1 | //! This crate implements a hash table that can be used as is in its binary, on-disk format. |
2 | //! The goal is to provide a high performance data structure that can be used without any significant up-front decoding. |
3 | //! The implementation makes no assumptions about alignment or endianess of the underlying data, |
4 | //! so a table encoded on one platform can be used on any other platform and |
5 | //! the binary data can be mapped into memory at arbitrary addresses. |
6 | //! |
7 | //! |
8 | //! ## Usage |
9 | //! |
10 | //! In order to use the hash table one needs to implement the `Config` trait. |
11 | //! This trait defines how the table is encoded and what hash function is used. |
12 | //! With a `Config` in place the `HashTableOwned` type can be used to build and serialize a hash table. |
13 | //! The `HashTable` type can then be used to create an almost zero-cost view of the serialized hash table. |
14 | //! |
15 | //! ```rust |
16 | //! |
17 | //! use odht::{HashTable, HashTableOwned, Config, FxHashFn}; |
18 | //! |
19 | //! struct MyConfig; |
20 | //! |
21 | //! impl Config for MyConfig { |
22 | //! |
23 | //! type Key = u64; |
24 | //! type Value = u32; |
25 | //! |
26 | //! type EncodedKey = [u8; 8]; |
27 | //! type EncodedValue = [u8; 4]; |
28 | //! |
29 | //! type H = FxHashFn; |
30 | //! |
31 | //! #[inline ] fn encode_key(k: &Self::Key) -> Self::EncodedKey { k.to_le_bytes() } |
32 | //! #[inline ] fn encode_value(v: &Self::Value) -> Self::EncodedValue { v.to_le_bytes() } |
33 | //! #[inline ] fn decode_key(k: &Self::EncodedKey) -> Self::Key { u64::from_le_bytes(*k) } |
34 | //! #[inline ] fn decode_value(v: &Self::EncodedValue) -> Self::Value { u32::from_le_bytes(*v)} |
35 | //! } |
36 | //! |
37 | //! fn main() { |
38 | //! let mut builder = HashTableOwned::<MyConfig>::with_capacity(3, 95); |
39 | //! |
40 | //! builder.insert(&1, &2); |
41 | //! builder.insert(&3, &4); |
42 | //! builder.insert(&5, &6); |
43 | //! |
44 | //! let serialized = builder.raw_bytes().to_owned(); |
45 | //! |
46 | //! let table = HashTable::<MyConfig, &[u8]>::from_raw_bytes( |
47 | //! &serialized[..] |
48 | //! ).unwrap(); |
49 | //! |
50 | //! assert_eq!(table.get(&1), Some(2)); |
51 | //! assert_eq!(table.get(&3), Some(4)); |
52 | //! assert_eq!(table.get(&5), Some(6)); |
53 | //! } |
54 | //! ``` |
55 | |
56 | #![cfg_attr (feature = "nightly" , feature(core_intrinsics))] |
57 | |
58 | #[cfg (test)] |
59 | extern crate quickcheck; |
60 | |
61 | #[cfg (feature = "nightly" )] |
62 | macro_rules! likely { |
63 | ($x:expr) => { |
64 | std::intrinsics::likely($x) |
65 | }; |
66 | } |
67 | |
68 | #[cfg (not(feature = "nightly" ))] |
69 | macro_rules! likely { |
70 | ($x:expr) => { |
71 | $x |
72 | }; |
73 | } |
74 | |
75 | #[cfg (feature = "nightly" )] |
76 | macro_rules! unlikely { |
77 | ($x:expr) => { |
78 | std::intrinsics::unlikely($x) |
79 | }; |
80 | } |
81 | |
82 | #[cfg (not(feature = "nightly" ))] |
83 | macro_rules! unlikely { |
84 | ($x:expr) => { |
85 | $x |
86 | }; |
87 | } |
88 | |
89 | mod error; |
90 | mod fxhash; |
91 | mod memory_layout; |
92 | mod raw_table; |
93 | mod swisstable_group_query; |
94 | mod unhash; |
95 | |
96 | use error::Error; |
97 | use memory_layout::Header; |
98 | use std::borrow::{Borrow, BorrowMut}; |
99 | use swisstable_group_query::REFERENCE_GROUP_SIZE; |
100 | |
101 | pub use crate::fxhash::FxHashFn; |
102 | pub use crate::unhash::UnHashFn; |
103 | |
104 | use crate::raw_table::{ByteArray, RawIter, RawTable, RawTableMut}; |
105 | |
106 | /// This trait provides a complete "configuration" for a hash table, i.e. it |
107 | /// defines the key and value types, how these are encoded and what hash |
108 | /// function is being used. |
109 | /// |
110 | /// Implementations of the `encode_key` and `encode_value` methods must encode |
111 | /// the given key/value into a fixed size array. The encoding must be |
112 | /// deterministic (i.e. no random padding bytes) and must be independent of |
113 | /// platform endianess. It is always highly recommended to mark these methods |
114 | /// as `#[inline]`. |
115 | pub trait Config { |
116 | type Key; |
117 | type Value; |
118 | |
119 | // The EncodedKey and EncodedValue types must always be a fixed size array of bytes, |
120 | // e.g. [u8; 4]. |
121 | type EncodedKey: ByteArray; |
122 | type EncodedValue: ByteArray; |
123 | |
124 | type H: HashFn; |
125 | |
126 | /// Implementations of the `encode_key` and `encode_value` methods must encode |
127 | /// the given key/value into a fixed size array. See above for requirements. |
128 | fn encode_key(k: &Self::Key) -> Self::EncodedKey; |
129 | |
130 | /// Implementations of the `encode_key` and `encode_value` methods must encode |
131 | /// the given key/value into a fixed size array. See above for requirements. |
132 | fn encode_value(v: &Self::Value) -> Self::EncodedValue; |
133 | |
134 | fn decode_key(k: &Self::EncodedKey) -> Self::Key; |
135 | fn decode_value(v: &Self::EncodedValue) -> Self::Value; |
136 | } |
137 | |
138 | /// This trait represents hash functions as used by HashTable and |
139 | /// HashTableOwned. |
140 | pub trait HashFn: Eq { |
141 | fn hash(bytes: &[u8]) -> u32; |
142 | } |
143 | |
144 | /// A [HashTableOwned] keeps the underlying data on the heap and |
145 | /// can resize itself on demand. |
146 | #[derive (Clone)] |
147 | pub struct HashTableOwned<C: Config> { |
148 | allocation: memory_layout::Allocation<C, Box<[u8]>>, |
149 | } |
150 | |
151 | impl<C: Config> Default for HashTableOwned<C> { |
152 | fn default() -> Self { |
153 | HashTableOwned::with_capacity(max_item_count:12, max_load_factor_percent:87) |
154 | } |
155 | } |
156 | |
157 | impl<C: Config> HashTableOwned<C> { |
158 | /// Creates a new [HashTableOwned] that can hold at least `max_item_count` |
159 | /// items while maintaining the specified load factor. |
160 | pub fn with_capacity(max_item_count: usize, max_load_factor_percent: u8) -> HashTableOwned<C> { |
161 | assert!(max_load_factor_percent <= 100); |
162 | assert!(max_load_factor_percent > 0); |
163 | |
164 | Self::with_capacity_internal( |
165 | max_item_count, |
166 | Factor::from_percent(max_load_factor_percent), |
167 | ) |
168 | } |
169 | |
170 | fn with_capacity_internal(max_item_count: usize, max_load_factor: Factor) -> HashTableOwned<C> { |
171 | let slots_needed = slots_needed(max_item_count, max_load_factor); |
172 | assert!(slots_needed > 0); |
173 | |
174 | let allocation = memory_layout::allocate(slots_needed, 0, max_load_factor); |
175 | |
176 | HashTableOwned { allocation } |
177 | } |
178 | |
179 | /// Retrieves the value for the given key. Returns `None` if no entry is found. |
180 | #[inline ] |
181 | pub fn get(&self, key: &C::Key) -> Option<C::Value> { |
182 | let encoded_key = C::encode_key(key); |
183 | if let Some(encoded_value) = self.as_raw().find(&encoded_key) { |
184 | Some(C::decode_value(encoded_value)) |
185 | } else { |
186 | None |
187 | } |
188 | } |
189 | |
190 | #[inline ] |
191 | pub fn contains_key(&self, key: &C::Key) -> bool { |
192 | let encoded_key = C::encode_key(key); |
193 | self.as_raw().find(&encoded_key).is_some() |
194 | } |
195 | |
196 | /// Inserts the given key-value pair into the table. |
197 | /// Grows the table if necessary. |
198 | #[inline ] |
199 | pub fn insert(&mut self, key: &C::Key, value: &C::Value) -> Option<C::Value> { |
200 | let (item_count, max_item_count) = { |
201 | let header = self.allocation.header(); |
202 | let max_item_count = max_item_count_for(header.slot_count(), header.max_load_factor()); |
203 | (header.item_count(), max_item_count) |
204 | }; |
205 | |
206 | if unlikely!(item_count == max_item_count) { |
207 | self.grow(); |
208 | } |
209 | |
210 | debug_assert!( |
211 | item_count |
212 | < max_item_count_for( |
213 | self.allocation.header().slot_count(), |
214 | self.allocation.header().max_load_factor() |
215 | ) |
216 | ); |
217 | |
218 | let encoded_key = C::encode_key(key); |
219 | let encoded_value = C::encode_value(value); |
220 | |
221 | with_raw_mut(&mut self.allocation, |header, mut raw_table| { |
222 | if let Some(old_value) = raw_table.insert(encoded_key, encoded_value) { |
223 | Some(C::decode_value(&old_value)) |
224 | } else { |
225 | header.set_item_count(item_count + 1); |
226 | None |
227 | } |
228 | }) |
229 | } |
230 | |
231 | #[inline ] |
232 | pub fn iter(&self) -> Iter<'_, C> { |
233 | let (entry_metadata, entry_data) = self.allocation.data_slices(); |
234 | Iter(RawIter::new(entry_metadata, entry_data)) |
235 | } |
236 | |
237 | pub fn from_iterator<I: IntoIterator<Item = (C::Key, C::Value)>>( |
238 | it: I, |
239 | max_load_factor_percent: u8, |
240 | ) -> Self { |
241 | let it = it.into_iter(); |
242 | |
243 | let known_size = match it.size_hint() { |
244 | (min, Some(max)) => { |
245 | if min == max { |
246 | Some(max) |
247 | } else { |
248 | None |
249 | } |
250 | } |
251 | _ => None, |
252 | }; |
253 | |
254 | if let Some(known_size) = known_size { |
255 | let mut table = HashTableOwned::with_capacity(known_size, max_load_factor_percent); |
256 | |
257 | let initial_slot_count = table.allocation.header().slot_count(); |
258 | |
259 | for (k, v) in it { |
260 | table.insert(&k, &v); |
261 | } |
262 | |
263 | // duplicates |
264 | assert!(table.len() <= known_size); |
265 | assert_eq!(table.allocation.header().slot_count(), initial_slot_count); |
266 | |
267 | table |
268 | } else { |
269 | let items: Vec<_> = it.collect(); |
270 | Self::from_iterator(items, max_load_factor_percent) |
271 | } |
272 | } |
273 | |
274 | /// Constructs a [HashTableOwned] from its raw byte representation. |
275 | /// The provided data must have the exact right number of bytes. |
276 | /// |
277 | /// This method has linear time complexity as it needs to make its own |
278 | /// copy of the given data. |
279 | /// |
280 | /// The method will verify the header of the given data and return an |
281 | /// error if the verification fails. |
282 | pub fn from_raw_bytes(data: &[u8]) -> Result<HashTableOwned<C>, Box<dyn std::error::Error>> { |
283 | let data = data.to_owned().into_boxed_slice(); |
284 | let allocation = memory_layout::Allocation::from_raw_bytes(data)?; |
285 | |
286 | Ok(HashTableOwned { allocation }) |
287 | } |
288 | |
289 | #[inline ] |
290 | pub unsafe fn from_raw_bytes_unchecked(data: &[u8]) -> HashTableOwned<C> { |
291 | let data = data.to_owned().into_boxed_slice(); |
292 | let allocation = memory_layout::Allocation::from_raw_bytes_unchecked(data); |
293 | |
294 | HashTableOwned { allocation } |
295 | } |
296 | |
297 | /// Returns the number of items stored in the hash table. |
298 | #[inline ] |
299 | pub fn len(&self) -> usize { |
300 | self.allocation.header().item_count() |
301 | } |
302 | |
303 | #[inline ] |
304 | pub fn raw_bytes(&self) -> &[u8] { |
305 | self.allocation.raw_bytes() |
306 | } |
307 | |
308 | #[inline ] |
309 | fn as_raw(&self) -> RawTable<'_, C::EncodedKey, C::EncodedValue, C::H> { |
310 | let (entry_metadata, entry_data) = self.allocation.data_slices(); |
311 | RawTable::new(entry_metadata, entry_data) |
312 | } |
313 | |
314 | #[inline (never)] |
315 | #[cold ] |
316 | fn grow(&mut self) { |
317 | let initial_slot_count = self.allocation.header().slot_count(); |
318 | let initial_item_count = self.allocation.header().item_count(); |
319 | let initial_max_load_factor = self.allocation.header().max_load_factor(); |
320 | |
321 | let mut new_table = |
322 | Self::with_capacity_internal(initial_item_count * 2, initial_max_load_factor); |
323 | |
324 | // Copy the entries over with the internal `insert_entry()` method, |
325 | // which allows us to do insertions without hashing everything again. |
326 | { |
327 | with_raw_mut(&mut new_table.allocation, |header, mut raw_table| { |
328 | for (_, entry_data) in self.as_raw().iter() { |
329 | raw_table.insert(entry_data.key, entry_data.value); |
330 | } |
331 | |
332 | header.set_item_count(initial_item_count); |
333 | }); |
334 | } |
335 | |
336 | *self = new_table; |
337 | |
338 | assert!( |
339 | self.allocation.header().slot_count() >= 2 * initial_slot_count, |
340 | "Allocation did not grow properly. Slot count is {} but was expected to be \ |
341 | at least {}" , |
342 | self.allocation.header().slot_count(), |
343 | 2 * initial_slot_count |
344 | ); |
345 | assert_eq!(self.allocation.header().item_count(), initial_item_count); |
346 | assert_eq!( |
347 | self.allocation.header().max_load_factor(), |
348 | initial_max_load_factor |
349 | ); |
350 | } |
351 | } |
352 | |
353 | impl<C: Config> std::fmt::Debug for HashTableOwned<C> { |
354 | fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
355 | let header: &Header = self.allocation.header(); |
356 | |
357 | writeln!( |
358 | f, |
359 | "(item_count= {}, max_item_count= {}, max_load_factor= {}%)" , |
360 | header.item_count(), |
361 | max_item_count_for(header.slot_count(), header.max_load_factor()), |
362 | header.max_load_factor().to_percent(), |
363 | )?; |
364 | |
365 | writeln!(f, " {:?}" , self.as_raw()) |
366 | } |
367 | } |
368 | |
369 | /// The [HashTable] type provides a cheap way to construct a non-resizable view |
370 | /// of a persisted hash table. If the underlying data storage `D` implements |
371 | /// `BorrowMut<[u8]>` then the table can be modified in place. |
372 | #[derive (Clone, Copy)] |
373 | pub struct HashTable<C: Config, D: Borrow<[u8]>> { |
374 | allocation: memory_layout::Allocation<C, D>, |
375 | } |
376 | |
377 | impl<C: Config, D: Borrow<[u8]>> HashTable<C, D> { |
378 | /// Constructs a [HashTable] from its raw byte representation. |
379 | /// The provided data must have the exact right number of bytes. |
380 | /// |
381 | /// This method has constant time complexity and will only verify the header |
382 | /// data of the hash table. It will not copy any data. |
383 | pub fn from_raw_bytes(data: D) -> Result<HashTable<C, D>, Box<dyn std::error::Error>> { |
384 | let allocation = memory_layout::Allocation::from_raw_bytes(data)?; |
385 | Ok(HashTable { allocation }) |
386 | } |
387 | |
388 | /// Constructs a [HashTable] from its raw byte representation without doing |
389 | /// any verification of the underlying data. It is the user's responsibility |
390 | /// to make sure that the underlying data is actually a valid hash table. |
391 | /// |
392 | /// The [HashTable::from_raw_bytes] method provides a safe alternative to this |
393 | /// method. |
394 | #[inline ] |
395 | pub unsafe fn from_raw_bytes_unchecked(data: D) -> HashTable<C, D> { |
396 | HashTable { |
397 | allocation: memory_layout::Allocation::from_raw_bytes_unchecked(data), |
398 | } |
399 | } |
400 | |
401 | #[inline ] |
402 | pub fn get(&self, key: &C::Key) -> Option<C::Value> { |
403 | let encoded_key = C::encode_key(key); |
404 | self.as_raw().find(&encoded_key).map(C::decode_value) |
405 | } |
406 | |
407 | #[inline ] |
408 | pub fn contains_key(&self, key: &C::Key) -> bool { |
409 | let encoded_key = C::encode_key(key); |
410 | self.as_raw().find(&encoded_key).is_some() |
411 | } |
412 | |
413 | #[inline ] |
414 | pub fn iter(&self) -> Iter<'_, C> { |
415 | let (entry_metadata, entry_data) = self.allocation.data_slices(); |
416 | Iter(RawIter::new(entry_metadata, entry_data)) |
417 | } |
418 | |
419 | /// Returns the number of items stored in the hash table. |
420 | #[inline ] |
421 | pub fn len(&self) -> usize { |
422 | self.allocation.header().item_count() |
423 | } |
424 | |
425 | #[inline ] |
426 | pub fn raw_bytes(&self) -> &[u8] { |
427 | self.allocation.raw_bytes() |
428 | } |
429 | |
430 | #[inline ] |
431 | fn as_raw(&self) -> RawTable<'_, C::EncodedKey, C::EncodedValue, C::H> { |
432 | let (entry_metadata, entry_data) = self.allocation.data_slices(); |
433 | RawTable::new(entry_metadata, entry_data) |
434 | } |
435 | } |
436 | |
437 | impl<C: Config, D: Borrow<[u8]> + BorrowMut<[u8]>> HashTable<C, D> { |
438 | pub fn init_in_place( |
439 | mut data: D, |
440 | max_item_count: usize, |
441 | max_load_factor_percent: u8, |
442 | ) -> Result<HashTable<C, D>, Box<dyn std::error::Error>> { |
443 | let max_load_factor = Factor::from_percent(max_load_factor_percent); |
444 | let byte_count = bytes_needed_internal::<C>(max_item_count, max_load_factor); |
445 | if data.borrow_mut().len() != byte_count { |
446 | return Err(Error(format!( |
447 | "byte slice to initialize has wrong length ( {} instead of {})" , |
448 | data.borrow_mut().len(), |
449 | byte_count |
450 | )))?; |
451 | } |
452 | |
453 | let slot_count = slots_needed(max_item_count, max_load_factor); |
454 | let allocation = memory_layout::init_in_place::<C, _>(data, slot_count, 0, max_load_factor); |
455 | Ok(HashTable { allocation }) |
456 | } |
457 | |
458 | /// Inserts the given key-value pair into the table. |
459 | /// Unlike [HashTableOwned::insert] this method cannot grow the underlying table |
460 | /// if there is not enough space for the new item. Instead the call will panic. |
461 | #[inline ] |
462 | pub fn insert(&mut self, key: &C::Key, value: &C::Value) -> Option<C::Value> { |
463 | let item_count = self.allocation.header().item_count(); |
464 | let max_load_factor = self.allocation.header().max_load_factor(); |
465 | let slot_count = self.allocation.header().slot_count(); |
466 | // FIXME: This is actually a bit to conservative because it does not account for |
467 | // cases where an entry is overwritten and thus the item count does not |
468 | // change. |
469 | assert!(item_count < max_item_count_for(slot_count, max_load_factor)); |
470 | |
471 | let encoded_key = C::encode_key(key); |
472 | let encoded_value = C::encode_value(value); |
473 | |
474 | with_raw_mut(&mut self.allocation, |header, mut raw_table| { |
475 | if let Some(old_value) = raw_table.insert(encoded_key, encoded_value) { |
476 | Some(C::decode_value(&old_value)) |
477 | } else { |
478 | header.set_item_count(item_count + 1); |
479 | None |
480 | } |
481 | }) |
482 | } |
483 | } |
484 | |
485 | /// Computes the exact number of bytes needed for storing a HashTable with the |
486 | /// given max item count and load factor. The result can be used for allocating |
487 | /// storage to be passed into [HashTable::init_in_place]. |
488 | pub fn bytes_needed<C: Config>(max_item_count: usize, max_load_factor_percent: u8) -> usize { |
489 | let max_load_factor: Factor = Factor::from_percent(max_load_factor_percent); |
490 | bytes_needed_internal::<C>(max_item_count, max_load_factor) |
491 | } |
492 | |
493 | fn bytes_needed_internal<C: Config>(max_item_count: usize, max_load_factor: Factor) -> usize { |
494 | let slot_count: usize = slots_needed(max_item_count, max_load_factor); |
495 | memory_layout::bytes_needed::<C>(slot_count) |
496 | } |
497 | |
498 | pub struct Iter<'a, C: Config>(RawIter<'a, C::EncodedKey, C::EncodedValue>); |
499 | |
500 | impl<'a, C: Config> Iterator for Iter<'a, C> { |
501 | type Item = (C::Key, C::Value); |
502 | |
503 | fn next(&mut self) -> Option<Self::Item> { |
504 | self.0.next().map(|(_, entry: &Entry<::EncodedKey, …>)| { |
505 | let key: ::Key = C::decode_key(&entry.key); |
506 | let value: ::Value = C::decode_value(&entry.value); |
507 | |
508 | (key, value) |
509 | }) |
510 | } |
511 | } |
512 | |
513 | // We use integer math here as not to run into any issues with |
514 | // platform-specific floating point math implementation. |
515 | fn slots_needed(item_count: usize, max_load_factor: Factor) -> usize { |
516 | // Note: we round up here |
517 | let slots_needed: usize = max_load_factor.apply_inverse(item_count); |
518 | std::cmp::max( |
519 | v1:slots_needed.checked_next_power_of_two().unwrap(), |
520 | REFERENCE_GROUP_SIZE, |
521 | ) |
522 | } |
523 | |
524 | fn max_item_count_for(slot_count: usize, max_load_factor: Factor) -> usize { |
525 | // Note: we round down here |
526 | max_load_factor.apply(slot_count) |
527 | } |
528 | |
529 | #[inline ] |
530 | fn with_raw_mut<C, M, F, R>(allocation: &mut memory_layout::Allocation<C, M>, f: F) -> R |
531 | where |
532 | C: Config, |
533 | M: BorrowMut<[u8]>, |
534 | F: FnOnce(&mut Header, RawTableMut<'_, C::EncodedKey, C::EncodedValue, C::H>) -> R, |
535 | { |
536 | allocation.with_mut_parts(|header: &mut Header, entry_metadata: &mut [u8], entry_data: &mut [Entry<::EncodedKey, …>]| { |
537 | f(header, RawTableMut::new(entry_metadata, entry_data)) |
538 | }) |
539 | } |
540 | |
541 | /// This type is used for computing max item counts for a given load factor |
542 | /// efficiently. We use integer math here so that things are the same on |
543 | /// all platforms and with all compiler settings. |
544 | #[derive (Debug, Clone, Copy, PartialEq, Eq)] |
545 | struct Factor(pub u16); |
546 | |
547 | impl Factor { |
548 | const BASE: usize = u16::MAX as usize; |
549 | |
550 | #[inline ] |
551 | fn from_percent(percent: u8) -> Factor { |
552 | let percent = percent as usize; |
553 | Factor(((percent * Self::BASE) / 100) as u16) |
554 | } |
555 | |
556 | fn to_percent(self) -> usize { |
557 | (self.0 as usize * 100) / Self::BASE |
558 | } |
559 | |
560 | // Note: we round down here |
561 | #[inline ] |
562 | fn apply(self, x: usize) -> usize { |
563 | // Let's make sure there's no overflow during the |
564 | // calculation below by doing everything with 128 bits. |
565 | let x = x as u128; |
566 | let factor = self.0 as u128; |
567 | ((x * factor) >> 16) as usize |
568 | } |
569 | |
570 | // Note: we round up here |
571 | #[inline ] |
572 | fn apply_inverse(self, x: usize) -> usize { |
573 | // Let's make sure there's no overflow during the |
574 | // calculation below by doing everything with 128 bits. |
575 | let x = x as u128; |
576 | let factor = self.0 as u128; |
577 | let base = Self::BASE as u128; |
578 | ((base * x + factor - 1) / factor) as usize |
579 | } |
580 | } |
581 | |
582 | #[cfg (test)] |
583 | mod tests { |
584 | use super::*; |
585 | use std::convert::TryInto; |
586 | |
587 | enum TestConfig {} |
588 | |
589 | impl Config for TestConfig { |
590 | type EncodedKey = [u8; 4]; |
591 | type EncodedValue = [u8; 4]; |
592 | |
593 | type Key = u32; |
594 | type Value = u32; |
595 | |
596 | type H = FxHashFn; |
597 | |
598 | fn encode_key(k: &Self::Key) -> Self::EncodedKey { |
599 | k.to_le_bytes() |
600 | } |
601 | |
602 | fn encode_value(v: &Self::Value) -> Self::EncodedValue { |
603 | v.to_le_bytes() |
604 | } |
605 | |
606 | fn decode_key(k: &Self::EncodedKey) -> Self::Key { |
607 | u32::from_le_bytes(k[..].try_into().unwrap()) |
608 | } |
609 | |
610 | fn decode_value(v: &Self::EncodedValue) -> Self::Value { |
611 | u32::from_le_bytes(v[..].try_into().unwrap()) |
612 | } |
613 | } |
614 | |
615 | fn make_test_items(count: usize) -> Vec<(u32, u32)> { |
616 | if count == 0 { |
617 | return vec![]; |
618 | } |
619 | |
620 | let mut items = vec![]; |
621 | |
622 | if count > 1 { |
623 | let steps = (count - 1) as u32; |
624 | let step = u32::MAX / steps; |
625 | |
626 | for i in 0..steps { |
627 | let x = i * step; |
628 | items.push((x, u32::MAX - x)); |
629 | } |
630 | } |
631 | |
632 | items.push((u32::MAX, 0)); |
633 | |
634 | items.sort(); |
635 | items.dedup(); |
636 | assert_eq!(items.len(), count); |
637 | |
638 | items |
639 | } |
640 | |
641 | #[test ] |
642 | fn from_iterator() { |
643 | for count in 0..33 { |
644 | let items = make_test_items(count); |
645 | let table = HashTableOwned::<TestConfig>::from_iterator(items.clone(), 95); |
646 | assert_eq!(table.len(), items.len()); |
647 | |
648 | let mut actual_items: Vec<_> = table.iter().collect(); |
649 | actual_items.sort(); |
650 | |
651 | assert_eq!(items, actual_items); |
652 | } |
653 | } |
654 | |
655 | #[test ] |
656 | fn init_in_place() { |
657 | for count in 0..33 { |
658 | let items = make_test_items(count); |
659 | let byte_count = bytes_needed::<TestConfig>(items.len(), 87); |
660 | let data = vec![0u8; byte_count]; |
661 | |
662 | let mut table = |
663 | HashTable::<TestConfig, _>::init_in_place(data, items.len(), 87).unwrap(); |
664 | |
665 | for (i, (k, v)) in items.iter().enumerate() { |
666 | assert_eq!(table.len(), i); |
667 | assert_eq!(table.insert(k, v), None); |
668 | assert_eq!(table.len(), i + 1); |
669 | |
670 | // Make sure we still can find all items previously inserted. |
671 | for (k, v) in items.iter().take(i) { |
672 | assert_eq!(table.get(k), Some(*v)); |
673 | } |
674 | } |
675 | |
676 | let mut actual_items: Vec<_> = table.iter().collect(); |
677 | actual_items.sort(); |
678 | |
679 | assert_eq!(items, actual_items); |
680 | } |
681 | } |
682 | |
683 | #[test ] |
684 | fn hash_table_at_different_alignments() { |
685 | let items = make_test_items(33); |
686 | |
687 | let mut serialized = { |
688 | let table: HashTableOwned<TestConfig> = |
689 | HashTableOwned::from_iterator(items.clone(), 95); |
690 | |
691 | assert_eq!(table.len(), items.len()); |
692 | |
693 | table.raw_bytes().to_owned() |
694 | }; |
695 | |
696 | for alignment_shift in 0..4 { |
697 | let data = &serialized[alignment_shift..]; |
698 | |
699 | let table = HashTable::<TestConfig, _>::from_raw_bytes(data).unwrap(); |
700 | |
701 | assert_eq!(table.len(), items.len()); |
702 | |
703 | for (key, value) in items.iter() { |
704 | assert_eq!(table.get(key), Some(*value)); |
705 | } |
706 | |
707 | serialized.insert(0, 0xFFu8); |
708 | } |
709 | } |
710 | |
711 | #[test ] |
712 | fn load_factor_and_item_count() { |
713 | assert_eq!( |
714 | slots_needed(0, Factor::from_percent(100)), |
715 | REFERENCE_GROUP_SIZE |
716 | ); |
717 | assert_eq!(slots_needed(6, Factor::from_percent(60)), 16); |
718 | assert_eq!(slots_needed(5, Factor::from_percent(50)), 16); |
719 | assert_eq!(slots_needed(5, Factor::from_percent(49)), 16); |
720 | assert_eq!(slots_needed(1000, Factor::from_percent(100)), 1024); |
721 | |
722 | // Factor cannot never be a full 100% because of the rounding involved. |
723 | assert_eq!(max_item_count_for(10, Factor::from_percent(100)), 9); |
724 | assert_eq!(max_item_count_for(10, Factor::from_percent(50)), 4); |
725 | assert_eq!(max_item_count_for(11, Factor::from_percent(50)), 5); |
726 | assert_eq!(max_item_count_for(12, Factor::from_percent(50)), 5); |
727 | } |
728 | |
729 | #[test ] |
730 | fn grow() { |
731 | let items = make_test_items(100); |
732 | let mut table = HashTableOwned::<TestConfig>::with_capacity(10, 87); |
733 | |
734 | for (key, value) in items.iter() { |
735 | assert_eq!(table.insert(key, value), None); |
736 | } |
737 | } |
738 | |
739 | #[test ] |
740 | fn factor_from_percent() { |
741 | assert_eq!(Factor::from_percent(100), Factor(u16::MAX)); |
742 | assert_eq!(Factor::from_percent(0), Factor(0)); |
743 | assert_eq!(Factor::from_percent(50), Factor(u16::MAX / 2)); |
744 | } |
745 | |
746 | #[test ] |
747 | fn factor_apply() { |
748 | assert_eq!(Factor::from_percent(100).apply(12345), 12344); |
749 | assert_eq!(Factor::from_percent(0).apply(12345), 0); |
750 | assert_eq!(Factor::from_percent(50).apply(66), 32); |
751 | |
752 | // Make sure we can handle large numbers without overflow |
753 | assert_basically_equal(Factor::from_percent(100).apply(usize::MAX), usize::MAX); |
754 | } |
755 | |
756 | #[test ] |
757 | fn factor_apply_inverse() { |
758 | assert_eq!(Factor::from_percent(100).apply_inverse(12345), 12345); |
759 | assert_eq!(Factor::from_percent(10).apply_inverse(100), 1001); |
760 | assert_eq!(Factor::from_percent(50).apply_inverse(33), 67); |
761 | |
762 | // // Make sure we can handle large numbers without overflow |
763 | assert_basically_equal( |
764 | Factor::from_percent(100).apply_inverse(usize::MAX), |
765 | usize::MAX, |
766 | ); |
767 | } |
768 | |
769 | fn assert_basically_equal(x: usize, y: usize) { |
770 | let larger_number = std::cmp::max(x, y) as f64; |
771 | let abs_difference = (x as f64 - y as f64).abs(); |
772 | let difference_in_percent = (abs_difference / larger_number) * 100.0; |
773 | |
774 | const MAX_ALLOWED_DIFFERENCE_IN_PERCENT: f64 = 0.01; |
775 | |
776 | assert!( |
777 | difference_in_percent < MAX_ALLOWED_DIFFERENCE_IN_PERCENT, |
778 | " {} and {} differ by {:.4} percent but the maximally allowed difference \ |
779 | is {:.2} percent. Large differences might be caused by integer overflow." , |
780 | x, |
781 | y, |
782 | difference_in_percent, |
783 | MAX_ALLOWED_DIFFERENCE_IN_PERCENT |
784 | ); |
785 | } |
786 | |
787 | mod quickchecks { |
788 | use super::*; |
789 | use crate::raw_table::ByteArray; |
790 | use quickcheck::{Arbitrary, Gen}; |
791 | use rustc_hash::FxHashMap; |
792 | |
793 | #[derive (Copy, Clone, Hash, Eq, PartialEq, Debug)] |
794 | struct Bytes<const BYTE_COUNT: usize>([u8; BYTE_COUNT]); |
795 | |
796 | impl<const L: usize> Arbitrary for Bytes<L> { |
797 | fn arbitrary(gen: &mut Gen) -> Self { |
798 | let mut xs = [0; L]; |
799 | for x in xs.iter_mut() { |
800 | *x = u8::arbitrary(gen); |
801 | } |
802 | Bytes(xs) |
803 | } |
804 | } |
805 | |
806 | impl<const L: usize> Default for Bytes<L> { |
807 | fn default() -> Self { |
808 | Bytes([0; L]) |
809 | } |
810 | } |
811 | |
812 | impl<const L: usize> ByteArray for Bytes<L> { |
813 | #[inline (always)] |
814 | fn zeroed() -> Self { |
815 | Bytes([0u8; L]) |
816 | } |
817 | |
818 | #[inline (always)] |
819 | fn as_slice(&self) -> &[u8] { |
820 | &self.0[..] |
821 | } |
822 | |
823 | #[inline (always)] |
824 | fn equals(&self, other: &Self) -> bool { |
825 | self.as_slice() == other.as_slice() |
826 | } |
827 | } |
828 | |
829 | macro_rules! mk_quick_tests { |
830 | ($name: ident, $key_len:expr, $value_len:expr) => { |
831 | mod $name { |
832 | use super::*; |
833 | use quickcheck::quickcheck; |
834 | |
835 | struct Cfg; |
836 | |
837 | type Key = Bytes<$key_len>; |
838 | type Value = Bytes<$value_len>; |
839 | |
840 | impl Config for Cfg { |
841 | type EncodedKey = Key; |
842 | type EncodedValue = Value; |
843 | |
844 | type Key = Key; |
845 | type Value = Value; |
846 | |
847 | type H = FxHashFn; |
848 | |
849 | fn encode_key(k: &Self::Key) -> Self::EncodedKey { |
850 | *k |
851 | } |
852 | |
853 | fn encode_value(v: &Self::Value) -> Self::EncodedValue { |
854 | *v |
855 | } |
856 | |
857 | fn decode_key(k: &Self::EncodedKey) -> Self::Key { |
858 | *k |
859 | } |
860 | |
861 | fn decode_value(v: &Self::EncodedValue) -> Self::Value { |
862 | *v |
863 | } |
864 | } |
865 | |
866 | fn from_std_hashmap(m: &FxHashMap<Key, Value>) -> HashTableOwned<Cfg> { |
867 | HashTableOwned::<Cfg>::from_iterator(m.iter().map(|(x, y)| (*x, *y)), 87) |
868 | } |
869 | |
870 | quickcheck! { |
871 | fn len(xs: FxHashMap<Key, Value>) -> bool { |
872 | let table = from_std_hashmap(&xs); |
873 | |
874 | xs.len() == table.len() |
875 | } |
876 | } |
877 | |
878 | quickcheck! { |
879 | fn lookup(xs: FxHashMap<Key, Value>) -> bool { |
880 | let table = from_std_hashmap(&xs); |
881 | xs.iter().all(|(k, v)| table.get(k) == Some(*v)) |
882 | } |
883 | } |
884 | |
885 | quickcheck! { |
886 | fn insert_with_duplicates(xs: Vec<(Key, Value)>) -> bool { |
887 | let mut reference = FxHashMap::default(); |
888 | let mut table = HashTableOwned::<Cfg>::default(); |
889 | |
890 | for (k, v) in xs { |
891 | let expected = reference.insert(k, v); |
892 | let actual = table.insert(&k, &v); |
893 | |
894 | if expected != actual { |
895 | return false; |
896 | } |
897 | } |
898 | |
899 | true |
900 | } |
901 | } |
902 | |
903 | quickcheck! { |
904 | fn bytes_deterministic(xs: FxHashMap<Key, Value>) -> bool { |
905 | // NOTE: We only guarantee this given the exact same |
906 | // insertion order. |
907 | let table0 = from_std_hashmap(&xs); |
908 | let table1 = from_std_hashmap(&xs); |
909 | |
910 | table0.raw_bytes() == table1.raw_bytes() |
911 | } |
912 | } |
913 | |
914 | quickcheck! { |
915 | fn from_iterator_vs_manual_insertion(xs: Vec<(Key, Value)>) -> bool { |
916 | let mut table0 = HashTableOwned::<Cfg>::with_capacity(xs.len(), 87); |
917 | |
918 | for (k, v) in xs.iter() { |
919 | table0.insert(k, v); |
920 | } |
921 | |
922 | let table1 = HashTableOwned::<Cfg>::from_iterator(xs.into_iter(), 87); |
923 | |
924 | // Requiring bit for bit equality might be a bit too much in this case, |
925 | // as long as it works ... |
926 | table0.raw_bytes() == table1.raw_bytes() |
927 | } |
928 | } |
929 | } |
930 | }; |
931 | } |
932 | |
933 | // Test zero sized key and values |
934 | mk_quick_tests!(k0_v0, 0, 0); |
935 | mk_quick_tests!(k1_v0, 1, 0); |
936 | mk_quick_tests!(k2_v0, 2, 0); |
937 | mk_quick_tests!(k3_v0, 3, 0); |
938 | mk_quick_tests!(k4_v0, 4, 0); |
939 | mk_quick_tests!(k8_v0, 8, 0); |
940 | mk_quick_tests!(k15_v0, 15, 0); |
941 | mk_quick_tests!(k16_v0, 16, 0); |
942 | mk_quick_tests!(k17_v0, 17, 0); |
943 | mk_quick_tests!(k63_v0, 63, 0); |
944 | mk_quick_tests!(k64_v0, 64, 0); |
945 | |
946 | // Test a few different key sizes |
947 | mk_quick_tests!(k2_v4, 2, 4); |
948 | mk_quick_tests!(k4_v4, 4, 4); |
949 | mk_quick_tests!(k8_v4, 8, 4); |
950 | mk_quick_tests!(k17_v4, 17, 4); |
951 | mk_quick_tests!(k20_v4, 20, 4); |
952 | mk_quick_tests!(k64_v4, 64, 4); |
953 | |
954 | // Test a few different value sizes |
955 | mk_quick_tests!(k16_v1, 16, 1); |
956 | mk_quick_tests!(k16_v2, 16, 2); |
957 | mk_quick_tests!(k16_v3, 16, 3); |
958 | mk_quick_tests!(k16_v4, 16, 4); |
959 | mk_quick_tests!(k16_v8, 16, 8); |
960 | mk_quick_tests!(k16_v16, 16, 16); |
961 | mk_quick_tests!(k16_v17, 16, 17); |
962 | } |
963 | } |
964 | |