|
| 1870 | where | 
|---|
| 1871 | Self: Sized + Iterator<Item = T::Item>, | 
|---|
| 1872 | T: traits::HomogeneousTuple, | 
|---|
| 1873 | { | 
|---|
| 1874 | T::collect_from_iter_no_buf(self) | 
|---|
| 1875 | } | 
|---|
| 1876 |  | 
|---|
| 1877 | /// Collects all items from the iterator into a tuple of a specific size | 
|---|
| 1878 | /// (up to 12). | 
|---|
| 1879 | /// | 
|---|
| 1880 | /// If the number of elements inside the iterator is **exactly** equal to | 
|---|
| 1881 | /// the tuple size, then the tuple is returned inside `Some`, otherwise | 
|---|
| 1882 | /// `None` is returned. | 
|---|
| 1883 | /// | 
|---|
| 1884 | /// ``` | 
|---|
| 1885 | /// use itertools::Itertools; | 
|---|
| 1886 | /// | 
|---|
| 1887 | /// let iter = 1..3; | 
|---|
| 1888 | /// | 
|---|
| 1889 | /// if let Some((x, y)) = iter.collect_tuple() { | 
|---|
| 1890 | ///     assert_eq!((x, y), (1, 2)) | 
|---|
| 1891 | /// } else { | 
|---|
| 1892 | ///     panic!( "Expected two elements") | 
|---|
| 1893 | /// } | 
|---|
| 1894 | /// ``` | 
|---|
| 1895 | fn collect_tuple<T>(mut self) -> Option<T> | 
|---|
| 1896 | where | 
|---|
| 1897 | Self: Sized + Iterator<Item = T::Item>, | 
|---|
| 1898 | T: traits::HomogeneousTuple, | 
|---|
| 1899 | { | 
|---|
| 1900 | match self.next_tuple() { | 
|---|
| 1901 | elt @ Some(_) => match self.next() { | 
|---|
| 1902 | Some(_) => None, | 
|---|
| 1903 | None => elt, | 
|---|
| 1904 | }, | 
|---|
| 1905 | _ => None, | 
|---|
| 1906 | } | 
|---|
| 1907 | } | 
|---|
| 1908 |  | 
|---|
| 1909 | /// Find the position and value of the first element satisfying a predicate. | 
|---|
| 1910 | /// | 
|---|
| 1911 | /// The iterator is not advanced past the first element found. | 
|---|
| 1912 | /// | 
|---|
| 1913 | /// ``` | 
|---|
| 1914 | /// use itertools::Itertools; | 
|---|
| 1915 | /// | 
|---|
| 1916 | /// let text = "Hα"; | 
|---|
| 1917 | /// assert_eq!(text.chars().find_position(|ch| ch.is_lowercase()), Some((1, 'α'))); | 
|---|
| 1918 | /// ``` | 
|---|
| 1919 | fn find_position<P>(&mut self, mut pred: P) -> Option<(usize, Self::Item)> | 
|---|
| 1920 | where | 
|---|
| 1921 | P: FnMut(&Self::Item) -> bool, | 
|---|
| 1922 | { | 
|---|
| 1923 | self.enumerate().find(|(_, elt)| pred(elt)) | 
|---|
| 1924 | } | 
|---|
| 1925 | /// Find the value of the first element satisfying a predicate or return the last element, if any. | 
|---|
| 1926 | /// | 
|---|
| 1927 | /// The iterator is not advanced past the first element found. | 
|---|
| 1928 | /// | 
|---|
| 1929 | /// ``` | 
|---|
| 1930 | /// use itertools::Itertools; | 
|---|
| 1931 | /// | 
|---|
| 1932 | /// let numbers = [1, 2, 3, 4]; | 
|---|
| 1933 | /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 5), Some(&4)); | 
|---|
| 1934 | /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 2), Some(&3)); | 
|---|
| 1935 | /// assert_eq!(std::iter::empty::<i32>().find_or_last(|&x| x > 5), None); | 
|---|
| 1936 | /// ``` | 
|---|
| 1937 | fn find_or_last<P>(mut self, mut predicate: P) -> Option<Self::Item> | 
|---|
| 1938 | where | 
|---|
| 1939 | Self: Sized, | 
|---|
| 1940 | P: FnMut(&Self::Item) -> bool, | 
|---|
| 1941 | { | 
|---|
| 1942 | let mut prev = None; | 
|---|
| 1943 | self.find_map(|x| { | 
|---|
| 1944 | if predicate(&x) { | 
|---|
| 1945 | Some(x) | 
|---|
| 1946 | } else { | 
|---|
| 1947 | prev = Some(x); | 
|---|
| 1948 | None | 
|---|
| 1949 | } | 
|---|
| 1950 | }) | 
|---|
| 1951 | .or(prev) | 
|---|
| 1952 | } | 
|---|
| 1953 | /// Find the value of the first element satisfying a predicate or return the first element, if any. | 
|---|
| 1954 | /// | 
|---|
| 1955 | /// The iterator is not advanced past the first element found. | 
|---|
| 1956 | /// | 
|---|
| 1957 | /// ``` | 
|---|
| 1958 | /// use itertools::Itertools; | 
|---|
| 1959 | /// | 
|---|
| 1960 | /// let numbers = [1, 2, 3, 4]; | 
|---|
| 1961 | /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 5), Some(&1)); | 
|---|
| 1962 | /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 2), Some(&3)); | 
|---|
| 1963 | /// assert_eq!(std::iter::empty::<i32>().find_or_first(|&x| x > 5), None); | 
|---|
| 1964 | /// ``` | 
|---|
| 1965 | fn find_or_first<P>(mut self, mut predicate: P) -> Option<Self::Item> | 
|---|
| 1966 | where | 
|---|
| 1967 | Self: Sized, | 
|---|
| 1968 | P: FnMut(&Self::Item) -> bool, | 
|---|
| 1969 | { | 
|---|
| 1970 | let first = self.next()?; | 
|---|
| 1971 | Some(if predicate(&first) { | 
|---|
| 1972 | first | 
|---|
| 1973 | } else { | 
|---|
| 1974 | self.find(|x| predicate(x)).unwrap_or(first) | 
|---|
| 1975 | }) | 
|---|
| 1976 | } | 
|---|
| 1977 | /// Returns `true` if the given item is present in this iterator. | 
|---|
| 1978 | /// | 
|---|
| 1979 | /// This method is short-circuiting. If the given item is present in this | 
|---|
| 1980 | /// iterator, this method will consume the iterator up-to-and-including | 
|---|
| 1981 | /// the item. If the given item is not present in this iterator, the | 
|---|
| 1982 | /// iterator will be exhausted. | 
|---|
| 1983 | /// | 
|---|
| 1984 | /// ``` | 
|---|
| 1985 | /// use itertools::Itertools; | 
|---|
| 1986 | /// | 
|---|
| 1987 | /// #[derive(PartialEq, Debug)] | 
|---|
| 1988 | /// enum Enum { A, B, C, D, E, } | 
|---|
| 1989 | /// | 
|---|
| 1990 | /// let mut iter = vec![Enum::A, Enum::B, Enum::C, Enum::D].into_iter(); | 
|---|
| 1991 | /// | 
|---|
| 1992 | /// // search `iter` for `B` | 
|---|
| 1993 | /// assert_eq!(iter.contains(&Enum::B), true); | 
|---|
| 1994 | /// // `B` was found, so the iterator now rests at the item after `B` (i.e, `C`). | 
|---|
| 1995 | /// assert_eq!(iter.next(), Some(Enum::C)); | 
|---|
| 1996 | /// | 
|---|
| 1997 | /// // search `iter` for `E` | 
|---|
| 1998 | /// assert_eq!(iter.contains(&Enum::E), false); | 
|---|
| 1999 | /// // `E` wasn't found, so `iter` is now exhausted | 
|---|
| 2000 | /// assert_eq!(iter.next(), None); | 
|---|
| 2001 | /// ``` | 
|---|
| 2002 | fn contains<Q>(&mut self, query: &Q) -> bool | 
|---|
| 2003 | where | 
|---|
| 2004 | Self: Sized, | 
|---|
| 2005 | Self::Item: Borrow<Q>, | 
|---|
| 2006 | Q: PartialEq, | 
|---|
| 2007 | { | 
|---|
| 2008 | self.any(|x| x.borrow() == query) | 
|---|
| 2009 | } | 
|---|
| 2010 |  | 
|---|
| 2011 | /// Check whether all elements compare equal. | 
|---|
| 2012 | /// | 
|---|
| 2013 | /// Empty iterators are considered to have equal elements: | 
|---|
| 2014 | /// | 
|---|
| 2015 | /// ``` | 
|---|
| 2016 | /// use itertools::Itertools; | 
|---|
| 2017 | /// | 
|---|
| 2018 | /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5]; | 
|---|
| 2019 | /// assert!(!data.iter().all_equal()); | 
|---|
| 2020 | /// assert!(data[0..3].iter().all_equal()); | 
|---|
| 2021 | /// assert!(data[3..5].iter().all_equal()); | 
|---|
| 2022 | /// assert!(data[5..8].iter().all_equal()); | 
|---|
| 2023 | /// | 
|---|
| 2024 | /// let data : Option<usize> = None; | 
|---|
| 2025 | /// assert!(data.into_iter().all_equal()); | 
|---|
| 2026 | /// ``` | 
|---|
| 2027 | fn all_equal(&mut self) -> bool | 
|---|
| 2028 | where | 
|---|
| 2029 | Self: Sized, | 
|---|
| 2030 | Self::Item: PartialEq, | 
|---|
| 2031 | { | 
|---|
| 2032 | match self.next() { | 
|---|
| 2033 | None => true, | 
|---|
| 2034 | Some(a) => self.all(|x| a == x), | 
|---|
| 2035 | } | 
|---|
| 2036 | } | 
|---|
| 2037 |  | 
|---|
| 2038 | /// If there are elements and they are all equal, return a single copy of that element. | 
|---|
| 2039 | /// If there are no elements, return an Error containing None. | 
|---|
| 2040 | /// If there are elements and they are not all equal, return a tuple containing the first | 
|---|
| 2041 | /// two non-equal elements found. | 
|---|
| 2042 | /// | 
|---|
| 2043 | /// ``` | 
|---|
| 2044 | /// use itertools::Itertools; | 
|---|
| 2045 | /// | 
|---|
| 2046 | /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5]; | 
|---|
| 2047 | /// assert_eq!(data.iter().all_equal_value(), Err(Some((&1, &2)))); | 
|---|
| 2048 | /// assert_eq!(data[0..3].iter().all_equal_value(), Ok(&1)); | 
|---|
| 2049 | /// assert_eq!(data[3..5].iter().all_equal_value(), Ok(&2)); | 
|---|
| 2050 | /// assert_eq!(data[5..8].iter().all_equal_value(), Ok(&3)); | 
|---|
| 2051 | /// | 
|---|
| 2052 | /// let data : Option<usize> = None; | 
|---|
| 2053 | /// assert_eq!(data.into_iter().all_equal_value(), Err(None)); | 
|---|
| 2054 | /// ``` | 
|---|
| 2055 | #[ allow(clippy::type_complexity)] | 
|---|
| 2056 | fn all_equal_value(&mut self) -> Result<Self::Item, Option<(Self::Item, Self::Item)>> | 
|---|
| 2057 | where | 
|---|
| 2058 | Self: Sized, | 
|---|
| 2059 | Self::Item: PartialEq, | 
|---|
| 2060 | { | 
|---|
| 2061 | let first = self.next().ok_or(None)?; | 
|---|
| 2062 | let other = self.find(|x| x != &first); | 
|---|
| 2063 | if let Some(other) = other { | 
|---|
| 2064 | Err(Some((first, other))) | 
|---|
| 2065 | } else { | 
|---|
| 2066 | Ok(first) | 
|---|
| 2067 | } | 
|---|
| 2068 | } | 
|---|
| 2069 |  | 
|---|
| 2070 | /// Check whether all elements are unique (non equal). | 
|---|
| 2071 | /// | 
|---|
| 2072 | /// Empty iterators are considered to have unique elements: | 
|---|
| 2073 | /// | 
|---|
| 2074 | /// ``` | 
|---|
| 2075 | /// use itertools::Itertools; | 
|---|
| 2076 | /// | 
|---|
| 2077 | /// let data = vec![1, 2, 3, 4, 1, 5]; | 
|---|
| 2078 | /// assert!(!data.iter().all_unique()); | 
|---|
| 2079 | /// assert!(data[0..4].iter().all_unique()); | 
|---|
| 2080 | /// assert!(data[1..6].iter().all_unique()); | 
|---|
| 2081 | /// | 
|---|
| 2082 | /// let data : Option<usize> = None; | 
|---|
| 2083 | /// assert!(data.into_iter().all_unique()); | 
|---|
| 2084 | /// ``` | 
|---|
| 2085 | #[ cfg(feature = "use_std")] | 
|---|
| 2086 | fn all_unique(&mut self) -> bool | 
|---|
| 2087 | where | 
|---|
| 2088 | Self: Sized, | 
|---|
| 2089 | Self::Item: Eq + Hash, | 
|---|
| 2090 | { | 
|---|
| 2091 | let mut used = HashSet::new(); | 
|---|
| 2092 | self.all(move |elt| used.insert(elt)) | 
|---|
| 2093 | } | 
|---|
| 2094 |  | 
|---|
| 2095 | /// Consume the first `n` elements from the iterator eagerly, | 
|---|
| 2096 | /// and return the same iterator again. | 
|---|
| 2097 | /// | 
|---|
| 2098 | /// It works similarly to *.skip(* `n` *)* except it is eager and | 
|---|
| 2099 | /// preserves the iterator type. | 
|---|
| 2100 | /// | 
|---|
| 2101 | /// ``` | 
|---|
| 2102 | /// use itertools::Itertools; | 
|---|
| 2103 | /// | 
|---|
| 2104 | /// let mut iter = "αβγ".chars().dropping(2); | 
|---|
| 2105 | /// itertools::assert_equal(iter, "γ".chars()); | 
|---|
| 2106 | /// ``` | 
|---|
| 2107 | /// | 
|---|
| 2108 | /// *Fusing notes: if the iterator is exhausted by dropping, | 
|---|
| 2109 | /// the result of calling `.next()` again depends on the iterator implementation.* | 
|---|
| 2110 | fn dropping(mut self, n: usize) -> Self | 
|---|
| 2111 | where | 
|---|
| 2112 | Self: Sized, | 
|---|
| 2113 | { | 
|---|
| 2114 | if n > 0 { | 
|---|
| 2115 | self.nth(n - 1); | 
|---|
| 2116 | } | 
|---|
| 2117 | self | 
|---|
| 2118 | } | 
|---|
| 2119 |  | 
|---|
| 2120 | /// Consume the last `n` elements from the iterator eagerly, | 
|---|
| 2121 | /// and return the same iterator again. | 
|---|
| 2122 | /// | 
|---|
| 2123 | /// This is only possible on double ended iterators. `n` may be | 
|---|
| 2124 | /// larger than the number of elements. | 
|---|
| 2125 | /// | 
|---|
| 2126 | /// Note: This method is eager, dropping the back elements immediately and | 
|---|
| 2127 | /// preserves the iterator type. | 
|---|
| 2128 | /// | 
|---|
| 2129 | /// ``` | 
|---|
| 2130 | /// use itertools::Itertools; | 
|---|
| 2131 | /// | 
|---|
| 2132 | /// let init = vec![0, 3, 6, 9].into_iter().dropping_back(1); | 
|---|
| 2133 | /// itertools::assert_equal(init, vec![0, 3, 6]); | 
|---|
| 2134 | /// ``` | 
|---|
| 2135 | fn dropping_back(mut self, n: usize) -> Self | 
|---|
| 2136 | where | 
|---|
| 2137 | Self: Sized + DoubleEndedIterator, | 
|---|
| 2138 | { | 
|---|
| 2139 | if n > 0 { | 
|---|
| 2140 | (&mut self).rev().nth(n - 1); | 
|---|
| 2141 | } | 
|---|
| 2142 | self | 
|---|
| 2143 | } | 
|---|
| 2144 |  | 
|---|
| 2145 | /// Run the closure `f` eagerly on each element of the iterator. | 
|---|
| 2146 | /// | 
|---|
| 2147 | /// Consumes the iterator until its end. | 
|---|
| 2148 | /// | 
|---|
| 2149 | /// ``` | 
|---|
| 2150 | /// use std::sync::mpsc::channel; | 
|---|
| 2151 | /// use itertools::Itertools; | 
|---|
| 2152 | /// | 
|---|
| 2153 | /// let (tx, rx) = channel(); | 
|---|
| 2154 | /// | 
|---|
| 2155 | /// // use .foreach() to apply a function to each value -- sending it | 
|---|
| 2156 | /// (0..5).map(|x| x * 2 + 1).foreach(|x| { tx.send(x).unwrap(); } ); | 
|---|
| 2157 | /// | 
|---|
| 2158 | /// drop(tx); | 
|---|
| 2159 | /// | 
|---|
| 2160 | /// itertools::assert_equal(rx.iter(), vec![1, 3, 5, 7, 9]); | 
|---|
| 2161 | /// ``` | 
|---|
| 2162 | #[ deprecated(note = "Use .for_each() instead", since = "0.8.0")] | 
|---|
| 2163 | fn foreach<F>(self, f: F) | 
|---|
| 2164 | where | 
|---|
| 2165 | F: FnMut(Self::Item), | 
|---|
| 2166 | Self: Sized, | 
|---|
| 2167 | { | 
|---|
| 2168 | self.for_each(f); | 
|---|
| 2169 | } | 
|---|
| 2170 |  | 
|---|
| 2171 | /// Combine all an iterator's elements into one element by using [`Extend`]. | 
|---|
| 2172 | /// | 
|---|
| 2173 | /// This combinator will extend the first item with each of the rest of the | 
|---|
| 2174 | /// items of the iterator. If the iterator is empty, the default value of | 
|---|
| 2175 | /// `I::Item` is returned. | 
|---|
| 2176 | /// | 
|---|
| 2177 | /// ```rust | 
|---|
| 2178 | /// use itertools::Itertools; | 
|---|
| 2179 | /// | 
|---|
| 2180 | /// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]]; | 
|---|
| 2181 | /// assert_eq!(input.into_iter().concat(), | 
|---|
| 2182 | ///            vec![1, 2, 3, 4, 5, 6]); | 
|---|
| 2183 | /// ``` | 
|---|
| 2184 | fn concat(self) -> Self::Item | 
|---|
| 2185 | where | 
|---|
| 2186 | Self: Sized, | 
|---|
| 2187 | Self::Item: | 
|---|
| 2188 | Extend<<<Self as Iterator>::Item as IntoIterator>::Item> + IntoIterator + Default, | 
|---|
| 2189 | { | 
|---|
| 2190 | concat(self) | 
|---|
| 2191 | } | 
|---|
| 2192 |  | 
|---|
| 2193 | /// `.collect_vec()` is simply a type specialization of [`Iterator::collect`], | 
|---|
| 2194 | /// for convenience. | 
|---|
| 2195 | #[ cfg(feature = "use_alloc")] | 
|---|
| 2196 | fn collect_vec(self) -> Vec<Self::Item> | 
|---|
| 2197 | where | 
|---|
| 2198 | Self: Sized, | 
|---|
| 2199 | { | 
|---|
| 2200 | self.collect() | 
|---|
| 2201 | } | 
|---|
| 2202 |  | 
|---|
| 2203 | /// `.try_collect()` is more convenient way of writing | 
|---|
| 2204 | /// `.collect::<Result<_, _>>()` | 
|---|
| 2205 | /// | 
|---|
| 2206 | /// # Example | 
|---|
| 2207 | /// | 
|---|
| 2208 | /// ``` | 
|---|
| 2209 | /// use std::{fs, io}; | 
|---|
| 2210 | /// use itertools::Itertools; | 
|---|
| 2211 | /// | 
|---|
| 2212 | /// fn process_dir_entries(entries: &[fs::DirEntry]) { | 
|---|
| 2213 | ///     // ... | 
|---|
| 2214 | /// } | 
|---|
| 2215 | /// | 
|---|
| 2216 | /// fn do_stuff() -> std::io::Result<()> { | 
|---|
| 2217 | ///     let entries: Vec<_> = fs::read_dir( ".")?.try_collect()?; | 
|---|
| 2218 | ///     process_dir_entries(&entries); | 
|---|
| 2219 | /// | 
|---|
| 2220 | ///     Ok(()) | 
|---|
| 2221 | /// } | 
|---|
| 2222 | /// ``` | 
|---|
| 2223 | fn try_collect<T, U, E>(self) -> Result<U, E> | 
|---|
| 2224 | where | 
|---|
| 2225 | Self: Sized + Iterator<Item = Result<T, E>>, | 
|---|
| 2226 | Result<U, E>: FromIterator<Result<T, E>>, | 
|---|
| 2227 | { | 
|---|
| 2228 | self.collect() | 
|---|
| 2229 | } | 
|---|
| 2230 |  | 
|---|
| 2231 | /// Assign to each reference in `self` from the `from` iterator, | 
|---|
| 2232 | /// stopping at the shortest of the two iterators. | 
|---|
| 2233 | /// | 
|---|
| 2234 | /// The `from` iterator is queried for its next element before the `self` | 
|---|
| 2235 | /// iterator, and if either is exhausted the method is done. | 
|---|
| 2236 | /// | 
|---|
| 2237 | /// Return the number of elements written. | 
|---|
| 2238 | /// | 
|---|
| 2239 | /// ``` | 
|---|
| 2240 | /// use itertools::Itertools; | 
|---|
| 2241 | /// | 
|---|
| 2242 | /// let mut xs = [0; 4]; | 
|---|
| 2243 | /// xs.iter_mut().set_from(1..); | 
|---|
| 2244 | /// assert_eq!(xs, [1, 2, 3, 4]); | 
|---|
| 2245 | /// ``` | 
|---|
| 2246 | #[ inline] | 
|---|
| 2247 | fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize | 
|---|
| 2248 | where | 
|---|
| 2249 | Self: Iterator<Item = &'a mut A>, | 
|---|
| 2250 | J: IntoIterator<Item = A>, | 
|---|
| 2251 | { | 
|---|
| 2252 | let mut count = 0; | 
|---|
| 2253 | for elt in from { | 
|---|
| 2254 | match self.next() { | 
|---|
| 2255 | None => break, | 
|---|
| 2256 | Some(ptr) => *ptr = elt, | 
|---|
| 2257 | } | 
|---|
| 2258 | count += 1; | 
|---|
| 2259 | } | 
|---|
| 2260 | count | 
|---|
| 2261 | } | 
|---|
| 2262 |  | 
|---|
| 2263 | /// Combine all iterator elements into one String, separated by `sep`. | 
|---|
| 2264 | /// | 
|---|
| 2265 | /// Use the `Display` implementation of each element. | 
|---|
| 2266 | /// | 
|---|
| 2267 | /// ``` | 
|---|
| 2268 | /// use itertools::Itertools; | 
|---|
| 2269 | /// | 
|---|
| 2270 | /// assert_eq!([ "a", "b", "c"].iter().join( ", "), "a, b, c"); | 
|---|
| 2271 | /// assert_eq!([1, 2, 3].iter().join( ", "), "1, 2, 3"); | 
|---|
| 2272 | /// ``` | 
|---|
| 2273 | #[ cfg(feature = "use_alloc")] | 
|---|
| 2274 | fn join(&mut self, sep: &str) -> String | 
|---|
| 2275 | where | 
|---|
| 2276 | Self::Item: std::fmt::Display, | 
|---|
| 2277 | { | 
|---|
| 2278 | match self.next() { | 
|---|
| 2279 | None => String::new(), | 
|---|
| 2280 | Some(first_elt) => { | 
|---|
| 2281 | // estimate lower bound of capacity needed | 
|---|
| 2282 | let (lower, _) = self.size_hint(); | 
|---|
| 2283 | let mut result = String::with_capacity(sep.len() * lower); | 
|---|
| 2284 | write!(&mut result, "{} ", first_elt).unwrap(); | 
|---|
| 2285 | self.for_each(|elt| { | 
|---|
| 2286 | result.push_str(sep); | 
|---|
| 2287 | write!(&mut result, "{} ", elt).unwrap(); | 
|---|
| 2288 | }); | 
|---|
| 2289 | result | 
|---|
| 2290 | } | 
|---|
| 2291 | } | 
|---|
| 2292 | } | 
|---|
| 2293 |  | 
|---|
| 2294 | /// Format all iterator elements, separated by `sep`. | 
|---|
| 2295 | /// | 
|---|
| 2296 | /// All elements are formatted (any formatting trait) | 
|---|
| 2297 | /// with `sep` inserted between each element. | 
|---|
| 2298 | /// | 
|---|
| 2299 | /// **Panics** if the formatter helper is formatted more than once. | 
|---|
| 2300 | /// | 
|---|
| 2301 | /// ``` | 
|---|
| 2302 | /// use itertools::Itertools; | 
|---|
| 2303 | /// | 
|---|
| 2304 | /// let data = [1.1, 2.71828, -3.]; | 
|---|
| 2305 | /// assert_eq!( | 
|---|
| 2306 | ///     format!( "{:.2}", data.iter().format( ", ")), | 
|---|
| 2307 | /// "1.10, 2.72, -3.00"); | 
|---|
| 2308 | /// ``` | 
|---|
| 2309 | fn format(self, sep: &str) -> Format<Self> | 
|---|
| 2310 | where | 
|---|
| 2311 | Self: Sized, | 
|---|
| 2312 | { | 
|---|
| 2313 | format::new_format_default(self, sep) | 
|---|
| 2314 | } | 
|---|
| 2315 |  | 
|---|
| 2316 | /// Format all iterator elements, separated by `sep`. | 
|---|
| 2317 | /// | 
|---|
| 2318 | /// This is a customizable version of [`.format()`](Itertools::format). | 
|---|
| 2319 | /// | 
|---|
| 2320 | /// The supplied closure `format` is called once per iterator element, | 
|---|
| 2321 | /// with two arguments: the element and a callback that takes a | 
|---|
| 2322 | /// `&Display` value, i.e. any reference to type that implements `Display`. | 
|---|
| 2323 | /// | 
|---|
| 2324 | /// Using `&format_args!(...)` is the most versatile way to apply custom | 
|---|
| 2325 | /// element formatting. The callback can be called multiple times if needed. | 
|---|
| 2326 | /// | 
|---|
| 2327 | /// **Panics** if the formatter helper is formatted more than once. | 
|---|
| 2328 | /// | 
|---|
| 2329 | /// ``` | 
|---|
| 2330 | /// use itertools::Itertools; | 
|---|
| 2331 | /// | 
|---|
| 2332 | /// let data = [1.1, 2.71828, -3.]; | 
|---|
| 2333 | /// let data_formatter = data.iter().format_with( ", ", |elt, f| f(&format_args!( "{:.2}", elt))); | 
|---|
| 2334 | /// assert_eq!(format!( "{}", data_formatter), | 
|---|
| 2335 | /// "1.10, 2.72, -3.00"); | 
|---|
| 2336 | /// | 
|---|
| 2337 | /// // .format_with() is recursively composable | 
|---|
| 2338 | /// let matrix = [[1., 2., 3.], | 
|---|
| 2339 | ///               [4., 5., 6.]]; | 
|---|
| 2340 | /// let matrix_formatter = matrix.iter().format_with( "\n ", |row, f| { | 
|---|
| 2341 | ///                                 f(&row.iter().format_with( ", ", |elt, g| g(&elt))) | 
|---|
| 2342 | ///                              }); | 
|---|
| 2343 | /// assert_eq!(format!( "{}", matrix_formatter), | 
|---|
| 2344 | /// "1, 2, 3\n 4, 5, 6"); | 
|---|
| 2345 | /// | 
|---|
| 2346 | /// | 
|---|
| 2347 | /// ``` | 
|---|
| 2348 | fn format_with<F>(self, sep: &str, format: F) -> FormatWith<Self, F> | 
|---|
| 2349 | where | 
|---|
| 2350 | Self: Sized, | 
|---|
| 2351 | F: FnMut(Self::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result, | 
|---|
| 2352 | { | 
|---|
| 2353 | format::new_format(self, sep, format) | 
|---|
| 2354 | } | 
|---|
| 2355 |  | 
|---|
| 2356 | /// See [`.fold_ok()`](Itertools::fold_ok). | 
|---|
| 2357 | #[ deprecated(note = "Use .fold_ok() instead", since = "0.10.0")] | 
|---|
| 2358 | fn fold_results<A, E, B, F>(&mut self, start: B, f: F) -> Result<B, E> | 
|---|
| 2359 | where | 
|---|
| 2360 | Self: Iterator<Item = Result<A, E>>, | 
|---|
| 2361 | F: FnMut(B, A) -> B, | 
|---|
| 2362 | { | 
|---|
| 2363 | self.fold_ok(start, f) | 
|---|
| 2364 | } | 
|---|
| 2365 |  | 
|---|
| 2366 | /// Fold `Result` values from an iterator. | 
|---|
| 2367 | /// | 
|---|
| 2368 | /// Only `Ok` values are folded. If no error is encountered, the folded | 
|---|
| 2369 | /// value is returned inside `Ok`. Otherwise, the operation terminates | 
|---|
| 2370 | /// and returns the first `Err` value it encounters. No iterator elements are | 
|---|
| 2371 | /// consumed after the first error. | 
|---|
| 2372 | /// | 
|---|
| 2373 | /// The first accumulator value is the `start` parameter. | 
|---|
| 2374 | /// Each iteration passes the accumulator value and the next value inside `Ok` | 
|---|
| 2375 | /// to the fold function `f` and its return value becomes the new accumulator value. | 
|---|
| 2376 | /// | 
|---|
| 2377 | /// For example the sequence *Ok(1), Ok(2), Ok(3)* will result in a | 
|---|
| 2378 | /// computation like this: | 
|---|
| 2379 | /// | 
|---|
| 2380 | /// ```no_run | 
|---|
| 2381 | /// # let start = 0; | 
|---|
| 2382 | /// # let f = |x, y| x + y; | 
|---|
| 2383 | /// let mut accum = start; | 
|---|
| 2384 | /// accum = f(accum, 1); | 
|---|
| 2385 | /// accum = f(accum, 2); | 
|---|
| 2386 | /// accum = f(accum, 3); | 
|---|
| 2387 | /// ``` | 
|---|
| 2388 | /// | 
|---|
| 2389 | /// With a `start` value of 0 and an addition as folding function, | 
|---|
| 2390 | /// this effectively results in *((0 + 1) + 2) + 3* | 
|---|
| 2391 | /// | 
|---|
| 2392 | /// ``` | 
|---|
| 2393 | /// use std::ops::Add; | 
|---|
| 2394 | /// use itertools::Itertools; | 
|---|
| 2395 | /// | 
|---|
| 2396 | /// let values = [1, 2, -2, -1, 2, 1]; | 
|---|
| 2397 | /// assert_eq!( | 
|---|
| 2398 | ///     values.iter() | 
|---|
| 2399 | ///           .map(Ok::<_, ()>) | 
|---|
| 2400 | ///           .fold_ok(0, Add::add), | 
|---|
| 2401 | ///     Ok(3) | 
|---|
| 2402 | /// ); | 
|---|
| 2403 | /// assert!( | 
|---|
| 2404 | ///     values.iter() | 
|---|
| 2405 | ///           .map(|&x| if x >= 0 { Ok(x) } else { Err( "Negative number") }) | 
|---|
| 2406 | ///           .fold_ok(0, Add::add) | 
|---|
| 2407 | ///           .is_err() | 
|---|
| 2408 | /// ); | 
|---|
| 2409 | /// ``` | 
|---|
| 2410 | fn fold_ok<A, E, B, F>(&mut self, mut start: B, mut f: F) -> Result<B, E> | 
|---|
| 2411 | where | 
|---|
| 2412 | Self: Iterator<Item = Result<A, E>>, | 
|---|
| 2413 | F: FnMut(B, A) -> B, | 
|---|
| 2414 | { | 
|---|
| 2415 | for elt in self { | 
|---|
| 2416 | match elt { | 
|---|
| 2417 | Ok(v) => start = f(start, v), | 
|---|
| 2418 | Err(u) => return Err(u), | 
|---|
| 2419 | } | 
|---|
| 2420 | } | 
|---|
| 2421 | Ok(start) | 
|---|
| 2422 | } | 
|---|
| 2423 |  | 
|---|
| 2424 | /// Fold `Option` values from an iterator. | 
|---|
| 2425 | /// | 
|---|
| 2426 | /// Only `Some` values are folded. If no `None` is encountered, the folded | 
|---|
| 2427 | /// value is returned inside `Some`. Otherwise, the operation terminates | 
|---|
| 2428 | /// and returns `None`. No iterator elements are consumed after the `None`. | 
|---|
| 2429 | /// | 
|---|
| 2430 | /// This is the `Option` equivalent to [`fold_ok`](Itertools::fold_ok). | 
|---|
| 2431 | /// | 
|---|
| 2432 | /// ``` | 
|---|
| 2433 | /// use std::ops::Add; | 
|---|
| 2434 | /// use itertools::Itertools; | 
|---|
| 2435 | /// | 
|---|
| 2436 | /// let mut values = vec![Some(1), Some(2), Some(-2)].into_iter(); | 
|---|
| 2437 | /// assert_eq!(values.fold_options(5, Add::add), Some(5 + 1 + 2 - 2)); | 
|---|
| 2438 | /// | 
|---|
| 2439 | /// let mut more_values = vec![Some(2), None, Some(0)].into_iter(); | 
|---|
| 2440 | /// assert!(more_values.fold_options(0, Add::add).is_none()); | 
|---|
| 2441 | /// assert_eq!(more_values.next().unwrap(), Some(0)); | 
|---|
| 2442 | /// ``` | 
|---|
| 2443 | fn fold_options<A, B, F>(&mut self, mut start: B, mut f: F) -> Option<B> | 
|---|
| 2444 | where | 
|---|
| 2445 | Self: Iterator<Item = Option<A>>, | 
|---|
| 2446 | F: FnMut(B, A) -> B, | 
|---|
| 2447 | { | 
|---|
| 2448 | for elt in self { | 
|---|
| 2449 | match elt { | 
|---|
| 2450 | Some(v) => start = f(start, v), | 
|---|
| 2451 | None => return None, | 
|---|
| 2452 | } | 
|---|
| 2453 | } | 
|---|
| 2454 | Some(start) | 
|---|
| 2455 | } | 
|---|
| 2456 |  | 
|---|
| 2457 | /// Accumulator of the elements in the iterator. | 
|---|
| 2458 | /// | 
|---|
| 2459 | /// Like `.fold()`, without a base case. If the iterator is | 
|---|
| 2460 | /// empty, return `None`. With just one element, return it. | 
|---|
| 2461 | /// Otherwise elements are accumulated in sequence using the closure `f`. | 
|---|
| 2462 | /// | 
|---|
| 2463 | /// ``` | 
|---|
| 2464 | /// use itertools::Itertools; | 
|---|
| 2465 | /// | 
|---|
| 2466 | /// assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45); | 
|---|
| 2467 | /// assert_eq!((0..0).fold1(|x, y| x * y), None); | 
|---|
| 2468 | /// ``` | 
|---|
| 2469 | #[ deprecated(since = "0.10.2", note = "Use `Iterator::reduce` instead")] | 
|---|
| 2470 | fn fold1<F>(mut self, f: F) -> Option<Self::Item> | 
|---|
| 2471 | where | 
|---|
| 2472 | F: FnMut(Self::Item, Self::Item) -> Self::Item, | 
|---|
| 2473 | Self: Sized, | 
|---|
| 2474 | { | 
|---|
| 2475 | self.next().map(move |x| self.fold(x, f)) | 
|---|
| 2476 | } | 
|---|
| 2477 |  | 
|---|
| 2478 | /// Accumulate the elements in the iterator in a tree-like manner. | 
|---|
| 2479 | /// | 
|---|
| 2480 | /// You can think of it as, while there's more than one item, repeatedly | 
|---|
| 2481 | /// combining adjacent items.  It does so in bottom-up-merge-sort order, | 
|---|
| 2482 | /// however, so that it needs only logarithmic stack space. | 
|---|
| 2483 | /// | 
|---|
| 2484 | /// This produces a call tree like the following (where the calls under | 
|---|
| 2485 | /// an item are done after reading that item): | 
|---|
| 2486 | /// | 
|---|
| 2487 | /// ```text | 
|---|
| 2488 | /// 1 2 3 4 5 6 7 | 
|---|
| 2489 | /// │ │ │ │ │ │ │ | 
|---|
| 2490 | /// └─f └─f └─f │ | 
|---|
| 2491 | ///   │   │   │ │ | 
|---|
| 2492 | ///   └───f   └─f | 
|---|
| 2493 | ///       │     │ | 
|---|
| 2494 | ///       └─────f | 
|---|
| 2495 | /// ``` | 
|---|
| 2496 | /// | 
|---|
| 2497 | /// Which, for non-associative functions, will typically produce a different | 
|---|
| 2498 | /// result than the linear call tree used by [`Iterator::reduce`]: | 
|---|
| 2499 | /// | 
|---|
| 2500 | /// ```text | 
|---|
| 2501 | /// 1 2 3 4 5 6 7 | 
|---|
| 2502 | /// │ │ │ │ │ │ │ | 
|---|
| 2503 | /// └─f─f─f─f─f─f | 
|---|
| 2504 | /// ``` | 
|---|
| 2505 | /// | 
|---|
| 2506 | /// If `f` is associative you should also decide carefully: | 
|---|
| 2507 | /// | 
|---|
| 2508 | /// - if `f` is a trivial operation like `u32::wrapping_add`, prefer the normal | 
|---|
| 2509 | /// [`Iterator::reduce`] instead since it will most likely result in the generation of simpler | 
|---|
| 2510 | /// code because the compiler is able to optimize it | 
|---|
| 2511 | /// - otherwise if `f` is non-trivial like `format!`, you should use `tree_fold1` since it | 
|---|
| 2512 | /// reduces the number of operations from `O(n)` to `O(ln(n))` | 
|---|
| 2513 | /// | 
|---|
| 2514 | /// Here "non-trivial" means: | 
|---|
| 2515 | /// | 
|---|
| 2516 | /// - any allocating operation | 
|---|
| 2517 | /// - any function that is a composition of many operations | 
|---|
| 2518 | /// | 
|---|
| 2519 | /// ``` | 
|---|
| 2520 | /// use itertools::Itertools; | 
|---|
| 2521 | /// | 
|---|
| 2522 | /// // The same tree as above | 
|---|
| 2523 | /// let num_strings = (1..8).map(|x| x.to_string()); | 
|---|
| 2524 | /// assert_eq!(num_strings.tree_fold1(|x, y| format!( "f({}, {})", x, y)), | 
|---|
| 2525 | ///     Some(String::from( "f(f(f(1, 2), f(3, 4)), f(f(5, 6), 7))"))); | 
|---|
| 2526 | /// | 
|---|
| 2527 | /// // Like fold1, an empty iterator produces None | 
|---|
| 2528 | /// assert_eq!((0..0).tree_fold1(|x, y| x * y), None); | 
|---|
| 2529 | /// | 
|---|
| 2530 | /// // tree_fold1 matches fold1 for associative operations... | 
|---|
| 2531 | /// assert_eq!((0..10).tree_fold1(|x, y| x + y), | 
|---|
| 2532 | ///     (0..10).fold1(|x, y| x + y)); | 
|---|
| 2533 | /// // ...but not for non-associative ones | 
|---|
| 2534 | /// assert_ne!((0..10).tree_fold1(|x, y| x - y), | 
|---|
| 2535 | ///     (0..10).fold1(|x, y| x - y)); | 
|---|
| 2536 | /// ``` | 
|---|
| 2537 | fn tree_fold1<F>(mut self, mut f: F) -> Option<Self::Item> | 
|---|
| 2538 | where | 
|---|
| 2539 | F: FnMut(Self::Item, Self::Item) -> Self::Item, | 
|---|
| 2540 | Self: Sized, | 
|---|
| 2541 | { | 
|---|
| 2542 | type State<T> = Result<T, Option<T>>; | 
|---|
| 2543 |  | 
|---|
| 2544 | fn inner0<T, II, FF>(it: &mut II, f: &mut FF) -> State<T> | 
|---|
| 2545 | where | 
|---|
| 2546 | II: Iterator<Item = T>, | 
|---|
| 2547 | FF: FnMut(T, T) -> T, | 
|---|
| 2548 | { | 
|---|
| 2549 | // This function could be replaced with `it.next().ok_or(None)`, | 
|---|
| 2550 | // but half the useful tree_fold1 work is combining adjacent items, | 
|---|
| 2551 | // so put that in a form that LLVM is more likely to optimize well. | 
|---|
| 2552 |  | 
|---|
| 2553 | let a = if let Some(v) = it.next() { | 
|---|
| 2554 | v | 
|---|
| 2555 | } else { | 
|---|
| 2556 | return Err(None); | 
|---|
| 2557 | }; | 
|---|
| 2558 | let b = if let Some(v) = it.next() { | 
|---|
| 2559 | v | 
|---|
| 2560 | } else { | 
|---|
| 2561 | return Err(Some(a)); | 
|---|
| 2562 | }; | 
|---|
| 2563 | Ok(f(a, b)) | 
|---|
| 2564 | } | 
|---|
| 2565 |  | 
|---|
| 2566 | fn inner<T, II, FF>(stop: usize, it: &mut II, f: &mut FF) -> State<T> | 
|---|
| 2567 | where | 
|---|
| 2568 | II: Iterator<Item = T>, | 
|---|
| 2569 | FF: FnMut(T, T) -> T, | 
|---|
| 2570 | { | 
|---|
| 2571 | let mut x = inner0(it, f)?; | 
|---|
| 2572 | for height in 0..stop { | 
|---|
| 2573 | // Try to get another tree the same size with which to combine it, | 
|---|
| 2574 | // creating a new tree that's twice as big for next time around. | 
|---|
| 2575 | let next = if height == 0 { | 
|---|
| 2576 | inner0(it, f) | 
|---|
| 2577 | } else { | 
|---|
| 2578 | inner(height, it, f) | 
|---|
| 2579 | }; | 
|---|
| 2580 | match next { | 
|---|
| 2581 | Ok(y) => x = f(x, y), | 
|---|
| 2582 |  | 
|---|
| 2583 | // If we ran out of items, combine whatever we did manage | 
|---|
| 2584 | // to get.  It's better combined with the current value | 
|---|
| 2585 | // than something in a parent frame, because the tree in | 
|---|
| 2586 | // the parent is always as least as big as this one. | 
|---|
| 2587 | Err(None) => return Err(Some(x)), | 
|---|
| 2588 | Err(Some(y)) => return Err(Some(f(x, y))), | 
|---|
| 2589 | } | 
|---|
| 2590 | } | 
|---|
| 2591 | Ok(x) | 
|---|
| 2592 | } | 
|---|
| 2593 |  | 
|---|
| 2594 | match inner(usize::max_value(), &mut self, &mut f) { | 
|---|
| 2595 | Err(x) => x, | 
|---|
| 2596 | _ => unreachable!(), | 
|---|
| 2597 | } | 
|---|
| 2598 | } | 
|---|
| 2599 |  | 
|---|
| 2600 | /// An iterator method that applies a function, producing a single, final value. | 
|---|
| 2601 | /// | 
|---|
| 2602 | /// `fold_while()` is basically equivalent to [`Iterator::fold`] but with additional support for | 
|---|
| 2603 | /// early exit via short-circuiting. | 
|---|
| 2604 | /// | 
|---|
| 2605 | /// ``` | 
|---|
| 2606 | /// use itertools::Itertools; | 
|---|
| 2607 | /// use itertools::FoldWhile::{Continue, Done}; | 
|---|
| 2608 | /// | 
|---|
| 2609 | /// let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; | 
|---|
| 2610 | /// | 
|---|
| 2611 | /// let mut result = 0; | 
|---|
| 2612 | /// | 
|---|
| 2613 | /// // for loop: | 
|---|
| 2614 | /// for i in &numbers { | 
|---|
| 2615 | ///     if *i > 5 { | 
|---|
| 2616 | ///         break; | 
|---|
| 2617 | ///     } | 
|---|
| 2618 | ///     result = result + i; | 
|---|
| 2619 | /// } | 
|---|
| 2620 | /// | 
|---|
| 2621 | /// // fold: | 
|---|
| 2622 | /// let result2 = numbers.iter().fold(0, |acc, x| { | 
|---|
| 2623 | ///     if *x > 5 { acc } else { acc + x } | 
|---|
| 2624 | /// }); | 
|---|
| 2625 | /// | 
|---|
| 2626 | /// // fold_while: | 
|---|
| 2627 | /// let result3 = numbers.iter().fold_while(0, |acc, x| { | 
|---|
| 2628 | ///     if *x > 5 { Done(acc) } else { Continue(acc + x) } | 
|---|
| 2629 | /// }).into_inner(); | 
|---|
| 2630 | /// | 
|---|
| 2631 | /// // they're the same | 
|---|
| 2632 | /// assert_eq!(result, result2); | 
|---|
| 2633 | /// assert_eq!(result2, result3); | 
|---|
| 2634 | /// ``` | 
|---|
| 2635 | /// | 
|---|
| 2636 | /// The big difference between the computations of `result2` and `result3` is that while | 
|---|
| 2637 | /// `fold()` called the provided closure for every item of the callee iterator, | 
|---|
| 2638 | /// `fold_while()` actually stopped iterating as soon as it encountered `Fold::Done(_)`. | 
|---|
| 2639 | fn fold_while<B, F>(&mut self, init: B, mut f: F) -> FoldWhile<B> | 
|---|
| 2640 | where | 
|---|
| 2641 | Self: Sized, | 
|---|
| 2642 | F: FnMut(B, Self::Item) -> FoldWhile<B>, | 
|---|
| 2643 | { | 
|---|
| 2644 | use Result::{Err as Break, Ok as Continue}; | 
|---|
| 2645 |  | 
|---|
| 2646 | let result = self.try_fold( | 
|---|
| 2647 | init, | 
|---|
| 2648 | #[ inline(always)] | 
|---|
| 2649 | |acc, v| match f(acc, v) { | 
|---|
| 2650 | FoldWhile::Continue(acc) => Continue(acc), | 
|---|
| 2651 | FoldWhile::Done(acc) => Break(acc), | 
|---|
| 2652 | }, | 
|---|
| 2653 | ); | 
|---|
| 2654 |  | 
|---|
| 2655 | match result { | 
|---|
| 2656 | Continue(acc) => FoldWhile::Continue(acc), | 
|---|
| 2657 | Break(acc) => FoldWhile::Done(acc), | 
|---|
| 2658 | } | 
|---|
| 2659 | } | 
|---|
| 2660 |  | 
|---|
| 2661 | /// Iterate over the entire iterator and add all the elements. | 
|---|
| 2662 | /// | 
|---|
| 2663 | /// An empty iterator returns `None`, otherwise `Some(sum)`. | 
|---|
| 2664 | /// | 
|---|
| 2665 | /// # Panics | 
|---|
| 2666 | /// | 
|---|
| 2667 | /// When calling `sum1()` and a primitive integer type is being returned, this | 
|---|
| 2668 | /// method will panic if the computation overflows and debug assertions are | 
|---|
| 2669 | /// enabled. | 
|---|
| 2670 | /// | 
|---|
| 2671 | /// # Examples | 
|---|
| 2672 | /// | 
|---|
| 2673 | /// ``` | 
|---|
| 2674 | /// use itertools::Itertools; | 
|---|
| 2675 | /// | 
|---|
| 2676 | /// let empty_sum = (1..1).sum1::<i32>(); | 
|---|
| 2677 | /// assert_eq!(empty_sum, None); | 
|---|
| 2678 | /// | 
|---|
| 2679 | /// let nonempty_sum = (1..11).sum1::<i32>(); | 
|---|
| 2680 | /// assert_eq!(nonempty_sum, Some(55)); | 
|---|
| 2681 | /// ``` | 
|---|
| 2682 | fn sum1<S>(mut self) -> Option<S> | 
|---|
| 2683 | where | 
|---|
| 2684 | Self: Sized, | 
|---|
| 2685 | S: std::iter::Sum<Self::Item>, | 
|---|
| 2686 | { | 
|---|
| 2687 | self.next().map(|first| once(first).chain(self).sum()) | 
|---|
| 2688 | } | 
|---|
| 2689 |  | 
|---|
| 2690 | /// Iterate over the entire iterator and multiply all the elements. | 
|---|
| 2691 | /// | 
|---|
| 2692 | /// An empty iterator returns `None`, otherwise `Some(product)`. | 
|---|
| 2693 | /// | 
|---|
| 2694 | /// # Panics | 
|---|
| 2695 | /// | 
|---|
| 2696 | /// When calling `product1()` and a primitive integer type is being returned, | 
|---|
| 2697 | /// method will panic if the computation overflows and debug assertions are | 
|---|
| 2698 | /// enabled. | 
|---|
| 2699 | /// | 
|---|
| 2700 | /// # Examples | 
|---|
| 2701 | /// ``` | 
|---|
| 2702 | /// use itertools::Itertools; | 
|---|
| 2703 | /// | 
|---|
| 2704 | /// let empty_product = (1..1).product1::<i32>(); | 
|---|
| 2705 | /// assert_eq!(empty_product, None); | 
|---|
| 2706 | /// | 
|---|
| 2707 | /// let nonempty_product = (1..11).product1::<i32>(); | 
|---|
| 2708 | /// assert_eq!(nonempty_product, Some(3628800)); | 
|---|
| 2709 | /// ``` | 
|---|
| 2710 | fn product1<P>(mut self) -> Option<P> | 
|---|
| 2711 | where | 
|---|
| 2712 | Self: Sized, | 
|---|
| 2713 | P: std::iter::Product<Self::Item>, | 
|---|
| 2714 | { | 
|---|
| 2715 | self.next().map(|first| once(first).chain(self).product()) | 
|---|
| 2716 | } | 
|---|
| 2717 |  | 
|---|
| 2718 | /// Sort all iterator elements into a new iterator in ascending order. | 
|---|
| 2719 | /// | 
|---|
| 2720 | /// **Note:** This consumes the entire iterator, uses the | 
|---|
| 2721 | /// [`slice::sort_unstable`] method and returns the result as a new | 
|---|
| 2722 | /// iterator that owns its elements. | 
|---|
| 2723 | /// | 
|---|
| 2724 | /// This sort is unstable (i.e., may reorder equal elements). | 
|---|
| 2725 | /// | 
|---|
| 2726 | /// The sorted iterator, if directly collected to a `Vec`, is converted | 
|---|
| 2727 | /// without any extra copying or allocation cost. | 
|---|
| 2728 | /// | 
|---|
| 2729 | /// ``` | 
|---|
| 2730 | /// use itertools::Itertools; | 
|---|
| 2731 | /// | 
|---|
| 2732 | /// // sort the letters of the text in ascending order | 
|---|
| 2733 | /// let text = "bdacfe"; | 
|---|
| 2734 | /// itertools::assert_equal(text.chars().sorted_unstable(), | 
|---|
| 2735 | /// "abcdef".chars()); | 
|---|
| 2736 | /// ``` | 
|---|
| 2737 | #[ cfg(feature = "use_alloc")] | 
|---|
| 2738 | fn sorted_unstable(self) -> VecIntoIter<Self::Item> | 
|---|
| 2739 | where | 
|---|
| 2740 | Self: Sized, | 
|---|
| 2741 | Self::Item: Ord, | 
|---|
| 2742 | { | 
|---|
| 2743 | // Use .sort_unstable() directly since it is not quite identical with | 
|---|
| 2744 | // .sort_by(Ord::cmp) | 
|---|
| 2745 | let mut v = Vec::from_iter(self); | 
|---|
| 2746 | v.sort_unstable(); | 
|---|
| 2747 | v.into_iter() | 
|---|
| 2748 | } | 
|---|
| 2749 |  | 
|---|
| 2750 | /// Sort all iterator elements into a new iterator in ascending order. | 
|---|
| 2751 | /// | 
|---|
| 2752 | /// **Note:** This consumes the entire iterator, uses the | 
|---|
| 2753 | /// [`slice::sort_unstable_by`] method and returns the result as a new | 
|---|
| 2754 | /// iterator that owns its elements. | 
|---|
| 2755 | /// | 
|---|
| 2756 | /// This sort is unstable (i.e., may reorder equal elements). | 
|---|
| 2757 | /// | 
|---|
| 2758 | /// The sorted iterator, if directly collected to a `Vec`, is converted | 
|---|
| 2759 | /// without any extra copying or allocation cost. | 
|---|
| 2760 | /// | 
|---|
| 2761 | /// ``` | 
|---|
| 2762 | /// use itertools::Itertools; | 
|---|
| 2763 | /// | 
|---|
| 2764 | /// // sort people in descending order by age | 
|---|
| 2765 | /// let people = vec![( "Jane", 20), ( "John", 18), ( "Jill", 30), ( "Jack", 27)]; | 
|---|
| 2766 | /// | 
|---|
| 2767 | /// let oldest_people_first = people | 
|---|
| 2768 | ///     .into_iter() | 
|---|
| 2769 | ///     .sorted_unstable_by(|a, b| Ord::cmp(&b.1, &a.1)) | 
|---|
| 2770 | ///     .map(|(person, _age)| person); | 
|---|
| 2771 | /// | 
|---|
| 2772 | /// itertools::assert_equal(oldest_people_first, | 
|---|
| 2773 | ///                         vec![ "Jill", "Jack", "Jane", "John"]); | 
|---|
| 2774 | /// ``` | 
|---|
| 2775 | #[ cfg(feature = "use_alloc")] | 
|---|
| 2776 | fn sorted_unstable_by<F>(self, cmp: F) -> VecIntoIter<Self::Item> | 
|---|
| 2777 | where | 
|---|
| 2778 | Self: Sized, | 
|---|
| 2779 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, | 
|---|
| 2780 | { | 
|---|
| 2781 | let mut v = Vec::from_iter(self); | 
|---|
| 2782 | v.sort_unstable_by(cmp); | 
|---|
| 2783 | v.into_iter() | 
|---|
| 2784 | } | 
|---|
| 2785 |  | 
|---|
| 2786 | /// Sort all iterator elements into a new iterator in ascending order. | 
|---|
| 2787 | /// | 
|---|
| 2788 | /// **Note:** This consumes the entire iterator, uses the | 
|---|
| 2789 | /// [`slice::sort_unstable_by_key`] method and returns the result as a new | 
|---|
| 2790 | /// iterator that owns its elements. | 
|---|
| 2791 | /// | 
|---|
| 2792 | /// This sort is unstable (i.e., may reorder equal elements). | 
|---|
| 2793 | /// | 
|---|
| 2794 | /// The sorted iterator, if directly collected to a `Vec`, is converted | 
|---|
| 2795 | /// without any extra copying or allocation cost. | 
|---|
| 2796 | /// | 
|---|
| 2797 | /// ``` | 
|---|
| 2798 | /// use itertools::Itertools; | 
|---|
| 2799 | /// | 
|---|
| 2800 | /// // sort people in descending order by age | 
|---|
| 2801 | /// let people = vec![( "Jane", 20), ( "John", 18), ( "Jill", 30), ( "Jack", 27)]; | 
|---|
| 2802 | /// | 
|---|
| 2803 | /// let oldest_people_first = people | 
|---|
| 2804 | ///     .into_iter() | 
|---|
| 2805 | ///     .sorted_unstable_by_key(|x| -x.1) | 
|---|
| 2806 | ///     .map(|(person, _age)| person); | 
|---|
| 2807 | /// | 
|---|
| 2808 | /// itertools::assert_equal(oldest_people_first, | 
|---|
| 2809 | ///                         vec![ "Jill", "Jack", "Jane", "John"]); | 
|---|
| 2810 | /// ``` | 
|---|
| 2811 | #[ cfg(feature = "use_alloc")] | 
|---|
| 2812 | fn sorted_unstable_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> | 
|---|
| 2813 | where | 
|---|
| 2814 | Self: Sized, | 
|---|
| 2815 | K: Ord, | 
|---|
| 2816 | F: FnMut(&Self::Item) -> K, | 
|---|
| 2817 | { | 
|---|
| 2818 | let mut v = Vec::from_iter(self); | 
|---|
| 2819 | v.sort_unstable_by_key(f); | 
|---|
| 2820 | v.into_iter() | 
|---|
| 2821 | } | 
|---|
| 2822 |  | 
|---|
| 2823 | /// Sort all iterator elements into a new iterator in ascending order. | 
|---|
| 2824 | /// | 
|---|
| 2825 | /// **Note:** This consumes the entire iterator, uses the | 
|---|
| 2826 | /// [`slice::sort`] method and returns the result as a new | 
|---|
| 2827 | /// iterator that owns its elements. | 
|---|
| 2828 | /// | 
|---|
| 2829 | /// This sort is stable (i.e., does not reorder equal elements). | 
|---|
| 2830 | /// | 
|---|
| 2831 | /// The sorted iterator, if directly collected to a `Vec`, is converted | 
|---|
| 2832 | /// without any extra copying or allocation cost. | 
|---|
| 2833 | /// | 
|---|
| 2834 | /// ``` | 
|---|
| 2835 | /// use itertools::Itertools; | 
|---|
| 2836 | /// | 
|---|
| 2837 | /// // sort the letters of the text in ascending order | 
|---|
| 2838 | /// let text = "bdacfe"; | 
|---|
| 2839 | /// itertools::assert_equal(text.chars().sorted(), | 
|---|
| 2840 | /// "abcdef".chars()); | 
|---|
| 2841 | /// ``` | 
|---|
| 2842 | #[ cfg(feature = "use_alloc")] | 
|---|
| 2843 | fn sorted(self) -> VecIntoIter<Self::Item> | 
|---|
| 2844 | where | 
|---|
| 2845 | Self: Sized, | 
|---|
| 2846 | Self::Item: Ord, | 
|---|
| 2847 | { | 
|---|
| 2848 | // Use .sort() directly since it is not quite identical with | 
|---|
| 2849 | // .sort_by(Ord::cmp) | 
|---|
| 2850 | let mut v = Vec::from_iter(self); | 
|---|
| 2851 | v.sort(); | 
|---|
| 2852 | v.into_iter() | 
|---|
| 2853 | } | 
|---|
| 2854 |  | 
|---|
| 2855 | /// Sort all iterator elements into a new iterator in ascending order. | 
|---|
| 2856 | /// | 
|---|
| 2857 | /// **Note:** This consumes the entire iterator, uses the | 
|---|
| 2858 | /// [`slice::sort_by`] method and returns the result as a new | 
|---|
| 2859 | /// iterator that owns its elements. | 
|---|
| 2860 | /// | 
|---|
| 2861 | /// This sort is stable (i.e., does not reorder equal elements). | 
|---|
| 2862 | /// | 
|---|
| 2863 | /// The sorted iterator, if directly collected to a `Vec`, is converted | 
|---|
| 2864 | /// without any extra copying or allocation cost. | 
|---|
| 2865 | /// | 
|---|
| 2866 | /// ``` | 
|---|
| 2867 | /// use itertools::Itertools; | 
|---|
| 2868 | /// | 
|---|
| 2869 | /// // sort people in descending order by age | 
|---|
| 2870 | /// let people = vec![( "Jane", 20), ( "John", 18), ( "Jill", 30), ( "Jack", 30)]; | 
|---|
| 2871 | /// | 
|---|
| 2872 | /// let oldest_people_first = people | 
|---|
| 2873 | ///     .into_iter() | 
|---|
| 2874 | ///     .sorted_by(|a, b| Ord::cmp(&b.1, &a.1)) | 
|---|
| 2875 | ///     .map(|(person, _age)| person); | 
|---|
| 2876 | /// | 
|---|
| 2877 | /// itertools::assert_equal(oldest_people_first, | 
|---|
| 2878 | ///                         vec![ "Jill", "Jack", "Jane", "John"]); | 
|---|
| 2879 | /// ``` | 
|---|
| 2880 | #[ cfg(feature = "use_alloc")] | 
|---|
| 2881 | fn sorted_by<F>(self, cmp: F) -> VecIntoIter<Self::Item> | 
|---|
| 2882 | where | 
|---|
| 2883 | Self: Sized, | 
|---|
| 2884 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, | 
|---|
| 2885 | { | 
|---|
| 2886 | let mut v = Vec::from_iter(self); | 
|---|
| 2887 | v.sort_by(cmp); | 
|---|
| 2888 | v.into_iter() | 
|---|
| 2889 | } | 
|---|
| 2890 |  | 
|---|
| 2891 | /// Sort all iterator elements into a new iterator in ascending order. | 
|---|
| 2892 | /// | 
|---|
| 2893 | /// **Note:** This consumes the entire iterator, uses the | 
|---|
| 2894 | /// [`slice::sort_by_key`] method and returns the result as a new | 
|---|
| 2895 | /// iterator that owns its elements. | 
|---|
| 2896 | /// | 
|---|
| 2897 | /// This sort is stable (i.e., does not reorder equal elements). | 
|---|
| 2898 | /// | 
|---|
| 2899 | /// The sorted iterator, if directly collected to a `Vec`, is converted | 
|---|
| 2900 | /// without any extra copying or allocation cost. | 
|---|
| 2901 | /// | 
|---|
| 2902 | /// ``` | 
|---|
| 2903 | /// use itertools::Itertools; | 
|---|
| 2904 | /// | 
|---|
| 2905 | /// // sort people in descending order by age | 
|---|
| 2906 | /// let people = vec![( "Jane", 20), ( "John", 18), ( "Jill", 30), ( "Jack", 30)]; | 
|---|
| 2907 | /// | 
|---|
| 2908 | /// let oldest_people_first = people | 
|---|
| 2909 | ///     .into_iter() | 
|---|
| 2910 | ///     .sorted_by_key(|x| -x.1) | 
|---|
| 2911 | ///     .map(|(person, _age)| person); | 
|---|
| 2912 | /// | 
|---|
| 2913 | /// itertools::assert_equal(oldest_people_first, | 
|---|
| 2914 | ///                         vec![ "Jill", "Jack", "Jane", "John"]); | 
|---|
| 2915 | /// ``` | 
|---|
| 2916 | #[ cfg(feature = "use_alloc")] | 
|---|
| 2917 | fn sorted_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> | 
|---|
| 2918 | where | 
|---|
| 2919 | Self: Sized, | 
|---|
| 2920 | K: Ord, | 
|---|
| 2921 | F: FnMut(&Self::Item) -> K, | 
|---|
| 2922 | { | 
|---|
| 2923 | let mut v = Vec::from_iter(self); | 
|---|
| 2924 | v.sort_by_key(f); | 
|---|
| 2925 | v.into_iter() | 
|---|
| 2926 | } | 
|---|
| 2927 |  | 
|---|
| 2928 | /// Sort all iterator elements into a new iterator in ascending order. The key function is | 
|---|
| 2929 | /// called exactly once per key. | 
|---|
| 2930 | /// | 
|---|
| 2931 | /// **Note:** This consumes the entire iterator, uses the | 
|---|
| 2932 | /// [`slice::sort_by_cached_key`] method and returns the result as a new | 
|---|
| 2933 | /// iterator that owns its elements. | 
|---|
| 2934 | /// | 
|---|
| 2935 | /// This sort is stable (i.e., does not reorder equal elements). | 
|---|
| 2936 | /// | 
|---|
| 2937 | /// The sorted iterator, if directly collected to a `Vec`, is converted | 
|---|
| 2938 | /// without any extra copying or allocation cost. | 
|---|
| 2939 | /// | 
|---|
| 2940 | /// ``` | 
|---|
| 2941 | /// use itertools::Itertools; | 
|---|
| 2942 | /// | 
|---|
| 2943 | /// // sort people in descending order by age | 
|---|
| 2944 | /// let people = vec![( "Jane", 20), ( "John", 18), ( "Jill", 30), ( "Jack", 30)]; | 
|---|
| 2945 | /// | 
|---|
| 2946 | /// let oldest_people_first = people | 
|---|
| 2947 | ///     .into_iter() | 
|---|
| 2948 | ///     .sorted_by_cached_key(|x| -x.1) | 
|---|
| 2949 | ///     .map(|(person, _age)| person); | 
|---|
| 2950 | /// | 
|---|
| 2951 | /// itertools::assert_equal(oldest_people_first, | 
|---|
| 2952 | ///                         vec![ "Jill", "Jack", "Jane", "John"]); | 
|---|
| 2953 | /// ``` | 
|---|
| 2954 | #[ cfg(feature = "use_alloc")] | 
|---|
| 2955 | fn sorted_by_cached_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> | 
|---|
| 2956 | where | 
|---|
| 2957 | Self: Sized, | 
|---|
| 2958 | K: Ord, | 
|---|
| 2959 | F: FnMut(&Self::Item) -> K, | 
|---|
| 2960 | { | 
|---|
| 2961 | let mut v = Vec::from_iter(self); | 
|---|
| 2962 | v.sort_by_cached_key(f); | 
|---|
| 2963 | v.into_iter() | 
|---|
| 2964 | } | 
|---|
| 2965 |  | 
|---|
| 2966 | /// Sort the k smallest elements into a new iterator, in ascending order. | 
|---|
| 2967 | /// | 
|---|
| 2968 | /// **Note:** This consumes the entire iterator, and returns the result | 
|---|
| 2969 | /// as a new iterator that owns its elements.  If the input contains | 
|---|
| 2970 | /// less than k elements, the result is equivalent to `self.sorted()`. | 
|---|
| 2971 | /// | 
|---|
| 2972 | /// This is guaranteed to use `k * sizeof(Self::Item) + O(1)` memory | 
|---|
| 2973 | /// and `O(n log k)` time, with `n` the number of elements in the input. | 
|---|
| 2974 | /// | 
|---|
| 2975 | /// The sorted iterator, if directly collected to a `Vec`, is converted | 
|---|
| 2976 | /// without any extra copying or allocation cost. | 
|---|
| 2977 | /// | 
|---|
| 2978 | /// **Note:** This is functionally-equivalent to `self.sorted().take(k)` | 
|---|
| 2979 | /// but much more efficient. | 
|---|
| 2980 | /// | 
|---|
| 2981 | /// ``` | 
|---|
| 2982 | /// use itertools::Itertools; | 
|---|
| 2983 | /// | 
|---|
| 2984 | /// // A random permutation of 0..15 | 
|---|
| 2985 | /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; | 
|---|
| 2986 | /// | 
|---|
| 2987 | /// let five_smallest = numbers | 
|---|
| 2988 | ///     .into_iter() | 
|---|
| 2989 | ///     .k_smallest(5); | 
|---|
| 2990 | /// | 
|---|
| 2991 | /// itertools::assert_equal(five_smallest, 0..5); | 
|---|
| 2992 | /// ``` | 
|---|
| 2993 | #[ cfg(feature = "use_alloc")] | 
|---|
| 2994 | fn k_smallest(self, k: usize) -> VecIntoIter<Self::Item> | 
|---|
| 2995 | where | 
|---|
| 2996 | Self: Sized, | 
|---|
| 2997 | Self::Item: Ord, | 
|---|
| 2998 | { | 
|---|
| 2999 | crate::k_smallest::k_smallest(self, k) | 
|---|
| 3000 | .into_sorted_vec() | 
|---|
| 3001 | .into_iter() | 
|---|
| 3002 | } | 
|---|
| 3003 |  | 
|---|
| 3004 | /// Collect all iterator elements into one of two | 
|---|
| 3005 | /// partitions. Unlike [`Iterator::partition`], each partition may | 
|---|
| 3006 | /// have a distinct type. | 
|---|
| 3007 | /// | 
|---|
| 3008 | /// ``` | 
|---|
| 3009 | /// use itertools::{Itertools, Either}; | 
|---|
| 3010 | /// | 
|---|
| 3011 | /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)]; | 
|---|
| 3012 | /// | 
|---|
| 3013 | /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures | 
|---|
| 3014 | ///     .into_iter() | 
|---|
| 3015 | ///     .partition_map(|r| { | 
|---|
| 3016 | ///         match r { | 
|---|
| 3017 | ///             Ok(v) => Either::Left(v), | 
|---|
| 3018 | ///             Err(v) => Either::Right(v), | 
|---|
| 3019 | ///         } | 
|---|
| 3020 | ///     }); | 
|---|
| 3021 | /// | 
|---|
| 3022 | /// assert_eq!(successes, [1, 2]); | 
|---|
| 3023 | /// assert_eq!(failures, [false, true]); | 
|---|
| 3024 | /// ``` | 
|---|
| 3025 | fn partition_map<A, B, F, L, R>(self, mut predicate: F) -> (A, B) | 
|---|
| 3026 | where | 
|---|
| 3027 | Self: Sized, | 
|---|
| 3028 | F: FnMut(Self::Item) -> Either<L, R>, | 
|---|
| 3029 | A: Default + Extend<L>, | 
|---|
| 3030 | B: Default + Extend<R>, | 
|---|
| 3031 | { | 
|---|
| 3032 | let mut left = A::default(); | 
|---|
| 3033 | let mut right = B::default(); | 
|---|
| 3034 |  | 
|---|
| 3035 | self.for_each(|val| match predicate(val) { | 
|---|
| 3036 | Either::Left(v) => left.extend(Some(v)), | 
|---|
| 3037 | Either::Right(v) => right.extend(Some(v)), | 
|---|
| 3038 | }); | 
|---|
| 3039 |  | 
|---|
| 3040 | (left, right) | 
|---|
| 3041 | } | 
|---|
| 3042 |  | 
|---|
| 3043 | /// Partition a sequence of `Result`s into one list of all the `Ok` elements | 
|---|
| 3044 | /// and another list of all the `Err` elements. | 
|---|
| 3045 | /// | 
|---|
| 3046 | /// ``` | 
|---|
| 3047 | /// use itertools::Itertools; | 
|---|
| 3048 | /// | 
|---|
| 3049 | /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)]; | 
|---|
| 3050 | /// | 
|---|
| 3051 | /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures | 
|---|
| 3052 | ///     .into_iter() | 
|---|
| 3053 | ///     .partition_result(); | 
|---|
| 3054 | /// | 
|---|
| 3055 | /// assert_eq!(successes, [1, 2]); | 
|---|
| 3056 | /// assert_eq!(failures, [false, true]); | 
|---|
| 3057 | /// ``` | 
|---|
| 3058 | fn partition_result<A, B, T, E>(self) -> (A, B) | 
|---|
| 3059 | where | 
|---|
| 3060 | Self: Iterator<Item = Result<T, E>> + Sized, | 
|---|
| 3061 | A: Default + Extend<T>, | 
|---|
| 3062 | B: Default + Extend<E>, | 
|---|
| 3063 | { | 
|---|
| 3064 | self.partition_map(|r| match r { | 
|---|
| 3065 | Ok(v) => Either::Left(v), | 
|---|
| 3066 | Err(v) => Either::Right(v), | 
|---|
| 3067 | }) | 
|---|
| 3068 | } | 
|---|
| 3069 |  | 
|---|
| 3070 | /// Return a `HashMap` of keys mapped to `Vec`s of values. Keys and values | 
|---|
| 3071 | /// are taken from `(Key, Value)` tuple pairs yielded by the input iterator. | 
|---|
| 3072 | /// | 
|---|
| 3073 | /// Essentially a shorthand for `.into_grouping_map().collect::<Vec<_>>()`. | 
|---|
| 3074 | /// | 
|---|
| 3075 | /// ``` | 
|---|
| 3076 | /// use itertools::Itertools; | 
|---|
| 3077 | /// | 
|---|
| 3078 | /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)]; | 
|---|
| 3079 | /// let lookup = data.into_iter().into_group_map(); | 
|---|
| 3080 | /// | 
|---|
| 3081 | /// assert_eq!(lookup[&0], vec![10, 20]); | 
|---|
| 3082 | /// assert_eq!(lookup.get(&1), None); | 
|---|
| 3083 | /// assert_eq!(lookup[&2], vec![12, 42]); | 
|---|
| 3084 | /// assert_eq!(lookup[&3], vec![13, 33]); | 
|---|
| 3085 | /// ``` | 
|---|
| 3086 | #[ cfg(feature = "use_std")] | 
|---|
| 3087 | fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>> | 
|---|
| 3088 | where | 
|---|
| 3089 | Self: Iterator<Item = (K, V)> + Sized, | 
|---|
| 3090 | K: Hash + Eq, | 
|---|
| 3091 | { | 
|---|
| 3092 | group_map::into_group_map(self) | 
|---|
| 3093 | } | 
|---|
| 3094 |  | 
|---|
| 3095 | /// Return an `Iterator` on a `HashMap`. Keys mapped to `Vec`s of values. The key is specified | 
|---|
| 3096 | /// in the closure. | 
|---|
| 3097 | /// | 
|---|
| 3098 | /// Essentially a shorthand for `.into_grouping_map_by(f).collect::<Vec<_>>()`. | 
|---|
| 3099 | /// | 
|---|
| 3100 | /// ``` | 
|---|
| 3101 | /// use itertools::Itertools; | 
|---|
| 3102 | /// use std::collections::HashMap; | 
|---|
| 3103 | /// | 
|---|
| 3104 | /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)]; | 
|---|
| 3105 | /// let lookup: HashMap<u32,Vec<(u32, u32)>> = | 
|---|
| 3106 | ///     data.clone().into_iter().into_group_map_by(|a| a.0); | 
|---|
| 3107 | /// | 
|---|
| 3108 | /// assert_eq!(lookup[&0], vec![(0,10),(0,20)]); | 
|---|
| 3109 | /// assert_eq!(lookup.get(&1), None); | 
|---|
| 3110 | /// assert_eq!(lookup[&2], vec![(2,12), (2,42)]); | 
|---|
| 3111 | /// assert_eq!(lookup[&3], vec![(3,13), (3,33)]); | 
|---|
| 3112 | /// | 
|---|
| 3113 | /// assert_eq!( | 
|---|
| 3114 | ///     data.into_iter() | 
|---|
| 3115 | ///         .into_group_map_by(|x| x.0) | 
|---|
| 3116 | ///         .into_iter() | 
|---|
| 3117 | ///         .map(|(key, values)| (key, values.into_iter().fold(0,|acc, (_,v)| acc + v ))) | 
|---|
| 3118 | ///         .collect::<HashMap<u32,u32>>()[&0], | 
|---|
| 3119 | ///     30, | 
|---|
| 3120 | /// ); | 
|---|
| 3121 | /// ``` | 
|---|
| 3122 | #[ cfg(feature = "use_std")] | 
|---|
| 3123 | fn into_group_map_by<K, V, F>(self, f: F) -> HashMap<K, Vec<V>> | 
|---|
| 3124 | where | 
|---|
| 3125 | Self: Iterator<Item = V> + Sized, | 
|---|
| 3126 | K: Hash + Eq, | 
|---|
| 3127 | F: Fn(&V) -> K, | 
|---|
| 3128 | { | 
|---|
| 3129 | group_map::into_group_map_by(self, f) | 
|---|
| 3130 | } | 
|---|
| 3131 |  | 
|---|
| 3132 | /// Constructs a `GroupingMap` to be used later with one of the efficient | 
|---|
| 3133 | /// group-and-fold operations it allows to perform. | 
|---|
| 3134 | /// | 
|---|
| 3135 | /// The input iterator must yield item in the form of `(K, V)` where the | 
|---|
| 3136 | /// value of type `K` will be used as key to identify the groups and the | 
|---|
| 3137 | /// value of type `V` as value for the folding operation. | 
|---|
| 3138 | /// | 
|---|
| 3139 | /// See [`GroupingMap`] for more informations | 
|---|
| 3140 | /// on what operations are available. | 
|---|
| 3141 | #[ cfg(feature = "use_std")] | 
|---|
| 3142 | fn into_grouping_map<K, V>(self) -> GroupingMap<Self> | 
|---|
| 3143 | where | 
|---|
| 3144 | Self: Iterator<Item = (K, V)> + Sized, | 
|---|
| 3145 | K: Hash + Eq, | 
|---|
| 3146 | { | 
|---|
| 3147 | grouping_map::new(self) | 
|---|
| 3148 | } | 
|---|
| 3149 |  | 
|---|
| 3150 | /// Constructs a `GroupingMap` to be used later with one of the efficient | 
|---|
| 3151 | /// group-and-fold operations it allows to perform. | 
|---|
| 3152 | /// | 
|---|
| 3153 | /// The values from this iterator will be used as values for the folding operation | 
|---|
| 3154 | /// while the keys will be obtained from the values by calling `key_mapper`. | 
|---|
| 3155 | /// | 
|---|
| 3156 | /// See [`GroupingMap`] for more informations | 
|---|
| 3157 | /// on what operations are available. | 
|---|
| 3158 | #[ cfg(feature = "use_std")] | 
|---|
| 3159 | fn into_grouping_map_by<K, V, F>(self, key_mapper: F) -> GroupingMapBy<Self, F> | 
|---|
| 3160 | where | 
|---|
| 3161 | Self: Iterator<Item = V> + Sized, | 
|---|
| 3162 | K: Hash + Eq, | 
|---|
| 3163 | F: FnMut(&V) -> K, | 
|---|
| 3164 | { | 
|---|
| 3165 | grouping_map::new(grouping_map::MapForGrouping::new(self, key_mapper)) | 
|---|
| 3166 | } | 
|---|
| 3167 |  | 
|---|
| 3168 | /// Return all minimum elements of an iterator. | 
|---|
| 3169 | /// | 
|---|
| 3170 | /// # Examples | 
|---|
| 3171 | /// | 
|---|
| 3172 | /// ``` | 
|---|
| 3173 | /// use itertools::Itertools; | 
|---|
| 3174 | /// | 
|---|
| 3175 | /// let a: [i32; 0] = []; | 
|---|
| 3176 | /// assert_eq!(a.iter().min_set(), Vec::<&i32>::new()); | 
|---|
| 3177 | /// | 
|---|
| 3178 | /// let a = [1]; | 
|---|
| 3179 | /// assert_eq!(a.iter().min_set(), vec![&1]); | 
|---|
| 3180 | /// | 
|---|
| 3181 | /// let a = [1, 2, 3, 4, 5]; | 
|---|
| 3182 | /// assert_eq!(a.iter().min_set(), vec![&1]); | 
|---|
| 3183 | /// | 
|---|
| 3184 | /// let a = [1, 1, 1, 1]; | 
|---|
| 3185 | /// assert_eq!(a.iter().min_set(), vec![&1, &1, &1, &1]); | 
|---|
| 3186 | /// ``` | 
|---|
| 3187 | /// | 
|---|
| 3188 | /// The elements can be floats but no particular result is guaranteed | 
|---|
| 3189 | /// if an element is NaN. | 
|---|
| 3190 | #[ cfg(feature = "use_alloc")] | 
|---|
| 3191 | fn min_set(self) -> Vec<Self::Item> | 
|---|
| 3192 | where | 
|---|
| 3193 | Self: Sized, | 
|---|
| 3194 | Self::Item: Ord, | 
|---|
| 3195 | { | 
|---|
| 3196 | extrema_set::min_set_impl(self, |_| (), |x, y, _, _| x.cmp(y)) | 
|---|
| 3197 | } | 
|---|
| 3198 |  | 
|---|
| 3199 | /// Return all minimum elements of an iterator, as determined by | 
|---|
| 3200 | /// the specified function. | 
|---|
| 3201 | /// | 
|---|
| 3202 | /// # Examples | 
|---|
| 3203 | /// | 
|---|
| 3204 | /// ``` | 
|---|
| 3205 | /// # use std::cmp::Ordering; | 
|---|
| 3206 | /// use itertools::Itertools; | 
|---|
| 3207 | /// | 
|---|
| 3208 | /// let a: [(i32, i32); 0] = []; | 
|---|
| 3209 | /// assert_eq!(a.iter().min_set_by(|_, _| Ordering::Equal), Vec::<&(i32, i32)>::new()); | 
|---|
| 3210 | /// | 
|---|
| 3211 | /// let a = [(1, 2)]; | 
|---|
| 3212 | /// assert_eq!(a.iter().min_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2)]); | 
|---|
| 3213 | /// | 
|---|
| 3214 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; | 
|---|
| 3215 | /// assert_eq!(a.iter().min_set_by(|&&(_,k1), &&(_,k2)| k1.cmp(&k2)), vec![&(1, 2), &(2, 2)]); | 
|---|
| 3216 | /// | 
|---|
| 3217 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; | 
|---|
| 3218 | /// assert_eq!(a.iter().min_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); | 
|---|
| 3219 | /// ``` | 
|---|
| 3220 | /// | 
|---|
| 3221 | /// The elements can be floats but no particular result is guaranteed | 
|---|
| 3222 | /// if an element is NaN. | 
|---|
| 3223 | #[ cfg(feature = "use_alloc")] | 
|---|
| 3224 | fn min_set_by<F>(self, mut compare: F) -> Vec<Self::Item> | 
|---|
| 3225 | where | 
|---|
| 3226 | Self: Sized, | 
|---|
| 3227 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, | 
|---|
| 3228 | { | 
|---|
| 3229 | extrema_set::min_set_impl(self, |_| (), |x, y, _, _| compare(x, y)) | 
|---|
| 3230 | } | 
|---|
| 3231 |  | 
|---|
| 3232 | /// Return all minimum elements of an iterator, as determined by | 
|---|
| 3233 | /// the specified function. | 
|---|
| 3234 | /// | 
|---|
| 3235 | /// # Examples | 
|---|
| 3236 | /// | 
|---|
| 3237 | /// ``` | 
|---|
| 3238 | /// use itertools::Itertools; | 
|---|
| 3239 | /// | 
|---|
| 3240 | /// let a: [(i32, i32); 0] = []; | 
|---|
| 3241 | /// assert_eq!(a.iter().min_set_by_key(|_| ()), Vec::<&(i32, i32)>::new()); | 
|---|
| 3242 | /// | 
|---|
| 3243 | /// let a = [(1, 2)]; | 
|---|
| 3244 | /// assert_eq!(a.iter().min_set_by_key(|&&(k,_)| k), vec![&(1, 2)]); | 
|---|
| 3245 | /// | 
|---|
| 3246 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; | 
|---|
| 3247 | /// assert_eq!(a.iter().min_set_by_key(|&&(_, k)| k), vec![&(1, 2), &(2, 2)]); | 
|---|
| 3248 | /// | 
|---|
| 3249 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; | 
|---|
| 3250 | /// assert_eq!(a.iter().min_set_by_key(|&&(k, _)| k), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); | 
|---|
| 3251 | /// ``` | 
|---|
| 3252 | /// | 
|---|
| 3253 | /// The elements can be floats but no particular result is guaranteed | 
|---|
| 3254 | /// if an element is NaN. | 
|---|
| 3255 | #[ cfg(feature = "use_alloc")] | 
|---|
| 3256 | fn min_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> | 
|---|
| 3257 | where | 
|---|
| 3258 | Self: Sized, | 
|---|
| 3259 | K: Ord, | 
|---|
| 3260 | F: FnMut(&Self::Item) -> K, | 
|---|
| 3261 | { | 
|---|
| 3262 | extrema_set::min_set_impl(self, key, |_, _, kx, ky| kx.cmp(ky)) | 
|---|
| 3263 | } | 
|---|
| 3264 |  | 
|---|
| 3265 | /// Return all maximum elements of an iterator. | 
|---|
| 3266 | /// | 
|---|
| 3267 | /// # Examples | 
|---|
| 3268 | /// | 
|---|
| 3269 | /// ``` | 
|---|
| 3270 | /// use itertools::Itertools; | 
|---|
| 3271 | /// | 
|---|
| 3272 | /// let a: [i32; 0] = []; | 
|---|
| 3273 | /// assert_eq!(a.iter().max_set(), Vec::<&i32>::new()); | 
|---|
| 3274 | /// | 
|---|
| 3275 | /// let a = [1]; | 
|---|
| 3276 | /// assert_eq!(a.iter().max_set(), vec![&1]); | 
|---|
| 3277 | /// | 
|---|
| 3278 | /// let a = [1, 2, 3, 4, 5]; | 
|---|
| 3279 | /// assert_eq!(a.iter().max_set(), vec![&5]); | 
|---|
| 3280 | /// | 
|---|
| 3281 | /// let a = [1, 1, 1, 1]; | 
|---|
| 3282 | /// assert_eq!(a.iter().max_set(), vec![&1, &1, &1, &1]); | 
|---|
| 3283 | /// ``` | 
|---|
| 3284 | /// | 
|---|
| 3285 | /// The elements can be floats but no particular result is guaranteed | 
|---|
| 3286 | /// if an element is NaN. | 
|---|
| 3287 | #[ cfg(feature = "use_alloc")] | 
|---|
| 3288 | fn max_set(self) -> Vec<Self::Item> | 
|---|
| 3289 | where | 
|---|
| 3290 | Self: Sized, | 
|---|
| 3291 | Self::Item: Ord, | 
|---|
| 3292 | { | 
|---|
| 3293 | extrema_set::max_set_impl(self, |_| (), |x, y, _, _| x.cmp(y)) | 
|---|
| 3294 | } | 
|---|
| 3295 |  | 
|---|
| 3296 | /// Return all maximum elements of an iterator, as determined by | 
|---|
| 3297 | /// the specified function. | 
|---|
| 3298 | /// | 
|---|
| 3299 | /// # Examples | 
|---|
| 3300 | /// | 
|---|
| 3301 | /// ``` | 
|---|
| 3302 | /// # use std::cmp::Ordering; | 
|---|
| 3303 | /// use itertools::Itertools; | 
|---|
| 3304 | /// | 
|---|
| 3305 | /// let a: [(i32, i32); 0] = []; | 
|---|
| 3306 | /// assert_eq!(a.iter().max_set_by(|_, _| Ordering::Equal), Vec::<&(i32, i32)>::new()); | 
|---|
| 3307 | /// | 
|---|
| 3308 | /// let a = [(1, 2)]; | 
|---|
| 3309 | /// assert_eq!(a.iter().max_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2)]); | 
|---|
| 3310 | /// | 
|---|
| 3311 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; | 
|---|
| 3312 | /// assert_eq!(a.iter().max_set_by(|&&(_,k1), &&(_,k2)| k1.cmp(&k2)), vec![&(3, 9), &(5, 9)]); | 
|---|
| 3313 | /// | 
|---|
| 3314 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; | 
|---|
| 3315 | /// assert_eq!(a.iter().max_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); | 
|---|
| 3316 | /// ``` | 
|---|
| 3317 | /// | 
|---|
| 3318 | /// The elements can be floats but no particular result is guaranteed | 
|---|
| 3319 | /// if an element is NaN. | 
|---|
| 3320 | #[ cfg(feature = "use_alloc")] | 
|---|
| 3321 | fn max_set_by<F>(self, mut compare: F) -> Vec<Self::Item> | 
|---|
| 3322 | where | 
|---|
| 3323 | Self: Sized, | 
|---|
| 3324 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, | 
|---|
| 3325 | { | 
|---|
| 3326 | extrema_set::max_set_impl(self, |_| (), |x, y, _, _| compare(x, y)) | 
|---|
| 3327 | } | 
|---|
| 3328 |  | 
|---|
| 3329 | /// Return all maximum elements of an iterator, as determined by | 
|---|
| 3330 | /// the specified function. | 
|---|
| 3331 | /// | 
|---|
| 3332 | /// # Examples | 
|---|
| 3333 | /// | 
|---|
| 3334 | /// ``` | 
|---|
| 3335 | /// use itertools::Itertools; | 
|---|
| 3336 | /// | 
|---|
| 3337 | /// let a: [(i32, i32); 0] = []; | 
|---|
| 3338 | /// assert_eq!(a.iter().max_set_by_key(|_| ()), Vec::<&(i32, i32)>::new()); | 
|---|
| 3339 | /// | 
|---|
| 3340 | /// let a = [(1, 2)]; | 
|---|
| 3341 | /// assert_eq!(a.iter().max_set_by_key(|&&(k,_)| k), vec![&(1, 2)]); | 
|---|
| 3342 | /// | 
|---|
| 3343 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; | 
|---|
| 3344 | /// assert_eq!(a.iter().max_set_by_key(|&&(_, k)| k), vec![&(3, 9), &(5, 9)]); | 
|---|
| 3345 | /// | 
|---|
| 3346 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; | 
|---|
| 3347 | /// assert_eq!(a.iter().max_set_by_key(|&&(k, _)| k), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); | 
|---|
| 3348 | /// ``` | 
|---|
| 3349 | /// | 
|---|
| 3350 | /// The elements can be floats but no particular result is guaranteed | 
|---|
| 3351 | /// if an element is NaN. | 
|---|
| 3352 | #[ cfg(feature = "use_alloc")] | 
|---|
| 3353 | fn max_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> | 
|---|
| 3354 | where | 
|---|
| 3355 | Self: Sized, | 
|---|
| 3356 | K: Ord, | 
|---|
| 3357 | F: FnMut(&Self::Item) -> K, | 
|---|
| 3358 | { | 
|---|
| 3359 | extrema_set::max_set_impl(self, key, |_, _, kx, ky| kx.cmp(ky)) | 
|---|
| 3360 | } | 
|---|
| 3361 |  | 
|---|
| 3362 | /// Return the minimum and maximum elements in the iterator. | 
|---|
| 3363 | /// | 
|---|
| 3364 | /// The return type `MinMaxResult` is an enum of three variants: | 
|---|
| 3365 | /// | 
|---|
| 3366 | /// - `NoElements` if the iterator is empty. | 
|---|
| 3367 | /// - `OneElement(x)` if the iterator has exactly one element. | 
|---|
| 3368 | /// - `MinMax(x, y)` is returned otherwise, where `x <= y`. Two | 
|---|
| 3369 | ///    values are equal if and only if there is more than one | 
|---|
| 3370 | ///    element in the iterator and all elements are equal. | 
|---|
| 3371 | /// | 
|---|
| 3372 | /// On an iterator of length `n`, `minmax` does `1.5 * n` comparisons, | 
|---|
| 3373 | /// and so is faster than calling `min` and `max` separately which does | 
|---|
| 3374 | /// `2 * n` comparisons. | 
|---|
| 3375 | /// | 
|---|
| 3376 | /// # Examples | 
|---|
| 3377 | /// | 
|---|
| 3378 | /// ``` | 
|---|
| 3379 | /// use itertools::Itertools; | 
|---|
| 3380 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; | 
|---|
| 3381 | /// | 
|---|
| 3382 | /// let a: [i32; 0] = []; | 
|---|
| 3383 | /// assert_eq!(a.iter().minmax(), NoElements); | 
|---|
| 3384 | /// | 
|---|
| 3385 | /// let a = [1]; | 
|---|
| 3386 | /// assert_eq!(a.iter().minmax(), OneElement(&1)); | 
|---|
| 3387 | /// | 
|---|
| 3388 | /// let a = [1, 2, 3, 4, 5]; | 
|---|
| 3389 | /// assert_eq!(a.iter().minmax(), MinMax(&1, &5)); | 
|---|
| 3390 | /// | 
|---|
| 3391 | /// let a = [1, 1, 1, 1]; | 
|---|
| 3392 | /// assert_eq!(a.iter().minmax(), MinMax(&1, &1)); | 
|---|
| 3393 | /// ``` | 
|---|
| 3394 | /// | 
|---|
| 3395 | /// The elements can be floats but no particular result is guaranteed | 
|---|
| 3396 | /// if an element is NaN. | 
|---|
| 3397 | fn minmax(self) -> MinMaxResult<Self::Item> | 
|---|
| 3398 | where | 
|---|
| 3399 | Self: Sized, | 
|---|
| 3400 | Self::Item: PartialOrd, | 
|---|
| 3401 | { | 
|---|
| 3402 | minmax::minmax_impl(self, |_| (), |x, y, _, _| x < y) | 
|---|
| 3403 | } | 
|---|
| 3404 |  | 
|---|
| 3405 | /// Return the minimum and maximum element of an iterator, as determined by | 
|---|
| 3406 | /// the specified function. | 
|---|
| 3407 | /// | 
|---|
| 3408 | /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax). | 
|---|
| 3409 | /// | 
|---|
| 3410 | /// For the minimum, the first minimal element is returned.  For the maximum, | 
|---|
| 3411 | /// the last maximal element wins.  This matches the behavior of the standard | 
|---|
| 3412 | /// [`Iterator::min`] and [`Iterator::max`] methods. | 
|---|
| 3413 | /// | 
|---|
| 3414 | /// The keys can be floats but no particular result is guaranteed | 
|---|
| 3415 | /// if a key is NaN. | 
|---|
| 3416 | fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item> | 
|---|
| 3417 | where | 
|---|
| 3418 | Self: Sized, | 
|---|
| 3419 | K: PartialOrd, | 
|---|
| 3420 | F: FnMut(&Self::Item) -> K, | 
|---|
| 3421 | { | 
|---|
| 3422 | minmax::minmax_impl(self, key, |_, _, xk, yk| xk < yk) | 
|---|
| 3423 | } | 
|---|
| 3424 |  | 
|---|
| 3425 | /// Return the minimum and maximum element of an iterator, as determined by | 
|---|
| 3426 | /// the specified comparison function. | 
|---|
| 3427 | /// | 
|---|
| 3428 | /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax). | 
|---|
| 3429 | /// | 
|---|
| 3430 | /// For the minimum, the first minimal element is returned.  For the maximum, | 
|---|
| 3431 | /// the last maximal element wins.  This matches the behavior of the standard | 
|---|
| 3432 | /// [`Iterator::min`] and [`Iterator::max`] methods. | 
|---|
| 3433 | fn minmax_by<F>(self, mut compare: F) -> MinMaxResult<Self::Item> | 
|---|
| 3434 | where | 
|---|
| 3435 | Self: Sized, | 
|---|
| 3436 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, | 
|---|
| 3437 | { | 
|---|
| 3438 | minmax::minmax_impl(self, |_| (), |x, y, _, _| Ordering::Less == compare(x, y)) | 
|---|
| 3439 | } | 
|---|
| 3440 |  | 
|---|
| 3441 | /// Return the position of the maximum element in the iterator. | 
|---|
| 3442 | /// | 
|---|
| 3443 | /// If several elements are equally maximum, the position of the | 
|---|
| 3444 | /// last of them is returned. | 
|---|
| 3445 | /// | 
|---|
| 3446 | /// # Examples | 
|---|
| 3447 | /// | 
|---|
| 3448 | /// ``` | 
|---|
| 3449 | /// use itertools::Itertools; | 
|---|
| 3450 | /// | 
|---|
| 3451 | /// let a: [i32; 0] = []; | 
|---|
| 3452 | /// assert_eq!(a.iter().position_max(), None); | 
|---|
| 3453 | /// | 
|---|
| 3454 | /// let a = [-3, 0, 1, 5, -10]; | 
|---|
| 3455 | /// assert_eq!(a.iter().position_max(), Some(3)); | 
|---|
| 3456 | /// | 
|---|
| 3457 | /// let a = [1, 1, -1, -1]; | 
|---|
| 3458 | /// assert_eq!(a.iter().position_max(), Some(1)); | 
|---|
| 3459 | /// ``` | 
|---|
| 3460 | fn position_max(self) -> Option<usize> | 
|---|
| 3461 | where | 
|---|
| 3462 | Self: Sized, | 
|---|
| 3463 | Self::Item: Ord, | 
|---|
| 3464 | { | 
|---|
| 3465 | self.enumerate() | 
|---|
| 3466 | .max_by(|x, y| Ord::cmp(&x.1, &y.1)) | 
|---|
| 3467 | .map(|x| x.0) | 
|---|
| 3468 | } | 
|---|
| 3469 |  | 
|---|
| 3470 | /// Return the position of the maximum element in the iterator, as | 
|---|
| 3471 | /// determined by the specified function. | 
|---|
| 3472 | /// | 
|---|
| 3473 | /// If several elements are equally maximum, the position of the | 
|---|
| 3474 | /// last of them is returned. | 
|---|
| 3475 | /// | 
|---|
| 3476 | /// # Examples | 
|---|
| 3477 | /// | 
|---|
| 3478 | /// ``` | 
|---|
| 3479 | /// use itertools::Itertools; | 
|---|
| 3480 | /// | 
|---|
| 3481 | /// let a: [i32; 0] = []; | 
|---|
| 3482 | /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), None); | 
|---|
| 3483 | /// | 
|---|
| 3484 | /// let a = [-3_i32, 0, 1, 5, -10]; | 
|---|
| 3485 | /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(4)); | 
|---|
| 3486 | /// | 
|---|
| 3487 | /// let a = [1_i32, 1, -1, -1]; | 
|---|
| 3488 | /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(3)); | 
|---|
| 3489 | /// ``` | 
|---|
| 3490 | fn position_max_by_key<K, F>(self, mut key: F) -> Option<usize> | 
|---|
| 3491 | where | 
|---|
| 3492 | Self: Sized, | 
|---|
| 3493 | K: Ord, | 
|---|
| 3494 | F: FnMut(&Self::Item) -> K, | 
|---|
| 3495 | { | 
|---|
| 3496 | self.enumerate() | 
|---|
| 3497 | .max_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1))) | 
|---|
| 3498 | .map(|x| x.0) | 
|---|
| 3499 | } | 
|---|
| 3500 |  | 
|---|
| 3501 | /// Return the position of the maximum element in the iterator, as | 
|---|
| 3502 | /// determined by the specified comparison function. | 
|---|
| 3503 | /// | 
|---|
| 3504 | /// If several elements are equally maximum, the position of the | 
|---|
| 3505 | /// last of them is returned. | 
|---|
| 3506 | /// | 
|---|
| 3507 | /// # Examples | 
|---|
| 3508 | /// | 
|---|
| 3509 | /// ``` | 
|---|
| 3510 | /// use itertools::Itertools; | 
|---|
| 3511 | /// | 
|---|
| 3512 | /// let a: [i32; 0] = []; | 
|---|
| 3513 | /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), None); | 
|---|
| 3514 | /// | 
|---|
| 3515 | /// let a = [-3_i32, 0, 1, 5, -10]; | 
|---|
| 3516 | /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(3)); | 
|---|
| 3517 | /// | 
|---|
| 3518 | /// let a = [1_i32, 1, -1, -1]; | 
|---|
| 3519 | /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(1)); | 
|---|
| 3520 | /// ``` | 
|---|
| 3521 | fn position_max_by<F>(self, mut compare: F) -> Option<usize> | 
|---|
| 3522 | where | 
|---|
| 3523 | Self: Sized, | 
|---|
| 3524 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, | 
|---|
| 3525 | { | 
|---|
| 3526 | self.enumerate() | 
|---|
| 3527 | .max_by(|x, y| compare(&x.1, &y.1)) | 
|---|
| 3528 | .map(|x| x.0) | 
|---|
| 3529 | } | 
|---|
| 3530 |  | 
|---|
| 3531 | /// Return the position of the minimum element in the iterator. | 
|---|
| 3532 | /// | 
|---|
| 3533 | /// If several elements are equally minimum, the position of the | 
|---|
| 3534 | /// first of them is returned. | 
|---|
| 3535 | /// | 
|---|
| 3536 | /// # Examples | 
|---|
| 3537 | /// | 
|---|
| 3538 | /// ``` | 
|---|
| 3539 | /// use itertools::Itertools; | 
|---|
| 3540 | /// | 
|---|
| 3541 | /// let a: [i32; 0] = []; | 
|---|
| 3542 | /// assert_eq!(a.iter().position_min(), None); | 
|---|
| 3543 | /// | 
|---|
| 3544 | /// let a = [-3, 0, 1, 5, -10]; | 
|---|
| 3545 | /// assert_eq!(a.iter().position_min(), Some(4)); | 
|---|
| 3546 | /// | 
|---|
| 3547 | /// let a = [1, 1, -1, -1]; | 
|---|
| 3548 | /// assert_eq!(a.iter().position_min(), Some(2)); | 
|---|
| 3549 | /// ``` | 
|---|
| 3550 | fn position_min(self) -> Option<usize> | 
|---|
| 3551 | where | 
|---|
| 3552 | Self: Sized, | 
|---|
| 3553 | Self::Item: Ord, | 
|---|
| 3554 | { | 
|---|
| 3555 | self.enumerate() | 
|---|
| 3556 | .min_by(|x, y| Ord::cmp(&x.1, &y.1)) | 
|---|
| 3557 | .map(|x| x.0) | 
|---|
| 3558 | } | 
|---|
| 3559 |  | 
|---|
| 3560 | /// Return the position of the minimum element in the iterator, as | 
|---|
| 3561 | /// determined by the specified function. | 
|---|
| 3562 | /// | 
|---|
| 3563 | /// If several elements are equally minimum, the position of the | 
|---|
| 3564 | /// first of them is returned. | 
|---|
| 3565 | /// | 
|---|
| 3566 | /// # Examples | 
|---|
| 3567 | /// | 
|---|
| 3568 | /// ``` | 
|---|
| 3569 | /// use itertools::Itertools; | 
|---|
| 3570 | /// | 
|---|
| 3571 | /// let a: [i32; 0] = []; | 
|---|
| 3572 | /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), None); | 
|---|
| 3573 | /// | 
|---|
| 3574 | /// let a = [-3_i32, 0, 1, 5, -10]; | 
|---|
| 3575 | /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(1)); | 
|---|
| 3576 | /// | 
|---|
| 3577 | /// let a = [1_i32, 1, -1, -1]; | 
|---|
| 3578 | /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(0)); | 
|---|
| 3579 | /// ``` | 
|---|
| 3580 | fn position_min_by_key<K, F>(self, mut key: F) -> Option<usize> | 
|---|
| 3581 | where | 
|---|
| 3582 | Self: Sized, | 
|---|
| 3583 | K: Ord, | 
|---|
| 3584 | F: FnMut(&Self::Item) -> K, | 
|---|
| 3585 | { | 
|---|
| 3586 | self.enumerate() | 
|---|
| 3587 | .min_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1))) | 
|---|
| 3588 | .map(|x| x.0) | 
|---|
| 3589 | } | 
|---|
| 3590 |  | 
|---|
| 3591 | /// Return the position of the minimum element in the iterator, as | 
|---|
| 3592 | /// determined by the specified comparison function. | 
|---|
| 3593 | /// | 
|---|
| 3594 | /// If several elements are equally minimum, the position of the | 
|---|
| 3595 | /// first of them is returned. | 
|---|
| 3596 | /// | 
|---|
| 3597 | /// # Examples | 
|---|
| 3598 | /// | 
|---|
| 3599 | /// ``` | 
|---|
| 3600 | /// use itertools::Itertools; | 
|---|
| 3601 | /// | 
|---|
| 3602 | /// let a: [i32; 0] = []; | 
|---|
| 3603 | /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), None); | 
|---|
| 3604 | /// | 
|---|
| 3605 | /// let a = [-3_i32, 0, 1, 5, -10]; | 
|---|
| 3606 | /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(4)); | 
|---|
| 3607 | /// | 
|---|
| 3608 | /// let a = [1_i32, 1, -1, -1]; | 
|---|
| 3609 | /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(2)); | 
|---|
| 3610 | /// ``` | 
|---|
| 3611 | fn position_min_by<F>(self, mut compare: F) -> Option<usize> | 
|---|
| 3612 | where | 
|---|
| 3613 | Self: Sized, | 
|---|
| 3614 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, | 
|---|
| 3615 | { | 
|---|
| 3616 | self.enumerate() | 
|---|
| 3617 | .min_by(|x, y| compare(&x.1, &y.1)) | 
|---|
| 3618 | .map(|x| x.0) | 
|---|
| 3619 | } | 
|---|
| 3620 |  | 
|---|
| 3621 | /// Return the positions of the minimum and maximum elements in | 
|---|
| 3622 | /// the iterator. | 
|---|
| 3623 | /// | 
|---|
| 3624 | /// The return type [`MinMaxResult`] is an enum of three variants: | 
|---|
| 3625 | /// | 
|---|
| 3626 | /// - `NoElements` if the iterator is empty. | 
|---|
| 3627 | /// - `OneElement(xpos)` if the iterator has exactly one element. | 
|---|
| 3628 | /// - `MinMax(xpos, ypos)` is returned otherwise, where the | 
|---|
| 3629 | ///    element at `xpos` ≤ the element at `ypos`. While the | 
|---|
| 3630 | ///    referenced elements themselves may be equal, `xpos` cannot | 
|---|
| 3631 | ///    be equal to `ypos`. | 
|---|
| 3632 | /// | 
|---|
| 3633 | /// On an iterator of length `n`, `position_minmax` does `1.5 * n` | 
|---|
| 3634 | /// comparisons, and so is faster than calling `position_min` and | 
|---|
| 3635 | /// `position_max` separately which does `2 * n` comparisons. | 
|---|
| 3636 | /// | 
|---|
| 3637 | /// For the minimum, if several elements are equally minimum, the | 
|---|
| 3638 | /// position of the first of them is returned. For the maximum, if | 
|---|
| 3639 | /// several elements are equally maximum, the position of the last | 
|---|
| 3640 | /// of them is returned. | 
|---|
| 3641 | /// | 
|---|
| 3642 | /// The elements can be floats but no particular result is | 
|---|
| 3643 | /// guaranteed if an element is NaN. | 
|---|
| 3644 | /// | 
|---|
| 3645 | /// # Examples | 
|---|
| 3646 | /// | 
|---|
| 3647 | /// ``` | 
|---|
| 3648 | /// use itertools::Itertools; | 
|---|
| 3649 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; | 
|---|
| 3650 | /// | 
|---|
| 3651 | /// let a: [i32; 0] = []; | 
|---|
| 3652 | /// assert_eq!(a.iter().position_minmax(), NoElements); | 
|---|
| 3653 | /// | 
|---|
| 3654 | /// let a = [10]; | 
|---|
| 3655 | /// assert_eq!(a.iter().position_minmax(), OneElement(0)); | 
|---|
| 3656 | /// | 
|---|
| 3657 | /// let a = [-3, 0, 1, 5, -10]; | 
|---|
| 3658 | /// assert_eq!(a.iter().position_minmax(), MinMax(4, 3)); | 
|---|
| 3659 | /// | 
|---|
| 3660 | /// let a = [1, 1, -1, -1]; | 
|---|
| 3661 | /// assert_eq!(a.iter().position_minmax(), MinMax(2, 1)); | 
|---|
| 3662 | /// ``` | 
|---|
| 3663 | fn position_minmax(self) -> MinMaxResult<usize> | 
|---|
| 3664 | where | 
|---|
| 3665 | Self: Sized, | 
|---|
| 3666 | Self::Item: PartialOrd, | 
|---|
| 3667 | { | 
|---|
| 3668 | use crate::MinMaxResult::{MinMax, NoElements, OneElement}; | 
|---|
| 3669 | match minmax::minmax_impl(self.enumerate(), |_| (), |x, y, _, _| x.1 < y.1) { | 
|---|
| 3670 | NoElements => NoElements, | 
|---|
| 3671 | OneElement(x) => OneElement(x.0), | 
|---|
| 3672 | MinMax(x, y) => MinMax(x.0, y.0), | 
|---|
| 3673 | } | 
|---|
| 3674 | } | 
|---|
| 3675 |  | 
|---|
| 3676 | /// Return the postions of the minimum and maximum elements of an | 
|---|
| 3677 | /// iterator, as determined by the specified function. | 
|---|
| 3678 | /// | 
|---|
| 3679 | /// The return value is a variant of [`MinMaxResult`] like for | 
|---|
| 3680 | /// [`position_minmax`]. | 
|---|
| 3681 | /// | 
|---|
| 3682 | /// For the minimum, if several elements are equally minimum, the | 
|---|
| 3683 | /// position of the first of them is returned. For the maximum, if | 
|---|
| 3684 | /// several elements are equally maximum, the position of the last | 
|---|
| 3685 | /// of them is returned. | 
|---|
| 3686 | /// | 
|---|
| 3687 | /// The keys can be floats but no particular result is guaranteed | 
|---|
| 3688 | /// if a key is NaN. | 
|---|
| 3689 | /// | 
|---|
| 3690 | /// # Examples | 
|---|
| 3691 | /// | 
|---|
| 3692 | /// ``` | 
|---|
| 3693 | /// use itertools::Itertools; | 
|---|
| 3694 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; | 
|---|
| 3695 | /// | 
|---|
| 3696 | /// let a: [i32; 0] = []; | 
|---|
| 3697 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), NoElements); | 
|---|
| 3698 | /// | 
|---|
| 3699 | /// let a = [10_i32]; | 
|---|
| 3700 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), OneElement(0)); | 
|---|
| 3701 | /// | 
|---|
| 3702 | /// let a = [-3_i32, 0, 1, 5, -10]; | 
|---|
| 3703 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(1, 4)); | 
|---|
| 3704 | /// | 
|---|
| 3705 | /// let a = [1_i32, 1, -1, -1]; | 
|---|
| 3706 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(0, 3)); | 
|---|
| 3707 | /// ``` | 
|---|
| 3708 | /// | 
|---|
| 3709 | /// [`position_minmax`]: Self::position_minmax | 
|---|
| 3710 | fn position_minmax_by_key<K, F>(self, mut key: F) -> MinMaxResult<usize> | 
|---|
| 3711 | where | 
|---|
| 3712 | Self: Sized, | 
|---|
| 3713 | K: PartialOrd, | 
|---|
| 3714 | F: FnMut(&Self::Item) -> K, | 
|---|
| 3715 | { | 
|---|
| 3716 | use crate::MinMaxResult::{MinMax, NoElements, OneElement}; | 
|---|
| 3717 | match self.enumerate().minmax_by_key(|e| key(&e.1)) { | 
|---|
| 3718 | NoElements => NoElements, | 
|---|
| 3719 | OneElement(x) => OneElement(x.0), | 
|---|
| 3720 | MinMax(x, y) => MinMax(x.0, y.0), | 
|---|
| 3721 | } | 
|---|
| 3722 | } | 
|---|
| 3723 |  | 
|---|
| 3724 | /// Return the postions of the minimum and maximum elements of an | 
|---|
| 3725 | /// iterator, as determined by the specified comparison function. | 
|---|
| 3726 | /// | 
|---|
| 3727 | /// The return value is a variant of [`MinMaxResult`] like for | 
|---|
| 3728 | /// [`position_minmax`]. | 
|---|
| 3729 | /// | 
|---|
| 3730 | /// For the minimum, if several elements are equally minimum, the | 
|---|
| 3731 | /// position of the first of them is returned. For the maximum, if | 
|---|
| 3732 | /// several elements are equally maximum, the position of the last | 
|---|
| 3733 | /// of them is returned. | 
|---|
| 3734 | /// | 
|---|
| 3735 | /// # Examples | 
|---|
| 3736 | /// | 
|---|
| 3737 | /// ``` | 
|---|
| 3738 | /// use itertools::Itertools; | 
|---|
| 3739 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; | 
|---|
| 3740 | /// | 
|---|
| 3741 | /// let a: [i32; 0] = []; | 
|---|
| 3742 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), NoElements); | 
|---|
| 3743 | /// | 
|---|
| 3744 | /// let a = [10_i32]; | 
|---|
| 3745 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), OneElement(0)); | 
|---|
| 3746 | /// | 
|---|
| 3747 | /// let a = [-3_i32, 0, 1, 5, -10]; | 
|---|
| 3748 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(4, 3)); | 
|---|
| 3749 | /// | 
|---|
| 3750 | /// let a = [1_i32, 1, -1, -1]; | 
|---|
| 3751 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(2, 1)); | 
|---|
| 3752 | /// ``` | 
|---|
| 3753 | /// | 
|---|
| 3754 | /// [`position_minmax`]: Self::position_minmax | 
|---|
| 3755 | fn position_minmax_by<F>(self, mut compare: F) -> MinMaxResult<usize> | 
|---|
| 3756 | where | 
|---|
| 3757 | Self: Sized, | 
|---|
| 3758 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, | 
|---|
| 3759 | { | 
|---|
| 3760 | use crate::MinMaxResult::{MinMax, NoElements, OneElement}; | 
|---|
| 3761 | match self.enumerate().minmax_by(|x, y| compare(&x.1, &y.1)) { | 
|---|
| 3762 | NoElements => NoElements, | 
|---|
| 3763 | OneElement(x) => OneElement(x.0), | 
|---|
| 3764 | MinMax(x, y) => MinMax(x.0, y.0), | 
|---|
| 3765 | } | 
|---|
| 3766 | } | 
|---|
| 3767 |  | 
|---|
| 3768 | /// If the iterator yields exactly one element, that element will be returned, otherwise | 
|---|
| 3769 | /// an error will be returned containing an iterator that has the same output as the input | 
|---|
| 3770 | /// iterator. | 
|---|
| 3771 | /// | 
|---|
| 3772 | /// This provides an additional layer of validation over just calling `Iterator::next()`. | 
|---|
| 3773 | /// If your assumption that there should only be one element yielded is false this provides | 
|---|
| 3774 | /// the opportunity to detect and handle that, preventing errors at a distance. | 
|---|
| 3775 | /// | 
|---|
| 3776 | /// # Examples | 
|---|
| 3777 | /// ``` | 
|---|
| 3778 | /// use itertools::Itertools; | 
|---|
| 3779 | /// | 
|---|
| 3780 | /// assert_eq!((0..10).filter(|&x| x == 2).exactly_one().unwrap(), 2); | 
|---|
| 3781 | /// assert!((0..10).filter(|&x| x > 1 && x < 4).exactly_one().unwrap_err().eq(2..4)); | 
|---|
| 3782 | /// assert!((0..10).filter(|&x| x > 1 && x < 5).exactly_one().unwrap_err().eq(2..5)); | 
|---|
| 3783 | /// assert!((0..10).filter(|&_| false).exactly_one().unwrap_err().eq(0..0)); | 
|---|
| 3784 | /// ``` | 
|---|
| 3785 | fn exactly_one(mut self) -> Result<Self::Item, ExactlyOneError<Self>> | 
|---|
| 3786 | where | 
|---|
| 3787 | Self: Sized, | 
|---|
| 3788 | { | 
|---|
| 3789 | match self.next() { | 
|---|
| 3790 | Some(first) => match self.next() { | 
|---|
| 3791 | Some(second) => Err(ExactlyOneError::new( | 
|---|
| 3792 | Some(Either::Left([first, second])), | 
|---|
| 3793 | self, | 
|---|
| 3794 | )), | 
|---|
| 3795 | None => Ok(first), | 
|---|
| 3796 | }, | 
|---|
| 3797 | None => Err(ExactlyOneError::new(None, self)), | 
|---|
| 3798 | } | 
|---|
| 3799 | } | 
|---|
| 3800 |  | 
|---|
| 3801 | /// If the iterator yields no elements, Ok(None) will be returned. If the iterator yields | 
|---|
| 3802 | /// exactly one element, that element will be returned, otherwise an error will be returned | 
|---|
| 3803 | /// containing an iterator that has the same output as the input iterator. | 
|---|
| 3804 | /// | 
|---|
| 3805 | /// This provides an additional layer of validation over just calling `Iterator::next()`. | 
|---|
| 3806 | /// If your assumption that there should be at most one element yielded is false this provides | 
|---|
| 3807 | /// the opportunity to detect and handle that, preventing errors at a distance. | 
|---|
| 3808 | /// | 
|---|
| 3809 | /// # Examples | 
|---|
| 3810 | /// ``` | 
|---|
| 3811 | /// use itertools::Itertools; | 
|---|
| 3812 | /// | 
|---|
| 3813 | /// assert_eq!((0..10).filter(|&x| x == 2).at_most_one().unwrap(), Some(2)); | 
|---|
| 3814 | /// assert!((0..10).filter(|&x| x > 1 && x < 4).at_most_one().unwrap_err().eq(2..4)); | 
|---|
| 3815 | /// assert!((0..10).filter(|&x| x > 1 && x < 5).at_most_one().unwrap_err().eq(2..5)); | 
|---|
| 3816 | /// assert_eq!((0..10).filter(|&_| false).at_most_one().unwrap(), None); | 
|---|
| 3817 | /// ``` | 
|---|
| 3818 | fn at_most_one(mut self) -> Result<Option<Self::Item>, ExactlyOneError<Self>> | 
|---|
| 3819 | where | 
|---|
| 3820 | Self: Sized, | 
|---|
| 3821 | { | 
|---|
| 3822 | match self.next() { | 
|---|
| 3823 | Some(first) => match self.next() { | 
|---|
| 3824 | Some(second) => Err(ExactlyOneError::new( | 
|---|
| 3825 | Some(Either::Left([first, second])), | 
|---|
| 3826 | self, | 
|---|
| 3827 | )), | 
|---|
| 3828 | None => Ok(Some(first)), | 
|---|
| 3829 | }, | 
|---|
| 3830 | None => Ok(None), | 
|---|
| 3831 | } | 
|---|
| 3832 | } | 
|---|
| 3833 |  | 
|---|
| 3834 | /// An iterator adaptor that allows the user to peek at multiple `.next()` | 
|---|
| 3835 | /// values without advancing the base iterator. | 
|---|
| 3836 | /// | 
|---|
| 3837 | /// # Examples | 
|---|
| 3838 | /// ``` | 
|---|
| 3839 | /// use itertools::Itertools; | 
|---|
| 3840 | /// | 
|---|
| 3841 | /// let mut iter = (0..10).multipeek(); | 
|---|
| 3842 | /// assert_eq!(iter.peek(), Some(&0)); | 
|---|
| 3843 | /// assert_eq!(iter.peek(), Some(&1)); | 
|---|
| 3844 | /// assert_eq!(iter.peek(), Some(&2)); | 
|---|
| 3845 | /// assert_eq!(iter.next(), Some(0)); | 
|---|
| 3846 | /// assert_eq!(iter.peek(), Some(&1)); | 
|---|
| 3847 | /// ``` | 
|---|
| 3848 | #[ cfg(feature = "use_alloc")] | 
|---|
| 3849 | fn multipeek(self) -> MultiPeek<Self> | 
|---|
| 3850 | where | 
|---|
| 3851 | Self: Sized, | 
|---|
| 3852 | { | 
|---|
| 3853 | multipeek_impl::multipeek(self) | 
|---|
| 3854 | } | 
|---|
| 3855 |  | 
|---|
| 3856 | /// Collect the items in this iterator and return a `HashMap` which | 
|---|
| 3857 | /// contains each item that appears in the iterator and the number | 
|---|
| 3858 | /// of times it appears. | 
|---|
| 3859 | /// | 
|---|
| 3860 | /// # Examples | 
|---|
| 3861 | /// ``` | 
|---|
| 3862 | /// # use itertools::Itertools; | 
|---|
| 3863 | /// let counts = [1, 1, 1, 3, 3, 5].into_iter().counts(); | 
|---|
| 3864 | /// assert_eq!(counts[&1], 3); | 
|---|
| 3865 | /// assert_eq!(counts[&3], 2); | 
|---|
| 3866 | /// assert_eq!(counts[&5], 1); | 
|---|
| 3867 | /// assert_eq!(counts.get(&0), None); | 
|---|
| 3868 | /// ``` | 
|---|
| 3869 | #[ cfg(feature = "use_std")] | 
|---|
| 3870 | fn counts(self) -> HashMap<Self::Item, usize> | 
|---|
| 3871 | where | 
|---|
| 3872 | Self: Sized, | 
|---|
| 3873 | Self::Item: Eq + Hash, | 
|---|
| 3874 | { | 
|---|
| 3875 | let mut counts = HashMap::new(); | 
|---|
| 3876 | self.for_each(|item| *counts.entry(item).or_default() += 1); | 
|---|
| 3877 | counts | 
|---|
| 3878 | } | 
|---|
| 3879 |  | 
|---|
| 3880 | /// Collect the items in this iterator and return a `HashMap` which | 
|---|
| 3881 | /// contains each item that appears in the iterator and the number | 
|---|
| 3882 | /// of times it appears, | 
|---|
| 3883 | /// determining identity using a keying function. | 
|---|
| 3884 | /// | 
|---|
| 3885 | /// ``` | 
|---|
| 3886 | /// # use itertools::Itertools; | 
|---|
| 3887 | /// struct Character { | 
|---|
| 3888 | ///   first_name: &'static str, | 
|---|
| 3889 | ///   last_name:  &'static str, | 
|---|
| 3890 | /// } | 
|---|
| 3891 | /// | 
|---|
| 3892 | /// let characters = | 
|---|
| 3893 | ///     vec![ | 
|---|
| 3894 | ///         Character { first_name: "Amy",   last_name: "Pond"}, | 
|---|
| 3895 | ///         Character { first_name: "Amy",   last_name: "Wong"}, | 
|---|
| 3896 | ///         Character { first_name: "Amy",   last_name: "Santiago"}, | 
|---|
| 3897 | ///         Character { first_name: "James", last_name: "Bond"}, | 
|---|
| 3898 | ///         Character { first_name: "James", last_name: "Sullivan"}, | 
|---|
| 3899 | ///         Character { first_name: "James", last_name: "Norington"}, | 
|---|
| 3900 | ///         Character { first_name: "James", last_name: "Kirk"}, | 
|---|
| 3901 | ///     ]; | 
|---|
| 3902 | /// | 
|---|
| 3903 | /// let first_name_frequency = | 
|---|
| 3904 | ///     characters | 
|---|
| 3905 | ///         .into_iter() | 
|---|
| 3906 | ///         .counts_by(|c| c.first_name); | 
|---|
| 3907 | /// | 
|---|
| 3908 | /// assert_eq!(first_name_frequency[ "Amy"], 3); | 
|---|
| 3909 | /// assert_eq!(first_name_frequency[ "James"], 4); | 
|---|
| 3910 | /// assert_eq!(first_name_frequency.contains_key( "Asha"), false); | 
|---|
| 3911 | /// ``` | 
|---|
| 3912 | #[ cfg(feature = "use_std")] | 
|---|
| 3913 | fn counts_by<K, F>(self, f: F) -> HashMap<K, usize> | 
|---|
| 3914 | where | 
|---|
| 3915 | Self: Sized, | 
|---|
| 3916 | K: Eq + Hash, | 
|---|
| 3917 | F: FnMut(Self::Item) -> K, | 
|---|
| 3918 | { | 
|---|
| 3919 | self.map(f).counts() | 
|---|
| 3920 | } | 
|---|
| 3921 |  | 
|---|
| 3922 | /// Converts an iterator of tuples into a tuple of containers. | 
|---|
| 3923 | /// | 
|---|
| 3924 | /// `unzip()` consumes an entire iterator of n-ary tuples, producing `n` collections, one for each | 
|---|
| 3925 | /// column. | 
|---|
| 3926 | /// | 
|---|
| 3927 | /// This function is, in some sense, the opposite of [`multizip`]. | 
|---|
| 3928 | /// | 
|---|
| 3929 | /// ``` | 
|---|
| 3930 | /// use itertools::Itertools; | 
|---|
| 3931 | /// | 
|---|
| 3932 | /// let inputs = vec![(1, 2, 3), (4, 5, 6), (7, 8, 9)]; | 
|---|
| 3933 | /// | 
|---|
| 3934 | /// let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = inputs | 
|---|
| 3935 | ///     .into_iter() | 
|---|
| 3936 | ///     .multiunzip(); | 
|---|
| 3937 | /// | 
|---|
| 3938 | /// assert_eq!(a, vec![1, 4, 7]); | 
|---|
| 3939 | /// assert_eq!(b, vec![2, 5, 8]); | 
|---|
| 3940 | /// assert_eq!(c, vec![3, 6, 9]); | 
|---|
| 3941 | /// ``` | 
|---|
| 3942 | fn multiunzip<FromI>(self) -> FromI | 
|---|
| 3943 | where | 
|---|
| 3944 | Self: Sized + MultiUnzip<FromI>, | 
|---|
| 3945 | { | 
|---|
| 3946 | MultiUnzip::multiunzip(self) | 
|---|
| 3947 | } | 
|---|
| 3948 |  | 
|---|
| 3949 | /// Returns the length of the iterator if one exists. | 
|---|
| 3950 | /// Otherwise return `self.size_hint()`. | 
|---|
| 3951 | /// | 
|---|
| 3952 | /// Fallible [`ExactSizeIterator::len`]. | 
|---|
| 3953 | /// | 
|---|
| 3954 | /// Inherits guarantees and restrictions from [`Iterator::size_hint`]. | 
|---|
| 3955 | /// | 
|---|
| 3956 | /// ``` | 
|---|
| 3957 | /// use itertools::Itertools; | 
|---|
| 3958 | /// | 
|---|
| 3959 | /// assert_eq!([0; 10].iter().try_len(), Ok(10)); | 
|---|
| 3960 | /// assert_eq!((10..15).try_len(), Ok(5)); | 
|---|
| 3961 | /// assert_eq!((15..10).try_len(), Ok(0)); | 
|---|
| 3962 | /// assert_eq!((10..).try_len(), Err((usize::MAX, None))); | 
|---|
| 3963 | /// assert_eq!((10..15).filter(|x| x % 2 == 0).try_len(), Err((0, Some(5)))); | 
|---|
| 3964 | /// ``` | 
|---|
| 3965 | fn try_len(&self) -> Result<usize, size_hint::SizeHint> { | 
|---|
| 3966 | let sh = self.size_hint(); | 
|---|
| 3967 | match sh { | 
|---|
| 3968 | (lo, Some(hi)) if lo == hi => Ok(lo), | 
|---|
| 3969 | _ => Err(sh), | 
|---|
| 3970 | } | 
|---|
| 3971 | } | 
|---|
| 3972 | } | 
|---|
| 3973 |  | 
|---|
| 3974 | impl<T> Itertools for T where T: Iterator + ?Sized {} | 
|---|
| 3975 |  | 
|---|
| 3976 | /// Return `true` if both iterables produce equal sequences | 
|---|
| 3977 | /// (elements pairwise equal and sequences of the same length), | 
|---|
| 3978 | /// `false` otherwise. | 
|---|
| 3979 | /// | 
|---|
| 3980 | /// [`IntoIterator`] enabled version of [`Iterator::eq`]. | 
|---|
| 3981 | /// | 
|---|
| 3982 | /// ``` | 
|---|
| 3983 | /// assert!(itertools::equal(vec![1, 2, 3], 1..4)); | 
|---|
| 3984 | /// assert!(!itertools::equal(&[0, 0], &[0, 0, 0])); | 
|---|
| 3985 | /// ``` | 
|---|
| 3986 | pub fn equal<I, J>(a: I, b: J) -> bool | 
|---|
| 3987 | where | 
|---|
| 3988 | I: IntoIterator, | 
|---|
| 3989 | J: IntoIterator, | 
|---|
| 3990 | I::Item: PartialEq<J::Item>, | 
|---|
| 3991 | { | 
|---|
| 3992 | a.into_iter().eq(b) | 
|---|
| 3993 | } | 
|---|
| 3994 |  | 
|---|
| 3995 | /// Assert that two iterables produce equal sequences, with the same | 
|---|
| 3996 | /// semantics as [`equal(a, b)`](equal). | 
|---|
| 3997 | /// | 
|---|
| 3998 | /// **Panics** on assertion failure with a message that shows the | 
|---|
| 3999 | /// two iteration elements. | 
|---|
| 4000 | /// | 
|---|
| 4001 | /// ```should_panic | 
|---|
| 4002 | /// # use itertools::assert_equal; | 
|---|
| 4003 | /// assert_equal( "exceed".split( 'c'), "excess".split( 'c')); | 
|---|
| 4004 | /// // ^PANIC: panicked at 'Failed assertion Some("eed") == Some("ess") for iteration 1'. | 
|---|
| 4005 | /// ``` | 
|---|
| 4006 | pub fn assert_equal<I, J>(a: I, b: J) | 
|---|
| 4007 | where | 
|---|
| 4008 | I: IntoIterator, | 
|---|
| 4009 | J: IntoIterator, | 
|---|
| 4010 | I::Item: fmt::Debug + PartialEq<J::Item>, | 
|---|
| 4011 | J::Item: fmt::Debug, | 
|---|
| 4012 | { | 
|---|
| 4013 | let mut ia: I = a.into_iter(); | 
|---|
| 4014 | let mut ib: J = b.into_iter(); | 
|---|
| 4015 | let mut i: i32 = 0; | 
|---|
| 4016 | loop { | 
|---|
| 4017 | match (ia.next(), ib.next()) { | 
|---|
| 4018 | (None, None) => return, | 
|---|
| 4019 | (a: Option<{unknown}>, b: Option<{unknown}>) => { | 
|---|
| 4020 | let equal: bool = match (&a, &b) { | 
|---|
| 4021 | (Some(a: &{unknown}), Some(b: &{unknown})) => a == b, | 
|---|
| 4022 | _ => false, | 
|---|
| 4023 | }; | 
|---|
| 4024 | assert!( | 
|---|
| 4025 | equal, | 
|---|
| 4026 | "Failed assertion {a:?}  == {b:?}  for iteration {i} ", | 
|---|
| 4027 | i = i, | 
|---|
| 4028 | a = a, | 
|---|
| 4029 | b = b | 
|---|
| 4030 | ); | 
|---|
| 4031 | i += 1; | 
|---|
| 4032 | } | 
|---|
| 4033 | } | 
|---|
| 4034 | } | 
|---|
| 4035 | } | 
|---|
| 4036 |  | 
|---|
| 4037 | /// Partition a sequence using predicate `pred` so that elements | 
|---|
| 4038 | /// that map to `true` are placed before elements which map to `false`. | 
|---|
| 4039 | /// | 
|---|
| 4040 | /// The order within the partitions is arbitrary. | 
|---|
| 4041 | /// | 
|---|
| 4042 | /// Return the index of the split point. | 
|---|
| 4043 | /// | 
|---|
| 4044 | /// ``` | 
|---|
| 4045 | /// use itertools::partition; | 
|---|
| 4046 | /// | 
|---|
| 4047 | /// # // use repeated numbers to not promise any ordering | 
|---|
| 4048 | /// let mut data = [7, 1, 1, 7, 1, 1, 7]; | 
|---|
| 4049 | /// let split_index = partition(&mut data, |elt| *elt >= 3); | 
|---|
| 4050 | /// | 
|---|
| 4051 | /// assert_eq!(data, [7, 7, 7, 1, 1, 1, 1]); | 
|---|
| 4052 | /// assert_eq!(split_index, 3); | 
|---|
| 4053 | /// ``` | 
|---|
| 4054 | pub fn partition<'a, A: 'a, I, F>(iter: I, mut pred: F) -> usize | 
|---|
| 4055 | where | 
|---|
| 4056 | I: IntoIterator<Item = &'a mut A>, | 
|---|
| 4057 | I::IntoIter: DoubleEndedIterator, | 
|---|
| 4058 | F: FnMut(&A) -> bool, | 
|---|
| 4059 | { | 
|---|
| 4060 | let mut split_index: usize = 0; | 
|---|
| 4061 | let mut iter: impl DoubleEndedIterator = iter.into_iter(); | 
|---|
| 4062 | while let Some(front: &'a mut A) = iter.next() { | 
|---|
| 4063 | if !pred(front) { | 
|---|
| 4064 | match iter.rfind(|back: &&'a mut A| pred(back)) { | 
|---|
| 4065 | Some(back: &'a mut A) => std::mem::swap(x:front, y:back), | 
|---|
| 4066 | None => break, | 
|---|
| 4067 | } | 
|---|
| 4068 | } | 
|---|
| 4069 | split_index += 1; | 
|---|
| 4070 | } | 
|---|
| 4071 | split_index | 
|---|
| 4072 | } | 
|---|
| 4073 |  | 
|---|
| 4074 | /// An enum used for controlling the execution of `fold_while`. | 
|---|
| 4075 | /// | 
|---|
| 4076 | /// See [`.fold_while()`](Itertools::fold_while) for more information. | 
|---|
| 4077 | #[ derive(Copy, Clone, Debug, Eq, PartialEq)] | 
|---|
| 4078 | pub enum FoldWhile<T> { | 
|---|
| 4079 | /// Continue folding with this value | 
|---|
| 4080 | Continue(T), | 
|---|
| 4081 | /// Fold is complete and will return this value | 
|---|
| 4082 | Done(T), | 
|---|
| 4083 | } | 
|---|
| 4084 |  | 
|---|
| 4085 | impl<T> FoldWhile<T> { | 
|---|
| 4086 | /// Return the value in the continue or done. | 
|---|
| 4087 | pub fn into_inner(self) -> T { | 
|---|
| 4088 | match self { | 
|---|
| 4089 | Self::Continue(x: T) | Self::Done(x: T) => x, | 
|---|
| 4090 | } | 
|---|
| 4091 | } | 
|---|
| 4092 |  | 
|---|
| 4093 | /// Return true if `self` is `Done`, false if it is `Continue`. | 
|---|
| 4094 | pub fn is_done(&self) -> bool { | 
|---|
| 4095 | match *self { | 
|---|
| 4096 | Self::Continue(_) => false, | 
|---|
| 4097 | Self::Done(_) => true, | 
|---|
| 4098 | } | 
|---|
| 4099 | } | 
|---|
| 4100 | } | 
|---|
| 4101 |  | 
|---|