1 | //! Traits for parsing the WebAssembly Text format |
2 | //! |
3 | //! This module contains the traits, abstractions, and utilities needed to |
4 | //! define custom parsers for WebAssembly text format items. This module exposes |
5 | //! a recursive descent parsing strategy and centers around the [`Parse`] trait |
6 | //! for defining new fragments of WebAssembly text syntax. |
7 | //! |
8 | //! The top-level [`parse`] function can be used to fully parse AST fragments: |
9 | //! |
10 | //! ``` |
11 | //! use wast::Wat; |
12 | //! use wast::parser::{self, ParseBuffer}; |
13 | //! |
14 | //! # fn foo() -> Result<(), wast::Error> { |
15 | //! let wat = "(module (func))" ; |
16 | //! let buf = ParseBuffer::new(wat)?; |
17 | //! let module = parser::parse::<Wat>(&buf)?; |
18 | //! # Ok(()) |
19 | //! # } |
20 | //! ``` |
21 | //! |
22 | //! and you can also define your own new syntax with the [`Parse`] trait: |
23 | //! |
24 | //! ``` |
25 | //! use wast::kw; |
26 | //! use wast::core::{Import, Func}; |
27 | //! use wast::parser::{Parser, Parse, Result}; |
28 | //! |
29 | //! // Fields of a WebAssembly which only allow imports and functions, and all |
30 | //! // imports must come before all the functions |
31 | //! struct OnlyImportsAndFunctions<'a> { |
32 | //! imports: Vec<Import<'a>>, |
33 | //! functions: Vec<Func<'a>>, |
34 | //! } |
35 | //! |
36 | //! impl<'a> Parse<'a> for OnlyImportsAndFunctions<'a> { |
37 | //! fn parse(parser: Parser<'a>) -> Result<Self> { |
38 | //! // While the second token is `import` (the first is `(`, so we care |
39 | //! // about the second) we parse an `ast::ModuleImport` inside of |
40 | //! // parentheses. The `parens` function here ensures that what we |
41 | //! // parse inside of it is surrounded by `(` and `)`. |
42 | //! let mut imports = Vec::new(); |
43 | //! while parser.peek2::<kw::import>()? { |
44 | //! let import = parser.parens(|p| p.parse())?; |
45 | //! imports.push(import); |
46 | //! } |
47 | //! |
48 | //! // Afterwards we assume everything else is a function. Note that |
49 | //! // `parse` here is a generic function and type inference figures out |
50 | //! // that we're parsing functions here and imports above. |
51 | //! let mut functions = Vec::new(); |
52 | //! while !parser.is_empty() { |
53 | //! let func = parser.parens(|p| p.parse())?; |
54 | //! functions.push(func); |
55 | //! } |
56 | //! |
57 | //! Ok(OnlyImportsAndFunctions { imports, functions }) |
58 | //! } |
59 | //! } |
60 | //! ``` |
61 | //! |
62 | //! This module is heavily inspired by [`syn`](https://docs.rs/syn) so you can |
63 | //! likely also draw inspiration from the excellent examples in the `syn` crate. |
64 | |
65 | use crate::lexer::{Float, Integer, Lexer, Token, TokenKind}; |
66 | use crate::token::Span; |
67 | use crate::Error; |
68 | use bumpalo::Bump; |
69 | use std::borrow::Cow; |
70 | use std::cell::{Cell, RefCell}; |
71 | use std::collections::HashMap; |
72 | use std::fmt; |
73 | use std::usize; |
74 | |
75 | /// The maximum recursive depth of parens to parse. |
76 | /// |
77 | /// This is sort of a fundamental limitation of the way this crate is |
78 | /// designed. Everything is done through recursive descent parsing which |
79 | /// means, well, that we're recursively going down the stack as we parse |
80 | /// nested data structures. While we can handle this for wasm expressions |
81 | /// since that's a pretty local decision, handling this for nested |
82 | /// modules/components which be far trickier. For now we just say that when |
83 | /// the parser goes too deep we return an error saying there's too many |
84 | /// nested items. It would be great to not return an error here, though! |
85 | #[cfg (feature = "wasm-module" )] |
86 | pub(crate) const MAX_PARENS_DEPTH: usize = 100; |
87 | |
88 | /// A top-level convenience parsing function that parses a `T` from `buf` and |
89 | /// requires that all tokens in `buf` are consume. |
90 | /// |
91 | /// This generic parsing function can be used to parse any `T` implementing the |
92 | /// [`Parse`] trait. It is not used from [`Parse`] trait implementations. |
93 | /// |
94 | /// # Examples |
95 | /// |
96 | /// ``` |
97 | /// use wast::Wat; |
98 | /// use wast::parser::{self, ParseBuffer}; |
99 | /// |
100 | /// # fn foo() -> Result<(), wast::Error> { |
101 | /// let wat = "(module (func))" ; |
102 | /// let buf = ParseBuffer::new(wat)?; |
103 | /// let module = parser::parse::<Wat>(&buf)?; |
104 | /// # Ok(()) |
105 | /// # } |
106 | /// ``` |
107 | /// |
108 | /// or parsing simply a fragment |
109 | /// |
110 | /// ``` |
111 | /// use wast::parser::{self, ParseBuffer}; |
112 | /// |
113 | /// # fn foo() -> Result<(), wast::Error> { |
114 | /// let wat = "12" ; |
115 | /// let buf = ParseBuffer::new(wat)?; |
116 | /// let val = parser::parse::<u32>(&buf)?; |
117 | /// assert_eq!(val, 12); |
118 | /// # Ok(()) |
119 | /// # } |
120 | /// ``` |
121 | pub fn parse<'a, T: Parse<'a>>(buf: &'a ParseBuffer<'a>) -> Result<T> { |
122 | let parser: Parser<'_> = buf.parser(); |
123 | let result: T = parser.parse()?; |
124 | if parser.cursor().token()?.is_none() { |
125 | Ok(result) |
126 | } else { |
127 | Err(parser.error(msg:"extra tokens remaining after parse" )) |
128 | } |
129 | } |
130 | |
131 | /// A trait for parsing a fragment of syntax in a recursive descent fashion. |
132 | /// |
133 | /// The [`Parse`] trait is main abstraction you'll be working with when defining |
134 | /// custom parser or custom syntax for your WebAssembly text format (or when |
135 | /// using the official format items). Almost all items in the |
136 | /// [`core`](crate::core) module implement the [`Parse`] trait, and you'll |
137 | /// commonly use this with: |
138 | /// |
139 | /// * The top-level [`parse`] function to parse an entire input. |
140 | /// * The intermediate [`Parser::parse`] function to parse an item out of an |
141 | /// input stream and then parse remaining items. |
142 | /// |
143 | /// Implementation of [`Parse`] take a [`Parser`] as input and will mutate the |
144 | /// parser as they parse syntax. Once a token is consume it cannot be |
145 | /// "un-consumed". Utilities such as [`Parser::peek`] and [`Parser::lookahead1`] |
146 | /// can be used to determine what to parse next. |
147 | /// |
148 | /// ## When to parse `(` and `)`? |
149 | /// |
150 | /// Conventionally types are not responsible for parsing their own `(` and `)` |
151 | /// tokens which surround the type. For example WebAssembly imports look like: |
152 | /// |
153 | /// ```text |
154 | /// (import "foo" "bar" (func (type 0))) |
155 | /// ``` |
156 | /// |
157 | /// but the [`Import`](crate::core::Import) type parser looks like: |
158 | /// |
159 | /// ``` |
160 | /// # use wast::kw; |
161 | /// # use wast::parser::{Parser, Parse, Result}; |
162 | /// # struct Import<'a>(&'a str); |
163 | /// impl<'a> Parse<'a> for Import<'a> { |
164 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
165 | /// parser.parse::<kw::import>()?; |
166 | /// // ... |
167 | /// # panic!() |
168 | /// } |
169 | /// } |
170 | /// ``` |
171 | /// |
172 | /// It is assumed here that the `(` and `)` tokens which surround an `import` |
173 | /// statement in the WebAssembly text format are parsed by the parent item |
174 | /// parsing `Import`. |
175 | /// |
176 | /// Note that this is just a convention, so it's not necessarily required for |
177 | /// all types. It's recommended that your types stick to this convention where |
178 | /// possible to avoid nested calls to [`Parser::parens`] or accidentally trying |
179 | /// to parse too many parenthesis. |
180 | /// |
181 | /// # Examples |
182 | /// |
183 | /// Let's say you want to define your own WebAssembly text format which only |
184 | /// contains imports and functions. You also require all imports to be listed |
185 | /// before all functions. An example [`Parse`] implementation might look like: |
186 | /// |
187 | /// ``` |
188 | /// use wast::core::{Import, Func}; |
189 | /// use wast::kw; |
190 | /// use wast::parser::{Parser, Parse, Result}; |
191 | /// |
192 | /// // Fields of a WebAssembly which only allow imports and functions, and all |
193 | /// // imports must come before all the functions |
194 | /// struct OnlyImportsAndFunctions<'a> { |
195 | /// imports: Vec<Import<'a>>, |
196 | /// functions: Vec<Func<'a>>, |
197 | /// } |
198 | /// |
199 | /// impl<'a> Parse<'a> for OnlyImportsAndFunctions<'a> { |
200 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
201 | /// // While the second token is `import` (the first is `(`, so we care |
202 | /// // about the second) we parse an `ast::ModuleImport` inside of |
203 | /// // parentheses. The `parens` function here ensures that what we |
204 | /// // parse inside of it is surrounded by `(` and `)`. |
205 | /// let mut imports = Vec::new(); |
206 | /// while parser.peek2::<kw::import>()? { |
207 | /// let import = parser.parens(|p| p.parse())?; |
208 | /// imports.push(import); |
209 | /// } |
210 | /// |
211 | /// // Afterwards we assume everything else is a function. Note that |
212 | /// // `parse` here is a generic function and type inference figures out |
213 | /// // that we're parsing functions here and imports above. |
214 | /// let mut functions = Vec::new(); |
215 | /// while !parser.is_empty() { |
216 | /// let func = parser.parens(|p| p.parse())?; |
217 | /// functions.push(func); |
218 | /// } |
219 | /// |
220 | /// Ok(OnlyImportsAndFunctions { imports, functions }) |
221 | /// } |
222 | /// } |
223 | /// ``` |
224 | pub trait Parse<'a>: Sized { |
225 | /// Attempts to parse `Self` from `parser`, returning an error if it could |
226 | /// not be parsed. |
227 | /// |
228 | /// This method will mutate the state of `parser` after attempting to parse |
229 | /// an instance of `Self`. If an error happens then it is likely fatal and |
230 | /// there is no guarantee of how many tokens have been consumed from |
231 | /// `parser`. |
232 | /// |
233 | /// As recommended in the documentation of [`Parse`], implementations of |
234 | /// this function should not start out by parsing `(` and `)` tokens, but |
235 | /// rather parents calling recursive parsers should parse the `(` and `)` |
236 | /// tokens for their child item that's being parsed. |
237 | /// |
238 | /// # Errors |
239 | /// |
240 | /// This function will return an error if `Self` could not be parsed. Note |
241 | /// that creating an [`Error`] is not exactly a cheap operation, so |
242 | /// [`Error`] is typically fatal and propagated all the way back to the top |
243 | /// parse call site. |
244 | fn parse(parser: Parser<'a>) -> Result<Self>; |
245 | } |
246 | |
247 | impl<'a, T> Parse<'a> for Box<T> |
248 | where |
249 | T: Parse<'a>, |
250 | { |
251 | fn parse(parser: Parser<'a>) -> Result<Self> { |
252 | Ok(Box::new(parser.parse()?)) |
253 | } |
254 | } |
255 | |
256 | /// A trait for types which be used to "peek" to see if they're the next token |
257 | /// in an input stream of [`Parser`]. |
258 | /// |
259 | /// Often when implementing [`Parse`] you'll need to query what the next token |
260 | /// in the stream is to figure out what to parse next. This [`Peek`] trait |
261 | /// defines the set of types that can be tested whether they're the next token |
262 | /// in the input stream. |
263 | /// |
264 | /// Implementations of [`Peek`] should only be present on types that consume |
265 | /// exactly one token (not zero, not more, exactly one). Types implementing |
266 | /// [`Peek`] should also typically implement [`Parse`] should also typically |
267 | /// implement [`Parse`]. |
268 | /// |
269 | /// See the documentation of [`Parser::peek`] for example usage. |
270 | pub trait Peek { |
271 | /// Tests to see whether this token is the first token within the [`Cursor`] |
272 | /// specified. |
273 | /// |
274 | /// Returns `true` if [`Parse`] for this type is highly likely to succeed |
275 | /// failing no other error conditions happening (like an integer literal |
276 | /// being too big). |
277 | fn peek(cursor: Cursor<'_>) -> Result<bool>; |
278 | |
279 | /// The same as `peek`, except it checks the token immediately following |
280 | /// the current token. |
281 | fn peek2(mut cursor: Cursor<'_>) -> Result<bool> { |
282 | match cursor.token()? { |
283 | Some(token: Token) => cursor.advance_past(&token), |
284 | None => return Ok(false), |
285 | } |
286 | Self::peek(cursor) |
287 | } |
288 | |
289 | /// Returns a human-readable name of this token to display when generating |
290 | /// errors about this token missing. |
291 | fn display() -> &'static str; |
292 | } |
293 | |
294 | /// A convenience type definition for `Result` where the error is hardwired to |
295 | /// [`Error`]. |
296 | pub type Result<T, E = Error> = std::result::Result<T, E>; |
297 | |
298 | /// A low-level buffer of tokens which represents a completely lexed file. |
299 | /// |
300 | /// A `ParseBuffer` will immediately lex an entire file and then store all |
301 | /// tokens internally. A `ParseBuffer` only used to pass to the top-level |
302 | /// [`parse`] function. |
303 | pub struct ParseBuffer<'a> { |
304 | lexer: Lexer<'a>, |
305 | cur: Cell<Position>, |
306 | known_annotations: RefCell<HashMap<String, usize>>, |
307 | track_instr_spans: bool, |
308 | depth: Cell<usize>, |
309 | strings: Bump, |
310 | } |
311 | |
312 | /// The current position within a `Lexer` that we're at. This simultaneously |
313 | /// stores the byte position that the lexer was last positioned at as well as |
314 | /// the next significant token. |
315 | /// |
316 | /// Note that "significant" here does not mean that `token` is the next token |
317 | /// to be lexed at `offset`. Instead it's the next non-whitespace, |
318 | /// non-annotation, non-coment token. This simple cache-of-sorts avoids |
319 | /// re-parsing tokens the majority of the time, or at least that's the |
320 | /// intention. |
321 | /// |
322 | /// If `token` is set to `None` then it means that either it hasn't been |
323 | /// calculated at or the lexer is at EOF. Basically it means go talk to the |
324 | /// lexer. |
325 | #[derive (Copy, Clone)] |
326 | struct Position { |
327 | offset: usize, |
328 | token: Option<Token>, |
329 | } |
330 | |
331 | /// An in-progress parser for the tokens of a WebAssembly text file. |
332 | /// |
333 | /// A `Parser` is argument to the [`Parse`] trait and is now the input stream is |
334 | /// interacted with to parse new items. Cloning [`Parser`] or copying a parser |
335 | /// refers to the same stream of tokens to parse, you cannot clone a [`Parser`] |
336 | /// and clone two items. |
337 | /// |
338 | /// For more information about a [`Parser`] see its methods. |
339 | #[derive (Copy, Clone)] |
340 | pub struct Parser<'a> { |
341 | buf: &'a ParseBuffer<'a>, |
342 | } |
343 | |
344 | /// A helpful structure to perform a lookahead of one token to determine what to |
345 | /// parse. |
346 | /// |
347 | /// For more information see the [`Parser::lookahead1`] method. |
348 | pub struct Lookahead1<'a> { |
349 | parser: Parser<'a>, |
350 | attempts: Vec<&'static str>, |
351 | } |
352 | |
353 | /// An immutable cursor into a list of tokens. |
354 | /// |
355 | /// This cursor cannot be mutated but can be used to parse more tokens in a list |
356 | /// of tokens. Cursors are created from the [`Parser::step`] method. This is a |
357 | /// very low-level parsing structure and you likely won't use it much. |
358 | #[derive (Copy, Clone)] |
359 | pub struct Cursor<'a> { |
360 | parser: Parser<'a>, |
361 | pos: Position, |
362 | } |
363 | |
364 | impl ParseBuffer<'_> { |
365 | /// Creates a new [`ParseBuffer`] by lexing the given `input` completely. |
366 | /// |
367 | /// # Errors |
368 | /// |
369 | /// Returns an error if `input` fails to lex. |
370 | pub fn new(input: &str) -> Result<ParseBuffer<'_>> { |
371 | ParseBuffer::new_with_lexer(Lexer::new(input)) |
372 | } |
373 | |
374 | /// Creates a new [`ParseBuffer`] by lexing the given `input` completely. |
375 | /// |
376 | /// # Errors |
377 | /// |
378 | /// Returns an error if `input` fails to lex. |
379 | pub fn new_with_lexer(lexer: Lexer<'_>) -> Result<ParseBuffer<'_>> { |
380 | Ok(ParseBuffer { |
381 | lexer, |
382 | depth: Cell::new(0), |
383 | cur: Cell::new(Position { |
384 | offset: 0, |
385 | token: None, |
386 | }), |
387 | known_annotations: Default::default(), |
388 | strings: Default::default(), |
389 | track_instr_spans: false, |
390 | }) |
391 | } |
392 | |
393 | /// Indicates whether the [`Expression::instr_spans`] field will be filled |
394 | /// in. |
395 | /// |
396 | /// This is useful when enabling DWARF debugging information via |
397 | /// [`EncodeOptions::dwarf`], for example. |
398 | /// |
399 | /// [`Expression::instr_spans`]: crate::core::Expression::instr_spans |
400 | /// [`EncodeOptions::dwarf`]: crate::core::EncodeOptions::dwarf |
401 | pub fn track_instr_spans(&mut self, track: bool) -> &mut Self { |
402 | self.track_instr_spans = track; |
403 | self |
404 | } |
405 | |
406 | fn parser(&self) -> Parser<'_> { |
407 | Parser { buf: self } |
408 | } |
409 | |
410 | /// Stores an owned allocation in this `Parser` to attach the lifetime of |
411 | /// the vector to `self`. |
412 | /// |
413 | /// This will return a reference to `s`, but one that's safely rooted in the |
414 | /// `Parser`. |
415 | fn push_str(&self, s: Vec<u8>) -> &[u8] { |
416 | self.strings.alloc_slice_copy(&s) |
417 | } |
418 | |
419 | /// Lexes the next "significant" token from the `pos` specified. |
420 | /// |
421 | /// This will skip irrelevant tokens such as whitespace, comments, and |
422 | /// unknown annotations. |
423 | fn advance_token(&self, mut pos: usize) -> Result<Option<Token>> { |
424 | let token = loop { |
425 | let token = match self.lexer.parse(&mut pos)? { |
426 | Some(token) => token, |
427 | None => return Ok(None), |
428 | }; |
429 | match token.kind { |
430 | // Always skip whitespace and comments. |
431 | TokenKind::Whitespace | TokenKind::LineComment | TokenKind::BlockComment => { |
432 | continue |
433 | } |
434 | |
435 | // If an lparen is seen then this may be skipped if it's an |
436 | // annotation of the form `(@foo ...)`. In this situation |
437 | // everything up to and including the closing rparen is skipped. |
438 | // |
439 | // Note that the annotation is only skipped if it's an unknown |
440 | // annotation as known annotations are specifically registered |
441 | // as "someone's gonna parse this". |
442 | TokenKind::LParen => { |
443 | if let Some(annotation) = self.lexer.annotation(pos)? { |
444 | let text = annotation.annotation(self.lexer.input())?; |
445 | match self.known_annotations.borrow().get(&text[..]) { |
446 | Some(0) | None => { |
447 | self.skip_annotation(&mut pos)?; |
448 | continue; |
449 | } |
450 | Some(_) => {} |
451 | } |
452 | } |
453 | break token; |
454 | } |
455 | _ => break token, |
456 | } |
457 | }; |
458 | Ok(Some(token)) |
459 | } |
460 | |
461 | fn skip_annotation(&self, pos: &mut usize) -> Result<()> { |
462 | let mut depth = 1; |
463 | let span = Span { offset: *pos }; |
464 | loop { |
465 | let token = match self.lexer.parse(pos)? { |
466 | Some(token) => token, |
467 | None => { |
468 | break Err(Error::new(span, "unclosed annotation" .to_string())); |
469 | } |
470 | }; |
471 | match token.kind { |
472 | TokenKind::LParen => depth += 1, |
473 | TokenKind::RParen => { |
474 | depth -= 1; |
475 | if depth == 0 { |
476 | break Ok(()); |
477 | } |
478 | } |
479 | _ => {} |
480 | } |
481 | } |
482 | } |
483 | } |
484 | |
485 | impl<'a> Parser<'a> { |
486 | /// Returns whether there are no more `Token` tokens to parse from this |
487 | /// [`Parser`]. |
488 | /// |
489 | /// This indicates that either we've reached the end of the input, or we're |
490 | /// a sub-[`Parser`] inside of a parenthesized expression and we've hit the |
491 | /// `)` token. |
492 | /// |
493 | /// Note that if `false` is returned there *may* be more comments. Comments |
494 | /// and whitespace are not considered for whether this parser is empty. |
495 | pub fn is_empty(self) -> bool { |
496 | match self.cursor().token() { |
497 | Ok(Some(token)) => matches!(token.kind, TokenKind::RParen), |
498 | Ok(None) => true, |
499 | Err(_) => false, |
500 | } |
501 | } |
502 | |
503 | #[cfg (feature = "wasm-module" )] |
504 | pub(crate) fn has_meaningful_tokens(self) -> bool { |
505 | self.buf.lexer.iter(0).any(|t| match t { |
506 | Ok(token) => !matches!( |
507 | token.kind, |
508 | TokenKind::Whitespace | TokenKind::LineComment | TokenKind::BlockComment |
509 | ), |
510 | Err(_) => true, |
511 | }) |
512 | } |
513 | |
514 | /// Parses a `T` from this [`Parser`]. |
515 | /// |
516 | /// This method has a trivial definition (it simply calls |
517 | /// [`T::parse`](Parse::parse)) but is here for syntactic purposes. This is |
518 | /// what you'll call 99% of the time in a [`Parse`] implementation in order |
519 | /// to parse sub-items. |
520 | /// |
521 | /// Typically you always want to use `?` with the result of this method, you |
522 | /// should not handle errors and decide what else to parse. To handle |
523 | /// branches in parsing, use [`Parser::peek`]. |
524 | /// |
525 | /// # Examples |
526 | /// |
527 | /// A good example of using `parse` is to see how the [`TableType`] type is |
528 | /// parsed in this crate. A [`TableType`] is defined in the official |
529 | /// specification as [`tabletype`][spec] and is defined as: |
530 | /// |
531 | /// [spec]: https://webassembly.github.io/spec/core/text/types.html#table-types |
532 | /// |
533 | /// ```text |
534 | /// tabletype ::= lim:limits et:reftype |
535 | /// ``` |
536 | /// |
537 | /// so to parse a [`TableType`] we recursively need to parse a [`Limits`] |
538 | /// and a [`RefType`] |
539 | /// |
540 | /// ``` |
541 | /// # use wast::core::*; |
542 | /// # use wast::parser::*; |
543 | /// struct TableType<'a> { |
544 | /// limits: Limits, |
545 | /// elem: RefType<'a>, |
546 | /// } |
547 | /// |
548 | /// impl<'a> Parse<'a> for TableType<'a> { |
549 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
550 | /// // parse the `lim` then `et` in sequence |
551 | /// Ok(TableType { |
552 | /// limits: parser.parse()?, |
553 | /// elem: parser.parse()?, |
554 | /// }) |
555 | /// } |
556 | /// } |
557 | /// ``` |
558 | /// |
559 | /// [`Limits`]: crate::core::Limits |
560 | /// [`TableType`]: crate::core::TableType |
561 | /// [`RefType`]: crate::core::RefType |
562 | pub fn parse<T: Parse<'a>>(self) -> Result<T> { |
563 | T::parse(self) |
564 | } |
565 | |
566 | /// Performs a cheap test to see whether the current token in this stream is |
567 | /// `T`. |
568 | /// |
569 | /// This method can be used to efficiently determine what next to parse. The |
570 | /// [`Peek`] trait is defined for types which can be used to test if they're |
571 | /// the next item in the input stream. |
572 | /// |
573 | /// Nothing is actually parsed in this method, nor does this mutate the |
574 | /// state of this [`Parser`]. Instead, this simply performs a check. |
575 | /// |
576 | /// This method is frequently combined with the [`Parser::lookahead1`] |
577 | /// method to automatically produce nice error messages if some tokens |
578 | /// aren't found. |
579 | /// |
580 | /// # Examples |
581 | /// |
582 | /// For an example of using the `peek` method let's take a look at parsing |
583 | /// the [`Limits`] type. This is [defined in the official spec][spec] as: |
584 | /// |
585 | /// ```text |
586 | /// limits ::= n:u32 |
587 | /// | n:u32 m:u32 |
588 | /// ``` |
589 | /// |
590 | /// which means that it's either one `u32` token or two, so we need to know |
591 | /// whether to consume two tokens or one: |
592 | /// |
593 | /// ``` |
594 | /// # use wast::parser::*; |
595 | /// struct Limits { |
596 | /// min: u32, |
597 | /// max: Option<u32>, |
598 | /// } |
599 | /// |
600 | /// impl<'a> Parse<'a> for Limits { |
601 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
602 | /// // Always parse the first number... |
603 | /// let min = parser.parse()?; |
604 | /// |
605 | /// // ... and then test if there's a second number before parsing |
606 | /// let max = if parser.peek::<u32>()? { |
607 | /// Some(parser.parse()?) |
608 | /// } else { |
609 | /// None |
610 | /// }; |
611 | /// |
612 | /// Ok(Limits { min, max }) |
613 | /// } |
614 | /// } |
615 | /// ``` |
616 | /// |
617 | /// [spec]: https://webassembly.github.io/spec/core/text/types.html#limits |
618 | /// [`Limits`]: crate::core::Limits |
619 | pub fn peek<T: Peek>(self) -> Result<bool> { |
620 | T::peek(self.cursor()) |
621 | } |
622 | |
623 | /// Same as the [`Parser::peek`] method, except checks the next token, not |
624 | /// the current token. |
625 | pub fn peek2<T: Peek>(self) -> Result<bool> { |
626 | T::peek2(self.cursor()) |
627 | } |
628 | |
629 | /// Same as the [`Parser::peek2`] method, except checks the next next token, |
630 | /// not the next token. |
631 | pub fn peek3<T: Peek>(self) -> Result<bool> { |
632 | let mut cursor = self.cursor(); |
633 | match cursor.token()? { |
634 | Some(token) => cursor.advance_past(&token), |
635 | None => return Ok(false), |
636 | } |
637 | match cursor.token()? { |
638 | Some(token) => cursor.advance_past(&token), |
639 | None => return Ok(false), |
640 | } |
641 | T::peek(cursor) |
642 | } |
643 | |
644 | /// A helper structure to perform a sequence of `peek` operations and if |
645 | /// they all fail produce a nice error message. |
646 | /// |
647 | /// This method purely exists for conveniently producing error messages and |
648 | /// provides no functionality that [`Parser::peek`] doesn't already give. |
649 | /// The [`Lookahead1`] structure has one main method [`Lookahead1::peek`], |
650 | /// which is the same method as [`Parser::peek`]. The difference is that the |
651 | /// [`Lookahead1::error`] method needs no arguments. |
652 | /// |
653 | /// # Examples |
654 | /// |
655 | /// Let's look at the parsing of [`Index`]. This type is either a `u32` or |
656 | /// an [`Id`] and is used in name resolution primarily. The [official |
657 | /// grammar for an index][spec] is: |
658 | /// |
659 | /// ```text |
660 | /// idx ::= x:u32 |
661 | /// | v:id |
662 | /// ``` |
663 | /// |
664 | /// Which is to say that an index is either a `u32` or an [`Id`]. When |
665 | /// parsing an [`Index`] we can do: |
666 | /// |
667 | /// ``` |
668 | /// # use wast::token::*; |
669 | /// # use wast::parser::*; |
670 | /// enum Index<'a> { |
671 | /// Num(u32), |
672 | /// Id(Id<'a>), |
673 | /// } |
674 | /// |
675 | /// impl<'a> Parse<'a> for Index<'a> { |
676 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
677 | /// let mut l = parser.lookahead1(); |
678 | /// if l.peek::<Id>()? { |
679 | /// Ok(Index::Id(parser.parse()?)) |
680 | /// } else if l.peek::<u32>()? { |
681 | /// Ok(Index::Num(parser.parse()?)) |
682 | /// } else { |
683 | /// // produces error message of `expected identifier or u32` |
684 | /// Err(l.error()) |
685 | /// } |
686 | /// } |
687 | /// } |
688 | /// ``` |
689 | /// |
690 | /// [spec]: https://webassembly.github.io/spec/core/text/modules.html#indices |
691 | /// [`Index`]: crate::token::Index |
692 | /// [`Id`]: crate::token::Id |
693 | pub fn lookahead1(self) -> Lookahead1<'a> { |
694 | Lookahead1 { |
695 | attempts: Vec::new(), |
696 | parser: self, |
697 | } |
698 | } |
699 | |
700 | /// Parse an item surrounded by parentheses. |
701 | /// |
702 | /// WebAssembly's text format is all based on s-expressions, so naturally |
703 | /// you're going to want to parse a lot of parenthesized things! As noted in |
704 | /// the documentation of [`Parse`] you typically don't parse your own |
705 | /// surrounding `(` and `)` tokens, but the parser above you parsed them for |
706 | /// you. This is method method the parser above you uses. |
707 | /// |
708 | /// This method will parse a `(` token, and then call `f` on a sub-parser |
709 | /// which when finished asserts that a `)` token is the next token. This |
710 | /// requires that `f` consumes all tokens leading up to the paired `)`. |
711 | /// |
712 | /// Usage will often simply be `parser.parens(|p| p.parse())?` to |
713 | /// automatically parse a type within parentheses, but you can, as always, |
714 | /// go crazy and do whatever you'd like too. |
715 | /// |
716 | /// # Examples |
717 | /// |
718 | /// A good example of this is to see how a `Module` is parsed. This isn't |
719 | /// the exact definition, but it's close enough! |
720 | /// |
721 | /// ``` |
722 | /// # use wast::kw; |
723 | /// # use wast::core::*; |
724 | /// # use wast::parser::*; |
725 | /// struct Module<'a> { |
726 | /// fields: Vec<ModuleField<'a>>, |
727 | /// } |
728 | /// |
729 | /// impl<'a> Parse<'a> for Module<'a> { |
730 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
731 | /// // Modules start out with a `module` keyword |
732 | /// parser.parse::<kw::module>()?; |
733 | /// |
734 | /// // And then everything else is `(field ...)`, so while we've got |
735 | /// // items left we continuously parse parenthesized items. |
736 | /// let mut fields = Vec::new(); |
737 | /// while !parser.is_empty() { |
738 | /// fields.push(parser.parens(|p| p.parse())?); |
739 | /// } |
740 | /// Ok(Module { fields }) |
741 | /// } |
742 | /// } |
743 | /// ``` |
744 | pub fn parens<T>(self, f: impl FnOnce(Parser<'a>) -> Result<T>) -> Result<T> { |
745 | self.buf.depth.set(self.buf.depth.get() + 1); |
746 | let before = self.buf.cur.get(); |
747 | let res = self.step(|cursor| { |
748 | let mut cursor = match cursor.lparen()? { |
749 | Some(rest) => rest, |
750 | None => return Err(cursor.error("expected `(`" )), |
751 | }; |
752 | cursor.parser.buf.cur.set(cursor.pos); |
753 | let result = f(cursor.parser)?; |
754 | |
755 | // Reset our cursor's state to whatever the current state of the |
756 | // parser is. |
757 | cursor.pos = cursor.parser.buf.cur.get(); |
758 | |
759 | match cursor.rparen()? { |
760 | Some(rest) => Ok((result, rest)), |
761 | None => Err(cursor.error("expected `)`" )), |
762 | } |
763 | }); |
764 | self.buf.depth.set(self.buf.depth.get() - 1); |
765 | if res.is_err() { |
766 | self.buf.cur.set(before); |
767 | } |
768 | res |
769 | } |
770 | |
771 | /// Return the depth of nested parens we've parsed so far. |
772 | /// |
773 | /// This is a low-level method that is only useful for implementing |
774 | /// recursion limits in custom parsers. |
775 | pub fn parens_depth(&self) -> usize { |
776 | self.buf.depth.get() |
777 | } |
778 | |
779 | /// Checks that the parser parens depth hasn't exceeded the maximum depth. |
780 | #[cfg (feature = "wasm-module" )] |
781 | pub(crate) fn depth_check(&self) -> Result<()> { |
782 | if self.parens_depth() > MAX_PARENS_DEPTH { |
783 | Err(self.error("item nesting too deep" )) |
784 | } else { |
785 | Ok(()) |
786 | } |
787 | } |
788 | |
789 | fn cursor(self) -> Cursor<'a> { |
790 | Cursor { |
791 | parser: self, |
792 | pos: self.buf.cur.get(), |
793 | } |
794 | } |
795 | |
796 | /// A low-level parsing method you probably won't use. |
797 | /// |
798 | /// This is used to implement parsing of the most primitive types in the |
799 | /// [`core`](crate::core) module. You probably don't want to use this, but |
800 | /// probably want to use something like [`Parser::parse`] or |
801 | /// [`Parser::parens`]. |
802 | pub fn step<F, T>(self, f: F) -> Result<T> |
803 | where |
804 | F: FnOnce(Cursor<'a>) -> Result<(T, Cursor<'a>)>, |
805 | { |
806 | let (result, cursor) = f(self.cursor())?; |
807 | self.buf.cur.set(cursor.pos); |
808 | Ok(result) |
809 | } |
810 | |
811 | /// Creates an error whose line/column information is pointing at the |
812 | /// current token. |
813 | /// |
814 | /// This is used to produce human-readable error messages which point to the |
815 | /// right location in the input stream, and the `msg` here is arbitrary text |
816 | /// used to associate with the error and indicate why it was generated. |
817 | pub fn error(self, msg: impl fmt::Display) -> Error { |
818 | self.error_at(self.cursor().cur_span(), msg) |
819 | } |
820 | |
821 | /// Creates an error whose line/column information is pointing at the |
822 | /// given span. |
823 | pub fn error_at(self, span: Span, msg: impl fmt::Display) -> Error { |
824 | Error::parse(span, self.buf.lexer.input(), msg.to_string()) |
825 | } |
826 | |
827 | /// Returns the span of the current token |
828 | pub fn cur_span(&self) -> Span { |
829 | self.cursor().cur_span() |
830 | } |
831 | |
832 | /// Returns the span of the previous token |
833 | pub fn prev_span(&self) -> Span { |
834 | self.cursor() |
835 | .prev_span() |
836 | .unwrap_or_else(|| Span::from_offset(0)) |
837 | } |
838 | |
839 | /// Registers a new known annotation with this parser to allow parsing |
840 | /// annotations with this name. |
841 | /// |
842 | /// [WebAssembly annotations][annotation] are a proposal for the text format |
843 | /// which allows decorating the text format with custom structured |
844 | /// information. By default all annotations are ignored when parsing, but |
845 | /// the whole purpose of them is to sometimes parse them! |
846 | /// |
847 | /// To support parsing text annotations this method is used to allow |
848 | /// annotations and their tokens to *not* be skipped. Once an annotation is |
849 | /// registered with this method, then while the return value has not been |
850 | /// dropped (e.g. the scope of where this function is called) annotations |
851 | /// with the name `annotation` will be parse of the token stream and not |
852 | /// implicitly skipped. |
853 | /// |
854 | /// # Skipping annotations |
855 | /// |
856 | /// The behavior of skipping unknown/unregistered annotations can be |
857 | /// somewhat subtle and surprising, so if you're interested in parsing |
858 | /// annotations it's important to point out the importance of this method |
859 | /// and where to call it. |
860 | /// |
861 | /// Generally when parsing tokens you'll be bottoming out in various |
862 | /// `Cursor` methods. These are all documented as advancing the stream as |
863 | /// much as possible to the next token, skipping "irrelevant stuff" like |
864 | /// comments, whitespace, etc. The `Cursor` methods will also skip unknown |
865 | /// annotations. This means that if you parse *any* token, it will skip over |
866 | /// any number of annotations that are unknown at all times. |
867 | /// |
868 | /// To parse an annotation you must, before parsing any token of the |
869 | /// annotation, register the annotation via this method. This includes the |
870 | /// beginning `(` token, which is otherwise skipped if the annotation isn't |
871 | /// marked as registered. Typically parser parse the *contents* of an |
872 | /// s-expression, so this means that the outer parser of an s-expression |
873 | /// must register the custom annotation name, rather than the inner parser. |
874 | /// |
875 | /// # Return |
876 | /// |
877 | /// This function returns an RAII guard which, when dropped, will unregister |
878 | /// the `annotation` given. Parsing `annotation` is only supported while the |
879 | /// returned value is still alive, and once dropped the parser will go back |
880 | /// to skipping annotations with the name `annotation`. |
881 | /// |
882 | /// # Example |
883 | /// |
884 | /// Let's see an example of how the `@name` annotation is parsed for modules |
885 | /// to get an idea of how this works: |
886 | /// |
887 | /// ``` |
888 | /// # use wast::kw; |
889 | /// # use wast::token::NameAnnotation; |
890 | /// # use wast::parser::*; |
891 | /// struct Module<'a> { |
892 | /// name: Option<NameAnnotation<'a>>, |
893 | /// } |
894 | /// |
895 | /// impl<'a> Parse<'a> for Module<'a> { |
896 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
897 | /// // Modules start out with a `module` keyword |
898 | /// parser.parse::<kw::module>()?; |
899 | /// |
900 | /// // Next may be `(@name "foo")`. Typically this annotation would |
901 | /// // skipped, but we don't want it skipped, so we register it. |
902 | /// // Note that the parse implementation of |
903 | /// // `Option<NameAnnotation>` is the one that consumes the |
904 | /// // parentheses here. |
905 | /// let _r = parser.register_annotation("name" ); |
906 | /// let name = parser.parse()?; |
907 | /// |
908 | /// // ... and normally you'd otherwise parse module fields here ... |
909 | /// |
910 | /// Ok(Module { name }) |
911 | /// } |
912 | /// } |
913 | /// ``` |
914 | /// |
915 | /// Another example is how we parse the `@custom` annotation. Note that this |
916 | /// is parsed as part of `ModuleField`, so note how the annotation is |
917 | /// registered *before* we parse the parentheses of the annotation. |
918 | /// |
919 | /// ``` |
920 | /// # use wast::{kw, annotation}; |
921 | /// # use wast::core::Custom; |
922 | /// # use wast::parser::*; |
923 | /// struct Module<'a> { |
924 | /// fields: Vec<ModuleField<'a>>, |
925 | /// } |
926 | /// |
927 | /// impl<'a> Parse<'a> for Module<'a> { |
928 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
929 | /// // Modules start out with a `module` keyword |
930 | /// parser.parse::<kw::module>()?; |
931 | /// |
932 | /// // register the `@custom` annotation *first* before we start |
933 | /// // parsing fields, because each field is contained in |
934 | /// // parentheses and to parse the parentheses of an annotation we |
935 | /// // have to known to not skip it. |
936 | /// let _r = parser.register_annotation("custom" ); |
937 | /// |
938 | /// let mut fields = Vec::new(); |
939 | /// while !parser.is_empty() { |
940 | /// fields.push(parser.parens(|p| p.parse())?); |
941 | /// } |
942 | /// Ok(Module { fields }) |
943 | /// } |
944 | /// } |
945 | /// |
946 | /// enum ModuleField<'a> { |
947 | /// Custom(Custom<'a>), |
948 | /// // ... |
949 | /// } |
950 | /// |
951 | /// impl<'a> Parse<'a> for ModuleField<'a> { |
952 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
953 | /// // Note that because we have previously registered the `@custom` |
954 | /// // annotation with the parser we known that `peek` methods like |
955 | /// // this, working on the annotation token, are enabled to ever |
956 | /// // return `true`. |
957 | /// if parser.peek::<annotation::custom>()? { |
958 | /// return Ok(ModuleField::Custom(parser.parse()?)); |
959 | /// } |
960 | /// |
961 | /// // .. typically we'd parse other module fields here... |
962 | /// |
963 | /// Err(parser.error("unknown module field" )) |
964 | /// } |
965 | /// } |
966 | /// ``` |
967 | /// |
968 | /// [annotation]: https://github.com/WebAssembly/annotations |
969 | pub fn register_annotation<'b>(self, annotation: &'b str) -> impl Drop + 'b |
970 | where |
971 | 'a: 'b, |
972 | { |
973 | let mut annotations = self.buf.known_annotations.borrow_mut(); |
974 | if !annotations.contains_key(annotation) { |
975 | annotations.insert(annotation.to_string(), 0); |
976 | } |
977 | *annotations.get_mut(annotation).unwrap() += 1; |
978 | |
979 | return RemoveOnDrop(self, annotation); |
980 | |
981 | struct RemoveOnDrop<'a>(Parser<'a>, &'a str); |
982 | |
983 | impl Drop for RemoveOnDrop<'_> { |
984 | fn drop(&mut self) { |
985 | let mut annotations = self.0.buf.known_annotations.borrow_mut(); |
986 | let slot = annotations.get_mut(self.1).unwrap(); |
987 | *slot -= 1; |
988 | } |
989 | } |
990 | } |
991 | |
992 | #[cfg (feature = "wasm-module" )] |
993 | pub(crate) fn track_instr_spans(&self) -> bool { |
994 | self.buf.track_instr_spans |
995 | } |
996 | |
997 | #[cfg (feature = "wasm-module" )] |
998 | pub(crate) fn with_standard_annotations_registered<R>( |
999 | self, |
1000 | f: impl FnOnce(Self) -> Result<R>, |
1001 | ) -> Result<R> { |
1002 | let _r = self.register_annotation("custom" ); |
1003 | let _r = self.register_annotation("producers" ); |
1004 | let _r = self.register_annotation("name" ); |
1005 | let _r = self.register_annotation("dylink.0" ); |
1006 | let _r = self.register_annotation("metadata.code.branch_hint" ); |
1007 | f(self) |
1008 | } |
1009 | } |
1010 | |
1011 | impl<'a> Cursor<'a> { |
1012 | /// Returns the span of the next `Token` token. |
1013 | /// |
1014 | /// Does not take into account whitespace or comments. |
1015 | pub fn cur_span(&self) -> Span { |
1016 | let offset = match self.token() { |
1017 | Ok(Some(t)) => t.offset, |
1018 | Ok(None) => self.parser.buf.lexer.input().len(), |
1019 | Err(_) => self.pos.offset, |
1020 | }; |
1021 | Span { offset } |
1022 | } |
1023 | |
1024 | /// Returns the span of the previous `Token` token. |
1025 | /// |
1026 | /// Does not take into account whitespace or comments. |
1027 | pub(crate) fn prev_span(&self) -> Option<Span> { |
1028 | // TODO |
1029 | Some(Span { |
1030 | offset: self.pos.offset, |
1031 | }) |
1032 | // let (token, _) = self.parser.buf.tokens.get(self.cur.checked_sub(1)?)?; |
1033 | // Some(Span { |
1034 | // offset: token.offset, |
1035 | // }) |
1036 | } |
1037 | |
1038 | /// Same as [`Parser::error`], but works with the current token in this |
1039 | /// [`Cursor`] instead. |
1040 | pub fn error(&self, msg: impl fmt::Display) -> Error { |
1041 | self.parser.error_at(self.cur_span(), msg) |
1042 | } |
1043 | |
1044 | /// Tests whether the next token is an lparen |
1045 | pub fn peek_lparen(self) -> Result<bool> { |
1046 | Ok(matches!( |
1047 | self.token()?, |
1048 | Some(Token { |
1049 | kind: TokenKind::LParen, |
1050 | .. |
1051 | }) |
1052 | )) |
1053 | } |
1054 | |
1055 | /// Tests whether the next token is an rparen |
1056 | pub fn peek_rparen(self) -> Result<bool> { |
1057 | Ok(matches!( |
1058 | self.token()?, |
1059 | Some(Token { |
1060 | kind: TokenKind::RParen, |
1061 | .. |
1062 | }) |
1063 | )) |
1064 | } |
1065 | |
1066 | /// Tests whether the next token is an id |
1067 | pub fn peek_id(self) -> Result<bool> { |
1068 | Ok(matches!( |
1069 | self.token()?, |
1070 | Some(Token { |
1071 | kind: TokenKind::Id, |
1072 | .. |
1073 | }) |
1074 | )) |
1075 | } |
1076 | |
1077 | /// Tests whether the next token is reserved |
1078 | pub fn peek_reserved(self) -> Result<bool> { |
1079 | Ok(matches!( |
1080 | self.token()?, |
1081 | Some(Token { |
1082 | kind: TokenKind::Reserved, |
1083 | .. |
1084 | }) |
1085 | )) |
1086 | } |
1087 | |
1088 | /// Tests whether the next token is a keyword |
1089 | pub fn peek_keyword(self) -> Result<bool> { |
1090 | Ok(matches!( |
1091 | self.token()?, |
1092 | Some(Token { |
1093 | kind: TokenKind::Keyword, |
1094 | .. |
1095 | }) |
1096 | )) |
1097 | } |
1098 | |
1099 | /// Tests whether the next token is an integer |
1100 | pub fn peek_integer(self) -> Result<bool> { |
1101 | Ok(matches!( |
1102 | self.token()?, |
1103 | Some(Token { |
1104 | kind: TokenKind::Integer(_), |
1105 | .. |
1106 | }) |
1107 | )) |
1108 | } |
1109 | |
1110 | /// Tests whether the next token is a float |
1111 | pub fn peek_float(self) -> Result<bool> { |
1112 | Ok(matches!( |
1113 | self.token()?, |
1114 | Some(Token { |
1115 | kind: TokenKind::Float(_), |
1116 | .. |
1117 | }) |
1118 | )) |
1119 | } |
1120 | |
1121 | /// Tests whether the next token is a string |
1122 | pub fn peek_string(self) -> Result<bool> { |
1123 | Ok(matches!( |
1124 | self.token()?, |
1125 | Some(Token { |
1126 | kind: TokenKind::String, |
1127 | .. |
1128 | }) |
1129 | )) |
1130 | } |
1131 | |
1132 | /// Attempts to advance this cursor if the current token is a `(`. |
1133 | /// |
1134 | /// If the current token is `(`, returns a new [`Cursor`] pointing at the |
1135 | /// rest of the tokens in the stream. Otherwise returns `None`. |
1136 | /// |
1137 | /// This function will automatically skip over any comments, whitespace, or |
1138 | /// unknown annotations. |
1139 | pub fn lparen(mut self) -> Result<Option<Self>> { |
1140 | let token = match self.token()? { |
1141 | Some(token) => token, |
1142 | None => return Ok(None), |
1143 | }; |
1144 | match token.kind { |
1145 | TokenKind::LParen => {} |
1146 | _ => return Ok(None), |
1147 | } |
1148 | self.advance_past(&token); |
1149 | Ok(Some(self)) |
1150 | } |
1151 | |
1152 | /// Attempts to advance this cursor if the current token is a `)`. |
1153 | /// |
1154 | /// If the current token is `)`, returns a new [`Cursor`] pointing at the |
1155 | /// rest of the tokens in the stream. Otherwise returns `None`. |
1156 | /// |
1157 | /// This function will automatically skip over any comments, whitespace, or |
1158 | /// unknown annotations. |
1159 | pub fn rparen(mut self) -> Result<Option<Self>> { |
1160 | let token = match self.token()? { |
1161 | Some(token) => token, |
1162 | None => return Ok(None), |
1163 | }; |
1164 | match token.kind { |
1165 | TokenKind::RParen => {} |
1166 | _ => return Ok(None), |
1167 | } |
1168 | self.advance_past(&token); |
1169 | Ok(Some(self)) |
1170 | } |
1171 | |
1172 | /// Attempts to advance this cursor if the current token is a |
1173 | /// [`Token::Id`](crate::lexer::Token) |
1174 | /// |
1175 | /// If the current token is `Id`, returns the identifier minus the leading |
1176 | /// `$` character as well as a new [`Cursor`] pointing at the rest of the |
1177 | /// tokens in the stream. Otherwise returns `None`. |
1178 | /// |
1179 | /// This function will automatically skip over any comments, whitespace, or |
1180 | /// unknown annotations. |
1181 | pub fn id(mut self) -> Result<Option<(&'a str, Self)>> { |
1182 | let token = match self.token()? { |
1183 | Some(token) => token, |
1184 | None => return Ok(None), |
1185 | }; |
1186 | match token.kind { |
1187 | TokenKind::Id => {} |
1188 | _ => return Ok(None), |
1189 | } |
1190 | self.advance_past(&token); |
1191 | let id = match token.id(self.parser.buf.lexer.input())? { |
1192 | Cow::Borrowed(id) => id, |
1193 | // Our `self.parser.buf` only retains `Vec<u8>` so briefly convert |
1194 | // this owned string to `Vec<u8>` and then convert it back to `&str` |
1195 | // out the other end. |
1196 | Cow::Owned(s) => std::str::from_utf8(self.parser.buf.push_str(s.into_bytes())).unwrap(), |
1197 | }; |
1198 | Ok(Some((id, self))) |
1199 | } |
1200 | |
1201 | /// Attempts to advance this cursor if the current token is a |
1202 | /// [`Token::Keyword`](crate::lexer::Token) |
1203 | /// |
1204 | /// If the current token is `Keyword`, returns the keyword as well as a new |
1205 | /// [`Cursor`] pointing at the rest of the tokens in the stream. Otherwise |
1206 | /// returns `None`. |
1207 | /// |
1208 | /// This function will automatically skip over any comments, whitespace, or |
1209 | /// unknown annotations. |
1210 | pub fn keyword(mut self) -> Result<Option<(&'a str, Self)>> { |
1211 | let token = match self.token()? { |
1212 | Some(token) => token, |
1213 | None => return Ok(None), |
1214 | }; |
1215 | match token.kind { |
1216 | TokenKind::Keyword => {} |
1217 | _ => return Ok(None), |
1218 | } |
1219 | self.advance_past(&token); |
1220 | Ok(Some((token.keyword(self.parser.buf.lexer.input()), self))) |
1221 | } |
1222 | |
1223 | /// Attempts to advance this cursor if the current token is a |
1224 | /// [`Token::Annotation`](crate::lexer::Token) |
1225 | /// |
1226 | /// If the current token is `Annotation`, returns the annotation token as well |
1227 | /// as a new [`Cursor`] pointing at the rest of the tokens in the stream. |
1228 | /// Otherwise returns `None`. |
1229 | /// |
1230 | /// This function will automatically skip over any comments, whitespace, or |
1231 | /// unknown annotations. |
1232 | pub fn annotation(mut self) -> Result<Option<(&'a str, Self)>> { |
1233 | let token = match self.token()? { |
1234 | Some(token) => token, |
1235 | None => return Ok(None), |
1236 | }; |
1237 | match token.kind { |
1238 | TokenKind::Annotation => {} |
1239 | _ => return Ok(None), |
1240 | } |
1241 | self.advance_past(&token); |
1242 | let annotation = match token.annotation(self.parser.buf.lexer.input())? { |
1243 | Cow::Borrowed(id) => id, |
1244 | // Our `self.parser.buf` only retains `Vec<u8>` so briefly convert |
1245 | // this owned string to `Vec<u8>` and then convert it back to `&str` |
1246 | // out the other end. |
1247 | Cow::Owned(s) => std::str::from_utf8(self.parser.buf.push_str(s.into_bytes())).unwrap(), |
1248 | }; |
1249 | Ok(Some((annotation, self))) |
1250 | } |
1251 | |
1252 | /// Attempts to advance this cursor if the current token is a |
1253 | /// [`Token::Reserved`](crate::lexer::Token) |
1254 | /// |
1255 | /// If the current token is `Reserved`, returns the reserved token as well |
1256 | /// as a new [`Cursor`] pointing at the rest of the tokens in the stream. |
1257 | /// Otherwise returns `None`. |
1258 | /// |
1259 | /// This function will automatically skip over any comments, whitespace, or |
1260 | /// unknown annotations. |
1261 | pub fn reserved(mut self) -> Result<Option<(&'a str, Self)>> { |
1262 | let token = match self.token()? { |
1263 | Some(token) => token, |
1264 | None => return Ok(None), |
1265 | }; |
1266 | match token.kind { |
1267 | TokenKind::Reserved => {} |
1268 | _ => return Ok(None), |
1269 | } |
1270 | self.advance_past(&token); |
1271 | Ok(Some((token.reserved(self.parser.buf.lexer.input()), self))) |
1272 | } |
1273 | |
1274 | /// Attempts to advance this cursor if the current token is a |
1275 | /// [`Token::Integer`](crate::lexer::Token) |
1276 | /// |
1277 | /// If the current token is `Integer`, returns the integer as well as a new |
1278 | /// [`Cursor`] pointing at the rest of the tokens in the stream. Otherwise |
1279 | /// returns `None`. |
1280 | /// |
1281 | /// This function will automatically skip over any comments, whitespace, or |
1282 | /// unknown annotations. |
1283 | pub fn integer(mut self) -> Result<Option<(Integer<'a>, Self)>> { |
1284 | let token = match self.token()? { |
1285 | Some(token) => token, |
1286 | None => return Ok(None), |
1287 | }; |
1288 | let i = match token.kind { |
1289 | TokenKind::Integer(i) => i, |
1290 | _ => return Ok(None), |
1291 | }; |
1292 | self.advance_past(&token); |
1293 | Ok(Some(( |
1294 | token.integer(self.parser.buf.lexer.input(), i), |
1295 | self, |
1296 | ))) |
1297 | } |
1298 | |
1299 | /// Attempts to advance this cursor if the current token is a |
1300 | /// [`Token::Float`](crate::lexer::Token) |
1301 | /// |
1302 | /// If the current token is `Float`, returns the float as well as a new |
1303 | /// [`Cursor`] pointing at the rest of the tokens in the stream. Otherwise |
1304 | /// returns `None`. |
1305 | /// |
1306 | /// This function will automatically skip over any comments, whitespace, or |
1307 | /// unknown annotations. |
1308 | pub fn float(mut self) -> Result<Option<(Float<'a>, Self)>> { |
1309 | let token = match self.token()? { |
1310 | Some(token) => token, |
1311 | None => return Ok(None), |
1312 | }; |
1313 | let f = match token.kind { |
1314 | TokenKind::Float(f) => f, |
1315 | _ => return Ok(None), |
1316 | }; |
1317 | self.advance_past(&token); |
1318 | Ok(Some((token.float(self.parser.buf.lexer.input(), f), self))) |
1319 | } |
1320 | |
1321 | /// Attempts to advance this cursor if the current token is a |
1322 | /// [`Token::String`](crate::lexer::Token) |
1323 | /// |
1324 | /// If the current token is `String`, returns the byte value of the string |
1325 | /// as well as a new [`Cursor`] pointing at the rest of the tokens in the |
1326 | /// stream. Otherwise returns `None`. |
1327 | /// |
1328 | /// This function will automatically skip over any comments, whitespace, or |
1329 | /// unknown annotations. |
1330 | pub fn string(mut self) -> Result<Option<(&'a [u8], Self)>> { |
1331 | let token = match self.token()? { |
1332 | Some(token) => token, |
1333 | None => return Ok(None), |
1334 | }; |
1335 | match token.kind { |
1336 | TokenKind::String => {} |
1337 | _ => return Ok(None), |
1338 | } |
1339 | let string = match token.string(self.parser.buf.lexer.input()) { |
1340 | Cow::Borrowed(s) => s, |
1341 | Cow::Owned(s) => self.parser.buf.push_str(s), |
1342 | }; |
1343 | self.advance_past(&token); |
1344 | Ok(Some((string, self))) |
1345 | } |
1346 | |
1347 | /// Attempts to advance this cursor if the current token is a |
1348 | /// [`Token::LineComment`](crate::lexer::Token) or a |
1349 | /// [`Token::BlockComment`](crate::lexer::Token) |
1350 | /// |
1351 | /// This function will only skip whitespace, no other tokens. |
1352 | pub fn comment(mut self) -> Result<Option<(&'a str, Self)>> { |
1353 | let start = self.pos.offset; |
1354 | self.pos.token = None; |
1355 | let comment = loop { |
1356 | let token = match self.parser.buf.lexer.parse(&mut self.pos.offset)? { |
1357 | Some(token) => token, |
1358 | None => return Ok(None), |
1359 | }; |
1360 | match token.kind { |
1361 | TokenKind::LineComment | TokenKind::BlockComment => { |
1362 | break token.src(self.parser.buf.lexer.input()); |
1363 | } |
1364 | TokenKind::Whitespace => {} |
1365 | _ => { |
1366 | self.pos.offset = start; |
1367 | return Ok(None); |
1368 | } |
1369 | } |
1370 | }; |
1371 | Ok(Some((comment, self))) |
1372 | } |
1373 | |
1374 | fn token(&self) -> Result<Option<Token>> { |
1375 | match self.pos.token { |
1376 | Some(token) => Ok(Some(token)), |
1377 | None => self.parser.buf.advance_token(self.pos.offset), |
1378 | } |
1379 | } |
1380 | |
1381 | fn advance_past(&mut self, token: &Token) { |
1382 | self.pos.offset = token.offset + (token.len as usize); |
1383 | self.pos.token = self |
1384 | .parser |
1385 | .buf |
1386 | .advance_token(self.pos.offset) |
1387 | .unwrap_or(None); |
1388 | } |
1389 | } |
1390 | |
1391 | impl Lookahead1<'_> { |
1392 | /// Attempts to see if `T` is the next token in the [`Parser`] this |
1393 | /// [`Lookahead1`] references. |
1394 | /// |
1395 | /// For more information see [`Parser::lookahead1`] and [`Parser::peek`] |
1396 | pub fn peek<T: Peek>(&mut self) -> Result<bool> { |
1397 | Ok(if self.parser.peek::<T>()? { |
1398 | true |
1399 | } else { |
1400 | self.attempts.push(T::display()); |
1401 | false |
1402 | }) |
1403 | } |
1404 | |
1405 | /// Generates an error message saying that one of the tokens passed to |
1406 | /// [`Lookahead1::peek`] method was expected. |
1407 | /// |
1408 | /// Before calling this method you should call [`Lookahead1::peek`] for all |
1409 | /// possible tokens you'd like to parse. |
1410 | pub fn error(self) -> Error { |
1411 | match self.attempts.len() { |
1412 | 0 => { |
1413 | if self.parser.is_empty() { |
1414 | self.parser.error("unexpected end of input" ) |
1415 | } else { |
1416 | self.parser.error("unexpected token" ) |
1417 | } |
1418 | } |
1419 | 1 => { |
1420 | let message = format!("unexpected token, expected {}" , self.attempts[0]); |
1421 | self.parser.error(&message) |
1422 | } |
1423 | 2 => { |
1424 | let message = format!( |
1425 | "unexpected token, expected {} or {}" , |
1426 | self.attempts[0], self.attempts[1] |
1427 | ); |
1428 | self.parser.error(&message) |
1429 | } |
1430 | _ => { |
1431 | let join = self.attempts.join(", " ); |
1432 | let message = format!("unexpected token, expected one of: {}" , join); |
1433 | self.parser.error(&message) |
1434 | } |
1435 | } |
1436 | } |
1437 | } |
1438 | |
1439 | impl<'a, T: Peek + Parse<'a>> Parse<'a> for Option<T> { |
1440 | fn parse(parser: Parser<'a>) -> Result<Option<T>> { |
1441 | if parser.peek::<T>()? { |
1442 | Ok(Some(parser.parse()?)) |
1443 | } else { |
1444 | Ok(None) |
1445 | } |
1446 | } |
1447 | } |
1448 | |