| 1 | //! Slow, fallback cases where we cannot unambiguously round a float. |
| 2 | //! |
| 3 | //! This occurs when we cannot determine the exact representation using |
| 4 | //! both the fast path (native) cases nor the Lemire/Bellerophon algorithms, |
| 5 | //! and therefore must fallback to a slow, arbitrary-precision representation. |
| 6 | |
| 7 | #![doc (hidden)] |
| 8 | |
| 9 | use crate::bigint::{Bigint, Limb, LIMB_BITS}; |
| 10 | use crate::extended_float::{extended_to_float, ExtendedFloat}; |
| 11 | use crate::num::Float; |
| 12 | use crate::number::Number; |
| 13 | use crate::rounding::{round, round_down, round_nearest_tie_even}; |
| 14 | use core::cmp; |
| 15 | |
| 16 | // ALGORITHM |
| 17 | // --------- |
| 18 | |
| 19 | /// Parse the significant digits and biased, binary exponent of a float. |
| 20 | /// |
| 21 | /// This is a fallback algorithm that uses a big-integer representation |
| 22 | /// of the float, and therefore is considerably slower than faster |
| 23 | /// approximations. However, it will always determine how to round |
| 24 | /// the significant digits to the nearest machine float, allowing |
| 25 | /// use to handle near half-way cases. |
| 26 | /// |
| 27 | /// Near half-way cases are halfway between two consecutive machine floats. |
| 28 | /// For example, the float `16777217.0` has a bitwise representation of |
| 29 | /// `100000000000000000000000 1`. Rounding to a single-precision float, |
| 30 | /// the trailing `1` is truncated. Using round-nearest, tie-even, any |
| 31 | /// value above `16777217.0` must be rounded up to `16777218.0`, while |
| 32 | /// any value before or equal to `16777217.0` must be rounded down |
| 33 | /// to `16777216.0`. These near-halfway conversions therefore may require |
| 34 | /// a large number of digits to unambiguously determine how to round. |
| 35 | #[inline ] |
| 36 | pub fn slow<'a, F, Iter1, Iter2>( |
| 37 | num: Number, |
| 38 | fp: ExtendedFloat, |
| 39 | integer: Iter1, |
| 40 | fraction: Iter2, |
| 41 | ) -> ExtendedFloat |
| 42 | where |
| 43 | F: Float, |
| 44 | Iter1: Iterator<Item = &'a u8> + Clone, |
| 45 | Iter2: Iterator<Item = &'a u8> + Clone, |
| 46 | { |
| 47 | // Ensure our preconditions are valid: |
| 48 | // 1. The significant digits are not shifted into place. |
| 49 | debug_assert!(fp.mant & (1 << 63) != 0); |
| 50 | |
| 51 | // This assumes the sign bit has already been parsed, and we're |
| 52 | // starting with the integer digits, and the float format has been |
| 53 | // correctly validated. |
| 54 | let sci_exp: i32 = scientific_exponent(&num); |
| 55 | |
| 56 | // We have 2 major algorithms we use for this: |
| 57 | // 1. An algorithm with a finite number of digits and a positive exponent. |
| 58 | // 2. An algorithm with a finite number of digits and a negative exponent. |
| 59 | let (bigmant: Bigint, digits: usize) = parse_mantissa(integer, fraction, F::MAX_DIGITS); |
| 60 | let exponent: i32 = sci_exp + 1 - digits as i32; |
| 61 | if exponent >= 0 { |
| 62 | positive_digit_comp::<F>(bigmant, exponent) |
| 63 | } else { |
| 64 | negative_digit_comp::<F>(bigmant, fp, exponent) |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | /// Generate the significant digits with a positive exponent relative to mantissa. |
| 69 | pub fn positive_digit_comp<F: Float>(mut bigmant: Bigint, exponent: i32) -> ExtendedFloat { |
| 70 | // Simple, we just need to multiply by the power of the radix. |
| 71 | // Now, we can calculate the mantissa and the exponent from this. |
| 72 | // The binary exponent is the binary exponent for the mantissa |
| 73 | // shifted to the hidden bit. |
| 74 | bigmant.pow(10, exponent as u32).unwrap(); |
| 75 | |
| 76 | // Get the exact representation of the float from the big integer. |
| 77 | // hi64 checks **all** the remaining bits after the mantissa, |
| 78 | // so it will check if **any** truncated digits exist. |
| 79 | let (mant, is_truncated) = bigmant.hi64(); |
| 80 | let exp = bigmant.bit_length() as i32 - 64 + F::EXPONENT_BIAS; |
| 81 | let mut fp = ExtendedFloat { |
| 82 | mant, |
| 83 | exp, |
| 84 | }; |
| 85 | |
| 86 | // Shift the digits into position and determine if we need to round-up. |
| 87 | round::<F, _>(&mut fp, |f, s| { |
| 88 | round_nearest_tie_even(f, s, |is_odd, is_halfway, is_above| { |
| 89 | is_above || (is_halfway && is_truncated) || (is_odd && is_halfway) |
| 90 | }); |
| 91 | }); |
| 92 | fp |
| 93 | } |
| 94 | |
| 95 | /// Generate the significant digits with a negative exponent relative to mantissa. |
| 96 | /// |
| 97 | /// This algorithm is quite simple: we have the significant digits `m1 * b^N1`, |
| 98 | /// where `m1` is the bigint mantissa, `b` is the radix, and `N1` is the radix |
| 99 | /// exponent. We then calculate the theoretical representation of `b+h`, which |
| 100 | /// is `m2 * 2^N2`, where `m2` is the bigint mantissa and `N2` is the binary |
| 101 | /// exponent. If we had infinite, efficient floating precision, this would be |
| 102 | /// equal to `m1 / b^-N1` and then compare it to `m2 * 2^N2`. |
| 103 | /// |
| 104 | /// Since we cannot divide and keep precision, we must multiply the other: |
| 105 | /// if we want to do `m1 / b^-N1 >= m2 * 2^N2`, we can do |
| 106 | /// `m1 >= m2 * b^-N1 * 2^N2` Going to the decimal case, we can show and example |
| 107 | /// and simplify this further: `m1 >= m2 * 2^N2 * 10^-N1`. Since we can remove |
| 108 | /// a power-of-two, this is `m1 >= m2 * 2^(N2 - N1) * 5^-N1`. Therefore, if |
| 109 | /// `N2 - N1 > 0`, we need have `m1 >= m2 * 2^(N2 - N1) * 5^-N1`, otherwise, |
| 110 | /// we have `m1 * 2^(N1 - N2) >= m2 * 5^-N1`, where the resulting exponents |
| 111 | /// are all positive. |
| 112 | /// |
| 113 | /// This allows us to compare both floats using integers efficiently |
| 114 | /// without any loss of precision. |
| 115 | #[allow (clippy::comparison_chain)] |
| 116 | pub fn negative_digit_comp<F: Float>( |
| 117 | bigmant: Bigint, |
| 118 | mut fp: ExtendedFloat, |
| 119 | exponent: i32, |
| 120 | ) -> ExtendedFloat { |
| 121 | // Ensure our preconditions are valid: |
| 122 | // 1. The significant digits are not shifted into place. |
| 123 | debug_assert!(fp.mant & (1 << 63) != 0); |
| 124 | |
| 125 | // Get the significant digits and radix exponent for the real digits. |
| 126 | let mut real_digits = bigmant; |
| 127 | let real_exp = exponent; |
| 128 | debug_assert!(real_exp < 0); |
| 129 | |
| 130 | // Round down our extended-precision float and calculate `b`. |
| 131 | let mut b = fp; |
| 132 | round::<F, _>(&mut b, round_down); |
| 133 | let b = extended_to_float::<F>(b); |
| 134 | |
| 135 | // Get the significant digits and the binary exponent for `b+h`. |
| 136 | let theor = bh(b); |
| 137 | let mut theor_digits = Bigint::from_u64(theor.mant); |
| 138 | let theor_exp = theor.exp; |
| 139 | |
| 140 | // We need to scale the real digits and `b+h` digits to be the same |
| 141 | // order. We currently have `real_exp`, in `radix`, that needs to be |
| 142 | // shifted to `theor_digits` (since it is negative), and `theor_exp` |
| 143 | // to either `theor_digits` or `real_digits` as a power of 2 (since it |
| 144 | // may be positive or negative). Try to remove as many powers of 2 |
| 145 | // as possible. All values are relative to `theor_digits`, that is, |
| 146 | // reflect the power you need to multiply `theor_digits` by. |
| 147 | // |
| 148 | // Both are on opposite-sides of equation, can factor out a |
| 149 | // power of two. |
| 150 | // |
| 151 | // Example: 10^-10, 2^-10 -> ( 0, 10, 0) |
| 152 | // Example: 10^-10, 2^-15 -> (-5, 10, 0) |
| 153 | // Example: 10^-10, 2^-5 -> ( 5, 10, 0) |
| 154 | // Example: 10^-10, 2^5 -> (15, 10, 0) |
| 155 | let binary_exp = theor_exp - real_exp; |
| 156 | let halfradix_exp = -real_exp; |
| 157 | if halfradix_exp != 0 { |
| 158 | theor_digits.pow(5, halfradix_exp as u32).unwrap(); |
| 159 | } |
| 160 | if binary_exp > 0 { |
| 161 | theor_digits.pow(2, binary_exp as u32).unwrap(); |
| 162 | } else if binary_exp < 0 { |
| 163 | real_digits.pow(2, (-binary_exp) as u32).unwrap(); |
| 164 | } |
| 165 | |
| 166 | // Compare our theoretical and real digits and round nearest, tie even. |
| 167 | let ord = real_digits.data.cmp(&theor_digits.data); |
| 168 | round::<F, _>(&mut fp, |f, s| { |
| 169 | round_nearest_tie_even(f, s, |is_odd, _, _| { |
| 170 | // Can ignore `is_halfway` and `is_above`, since those were |
| 171 | // calculates using less significant digits. |
| 172 | match ord { |
| 173 | cmp::Ordering::Greater => true, |
| 174 | cmp::Ordering::Less => false, |
| 175 | cmp::Ordering::Equal if is_odd => true, |
| 176 | cmp::Ordering::Equal => false, |
| 177 | } |
| 178 | }); |
| 179 | }); |
| 180 | fp |
| 181 | } |
| 182 | |
| 183 | /// Add a digit to the temporary value. |
| 184 | macro_rules! add_digit { |
| 185 | ($c:ident, $value:ident, $counter:ident, $count:ident) => {{ |
| 186 | let digit = $c - b'0' ; |
| 187 | $value *= 10 as Limb; |
| 188 | $value += digit as Limb; |
| 189 | |
| 190 | // Increment our counters. |
| 191 | $counter += 1; |
| 192 | $count += 1; |
| 193 | }}; |
| 194 | } |
| 195 | |
| 196 | /// Add a temporary value to our mantissa. |
| 197 | macro_rules! add_temporary { |
| 198 | // Multiply by the small power and add the native value. |
| 199 | (@mul $result:ident, $power:expr, $value:expr) => { |
| 200 | $result.data.mul_small($power).unwrap(); |
| 201 | $result.data.add_small($value).unwrap(); |
| 202 | }; |
| 203 | |
| 204 | // # Safety |
| 205 | // |
| 206 | // Safe is `counter <= step`, or smaller than the table size. |
| 207 | ($format:ident, $result:ident, $counter:ident, $value:ident) => { |
| 208 | if $counter != 0 { |
| 209 | // SAFETY: safe, since `counter <= step`, or smaller than the table size. |
| 210 | let small_power = unsafe { f64::int_pow_fast_path($counter, 10) }; |
| 211 | add_temporary!(@mul $result, small_power as Limb, $value); |
| 212 | $counter = 0; |
| 213 | $value = 0; |
| 214 | } |
| 215 | }; |
| 216 | |
| 217 | // Add a temporary where we won't read the counter results internally. |
| 218 | // |
| 219 | // # Safety |
| 220 | // |
| 221 | // Safe is `counter <= step`, or smaller than the table size. |
| 222 | (@end $format:ident, $result:ident, $counter:ident, $value:ident) => { |
| 223 | if $counter != 0 { |
| 224 | // SAFETY: safe, since `counter <= step`, or smaller than the table size. |
| 225 | let small_power = unsafe { f64::int_pow_fast_path($counter, 10) }; |
| 226 | add_temporary!(@mul $result, small_power as Limb, $value); |
| 227 | } |
| 228 | }; |
| 229 | |
| 230 | // Add the maximum native value. |
| 231 | (@max $format:ident, $result:ident, $counter:ident, $value:ident, $max:ident) => { |
| 232 | add_temporary!(@mul $result, $max, $value); |
| 233 | $counter = 0; |
| 234 | $value = 0; |
| 235 | }; |
| 236 | } |
| 237 | |
| 238 | /// Round-up a truncated value. |
| 239 | macro_rules! round_up_truncated { |
| 240 | ($format:ident, $result:ident, $count:ident) => {{ |
| 241 | // Need to round-up. |
| 242 | // Can't just add 1, since this can accidentally round-up |
| 243 | // values to a halfway point, which can cause invalid results. |
| 244 | add_temporary!(@mul $result, 10, 1); |
| 245 | $count += 1; |
| 246 | }}; |
| 247 | } |
| 248 | |
| 249 | /// Check and round-up the fraction if any non-zero digits exist. |
| 250 | macro_rules! round_up_nonzero { |
| 251 | ($format:ident, $iter:expr, $result:ident, $count:ident) => {{ |
| 252 | for &digit in $iter { |
| 253 | if digit != b'0' { |
| 254 | round_up_truncated!($format, $result, $count); |
| 255 | return ($result, $count); |
| 256 | } |
| 257 | } |
| 258 | }}; |
| 259 | } |
| 260 | |
| 261 | /// Parse the full mantissa into a big integer. |
| 262 | /// |
| 263 | /// Returns the parsed mantissa and the number of digits in the mantissa. |
| 264 | /// The max digits is the maximum number of digits plus one. |
| 265 | pub fn parse_mantissa<'a, Iter1, Iter2>( |
| 266 | mut integer: Iter1, |
| 267 | mut fraction: Iter2, |
| 268 | max_digits: usize, |
| 269 | ) -> (Bigint, usize) |
| 270 | where |
| 271 | Iter1: Iterator<Item = &'a u8> + Clone, |
| 272 | Iter2: Iterator<Item = &'a u8> + Clone, |
| 273 | { |
| 274 | // Iteratively process all the data in the mantissa. |
| 275 | // We do this via small, intermediate values which once we reach |
| 276 | // the maximum number of digits we can process without overflow, |
| 277 | // we add the temporary to the big integer. |
| 278 | let mut counter: usize = 0; |
| 279 | let mut count: usize = 0; |
| 280 | let mut value: Limb = 0; |
| 281 | let mut result = Bigint::new(); |
| 282 | |
| 283 | // Now use our pre-computed small powers iteratively. |
| 284 | // This is calculated as `⌊log(2^BITS - 1, 10)⌋`. |
| 285 | let step: usize = if LIMB_BITS == 32 { |
| 286 | 9 |
| 287 | } else { |
| 288 | 19 |
| 289 | }; |
| 290 | let max_native = (10 as Limb).pow(step as u32); |
| 291 | |
| 292 | // Process the integer digits. |
| 293 | 'integer: loop { |
| 294 | // Parse a digit at a time, until we reach step. |
| 295 | while counter < step && count < max_digits { |
| 296 | if let Some(&c) = integer.next() { |
| 297 | add_digit!(c, value, counter, count); |
| 298 | } else { |
| 299 | break 'integer; |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | // Check if we've exhausted our max digits. |
| 304 | if count == max_digits { |
| 305 | // Need to check if we're truncated, and round-up accordingly. |
| 306 | // SAFETY: safe since `counter <= step`. |
| 307 | add_temporary!(@end format, result, counter, value); |
| 308 | round_up_nonzero!(format, integer, result, count); |
| 309 | round_up_nonzero!(format, fraction, result, count); |
| 310 | return (result, count); |
| 311 | } else { |
| 312 | // Add our temporary from the loop. |
| 313 | // SAFETY: safe since `counter <= step`. |
| 314 | add_temporary!(@max format, result, counter, value, max_native); |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | // Skip leading fraction zeros. |
| 319 | // Required to get an accurate count. |
| 320 | if count == 0 { |
| 321 | for &c in &mut fraction { |
| 322 | if c != b'0' { |
| 323 | add_digit!(c, value, counter, count); |
| 324 | break; |
| 325 | } |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | // Process the fraction digits. |
| 330 | 'fraction: loop { |
| 331 | // Parse a digit at a time, until we reach step. |
| 332 | while counter < step && count < max_digits { |
| 333 | if let Some(&c) = fraction.next() { |
| 334 | add_digit!(c, value, counter, count); |
| 335 | } else { |
| 336 | break 'fraction; |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | // Check if we've exhausted our max digits. |
| 341 | if count == max_digits { |
| 342 | // SAFETY: safe since `counter <= step`. |
| 343 | add_temporary!(@end format, result, counter, value); |
| 344 | round_up_nonzero!(format, fraction, result, count); |
| 345 | return (result, count); |
| 346 | } else { |
| 347 | // Add our temporary from the loop. |
| 348 | // SAFETY: safe since `counter <= step`. |
| 349 | add_temporary!(@max format, result, counter, value, max_native); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | // We will always have a remainder, as long as we entered the loop |
| 354 | // once, or counter % step is 0. |
| 355 | // SAFETY: safe since `counter <= step`. |
| 356 | add_temporary!(@end format, result, counter, value); |
| 357 | |
| 358 | (result, count) |
| 359 | } |
| 360 | |
| 361 | // SCALING |
| 362 | // ------- |
| 363 | |
| 364 | /// Calculate the scientific exponent from a `Number` value. |
| 365 | /// Any other attempts would require slowdowns for faster algorithms. |
| 366 | #[inline ] |
| 367 | pub fn scientific_exponent(num: &Number) -> i32 { |
| 368 | // Use power reduction to make this faster. |
| 369 | let mut mantissa: u64 = num.mantissa; |
| 370 | let mut exponent: i32 = num.exponent; |
| 371 | while mantissa >= 10000 { |
| 372 | mantissa /= 10000; |
| 373 | exponent += 4; |
| 374 | } |
| 375 | while mantissa >= 100 { |
| 376 | mantissa /= 100; |
| 377 | exponent += 2; |
| 378 | } |
| 379 | while mantissa >= 10 { |
| 380 | mantissa /= 10; |
| 381 | exponent += 1; |
| 382 | } |
| 383 | exponent as i32 |
| 384 | } |
| 385 | |
| 386 | /// Calculate `b` from a a representation of `b` as a float. |
| 387 | #[inline ] |
| 388 | pub fn b<F: Float>(float: F) -> ExtendedFloat { |
| 389 | ExtendedFloat { |
| 390 | mant: float.mantissa(), |
| 391 | exp: float.exponent(), |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | /// Calculate `b+h` from a a representation of `b` as a float. |
| 396 | #[inline ] |
| 397 | pub fn bh<F: Float>(float: F) -> ExtendedFloat { |
| 398 | let fp: ExtendedFloat = b(float); |
| 399 | ExtendedFloat { |
| 400 | mant: (fp.mant << 1) + 1, |
| 401 | exp: fp.exp - 1, |
| 402 | } |
| 403 | } |
| 404 | |