| 1 | //! This crate implements a hash table that can be used as is in its binary, on-disk format. | 
| 2 | //! The goal is to provide a high performance data structure that can be used without any significant up-front decoding. | 
|---|
| 3 | //! The implementation makes no assumptions about alignment or endianess of the underlying data, | 
|---|
| 4 | //! so a table encoded on one platform can be used on any other platform and | 
|---|
| 5 | //! the binary data can be mapped into memory at arbitrary addresses. | 
|---|
| 6 | //! | 
|---|
| 7 | //! | 
|---|
| 8 | //! ## Usage | 
|---|
| 9 | //! | 
|---|
| 10 | //! In order to use the hash table one needs to implement the `Config` trait. | 
|---|
| 11 | //! This trait defines how the table is encoded and what hash function is used. | 
|---|
| 12 | //! With a `Config` in place the `HashTableOwned` type can be used to build and serialize a hash table. | 
|---|
| 13 | //! The `HashTable` type can then be used to create an almost zero-cost view of the serialized hash table. | 
|---|
| 14 | //! | 
|---|
| 15 | //! ```rust | 
|---|
| 16 | //! | 
|---|
| 17 | //! use odht::{HashTable, HashTableOwned, Config, FxHashFn}; | 
|---|
| 18 | //! | 
|---|
| 19 | //! struct MyConfig; | 
|---|
| 20 | //! | 
|---|
| 21 | //! impl Config for MyConfig { | 
|---|
| 22 | //! | 
|---|
| 23 | //!     type Key = u64; | 
|---|
| 24 | //!     type Value = u32; | 
|---|
| 25 | //! | 
|---|
| 26 | //!     type EncodedKey = [u8; 8]; | 
|---|
| 27 | //!     type EncodedValue = [u8; 4]; | 
|---|
| 28 | //! | 
|---|
| 29 | //!     type H = FxHashFn; | 
|---|
| 30 | //! | 
|---|
| 31 | //!     #[ inline] fn encode_key(k: &Self::Key) -> Self::EncodedKey { k.to_le_bytes() } | 
|---|
| 32 | //!     #[ inline] fn encode_value(v: &Self::Value) -> Self::EncodedValue { v.to_le_bytes() } | 
|---|
| 33 | //!     #[ inline] fn decode_key(k: &Self::EncodedKey) -> Self::Key { u64::from_le_bytes(*k) } | 
|---|
| 34 | //!     #[ inline] fn decode_value(v: &Self::EncodedValue) -> Self::Value { u32::from_le_bytes(*v)} | 
|---|
| 35 | //! } | 
|---|
| 36 | //! | 
|---|
| 37 | //! fn main() { | 
|---|
| 38 | //!     let mut builder = HashTableOwned::<MyConfig>::with_capacity(3, 95); | 
|---|
| 39 | //! | 
|---|
| 40 | //!     builder.insert(&1, &2); | 
|---|
| 41 | //!     builder.insert(&3, &4); | 
|---|
| 42 | //!     builder.insert(&5, &6); | 
|---|
| 43 | //! | 
|---|
| 44 | //!     let serialized = builder.raw_bytes().to_owned(); | 
|---|
| 45 | //! | 
|---|
| 46 | //!     let table = HashTable::<MyConfig, &[u8]>::from_raw_bytes( | 
|---|
| 47 | //!         &serialized[..] | 
|---|
| 48 | //!     ).unwrap(); | 
|---|
| 49 | //! | 
|---|
| 50 | //!     assert_eq!(table.get(&1), Some(2)); | 
|---|
| 51 | //!     assert_eq!(table.get(&3), Some(4)); | 
|---|
| 52 | //!     assert_eq!(table.get(&5), Some(6)); | 
|---|
| 53 | //! } | 
|---|
| 54 | //! ``` | 
|---|
| 55 |  | 
|---|
| 56 | #![ cfg_attr(feature = "nightly", feature(core_intrinsics))] | 
|---|
| 57 |  | 
|---|
| 58 | #[ cfg(test)] | 
|---|
| 59 | extern crate quickcheck; | 
|---|
| 60 |  | 
|---|
| 61 | #[ cfg(feature = "nightly")] | 
|---|
| 62 | macro_rules! likely { | 
|---|
| 63 | ($x:expr) => { | 
|---|
| 64 | std::intrinsics::likely($x) | 
|---|
| 65 | }; | 
|---|
| 66 | } | 
|---|
| 67 |  | 
|---|
| 68 | #[ cfg(not(feature = "nightly"))] | 
|---|
| 69 | macro_rules! likely { | 
|---|
| 70 | ($x:expr) => { | 
|---|
| 71 | $x | 
|---|
| 72 | }; | 
|---|
| 73 | } | 
|---|
| 74 |  | 
|---|
| 75 | #[ cfg(feature = "nightly")] | 
|---|
| 76 | macro_rules! unlikely { | 
|---|
| 77 | ($x:expr) => { | 
|---|
| 78 | std::intrinsics::unlikely($x) | 
|---|
| 79 | }; | 
|---|
| 80 | } | 
|---|
| 81 |  | 
|---|
| 82 | #[ cfg(not(feature = "nightly"))] | 
|---|
| 83 | macro_rules! unlikely { | 
|---|
| 84 | ($x:expr) => { | 
|---|
| 85 | $x | 
|---|
| 86 | }; | 
|---|
| 87 | } | 
|---|
| 88 |  | 
|---|
| 89 | mod error; | 
|---|
| 90 | mod fxhash; | 
|---|
| 91 | mod memory_layout; | 
|---|
| 92 | mod raw_table; | 
|---|
| 93 | mod swisstable_group_query; | 
|---|
| 94 | mod unhash; | 
|---|
| 95 |  | 
|---|
| 96 | use error::Error; | 
|---|
| 97 | use memory_layout::Header; | 
|---|
| 98 | use std::borrow::{Borrow, BorrowMut}; | 
|---|
| 99 | use swisstable_group_query::REFERENCE_GROUP_SIZE; | 
|---|
| 100 |  | 
|---|
| 101 | pub use crate::fxhash::FxHashFn; | 
|---|
| 102 | pub use crate::unhash::UnHashFn; | 
|---|
| 103 |  | 
|---|
| 104 | use crate::raw_table::{ByteArray, RawIter, RawTable, RawTableMut}; | 
|---|
| 105 |  | 
|---|
| 106 | /// This trait provides a complete "configuration" for a hash table, i.e. it | 
|---|
| 107 | /// defines the key and value types, how these are encoded and what hash | 
|---|
| 108 | /// function is being used. | 
|---|
| 109 | /// | 
|---|
| 110 | /// Implementations of the `encode_key` and `encode_value` methods must encode | 
|---|
| 111 | /// the given key/value into a fixed size array. The encoding must be | 
|---|
| 112 | /// deterministic (i.e. no random padding bytes) and must be independent of | 
|---|
| 113 | /// platform endianess. It is always highly recommended to mark these methods | 
|---|
| 114 | /// as `#[inline]`. | 
|---|
| 115 | pub trait Config { | 
|---|
| 116 | type Key; | 
|---|
| 117 | type Value; | 
|---|
| 118 |  | 
|---|
| 119 | // The EncodedKey and EncodedValue types must always be a fixed size array of bytes, | 
|---|
| 120 | // e.g. [u8; 4]. | 
|---|
| 121 | type EncodedKey: ByteArray; | 
|---|
| 122 | type EncodedValue: ByteArray; | 
|---|
| 123 |  | 
|---|
| 124 | type H: HashFn; | 
|---|
| 125 |  | 
|---|
| 126 | /// Implementations of the `encode_key` and `encode_value` methods must encode | 
|---|
| 127 | /// the given key/value into a fixed size array. See above for requirements. | 
|---|
| 128 | fn encode_key(k: &Self::Key) -> Self::EncodedKey; | 
|---|
| 129 |  | 
|---|
| 130 | /// Implementations of the `encode_key` and `encode_value` methods must encode | 
|---|
| 131 | /// the given key/value into a fixed size array. See above for requirements. | 
|---|
| 132 | fn encode_value(v: &Self::Value) -> Self::EncodedValue; | 
|---|
| 133 |  | 
|---|
| 134 | fn decode_key(k: &Self::EncodedKey) -> Self::Key; | 
|---|
| 135 | fn decode_value(v: &Self::EncodedValue) -> Self::Value; | 
|---|
| 136 | } | 
|---|
| 137 |  | 
|---|
| 138 | /// This trait represents hash functions as used by HashTable and | 
|---|
| 139 | /// HashTableOwned. | 
|---|
| 140 | pub trait HashFn: Eq { | 
|---|
| 141 | fn hash(bytes: &[u8]) -> u32; | 
|---|
| 142 | } | 
|---|
| 143 |  | 
|---|
| 144 | /// A [HashTableOwned] keeps the underlying data on the heap and | 
|---|
| 145 | /// can resize itself on demand. | 
|---|
| 146 | #[ derive(Clone)] | 
|---|
| 147 | pub struct HashTableOwned<C: Config> { | 
|---|
| 148 | allocation: memory_layout::Allocation<C, Box<[u8]>>, | 
|---|
| 149 | } | 
|---|
| 150 |  | 
|---|
| 151 | impl<C: Config> Default for HashTableOwned<C> { | 
|---|
| 152 | fn default() -> Self { | 
|---|
| 153 | HashTableOwned::with_capacity(max_item_count:12, max_load_factor_percent:87) | 
|---|
| 154 | } | 
|---|
| 155 | } | 
|---|
| 156 |  | 
|---|
| 157 | impl<C: Config> HashTableOwned<C> { | 
|---|
| 158 | /// Creates a new [HashTableOwned] that can hold at least `max_item_count` | 
|---|
| 159 | /// items while maintaining the specified load factor. | 
|---|
| 160 | pub fn with_capacity(max_item_count: usize, max_load_factor_percent: u8) -> HashTableOwned<C> { | 
|---|
| 161 | assert!(max_load_factor_percent <= 100); | 
|---|
| 162 | assert!(max_load_factor_percent > 0); | 
|---|
| 163 |  | 
|---|
| 164 | Self::with_capacity_internal( | 
|---|
| 165 | max_item_count, | 
|---|
| 166 | Factor::from_percent(max_load_factor_percent), | 
|---|
| 167 | ) | 
|---|
| 168 | } | 
|---|
| 169 |  | 
|---|
| 170 | fn with_capacity_internal(max_item_count: usize, max_load_factor: Factor) -> HashTableOwned<C> { | 
|---|
| 171 | let slots_needed = slots_needed(max_item_count, max_load_factor); | 
|---|
| 172 | assert!(slots_needed > 0); | 
|---|
| 173 |  | 
|---|
| 174 | let allocation = memory_layout::allocate(slots_needed, 0, max_load_factor); | 
|---|
| 175 |  | 
|---|
| 176 | HashTableOwned { allocation } | 
|---|
| 177 | } | 
|---|
| 178 |  | 
|---|
| 179 | /// Retrieves the value for the given key. Returns `None` if no entry is found. | 
|---|
| 180 | #[ inline] | 
|---|
| 181 | pub fn get(&self, key: &C::Key) -> Option<C::Value> { | 
|---|
| 182 | let encoded_key = C::encode_key(key); | 
|---|
| 183 | if let Some(encoded_value) = self.as_raw().find(&encoded_key) { | 
|---|
| 184 | Some(C::decode_value(encoded_value)) | 
|---|
| 185 | } else { | 
|---|
| 186 | None | 
|---|
| 187 | } | 
|---|
| 188 | } | 
|---|
| 189 |  | 
|---|
| 190 | #[ inline] | 
|---|
| 191 | pub fn contains_key(&self, key: &C::Key) -> bool { | 
|---|
| 192 | let encoded_key = C::encode_key(key); | 
|---|
| 193 | self.as_raw().find(&encoded_key).is_some() | 
|---|
| 194 | } | 
|---|
| 195 |  | 
|---|
| 196 | /// Inserts the given key-value pair into the table. | 
|---|
| 197 | /// Grows the table if necessary. | 
|---|
| 198 | #[ inline] | 
|---|
| 199 | pub fn insert(&mut self, key: &C::Key, value: &C::Value) -> Option<C::Value> { | 
|---|
| 200 | let (item_count, max_item_count) = { | 
|---|
| 201 | let header = self.allocation.header(); | 
|---|
| 202 | let max_item_count = max_item_count_for(header.slot_count(), header.max_load_factor()); | 
|---|
| 203 | (header.item_count(), max_item_count) | 
|---|
| 204 | }; | 
|---|
| 205 |  | 
|---|
| 206 | if unlikely!(item_count == max_item_count) { | 
|---|
| 207 | self.grow(); | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | debug_assert!( | 
|---|
| 211 | item_count | 
|---|
| 212 | < max_item_count_for( | 
|---|
| 213 | self.allocation.header().slot_count(), | 
|---|
| 214 | self.allocation.header().max_load_factor() | 
|---|
| 215 | ) | 
|---|
| 216 | ); | 
|---|
| 217 |  | 
|---|
| 218 | let encoded_key = C::encode_key(key); | 
|---|
| 219 | let encoded_value = C::encode_value(value); | 
|---|
| 220 |  | 
|---|
| 221 | with_raw_mut(&mut self.allocation, |header, mut raw_table| { | 
|---|
| 222 | if let Some(old_value) = raw_table.insert(encoded_key, encoded_value) { | 
|---|
| 223 | Some(C::decode_value(&old_value)) | 
|---|
| 224 | } else { | 
|---|
| 225 | header.set_item_count(item_count + 1); | 
|---|
| 226 | None | 
|---|
| 227 | } | 
|---|
| 228 | }) | 
|---|
| 229 | } | 
|---|
| 230 |  | 
|---|
| 231 | #[ inline] | 
|---|
| 232 | pub fn iter(&self) -> Iter<'_, C> { | 
|---|
| 233 | let (entry_metadata, entry_data) = self.allocation.data_slices(); | 
|---|
| 234 | Iter(RawIter::new(entry_metadata, entry_data)) | 
|---|
| 235 | } | 
|---|
| 236 |  | 
|---|
| 237 | pub fn from_iterator<I: IntoIterator<Item = (C::Key, C::Value)>>( | 
|---|
| 238 | it: I, | 
|---|
| 239 | max_load_factor_percent: u8, | 
|---|
| 240 | ) -> Self { | 
|---|
| 241 | let it = it.into_iter(); | 
|---|
| 242 |  | 
|---|
| 243 | let known_size = match it.size_hint() { | 
|---|
| 244 | (min, Some(max)) => { | 
|---|
| 245 | if min == max { | 
|---|
| 246 | Some(max) | 
|---|
| 247 | } else { | 
|---|
| 248 | None | 
|---|
| 249 | } | 
|---|
| 250 | } | 
|---|
| 251 | _ => None, | 
|---|
| 252 | }; | 
|---|
| 253 |  | 
|---|
| 254 | if let Some(known_size) = known_size { | 
|---|
| 255 | let mut table = HashTableOwned::with_capacity(known_size, max_load_factor_percent); | 
|---|
| 256 |  | 
|---|
| 257 | let initial_slot_count = table.allocation.header().slot_count(); | 
|---|
| 258 |  | 
|---|
| 259 | for (k, v) in it { | 
|---|
| 260 | table.insert(&k, &v); | 
|---|
| 261 | } | 
|---|
| 262 |  | 
|---|
| 263 | // duplicates | 
|---|
| 264 | assert!(table.len() <= known_size); | 
|---|
| 265 | assert_eq!(table.allocation.header().slot_count(), initial_slot_count); | 
|---|
| 266 |  | 
|---|
| 267 | table | 
|---|
| 268 | } else { | 
|---|
| 269 | let items: Vec<_> = it.collect(); | 
|---|
| 270 | Self::from_iterator(items, max_load_factor_percent) | 
|---|
| 271 | } | 
|---|
| 272 | } | 
|---|
| 273 |  | 
|---|
| 274 | /// Constructs a [HashTableOwned] from its raw byte representation. | 
|---|
| 275 | /// The provided data must have the exact right number of bytes. | 
|---|
| 276 | /// | 
|---|
| 277 | /// This method has linear time complexity as it needs to make its own | 
|---|
| 278 | /// copy of the given data. | 
|---|
| 279 | /// | 
|---|
| 280 | /// The method will verify the header of the given data and return an | 
|---|
| 281 | /// error if the verification fails. | 
|---|
| 282 | pub fn from_raw_bytes(data: &[u8]) -> Result<HashTableOwned<C>, Box<dyn std::error::Error>> { | 
|---|
| 283 | let data = data.to_owned().into_boxed_slice(); | 
|---|
| 284 | let allocation = memory_layout::Allocation::from_raw_bytes(data)?; | 
|---|
| 285 |  | 
|---|
| 286 | Ok(HashTableOwned { allocation }) | 
|---|
| 287 | } | 
|---|
| 288 |  | 
|---|
| 289 | #[ inline] | 
|---|
| 290 | pub unsafe fn from_raw_bytes_unchecked(data: &[u8]) -> HashTableOwned<C> { | 
|---|
| 291 | let data = data.to_owned().into_boxed_slice(); | 
|---|
| 292 | let allocation = memory_layout::Allocation::from_raw_bytes_unchecked(data); | 
|---|
| 293 |  | 
|---|
| 294 | HashTableOwned { allocation } | 
|---|
| 295 | } | 
|---|
| 296 |  | 
|---|
| 297 | /// Returns the number of items stored in the hash table. | 
|---|
| 298 | #[ inline] | 
|---|
| 299 | pub fn len(&self) -> usize { | 
|---|
| 300 | self.allocation.header().item_count() | 
|---|
| 301 | } | 
|---|
| 302 |  | 
|---|
| 303 | #[ inline] | 
|---|
| 304 | pub fn raw_bytes(&self) -> &[u8] { | 
|---|
| 305 | self.allocation.raw_bytes() | 
|---|
| 306 | } | 
|---|
| 307 |  | 
|---|
| 308 | #[ inline] | 
|---|
| 309 | fn as_raw(&self) -> RawTable<'_, C::EncodedKey, C::EncodedValue, C::H> { | 
|---|
| 310 | let (entry_metadata, entry_data) = self.allocation.data_slices(); | 
|---|
| 311 | RawTable::new(entry_metadata, entry_data) | 
|---|
| 312 | } | 
|---|
| 313 |  | 
|---|
| 314 | #[ inline(never)] | 
|---|
| 315 | #[ cold] | 
|---|
| 316 | fn grow(&mut self) { | 
|---|
| 317 | let initial_slot_count = self.allocation.header().slot_count(); | 
|---|
| 318 | let initial_item_count = self.allocation.header().item_count(); | 
|---|
| 319 | let initial_max_load_factor = self.allocation.header().max_load_factor(); | 
|---|
| 320 |  | 
|---|
| 321 | let mut new_table = | 
|---|
| 322 | Self::with_capacity_internal(initial_item_count * 2, initial_max_load_factor); | 
|---|
| 323 |  | 
|---|
| 324 | // Copy the entries over with the internal `insert_entry()` method, | 
|---|
| 325 | // which allows us to do insertions without hashing everything again. | 
|---|
| 326 | { | 
|---|
| 327 | with_raw_mut(&mut new_table.allocation, |header, mut raw_table| { | 
|---|
| 328 | for (_, entry_data) in self.as_raw().iter() { | 
|---|
| 329 | raw_table.insert(entry_data.key, entry_data.value); | 
|---|
| 330 | } | 
|---|
| 331 |  | 
|---|
| 332 | header.set_item_count(initial_item_count); | 
|---|
| 333 | }); | 
|---|
| 334 | } | 
|---|
| 335 |  | 
|---|
| 336 | *self = new_table; | 
|---|
| 337 |  | 
|---|
| 338 | assert!( | 
|---|
| 339 | self.allocation.header().slot_count() >= 2 * initial_slot_count, | 
|---|
| 340 | "Allocation did not grow properly. Slot count is {}  but was expected to be \ | 
|---|
| 341 |              at least {} ", | 
|---|
| 342 | self.allocation.header().slot_count(), | 
|---|
| 343 | 2 * initial_slot_count | 
|---|
| 344 | ); | 
|---|
| 345 | assert_eq!(self.allocation.header().item_count(), initial_item_count); | 
|---|
| 346 | assert_eq!( | 
|---|
| 347 | self.allocation.header().max_load_factor(), | 
|---|
| 348 | initial_max_load_factor | 
|---|
| 349 | ); | 
|---|
| 350 | } | 
|---|
| 351 | } | 
|---|
| 352 |  | 
|---|
| 353 | impl<C: Config> std::fmt::Debug for HashTableOwned<C> { | 
|---|
| 354 | fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { | 
|---|
| 355 | let header: &Header = self.allocation.header(); | 
|---|
| 356 |  | 
|---|
| 357 | writeln!( | 
|---|
| 358 | f, | 
|---|
| 359 | "(item_count={} , max_item_count={} , max_load_factor={} %)", | 
|---|
| 360 | header.item_count(), | 
|---|
| 361 | max_item_count_for(header.slot_count(), header.max_load_factor()), | 
|---|
| 362 | header.max_load_factor().to_percent(), | 
|---|
| 363 | )?; | 
|---|
| 364 |  | 
|---|
| 365 | writeln!(f, "{:?} ", self.as_raw()) | 
|---|
| 366 | } | 
|---|
| 367 | } | 
|---|
| 368 |  | 
|---|
| 369 | /// The [HashTable] type provides a cheap way to construct a non-resizable view | 
|---|
| 370 | /// of a persisted hash table. If the underlying data storage `D` implements | 
|---|
| 371 | /// `BorrowMut<[u8]>` then the table can be modified in place. | 
|---|
| 372 | #[ derive(Clone, Copy)] | 
|---|
| 373 | pub struct HashTable<C: Config, D: Borrow<[u8]>> { | 
|---|
| 374 | allocation: memory_layout::Allocation<C, D>, | 
|---|
| 375 | } | 
|---|
| 376 |  | 
|---|
| 377 | impl<C: Config, D: Borrow<[u8]>> HashTable<C, D> { | 
|---|
| 378 | /// Constructs a [HashTable] from its raw byte representation. | 
|---|
| 379 | /// The provided data must have the exact right number of bytes. | 
|---|
| 380 | /// | 
|---|
| 381 | /// This method has constant time complexity and will only verify the header | 
|---|
| 382 | /// data of the hash table. It will not copy any data. | 
|---|
| 383 | pub fn from_raw_bytes(data: D) -> Result<HashTable<C, D>, Box<dyn std::error::Error>> { | 
|---|
| 384 | let allocation = memory_layout::Allocation::from_raw_bytes(data)?; | 
|---|
| 385 | Ok(HashTable { allocation }) | 
|---|
| 386 | } | 
|---|
| 387 |  | 
|---|
| 388 | /// Constructs a [HashTable] from its raw byte representation without doing | 
|---|
| 389 | /// any verification of the underlying data. It is the user's responsibility | 
|---|
| 390 | /// to make sure that the underlying data is actually a valid hash table. | 
|---|
| 391 | /// | 
|---|
| 392 | /// The [HashTable::from_raw_bytes] method provides a safe alternative to this | 
|---|
| 393 | /// method. | 
|---|
| 394 | #[ inline] | 
|---|
| 395 | pub unsafe fn from_raw_bytes_unchecked(data: D) -> HashTable<C, D> { | 
|---|
| 396 | HashTable { | 
|---|
| 397 | allocation: memory_layout::Allocation::from_raw_bytes_unchecked(data), | 
|---|
| 398 | } | 
|---|
| 399 | } | 
|---|
| 400 |  | 
|---|
| 401 | #[ inline] | 
|---|
| 402 | pub fn get(&self, key: &C::Key) -> Option<C::Value> { | 
|---|
| 403 | let encoded_key = C::encode_key(key); | 
|---|
| 404 | self.as_raw().find(&encoded_key).map(C::decode_value) | 
|---|
| 405 | } | 
|---|
| 406 |  | 
|---|
| 407 | #[ inline] | 
|---|
| 408 | pub fn contains_key(&self, key: &C::Key) -> bool { | 
|---|
| 409 | let encoded_key = C::encode_key(key); | 
|---|
| 410 | self.as_raw().find(&encoded_key).is_some() | 
|---|
| 411 | } | 
|---|
| 412 |  | 
|---|
| 413 | #[ inline] | 
|---|
| 414 | pub fn iter(&self) -> Iter<'_, C> { | 
|---|
| 415 | let (entry_metadata, entry_data) = self.allocation.data_slices(); | 
|---|
| 416 | Iter(RawIter::new(entry_metadata, entry_data)) | 
|---|
| 417 | } | 
|---|
| 418 |  | 
|---|
| 419 | /// Returns the number of items stored in the hash table. | 
|---|
| 420 | #[ inline] | 
|---|
| 421 | pub fn len(&self) -> usize { | 
|---|
| 422 | self.allocation.header().item_count() | 
|---|
| 423 | } | 
|---|
| 424 |  | 
|---|
| 425 | #[ inline] | 
|---|
| 426 | pub fn raw_bytes(&self) -> &[u8] { | 
|---|
| 427 | self.allocation.raw_bytes() | 
|---|
| 428 | } | 
|---|
| 429 |  | 
|---|
| 430 | #[ inline] | 
|---|
| 431 | fn as_raw(&self) -> RawTable<'_, C::EncodedKey, C::EncodedValue, C::H> { | 
|---|
| 432 | let (entry_metadata, entry_data) = self.allocation.data_slices(); | 
|---|
| 433 | RawTable::new(entry_metadata, entry_data) | 
|---|
| 434 | } | 
|---|
| 435 | } | 
|---|
| 436 |  | 
|---|
| 437 | impl<C: Config, D: Borrow<[u8]> + BorrowMut<[u8]>> HashTable<C, D> { | 
|---|
| 438 | pub fn init_in_place( | 
|---|
| 439 | mut data: D, | 
|---|
| 440 | max_item_count: usize, | 
|---|
| 441 | max_load_factor_percent: u8, | 
|---|
| 442 | ) -> Result<HashTable<C, D>, Box<dyn std::error::Error>> { | 
|---|
| 443 | let max_load_factor = Factor::from_percent(max_load_factor_percent); | 
|---|
| 444 | let byte_count = bytes_needed_internal::<C>(max_item_count, max_load_factor); | 
|---|
| 445 | if data.borrow_mut().len() != byte_count { | 
|---|
| 446 | return Err(Error(format!( | 
|---|
| 447 | "byte slice to initialize has wrong length ({}  instead of {} )", | 
|---|
| 448 | data.borrow_mut().len(), | 
|---|
| 449 | byte_count | 
|---|
| 450 | )))?; | 
|---|
| 451 | } | 
|---|
| 452 |  | 
|---|
| 453 | let slot_count = slots_needed(max_item_count, max_load_factor); | 
|---|
| 454 | let allocation = memory_layout::init_in_place::<C, _>(data, slot_count, 0, max_load_factor); | 
|---|
| 455 | Ok(HashTable { allocation }) | 
|---|
| 456 | } | 
|---|
| 457 |  | 
|---|
| 458 | /// Inserts the given key-value pair into the table. | 
|---|
| 459 | /// Unlike [HashTableOwned::insert] this method cannot grow the underlying table | 
|---|
| 460 | /// if there is not enough space for the new item. Instead the call will panic. | 
|---|
| 461 | #[ inline] | 
|---|
| 462 | pub fn insert(&mut self, key: &C::Key, value: &C::Value) -> Option<C::Value> { | 
|---|
| 463 | let item_count = self.allocation.header().item_count(); | 
|---|
| 464 | let max_load_factor = self.allocation.header().max_load_factor(); | 
|---|
| 465 | let slot_count = self.allocation.header().slot_count(); | 
|---|
| 466 | // FIXME: This is actually a bit to conservative because it does not account for | 
|---|
| 467 | //        cases where an entry is overwritten and thus the item count does not | 
|---|
| 468 | //        change. | 
|---|
| 469 | assert!(item_count < max_item_count_for(slot_count, max_load_factor)); | 
|---|
| 470 |  | 
|---|
| 471 | let encoded_key = C::encode_key(key); | 
|---|
| 472 | let encoded_value = C::encode_value(value); | 
|---|
| 473 |  | 
|---|
| 474 | with_raw_mut(&mut self.allocation, |header, mut raw_table| { | 
|---|
| 475 | if let Some(old_value) = raw_table.insert(encoded_key, encoded_value) { | 
|---|
| 476 | Some(C::decode_value(&old_value)) | 
|---|
| 477 | } else { | 
|---|
| 478 | header.set_item_count(item_count + 1); | 
|---|
| 479 | None | 
|---|
| 480 | } | 
|---|
| 481 | }) | 
|---|
| 482 | } | 
|---|
| 483 | } | 
|---|
| 484 |  | 
|---|
| 485 | /// Computes the exact number of bytes needed for storing a HashTable with the | 
|---|
| 486 | /// given max item count and load factor. The result can be used for allocating | 
|---|
| 487 | /// storage to be passed into [HashTable::init_in_place]. | 
|---|
| 488 | pub fn bytes_needed<C: Config>(max_item_count: usize, max_load_factor_percent: u8) -> usize { | 
|---|
| 489 | let max_load_factor: Factor = Factor::from_percent(max_load_factor_percent); | 
|---|
| 490 | bytes_needed_internal::<C>(max_item_count, max_load_factor) | 
|---|
| 491 | } | 
|---|
| 492 |  | 
|---|
| 493 | fn bytes_needed_internal<C: Config>(max_item_count: usize, max_load_factor: Factor) -> usize { | 
|---|
| 494 | let slot_count: usize = slots_needed(max_item_count, max_load_factor); | 
|---|
| 495 | memory_layout::bytes_needed::<C>(slot_count) | 
|---|
| 496 | } | 
|---|
| 497 |  | 
|---|
| 498 | pub struct Iter<'a, C: Config>(RawIter<'a, C::EncodedKey, C::EncodedValue>); | 
|---|
| 499 |  | 
|---|
| 500 | impl<'a, C: Config> Iterator for Iter<'a, C> { | 
|---|
| 501 | type Item = (C::Key, C::Value); | 
|---|
| 502 |  | 
|---|
| 503 | fn next(&mut self) -> Option<Self::Item> { | 
|---|
| 504 | self.0.next().map(|(_, entry: &'a Entry<::EncodedKey, …>)| { | 
|---|
| 505 | let key: ::Key = C::decode_key(&entry.key); | 
|---|
| 506 | let value: ::Value = C::decode_value(&entry.value); | 
|---|
| 507 |  | 
|---|
| 508 | (key, value) | 
|---|
| 509 | }) | 
|---|
| 510 | } | 
|---|
| 511 | } | 
|---|
| 512 |  | 
|---|
| 513 | // We use integer math here as not to run into any issues with | 
|---|
| 514 | // platform-specific floating point math implementation. | 
|---|
| 515 | fn slots_needed(item_count: usize, max_load_factor: Factor) -> usize { | 
|---|
| 516 | // Note: we round up here | 
|---|
| 517 | let slots_needed: usize = max_load_factor.apply_inverse(item_count); | 
|---|
| 518 | std::cmp::max( | 
|---|
| 519 | v1:slots_needed.checked_next_power_of_two().unwrap(), | 
|---|
| 520 | REFERENCE_GROUP_SIZE, | 
|---|
| 521 | ) | 
|---|
| 522 | } | 
|---|
| 523 |  | 
|---|
| 524 | fn max_item_count_for(slot_count: usize, max_load_factor: Factor) -> usize { | 
|---|
| 525 | // Note: we round down here | 
|---|
| 526 | max_load_factor.apply(slot_count) | 
|---|
| 527 | } | 
|---|
| 528 |  | 
|---|
| 529 | #[ inline] | 
|---|
| 530 | fn with_raw_mut<C, M, F, R>(allocation: &mut memory_layout::Allocation<C, M>, f: F) -> R | 
|---|
| 531 | where | 
|---|
| 532 | C: Config, | 
|---|
| 533 | M: BorrowMut<[u8]>, | 
|---|
| 534 | F: FnOnce(&mut Header, RawTableMut<'_, C::EncodedKey, C::EncodedValue, C::H>) -> R, | 
|---|
| 535 | { | 
|---|
| 536 | allocation.with_mut_parts(|header: &mut Header, entry_metadata: &mut [u8], entry_data: &mut [Entry<::EncodedKey, …>]| { | 
|---|
| 537 | f(header, RawTableMut::new(entry_metadata, entry_data)) | 
|---|
| 538 | }) | 
|---|
| 539 | } | 
|---|
| 540 |  | 
|---|
| 541 | /// This type is used for computing max item counts for a given load factor | 
|---|
| 542 | /// efficiently. We use integer math here so that things are the same on | 
|---|
| 543 | /// all platforms and with all compiler settings. | 
|---|
| 544 | #[ derive(Debug, Clone, Copy, PartialEq, Eq)] | 
|---|
| 545 | struct Factor(pub u16); | 
|---|
| 546 |  | 
|---|
| 547 | impl Factor { | 
|---|
| 548 | const BASE: usize = u16::MAX as usize; | 
|---|
| 549 |  | 
|---|
| 550 | #[ inline] | 
|---|
| 551 | fn from_percent(percent: u8) -> Factor { | 
|---|
| 552 | let percent = percent as usize; | 
|---|
| 553 | Factor(((percent * Self::BASE) / 100) as u16) | 
|---|
| 554 | } | 
|---|
| 555 |  | 
|---|
| 556 | fn to_percent(self) -> usize { | 
|---|
| 557 | (self.0 as usize * 100) / Self::BASE | 
|---|
| 558 | } | 
|---|
| 559 |  | 
|---|
| 560 | // Note: we round down here | 
|---|
| 561 | #[ inline] | 
|---|
| 562 | fn apply(self, x: usize) -> usize { | 
|---|
| 563 | // Let's make sure there's no overflow during the | 
|---|
| 564 | // calculation below by doing everything with 128 bits. | 
|---|
| 565 | let x = x as u128; | 
|---|
| 566 | let factor = self.0 as u128; | 
|---|
| 567 | ((x * factor) >> 16) as usize | 
|---|
| 568 | } | 
|---|
| 569 |  | 
|---|
| 570 | // Note: we round up here | 
|---|
| 571 | #[ inline] | 
|---|
| 572 | fn apply_inverse(self, x: usize) -> usize { | 
|---|
| 573 | // Let's make sure there's no overflow during the | 
|---|
| 574 | // calculation below by doing everything with 128 bits. | 
|---|
| 575 | let x = x as u128; | 
|---|
| 576 | let factor = self.0 as u128; | 
|---|
| 577 | let base = Self::BASE as u128; | 
|---|
| 578 | ((base * x + factor - 1) / factor) as usize | 
|---|
| 579 | } | 
|---|
| 580 | } | 
|---|
| 581 |  | 
|---|
| 582 | #[ cfg(test)] | 
|---|
| 583 | mod tests { | 
|---|
| 584 | use super::*; | 
|---|
| 585 | use std::convert::TryInto; | 
|---|
| 586 |  | 
|---|
| 587 | enum TestConfig {} | 
|---|
| 588 |  | 
|---|
| 589 | impl Config for TestConfig { | 
|---|
| 590 | type EncodedKey = [u8; 4]; | 
|---|
| 591 | type EncodedValue = [u8; 4]; | 
|---|
| 592 |  | 
|---|
| 593 | type Key = u32; | 
|---|
| 594 | type Value = u32; | 
|---|
| 595 |  | 
|---|
| 596 | type H = FxHashFn; | 
|---|
| 597 |  | 
|---|
| 598 | fn encode_key(k: &Self::Key) -> Self::EncodedKey { | 
|---|
| 599 | k.to_le_bytes() | 
|---|
| 600 | } | 
|---|
| 601 |  | 
|---|
| 602 | fn encode_value(v: &Self::Value) -> Self::EncodedValue { | 
|---|
| 603 | v.to_le_bytes() | 
|---|
| 604 | } | 
|---|
| 605 |  | 
|---|
| 606 | fn decode_key(k: &Self::EncodedKey) -> Self::Key { | 
|---|
| 607 | u32::from_le_bytes(k[..].try_into().unwrap()) | 
|---|
| 608 | } | 
|---|
| 609 |  | 
|---|
| 610 | fn decode_value(v: &Self::EncodedValue) -> Self::Value { | 
|---|
| 611 | u32::from_le_bytes(v[..].try_into().unwrap()) | 
|---|
| 612 | } | 
|---|
| 613 | } | 
|---|
| 614 |  | 
|---|
| 615 | fn make_test_items(count: usize) -> Vec<(u32, u32)> { | 
|---|
| 616 | if count == 0 { | 
|---|
| 617 | return vec![]; | 
|---|
| 618 | } | 
|---|
| 619 |  | 
|---|
| 620 | let mut items = vec![]; | 
|---|
| 621 |  | 
|---|
| 622 | if count > 1 { | 
|---|
| 623 | let steps = (count - 1) as u32; | 
|---|
| 624 | let step = u32::MAX / steps; | 
|---|
| 625 |  | 
|---|
| 626 | for i in 0..steps { | 
|---|
| 627 | let x = i * step; | 
|---|
| 628 | items.push((x, u32::MAX - x)); | 
|---|
| 629 | } | 
|---|
| 630 | } | 
|---|
| 631 |  | 
|---|
| 632 | items.push((u32::MAX, 0)); | 
|---|
| 633 |  | 
|---|
| 634 | items.sort(); | 
|---|
| 635 | items.dedup(); | 
|---|
| 636 | assert_eq!(items.len(), count); | 
|---|
| 637 |  | 
|---|
| 638 | items | 
|---|
| 639 | } | 
|---|
| 640 |  | 
|---|
| 641 | #[ test] | 
|---|
| 642 | fn from_iterator() { | 
|---|
| 643 | for count in 0..33 { | 
|---|
| 644 | let items = make_test_items(count); | 
|---|
| 645 | let table = HashTableOwned::<TestConfig>::from_iterator(items.clone(), 95); | 
|---|
| 646 | assert_eq!(table.len(), items.len()); | 
|---|
| 647 |  | 
|---|
| 648 | let mut actual_items: Vec<_> = table.iter().collect(); | 
|---|
| 649 | actual_items.sort(); | 
|---|
| 650 |  | 
|---|
| 651 | assert_eq!(items, actual_items); | 
|---|
| 652 | } | 
|---|
| 653 | } | 
|---|
| 654 |  | 
|---|
| 655 | #[ test] | 
|---|
| 656 | fn init_in_place() { | 
|---|
| 657 | for count in 0..33 { | 
|---|
| 658 | let items = make_test_items(count); | 
|---|
| 659 | let byte_count = bytes_needed::<TestConfig>(items.len(), 87); | 
|---|
| 660 | let data = vec![0u8; byte_count]; | 
|---|
| 661 |  | 
|---|
| 662 | let mut table = | 
|---|
| 663 | HashTable::<TestConfig, _>::init_in_place(data, items.len(), 87).unwrap(); | 
|---|
| 664 |  | 
|---|
| 665 | for (i, (k, v)) in items.iter().enumerate() { | 
|---|
| 666 | assert_eq!(table.len(), i); | 
|---|
| 667 | assert_eq!(table.insert(k, v), None); | 
|---|
| 668 | assert_eq!(table.len(), i + 1); | 
|---|
| 669 |  | 
|---|
| 670 | // Make sure we still can find all items previously inserted. | 
|---|
| 671 | for (k, v) in items.iter().take(i) { | 
|---|
| 672 | assert_eq!(table.get(k), Some(*v)); | 
|---|
| 673 | } | 
|---|
| 674 | } | 
|---|
| 675 |  | 
|---|
| 676 | let mut actual_items: Vec<_> = table.iter().collect(); | 
|---|
| 677 | actual_items.sort(); | 
|---|
| 678 |  | 
|---|
| 679 | assert_eq!(items, actual_items); | 
|---|
| 680 | } | 
|---|
| 681 | } | 
|---|
| 682 |  | 
|---|
| 683 | #[ test] | 
|---|
| 684 | fn hash_table_at_different_alignments() { | 
|---|
| 685 | let items = make_test_items(33); | 
|---|
| 686 |  | 
|---|
| 687 | let mut serialized = { | 
|---|
| 688 | let table: HashTableOwned<TestConfig> = | 
|---|
| 689 | HashTableOwned::from_iterator(items.clone(), 95); | 
|---|
| 690 |  | 
|---|
| 691 | assert_eq!(table.len(), items.len()); | 
|---|
| 692 |  | 
|---|
| 693 | table.raw_bytes().to_owned() | 
|---|
| 694 | }; | 
|---|
| 695 |  | 
|---|
| 696 | for alignment_shift in 0..4 { | 
|---|
| 697 | let data = &serialized[alignment_shift..]; | 
|---|
| 698 |  | 
|---|
| 699 | let table = HashTable::<TestConfig, _>::from_raw_bytes(data).unwrap(); | 
|---|
| 700 |  | 
|---|
| 701 | assert_eq!(table.len(), items.len()); | 
|---|
| 702 |  | 
|---|
| 703 | for (key, value) in items.iter() { | 
|---|
| 704 | assert_eq!(table.get(key), Some(*value)); | 
|---|
| 705 | } | 
|---|
| 706 |  | 
|---|
| 707 | serialized.insert(0, 0xFFu8); | 
|---|
| 708 | } | 
|---|
| 709 | } | 
|---|
| 710 |  | 
|---|
| 711 | #[ test] | 
|---|
| 712 | fn load_factor_and_item_count() { | 
|---|
| 713 | assert_eq!( | 
|---|
| 714 | slots_needed(0, Factor::from_percent(100)), | 
|---|
| 715 | REFERENCE_GROUP_SIZE | 
|---|
| 716 | ); | 
|---|
| 717 | assert_eq!(slots_needed(6, Factor::from_percent(60)), 16); | 
|---|
| 718 | assert_eq!(slots_needed(5, Factor::from_percent(50)), 16); | 
|---|
| 719 | assert_eq!(slots_needed(5, Factor::from_percent(49)), 16); | 
|---|
| 720 | assert_eq!(slots_needed(1000, Factor::from_percent(100)), 1024); | 
|---|
| 721 |  | 
|---|
| 722 | // Factor cannot never be a full 100% because of the rounding involved. | 
|---|
| 723 | assert_eq!(max_item_count_for(10, Factor::from_percent(100)), 9); | 
|---|
| 724 | assert_eq!(max_item_count_for(10, Factor::from_percent(50)), 4); | 
|---|
| 725 | assert_eq!(max_item_count_for(11, Factor::from_percent(50)), 5); | 
|---|
| 726 | assert_eq!(max_item_count_for(12, Factor::from_percent(50)), 5); | 
|---|
| 727 | } | 
|---|
| 728 |  | 
|---|
| 729 | #[ test] | 
|---|
| 730 | fn grow() { | 
|---|
| 731 | let items = make_test_items(100); | 
|---|
| 732 | let mut table = HashTableOwned::<TestConfig>::with_capacity(10, 87); | 
|---|
| 733 |  | 
|---|
| 734 | for (key, value) in items.iter() { | 
|---|
| 735 | assert_eq!(table.insert(key, value), None); | 
|---|
| 736 | } | 
|---|
| 737 | } | 
|---|
| 738 |  | 
|---|
| 739 | #[ test] | 
|---|
| 740 | fn factor_from_percent() { | 
|---|
| 741 | assert_eq!(Factor::from_percent(100), Factor(u16::MAX)); | 
|---|
| 742 | assert_eq!(Factor::from_percent(0), Factor(0)); | 
|---|
| 743 | assert_eq!(Factor::from_percent(50), Factor(u16::MAX / 2)); | 
|---|
| 744 | } | 
|---|
| 745 |  | 
|---|
| 746 | #[ test] | 
|---|
| 747 | fn factor_apply() { | 
|---|
| 748 | assert_eq!(Factor::from_percent(100).apply(12345), 12344); | 
|---|
| 749 | assert_eq!(Factor::from_percent(0).apply(12345), 0); | 
|---|
| 750 | assert_eq!(Factor::from_percent(50).apply(66), 32); | 
|---|
| 751 |  | 
|---|
| 752 | // Make sure we can handle large numbers without overflow | 
|---|
| 753 | assert_basically_equal(Factor::from_percent(100).apply(usize::MAX), usize::MAX); | 
|---|
| 754 | } | 
|---|
| 755 |  | 
|---|
| 756 | #[ test] | 
|---|
| 757 | fn factor_apply_inverse() { | 
|---|
| 758 | assert_eq!(Factor::from_percent(100).apply_inverse(12345), 12345); | 
|---|
| 759 | assert_eq!(Factor::from_percent(10).apply_inverse(100), 1001); | 
|---|
| 760 | assert_eq!(Factor::from_percent(50).apply_inverse(33), 67); | 
|---|
| 761 |  | 
|---|
| 762 | // // Make sure we can handle large numbers without overflow | 
|---|
| 763 | assert_basically_equal( | 
|---|
| 764 | Factor::from_percent(100).apply_inverse(usize::MAX), | 
|---|
| 765 | usize::MAX, | 
|---|
| 766 | ); | 
|---|
| 767 | } | 
|---|
| 768 |  | 
|---|
| 769 | fn assert_basically_equal(x: usize, y: usize) { | 
|---|
| 770 | let larger_number = std::cmp::max(x, y) as f64; | 
|---|
| 771 | let abs_difference = (x as f64 - y as f64).abs(); | 
|---|
| 772 | let difference_in_percent = (abs_difference / larger_number) * 100.0; | 
|---|
| 773 |  | 
|---|
| 774 | const MAX_ALLOWED_DIFFERENCE_IN_PERCENT: f64 = 0.01; | 
|---|
| 775 |  | 
|---|
| 776 | assert!( | 
|---|
| 777 | difference_in_percent < MAX_ALLOWED_DIFFERENCE_IN_PERCENT, | 
|---|
| 778 | "{} and {} differ by {:.4} percent but the maximally allowed difference \ | 
|---|
| 779 |             is {:.2} percent. Large differences might be caused by integer overflow.", | 
|---|
| 780 | x, | 
|---|
| 781 | y, | 
|---|
| 782 | difference_in_percent, | 
|---|
| 783 | MAX_ALLOWED_DIFFERENCE_IN_PERCENT | 
|---|
| 784 | ); | 
|---|
| 785 | } | 
|---|
| 786 |  | 
|---|
| 787 | mod quickchecks { | 
|---|
| 788 | use super::*; | 
|---|
| 789 | use crate::raw_table::ByteArray; | 
|---|
| 790 | use quickcheck::{Arbitrary, Gen}; | 
|---|
| 791 | use rustc_hash::FxHashMap; | 
|---|
| 792 |  | 
|---|
| 793 | #[ derive(Copy, Clone, Hash, Eq, PartialEq, Debug)] | 
|---|
| 794 | struct Bytes<const BYTE_COUNT: usize>([u8; BYTE_COUNT]); | 
|---|
| 795 |  | 
|---|
| 796 | impl<const L: usize> Arbitrary for Bytes<L> { | 
|---|
| 797 | fn arbitrary(gen: &mut Gen) -> Self { | 
|---|
| 798 | let mut xs = [0; L]; | 
|---|
| 799 | for x in xs.iter_mut() { | 
|---|
| 800 | *x = u8::arbitrary(gen); | 
|---|
| 801 | } | 
|---|
| 802 | Bytes(xs) | 
|---|
| 803 | } | 
|---|
| 804 | } | 
|---|
| 805 |  | 
|---|
| 806 | impl<const L: usize> Default for Bytes<L> { | 
|---|
| 807 | fn default() -> Self { | 
|---|
| 808 | Bytes([0; L]) | 
|---|
| 809 | } | 
|---|
| 810 | } | 
|---|
| 811 |  | 
|---|
| 812 | impl<const L: usize> ByteArray for Bytes<L> { | 
|---|
| 813 | #[ inline(always)] | 
|---|
| 814 | fn zeroed() -> Self { | 
|---|
| 815 | Bytes([0u8; L]) | 
|---|
| 816 | } | 
|---|
| 817 |  | 
|---|
| 818 | #[ inline(always)] | 
|---|
| 819 | fn as_slice(&self) -> &[u8] { | 
|---|
| 820 | &self.0[..] | 
|---|
| 821 | } | 
|---|
| 822 |  | 
|---|
| 823 | #[ inline(always)] | 
|---|
| 824 | fn equals(&self, other: &Self) -> bool { | 
|---|
| 825 | self.as_slice() == other.as_slice() | 
|---|
| 826 | } | 
|---|
| 827 | } | 
|---|
| 828 |  | 
|---|
| 829 | macro_rules! mk_quick_tests { | 
|---|
| 830 | ($name: ident, $key_len:expr, $value_len:expr) => { | 
|---|
| 831 | mod $name { | 
|---|
| 832 | use super::*; | 
|---|
| 833 | use quickcheck::quickcheck; | 
|---|
| 834 |  | 
|---|
| 835 | struct Cfg; | 
|---|
| 836 |  | 
|---|
| 837 | type Key = Bytes<$key_len>; | 
|---|
| 838 | type Value = Bytes<$value_len>; | 
|---|
| 839 |  | 
|---|
| 840 | impl Config for Cfg { | 
|---|
| 841 | type EncodedKey = Key; | 
|---|
| 842 | type EncodedValue = Value; | 
|---|
| 843 |  | 
|---|
| 844 | type Key = Key; | 
|---|
| 845 | type Value = Value; | 
|---|
| 846 |  | 
|---|
| 847 | type H = FxHashFn; | 
|---|
| 848 |  | 
|---|
| 849 | fn encode_key(k: &Self::Key) -> Self::EncodedKey { | 
|---|
| 850 | *k | 
|---|
| 851 | } | 
|---|
| 852 |  | 
|---|
| 853 | fn encode_value(v: &Self::Value) -> Self::EncodedValue { | 
|---|
| 854 | *v | 
|---|
| 855 | } | 
|---|
| 856 |  | 
|---|
| 857 | fn decode_key(k: &Self::EncodedKey) -> Self::Key { | 
|---|
| 858 | *k | 
|---|
| 859 | } | 
|---|
| 860 |  | 
|---|
| 861 | fn decode_value(v: &Self::EncodedValue) -> Self::Value { | 
|---|
| 862 | *v | 
|---|
| 863 | } | 
|---|
| 864 | } | 
|---|
| 865 |  | 
|---|
| 866 | fn from_std_hashmap(m: &FxHashMap<Key, Value>) -> HashTableOwned<Cfg> { | 
|---|
| 867 | HashTableOwned::<Cfg>::from_iterator(m.iter().map(|(x, y)| (*x, *y)), 87) | 
|---|
| 868 | } | 
|---|
| 869 |  | 
|---|
| 870 | quickcheck! { | 
|---|
| 871 | fn len(xs: FxHashMap<Key, Value>) -> bool { | 
|---|
| 872 | let table = from_std_hashmap(&xs); | 
|---|
| 873 |  | 
|---|
| 874 | xs.len() == table.len() | 
|---|
| 875 | } | 
|---|
| 876 | } | 
|---|
| 877 |  | 
|---|
| 878 | quickcheck! { | 
|---|
| 879 | fn lookup(xs: FxHashMap<Key, Value>) -> bool { | 
|---|
| 880 | let table = from_std_hashmap(&xs); | 
|---|
| 881 | xs.iter().all(|(k, v)| table.get(k) == Some(*v)) | 
|---|
| 882 | } | 
|---|
| 883 | } | 
|---|
| 884 |  | 
|---|
| 885 | quickcheck! { | 
|---|
| 886 | fn insert_with_duplicates(xs: Vec<(Key, Value)>) -> bool { | 
|---|
| 887 | let mut reference = FxHashMap::default(); | 
|---|
| 888 | let mut table = HashTableOwned::<Cfg>::default(); | 
|---|
| 889 |  | 
|---|
| 890 | for (k, v) in xs { | 
|---|
| 891 | let expected = reference.insert(k, v); | 
|---|
| 892 | let actual = table.insert(&k, &v); | 
|---|
| 893 |  | 
|---|
| 894 | if expected != actual { | 
|---|
| 895 | return false; | 
|---|
| 896 | } | 
|---|
| 897 | } | 
|---|
| 898 |  | 
|---|
| 899 | true | 
|---|
| 900 | } | 
|---|
| 901 | } | 
|---|
| 902 |  | 
|---|
| 903 | quickcheck! { | 
|---|
| 904 | fn bytes_deterministic(xs: FxHashMap<Key, Value>) -> bool { | 
|---|
| 905 | // NOTE: We only guarantee this given the exact same | 
|---|
| 906 | //       insertion order. | 
|---|
| 907 | let table0 = from_std_hashmap(&xs); | 
|---|
| 908 | let table1 = from_std_hashmap(&xs); | 
|---|
| 909 |  | 
|---|
| 910 | table0.raw_bytes() == table1.raw_bytes() | 
|---|
| 911 | } | 
|---|
| 912 | } | 
|---|
| 913 |  | 
|---|
| 914 | quickcheck! { | 
|---|
| 915 | fn from_iterator_vs_manual_insertion(xs: Vec<(Key, Value)>) -> bool { | 
|---|
| 916 | let mut table0 = HashTableOwned::<Cfg>::with_capacity(xs.len(), 87); | 
|---|
| 917 |  | 
|---|
| 918 | for (k, v) in xs.iter() { | 
|---|
| 919 | table0.insert(k, v); | 
|---|
| 920 | } | 
|---|
| 921 |  | 
|---|
| 922 | let table1 = HashTableOwned::<Cfg>::from_iterator(xs.into_iter(), 87); | 
|---|
| 923 |  | 
|---|
| 924 | // Requiring bit for bit equality might be a bit too much in this case, | 
|---|
| 925 | // as long as it works ... | 
|---|
| 926 | table0.raw_bytes() == table1.raw_bytes() | 
|---|
| 927 | } | 
|---|
| 928 | } | 
|---|
| 929 | } | 
|---|
| 930 | }; | 
|---|
| 931 | } | 
|---|
| 932 |  | 
|---|
| 933 | // Test zero sized key and values | 
|---|
| 934 | mk_quick_tests!(k0_v0, 0, 0); | 
|---|
| 935 | mk_quick_tests!(k1_v0, 1, 0); | 
|---|
| 936 | mk_quick_tests!(k2_v0, 2, 0); | 
|---|
| 937 | mk_quick_tests!(k3_v0, 3, 0); | 
|---|
| 938 | mk_quick_tests!(k4_v0, 4, 0); | 
|---|
| 939 | mk_quick_tests!(k8_v0, 8, 0); | 
|---|
| 940 | mk_quick_tests!(k15_v0, 15, 0); | 
|---|
| 941 | mk_quick_tests!(k16_v0, 16, 0); | 
|---|
| 942 | mk_quick_tests!(k17_v0, 17, 0); | 
|---|
| 943 | mk_quick_tests!(k63_v0, 63, 0); | 
|---|
| 944 | mk_quick_tests!(k64_v0, 64, 0); | 
|---|
| 945 |  | 
|---|
| 946 | // Test a few different key sizes | 
|---|
| 947 | mk_quick_tests!(k2_v4, 2, 4); | 
|---|
| 948 | mk_quick_tests!(k4_v4, 4, 4); | 
|---|
| 949 | mk_quick_tests!(k8_v4, 8, 4); | 
|---|
| 950 | mk_quick_tests!(k17_v4, 17, 4); | 
|---|
| 951 | mk_quick_tests!(k20_v4, 20, 4); | 
|---|
| 952 | mk_quick_tests!(k64_v4, 64, 4); | 
|---|
| 953 |  | 
|---|
| 954 | // Test a few different value sizes | 
|---|
| 955 | mk_quick_tests!(k16_v1, 16, 1); | 
|---|
| 956 | mk_quick_tests!(k16_v2, 16, 2); | 
|---|
| 957 | mk_quick_tests!(k16_v3, 16, 3); | 
|---|
| 958 | mk_quick_tests!(k16_v4, 16, 4); | 
|---|
| 959 | mk_quick_tests!(k16_v8, 16, 8); | 
|---|
| 960 | mk_quick_tests!(k16_v16, 16, 16); | 
|---|
| 961 | mk_quick_tests!(k16_v17, 16, 17); | 
|---|
| 962 | } | 
|---|
| 963 | } | 
|---|
| 964 |  | 
|---|