| 1 | //! Traits for parsing the WebAssembly Text format |
| 2 | //! |
| 3 | //! This module contains the traits, abstractions, and utilities needed to |
| 4 | //! define custom parsers for WebAssembly text format items. This module exposes |
| 5 | //! a recursive descent parsing strategy and centers around the [`Parse`] trait |
| 6 | //! for defining new fragments of WebAssembly text syntax. |
| 7 | //! |
| 8 | //! The top-level [`parse`] function can be used to fully parse AST fragments: |
| 9 | //! |
| 10 | //! ``` |
| 11 | //! use wast::Wat; |
| 12 | //! use wast::parser::{self, ParseBuffer}; |
| 13 | //! |
| 14 | //! # fn foo() -> Result<(), wast::Error> { |
| 15 | //! let wat = "(module (func))" ; |
| 16 | //! let buf = ParseBuffer::new(wat)?; |
| 17 | //! let module = parser::parse::<Wat>(&buf)?; |
| 18 | //! # Ok(()) |
| 19 | //! # } |
| 20 | //! ``` |
| 21 | //! |
| 22 | //! and you can also define your own new syntax with the [`Parse`] trait: |
| 23 | //! |
| 24 | //! ``` |
| 25 | //! use wast::kw; |
| 26 | //! use wast::core::{Import, Func}; |
| 27 | //! use wast::parser::{Parser, Parse, Result}; |
| 28 | //! |
| 29 | //! // Fields of a WebAssembly which only allow imports and functions, and all |
| 30 | //! // imports must come before all the functions |
| 31 | //! struct OnlyImportsAndFunctions<'a> { |
| 32 | //! imports: Vec<Import<'a>>, |
| 33 | //! functions: Vec<Func<'a>>, |
| 34 | //! } |
| 35 | //! |
| 36 | //! impl<'a> Parse<'a> for OnlyImportsAndFunctions<'a> { |
| 37 | //! fn parse(parser: Parser<'a>) -> Result<Self> { |
| 38 | //! // While the second token is `import` (the first is `(`, so we care |
| 39 | //! // about the second) we parse an `ast::ModuleImport` inside of |
| 40 | //! // parentheses. The `parens` function here ensures that what we |
| 41 | //! // parse inside of it is surrounded by `(` and `)`. |
| 42 | //! let mut imports = Vec::new(); |
| 43 | //! while parser.peek2::<kw::import>()? { |
| 44 | //! let import = parser.parens(|p| p.parse())?; |
| 45 | //! imports.push(import); |
| 46 | //! } |
| 47 | //! |
| 48 | //! // Afterwards we assume everything else is a function. Note that |
| 49 | //! // `parse` here is a generic function and type inference figures out |
| 50 | //! // that we're parsing functions here and imports above. |
| 51 | //! let mut functions = Vec::new(); |
| 52 | //! while !parser.is_empty() { |
| 53 | //! let func = parser.parens(|p| p.parse())?; |
| 54 | //! functions.push(func); |
| 55 | //! } |
| 56 | //! |
| 57 | //! Ok(OnlyImportsAndFunctions { imports, functions }) |
| 58 | //! } |
| 59 | //! } |
| 60 | //! ``` |
| 61 | //! |
| 62 | //! This module is heavily inspired by [`syn`](https://docs.rs/syn) so you can |
| 63 | //! likely also draw inspiration from the excellent examples in the `syn` crate. |
| 64 | |
| 65 | use crate::lexer::{Float, Integer, Lexer, Token, TokenKind}; |
| 66 | use crate::token::Span; |
| 67 | use crate::Error; |
| 68 | use bumpalo::Bump; |
| 69 | use std::borrow::Cow; |
| 70 | use std::cell::{Cell, RefCell}; |
| 71 | use std::collections::HashMap; |
| 72 | use std::fmt; |
| 73 | use std::usize; |
| 74 | |
| 75 | /// The maximum recursive depth of parens to parse. |
| 76 | /// |
| 77 | /// This is sort of a fundamental limitation of the way this crate is |
| 78 | /// designed. Everything is done through recursive descent parsing which |
| 79 | /// means, well, that we're recursively going down the stack as we parse |
| 80 | /// nested data structures. While we can handle this for wasm expressions |
| 81 | /// since that's a pretty local decision, handling this for nested |
| 82 | /// modules/components which be far trickier. For now we just say that when |
| 83 | /// the parser goes too deep we return an error saying there's too many |
| 84 | /// nested items. It would be great to not return an error here, though! |
| 85 | #[cfg (feature = "wasm-module" )] |
| 86 | pub(crate) const MAX_PARENS_DEPTH: usize = 100; |
| 87 | |
| 88 | /// A top-level convenience parsing function that parses a `T` from `buf` and |
| 89 | /// requires that all tokens in `buf` are consume. |
| 90 | /// |
| 91 | /// This generic parsing function can be used to parse any `T` implementing the |
| 92 | /// [`Parse`] trait. It is not used from [`Parse`] trait implementations. |
| 93 | /// |
| 94 | /// # Examples |
| 95 | /// |
| 96 | /// ``` |
| 97 | /// use wast::Wat; |
| 98 | /// use wast::parser::{self, ParseBuffer}; |
| 99 | /// |
| 100 | /// # fn foo() -> Result<(), wast::Error> { |
| 101 | /// let wat = "(module (func))" ; |
| 102 | /// let buf = ParseBuffer::new(wat)?; |
| 103 | /// let module = parser::parse::<Wat>(&buf)?; |
| 104 | /// # Ok(()) |
| 105 | /// # } |
| 106 | /// ``` |
| 107 | /// |
| 108 | /// or parsing simply a fragment |
| 109 | /// |
| 110 | /// ``` |
| 111 | /// use wast::parser::{self, ParseBuffer}; |
| 112 | /// |
| 113 | /// # fn foo() -> Result<(), wast::Error> { |
| 114 | /// let wat = "12" ; |
| 115 | /// let buf = ParseBuffer::new(wat)?; |
| 116 | /// let val = parser::parse::<u32>(&buf)?; |
| 117 | /// assert_eq!(val, 12); |
| 118 | /// # Ok(()) |
| 119 | /// # } |
| 120 | /// ``` |
| 121 | pub fn parse<'a, T: Parse<'a>>(buf: &'a ParseBuffer<'a>) -> Result<T> { |
| 122 | let parser: Parser<'_> = buf.parser(); |
| 123 | let result: T = parser.parse()?; |
| 124 | if parser.cursor().token()?.is_none() { |
| 125 | Ok(result) |
| 126 | } else { |
| 127 | Err(parser.error(msg:"extra tokens remaining after parse" )) |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | /// A trait for parsing a fragment of syntax in a recursive descent fashion. |
| 132 | /// |
| 133 | /// The [`Parse`] trait is main abstraction you'll be working with when defining |
| 134 | /// custom parser or custom syntax for your WebAssembly text format (or when |
| 135 | /// using the official format items). Almost all items in the |
| 136 | /// [`core`](crate::core) module implement the [`Parse`] trait, and you'll |
| 137 | /// commonly use this with: |
| 138 | /// |
| 139 | /// * The top-level [`parse`] function to parse an entire input. |
| 140 | /// * The intermediate [`Parser::parse`] function to parse an item out of an |
| 141 | /// input stream and then parse remaining items. |
| 142 | /// |
| 143 | /// Implementation of [`Parse`] take a [`Parser`] as input and will mutate the |
| 144 | /// parser as they parse syntax. Once a token is consume it cannot be |
| 145 | /// "un-consumed". Utilities such as [`Parser::peek`] and [`Parser::lookahead1`] |
| 146 | /// can be used to determine what to parse next. |
| 147 | /// |
| 148 | /// ## When to parse `(` and `)`? |
| 149 | /// |
| 150 | /// Conventionally types are not responsible for parsing their own `(` and `)` |
| 151 | /// tokens which surround the type. For example WebAssembly imports look like: |
| 152 | /// |
| 153 | /// ```text |
| 154 | /// (import "foo" "bar" (func (type 0))) |
| 155 | /// ``` |
| 156 | /// |
| 157 | /// but the [`Import`](crate::core::Import) type parser looks like: |
| 158 | /// |
| 159 | /// ``` |
| 160 | /// # use wast::kw; |
| 161 | /// # use wast::parser::{Parser, Parse, Result}; |
| 162 | /// # struct Import<'a>(&'a str); |
| 163 | /// impl<'a> Parse<'a> for Import<'a> { |
| 164 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| 165 | /// parser.parse::<kw::import>()?; |
| 166 | /// // ... |
| 167 | /// # panic!() |
| 168 | /// } |
| 169 | /// } |
| 170 | /// ``` |
| 171 | /// |
| 172 | /// It is assumed here that the `(` and `)` tokens which surround an `import` |
| 173 | /// statement in the WebAssembly text format are parsed by the parent item |
| 174 | /// parsing `Import`. |
| 175 | /// |
| 176 | /// Note that this is just a convention, so it's not necessarily required for |
| 177 | /// all types. It's recommended that your types stick to this convention where |
| 178 | /// possible to avoid nested calls to [`Parser::parens`] or accidentally trying |
| 179 | /// to parse too many parenthesis. |
| 180 | /// |
| 181 | /// # Examples |
| 182 | /// |
| 183 | /// Let's say you want to define your own WebAssembly text format which only |
| 184 | /// contains imports and functions. You also require all imports to be listed |
| 185 | /// before all functions. An example [`Parse`] implementation might look like: |
| 186 | /// |
| 187 | /// ``` |
| 188 | /// use wast::core::{Import, Func}; |
| 189 | /// use wast::kw; |
| 190 | /// use wast::parser::{Parser, Parse, Result}; |
| 191 | /// |
| 192 | /// // Fields of a WebAssembly which only allow imports and functions, and all |
| 193 | /// // imports must come before all the functions |
| 194 | /// struct OnlyImportsAndFunctions<'a> { |
| 195 | /// imports: Vec<Import<'a>>, |
| 196 | /// functions: Vec<Func<'a>>, |
| 197 | /// } |
| 198 | /// |
| 199 | /// impl<'a> Parse<'a> for OnlyImportsAndFunctions<'a> { |
| 200 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| 201 | /// // While the second token is `import` (the first is `(`, so we care |
| 202 | /// // about the second) we parse an `ast::ModuleImport` inside of |
| 203 | /// // parentheses. The `parens` function here ensures that what we |
| 204 | /// // parse inside of it is surrounded by `(` and `)`. |
| 205 | /// let mut imports = Vec::new(); |
| 206 | /// while parser.peek2::<kw::import>()? { |
| 207 | /// let import = parser.parens(|p| p.parse())?; |
| 208 | /// imports.push(import); |
| 209 | /// } |
| 210 | /// |
| 211 | /// // Afterwards we assume everything else is a function. Note that |
| 212 | /// // `parse` here is a generic function and type inference figures out |
| 213 | /// // that we're parsing functions here and imports above. |
| 214 | /// let mut functions = Vec::new(); |
| 215 | /// while !parser.is_empty() { |
| 216 | /// let func = parser.parens(|p| p.parse())?; |
| 217 | /// functions.push(func); |
| 218 | /// } |
| 219 | /// |
| 220 | /// Ok(OnlyImportsAndFunctions { imports, functions }) |
| 221 | /// } |
| 222 | /// } |
| 223 | /// ``` |
| 224 | pub trait Parse<'a>: Sized { |
| 225 | /// Attempts to parse `Self` from `parser`, returning an error if it could |
| 226 | /// not be parsed. |
| 227 | /// |
| 228 | /// This method will mutate the state of `parser` after attempting to parse |
| 229 | /// an instance of `Self`. If an error happens then it is likely fatal and |
| 230 | /// there is no guarantee of how many tokens have been consumed from |
| 231 | /// `parser`. |
| 232 | /// |
| 233 | /// As recommended in the documentation of [`Parse`], implementations of |
| 234 | /// this function should not start out by parsing `(` and `)` tokens, but |
| 235 | /// rather parents calling recursive parsers should parse the `(` and `)` |
| 236 | /// tokens for their child item that's being parsed. |
| 237 | /// |
| 238 | /// # Errors |
| 239 | /// |
| 240 | /// This function will return an error if `Self` could not be parsed. Note |
| 241 | /// that creating an [`Error`] is not exactly a cheap operation, so |
| 242 | /// [`Error`] is typically fatal and propagated all the way back to the top |
| 243 | /// parse call site. |
| 244 | fn parse(parser: Parser<'a>) -> Result<Self>; |
| 245 | } |
| 246 | |
| 247 | impl<'a, T> Parse<'a> for Box<T> |
| 248 | where |
| 249 | T: Parse<'a>, |
| 250 | { |
| 251 | fn parse(parser: Parser<'a>) -> Result<Self> { |
| 252 | Ok(Box::new(parser.parse()?)) |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | /// A trait for types which be used to "peek" to see if they're the next token |
| 257 | /// in an input stream of [`Parser`]. |
| 258 | /// |
| 259 | /// Often when implementing [`Parse`] you'll need to query what the next token |
| 260 | /// in the stream is to figure out what to parse next. This [`Peek`] trait |
| 261 | /// defines the set of types that can be tested whether they're the next token |
| 262 | /// in the input stream. |
| 263 | /// |
| 264 | /// Implementations of [`Peek`] should only be present on types that consume |
| 265 | /// exactly one token (not zero, not more, exactly one). Types implementing |
| 266 | /// [`Peek`] should also typically implement [`Parse`] should also typically |
| 267 | /// implement [`Parse`]. |
| 268 | /// |
| 269 | /// See the documentation of [`Parser::peek`] for example usage. |
| 270 | pub trait Peek { |
| 271 | /// Tests to see whether this token is the first token within the [`Cursor`] |
| 272 | /// specified. |
| 273 | /// |
| 274 | /// Returns `true` if [`Parse`] for this type is highly likely to succeed |
| 275 | /// failing no other error conditions happening (like an integer literal |
| 276 | /// being too big). |
| 277 | fn peek(cursor: Cursor<'_>) -> Result<bool>; |
| 278 | |
| 279 | /// The same as `peek`, except it checks the token immediately following |
| 280 | /// the current token. |
| 281 | fn peek2(mut cursor: Cursor<'_>) -> Result<bool> { |
| 282 | match cursor.token()? { |
| 283 | Some(token: Token) => cursor.advance_past(&token), |
| 284 | None => return Ok(false), |
| 285 | } |
| 286 | Self::peek(cursor) |
| 287 | } |
| 288 | |
| 289 | /// Returns a human-readable name of this token to display when generating |
| 290 | /// errors about this token missing. |
| 291 | fn display() -> &'static str; |
| 292 | } |
| 293 | |
| 294 | /// A convenience type definition for `Result` where the error is hardwired to |
| 295 | /// [`Error`]. |
| 296 | pub type Result<T, E = Error> = std::result::Result<T, E>; |
| 297 | |
| 298 | /// A low-level buffer of tokens which represents a completely lexed file. |
| 299 | /// |
| 300 | /// A `ParseBuffer` will immediately lex an entire file and then store all |
| 301 | /// tokens internally. A `ParseBuffer` only used to pass to the top-level |
| 302 | /// [`parse`] function. |
| 303 | pub struct ParseBuffer<'a> { |
| 304 | lexer: Lexer<'a>, |
| 305 | cur: Cell<Position>, |
| 306 | known_annotations: RefCell<HashMap<String, usize>>, |
| 307 | track_instr_spans: bool, |
| 308 | depth: Cell<usize>, |
| 309 | strings: Bump, |
| 310 | } |
| 311 | |
| 312 | /// The current position within a `Lexer` that we're at. This simultaneously |
| 313 | /// stores the byte position that the lexer was last positioned at as well as |
| 314 | /// the next significant token. |
| 315 | /// |
| 316 | /// Note that "significant" here does not mean that `token` is the next token |
| 317 | /// to be lexed at `offset`. Instead it's the next non-whitespace, |
| 318 | /// non-annotation, non-coment token. This simple cache-of-sorts avoids |
| 319 | /// re-parsing tokens the majority of the time, or at least that's the |
| 320 | /// intention. |
| 321 | /// |
| 322 | /// If `token` is set to `None` then it means that either it hasn't been |
| 323 | /// calculated at or the lexer is at EOF. Basically it means go talk to the |
| 324 | /// lexer. |
| 325 | #[derive (Copy, Clone)] |
| 326 | struct Position { |
| 327 | offset: usize, |
| 328 | token: Option<Token>, |
| 329 | } |
| 330 | |
| 331 | /// An in-progress parser for the tokens of a WebAssembly text file. |
| 332 | /// |
| 333 | /// A `Parser` is argument to the [`Parse`] trait and is now the input stream is |
| 334 | /// interacted with to parse new items. Cloning [`Parser`] or copying a parser |
| 335 | /// refers to the same stream of tokens to parse, you cannot clone a [`Parser`] |
| 336 | /// and clone two items. |
| 337 | /// |
| 338 | /// For more information about a [`Parser`] see its methods. |
| 339 | #[derive (Copy, Clone)] |
| 340 | pub struct Parser<'a> { |
| 341 | buf: &'a ParseBuffer<'a>, |
| 342 | } |
| 343 | |
| 344 | /// A helpful structure to perform a lookahead of one token to determine what to |
| 345 | /// parse. |
| 346 | /// |
| 347 | /// For more information see the [`Parser::lookahead1`] method. |
| 348 | pub struct Lookahead1<'a> { |
| 349 | parser: Parser<'a>, |
| 350 | attempts: Vec<&'static str>, |
| 351 | } |
| 352 | |
| 353 | /// An immutable cursor into a list of tokens. |
| 354 | /// |
| 355 | /// This cursor cannot be mutated but can be used to parse more tokens in a list |
| 356 | /// of tokens. Cursors are created from the [`Parser::step`] method. This is a |
| 357 | /// very low-level parsing structure and you likely won't use it much. |
| 358 | #[derive (Copy, Clone)] |
| 359 | pub struct Cursor<'a> { |
| 360 | parser: Parser<'a>, |
| 361 | pos: Position, |
| 362 | } |
| 363 | |
| 364 | impl ParseBuffer<'_> { |
| 365 | /// Creates a new [`ParseBuffer`] by lexing the given `input` completely. |
| 366 | /// |
| 367 | /// # Errors |
| 368 | /// |
| 369 | /// Returns an error if `input` fails to lex. |
| 370 | pub fn new(input: &str) -> Result<ParseBuffer<'_>> { |
| 371 | ParseBuffer::new_with_lexer(Lexer::new(input)) |
| 372 | } |
| 373 | |
| 374 | /// Creates a new [`ParseBuffer`] by lexing the given `input` completely. |
| 375 | /// |
| 376 | /// # Errors |
| 377 | /// |
| 378 | /// Returns an error if `input` fails to lex. |
| 379 | pub fn new_with_lexer(lexer: Lexer<'_>) -> Result<ParseBuffer<'_>> { |
| 380 | Ok(ParseBuffer { |
| 381 | lexer, |
| 382 | depth: Cell::new(0), |
| 383 | cur: Cell::new(Position { |
| 384 | offset: 0, |
| 385 | token: None, |
| 386 | }), |
| 387 | known_annotations: Default::default(), |
| 388 | strings: Default::default(), |
| 389 | track_instr_spans: false, |
| 390 | }) |
| 391 | } |
| 392 | |
| 393 | /// Indicates whether the [`Expression::instr_spans`] field will be filled |
| 394 | /// in. |
| 395 | /// |
| 396 | /// This is useful when enabling DWARF debugging information via |
| 397 | /// [`EncodeOptions::dwarf`], for example. |
| 398 | /// |
| 399 | /// [`Expression::instr_spans`]: crate::core::Expression::instr_spans |
| 400 | /// [`EncodeOptions::dwarf`]: crate::core::EncodeOptions::dwarf |
| 401 | pub fn track_instr_spans(&mut self, track: bool) -> &mut Self { |
| 402 | self.track_instr_spans = track; |
| 403 | self |
| 404 | } |
| 405 | |
| 406 | fn parser(&self) -> Parser<'_> { |
| 407 | Parser { buf: self } |
| 408 | } |
| 409 | |
| 410 | /// Stores an owned allocation in this `Parser` to attach the lifetime of |
| 411 | /// the vector to `self`. |
| 412 | /// |
| 413 | /// This will return a reference to `s`, but one that's safely rooted in the |
| 414 | /// `Parser`. |
| 415 | fn push_str(&self, s: Vec<u8>) -> &[u8] { |
| 416 | self.strings.alloc_slice_copy(&s) |
| 417 | } |
| 418 | |
| 419 | /// Lexes the next "significant" token from the `pos` specified. |
| 420 | /// |
| 421 | /// This will skip irrelevant tokens such as whitespace, comments, and |
| 422 | /// unknown annotations. |
| 423 | fn advance_token(&self, mut pos: usize) -> Result<Option<Token>> { |
| 424 | let token = loop { |
| 425 | let token = match self.lexer.parse(&mut pos)? { |
| 426 | Some(token) => token, |
| 427 | None => return Ok(None), |
| 428 | }; |
| 429 | match token.kind { |
| 430 | // Always skip whitespace and comments. |
| 431 | TokenKind::Whitespace | TokenKind::LineComment | TokenKind::BlockComment => { |
| 432 | continue |
| 433 | } |
| 434 | |
| 435 | // If an lparen is seen then this may be skipped if it's an |
| 436 | // annotation of the form `(@foo ...)`. In this situation |
| 437 | // everything up to and including the closing rparen is skipped. |
| 438 | // |
| 439 | // Note that the annotation is only skipped if it's an unknown |
| 440 | // annotation as known annotations are specifically registered |
| 441 | // as "someone's gonna parse this". |
| 442 | TokenKind::LParen => { |
| 443 | if let Some(annotation) = self.lexer.annotation(pos)? { |
| 444 | let text = annotation.annotation(self.lexer.input())?; |
| 445 | match self.known_annotations.borrow().get(&text[..]) { |
| 446 | Some(0) | None => { |
| 447 | self.skip_annotation(&mut pos)?; |
| 448 | continue; |
| 449 | } |
| 450 | Some(_) => {} |
| 451 | } |
| 452 | } |
| 453 | break token; |
| 454 | } |
| 455 | _ => break token, |
| 456 | } |
| 457 | }; |
| 458 | Ok(Some(token)) |
| 459 | } |
| 460 | |
| 461 | fn skip_annotation(&self, pos: &mut usize) -> Result<()> { |
| 462 | let mut depth = 1; |
| 463 | let span = Span { offset: *pos }; |
| 464 | loop { |
| 465 | let token = match self.lexer.parse(pos)? { |
| 466 | Some(token) => token, |
| 467 | None => { |
| 468 | break Err(Error::new(span, "unclosed annotation" .to_string())); |
| 469 | } |
| 470 | }; |
| 471 | match token.kind { |
| 472 | TokenKind::LParen => depth += 1, |
| 473 | TokenKind::RParen => { |
| 474 | depth -= 1; |
| 475 | if depth == 0 { |
| 476 | break Ok(()); |
| 477 | } |
| 478 | } |
| 479 | _ => {} |
| 480 | } |
| 481 | } |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | impl<'a> Parser<'a> { |
| 486 | /// Returns whether there are no more `Token` tokens to parse from this |
| 487 | /// [`Parser`]. |
| 488 | /// |
| 489 | /// This indicates that either we've reached the end of the input, or we're |
| 490 | /// a sub-[`Parser`] inside of a parenthesized expression and we've hit the |
| 491 | /// `)` token. |
| 492 | /// |
| 493 | /// Note that if `false` is returned there *may* be more comments. Comments |
| 494 | /// and whitespace are not considered for whether this parser is empty. |
| 495 | pub fn is_empty(self) -> bool { |
| 496 | match self.cursor().token() { |
| 497 | Ok(Some(token)) => matches!(token.kind, TokenKind::RParen), |
| 498 | Ok(None) => true, |
| 499 | Err(_) => false, |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | #[cfg (feature = "wasm-module" )] |
| 504 | pub(crate) fn has_meaningful_tokens(self) -> bool { |
| 505 | self.buf.lexer.iter(0).any(|t| match t { |
| 506 | Ok(token) => !matches!( |
| 507 | token.kind, |
| 508 | TokenKind::Whitespace | TokenKind::LineComment | TokenKind::BlockComment |
| 509 | ), |
| 510 | Err(_) => true, |
| 511 | }) |
| 512 | } |
| 513 | |
| 514 | /// Parses a `T` from this [`Parser`]. |
| 515 | /// |
| 516 | /// This method has a trivial definition (it simply calls |
| 517 | /// [`T::parse`](Parse::parse)) but is here for syntactic purposes. This is |
| 518 | /// what you'll call 99% of the time in a [`Parse`] implementation in order |
| 519 | /// to parse sub-items. |
| 520 | /// |
| 521 | /// Typically you always want to use `?` with the result of this method, you |
| 522 | /// should not handle errors and decide what else to parse. To handle |
| 523 | /// branches in parsing, use [`Parser::peek`]. |
| 524 | /// |
| 525 | /// # Examples |
| 526 | /// |
| 527 | /// A good example of using `parse` is to see how the [`TableType`] type is |
| 528 | /// parsed in this crate. A [`TableType`] is defined in the official |
| 529 | /// specification as [`tabletype`][spec] and is defined as: |
| 530 | /// |
| 531 | /// [spec]: https://webassembly.github.io/spec/core/text/types.html#table-types |
| 532 | /// |
| 533 | /// ```text |
| 534 | /// tabletype ::= lim:limits et:reftype |
| 535 | /// ``` |
| 536 | /// |
| 537 | /// so to parse a [`TableType`] we recursively need to parse a [`Limits`] |
| 538 | /// and a [`RefType`] |
| 539 | /// |
| 540 | /// ``` |
| 541 | /// # use wast::core::*; |
| 542 | /// # use wast::parser::*; |
| 543 | /// struct TableType<'a> { |
| 544 | /// limits: Limits, |
| 545 | /// elem: RefType<'a>, |
| 546 | /// } |
| 547 | /// |
| 548 | /// impl<'a> Parse<'a> for TableType<'a> { |
| 549 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| 550 | /// // parse the `lim` then `et` in sequence |
| 551 | /// Ok(TableType { |
| 552 | /// limits: parser.parse()?, |
| 553 | /// elem: parser.parse()?, |
| 554 | /// }) |
| 555 | /// } |
| 556 | /// } |
| 557 | /// ``` |
| 558 | /// |
| 559 | /// [`Limits`]: crate::core::Limits |
| 560 | /// [`TableType`]: crate::core::TableType |
| 561 | /// [`RefType`]: crate::core::RefType |
| 562 | pub fn parse<T: Parse<'a>>(self) -> Result<T> { |
| 563 | T::parse(self) |
| 564 | } |
| 565 | |
| 566 | /// Performs a cheap test to see whether the current token in this stream is |
| 567 | /// `T`. |
| 568 | /// |
| 569 | /// This method can be used to efficiently determine what next to parse. The |
| 570 | /// [`Peek`] trait is defined for types which can be used to test if they're |
| 571 | /// the next item in the input stream. |
| 572 | /// |
| 573 | /// Nothing is actually parsed in this method, nor does this mutate the |
| 574 | /// state of this [`Parser`]. Instead, this simply performs a check. |
| 575 | /// |
| 576 | /// This method is frequently combined with the [`Parser::lookahead1`] |
| 577 | /// method to automatically produce nice error messages if some tokens |
| 578 | /// aren't found. |
| 579 | /// |
| 580 | /// # Examples |
| 581 | /// |
| 582 | /// For an example of using the `peek` method let's take a look at parsing |
| 583 | /// the [`Limits`] type. This is [defined in the official spec][spec] as: |
| 584 | /// |
| 585 | /// ```text |
| 586 | /// limits ::= n:u32 |
| 587 | /// | n:u32 m:u32 |
| 588 | /// ``` |
| 589 | /// |
| 590 | /// which means that it's either one `u32` token or two, so we need to know |
| 591 | /// whether to consume two tokens or one: |
| 592 | /// |
| 593 | /// ``` |
| 594 | /// # use wast::parser::*; |
| 595 | /// struct Limits { |
| 596 | /// min: u32, |
| 597 | /// max: Option<u32>, |
| 598 | /// } |
| 599 | /// |
| 600 | /// impl<'a> Parse<'a> for Limits { |
| 601 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| 602 | /// // Always parse the first number... |
| 603 | /// let min = parser.parse()?; |
| 604 | /// |
| 605 | /// // ... and then test if there's a second number before parsing |
| 606 | /// let max = if parser.peek::<u32>()? { |
| 607 | /// Some(parser.parse()?) |
| 608 | /// } else { |
| 609 | /// None |
| 610 | /// }; |
| 611 | /// |
| 612 | /// Ok(Limits { min, max }) |
| 613 | /// } |
| 614 | /// } |
| 615 | /// ``` |
| 616 | /// |
| 617 | /// [spec]: https://webassembly.github.io/spec/core/text/types.html#limits |
| 618 | /// [`Limits`]: crate::core::Limits |
| 619 | pub fn peek<T: Peek>(self) -> Result<bool> { |
| 620 | T::peek(self.cursor()) |
| 621 | } |
| 622 | |
| 623 | /// Same as the [`Parser::peek`] method, except checks the next token, not |
| 624 | /// the current token. |
| 625 | pub fn peek2<T: Peek>(self) -> Result<bool> { |
| 626 | T::peek2(self.cursor()) |
| 627 | } |
| 628 | |
| 629 | /// Same as the [`Parser::peek2`] method, except checks the next next token, |
| 630 | /// not the next token. |
| 631 | pub fn peek3<T: Peek>(self) -> Result<bool> { |
| 632 | let mut cursor = self.cursor(); |
| 633 | match cursor.token()? { |
| 634 | Some(token) => cursor.advance_past(&token), |
| 635 | None => return Ok(false), |
| 636 | } |
| 637 | match cursor.token()? { |
| 638 | Some(token) => cursor.advance_past(&token), |
| 639 | None => return Ok(false), |
| 640 | } |
| 641 | T::peek(cursor) |
| 642 | } |
| 643 | |
| 644 | /// A helper structure to perform a sequence of `peek` operations and if |
| 645 | /// they all fail produce a nice error message. |
| 646 | /// |
| 647 | /// This method purely exists for conveniently producing error messages and |
| 648 | /// provides no functionality that [`Parser::peek`] doesn't already give. |
| 649 | /// The [`Lookahead1`] structure has one main method [`Lookahead1::peek`], |
| 650 | /// which is the same method as [`Parser::peek`]. The difference is that the |
| 651 | /// [`Lookahead1::error`] method needs no arguments. |
| 652 | /// |
| 653 | /// # Examples |
| 654 | /// |
| 655 | /// Let's look at the parsing of [`Index`]. This type is either a `u32` or |
| 656 | /// an [`Id`] and is used in name resolution primarily. The [official |
| 657 | /// grammar for an index][spec] is: |
| 658 | /// |
| 659 | /// ```text |
| 660 | /// idx ::= x:u32 |
| 661 | /// | v:id |
| 662 | /// ``` |
| 663 | /// |
| 664 | /// Which is to say that an index is either a `u32` or an [`Id`]. When |
| 665 | /// parsing an [`Index`] we can do: |
| 666 | /// |
| 667 | /// ``` |
| 668 | /// # use wast::token::*; |
| 669 | /// # use wast::parser::*; |
| 670 | /// enum Index<'a> { |
| 671 | /// Num(u32), |
| 672 | /// Id(Id<'a>), |
| 673 | /// } |
| 674 | /// |
| 675 | /// impl<'a> Parse<'a> for Index<'a> { |
| 676 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| 677 | /// let mut l = parser.lookahead1(); |
| 678 | /// if l.peek::<Id>()? { |
| 679 | /// Ok(Index::Id(parser.parse()?)) |
| 680 | /// } else if l.peek::<u32>()? { |
| 681 | /// Ok(Index::Num(parser.parse()?)) |
| 682 | /// } else { |
| 683 | /// // produces error message of `expected identifier or u32` |
| 684 | /// Err(l.error()) |
| 685 | /// } |
| 686 | /// } |
| 687 | /// } |
| 688 | /// ``` |
| 689 | /// |
| 690 | /// [spec]: https://webassembly.github.io/spec/core/text/modules.html#indices |
| 691 | /// [`Index`]: crate::token::Index |
| 692 | /// [`Id`]: crate::token::Id |
| 693 | pub fn lookahead1(self) -> Lookahead1<'a> { |
| 694 | Lookahead1 { |
| 695 | attempts: Vec::new(), |
| 696 | parser: self, |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | /// Parse an item surrounded by parentheses. |
| 701 | /// |
| 702 | /// WebAssembly's text format is all based on s-expressions, so naturally |
| 703 | /// you're going to want to parse a lot of parenthesized things! As noted in |
| 704 | /// the documentation of [`Parse`] you typically don't parse your own |
| 705 | /// surrounding `(` and `)` tokens, but the parser above you parsed them for |
| 706 | /// you. This is method method the parser above you uses. |
| 707 | /// |
| 708 | /// This method will parse a `(` token, and then call `f` on a sub-parser |
| 709 | /// which when finished asserts that a `)` token is the next token. This |
| 710 | /// requires that `f` consumes all tokens leading up to the paired `)`. |
| 711 | /// |
| 712 | /// Usage will often simply be `parser.parens(|p| p.parse())?` to |
| 713 | /// automatically parse a type within parentheses, but you can, as always, |
| 714 | /// go crazy and do whatever you'd like too. |
| 715 | /// |
| 716 | /// # Examples |
| 717 | /// |
| 718 | /// A good example of this is to see how a `Module` is parsed. This isn't |
| 719 | /// the exact definition, but it's close enough! |
| 720 | /// |
| 721 | /// ``` |
| 722 | /// # use wast::kw; |
| 723 | /// # use wast::core::*; |
| 724 | /// # use wast::parser::*; |
| 725 | /// struct Module<'a> { |
| 726 | /// fields: Vec<ModuleField<'a>>, |
| 727 | /// } |
| 728 | /// |
| 729 | /// impl<'a> Parse<'a> for Module<'a> { |
| 730 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| 731 | /// // Modules start out with a `module` keyword |
| 732 | /// parser.parse::<kw::module>()?; |
| 733 | /// |
| 734 | /// // And then everything else is `(field ...)`, so while we've got |
| 735 | /// // items left we continuously parse parenthesized items. |
| 736 | /// let mut fields = Vec::new(); |
| 737 | /// while !parser.is_empty() { |
| 738 | /// fields.push(parser.parens(|p| p.parse())?); |
| 739 | /// } |
| 740 | /// Ok(Module { fields }) |
| 741 | /// } |
| 742 | /// } |
| 743 | /// ``` |
| 744 | pub fn parens<T>(self, f: impl FnOnce(Parser<'a>) -> Result<T>) -> Result<T> { |
| 745 | self.buf.depth.set(self.buf.depth.get() + 1); |
| 746 | let before = self.buf.cur.get(); |
| 747 | let res = self.step(|cursor| { |
| 748 | let mut cursor = match cursor.lparen()? { |
| 749 | Some(rest) => rest, |
| 750 | None => return Err(cursor.error("expected `(`" )), |
| 751 | }; |
| 752 | cursor.parser.buf.cur.set(cursor.pos); |
| 753 | let result = f(cursor.parser)?; |
| 754 | |
| 755 | // Reset our cursor's state to whatever the current state of the |
| 756 | // parser is. |
| 757 | cursor.pos = cursor.parser.buf.cur.get(); |
| 758 | |
| 759 | match cursor.rparen()? { |
| 760 | Some(rest) => Ok((result, rest)), |
| 761 | None => Err(cursor.error("expected `)`" )), |
| 762 | } |
| 763 | }); |
| 764 | self.buf.depth.set(self.buf.depth.get() - 1); |
| 765 | if res.is_err() { |
| 766 | self.buf.cur.set(before); |
| 767 | } |
| 768 | res |
| 769 | } |
| 770 | |
| 771 | /// Return the depth of nested parens we've parsed so far. |
| 772 | /// |
| 773 | /// This is a low-level method that is only useful for implementing |
| 774 | /// recursion limits in custom parsers. |
| 775 | pub fn parens_depth(&self) -> usize { |
| 776 | self.buf.depth.get() |
| 777 | } |
| 778 | |
| 779 | /// Checks that the parser parens depth hasn't exceeded the maximum depth. |
| 780 | #[cfg (feature = "wasm-module" )] |
| 781 | pub(crate) fn depth_check(&self) -> Result<()> { |
| 782 | if self.parens_depth() > MAX_PARENS_DEPTH { |
| 783 | Err(self.error("item nesting too deep" )) |
| 784 | } else { |
| 785 | Ok(()) |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | fn cursor(self) -> Cursor<'a> { |
| 790 | Cursor { |
| 791 | parser: self, |
| 792 | pos: self.buf.cur.get(), |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | /// A low-level parsing method you probably won't use. |
| 797 | /// |
| 798 | /// This is used to implement parsing of the most primitive types in the |
| 799 | /// [`core`](crate::core) module. You probably don't want to use this, but |
| 800 | /// probably want to use something like [`Parser::parse`] or |
| 801 | /// [`Parser::parens`]. |
| 802 | pub fn step<F, T>(self, f: F) -> Result<T> |
| 803 | where |
| 804 | F: FnOnce(Cursor<'a>) -> Result<(T, Cursor<'a>)>, |
| 805 | { |
| 806 | let (result, cursor) = f(self.cursor())?; |
| 807 | self.buf.cur.set(cursor.pos); |
| 808 | Ok(result) |
| 809 | } |
| 810 | |
| 811 | /// Creates an error whose line/column information is pointing at the |
| 812 | /// current token. |
| 813 | /// |
| 814 | /// This is used to produce human-readable error messages which point to the |
| 815 | /// right location in the input stream, and the `msg` here is arbitrary text |
| 816 | /// used to associate with the error and indicate why it was generated. |
| 817 | pub fn error(self, msg: impl fmt::Display) -> Error { |
| 818 | self.error_at(self.cursor().cur_span(), msg) |
| 819 | } |
| 820 | |
| 821 | /// Creates an error whose line/column information is pointing at the |
| 822 | /// given span. |
| 823 | pub fn error_at(self, span: Span, msg: impl fmt::Display) -> Error { |
| 824 | Error::parse(span, self.buf.lexer.input(), msg.to_string()) |
| 825 | } |
| 826 | |
| 827 | /// Returns the span of the current token |
| 828 | pub fn cur_span(&self) -> Span { |
| 829 | self.cursor().cur_span() |
| 830 | } |
| 831 | |
| 832 | /// Returns the span of the previous token |
| 833 | pub fn prev_span(&self) -> Span { |
| 834 | self.cursor() |
| 835 | .prev_span() |
| 836 | .unwrap_or_else(|| Span::from_offset(0)) |
| 837 | } |
| 838 | |
| 839 | /// Registers a new known annotation with this parser to allow parsing |
| 840 | /// annotations with this name. |
| 841 | /// |
| 842 | /// [WebAssembly annotations][annotation] are a proposal for the text format |
| 843 | /// which allows decorating the text format with custom structured |
| 844 | /// information. By default all annotations are ignored when parsing, but |
| 845 | /// the whole purpose of them is to sometimes parse them! |
| 846 | /// |
| 847 | /// To support parsing text annotations this method is used to allow |
| 848 | /// annotations and their tokens to *not* be skipped. Once an annotation is |
| 849 | /// registered with this method, then while the return value has not been |
| 850 | /// dropped (e.g. the scope of where this function is called) annotations |
| 851 | /// with the name `annotation` will be parse of the token stream and not |
| 852 | /// implicitly skipped. |
| 853 | /// |
| 854 | /// # Skipping annotations |
| 855 | /// |
| 856 | /// The behavior of skipping unknown/unregistered annotations can be |
| 857 | /// somewhat subtle and surprising, so if you're interested in parsing |
| 858 | /// annotations it's important to point out the importance of this method |
| 859 | /// and where to call it. |
| 860 | /// |
| 861 | /// Generally when parsing tokens you'll be bottoming out in various |
| 862 | /// `Cursor` methods. These are all documented as advancing the stream as |
| 863 | /// much as possible to the next token, skipping "irrelevant stuff" like |
| 864 | /// comments, whitespace, etc. The `Cursor` methods will also skip unknown |
| 865 | /// annotations. This means that if you parse *any* token, it will skip over |
| 866 | /// any number of annotations that are unknown at all times. |
| 867 | /// |
| 868 | /// To parse an annotation you must, before parsing any token of the |
| 869 | /// annotation, register the annotation via this method. This includes the |
| 870 | /// beginning `(` token, which is otherwise skipped if the annotation isn't |
| 871 | /// marked as registered. Typically parser parse the *contents* of an |
| 872 | /// s-expression, so this means that the outer parser of an s-expression |
| 873 | /// must register the custom annotation name, rather than the inner parser. |
| 874 | /// |
| 875 | /// # Return |
| 876 | /// |
| 877 | /// This function returns an RAII guard which, when dropped, will unregister |
| 878 | /// the `annotation` given. Parsing `annotation` is only supported while the |
| 879 | /// returned value is still alive, and once dropped the parser will go back |
| 880 | /// to skipping annotations with the name `annotation`. |
| 881 | /// |
| 882 | /// # Example |
| 883 | /// |
| 884 | /// Let's see an example of how the `@name` annotation is parsed for modules |
| 885 | /// to get an idea of how this works: |
| 886 | /// |
| 887 | /// ``` |
| 888 | /// # use wast::kw; |
| 889 | /// # use wast::token::NameAnnotation; |
| 890 | /// # use wast::parser::*; |
| 891 | /// struct Module<'a> { |
| 892 | /// name: Option<NameAnnotation<'a>>, |
| 893 | /// } |
| 894 | /// |
| 895 | /// impl<'a> Parse<'a> for Module<'a> { |
| 896 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| 897 | /// // Modules start out with a `module` keyword |
| 898 | /// parser.parse::<kw::module>()?; |
| 899 | /// |
| 900 | /// // Next may be `(@name "foo")`. Typically this annotation would |
| 901 | /// // skipped, but we don't want it skipped, so we register it. |
| 902 | /// // Note that the parse implementation of |
| 903 | /// // `Option<NameAnnotation>` is the one that consumes the |
| 904 | /// // parentheses here. |
| 905 | /// let _r = parser.register_annotation("name" ); |
| 906 | /// let name = parser.parse()?; |
| 907 | /// |
| 908 | /// // ... and normally you'd otherwise parse module fields here ... |
| 909 | /// |
| 910 | /// Ok(Module { name }) |
| 911 | /// } |
| 912 | /// } |
| 913 | /// ``` |
| 914 | /// |
| 915 | /// Another example is how we parse the `@custom` annotation. Note that this |
| 916 | /// is parsed as part of `ModuleField`, so note how the annotation is |
| 917 | /// registered *before* we parse the parentheses of the annotation. |
| 918 | /// |
| 919 | /// ``` |
| 920 | /// # use wast::{kw, annotation}; |
| 921 | /// # use wast::core::Custom; |
| 922 | /// # use wast::parser::*; |
| 923 | /// struct Module<'a> { |
| 924 | /// fields: Vec<ModuleField<'a>>, |
| 925 | /// } |
| 926 | /// |
| 927 | /// impl<'a> Parse<'a> for Module<'a> { |
| 928 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| 929 | /// // Modules start out with a `module` keyword |
| 930 | /// parser.parse::<kw::module>()?; |
| 931 | /// |
| 932 | /// // register the `@custom` annotation *first* before we start |
| 933 | /// // parsing fields, because each field is contained in |
| 934 | /// // parentheses and to parse the parentheses of an annotation we |
| 935 | /// // have to known to not skip it. |
| 936 | /// let _r = parser.register_annotation("custom" ); |
| 937 | /// |
| 938 | /// let mut fields = Vec::new(); |
| 939 | /// while !parser.is_empty() { |
| 940 | /// fields.push(parser.parens(|p| p.parse())?); |
| 941 | /// } |
| 942 | /// Ok(Module { fields }) |
| 943 | /// } |
| 944 | /// } |
| 945 | /// |
| 946 | /// enum ModuleField<'a> { |
| 947 | /// Custom(Custom<'a>), |
| 948 | /// // ... |
| 949 | /// } |
| 950 | /// |
| 951 | /// impl<'a> Parse<'a> for ModuleField<'a> { |
| 952 | /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| 953 | /// // Note that because we have previously registered the `@custom` |
| 954 | /// // annotation with the parser we known that `peek` methods like |
| 955 | /// // this, working on the annotation token, are enabled to ever |
| 956 | /// // return `true`. |
| 957 | /// if parser.peek::<annotation::custom>()? { |
| 958 | /// return Ok(ModuleField::Custom(parser.parse()?)); |
| 959 | /// } |
| 960 | /// |
| 961 | /// // .. typically we'd parse other module fields here... |
| 962 | /// |
| 963 | /// Err(parser.error("unknown module field" )) |
| 964 | /// } |
| 965 | /// } |
| 966 | /// ``` |
| 967 | /// |
| 968 | /// [annotation]: https://github.com/WebAssembly/annotations |
| 969 | pub fn register_annotation<'b>(self, annotation: &'b str) -> impl Drop + 'b |
| 970 | where |
| 971 | 'a: 'b, |
| 972 | { |
| 973 | let mut annotations = self.buf.known_annotations.borrow_mut(); |
| 974 | if !annotations.contains_key(annotation) { |
| 975 | annotations.insert(annotation.to_string(), 0); |
| 976 | } |
| 977 | *annotations.get_mut(annotation).unwrap() += 1; |
| 978 | |
| 979 | return RemoveOnDrop(self, annotation); |
| 980 | |
| 981 | struct RemoveOnDrop<'a>(Parser<'a>, &'a str); |
| 982 | |
| 983 | impl Drop for RemoveOnDrop<'_> { |
| 984 | fn drop(&mut self) { |
| 985 | let mut annotations = self.0.buf.known_annotations.borrow_mut(); |
| 986 | let slot = annotations.get_mut(self.1).unwrap(); |
| 987 | *slot -= 1; |
| 988 | } |
| 989 | } |
| 990 | } |
| 991 | |
| 992 | #[cfg (feature = "wasm-module" )] |
| 993 | pub(crate) fn track_instr_spans(&self) -> bool { |
| 994 | self.buf.track_instr_spans |
| 995 | } |
| 996 | |
| 997 | #[cfg (feature = "wasm-module" )] |
| 998 | pub(crate) fn with_standard_annotations_registered<R>( |
| 999 | self, |
| 1000 | f: impl FnOnce(Self) -> Result<R>, |
| 1001 | ) -> Result<R> { |
| 1002 | let _r = self.register_annotation("custom" ); |
| 1003 | let _r = self.register_annotation("producers" ); |
| 1004 | let _r = self.register_annotation("name" ); |
| 1005 | let _r = self.register_annotation("dylink.0" ); |
| 1006 | let _r = self.register_annotation("metadata.code.branch_hint" ); |
| 1007 | f(self) |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | impl<'a> Cursor<'a> { |
| 1012 | /// Returns the span of the next `Token` token. |
| 1013 | /// |
| 1014 | /// Does not take into account whitespace or comments. |
| 1015 | pub fn cur_span(&self) -> Span { |
| 1016 | let offset = match self.token() { |
| 1017 | Ok(Some(t)) => t.offset, |
| 1018 | Ok(None) => self.parser.buf.lexer.input().len(), |
| 1019 | Err(_) => self.pos.offset, |
| 1020 | }; |
| 1021 | Span { offset } |
| 1022 | } |
| 1023 | |
| 1024 | /// Returns the span of the previous `Token` token. |
| 1025 | /// |
| 1026 | /// Does not take into account whitespace or comments. |
| 1027 | pub(crate) fn prev_span(&self) -> Option<Span> { |
| 1028 | // TODO |
| 1029 | Some(Span { |
| 1030 | offset: self.pos.offset, |
| 1031 | }) |
| 1032 | // let (token, _) = self.parser.buf.tokens.get(self.cur.checked_sub(1)?)?; |
| 1033 | // Some(Span { |
| 1034 | // offset: token.offset, |
| 1035 | // }) |
| 1036 | } |
| 1037 | |
| 1038 | /// Same as [`Parser::error`], but works with the current token in this |
| 1039 | /// [`Cursor`] instead. |
| 1040 | pub fn error(&self, msg: impl fmt::Display) -> Error { |
| 1041 | self.parser.error_at(self.cur_span(), msg) |
| 1042 | } |
| 1043 | |
| 1044 | /// Tests whether the next token is an lparen |
| 1045 | pub fn peek_lparen(self) -> Result<bool> { |
| 1046 | Ok(matches!( |
| 1047 | self.token()?, |
| 1048 | Some(Token { |
| 1049 | kind: TokenKind::LParen, |
| 1050 | .. |
| 1051 | }) |
| 1052 | )) |
| 1053 | } |
| 1054 | |
| 1055 | /// Tests whether the next token is an rparen |
| 1056 | pub fn peek_rparen(self) -> Result<bool> { |
| 1057 | Ok(matches!( |
| 1058 | self.token()?, |
| 1059 | Some(Token { |
| 1060 | kind: TokenKind::RParen, |
| 1061 | .. |
| 1062 | }) |
| 1063 | )) |
| 1064 | } |
| 1065 | |
| 1066 | /// Tests whether the next token is an id |
| 1067 | pub fn peek_id(self) -> Result<bool> { |
| 1068 | Ok(matches!( |
| 1069 | self.token()?, |
| 1070 | Some(Token { |
| 1071 | kind: TokenKind::Id, |
| 1072 | .. |
| 1073 | }) |
| 1074 | )) |
| 1075 | } |
| 1076 | |
| 1077 | /// Tests whether the next token is reserved |
| 1078 | pub fn peek_reserved(self) -> Result<bool> { |
| 1079 | Ok(matches!( |
| 1080 | self.token()?, |
| 1081 | Some(Token { |
| 1082 | kind: TokenKind::Reserved, |
| 1083 | .. |
| 1084 | }) |
| 1085 | )) |
| 1086 | } |
| 1087 | |
| 1088 | /// Tests whether the next token is a keyword |
| 1089 | pub fn peek_keyword(self) -> Result<bool> { |
| 1090 | Ok(matches!( |
| 1091 | self.token()?, |
| 1092 | Some(Token { |
| 1093 | kind: TokenKind::Keyword, |
| 1094 | .. |
| 1095 | }) |
| 1096 | )) |
| 1097 | } |
| 1098 | |
| 1099 | /// Tests whether the next token is an integer |
| 1100 | pub fn peek_integer(self) -> Result<bool> { |
| 1101 | Ok(matches!( |
| 1102 | self.token()?, |
| 1103 | Some(Token { |
| 1104 | kind: TokenKind::Integer(_), |
| 1105 | .. |
| 1106 | }) |
| 1107 | )) |
| 1108 | } |
| 1109 | |
| 1110 | /// Tests whether the next token is a float |
| 1111 | pub fn peek_float(self) -> Result<bool> { |
| 1112 | Ok(matches!( |
| 1113 | self.token()?, |
| 1114 | Some(Token { |
| 1115 | kind: TokenKind::Float(_), |
| 1116 | .. |
| 1117 | }) |
| 1118 | )) |
| 1119 | } |
| 1120 | |
| 1121 | /// Tests whether the next token is a string |
| 1122 | pub fn peek_string(self) -> Result<bool> { |
| 1123 | Ok(matches!( |
| 1124 | self.token()?, |
| 1125 | Some(Token { |
| 1126 | kind: TokenKind::String, |
| 1127 | .. |
| 1128 | }) |
| 1129 | )) |
| 1130 | } |
| 1131 | |
| 1132 | /// Attempts to advance this cursor if the current token is a `(`. |
| 1133 | /// |
| 1134 | /// If the current token is `(`, returns a new [`Cursor`] pointing at the |
| 1135 | /// rest of the tokens in the stream. Otherwise returns `None`. |
| 1136 | /// |
| 1137 | /// This function will automatically skip over any comments, whitespace, or |
| 1138 | /// unknown annotations. |
| 1139 | pub fn lparen(mut self) -> Result<Option<Self>> { |
| 1140 | let token = match self.token()? { |
| 1141 | Some(token) => token, |
| 1142 | None => return Ok(None), |
| 1143 | }; |
| 1144 | match token.kind { |
| 1145 | TokenKind::LParen => {} |
| 1146 | _ => return Ok(None), |
| 1147 | } |
| 1148 | self.advance_past(&token); |
| 1149 | Ok(Some(self)) |
| 1150 | } |
| 1151 | |
| 1152 | /// Attempts to advance this cursor if the current token is a `)`. |
| 1153 | /// |
| 1154 | /// If the current token is `)`, returns a new [`Cursor`] pointing at the |
| 1155 | /// rest of the tokens in the stream. Otherwise returns `None`. |
| 1156 | /// |
| 1157 | /// This function will automatically skip over any comments, whitespace, or |
| 1158 | /// unknown annotations. |
| 1159 | pub fn rparen(mut self) -> Result<Option<Self>> { |
| 1160 | let token = match self.token()? { |
| 1161 | Some(token) => token, |
| 1162 | None => return Ok(None), |
| 1163 | }; |
| 1164 | match token.kind { |
| 1165 | TokenKind::RParen => {} |
| 1166 | _ => return Ok(None), |
| 1167 | } |
| 1168 | self.advance_past(&token); |
| 1169 | Ok(Some(self)) |
| 1170 | } |
| 1171 | |
| 1172 | /// Attempts to advance this cursor if the current token is a |
| 1173 | /// [`Token::Id`](crate::lexer::Token) |
| 1174 | /// |
| 1175 | /// If the current token is `Id`, returns the identifier minus the leading |
| 1176 | /// `$` character as well as a new [`Cursor`] pointing at the rest of the |
| 1177 | /// tokens in the stream. Otherwise returns `None`. |
| 1178 | /// |
| 1179 | /// This function will automatically skip over any comments, whitespace, or |
| 1180 | /// unknown annotations. |
| 1181 | pub fn id(mut self) -> Result<Option<(&'a str, Self)>> { |
| 1182 | let token = match self.token()? { |
| 1183 | Some(token) => token, |
| 1184 | None => return Ok(None), |
| 1185 | }; |
| 1186 | match token.kind { |
| 1187 | TokenKind::Id => {} |
| 1188 | _ => return Ok(None), |
| 1189 | } |
| 1190 | self.advance_past(&token); |
| 1191 | let id = match token.id(self.parser.buf.lexer.input())? { |
| 1192 | Cow::Borrowed(id) => id, |
| 1193 | // Our `self.parser.buf` only retains `Vec<u8>` so briefly convert |
| 1194 | // this owned string to `Vec<u8>` and then convert it back to `&str` |
| 1195 | // out the other end. |
| 1196 | Cow::Owned(s) => std::str::from_utf8(self.parser.buf.push_str(s.into_bytes())).unwrap(), |
| 1197 | }; |
| 1198 | Ok(Some((id, self))) |
| 1199 | } |
| 1200 | |
| 1201 | /// Attempts to advance this cursor if the current token is a |
| 1202 | /// [`Token::Keyword`](crate::lexer::Token) |
| 1203 | /// |
| 1204 | /// If the current token is `Keyword`, returns the keyword as well as a new |
| 1205 | /// [`Cursor`] pointing at the rest of the tokens in the stream. Otherwise |
| 1206 | /// returns `None`. |
| 1207 | /// |
| 1208 | /// This function will automatically skip over any comments, whitespace, or |
| 1209 | /// unknown annotations. |
| 1210 | pub fn keyword(mut self) -> Result<Option<(&'a str, Self)>> { |
| 1211 | let token = match self.token()? { |
| 1212 | Some(token) => token, |
| 1213 | None => return Ok(None), |
| 1214 | }; |
| 1215 | match token.kind { |
| 1216 | TokenKind::Keyword => {} |
| 1217 | _ => return Ok(None), |
| 1218 | } |
| 1219 | self.advance_past(&token); |
| 1220 | Ok(Some((token.keyword(self.parser.buf.lexer.input()), self))) |
| 1221 | } |
| 1222 | |
| 1223 | /// Attempts to advance this cursor if the current token is a |
| 1224 | /// [`Token::Annotation`](crate::lexer::Token) |
| 1225 | /// |
| 1226 | /// If the current token is `Annotation`, returns the annotation token as well |
| 1227 | /// as a new [`Cursor`] pointing at the rest of the tokens in the stream. |
| 1228 | /// Otherwise returns `None`. |
| 1229 | /// |
| 1230 | /// This function will automatically skip over any comments, whitespace, or |
| 1231 | /// unknown annotations. |
| 1232 | pub fn annotation(mut self) -> Result<Option<(&'a str, Self)>> { |
| 1233 | let token = match self.token()? { |
| 1234 | Some(token) => token, |
| 1235 | None => return Ok(None), |
| 1236 | }; |
| 1237 | match token.kind { |
| 1238 | TokenKind::Annotation => {} |
| 1239 | _ => return Ok(None), |
| 1240 | } |
| 1241 | self.advance_past(&token); |
| 1242 | let annotation = match token.annotation(self.parser.buf.lexer.input())? { |
| 1243 | Cow::Borrowed(id) => id, |
| 1244 | // Our `self.parser.buf` only retains `Vec<u8>` so briefly convert |
| 1245 | // this owned string to `Vec<u8>` and then convert it back to `&str` |
| 1246 | // out the other end. |
| 1247 | Cow::Owned(s) => std::str::from_utf8(self.parser.buf.push_str(s.into_bytes())).unwrap(), |
| 1248 | }; |
| 1249 | Ok(Some((annotation, self))) |
| 1250 | } |
| 1251 | |
| 1252 | /// Attempts to advance this cursor if the current token is a |
| 1253 | /// [`Token::Reserved`](crate::lexer::Token) |
| 1254 | /// |
| 1255 | /// If the current token is `Reserved`, returns the reserved token as well |
| 1256 | /// as a new [`Cursor`] pointing at the rest of the tokens in the stream. |
| 1257 | /// Otherwise returns `None`. |
| 1258 | /// |
| 1259 | /// This function will automatically skip over any comments, whitespace, or |
| 1260 | /// unknown annotations. |
| 1261 | pub fn reserved(mut self) -> Result<Option<(&'a str, Self)>> { |
| 1262 | let token = match self.token()? { |
| 1263 | Some(token) => token, |
| 1264 | None => return Ok(None), |
| 1265 | }; |
| 1266 | match token.kind { |
| 1267 | TokenKind::Reserved => {} |
| 1268 | _ => return Ok(None), |
| 1269 | } |
| 1270 | self.advance_past(&token); |
| 1271 | Ok(Some((token.reserved(self.parser.buf.lexer.input()), self))) |
| 1272 | } |
| 1273 | |
| 1274 | /// Attempts to advance this cursor if the current token is a |
| 1275 | /// [`Token::Integer`](crate::lexer::Token) |
| 1276 | /// |
| 1277 | /// If the current token is `Integer`, returns the integer as well as a new |
| 1278 | /// [`Cursor`] pointing at the rest of the tokens in the stream. Otherwise |
| 1279 | /// returns `None`. |
| 1280 | /// |
| 1281 | /// This function will automatically skip over any comments, whitespace, or |
| 1282 | /// unknown annotations. |
| 1283 | pub fn integer(mut self) -> Result<Option<(Integer<'a>, Self)>> { |
| 1284 | let token = match self.token()? { |
| 1285 | Some(token) => token, |
| 1286 | None => return Ok(None), |
| 1287 | }; |
| 1288 | let i = match token.kind { |
| 1289 | TokenKind::Integer(i) => i, |
| 1290 | _ => return Ok(None), |
| 1291 | }; |
| 1292 | self.advance_past(&token); |
| 1293 | Ok(Some(( |
| 1294 | token.integer(self.parser.buf.lexer.input(), i), |
| 1295 | self, |
| 1296 | ))) |
| 1297 | } |
| 1298 | |
| 1299 | /// Attempts to advance this cursor if the current token is a |
| 1300 | /// [`Token::Float`](crate::lexer::Token) |
| 1301 | /// |
| 1302 | /// If the current token is `Float`, returns the float as well as a new |
| 1303 | /// [`Cursor`] pointing at the rest of the tokens in the stream. Otherwise |
| 1304 | /// returns `None`. |
| 1305 | /// |
| 1306 | /// This function will automatically skip over any comments, whitespace, or |
| 1307 | /// unknown annotations. |
| 1308 | pub fn float(mut self) -> Result<Option<(Float<'a>, Self)>> { |
| 1309 | let token = match self.token()? { |
| 1310 | Some(token) => token, |
| 1311 | None => return Ok(None), |
| 1312 | }; |
| 1313 | let f = match token.kind { |
| 1314 | TokenKind::Float(f) => f, |
| 1315 | _ => return Ok(None), |
| 1316 | }; |
| 1317 | self.advance_past(&token); |
| 1318 | Ok(Some((token.float(self.parser.buf.lexer.input(), f), self))) |
| 1319 | } |
| 1320 | |
| 1321 | /// Attempts to advance this cursor if the current token is a |
| 1322 | /// [`Token::String`](crate::lexer::Token) |
| 1323 | /// |
| 1324 | /// If the current token is `String`, returns the byte value of the string |
| 1325 | /// as well as a new [`Cursor`] pointing at the rest of the tokens in the |
| 1326 | /// stream. Otherwise returns `None`. |
| 1327 | /// |
| 1328 | /// This function will automatically skip over any comments, whitespace, or |
| 1329 | /// unknown annotations. |
| 1330 | pub fn string(mut self) -> Result<Option<(&'a [u8], Self)>> { |
| 1331 | let token = match self.token()? { |
| 1332 | Some(token) => token, |
| 1333 | None => return Ok(None), |
| 1334 | }; |
| 1335 | match token.kind { |
| 1336 | TokenKind::String => {} |
| 1337 | _ => return Ok(None), |
| 1338 | } |
| 1339 | let string = match token.string(self.parser.buf.lexer.input()) { |
| 1340 | Cow::Borrowed(s) => s, |
| 1341 | Cow::Owned(s) => self.parser.buf.push_str(s), |
| 1342 | }; |
| 1343 | self.advance_past(&token); |
| 1344 | Ok(Some((string, self))) |
| 1345 | } |
| 1346 | |
| 1347 | /// Attempts to advance this cursor if the current token is a |
| 1348 | /// [`Token::LineComment`](crate::lexer::Token) or a |
| 1349 | /// [`Token::BlockComment`](crate::lexer::Token) |
| 1350 | /// |
| 1351 | /// This function will only skip whitespace, no other tokens. |
| 1352 | pub fn comment(mut self) -> Result<Option<(&'a str, Self)>> { |
| 1353 | let start = self.pos.offset; |
| 1354 | self.pos.token = None; |
| 1355 | let comment = loop { |
| 1356 | let token = match self.parser.buf.lexer.parse(&mut self.pos.offset)? { |
| 1357 | Some(token) => token, |
| 1358 | None => return Ok(None), |
| 1359 | }; |
| 1360 | match token.kind { |
| 1361 | TokenKind::LineComment | TokenKind::BlockComment => { |
| 1362 | break token.src(self.parser.buf.lexer.input()); |
| 1363 | } |
| 1364 | TokenKind::Whitespace => {} |
| 1365 | _ => { |
| 1366 | self.pos.offset = start; |
| 1367 | return Ok(None); |
| 1368 | } |
| 1369 | } |
| 1370 | }; |
| 1371 | Ok(Some((comment, self))) |
| 1372 | } |
| 1373 | |
| 1374 | fn token(&self) -> Result<Option<Token>> { |
| 1375 | match self.pos.token { |
| 1376 | Some(token) => Ok(Some(token)), |
| 1377 | None => self.parser.buf.advance_token(self.pos.offset), |
| 1378 | } |
| 1379 | } |
| 1380 | |
| 1381 | fn advance_past(&mut self, token: &Token) { |
| 1382 | self.pos.offset = token.offset + (token.len as usize); |
| 1383 | self.pos.token = self |
| 1384 | .parser |
| 1385 | .buf |
| 1386 | .advance_token(self.pos.offset) |
| 1387 | .unwrap_or(None); |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | impl Lookahead1<'_> { |
| 1392 | /// Attempts to see if `T` is the next token in the [`Parser`] this |
| 1393 | /// [`Lookahead1`] references. |
| 1394 | /// |
| 1395 | /// For more information see [`Parser::lookahead1`] and [`Parser::peek`] |
| 1396 | pub fn peek<T: Peek>(&mut self) -> Result<bool> { |
| 1397 | Ok(if self.parser.peek::<T>()? { |
| 1398 | true |
| 1399 | } else { |
| 1400 | self.attempts.push(T::display()); |
| 1401 | false |
| 1402 | }) |
| 1403 | } |
| 1404 | |
| 1405 | /// Generates an error message saying that one of the tokens passed to |
| 1406 | /// [`Lookahead1::peek`] method was expected. |
| 1407 | /// |
| 1408 | /// Before calling this method you should call [`Lookahead1::peek`] for all |
| 1409 | /// possible tokens you'd like to parse. |
| 1410 | pub fn error(self) -> Error { |
| 1411 | match self.attempts.len() { |
| 1412 | 0 => { |
| 1413 | if self.parser.is_empty() { |
| 1414 | self.parser.error("unexpected end of input" ) |
| 1415 | } else { |
| 1416 | self.parser.error("unexpected token" ) |
| 1417 | } |
| 1418 | } |
| 1419 | 1 => { |
| 1420 | let message = format!("unexpected token, expected {}" , self.attempts[0]); |
| 1421 | self.parser.error(&message) |
| 1422 | } |
| 1423 | 2 => { |
| 1424 | let message = format!( |
| 1425 | "unexpected token, expected {} or {}" , |
| 1426 | self.attempts[0], self.attempts[1] |
| 1427 | ); |
| 1428 | self.parser.error(&message) |
| 1429 | } |
| 1430 | _ => { |
| 1431 | let join = self.attempts.join(", " ); |
| 1432 | let message = format!("unexpected token, expected one of: {}" , join); |
| 1433 | self.parser.error(&message) |
| 1434 | } |
| 1435 | } |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | impl<'a, T: Peek + Parse<'a>> Parse<'a> for Option<T> { |
| 1440 | fn parse(parser: Parser<'a>) -> Result<Option<T>> { |
| 1441 | if parser.peek::<T>()? { |
| 1442 | Ok(Some(parser.parse()?)) |
| 1443 | } else { |
| 1444 | Ok(None) |
| 1445 | } |
| 1446 | } |
| 1447 | } |
| 1448 | |