| 1 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 2 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 3 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| 4 | // option. This file may not be copied, modified, or distributed |
| 5 | // except according to those terms. |
| 6 | |
| 7 | //! Small vectors in various sizes. These store a certain number of elements inline, and fall back |
| 8 | //! to the heap for larger allocations. This can be a useful optimization for improving cache |
| 9 | //! locality and reducing allocator traffic for workloads that fit within the inline buffer. |
| 10 | //! |
| 11 | //! ## `no_std` support |
| 12 | //! |
| 13 | //! By default, `smallvec` does not depend on `std`. However, the optional |
| 14 | //! `write` feature implements the `std::io::Write` trait for vectors of `u8`. |
| 15 | //! When this feature is enabled, `smallvec` depends on `std`. |
| 16 | //! |
| 17 | //! ## Optional features |
| 18 | //! |
| 19 | //! ### `serde` |
| 20 | //! |
| 21 | //! When this optional dependency is enabled, `SmallVec` implements the `serde::Serialize` and |
| 22 | //! `serde::Deserialize` traits. |
| 23 | //! |
| 24 | //! ### `write` |
| 25 | //! |
| 26 | //! When this feature is enabled, `SmallVec<[u8; _]>` implements the `std::io::Write` trait. |
| 27 | //! This feature is not compatible with `#![no_std]` programs. |
| 28 | //! |
| 29 | //! ### `union` |
| 30 | //! |
| 31 | //! **This feature requires Rust 1.49.** |
| 32 | //! |
| 33 | //! When the `union` feature is enabled `smallvec` will track its state (inline or spilled) |
| 34 | //! without the use of an enum tag, reducing the size of the `smallvec` by one machine word. |
| 35 | //! This means that there is potentially no space overhead compared to `Vec`. |
| 36 | //! Note that `smallvec` can still be larger than `Vec` if the inline buffer is larger than two |
| 37 | //! machine words. |
| 38 | //! |
| 39 | //! To use this feature add `features = ["union"]` in the `smallvec` section of Cargo.toml. |
| 40 | //! Note that this feature requires Rust 1.49. |
| 41 | //! |
| 42 | //! Tracking issue: [rust-lang/rust#55149](https://github.com/rust-lang/rust/issues/55149) |
| 43 | //! |
| 44 | //! ### `const_generics` |
| 45 | //! |
| 46 | //! **This feature requires Rust 1.51.** |
| 47 | //! |
| 48 | //! When this feature is enabled, `SmallVec` works with any arrays of any size, not just a fixed |
| 49 | //! list of sizes. |
| 50 | //! |
| 51 | //! ### `const_new` |
| 52 | //! |
| 53 | //! **This feature requires Rust 1.51.** |
| 54 | //! |
| 55 | //! This feature exposes the functions [`SmallVec::new_const`], [`SmallVec::from_const`], and [`smallvec_inline`] which enables the `SmallVec` to be initialized from a const context. |
| 56 | //! For details, see the |
| 57 | //! [Rust Reference](https://doc.rust-lang.org/reference/const_eval.html#const-functions). |
| 58 | //! |
| 59 | //! ### `drain_filter` |
| 60 | //! |
| 61 | //! **This feature is unstable.** It may change to match the unstable `drain_filter` method in libstd. |
| 62 | //! |
| 63 | //! Enables the `drain_filter` method, which produces an iterator that calls a user-provided |
| 64 | //! closure to determine which elements of the vector to remove and yield from the iterator. |
| 65 | //! |
| 66 | //! ### `drain_keep_rest` |
| 67 | //! |
| 68 | //! **This feature is unstable.** It may change to match the unstable `drain_keep_rest` method in libstd. |
| 69 | //! |
| 70 | //! Enables the `DrainFilter::keep_rest` method. |
| 71 | //! |
| 72 | //! ### `specialization` |
| 73 | //! |
| 74 | //! **This feature is unstable and requires a nightly build of the Rust toolchain.** |
| 75 | //! |
| 76 | //! When this feature is enabled, `SmallVec::from(slice)` has improved performance for slices |
| 77 | //! of `Copy` types. (Without this feature, you can use `SmallVec::from_slice` to get optimal |
| 78 | //! performance for `Copy` types.) |
| 79 | //! |
| 80 | //! Tracking issue: [rust-lang/rust#31844](https://github.com/rust-lang/rust/issues/31844) |
| 81 | //! |
| 82 | //! ### `may_dangle` |
| 83 | //! |
| 84 | //! **This feature is unstable and requires a nightly build of the Rust toolchain.** |
| 85 | //! |
| 86 | //! This feature makes the Rust compiler less strict about use of vectors that contain borrowed |
| 87 | //! references. For details, see the |
| 88 | //! [Rustonomicon](https://doc.rust-lang.org/1.42.0/nomicon/dropck.html#an-escape-hatch). |
| 89 | //! |
| 90 | //! Tracking issue: [rust-lang/rust#34761](https://github.com/rust-lang/rust/issues/34761) |
| 91 | |
| 92 | #![no_std ] |
| 93 | #![cfg_attr (docsrs, feature(doc_cfg))] |
| 94 | #![cfg_attr (feature = "specialization" , allow(incomplete_features))] |
| 95 | #![cfg_attr (feature = "specialization" , feature(specialization))] |
| 96 | #![cfg_attr (feature = "may_dangle" , feature(dropck_eyepatch))] |
| 97 | #![cfg_attr ( |
| 98 | feature = "debugger_visualizer" , |
| 99 | feature(debugger_visualizer), |
| 100 | debugger_visualizer(natvis_file = "../debug_metadata/smallvec.natvis" ) |
| 101 | )] |
| 102 | #![deny (missing_docs)] |
| 103 | |
| 104 | #[doc (hidden)] |
| 105 | pub extern crate alloc; |
| 106 | |
| 107 | #[cfg (any(test, feature = "write" ))] |
| 108 | extern crate std; |
| 109 | |
| 110 | #[cfg (test)] |
| 111 | mod tests; |
| 112 | |
| 113 | #[allow (deprecated)] |
| 114 | use alloc::alloc::{Layout, LayoutErr}; |
| 115 | use alloc::boxed::Box; |
| 116 | use alloc::{vec, vec::Vec}; |
| 117 | use core::borrow::{Borrow, BorrowMut}; |
| 118 | use core::cmp; |
| 119 | use core::fmt; |
| 120 | use core::hash::{Hash, Hasher}; |
| 121 | use core::hint::unreachable_unchecked; |
| 122 | use core::iter::{repeat, FromIterator, FusedIterator, IntoIterator}; |
| 123 | use core::mem; |
| 124 | use core::mem::MaybeUninit; |
| 125 | use core::ops::{self, Range, RangeBounds}; |
| 126 | use core::ptr::{self, NonNull}; |
| 127 | use core::slice::{self, SliceIndex}; |
| 128 | |
| 129 | #[cfg (feature = "serde" )] |
| 130 | use serde::{ |
| 131 | de::{Deserialize, Deserializer, SeqAccess, Visitor}, |
| 132 | ser::{Serialize, SerializeSeq, Serializer}, |
| 133 | }; |
| 134 | |
| 135 | #[cfg (feature = "serde" )] |
| 136 | use core::marker::PhantomData; |
| 137 | |
| 138 | #[cfg (feature = "write" )] |
| 139 | use std::io; |
| 140 | |
| 141 | #[cfg (feature = "drain_keep_rest" )] |
| 142 | use core::mem::ManuallyDrop; |
| 143 | |
| 144 | /// Creates a [`SmallVec`] containing the arguments. |
| 145 | /// |
| 146 | /// `smallvec!` allows `SmallVec`s to be defined with the same syntax as array expressions. |
| 147 | /// There are two forms of this macro: |
| 148 | /// |
| 149 | /// - Create a [`SmallVec`] containing a given list of elements: |
| 150 | /// |
| 151 | /// ``` |
| 152 | /// # use smallvec::{smallvec, SmallVec}; |
| 153 | /// # fn main() { |
| 154 | /// let v: SmallVec<[_; 128]> = smallvec![1, 2, 3]; |
| 155 | /// assert_eq!(v[0], 1); |
| 156 | /// assert_eq!(v[1], 2); |
| 157 | /// assert_eq!(v[2], 3); |
| 158 | /// # } |
| 159 | /// ``` |
| 160 | /// |
| 161 | /// - Create a [`SmallVec`] from a given element and size: |
| 162 | /// |
| 163 | /// ``` |
| 164 | /// # use smallvec::{smallvec, SmallVec}; |
| 165 | /// # fn main() { |
| 166 | /// let v: SmallVec<[_; 0x8000]> = smallvec![1; 3]; |
| 167 | /// assert_eq!(v, SmallVec::from_buf([1, 1, 1])); |
| 168 | /// # } |
| 169 | /// ``` |
| 170 | /// |
| 171 | /// Note that unlike array expressions this syntax supports all elements |
| 172 | /// which implement [`Clone`] and the number of elements doesn't have to be |
| 173 | /// a constant. |
| 174 | /// |
| 175 | /// This will use `clone` to duplicate an expression, so one should be careful |
| 176 | /// using this with types having a nonstandard `Clone` implementation. For |
| 177 | /// example, `smallvec![Rc::new(1); 5]` will create a vector of five references |
| 178 | /// to the same boxed integer value, not five references pointing to independently |
| 179 | /// boxed integers. |
| 180 | |
| 181 | #[macro_export ] |
| 182 | macro_rules! smallvec { |
| 183 | // count helper: transform any expression into 1 |
| 184 | (@one $x:expr) => (1usize); |
| 185 | ($elem:expr; $n:expr) => ({ |
| 186 | $crate::SmallVec::from_elem($elem, $n) |
| 187 | }); |
| 188 | ($($x:expr),*$(,)*) => ({ |
| 189 | let count = 0usize $(+ $crate::smallvec!(@one $x))*; |
| 190 | #[allow(unused_mut)] |
| 191 | let mut vec = $crate::SmallVec::new(); |
| 192 | if count <= vec.inline_size() { |
| 193 | $(vec.push($x);)* |
| 194 | vec |
| 195 | } else { |
| 196 | $crate::SmallVec::from_vec($crate::alloc::vec![$($x,)*]) |
| 197 | } |
| 198 | }); |
| 199 | } |
| 200 | |
| 201 | /// Creates an inline [`SmallVec`] containing the arguments. This macro is enabled by the feature `const_new`. |
| 202 | /// |
| 203 | /// `smallvec_inline!` allows `SmallVec`s to be defined with the same syntax as array expressions in `const` contexts. |
| 204 | /// The inline storage `A` will always be an array of the size specified by the arguments. |
| 205 | /// There are two forms of this macro: |
| 206 | /// |
| 207 | /// - Create a [`SmallVec`] containing a given list of elements: |
| 208 | /// |
| 209 | /// ``` |
| 210 | /// # use smallvec::{smallvec_inline, SmallVec}; |
| 211 | /// # fn main() { |
| 212 | /// const V: SmallVec<[i32; 3]> = smallvec_inline![1, 2, 3]; |
| 213 | /// assert_eq!(V[0], 1); |
| 214 | /// assert_eq!(V[1], 2); |
| 215 | /// assert_eq!(V[2], 3); |
| 216 | /// # } |
| 217 | /// ``` |
| 218 | /// |
| 219 | /// - Create a [`SmallVec`] from a given element and size: |
| 220 | /// |
| 221 | /// ``` |
| 222 | /// # use smallvec::{smallvec_inline, SmallVec}; |
| 223 | /// # fn main() { |
| 224 | /// const V: SmallVec<[i32; 3]> = smallvec_inline![1; 3]; |
| 225 | /// assert_eq!(V, SmallVec::from_buf([1, 1, 1])); |
| 226 | /// # } |
| 227 | /// ``` |
| 228 | /// |
| 229 | /// Note that the behavior mimics that of array expressions, in contrast to [`smallvec`]. |
| 230 | #[cfg (feature = "const_new" )] |
| 231 | #[cfg_attr (docsrs, doc(cfg(feature = "const_new" )))] |
| 232 | #[macro_export ] |
| 233 | macro_rules! smallvec_inline { |
| 234 | // count helper: transform any expression into 1 |
| 235 | (@one $x:expr) => (1usize); |
| 236 | ($elem:expr; $n:expr) => ({ |
| 237 | $crate::SmallVec::<[_; $n]>::from_const([$elem; $n]) |
| 238 | }); |
| 239 | ($($x:expr),+ $(,)?) => ({ |
| 240 | const N: usize = 0usize $(+ $crate::smallvec_inline!(@one $x))*; |
| 241 | $crate::SmallVec::<[_; N]>::from_const([$($x,)*]) |
| 242 | }); |
| 243 | } |
| 244 | |
| 245 | /// `panic!()` in debug builds, optimization hint in release. |
| 246 | #[cfg (not(feature = "union" ))] |
| 247 | macro_rules! debug_unreachable { |
| 248 | () => { |
| 249 | debug_unreachable!("entered unreachable code" ) |
| 250 | }; |
| 251 | ($e:expr) => { |
| 252 | if cfg!(debug_assertions) { |
| 253 | panic!($e); |
| 254 | } else { |
| 255 | unreachable_unchecked(); |
| 256 | } |
| 257 | }; |
| 258 | } |
| 259 | |
| 260 | /// Trait to be implemented by a collection that can be extended from a slice |
| 261 | /// |
| 262 | /// ## Example |
| 263 | /// |
| 264 | /// ```rust |
| 265 | /// use smallvec::{ExtendFromSlice, SmallVec}; |
| 266 | /// |
| 267 | /// fn initialize<V: ExtendFromSlice<u8>>(v: &mut V) { |
| 268 | /// v.extend_from_slice(b"Test!" ); |
| 269 | /// } |
| 270 | /// |
| 271 | /// let mut vec = Vec::new(); |
| 272 | /// initialize(&mut vec); |
| 273 | /// assert_eq!(&vec, b"Test!" ); |
| 274 | /// |
| 275 | /// let mut small_vec = SmallVec::<[u8; 8]>::new(); |
| 276 | /// initialize(&mut small_vec); |
| 277 | /// assert_eq!(&small_vec as &[_], b"Test!" ); |
| 278 | /// ``` |
| 279 | #[doc (hidden)] |
| 280 | #[deprecated ] |
| 281 | pub trait ExtendFromSlice<T> { |
| 282 | /// Extends a collection from a slice of its element type |
| 283 | fn extend_from_slice(&mut self, other: &[T]); |
| 284 | } |
| 285 | |
| 286 | #[allow (deprecated)] |
| 287 | impl<T: Clone> ExtendFromSlice<T> for Vec<T> { |
| 288 | fn extend_from_slice(&mut self, other: &[T]) { |
| 289 | Vec::extend_from_slice(self, other) |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | /// Error type for APIs with fallible heap allocation |
| 294 | #[derive (Debug)] |
| 295 | pub enum CollectionAllocErr { |
| 296 | /// Overflow `usize::MAX` or other error during size computation |
| 297 | CapacityOverflow, |
| 298 | /// The allocator return an error |
| 299 | AllocErr { |
| 300 | /// The layout that was passed to the allocator |
| 301 | layout: Layout, |
| 302 | }, |
| 303 | } |
| 304 | |
| 305 | impl fmt::Display for CollectionAllocErr { |
| 306 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 307 | write!(f, "Allocation error: {:?}" , self) |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | #[allow (deprecated)] |
| 312 | impl From<LayoutErr> for CollectionAllocErr { |
| 313 | fn from(_: LayoutErr) -> Self { |
| 314 | CollectionAllocErr::CapacityOverflow |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | fn infallible<T>(result: Result<T, CollectionAllocErr>) -> T { |
| 319 | match result { |
| 320 | Ok(x: T) => x, |
| 321 | Err(CollectionAllocErr::CapacityOverflow) => panic!("capacity overflow" ), |
| 322 | Err(CollectionAllocErr::AllocErr { layout: Layout }) => alloc::alloc::handle_alloc_error(layout), |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | /// FIXME: use `Layout::array` when we require a Rust version where it’s stable |
| 327 | /// <https://github.com/rust-lang/rust/issues/55724> |
| 328 | fn layout_array<T>(n: usize) -> Result<Layout, CollectionAllocErr> { |
| 329 | let size: usize = mem::size_of::<T>() |
| 330 | .checked_mul(n) |
| 331 | .ok_or(err:CollectionAllocErr::CapacityOverflow)?; |
| 332 | let align: usize = mem::align_of::<T>(); |
| 333 | Layout::from_size_align(size, align).map_err(|_| CollectionAllocErr::CapacityOverflow) |
| 334 | } |
| 335 | |
| 336 | unsafe fn deallocate<T>(ptr: NonNull<T>, capacity: usize) { |
| 337 | // This unwrap should succeed since the same did when allocating. |
| 338 | let layout: Layout = layout_array::<T>(capacity).unwrap(); |
| 339 | alloc::alloc::dealloc(ptr.as_ptr() as *mut u8, layout) |
| 340 | } |
| 341 | |
| 342 | /// An iterator that removes the items from a `SmallVec` and yields them by value. |
| 343 | /// |
| 344 | /// Returned from [`SmallVec::drain`][1]. |
| 345 | /// |
| 346 | /// [1]: struct.SmallVec.html#method.drain |
| 347 | pub struct Drain<'a, T: 'a + Array> { |
| 348 | tail_start: usize, |
| 349 | tail_len: usize, |
| 350 | iter: slice::Iter<'a, T::Item>, |
| 351 | vec: NonNull<SmallVec<T>>, |
| 352 | } |
| 353 | |
| 354 | impl<'a, T: 'a + Array> fmt::Debug for Drain<'a, T> |
| 355 | where |
| 356 | T::Item: fmt::Debug, |
| 357 | { |
| 358 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 359 | f.debug_tuple(name:"Drain" ).field(&self.iter.as_slice()).finish() |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | unsafe impl<'a, T: Sync + Array> Sync for Drain<'a, T> {} |
| 364 | unsafe impl<'a, T: Send + Array> Send for Drain<'a, T> {} |
| 365 | |
| 366 | impl<'a, T: 'a + Array> Iterator for Drain<'a, T> { |
| 367 | type Item = T::Item; |
| 368 | |
| 369 | #[inline ] |
| 370 | fn next(&mut self) -> Option<T::Item> { |
| 371 | self.iter |
| 372 | .next() |
| 373 | .map(|reference: &'a ::Item| unsafe { ptr::read(src:reference) }) |
| 374 | } |
| 375 | |
| 376 | #[inline ] |
| 377 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 378 | self.iter.size_hint() |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | impl<'a, T: 'a + Array> DoubleEndedIterator for Drain<'a, T> { |
| 383 | #[inline ] |
| 384 | fn next_back(&mut self) -> Option<T::Item> { |
| 385 | self.iter |
| 386 | .next_back() |
| 387 | .map(|reference: &'a ::Item| unsafe { ptr::read(src:reference) }) |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | impl<'a, T: Array> ExactSizeIterator for Drain<'a, T> { |
| 392 | #[inline ] |
| 393 | fn len(&self) -> usize { |
| 394 | self.iter.len() |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | impl<'a, T: Array> FusedIterator for Drain<'a, T> {} |
| 399 | |
| 400 | impl<'a, T: 'a + Array> Drop for Drain<'a, T> { |
| 401 | fn drop(&mut self) { |
| 402 | self.for_each(drop); |
| 403 | |
| 404 | if self.tail_len > 0 { |
| 405 | unsafe { |
| 406 | let source_vec: &mut SmallVec = self.vec.as_mut(); |
| 407 | |
| 408 | // memmove back untouched tail, update to new length |
| 409 | let start: usize = source_vec.len(); |
| 410 | let tail: usize = self.tail_start; |
| 411 | if tail != start { |
| 412 | // as_mut_ptr creates a &mut, invalidating other pointers. |
| 413 | // This pattern avoids calling it with a pointer already present. |
| 414 | let ptr: *mut ::Item = source_vec.as_mut_ptr(); |
| 415 | let src: *mut ::Item = ptr.add(count:tail); |
| 416 | let dst: *mut ::Item = ptr.add(count:start); |
| 417 | ptr::copy(src, dst, self.tail_len); |
| 418 | } |
| 419 | source_vec.set_len(new_len:start + self.tail_len); |
| 420 | } |
| 421 | } |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | #[cfg (feature = "drain_filter" )] |
| 426 | /// An iterator which uses a closure to determine if an element should be removed. |
| 427 | /// |
| 428 | /// Returned from [`SmallVec::drain_filter`][1]. |
| 429 | /// |
| 430 | /// [1]: struct.SmallVec.html#method.drain_filter |
| 431 | pub struct DrainFilter<'a, T, F> |
| 432 | where |
| 433 | F: FnMut(&mut T::Item) -> bool, |
| 434 | T: Array, |
| 435 | { |
| 436 | vec: &'a mut SmallVec<T>, |
| 437 | /// The index of the item that will be inspected by the next call to `next`. |
| 438 | idx: usize, |
| 439 | /// The number of items that have been drained (removed) thus far. |
| 440 | del: usize, |
| 441 | /// The original length of `vec` prior to draining. |
| 442 | old_len: usize, |
| 443 | /// The filter test predicate. |
| 444 | pred: F, |
| 445 | /// A flag that indicates a panic has occurred in the filter test predicate. |
| 446 | /// This is used as a hint in the drop implementation to prevent consumption |
| 447 | /// of the remainder of the `DrainFilter`. Any unprocessed items will be |
| 448 | /// backshifted in the `vec`, but no further items will be dropped or |
| 449 | /// tested by the filter predicate. |
| 450 | panic_flag: bool, |
| 451 | } |
| 452 | |
| 453 | #[cfg (feature = "drain_filter" )] |
| 454 | impl <T, F> fmt::Debug for DrainFilter<'_, T, F> |
| 455 | where |
| 456 | F: FnMut(&mut T::Item) -> bool, |
| 457 | T: Array, |
| 458 | T::Item: fmt::Debug, |
| 459 | { |
| 460 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 461 | f.debug_tuple(name:"DrainFilter" ).field(&self.vec.as_slice()).finish() |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | #[cfg (feature = "drain_filter" )] |
| 466 | impl <T, F> Iterator for DrainFilter<'_, T, F> |
| 467 | where |
| 468 | F: FnMut(&mut T::Item) -> bool, |
| 469 | T: Array, |
| 470 | { |
| 471 | type Item = T::Item; |
| 472 | |
| 473 | fn next(&mut self) -> Option<T::Item> |
| 474 | { |
| 475 | unsafe { |
| 476 | while self.idx < self.old_len { |
| 477 | let i = self.idx; |
| 478 | let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len); |
| 479 | self.panic_flag = true; |
| 480 | let drained = (self.pred)(&mut v[i]); |
| 481 | self.panic_flag = false; |
| 482 | // Update the index *after* the predicate is called. If the index |
| 483 | // is updated prior and the predicate panics, the element at this |
| 484 | // index would be leaked. |
| 485 | self.idx += 1; |
| 486 | if drained { |
| 487 | self.del += 1; |
| 488 | return Some(ptr::read(&v[i])); |
| 489 | } else if self.del > 0 { |
| 490 | let del = self.del; |
| 491 | let src: *const Self::Item = &v[i]; |
| 492 | let dst: *mut Self::Item = &mut v[i - del]; |
| 493 | ptr::copy_nonoverlapping(src, dst, 1); |
| 494 | } |
| 495 | } |
| 496 | None |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 501 | (0, Some(self.old_len - self.idx)) |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | #[cfg (feature = "drain_filter" )] |
| 506 | impl <T, F> Drop for DrainFilter<'_, T, F> |
| 507 | where |
| 508 | F: FnMut(&mut T::Item) -> bool, |
| 509 | T: Array, |
| 510 | { |
| 511 | fn drop(&mut self) { |
| 512 | struct BackshiftOnDrop<'a, 'b, T, F> |
| 513 | where |
| 514 | F: FnMut(&mut T::Item) -> bool, |
| 515 | T: Array |
| 516 | { |
| 517 | drain: &'b mut DrainFilter<'a, T, F>, |
| 518 | } |
| 519 | |
| 520 | impl<'a, 'b, T, F> Drop for BackshiftOnDrop<'a, 'b, T, F> |
| 521 | where |
| 522 | F: FnMut(&mut T::Item) -> bool, |
| 523 | T: Array |
| 524 | { |
| 525 | fn drop(&mut self) { |
| 526 | unsafe { |
| 527 | if self.drain.idx < self.drain.old_len && self.drain.del > 0 { |
| 528 | // This is a pretty messed up state, and there isn't really an |
| 529 | // obviously right thing to do. We don't want to keep trying |
| 530 | // to execute `pred`, so we just backshift all the unprocessed |
| 531 | // elements and tell the vec that they still exist. The backshift |
| 532 | // is required to prevent a double-drop of the last successfully |
| 533 | // drained item prior to a panic in the predicate. |
| 534 | let ptr = self.drain.vec.as_mut_ptr(); |
| 535 | let src = ptr.add(self.drain.idx); |
| 536 | let dst = src.sub(self.drain.del); |
| 537 | let tail_len = self.drain.old_len - self.drain.idx; |
| 538 | src.copy_to(dst, tail_len); |
| 539 | } |
| 540 | self.drain.vec.set_len(self.drain.old_len - self.drain.del); |
| 541 | } |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | let backshift = BackshiftOnDrop { drain: self }; |
| 546 | |
| 547 | // Attempt to consume any remaining elements if the filter predicate |
| 548 | // has not yet panicked. We'll backshift any remaining elements |
| 549 | // whether we've already panicked or if the consumption here panics. |
| 550 | if !backshift.drain.panic_flag { |
| 551 | backshift.drain.for_each(drop); |
| 552 | } |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | #[cfg (feature = "drain_keep_rest" )] |
| 557 | impl <T, F> DrainFilter<'_, T, F> |
| 558 | where |
| 559 | F: FnMut(&mut T::Item) -> bool, |
| 560 | T: Array |
| 561 | { |
| 562 | /// Keep unyielded elements in the source `Vec`. |
| 563 | /// |
| 564 | /// # Examples |
| 565 | /// |
| 566 | /// ``` |
| 567 | /// # use smallvec::{smallvec, SmallVec}; |
| 568 | /// |
| 569 | /// let mut vec: SmallVec<[char; 2]> = smallvec!['a', 'b', 'c']; |
| 570 | /// let mut drain = vec.drain_filter(|_| true); |
| 571 | /// |
| 572 | /// assert_eq!(drain.next().unwrap(), 'a'); |
| 573 | /// |
| 574 | /// // This call keeps 'b' and 'c' in the vec. |
| 575 | /// drain.keep_rest(); |
| 576 | /// |
| 577 | /// // If we wouldn't call `keep_rest()`, |
| 578 | /// // `vec` would be empty. |
| 579 | /// assert_eq!(vec, SmallVec::<[char; 2]>::from_slice(&['b', 'c'])); |
| 580 | /// ``` |
| 581 | pub fn keep_rest(self) |
| 582 | { |
| 583 | // At this moment layout looks like this: |
| 584 | // |
| 585 | // _____________________/-- old_len |
| 586 | // / \ |
| 587 | // [kept] [yielded] [tail] |
| 588 | // \_______/ ^-- idx |
| 589 | // \-- del |
| 590 | // |
| 591 | // Normally `Drop` impl would drop [tail] (via .for_each(drop), ie still calling `pred`) |
| 592 | // |
| 593 | // 1. Move [tail] after [kept] |
| 594 | // 2. Update length of the original vec to `old_len - del` |
| 595 | // a. In case of ZST, this is the only thing we want to do |
| 596 | // 3. Do *not* drop self, as everything is put in a consistent state already, there is nothing to do |
| 597 | let mut this = ManuallyDrop::new(self); |
| 598 | |
| 599 | unsafe { |
| 600 | // ZSTs have no identity, so we don't need to move them around. |
| 601 | let needs_move = mem::size_of::<T>() != 0; |
| 602 | |
| 603 | if needs_move && this.idx < this.old_len && this.del > 0 { |
| 604 | let ptr = this.vec.as_mut_ptr(); |
| 605 | let src = ptr.add(this.idx); |
| 606 | let dst = src.sub(this.del); |
| 607 | let tail_len = this.old_len - this.idx; |
| 608 | src.copy_to(dst, tail_len); |
| 609 | } |
| 610 | |
| 611 | let new_len = this.old_len - this.del; |
| 612 | this.vec.set_len(new_len); |
| 613 | } |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | #[cfg (feature = "union" )] |
| 618 | union SmallVecData<A: Array> { |
| 619 | inline: core::mem::ManuallyDrop<MaybeUninit<A>>, |
| 620 | heap: (NonNull<A::Item>, usize), |
| 621 | } |
| 622 | |
| 623 | #[cfg (all(feature = "union" , feature = "const_new" ))] |
| 624 | impl<T, const N: usize> SmallVecData<[T; N]> { |
| 625 | #[cfg_attr (docsrs, doc(cfg(feature = "const_new" )))] |
| 626 | #[inline ] |
| 627 | const fn from_const(inline: MaybeUninit<[T; N]>) -> Self { |
| 628 | SmallVecData { |
| 629 | inline: core::mem::ManuallyDrop::new(inline), |
| 630 | } |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | #[cfg (feature = "union" )] |
| 635 | impl<A: Array> SmallVecData<A> { |
| 636 | #[inline ] |
| 637 | unsafe fn inline(&self) -> ConstNonNull<A::Item> { |
| 638 | ConstNonNull::new(self.inline.as_ptr() as *const A::Item).unwrap() |
| 639 | } |
| 640 | #[inline ] |
| 641 | unsafe fn inline_mut(&mut self) -> NonNull<A::Item> { |
| 642 | NonNull::new(self.inline.as_mut_ptr() as *mut A::Item).unwrap() |
| 643 | } |
| 644 | #[inline ] |
| 645 | fn from_inline(inline: MaybeUninit<A>) -> SmallVecData<A> { |
| 646 | SmallVecData { |
| 647 | inline: core::mem::ManuallyDrop::new(inline), |
| 648 | } |
| 649 | } |
| 650 | #[inline ] |
| 651 | unsafe fn into_inline(self) -> MaybeUninit<A> { |
| 652 | core::mem::ManuallyDrop::into_inner(self.inline) |
| 653 | } |
| 654 | #[inline ] |
| 655 | unsafe fn heap(&self) -> (ConstNonNull<A::Item>, usize) { |
| 656 | (ConstNonNull(self.heap.0), self.heap.1) |
| 657 | } |
| 658 | #[inline ] |
| 659 | unsafe fn heap_mut(&mut self) -> (NonNull<A::Item>, &mut usize) { |
| 660 | let h = &mut self.heap; |
| 661 | (h.0, &mut h.1) |
| 662 | } |
| 663 | #[inline ] |
| 664 | fn from_heap(ptr: NonNull<A::Item>, len: usize) -> SmallVecData<A> { |
| 665 | SmallVecData { heap: (ptr, len) } |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | #[cfg (not(feature = "union" ))] |
| 670 | enum SmallVecData<A: Array> { |
| 671 | Inline(MaybeUninit<A>), |
| 672 | // Using NonNull and NonZero here allows to reduce size of `SmallVec`. |
| 673 | Heap { |
| 674 | // Since we never allocate on heap |
| 675 | // unless our capacity is bigger than inline capacity |
| 676 | // heap capacity cannot be less than 1. |
| 677 | // Therefore, pointer cannot be null too. |
| 678 | ptr: NonNull<A::Item>, |
| 679 | len: usize, |
| 680 | }, |
| 681 | } |
| 682 | |
| 683 | #[cfg (all(not(feature = "union" ), feature = "const_new" ))] |
| 684 | impl<T, const N: usize> SmallVecData<[T; N]> { |
| 685 | #[cfg_attr (docsrs, doc(cfg(feature = "const_new" )))] |
| 686 | #[inline ] |
| 687 | const fn from_const(inline: MaybeUninit<[T; N]>) -> Self { |
| 688 | SmallVecData::Inline(inline) |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | #[cfg (not(feature = "union" ))] |
| 693 | impl<A: Array> SmallVecData<A> { |
| 694 | #[inline ] |
| 695 | unsafe fn inline(&self) -> ConstNonNull<A::Item> { |
| 696 | match self { |
| 697 | SmallVecData::Inline(a) => ConstNonNull::new(a.as_ptr() as *const A::Item).unwrap(), |
| 698 | _ => debug_unreachable!(), |
| 699 | } |
| 700 | } |
| 701 | #[inline ] |
| 702 | unsafe fn inline_mut(&mut self) -> NonNull<A::Item> { |
| 703 | match self { |
| 704 | SmallVecData::Inline(a) => NonNull::new(a.as_mut_ptr() as *mut A::Item).unwrap(), |
| 705 | _ => debug_unreachable!(), |
| 706 | } |
| 707 | } |
| 708 | #[inline ] |
| 709 | fn from_inline(inline: MaybeUninit<A>) -> SmallVecData<A> { |
| 710 | SmallVecData::Inline(inline) |
| 711 | } |
| 712 | #[inline ] |
| 713 | unsafe fn into_inline(self) -> MaybeUninit<A> { |
| 714 | match self { |
| 715 | SmallVecData::Inline(a) => a, |
| 716 | _ => debug_unreachable!(), |
| 717 | } |
| 718 | } |
| 719 | #[inline ] |
| 720 | unsafe fn heap(&self) -> (ConstNonNull<A::Item>, usize) { |
| 721 | match self { |
| 722 | SmallVecData::Heap { ptr, len } => (ConstNonNull(*ptr), *len), |
| 723 | _ => debug_unreachable!(), |
| 724 | } |
| 725 | } |
| 726 | #[inline ] |
| 727 | unsafe fn heap_mut(&mut self) -> (NonNull<A::Item>, &mut usize) { |
| 728 | match self { |
| 729 | SmallVecData::Heap { ptr, len } => (*ptr, len), |
| 730 | _ => debug_unreachable!(), |
| 731 | } |
| 732 | } |
| 733 | #[inline ] |
| 734 | fn from_heap(ptr: NonNull<A::Item>, len: usize) -> SmallVecData<A> { |
| 735 | SmallVecData::Heap { ptr, len } |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | unsafe impl<A: Array + Send> Send for SmallVecData<A> {} |
| 740 | unsafe impl<A: Array + Sync> Sync for SmallVecData<A> {} |
| 741 | |
| 742 | /// A `Vec`-like container that can store a small number of elements inline. |
| 743 | /// |
| 744 | /// `SmallVec` acts like a vector, but can store a limited amount of data inline within the |
| 745 | /// `SmallVec` struct rather than in a separate allocation. If the data exceeds this limit, the |
| 746 | /// `SmallVec` will "spill" its data onto the heap, allocating a new buffer to hold it. |
| 747 | /// |
| 748 | /// The amount of data that a `SmallVec` can store inline depends on its backing store. The backing |
| 749 | /// store can be any type that implements the `Array` trait; usually it is a small fixed-sized |
| 750 | /// array. For example a `SmallVec<[u64; 8]>` can hold up to eight 64-bit integers inline. |
| 751 | /// |
| 752 | /// ## Example |
| 753 | /// |
| 754 | /// ```rust |
| 755 | /// use smallvec::SmallVec; |
| 756 | /// let mut v = SmallVec::<[u8; 4]>::new(); // initialize an empty vector |
| 757 | /// |
| 758 | /// // The vector can hold up to 4 items without spilling onto the heap. |
| 759 | /// v.extend(0..4); |
| 760 | /// assert_eq!(v.len(), 4); |
| 761 | /// assert!(!v.spilled()); |
| 762 | /// |
| 763 | /// // Pushing another element will force the buffer to spill: |
| 764 | /// v.push(4); |
| 765 | /// assert_eq!(v.len(), 5); |
| 766 | /// assert!(v.spilled()); |
| 767 | /// ``` |
| 768 | pub struct SmallVec<A: Array> { |
| 769 | // The capacity field is used to determine which of the storage variants is active: |
| 770 | // If capacity <= Self::inline_capacity() then the inline variant is used and capacity holds the current length of the vector (number of elements actually in use). |
| 771 | // If capacity > Self::inline_capacity() then the heap variant is used and capacity holds the size of the memory allocation. |
| 772 | capacity: usize, |
| 773 | data: SmallVecData<A>, |
| 774 | } |
| 775 | |
| 776 | impl<A: Array> SmallVec<A> { |
| 777 | /// Construct an empty vector |
| 778 | #[inline ] |
| 779 | pub fn new() -> SmallVec<A> { |
| 780 | // Try to detect invalid custom implementations of `Array`. Hopefully, |
| 781 | // this check should be optimized away entirely for valid ones. |
| 782 | assert!( |
| 783 | mem::size_of::<A>() == A::size() * mem::size_of::<A::Item>() |
| 784 | && mem::align_of::<A>() >= mem::align_of::<A::Item>() |
| 785 | ); |
| 786 | SmallVec { |
| 787 | capacity: 0, |
| 788 | data: SmallVecData::from_inline(MaybeUninit::uninit()), |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | /// Construct an empty vector with enough capacity pre-allocated to store at least `n` |
| 793 | /// elements. |
| 794 | /// |
| 795 | /// Will create a heap allocation only if `n` is larger than the inline capacity. |
| 796 | /// |
| 797 | /// ``` |
| 798 | /// # use smallvec::SmallVec; |
| 799 | /// |
| 800 | /// let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(100); |
| 801 | /// |
| 802 | /// assert!(v.is_empty()); |
| 803 | /// assert!(v.capacity() >= 100); |
| 804 | /// ``` |
| 805 | #[inline ] |
| 806 | pub fn with_capacity(n: usize) -> Self { |
| 807 | let mut v = SmallVec::new(); |
| 808 | v.reserve_exact(n); |
| 809 | v |
| 810 | } |
| 811 | |
| 812 | /// Construct a new `SmallVec` from a `Vec<A::Item>`. |
| 813 | /// |
| 814 | /// Elements will be copied to the inline buffer if `vec.capacity() <= Self::inline_capacity()`. |
| 815 | /// |
| 816 | /// ```rust |
| 817 | /// use smallvec::SmallVec; |
| 818 | /// |
| 819 | /// let vec = vec![1, 2, 3, 4, 5]; |
| 820 | /// let small_vec: SmallVec<[_; 3]> = SmallVec::from_vec(vec); |
| 821 | /// |
| 822 | /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); |
| 823 | /// ``` |
| 824 | #[inline ] |
| 825 | pub fn from_vec(mut vec: Vec<A::Item>) -> SmallVec<A> { |
| 826 | if vec.capacity() <= Self::inline_capacity() { |
| 827 | // Cannot use Vec with smaller capacity |
| 828 | // because we use value of `Self::capacity` field as indicator. |
| 829 | unsafe { |
| 830 | let mut data = SmallVecData::<A>::from_inline(MaybeUninit::uninit()); |
| 831 | let len = vec.len(); |
| 832 | vec.set_len(0); |
| 833 | ptr::copy_nonoverlapping(vec.as_ptr(), data.inline_mut().as_ptr(), len); |
| 834 | |
| 835 | SmallVec { |
| 836 | capacity: len, |
| 837 | data, |
| 838 | } |
| 839 | } |
| 840 | } else { |
| 841 | let (ptr, cap, len) = (vec.as_mut_ptr(), vec.capacity(), vec.len()); |
| 842 | mem::forget(vec); |
| 843 | let ptr = NonNull::new(ptr) |
| 844 | // See docs: https://doc.rust-lang.org/std/vec/struct.Vec.html#method.as_mut_ptr |
| 845 | .expect("Cannot be null by `Vec` invariant" ); |
| 846 | |
| 847 | SmallVec { |
| 848 | capacity: cap, |
| 849 | data: SmallVecData::from_heap(ptr, len), |
| 850 | } |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | /// Constructs a new `SmallVec` on the stack from an `A` without |
| 855 | /// copying elements. |
| 856 | /// |
| 857 | /// ```rust |
| 858 | /// use smallvec::SmallVec; |
| 859 | /// |
| 860 | /// let buf = [1, 2, 3, 4, 5]; |
| 861 | /// let small_vec: SmallVec<_> = SmallVec::from_buf(buf); |
| 862 | /// |
| 863 | /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); |
| 864 | /// ``` |
| 865 | #[inline ] |
| 866 | pub fn from_buf(buf: A) -> SmallVec<A> { |
| 867 | SmallVec { |
| 868 | capacity: A::size(), |
| 869 | data: SmallVecData::from_inline(MaybeUninit::new(buf)), |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | /// Constructs a new `SmallVec` on the stack from an `A` without |
| 874 | /// copying elements. Also sets the length, which must be less or |
| 875 | /// equal to the size of `buf`. |
| 876 | /// |
| 877 | /// ```rust |
| 878 | /// use smallvec::SmallVec; |
| 879 | /// |
| 880 | /// let buf = [1, 2, 3, 4, 5, 0, 0, 0]; |
| 881 | /// let small_vec: SmallVec<_> = SmallVec::from_buf_and_len(buf, 5); |
| 882 | /// |
| 883 | /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); |
| 884 | /// ``` |
| 885 | #[inline ] |
| 886 | pub fn from_buf_and_len(buf: A, len: usize) -> SmallVec<A> { |
| 887 | assert!(len <= A::size()); |
| 888 | unsafe { SmallVec::from_buf_and_len_unchecked(MaybeUninit::new(buf), len) } |
| 889 | } |
| 890 | |
| 891 | /// Constructs a new `SmallVec` on the stack from an `A` without |
| 892 | /// copying elements. Also sets the length. The user is responsible |
| 893 | /// for ensuring that `len <= A::size()`. |
| 894 | /// |
| 895 | /// ```rust |
| 896 | /// use smallvec::SmallVec; |
| 897 | /// use std::mem::MaybeUninit; |
| 898 | /// |
| 899 | /// let buf = [1, 2, 3, 4, 5, 0, 0, 0]; |
| 900 | /// let small_vec: SmallVec<_> = unsafe { |
| 901 | /// SmallVec::from_buf_and_len_unchecked(MaybeUninit::new(buf), 5) |
| 902 | /// }; |
| 903 | /// |
| 904 | /// assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]); |
| 905 | /// ``` |
| 906 | #[inline ] |
| 907 | pub unsafe fn from_buf_and_len_unchecked(buf: MaybeUninit<A>, len: usize) -> SmallVec<A> { |
| 908 | SmallVec { |
| 909 | capacity: len, |
| 910 | data: SmallVecData::from_inline(buf), |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | /// Sets the length of a vector. |
| 915 | /// |
| 916 | /// This will explicitly set the size of the vector, without actually |
| 917 | /// modifying its buffers, so it is up to the caller to ensure that the |
| 918 | /// vector is actually the specified size. |
| 919 | pub unsafe fn set_len(&mut self, new_len: usize) { |
| 920 | let (_, len_ptr, _) = self.triple_mut(); |
| 921 | *len_ptr = new_len; |
| 922 | } |
| 923 | |
| 924 | /// The maximum number of elements this vector can hold inline |
| 925 | #[inline ] |
| 926 | fn inline_capacity() -> usize { |
| 927 | if mem::size_of::<A::Item>() > 0 { |
| 928 | A::size() |
| 929 | } else { |
| 930 | // For zero-size items code like `ptr.add(offset)` always returns the same pointer. |
| 931 | // Therefore all items are at the same address, |
| 932 | // and any array size has capacity for infinitely many items. |
| 933 | // The capacity is limited by the bit width of the length field. |
| 934 | // |
| 935 | // `Vec` also does this: |
| 936 | // https://github.com/rust-lang/rust/blob/1.44.0/src/liballoc/raw_vec.rs#L186 |
| 937 | // |
| 938 | // In our case, this also ensures that a smallvec of zero-size items never spills, |
| 939 | // and we never try to allocate zero bytes which `std::alloc::alloc` disallows. |
| 940 | core::usize::MAX |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | /// The maximum number of elements this vector can hold inline |
| 945 | #[inline ] |
| 946 | pub fn inline_size(&self) -> usize { |
| 947 | Self::inline_capacity() |
| 948 | } |
| 949 | |
| 950 | /// The number of elements stored in the vector |
| 951 | #[inline ] |
| 952 | pub fn len(&self) -> usize { |
| 953 | self.triple().1 |
| 954 | } |
| 955 | |
| 956 | /// Returns `true` if the vector is empty |
| 957 | #[inline ] |
| 958 | pub fn is_empty(&self) -> bool { |
| 959 | self.len() == 0 |
| 960 | } |
| 961 | |
| 962 | /// The number of items the vector can hold without reallocating |
| 963 | #[inline ] |
| 964 | pub fn capacity(&self) -> usize { |
| 965 | self.triple().2 |
| 966 | } |
| 967 | |
| 968 | /// Returns a tuple with (data ptr, len, capacity) |
| 969 | /// Useful to get all `SmallVec` properties with a single check of the current storage variant. |
| 970 | #[inline ] |
| 971 | fn triple(&self) -> (ConstNonNull<A::Item>, usize, usize) { |
| 972 | unsafe { |
| 973 | if self.spilled() { |
| 974 | let (ptr, len) = self.data.heap(); |
| 975 | (ptr, len, self.capacity) |
| 976 | } else { |
| 977 | (self.data.inline(), self.capacity, Self::inline_capacity()) |
| 978 | } |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | /// Returns a tuple with (data ptr, len ptr, capacity) |
| 983 | #[inline ] |
| 984 | fn triple_mut(&mut self) -> (NonNull<A::Item>, &mut usize, usize) { |
| 985 | unsafe { |
| 986 | if self.spilled() { |
| 987 | let (ptr, len_ptr) = self.data.heap_mut(); |
| 988 | (ptr, len_ptr, self.capacity) |
| 989 | } else { |
| 990 | ( |
| 991 | self.data.inline_mut(), |
| 992 | &mut self.capacity, |
| 993 | Self::inline_capacity(), |
| 994 | ) |
| 995 | } |
| 996 | } |
| 997 | } |
| 998 | |
| 999 | /// Returns `true` if the data has spilled into a separate heap-allocated buffer. |
| 1000 | #[inline ] |
| 1001 | pub fn spilled(&self) -> bool { |
| 1002 | self.capacity > Self::inline_capacity() |
| 1003 | } |
| 1004 | |
| 1005 | /// Creates a draining iterator that removes the specified range in the vector |
| 1006 | /// and yields the removed items. |
| 1007 | /// |
| 1008 | /// Note 1: The element range is removed even if the iterator is only |
| 1009 | /// partially consumed or not consumed at all. |
| 1010 | /// |
| 1011 | /// Note 2: It is unspecified how many elements are removed from the vector |
| 1012 | /// if the `Drain` value is leaked. |
| 1013 | /// |
| 1014 | /// # Panics |
| 1015 | /// |
| 1016 | /// Panics if the starting point is greater than the end point or if |
| 1017 | /// the end point is greater than the length of the vector. |
| 1018 | pub fn drain<R>(&mut self, range: R) -> Drain<'_, A> |
| 1019 | where |
| 1020 | R: RangeBounds<usize>, |
| 1021 | { |
| 1022 | use core::ops::Bound::*; |
| 1023 | |
| 1024 | let len = self.len(); |
| 1025 | let start = match range.start_bound() { |
| 1026 | Included(&n) => n, |
| 1027 | Excluded(&n) => n.checked_add(1).expect("Range start out of bounds" ), |
| 1028 | Unbounded => 0, |
| 1029 | }; |
| 1030 | let end = match range.end_bound() { |
| 1031 | Included(&n) => n.checked_add(1).expect("Range end out of bounds" ), |
| 1032 | Excluded(&n) => n, |
| 1033 | Unbounded => len, |
| 1034 | }; |
| 1035 | |
| 1036 | assert!(start <= end); |
| 1037 | assert!(end <= len); |
| 1038 | |
| 1039 | unsafe { |
| 1040 | self.set_len(start); |
| 1041 | |
| 1042 | let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start); |
| 1043 | |
| 1044 | Drain { |
| 1045 | tail_start: end, |
| 1046 | tail_len: len - end, |
| 1047 | iter: range_slice.iter(), |
| 1048 | // Since self is a &mut, passing it to a function would invalidate the slice iterator. |
| 1049 | vec: NonNull::new_unchecked(self as *mut _), |
| 1050 | } |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | #[cfg (feature = "drain_filter" )] |
| 1055 | /// Creates an iterator which uses a closure to determine if an element should be removed. |
| 1056 | /// |
| 1057 | /// If the closure returns true, the element is removed and yielded. If the closure returns |
| 1058 | /// false, the element will remain in the vector and will not be yielded by the iterator. |
| 1059 | /// |
| 1060 | /// Using this method is equivalent to the following code: |
| 1061 | /// ``` |
| 1062 | /// # use smallvec::SmallVec; |
| 1063 | /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 }; |
| 1064 | /// # let mut vec: SmallVec<[i32; 8]> = SmallVec::from_slice(&[1i32, 2, 3, 4, 5, 6]); |
| 1065 | /// let mut i = 0; |
| 1066 | /// while i < vec.len() { |
| 1067 | /// if some_predicate(&mut vec[i]) { |
| 1068 | /// let val = vec.remove(i); |
| 1069 | /// // your code here |
| 1070 | /// } else { |
| 1071 | /// i += 1; |
| 1072 | /// } |
| 1073 | /// } |
| 1074 | /// |
| 1075 | /// # assert_eq!(vec, SmallVec::<[i32; 8]>::from_slice(&[1i32, 4, 5])); |
| 1076 | /// ``` |
| 1077 | /// /// |
| 1078 | /// But `drain_filter` is easier to use. `drain_filter` is also more efficient, |
| 1079 | /// because it can backshift the elements of the array in bulk. |
| 1080 | /// |
| 1081 | /// Note that `drain_filter` also lets you mutate every element in the filter closure, |
| 1082 | /// regardless of whether you choose to keep or remove it. |
| 1083 | /// |
| 1084 | /// # Examples |
| 1085 | /// |
| 1086 | /// Splitting an array into evens and odds, reusing the original allocation: |
| 1087 | /// |
| 1088 | /// ``` |
| 1089 | /// # use smallvec::SmallVec; |
| 1090 | /// let mut numbers: SmallVec<[i32; 16]> = SmallVec::from_slice(&[1i32, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]); |
| 1091 | /// |
| 1092 | /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<SmallVec<[i32; 16]>>(); |
| 1093 | /// let odds = numbers; |
| 1094 | /// |
| 1095 | /// assert_eq!(evens, SmallVec::<[i32; 16]>::from_slice(&[2i32, 4, 6, 8, 14])); |
| 1096 | /// assert_eq!(odds, SmallVec::<[i32; 16]>::from_slice(&[1i32, 3, 5, 9, 11, 13, 15])); |
| 1097 | /// ``` |
| 1098 | pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, A, F,> |
| 1099 | where |
| 1100 | F: FnMut(&mut A::Item) -> bool, |
| 1101 | { |
| 1102 | let old_len = self.len(); |
| 1103 | |
| 1104 | // Guard against us getting leaked (leak amplification) |
| 1105 | unsafe { |
| 1106 | self.set_len(0); |
| 1107 | } |
| 1108 | |
| 1109 | DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false } |
| 1110 | } |
| 1111 | |
| 1112 | /// Append an item to the vector. |
| 1113 | #[inline ] |
| 1114 | pub fn push(&mut self, value: A::Item) { |
| 1115 | unsafe { |
| 1116 | let (mut ptr, mut len, cap) = self.triple_mut(); |
| 1117 | if *len == cap { |
| 1118 | self.reserve_one_unchecked(); |
| 1119 | let (heap_ptr, heap_len) = self.data.heap_mut(); |
| 1120 | ptr = heap_ptr; |
| 1121 | len = heap_len; |
| 1122 | } |
| 1123 | ptr::write(ptr.as_ptr().add(*len), value); |
| 1124 | *len += 1; |
| 1125 | } |
| 1126 | } |
| 1127 | |
| 1128 | /// Remove an item from the end of the vector and return it, or None if empty. |
| 1129 | #[inline ] |
| 1130 | pub fn pop(&mut self) -> Option<A::Item> { |
| 1131 | unsafe { |
| 1132 | let (ptr, len_ptr, _) = self.triple_mut(); |
| 1133 | let ptr: *const _ = ptr.as_ptr(); |
| 1134 | if *len_ptr == 0 { |
| 1135 | return None; |
| 1136 | } |
| 1137 | let last_index = *len_ptr - 1; |
| 1138 | *len_ptr = last_index; |
| 1139 | Some(ptr::read(ptr.add(last_index))) |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | /// Moves all the elements of `other` into `self`, leaving `other` empty. |
| 1144 | /// |
| 1145 | /// # Example |
| 1146 | /// |
| 1147 | /// ``` |
| 1148 | /// # use smallvec::{SmallVec, smallvec}; |
| 1149 | /// let mut v0: SmallVec<[u8; 16]> = smallvec![1, 2, 3]; |
| 1150 | /// let mut v1: SmallVec<[u8; 32]> = smallvec![4, 5, 6]; |
| 1151 | /// v0.append(&mut v1); |
| 1152 | /// assert_eq!(*v0, [1, 2, 3, 4, 5, 6]); |
| 1153 | /// assert_eq!(*v1, []); |
| 1154 | /// ``` |
| 1155 | pub fn append<B>(&mut self, other: &mut SmallVec<B>) |
| 1156 | where |
| 1157 | B: Array<Item = A::Item>, |
| 1158 | { |
| 1159 | self.extend(other.drain(..)) |
| 1160 | } |
| 1161 | |
| 1162 | /// Re-allocate to set the capacity to `max(new_cap, inline_size())`. |
| 1163 | /// |
| 1164 | /// Panics if `new_cap` is less than the vector's length |
| 1165 | /// or if the capacity computation overflows `usize`. |
| 1166 | pub fn grow(&mut self, new_cap: usize) { |
| 1167 | infallible(self.try_grow(new_cap)) |
| 1168 | } |
| 1169 | |
| 1170 | /// Re-allocate to set the capacity to `max(new_cap, inline_size())`. |
| 1171 | /// |
| 1172 | /// Panics if `new_cap` is less than the vector's length |
| 1173 | pub fn try_grow(&mut self, new_cap: usize) -> Result<(), CollectionAllocErr> { |
| 1174 | unsafe { |
| 1175 | let unspilled = !self.spilled(); |
| 1176 | let (ptr, &mut len, cap) = self.triple_mut(); |
| 1177 | assert!(new_cap >= len); |
| 1178 | if new_cap <= Self::inline_capacity() { |
| 1179 | if unspilled { |
| 1180 | return Ok(()); |
| 1181 | } |
| 1182 | self.data = SmallVecData::from_inline(MaybeUninit::uninit()); |
| 1183 | ptr::copy_nonoverlapping(ptr.as_ptr(), self.data.inline_mut().as_ptr(), len); |
| 1184 | self.capacity = len; |
| 1185 | deallocate(ptr, cap); |
| 1186 | } else if new_cap != cap { |
| 1187 | let layout = layout_array::<A::Item>(new_cap)?; |
| 1188 | debug_assert!(layout.size() > 0); |
| 1189 | let new_alloc; |
| 1190 | if unspilled { |
| 1191 | new_alloc = NonNull::new(alloc::alloc::alloc(layout)) |
| 1192 | .ok_or(CollectionAllocErr::AllocErr { layout })? |
| 1193 | .cast(); |
| 1194 | ptr::copy_nonoverlapping(ptr.as_ptr(), new_alloc.as_ptr(), len); |
| 1195 | } else { |
| 1196 | // This should never fail since the same succeeded |
| 1197 | // when previously allocating `ptr`. |
| 1198 | let old_layout = layout_array::<A::Item>(cap)?; |
| 1199 | |
| 1200 | let new_ptr = |
| 1201 | alloc::alloc::realloc(ptr.as_ptr() as *mut u8, old_layout, layout.size()); |
| 1202 | new_alloc = NonNull::new(new_ptr) |
| 1203 | .ok_or(CollectionAllocErr::AllocErr { layout })? |
| 1204 | .cast(); |
| 1205 | } |
| 1206 | self.data = SmallVecData::from_heap(new_alloc, len); |
| 1207 | self.capacity = new_cap; |
| 1208 | } |
| 1209 | Ok(()) |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | /// Reserve capacity for `additional` more elements to be inserted. |
| 1214 | /// |
| 1215 | /// May reserve more space to avoid frequent reallocations. |
| 1216 | /// |
| 1217 | /// Panics if the capacity computation overflows `usize`. |
| 1218 | #[inline ] |
| 1219 | pub fn reserve(&mut self, additional: usize) { |
| 1220 | infallible(self.try_reserve(additional)) |
| 1221 | } |
| 1222 | |
| 1223 | /// Internal method used to grow in push() and insert(), where we know already we have to grow. |
| 1224 | #[cold ] |
| 1225 | fn reserve_one_unchecked(&mut self) { |
| 1226 | debug_assert_eq!(self.len(), self.capacity()); |
| 1227 | let new_cap = self.len() |
| 1228 | .checked_add(1) |
| 1229 | .and_then(usize::checked_next_power_of_two) |
| 1230 | .expect("capacity overflow" ); |
| 1231 | infallible(self.try_grow(new_cap)) |
| 1232 | } |
| 1233 | |
| 1234 | /// Reserve capacity for `additional` more elements to be inserted. |
| 1235 | /// |
| 1236 | /// May reserve more space to avoid frequent reallocations. |
| 1237 | pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> { |
| 1238 | // prefer triple_mut() even if triple() would work so that the optimizer removes duplicated |
| 1239 | // calls to it from callers. |
| 1240 | let (_, &mut len, cap) = self.triple_mut(); |
| 1241 | if cap - len >= additional { |
| 1242 | return Ok(()); |
| 1243 | } |
| 1244 | let new_cap = len |
| 1245 | .checked_add(additional) |
| 1246 | .and_then(usize::checked_next_power_of_two) |
| 1247 | .ok_or(CollectionAllocErr::CapacityOverflow)?; |
| 1248 | self.try_grow(new_cap) |
| 1249 | } |
| 1250 | |
| 1251 | /// Reserve the minimum capacity for `additional` more elements to be inserted. |
| 1252 | /// |
| 1253 | /// Panics if the new capacity overflows `usize`. |
| 1254 | pub fn reserve_exact(&mut self, additional: usize) { |
| 1255 | infallible(self.try_reserve_exact(additional)) |
| 1256 | } |
| 1257 | |
| 1258 | /// Reserve the minimum capacity for `additional` more elements to be inserted. |
| 1259 | pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> { |
| 1260 | let (_, &mut len, cap) = self.triple_mut(); |
| 1261 | if cap - len >= additional { |
| 1262 | return Ok(()); |
| 1263 | } |
| 1264 | let new_cap = len |
| 1265 | .checked_add(additional) |
| 1266 | .ok_or(CollectionAllocErr::CapacityOverflow)?; |
| 1267 | self.try_grow(new_cap) |
| 1268 | } |
| 1269 | |
| 1270 | /// Shrink the capacity of the vector as much as possible. |
| 1271 | /// |
| 1272 | /// When possible, this will move data from an external heap buffer to the vector's inline |
| 1273 | /// storage. |
| 1274 | pub fn shrink_to_fit(&mut self) { |
| 1275 | if !self.spilled() { |
| 1276 | return; |
| 1277 | } |
| 1278 | let len = self.len(); |
| 1279 | if self.inline_size() >= len { |
| 1280 | unsafe { |
| 1281 | let (ptr, len) = self.data.heap(); |
| 1282 | self.data = SmallVecData::from_inline(MaybeUninit::uninit()); |
| 1283 | ptr::copy_nonoverlapping(ptr.as_ptr(), self.data.inline_mut().as_ptr(), len); |
| 1284 | deallocate(ptr.0, self.capacity); |
| 1285 | self.capacity = len; |
| 1286 | } |
| 1287 | } else if self.capacity() > len { |
| 1288 | self.grow(len); |
| 1289 | } |
| 1290 | } |
| 1291 | |
| 1292 | /// Shorten the vector, keeping the first `len` elements and dropping the rest. |
| 1293 | /// |
| 1294 | /// If `len` is greater than or equal to the vector's current length, this has no |
| 1295 | /// effect. |
| 1296 | /// |
| 1297 | /// This does not re-allocate. If you want the vector's capacity to shrink, call |
| 1298 | /// `shrink_to_fit` after truncating. |
| 1299 | pub fn truncate(&mut self, len: usize) { |
| 1300 | unsafe { |
| 1301 | let (ptr, len_ptr, _) = self.triple_mut(); |
| 1302 | let ptr = ptr.as_ptr(); |
| 1303 | while len < *len_ptr { |
| 1304 | let last_index = *len_ptr - 1; |
| 1305 | *len_ptr = last_index; |
| 1306 | ptr::drop_in_place(ptr.add(last_index)); |
| 1307 | } |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | /// Extracts a slice containing the entire vector. |
| 1312 | /// |
| 1313 | /// Equivalent to `&s[..]`. |
| 1314 | pub fn as_slice(&self) -> &[A::Item] { |
| 1315 | self |
| 1316 | } |
| 1317 | |
| 1318 | /// Extracts a mutable slice of the entire vector. |
| 1319 | /// |
| 1320 | /// Equivalent to `&mut s[..]`. |
| 1321 | pub fn as_mut_slice(&mut self) -> &mut [A::Item] { |
| 1322 | self |
| 1323 | } |
| 1324 | |
| 1325 | /// Remove the element at position `index`, replacing it with the last element. |
| 1326 | /// |
| 1327 | /// This does not preserve ordering, but is O(1). |
| 1328 | /// |
| 1329 | /// Panics if `index` is out of bounds. |
| 1330 | #[inline ] |
| 1331 | pub fn swap_remove(&mut self, index: usize) -> A::Item { |
| 1332 | let len = self.len(); |
| 1333 | self.swap(len - 1, index); |
| 1334 | self.pop() |
| 1335 | .unwrap_or_else(|| unsafe { unreachable_unchecked() }) |
| 1336 | } |
| 1337 | |
| 1338 | /// Remove all elements from the vector. |
| 1339 | #[inline ] |
| 1340 | pub fn clear(&mut self) { |
| 1341 | self.truncate(0); |
| 1342 | } |
| 1343 | |
| 1344 | /// Remove and return the element at position `index`, shifting all elements after it to the |
| 1345 | /// left. |
| 1346 | /// |
| 1347 | /// Panics if `index` is out of bounds. |
| 1348 | pub fn remove(&mut self, index: usize) -> A::Item { |
| 1349 | unsafe { |
| 1350 | let (ptr, len_ptr, _) = self.triple_mut(); |
| 1351 | let len = *len_ptr; |
| 1352 | assert!(index < len); |
| 1353 | *len_ptr = len - 1; |
| 1354 | let ptr = ptr.as_ptr().add(index); |
| 1355 | let item = ptr::read(ptr); |
| 1356 | ptr::copy(ptr.add(1), ptr, len - index - 1); |
| 1357 | item |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | /// Insert an element at position `index`, shifting all elements after it to the right. |
| 1362 | /// |
| 1363 | /// Panics if `index > len`. |
| 1364 | pub fn insert(&mut self, index: usize, element: A::Item) { |
| 1365 | unsafe { |
| 1366 | let (mut ptr, mut len_ptr, cap) = self.triple_mut(); |
| 1367 | if *len_ptr == cap { |
| 1368 | self.reserve_one_unchecked(); |
| 1369 | let (heap_ptr, heap_len_ptr) = self.data.heap_mut(); |
| 1370 | ptr = heap_ptr; |
| 1371 | len_ptr = heap_len_ptr; |
| 1372 | } |
| 1373 | let mut ptr = ptr.as_ptr(); |
| 1374 | let len = *len_ptr; |
| 1375 | if index > len { |
| 1376 | panic!("index exceeds length" ); |
| 1377 | } |
| 1378 | // SAFETY: add is UB if index > len, but we panicked first |
| 1379 | ptr = ptr.add(index); |
| 1380 | if index < len { |
| 1381 | // Shift element to the right of `index`. |
| 1382 | ptr::copy(ptr, ptr.add(1), len - index); |
| 1383 | } |
| 1384 | *len_ptr = len + 1; |
| 1385 | ptr::write(ptr, element); |
| 1386 | } |
| 1387 | } |
| 1388 | |
| 1389 | /// Insert multiple elements at position `index`, shifting all following elements toward the |
| 1390 | /// back. |
| 1391 | pub fn insert_many<I: IntoIterator<Item = A::Item>>(&mut self, index: usize, iterable: I) { |
| 1392 | let mut iter = iterable.into_iter(); |
| 1393 | if index == self.len() { |
| 1394 | return self.extend(iter); |
| 1395 | } |
| 1396 | |
| 1397 | let (lower_size_bound, _) = iter.size_hint(); |
| 1398 | assert!(lower_size_bound <= core::isize::MAX as usize); // Ensure offset is indexable |
| 1399 | assert!(index + lower_size_bound >= index); // Protect against overflow |
| 1400 | |
| 1401 | let mut num_added = 0; |
| 1402 | let old_len = self.len(); |
| 1403 | assert!(index <= old_len); |
| 1404 | |
| 1405 | unsafe { |
| 1406 | // Reserve space for `lower_size_bound` elements. |
| 1407 | self.reserve(lower_size_bound); |
| 1408 | let start = self.as_mut_ptr(); |
| 1409 | let ptr = start.add(index); |
| 1410 | |
| 1411 | // Move the trailing elements. |
| 1412 | ptr::copy(ptr, ptr.add(lower_size_bound), old_len - index); |
| 1413 | |
| 1414 | // In case the iterator panics, don't double-drop the items we just copied above. |
| 1415 | self.set_len(0); |
| 1416 | let mut guard = DropOnPanic { |
| 1417 | start, |
| 1418 | skip: index..(index + lower_size_bound), |
| 1419 | len: old_len + lower_size_bound, |
| 1420 | }; |
| 1421 | |
| 1422 | // The set_len above invalidates the previous pointers, so we must re-create them. |
| 1423 | let start = self.as_mut_ptr(); |
| 1424 | let ptr = start.add(index); |
| 1425 | |
| 1426 | while num_added < lower_size_bound { |
| 1427 | let element = match iter.next() { |
| 1428 | Some(x) => x, |
| 1429 | None => break, |
| 1430 | }; |
| 1431 | let cur = ptr.add(num_added); |
| 1432 | ptr::write(cur, element); |
| 1433 | guard.skip.start += 1; |
| 1434 | num_added += 1; |
| 1435 | } |
| 1436 | |
| 1437 | if num_added < lower_size_bound { |
| 1438 | // Iterator provided fewer elements than the hint. Move the tail backward. |
| 1439 | ptr::copy( |
| 1440 | ptr.add(lower_size_bound), |
| 1441 | ptr.add(num_added), |
| 1442 | old_len - index, |
| 1443 | ); |
| 1444 | } |
| 1445 | // There are no more duplicate or uninitialized slots, so the guard is not needed. |
| 1446 | self.set_len(old_len + num_added); |
| 1447 | mem::forget(guard); |
| 1448 | } |
| 1449 | |
| 1450 | // Insert any remaining elements one-by-one. |
| 1451 | for element in iter { |
| 1452 | self.insert(index + num_added, element); |
| 1453 | num_added += 1; |
| 1454 | } |
| 1455 | |
| 1456 | struct DropOnPanic<T> { |
| 1457 | start: *mut T, |
| 1458 | skip: Range<usize>, // Space we copied-out-of, but haven't written-to yet. |
| 1459 | len: usize, |
| 1460 | } |
| 1461 | |
| 1462 | impl<T> Drop for DropOnPanic<T> { |
| 1463 | fn drop(&mut self) { |
| 1464 | for i in 0..self.len { |
| 1465 | if !self.skip.contains(&i) { |
| 1466 | unsafe { |
| 1467 | ptr::drop_in_place(self.start.add(i)); |
| 1468 | } |
| 1469 | } |
| 1470 | } |
| 1471 | } |
| 1472 | } |
| 1473 | } |
| 1474 | |
| 1475 | /// Convert a `SmallVec` to a `Vec`, without reallocating if the `SmallVec` has already spilled onto |
| 1476 | /// the heap. |
| 1477 | pub fn into_vec(mut self) -> Vec<A::Item> { |
| 1478 | if self.spilled() { |
| 1479 | unsafe { |
| 1480 | let (ptr, &mut len) = self.data.heap_mut(); |
| 1481 | let v = Vec::from_raw_parts(ptr.as_ptr(), len, self.capacity); |
| 1482 | mem::forget(self); |
| 1483 | v |
| 1484 | } |
| 1485 | } else { |
| 1486 | self.into_iter().collect() |
| 1487 | } |
| 1488 | } |
| 1489 | |
| 1490 | /// Converts a `SmallVec` into a `Box<[T]>` without reallocating if the `SmallVec` has already spilled |
| 1491 | /// onto the heap. |
| 1492 | /// |
| 1493 | /// Note that this will drop any excess capacity. |
| 1494 | pub fn into_boxed_slice(self) -> Box<[A::Item]> { |
| 1495 | self.into_vec().into_boxed_slice() |
| 1496 | } |
| 1497 | |
| 1498 | /// Convert the `SmallVec` into an `A` if possible. Otherwise return `Err(Self)`. |
| 1499 | /// |
| 1500 | /// This method returns `Err(Self)` if the `SmallVec` is too short (and the `A` contains uninitialized elements), |
| 1501 | /// or if the `SmallVec` is too long (and all the elements were spilled to the heap). |
| 1502 | pub fn into_inner(self) -> Result<A, Self> { |
| 1503 | if self.spilled() || self.len() != A::size() { |
| 1504 | // Note: A::size, not Self::inline_capacity |
| 1505 | Err(self) |
| 1506 | } else { |
| 1507 | unsafe { |
| 1508 | let data = ptr::read(&self.data); |
| 1509 | mem::forget(self); |
| 1510 | Ok(data.into_inline().assume_init()) |
| 1511 | } |
| 1512 | } |
| 1513 | } |
| 1514 | |
| 1515 | /// Retains only the elements specified by the predicate. |
| 1516 | /// |
| 1517 | /// In other words, remove all elements `e` such that `f(&e)` returns `false`. |
| 1518 | /// This method operates in place and preserves the order of the retained |
| 1519 | /// elements. |
| 1520 | pub fn retain<F: FnMut(&mut A::Item) -> bool>(&mut self, mut f: F) { |
| 1521 | let mut del = 0; |
| 1522 | let len = self.len(); |
| 1523 | for i in 0..len { |
| 1524 | if !f(&mut self[i]) { |
| 1525 | del += 1; |
| 1526 | } else if del > 0 { |
| 1527 | self.swap(i - del, i); |
| 1528 | } |
| 1529 | } |
| 1530 | self.truncate(len - del); |
| 1531 | } |
| 1532 | |
| 1533 | /// Retains only the elements specified by the predicate. |
| 1534 | /// |
| 1535 | /// This method is identical in behaviour to [`retain`]; it is included only |
| 1536 | /// to maintain api-compatability with `std::Vec`, where the methods are |
| 1537 | /// separate for historical reasons. |
| 1538 | pub fn retain_mut<F: FnMut(&mut A::Item) -> bool>(&mut self, f: F) { |
| 1539 | self.retain(f) |
| 1540 | } |
| 1541 | |
| 1542 | /// Removes consecutive duplicate elements. |
| 1543 | pub fn dedup(&mut self) |
| 1544 | where |
| 1545 | A::Item: PartialEq<A::Item>, |
| 1546 | { |
| 1547 | self.dedup_by(|a, b| a == b); |
| 1548 | } |
| 1549 | |
| 1550 | /// Removes consecutive duplicate elements using the given equality relation. |
| 1551 | pub fn dedup_by<F>(&mut self, mut same_bucket: F) |
| 1552 | where |
| 1553 | F: FnMut(&mut A::Item, &mut A::Item) -> bool, |
| 1554 | { |
| 1555 | // See the implementation of Vec::dedup_by in the |
| 1556 | // standard library for an explanation of this algorithm. |
| 1557 | let len = self.len(); |
| 1558 | if len <= 1 { |
| 1559 | return; |
| 1560 | } |
| 1561 | |
| 1562 | let ptr = self.as_mut_ptr(); |
| 1563 | let mut w: usize = 1; |
| 1564 | |
| 1565 | unsafe { |
| 1566 | for r in 1..len { |
| 1567 | let p_r = ptr.add(r); |
| 1568 | let p_wm1 = ptr.add(w - 1); |
| 1569 | if !same_bucket(&mut *p_r, &mut *p_wm1) { |
| 1570 | if r != w { |
| 1571 | let p_w = p_wm1.add(1); |
| 1572 | mem::swap(&mut *p_r, &mut *p_w); |
| 1573 | } |
| 1574 | w += 1; |
| 1575 | } |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | self.truncate(w); |
| 1580 | } |
| 1581 | |
| 1582 | /// Removes consecutive elements that map to the same key. |
| 1583 | pub fn dedup_by_key<F, K>(&mut self, mut key: F) |
| 1584 | where |
| 1585 | F: FnMut(&mut A::Item) -> K, |
| 1586 | K: PartialEq<K>, |
| 1587 | { |
| 1588 | self.dedup_by(|a, b| key(a) == key(b)); |
| 1589 | } |
| 1590 | |
| 1591 | /// Resizes the `SmallVec` in-place so that `len` is equal to `new_len`. |
| 1592 | /// |
| 1593 | /// If `new_len` is greater than `len`, the `SmallVec` is extended by the difference, with each |
| 1594 | /// additional slot filled with the result of calling the closure `f`. The return values from `f` |
| 1595 | /// will end up in the `SmallVec` in the order they have been generated. |
| 1596 | /// |
| 1597 | /// If `new_len` is less than `len`, the `SmallVec` is simply truncated. |
| 1598 | /// |
| 1599 | /// This method uses a closure to create new values on every push. If you'd rather `Clone` a given |
| 1600 | /// value, use `resize`. If you want to use the `Default` trait to generate values, you can pass |
| 1601 | /// `Default::default()` as the second argument. |
| 1602 | /// |
| 1603 | /// Added for `std::vec::Vec` compatibility (added in Rust 1.33.0) |
| 1604 | /// |
| 1605 | /// ``` |
| 1606 | /// # use smallvec::{smallvec, SmallVec}; |
| 1607 | /// let mut vec : SmallVec<[_; 4]> = smallvec![1, 2, 3]; |
| 1608 | /// vec.resize_with(5, Default::default); |
| 1609 | /// assert_eq!(&*vec, &[1, 2, 3, 0, 0]); |
| 1610 | /// |
| 1611 | /// let mut vec : SmallVec<[_; 4]> = smallvec![]; |
| 1612 | /// let mut p = 1; |
| 1613 | /// vec.resize_with(4, || { p *= 2; p }); |
| 1614 | /// assert_eq!(&*vec, &[2, 4, 8, 16]); |
| 1615 | /// ``` |
| 1616 | pub fn resize_with<F>(&mut self, new_len: usize, f: F) |
| 1617 | where |
| 1618 | F: FnMut() -> A::Item, |
| 1619 | { |
| 1620 | let old_len = self.len(); |
| 1621 | if old_len < new_len { |
| 1622 | let mut f = f; |
| 1623 | let additional = new_len - old_len; |
| 1624 | self.reserve(additional); |
| 1625 | for _ in 0..additional { |
| 1626 | self.push(f()); |
| 1627 | } |
| 1628 | } else if old_len > new_len { |
| 1629 | self.truncate(new_len); |
| 1630 | } |
| 1631 | } |
| 1632 | |
| 1633 | /// Creates a `SmallVec` directly from the raw components of another |
| 1634 | /// `SmallVec`. |
| 1635 | /// |
| 1636 | /// # Safety |
| 1637 | /// |
| 1638 | /// This is highly unsafe, due to the number of invariants that aren't |
| 1639 | /// checked: |
| 1640 | /// |
| 1641 | /// * `ptr` needs to have been previously allocated via `SmallVec` for its |
| 1642 | /// spilled storage (at least, it's highly likely to be incorrect if it |
| 1643 | /// wasn't). |
| 1644 | /// * `ptr`'s `A::Item` type needs to be the same size and alignment that |
| 1645 | /// it was allocated with |
| 1646 | /// * `length` needs to be less than or equal to `capacity`. |
| 1647 | /// * `capacity` needs to be the capacity that the pointer was allocated |
| 1648 | /// with. |
| 1649 | /// |
| 1650 | /// Violating these may cause problems like corrupting the allocator's |
| 1651 | /// internal data structures. |
| 1652 | /// |
| 1653 | /// Additionally, `capacity` must be greater than the amount of inline |
| 1654 | /// storage `A` has; that is, the new `SmallVec` must need to spill over |
| 1655 | /// into heap allocated storage. This condition is asserted against. |
| 1656 | /// |
| 1657 | /// The ownership of `ptr` is effectively transferred to the |
| 1658 | /// `SmallVec` which may then deallocate, reallocate or change the |
| 1659 | /// contents of memory pointed to by the pointer at will. Ensure |
| 1660 | /// that nothing else uses the pointer after calling this |
| 1661 | /// function. |
| 1662 | /// |
| 1663 | /// # Examples |
| 1664 | /// |
| 1665 | /// ``` |
| 1666 | /// # use smallvec::{smallvec, SmallVec}; |
| 1667 | /// use std::mem; |
| 1668 | /// use std::ptr; |
| 1669 | /// |
| 1670 | /// fn main() { |
| 1671 | /// let mut v: SmallVec<[_; 1]> = smallvec![1, 2, 3]; |
| 1672 | /// |
| 1673 | /// // Pull out the important parts of `v`. |
| 1674 | /// let p = v.as_mut_ptr(); |
| 1675 | /// let len = v.len(); |
| 1676 | /// let cap = v.capacity(); |
| 1677 | /// let spilled = v.spilled(); |
| 1678 | /// |
| 1679 | /// unsafe { |
| 1680 | /// // Forget all about `v`. The heap allocation that stored the |
| 1681 | /// // three values won't be deallocated. |
| 1682 | /// mem::forget(v); |
| 1683 | /// |
| 1684 | /// // Overwrite memory with [4, 5, 6]. |
| 1685 | /// // |
| 1686 | /// // This is only safe if `spilled` is true! Otherwise, we are |
| 1687 | /// // writing into the old `SmallVec`'s inline storage on the |
| 1688 | /// // stack. |
| 1689 | /// assert!(spilled); |
| 1690 | /// for i in 0..len { |
| 1691 | /// ptr::write(p.add(i), 4 + i); |
| 1692 | /// } |
| 1693 | /// |
| 1694 | /// // Put everything back together into a SmallVec with a different |
| 1695 | /// // amount of inline storage, but which is still less than `cap`. |
| 1696 | /// let rebuilt = SmallVec::<[_; 2]>::from_raw_parts(p, len, cap); |
| 1697 | /// assert_eq!(&*rebuilt, &[4, 5, 6]); |
| 1698 | /// } |
| 1699 | /// } |
| 1700 | #[inline ] |
| 1701 | pub unsafe fn from_raw_parts(ptr: *mut A::Item, length: usize, capacity: usize) -> SmallVec<A> { |
| 1702 | // SAFETY: We require caller to provide same ptr as we alloc |
| 1703 | // and we never alloc null pointer. |
| 1704 | let ptr = unsafe { |
| 1705 | debug_assert!(!ptr.is_null(), "Called `from_raw_parts` with null pointer." ); |
| 1706 | NonNull::new_unchecked(ptr) |
| 1707 | }; |
| 1708 | assert!(capacity > Self::inline_capacity()); |
| 1709 | SmallVec { |
| 1710 | capacity, |
| 1711 | data: SmallVecData::from_heap(ptr, length), |
| 1712 | } |
| 1713 | } |
| 1714 | |
| 1715 | /// Returns a raw pointer to the vector's buffer. |
| 1716 | pub fn as_ptr(&self) -> *const A::Item { |
| 1717 | // We shadow the slice method of the same name to avoid going through |
| 1718 | // `deref`, which creates an intermediate reference that may place |
| 1719 | // additional safety constraints on the contents of the slice. |
| 1720 | self.triple().0.as_ptr() |
| 1721 | } |
| 1722 | |
| 1723 | /// Returns a raw mutable pointer to the vector's buffer. |
| 1724 | pub fn as_mut_ptr(&mut self) -> *mut A::Item { |
| 1725 | // We shadow the slice method of the same name to avoid going through |
| 1726 | // `deref_mut`, which creates an intermediate reference that may place |
| 1727 | // additional safety constraints on the contents of the slice. |
| 1728 | self.triple_mut().0.as_ptr() |
| 1729 | } |
| 1730 | } |
| 1731 | |
| 1732 | impl<A: Array> SmallVec<A> |
| 1733 | where |
| 1734 | A::Item: Copy, |
| 1735 | { |
| 1736 | /// Copy the elements from a slice into a new `SmallVec`. |
| 1737 | /// |
| 1738 | /// For slices of `Copy` types, this is more efficient than `SmallVec::from(slice)`. |
| 1739 | pub fn from_slice(slice: &[A::Item]) -> Self { |
| 1740 | let len = slice.len(); |
| 1741 | if len <= Self::inline_capacity() { |
| 1742 | SmallVec { |
| 1743 | capacity: len, |
| 1744 | data: SmallVecData::from_inline(unsafe { |
| 1745 | let mut data: MaybeUninit<A> = MaybeUninit::uninit(); |
| 1746 | ptr::copy_nonoverlapping( |
| 1747 | slice.as_ptr(), |
| 1748 | data.as_mut_ptr() as *mut A::Item, |
| 1749 | len, |
| 1750 | ); |
| 1751 | data |
| 1752 | }), |
| 1753 | } |
| 1754 | } else { |
| 1755 | let mut b = slice.to_vec(); |
| 1756 | let cap = b.capacity(); |
| 1757 | let ptr = NonNull::new(b.as_mut_ptr()).expect("Vec always contain non null pointers." ); |
| 1758 | mem::forget(b); |
| 1759 | SmallVec { |
| 1760 | capacity: cap, |
| 1761 | data: SmallVecData::from_heap(ptr, len), |
| 1762 | } |
| 1763 | } |
| 1764 | } |
| 1765 | |
| 1766 | /// Copy elements from a slice into the vector at position `index`, shifting any following |
| 1767 | /// elements toward the back. |
| 1768 | /// |
| 1769 | /// For slices of `Copy` types, this is more efficient than `insert`. |
| 1770 | #[inline ] |
| 1771 | pub fn insert_from_slice(&mut self, index: usize, slice: &[A::Item]) { |
| 1772 | self.reserve(slice.len()); |
| 1773 | |
| 1774 | let len = self.len(); |
| 1775 | assert!(index <= len); |
| 1776 | |
| 1777 | unsafe { |
| 1778 | let slice_ptr = slice.as_ptr(); |
| 1779 | let ptr = self.as_mut_ptr().add(index); |
| 1780 | ptr::copy(ptr, ptr.add(slice.len()), len - index); |
| 1781 | ptr::copy_nonoverlapping(slice_ptr, ptr, slice.len()); |
| 1782 | self.set_len(len + slice.len()); |
| 1783 | } |
| 1784 | } |
| 1785 | |
| 1786 | /// Copy elements from a slice and append them to the vector. |
| 1787 | /// |
| 1788 | /// For slices of `Copy` types, this is more efficient than `extend`. |
| 1789 | #[inline ] |
| 1790 | pub fn extend_from_slice(&mut self, slice: &[A::Item]) { |
| 1791 | let len = self.len(); |
| 1792 | self.insert_from_slice(len, slice); |
| 1793 | } |
| 1794 | } |
| 1795 | |
| 1796 | impl<A: Array> SmallVec<A> |
| 1797 | where |
| 1798 | A::Item: Clone, |
| 1799 | { |
| 1800 | /// Resizes the vector so that its length is equal to `len`. |
| 1801 | /// |
| 1802 | /// If `len` is less than the current length, the vector simply truncated. |
| 1803 | /// |
| 1804 | /// If `len` is greater than the current length, `value` is appended to the |
| 1805 | /// vector until its length equals `len`. |
| 1806 | pub fn resize(&mut self, len: usize, value: A::Item) { |
| 1807 | let old_len = self.len(); |
| 1808 | |
| 1809 | if len > old_len { |
| 1810 | self.extend(repeat(value).take(len - old_len)); |
| 1811 | } else { |
| 1812 | self.truncate(len); |
| 1813 | } |
| 1814 | } |
| 1815 | |
| 1816 | /// Creates a `SmallVec` with `n` copies of `elem`. |
| 1817 | /// ``` |
| 1818 | /// use smallvec::SmallVec; |
| 1819 | /// |
| 1820 | /// let v = SmallVec::<[char; 128]>::from_elem('d' , 2); |
| 1821 | /// assert_eq!(v, SmallVec::from_buf(['d' , 'd' ])); |
| 1822 | /// ``` |
| 1823 | pub fn from_elem(elem: A::Item, n: usize) -> Self { |
| 1824 | if n > Self::inline_capacity() { |
| 1825 | vec![elem; n].into() |
| 1826 | } else { |
| 1827 | let mut v = SmallVec::<A>::new(); |
| 1828 | unsafe { |
| 1829 | let (ptr, len_ptr, _) = v.triple_mut(); |
| 1830 | let ptr = ptr.as_ptr(); |
| 1831 | let mut local_len = SetLenOnDrop::new(len_ptr); |
| 1832 | |
| 1833 | for i in 0..n { |
| 1834 | ::core::ptr::write(ptr.add(i), elem.clone()); |
| 1835 | local_len.increment_len(1); |
| 1836 | } |
| 1837 | } |
| 1838 | v |
| 1839 | } |
| 1840 | } |
| 1841 | } |
| 1842 | |
| 1843 | impl<A: Array> ops::Deref for SmallVec<A> { |
| 1844 | type Target = [A::Item]; |
| 1845 | #[inline ] |
| 1846 | fn deref(&self) -> &[A::Item] { |
| 1847 | unsafe { |
| 1848 | let (ptr: ConstNonNull<::Item>, len: usize, _) = self.triple(); |
| 1849 | slice::from_raw_parts(data:ptr.as_ptr(), len) |
| 1850 | } |
| 1851 | } |
| 1852 | } |
| 1853 | |
| 1854 | impl<A: Array> ops::DerefMut for SmallVec<A> { |
| 1855 | #[inline ] |
| 1856 | fn deref_mut(&mut self) -> &mut [A::Item] { |
| 1857 | unsafe { |
| 1858 | let (ptr: NonNull<::Item>, &mut len: usize, _) = self.triple_mut(); |
| 1859 | slice::from_raw_parts_mut(data:ptr.as_ptr(), len) |
| 1860 | } |
| 1861 | } |
| 1862 | } |
| 1863 | |
| 1864 | impl<A: Array> AsRef<[A::Item]> for SmallVec<A> { |
| 1865 | #[inline ] |
| 1866 | fn as_ref(&self) -> &[A::Item] { |
| 1867 | self |
| 1868 | } |
| 1869 | } |
| 1870 | |
| 1871 | impl<A: Array> AsMut<[A::Item]> for SmallVec<A> { |
| 1872 | #[inline ] |
| 1873 | fn as_mut(&mut self) -> &mut [A::Item] { |
| 1874 | self |
| 1875 | } |
| 1876 | } |
| 1877 | |
| 1878 | impl<A: Array> Borrow<[A::Item]> for SmallVec<A> { |
| 1879 | #[inline ] |
| 1880 | fn borrow(&self) -> &[A::Item] { |
| 1881 | self |
| 1882 | } |
| 1883 | } |
| 1884 | |
| 1885 | impl<A: Array> BorrowMut<[A::Item]> for SmallVec<A> { |
| 1886 | #[inline ] |
| 1887 | fn borrow_mut(&mut self) -> &mut [A::Item] { |
| 1888 | self |
| 1889 | } |
| 1890 | } |
| 1891 | |
| 1892 | #[cfg (feature = "write" )] |
| 1893 | #[cfg_attr (docsrs, doc(cfg(feature = "write" )))] |
| 1894 | impl<A: Array<Item = u8>> io::Write for SmallVec<A> { |
| 1895 | #[inline ] |
| 1896 | fn write(&mut self, buf: &[u8]) -> io::Result<usize> { |
| 1897 | self.extend_from_slice(buf); |
| 1898 | Ok(buf.len()) |
| 1899 | } |
| 1900 | |
| 1901 | #[inline ] |
| 1902 | fn write_all(&mut self, buf: &[u8]) -> io::Result<()> { |
| 1903 | self.extend_from_slice(buf); |
| 1904 | Ok(()) |
| 1905 | } |
| 1906 | |
| 1907 | #[inline ] |
| 1908 | fn flush(&mut self) -> io::Result<()> { |
| 1909 | Ok(()) |
| 1910 | } |
| 1911 | } |
| 1912 | |
| 1913 | #[cfg (feature = "serde" )] |
| 1914 | #[cfg_attr (docsrs, doc(cfg(feature = "serde" )))] |
| 1915 | impl<A: Array> Serialize for SmallVec<A> |
| 1916 | where |
| 1917 | A::Item: Serialize, |
| 1918 | { |
| 1919 | fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> { |
| 1920 | let mut state = serializer.serialize_seq(Some(self.len()))?; |
| 1921 | for item in self { |
| 1922 | state.serialize_element(&item)?; |
| 1923 | } |
| 1924 | state.end() |
| 1925 | } |
| 1926 | } |
| 1927 | |
| 1928 | #[cfg (feature = "serde" )] |
| 1929 | #[cfg_attr (docsrs, doc(cfg(feature = "serde" )))] |
| 1930 | impl<'de, A: Array> Deserialize<'de> for SmallVec<A> |
| 1931 | where |
| 1932 | A::Item: Deserialize<'de>, |
| 1933 | { |
| 1934 | fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> { |
| 1935 | deserializer.deserialize_seq(SmallVecVisitor { |
| 1936 | phantom: PhantomData, |
| 1937 | }) |
| 1938 | } |
| 1939 | } |
| 1940 | |
| 1941 | #[cfg (feature = "serde" )] |
| 1942 | struct SmallVecVisitor<A> { |
| 1943 | phantom: PhantomData<A>, |
| 1944 | } |
| 1945 | |
| 1946 | #[cfg (feature = "serde" )] |
| 1947 | impl<'de, A: Array> Visitor<'de> for SmallVecVisitor<A> |
| 1948 | where |
| 1949 | A::Item: Deserialize<'de>, |
| 1950 | { |
| 1951 | type Value = SmallVec<A>; |
| 1952 | |
| 1953 | fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1954 | formatter.write_str("a sequence" ) |
| 1955 | } |
| 1956 | |
| 1957 | fn visit_seq<B>(self, mut seq: B) -> Result<Self::Value, B::Error> |
| 1958 | where |
| 1959 | B: SeqAccess<'de>, |
| 1960 | { |
| 1961 | use serde::de::Error; |
| 1962 | let len = seq.size_hint().unwrap_or(0); |
| 1963 | let mut values = SmallVec::new(); |
| 1964 | values.try_reserve(len).map_err(B::Error::custom)?; |
| 1965 | |
| 1966 | while let Some(value) = seq.next_element()? { |
| 1967 | values.push(value); |
| 1968 | } |
| 1969 | |
| 1970 | Ok(values) |
| 1971 | } |
| 1972 | } |
| 1973 | |
| 1974 | #[cfg (feature = "specialization" )] |
| 1975 | trait SpecFrom<A: Array, S> { |
| 1976 | fn spec_from(slice: S) -> SmallVec<A>; |
| 1977 | } |
| 1978 | |
| 1979 | #[cfg (feature = "specialization" )] |
| 1980 | mod specialization; |
| 1981 | |
| 1982 | #[cfg (feature = "arbitrary" )] |
| 1983 | mod arbitrary; |
| 1984 | |
| 1985 | #[cfg (feature = "specialization" )] |
| 1986 | impl<'a, A: Array> SpecFrom<A, &'a [A::Item]> for SmallVec<A> |
| 1987 | where |
| 1988 | A::Item: Copy, |
| 1989 | { |
| 1990 | #[inline ] |
| 1991 | fn spec_from(slice: &'a [A::Item]) -> SmallVec<A> { |
| 1992 | SmallVec::from_slice(slice) |
| 1993 | } |
| 1994 | } |
| 1995 | |
| 1996 | impl<'a, A: Array> From<&'a [A::Item]> for SmallVec<A> |
| 1997 | where |
| 1998 | A::Item: Clone, |
| 1999 | { |
| 2000 | #[cfg (not(feature = "specialization" ))] |
| 2001 | #[inline ] |
| 2002 | fn from(slice: &'a [A::Item]) -> SmallVec<A> { |
| 2003 | slice.iter().cloned().collect() |
| 2004 | } |
| 2005 | |
| 2006 | #[cfg (feature = "specialization" )] |
| 2007 | #[inline ] |
| 2008 | fn from(slice: &'a [A::Item]) -> SmallVec<A> { |
| 2009 | SmallVec::spec_from(slice) |
| 2010 | } |
| 2011 | } |
| 2012 | |
| 2013 | impl<A: Array> From<Vec<A::Item>> for SmallVec<A> { |
| 2014 | #[inline ] |
| 2015 | fn from(vec: Vec<A::Item>) -> SmallVec<A> { |
| 2016 | SmallVec::from_vec(vec) |
| 2017 | } |
| 2018 | } |
| 2019 | |
| 2020 | impl<A: Array> From<A> for SmallVec<A> { |
| 2021 | #[inline ] |
| 2022 | fn from(array: A) -> SmallVec<A> { |
| 2023 | SmallVec::from_buf(array) |
| 2024 | } |
| 2025 | } |
| 2026 | |
| 2027 | impl<A: Array, I: SliceIndex<[A::Item]>> ops::Index<I> for SmallVec<A> { |
| 2028 | type Output = I::Output; |
| 2029 | |
| 2030 | fn index(&self, index: I) -> &I::Output { |
| 2031 | &(**self)[index] |
| 2032 | } |
| 2033 | } |
| 2034 | |
| 2035 | impl<A: Array, I: SliceIndex<[A::Item]>> ops::IndexMut<I> for SmallVec<A> { |
| 2036 | fn index_mut(&mut self, index: I) -> &mut I::Output { |
| 2037 | &mut (&mut **self)[index] |
| 2038 | } |
| 2039 | } |
| 2040 | |
| 2041 | #[allow (deprecated)] |
| 2042 | impl<A: Array> ExtendFromSlice<A::Item> for SmallVec<A> |
| 2043 | where |
| 2044 | A::Item: Copy, |
| 2045 | { |
| 2046 | fn extend_from_slice(&mut self, other: &[A::Item]) { |
| 2047 | SmallVec::extend_from_slice(self, slice:other) |
| 2048 | } |
| 2049 | } |
| 2050 | |
| 2051 | impl<A: Array> FromIterator<A::Item> for SmallVec<A> { |
| 2052 | #[inline ] |
| 2053 | fn from_iter<I: IntoIterator<Item = A::Item>>(iterable: I) -> SmallVec<A> { |
| 2054 | let mut v: SmallVec = SmallVec::new(); |
| 2055 | v.extend(iter:iterable); |
| 2056 | v |
| 2057 | } |
| 2058 | } |
| 2059 | |
| 2060 | impl<A: Array> Extend<A::Item> for SmallVec<A> { |
| 2061 | fn extend<I: IntoIterator<Item = A::Item>>(&mut self, iterable: I) { |
| 2062 | let mut iter = iterable.into_iter(); |
| 2063 | let (lower_size_bound, _) = iter.size_hint(); |
| 2064 | self.reserve(lower_size_bound); |
| 2065 | |
| 2066 | unsafe { |
| 2067 | let (ptr, len_ptr, cap) = self.triple_mut(); |
| 2068 | let ptr = ptr.as_ptr(); |
| 2069 | let mut len = SetLenOnDrop::new(len_ptr); |
| 2070 | while len.get() < cap { |
| 2071 | if let Some(out) = iter.next() { |
| 2072 | ptr::write(ptr.add(len.get()), out); |
| 2073 | len.increment_len(1); |
| 2074 | } else { |
| 2075 | return; |
| 2076 | } |
| 2077 | } |
| 2078 | } |
| 2079 | |
| 2080 | for elem in iter { |
| 2081 | self.push(elem); |
| 2082 | } |
| 2083 | } |
| 2084 | } |
| 2085 | |
| 2086 | impl<A: Array> fmt::Debug for SmallVec<A> |
| 2087 | where |
| 2088 | A::Item: fmt::Debug, |
| 2089 | { |
| 2090 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2091 | f.debug_list().entries(self.iter()).finish() |
| 2092 | } |
| 2093 | } |
| 2094 | |
| 2095 | impl<A: Array> Default for SmallVec<A> { |
| 2096 | #[inline ] |
| 2097 | fn default() -> SmallVec<A> { |
| 2098 | SmallVec::new() |
| 2099 | } |
| 2100 | } |
| 2101 | |
| 2102 | #[cfg (feature = "may_dangle" )] |
| 2103 | unsafe impl<#[may_dangle ] A: Array> Drop for SmallVec<A> { |
| 2104 | fn drop(&mut self) { |
| 2105 | unsafe { |
| 2106 | if self.spilled() { |
| 2107 | let (ptr: NonNull<::Item>, &mut len: usize) = self.data.heap_mut(); |
| 2108 | Vec::from_raw_parts(ptr.as_ptr(), length:len, self.capacity); |
| 2109 | } else { |
| 2110 | ptr::drop_in_place(&mut self[..]); |
| 2111 | } |
| 2112 | } |
| 2113 | } |
| 2114 | } |
| 2115 | |
| 2116 | #[cfg (not(feature = "may_dangle" ))] |
| 2117 | impl<A: Array> Drop for SmallVec<A> { |
| 2118 | fn drop(&mut self) { |
| 2119 | unsafe { |
| 2120 | if self.spilled() { |
| 2121 | let (ptr, &mut len) = self.data.heap_mut(); |
| 2122 | drop(Vec::from_raw_parts(ptr.as_ptr(), len, self.capacity)); |
| 2123 | } else { |
| 2124 | ptr::drop_in_place(&mut self[..]); |
| 2125 | } |
| 2126 | } |
| 2127 | } |
| 2128 | } |
| 2129 | |
| 2130 | impl<A: Array> Clone for SmallVec<A> |
| 2131 | where |
| 2132 | A::Item: Clone, |
| 2133 | { |
| 2134 | #[inline ] |
| 2135 | fn clone(&self) -> SmallVec<A> { |
| 2136 | SmallVec::from(self.as_slice()) |
| 2137 | } |
| 2138 | |
| 2139 | fn clone_from(&mut self, source: &Self) { |
| 2140 | // Inspired from `impl Clone for Vec`. |
| 2141 | |
| 2142 | // drop anything that will not be overwritten |
| 2143 | self.truncate(source.len()); |
| 2144 | |
| 2145 | // self.len <= other.len due to the truncate above, so the |
| 2146 | // slices here are always in-bounds. |
| 2147 | let (init: &[impl Clone], tail: &[impl Clone]) = source.split_at(self.len()); |
| 2148 | |
| 2149 | // reuse the contained values' allocations/resources. |
| 2150 | self.clone_from_slice(src:init); |
| 2151 | self.extend(iter:tail.iter().cloned()); |
| 2152 | } |
| 2153 | } |
| 2154 | |
| 2155 | impl<A: Array, B: Array> PartialEq<SmallVec<B>> for SmallVec<A> |
| 2156 | where |
| 2157 | A::Item: PartialEq<B::Item>, |
| 2158 | { |
| 2159 | #[inline ] |
| 2160 | fn eq(&self, other: &SmallVec<B>) -> bool { |
| 2161 | self[..] == other[..] |
| 2162 | } |
| 2163 | } |
| 2164 | |
| 2165 | impl<A: Array> Eq for SmallVec<A> where A::Item: Eq {} |
| 2166 | |
| 2167 | impl<A: Array> PartialOrd for SmallVec<A> |
| 2168 | where |
| 2169 | A::Item: PartialOrd, |
| 2170 | { |
| 2171 | #[inline ] |
| 2172 | fn partial_cmp(&self, other: &SmallVec<A>) -> Option<cmp::Ordering> { |
| 2173 | PartialOrd::partial_cmp(&**self, &**other) |
| 2174 | } |
| 2175 | } |
| 2176 | |
| 2177 | impl<A: Array> Ord for SmallVec<A> |
| 2178 | where |
| 2179 | A::Item: Ord, |
| 2180 | { |
| 2181 | #[inline ] |
| 2182 | fn cmp(&self, other: &SmallVec<A>) -> cmp::Ordering { |
| 2183 | Ord::cmp(&**self, &**other) |
| 2184 | } |
| 2185 | } |
| 2186 | |
| 2187 | impl<A: Array> Hash for SmallVec<A> |
| 2188 | where |
| 2189 | A::Item: Hash, |
| 2190 | { |
| 2191 | fn hash<H: Hasher>(&self, state: &mut H) { |
| 2192 | (**self).hash(state) |
| 2193 | } |
| 2194 | } |
| 2195 | |
| 2196 | unsafe impl<A: Array> Send for SmallVec<A> where A::Item: Send {} |
| 2197 | |
| 2198 | /// An iterator that consumes a `SmallVec` and yields its items by value. |
| 2199 | /// |
| 2200 | /// Returned from [`SmallVec::into_iter`][1]. |
| 2201 | /// |
| 2202 | /// [1]: struct.SmallVec.html#method.into_iter |
| 2203 | pub struct IntoIter<A: Array> { |
| 2204 | data: SmallVec<A>, |
| 2205 | current: usize, |
| 2206 | end: usize, |
| 2207 | } |
| 2208 | |
| 2209 | impl<A: Array> fmt::Debug for IntoIter<A> |
| 2210 | where |
| 2211 | A::Item: fmt::Debug, |
| 2212 | { |
| 2213 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2214 | f.debug_tuple(name:"IntoIter" ).field(&self.as_slice()).finish() |
| 2215 | } |
| 2216 | } |
| 2217 | |
| 2218 | impl<A: Array + Clone> Clone for IntoIter<A> |
| 2219 | where |
| 2220 | A::Item: Clone, |
| 2221 | { |
| 2222 | fn clone(&self) -> IntoIter<A> { |
| 2223 | SmallVec::from(self.as_slice()).into_iter() |
| 2224 | } |
| 2225 | } |
| 2226 | |
| 2227 | impl<A: Array> Drop for IntoIter<A> { |
| 2228 | fn drop(&mut self) { |
| 2229 | for _ in self {} |
| 2230 | } |
| 2231 | } |
| 2232 | |
| 2233 | impl<A: Array> Iterator for IntoIter<A> { |
| 2234 | type Item = A::Item; |
| 2235 | |
| 2236 | #[inline ] |
| 2237 | fn next(&mut self) -> Option<A::Item> { |
| 2238 | if self.current == self.end { |
| 2239 | None |
| 2240 | } else { |
| 2241 | unsafe { |
| 2242 | let current: usize = self.current; |
| 2243 | self.current += 1; |
| 2244 | Some(ptr::read(self.data.as_ptr().add(count:current))) |
| 2245 | } |
| 2246 | } |
| 2247 | } |
| 2248 | |
| 2249 | #[inline ] |
| 2250 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 2251 | let size: usize = self.end - self.current; |
| 2252 | (size, Some(size)) |
| 2253 | } |
| 2254 | } |
| 2255 | |
| 2256 | impl<A: Array> DoubleEndedIterator for IntoIter<A> { |
| 2257 | #[inline ] |
| 2258 | fn next_back(&mut self) -> Option<A::Item> { |
| 2259 | if self.current == self.end { |
| 2260 | None |
| 2261 | } else { |
| 2262 | unsafe { |
| 2263 | self.end -= 1; |
| 2264 | Some(ptr::read(self.data.as_ptr().add(self.end))) |
| 2265 | } |
| 2266 | } |
| 2267 | } |
| 2268 | } |
| 2269 | |
| 2270 | impl<A: Array> ExactSizeIterator for IntoIter<A> {} |
| 2271 | impl<A: Array> FusedIterator for IntoIter<A> {} |
| 2272 | |
| 2273 | impl<A: Array> IntoIter<A> { |
| 2274 | /// Returns the remaining items of this iterator as a slice. |
| 2275 | pub fn as_slice(&self) -> &[A::Item] { |
| 2276 | let len: usize = self.end - self.current; |
| 2277 | unsafe { core::slice::from_raw_parts(self.data.as_ptr().add(self.current), len) } |
| 2278 | } |
| 2279 | |
| 2280 | /// Returns the remaining items of this iterator as a mutable slice. |
| 2281 | pub fn as_mut_slice(&mut self) -> &mut [A::Item] { |
| 2282 | let len: usize = self.end - self.current; |
| 2283 | unsafe { core::slice::from_raw_parts_mut(self.data.as_mut_ptr().add(self.current), len) } |
| 2284 | } |
| 2285 | } |
| 2286 | |
| 2287 | impl<A: Array> IntoIterator for SmallVec<A> { |
| 2288 | type IntoIter = IntoIter<A>; |
| 2289 | type Item = A::Item; |
| 2290 | fn into_iter(mut self) -> Self::IntoIter { |
| 2291 | unsafe { |
| 2292 | // Set SmallVec len to zero as `IntoIter` drop handles dropping of the elements |
| 2293 | let len: usize = self.len(); |
| 2294 | self.set_len(new_len:0); |
| 2295 | IntoIter { |
| 2296 | data: self, |
| 2297 | current: 0, |
| 2298 | end: len, |
| 2299 | } |
| 2300 | } |
| 2301 | } |
| 2302 | } |
| 2303 | |
| 2304 | impl<'a, A: Array> IntoIterator for &'a SmallVec<A> { |
| 2305 | type IntoIter = slice::Iter<'a, A::Item>; |
| 2306 | type Item = &'a A::Item; |
| 2307 | fn into_iter(self) -> Self::IntoIter { |
| 2308 | self.iter() |
| 2309 | } |
| 2310 | } |
| 2311 | |
| 2312 | impl<'a, A: Array> IntoIterator for &'a mut SmallVec<A> { |
| 2313 | type IntoIter = slice::IterMut<'a, A::Item>; |
| 2314 | type Item = &'a mut A::Item; |
| 2315 | fn into_iter(self) -> Self::IntoIter { |
| 2316 | self.iter_mut() |
| 2317 | } |
| 2318 | } |
| 2319 | |
| 2320 | /// Types that can be used as the backing store for a [`SmallVec`]. |
| 2321 | pub unsafe trait Array { |
| 2322 | /// The type of the array's elements. |
| 2323 | type Item; |
| 2324 | /// Returns the number of items the array can hold. |
| 2325 | fn size() -> usize; |
| 2326 | } |
| 2327 | |
| 2328 | /// Set the length of the vec when the `SetLenOnDrop` value goes out of scope. |
| 2329 | /// |
| 2330 | /// Copied from <https://github.com/rust-lang/rust/pull/36355> |
| 2331 | struct SetLenOnDrop<'a> { |
| 2332 | len: &'a mut usize, |
| 2333 | local_len: usize, |
| 2334 | } |
| 2335 | |
| 2336 | impl<'a> SetLenOnDrop<'a> { |
| 2337 | #[inline ] |
| 2338 | fn new(len: &'a mut usize) -> Self { |
| 2339 | SetLenOnDrop { |
| 2340 | local_len: *len, |
| 2341 | len, |
| 2342 | } |
| 2343 | } |
| 2344 | |
| 2345 | #[inline ] |
| 2346 | fn get(&self) -> usize { |
| 2347 | self.local_len |
| 2348 | } |
| 2349 | |
| 2350 | #[inline ] |
| 2351 | fn increment_len(&mut self, increment: usize) { |
| 2352 | self.local_len += increment; |
| 2353 | } |
| 2354 | } |
| 2355 | |
| 2356 | impl<'a> Drop for SetLenOnDrop<'a> { |
| 2357 | #[inline ] |
| 2358 | fn drop(&mut self) { |
| 2359 | *self.len = self.local_len; |
| 2360 | } |
| 2361 | } |
| 2362 | |
| 2363 | #[cfg (feature = "const_new" )] |
| 2364 | impl<T, const N: usize> SmallVec<[T; N]> { |
| 2365 | /// Construct an empty vector. |
| 2366 | /// |
| 2367 | /// This is a `const` version of [`SmallVec::new`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays. |
| 2368 | #[cfg_attr (docsrs, doc(cfg(feature = "const_new" )))] |
| 2369 | #[inline ] |
| 2370 | pub const fn new_const() -> Self { |
| 2371 | SmallVec { |
| 2372 | capacity: 0, |
| 2373 | data: SmallVecData::from_const(MaybeUninit::uninit()), |
| 2374 | } |
| 2375 | } |
| 2376 | |
| 2377 | /// The array passed as an argument is moved to be an inline version of `SmallVec`. |
| 2378 | /// |
| 2379 | /// This is a `const` version of [`SmallVec::from_buf`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays. |
| 2380 | #[cfg_attr (docsrs, doc(cfg(feature = "const_new" )))] |
| 2381 | #[inline ] |
| 2382 | pub const fn from_const(items: [T; N]) -> Self { |
| 2383 | SmallVec { |
| 2384 | capacity: N, |
| 2385 | data: SmallVecData::from_const(MaybeUninit::new(items)), |
| 2386 | } |
| 2387 | } |
| 2388 | |
| 2389 | /// Constructs a new `SmallVec` on the stack from an array without |
| 2390 | /// copying elements. Also sets the length. The user is responsible |
| 2391 | /// for ensuring that `len <= N`. |
| 2392 | /// |
| 2393 | /// This is a `const` version of [`SmallVec::from_buf_and_len_unchecked`] that is enabled by the feature `const_new`, with the limitation that it only works for arrays. |
| 2394 | #[cfg_attr (docsrs, doc(cfg(feature = "const_new" )))] |
| 2395 | #[inline ] |
| 2396 | pub const unsafe fn from_const_with_len_unchecked(items: [T; N], len: usize) -> Self { |
| 2397 | SmallVec { |
| 2398 | capacity: len, |
| 2399 | data: SmallVecData::from_const(MaybeUninit::new(items)), |
| 2400 | } |
| 2401 | } |
| 2402 | } |
| 2403 | |
| 2404 | #[cfg (feature = "const_generics" )] |
| 2405 | #[cfg_attr (docsrs, doc(cfg(feature = "const_generics" )))] |
| 2406 | unsafe impl<T, const N: usize> Array for [T; N] { |
| 2407 | type Item = T; |
| 2408 | #[inline ] |
| 2409 | fn size() -> usize { |
| 2410 | N |
| 2411 | } |
| 2412 | } |
| 2413 | |
| 2414 | #[cfg (not(feature = "const_generics" ))] |
| 2415 | macro_rules! impl_array( |
| 2416 | ($($size:expr),+) => { |
| 2417 | $( |
| 2418 | unsafe impl<T> Array for [T; $size] { |
| 2419 | type Item = T; |
| 2420 | #[inline] |
| 2421 | fn size() -> usize { $size } |
| 2422 | } |
| 2423 | )+ |
| 2424 | } |
| 2425 | ); |
| 2426 | |
| 2427 | #[cfg (not(feature = "const_generics" ))] |
| 2428 | impl_array!( |
| 2429 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, |
| 2430 | 26, 27, 28, 29, 30, 31, 32, 36, 0x40, 0x60, 0x80, 0x100, 0x200, 0x400, 0x600, 0x800, 0x1000, |
| 2431 | 0x2000, 0x4000, 0x6000, 0x8000, 0x10000, 0x20000, 0x40000, 0x60000, 0x80000, 0x10_0000 |
| 2432 | ); |
| 2433 | |
| 2434 | /// Convenience trait for constructing a `SmallVec` |
| 2435 | pub trait ToSmallVec<A: Array> { |
| 2436 | /// Construct a new `SmallVec` from a slice. |
| 2437 | fn to_smallvec(&self) -> SmallVec<A>; |
| 2438 | } |
| 2439 | |
| 2440 | impl<A: Array> ToSmallVec<A> for [A::Item] |
| 2441 | where |
| 2442 | A::Item: Copy, |
| 2443 | { |
| 2444 | #[inline ] |
| 2445 | fn to_smallvec(&self) -> SmallVec<A> { |
| 2446 | SmallVec::from_slice(self) |
| 2447 | } |
| 2448 | } |
| 2449 | |
| 2450 | // Immutable counterpart for `NonNull<T>`. |
| 2451 | #[repr (transparent)] |
| 2452 | struct ConstNonNull<T>(NonNull<T>); |
| 2453 | |
| 2454 | impl<T> ConstNonNull<T> { |
| 2455 | #[inline ] |
| 2456 | fn new(ptr: *const T) -> Option<Self> { |
| 2457 | NonNull::new(ptr as *mut T).map(Self) |
| 2458 | } |
| 2459 | #[inline ] |
| 2460 | fn as_ptr(self) -> *const T { |
| 2461 | self.0.as_ptr() |
| 2462 | } |
| 2463 | } |
| 2464 | |
| 2465 | impl<T> Clone for ConstNonNull<T> { |
| 2466 | #[inline ] |
| 2467 | fn clone(&self) -> Self { |
| 2468 | *self |
| 2469 | } |
| 2470 | } |
| 2471 | |
| 2472 | impl<T> Copy for ConstNonNull<T> {} |
| 2473 | |