| 1 | /* RTL dead store elimination. |
| 2 | Copyright (C) 2005-2025 Free Software Foundation, Inc. |
| 3 | |
| 4 | Contributed by Richard Sandiford <rsandifor@codesourcery.com> |
| 5 | and Kenneth Zadeck <zadeck@naturalbridge.com> |
| 6 | |
| 7 | This file is part of GCC. |
| 8 | |
| 9 | GCC is free software; you can redistribute it and/or modify it under |
| 10 | the terms of the GNU General Public License as published by the Free |
| 11 | Software Foundation; either version 3, or (at your option) any later |
| 12 | version. |
| 13 | |
| 14 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 15 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 16 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 17 | for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with GCC; see the file COPYING3. If not see |
| 21 | <http://www.gnu.org/licenses/>. */ |
| 22 | |
| 23 | #undef BASELINE |
| 24 | |
| 25 | #include "config.h" |
| 26 | #include "system.h" |
| 27 | #include "coretypes.h" |
| 28 | #include "backend.h" |
| 29 | #include "target.h" |
| 30 | #include "rtl.h" |
| 31 | #include "tree.h" |
| 32 | #include "gimple.h" |
| 33 | #include "predict.h" |
| 34 | #include "df.h" |
| 35 | #include "memmodel.h" |
| 36 | #include "tm_p.h" |
| 37 | #include "gimple-ssa.h" |
| 38 | #include "expmed.h" |
| 39 | #include "optabs.h" |
| 40 | #include "emit-rtl.h" |
| 41 | #include "recog.h" |
| 42 | #include "alias.h" |
| 43 | #include "stor-layout.h" |
| 44 | #include "cfgrtl.h" |
| 45 | #include "cselib.h" |
| 46 | #include "tree-pass.h" |
| 47 | #include "explow.h" |
| 48 | #include "expr.h" |
| 49 | #include "dbgcnt.h" |
| 50 | #include "rtl-iter.h" |
| 51 | #include "cfgcleanup.h" |
| 52 | #include "calls.h" |
| 53 | |
| 54 | /* This file contains three techniques for performing Dead Store |
| 55 | Elimination (dse). |
| 56 | |
| 57 | * The first technique performs dse locally on any base address. It |
| 58 | is based on the cselib which is a local value numbering technique. |
| 59 | This technique is local to a basic block but deals with a fairly |
| 60 | general addresses. |
| 61 | |
| 62 | * The second technique performs dse globally but is restricted to |
| 63 | base addresses that are either constant or are relative to the |
| 64 | frame_pointer. |
| 65 | |
| 66 | * The third technique, (which is only done after register allocation) |
| 67 | processes the spill slots. This differs from the second |
| 68 | technique because it takes advantage of the fact that spilling is |
| 69 | completely free from the effects of aliasing. |
| 70 | |
| 71 | Logically, dse is a backwards dataflow problem. A store can be |
| 72 | deleted if it if cannot be reached in the backward direction by any |
| 73 | use of the value being stored. However, the local technique uses a |
| 74 | forwards scan of the basic block because cselib requires that the |
| 75 | block be processed in that order. |
| 76 | |
| 77 | The pass is logically broken into 7 steps: |
| 78 | |
| 79 | 0) Initialization. |
| 80 | |
| 81 | 1) The local algorithm, as well as scanning the insns for the two |
| 82 | global algorithms. |
| 83 | |
| 84 | 2) Analysis to see if the global algs are necessary. In the case |
| 85 | of stores base on a constant address, there must be at least two |
| 86 | stores to that address, to make it possible to delete some of the |
| 87 | stores. In the case of stores off of the frame or spill related |
| 88 | stores, only one store to an address is necessary because those |
| 89 | stores die at the end of the function. |
| 90 | |
| 91 | 3) Set up the global dataflow equations based on processing the |
| 92 | info parsed in the first step. |
| 93 | |
| 94 | 4) Solve the dataflow equations. |
| 95 | |
| 96 | 5) Delete the insns that the global analysis has indicated are |
| 97 | unnecessary. |
| 98 | |
| 99 | 6) Delete insns that store the same value as preceding store |
| 100 | where the earlier store couldn't be eliminated. |
| 101 | |
| 102 | 7) Cleanup. |
| 103 | |
| 104 | This step uses cselib and canon_rtx to build the largest expression |
| 105 | possible for each address. This pass is a forwards pass through |
| 106 | each basic block. From the point of view of the global technique, |
| 107 | the first pass could examine a block in either direction. The |
| 108 | forwards ordering is to accommodate cselib. |
| 109 | |
| 110 | We make a simplifying assumption: addresses fall into four broad |
| 111 | categories: |
| 112 | |
| 113 | 1) base has rtx_varies_p == false, offset is constant. |
| 114 | 2) base has rtx_varies_p == false, offset variable. |
| 115 | 3) base has rtx_varies_p == true, offset constant. |
| 116 | 4) base has rtx_varies_p == true, offset variable. |
| 117 | |
| 118 | The local passes are able to process all 4 kinds of addresses. The |
| 119 | global pass only handles 1). |
| 120 | |
| 121 | The global problem is formulated as follows: |
| 122 | |
| 123 | A store, S1, to address A, where A is not relative to the stack |
| 124 | frame, can be eliminated if all paths from S1 to the end of the |
| 125 | function contain another store to A before a read to A. |
| 126 | |
| 127 | If the address A is relative to the stack frame, a store S2 to A |
| 128 | can be eliminated if there are no paths from S2 that reach the |
| 129 | end of the function that read A before another store to A. In |
| 130 | this case S2 can be deleted if there are paths from S2 to the |
| 131 | end of the function that have no reads or writes to A. This |
| 132 | second case allows stores to the stack frame to be deleted that |
| 133 | would otherwise die when the function returns. This cannot be |
| 134 | done if stores_off_frame_dead_at_return is not true. See the doc |
| 135 | for that variable for when this variable is false. |
| 136 | |
| 137 | The global problem is formulated as a backwards set union |
| 138 | dataflow problem where the stores are the gens and reads are the |
| 139 | kills. Set union problems are rare and require some special |
| 140 | handling given our representation of bitmaps. A straightforward |
| 141 | implementation requires a lot of bitmaps filled with 1s. |
| 142 | These are expensive and cumbersome in our bitmap formulation so |
| 143 | care has been taken to avoid large vectors filled with 1s. See |
| 144 | the comments in bb_info and in the dataflow confluence functions |
| 145 | for details. |
| 146 | |
| 147 | There are two places for further enhancements to this algorithm: |
| 148 | |
| 149 | 1) The original dse which was embedded in a pass called flow also |
| 150 | did local address forwarding. For example in |
| 151 | |
| 152 | A <- r100 |
| 153 | ... <- A |
| 154 | |
| 155 | flow would replace the right hand side of the second insn with a |
| 156 | reference to r100. Most of the information is available to add this |
| 157 | to this pass. It has not done it because it is a lot of work in |
| 158 | the case that either r100 is assigned to between the first and |
| 159 | second insn and/or the second insn is a load of part of the value |
| 160 | stored by the first insn. |
| 161 | |
| 162 | insn 5 in gcc.c-torture/compile/990203-1.c simple case. |
| 163 | insn 15 in gcc.c-torture/execute/20001017-2.c simple case. |
| 164 | insn 25 in gcc.c-torture/execute/20001026-1.c simple case. |
| 165 | insn 44 in gcc.c-torture/execute/20010910-1.c simple case. |
| 166 | |
| 167 | 2) The cleaning up of spill code is quite profitable. It currently |
| 168 | depends on reading tea leaves and chicken entrails left by reload. |
| 169 | This pass depends on reload creating a singleton alias set for each |
| 170 | spill slot and telling the next dse pass which of these alias sets |
| 171 | are the singletons. Rather than analyze the addresses of the |
| 172 | spills, dse's spill processing just does analysis of the loads and |
| 173 | stores that use those alias sets. There are three cases where this |
| 174 | falls short: |
| 175 | |
| 176 | a) Reload sometimes creates the slot for one mode of access, and |
| 177 | then inserts loads and/or stores for a smaller mode. In this |
| 178 | case, the current code just punts on the slot. The proper thing |
| 179 | to do is to back out and use one bit vector position for each |
| 180 | byte of the entity associated with the slot. This depends on |
| 181 | KNOWING that reload always generates the accesses for each of the |
| 182 | bytes in some canonical (read that easy to understand several |
| 183 | passes after reload happens) way. |
| 184 | |
| 185 | b) Reload sometimes decides that spill slot it allocated was not |
| 186 | large enough for the mode and goes back and allocates more slots |
| 187 | with the same mode and alias set. The backout in this case is a |
| 188 | little more graceful than (a). In this case the slot is unmarked |
| 189 | as being a spill slot and if final address comes out to be based |
| 190 | off the frame pointer, the global algorithm handles this slot. |
| 191 | |
| 192 | c) For any pass that may prespill, there is currently no |
| 193 | mechanism to tell the dse pass that the slot being used has the |
| 194 | special properties that reload uses. It may be that all that is |
| 195 | required is to have those passes make the same calls that reload |
| 196 | does, assuming that the alias sets can be manipulated in the same |
| 197 | way. */ |
| 198 | |
| 199 | /* There are limits to the size of constant offsets we model for the |
| 200 | global problem. There are certainly test cases, that exceed this |
| 201 | limit, however, it is unlikely that there are important programs |
| 202 | that really have constant offsets this size. */ |
| 203 | #define MAX_OFFSET (64 * 1024) |
| 204 | |
| 205 | /* Obstack for the DSE dataflow bitmaps. We don't want to put these |
| 206 | on the default obstack because these bitmaps can grow quite large |
| 207 | (~2GB for the small (!) test case of PR54146) and we'll hold on to |
| 208 | all that memory until the end of the compiler run. |
| 209 | As a bonus, delete_tree_live_info can destroy all the bitmaps by just |
| 210 | releasing the whole obstack. */ |
| 211 | static bitmap_obstack dse_bitmap_obstack; |
| 212 | |
| 213 | /* Obstack for other data. As for above: Kinda nice to be able to |
| 214 | throw it all away at the end in one big sweep. */ |
| 215 | static struct obstack dse_obstack; |
| 216 | |
| 217 | /* Scratch bitmap for cselib's cselib_expand_value_rtx. */ |
| 218 | static bitmap scratch = NULL; |
| 219 | |
| 220 | struct insn_info_type; |
| 221 | |
| 222 | /* This structure holds information about a candidate store. */ |
| 223 | class store_info |
| 224 | { |
| 225 | public: |
| 226 | |
| 227 | /* False means this is a clobber. */ |
| 228 | bool is_set; |
| 229 | |
| 230 | /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */ |
| 231 | bool is_large; |
| 232 | |
| 233 | /* The id of the mem group of the base address. If rtx_varies_p is |
| 234 | true, this is -1. Otherwise, it is the index into the group |
| 235 | table. */ |
| 236 | int group_id; |
| 237 | |
| 238 | /* This is the cselib value. */ |
| 239 | cselib_val *cse_base; |
| 240 | |
| 241 | /* This canonized mem. */ |
| 242 | rtx mem; |
| 243 | |
| 244 | /* Canonized MEM address for use by canon_true_dependence. */ |
| 245 | rtx mem_addr; |
| 246 | |
| 247 | /* The offset of the first byte associated with the operation. */ |
| 248 | poly_int64 offset; |
| 249 | |
| 250 | /* The number of bytes covered by the operation. This is always exact |
| 251 | and known (rather than -1). */ |
| 252 | poly_int64 width; |
| 253 | |
| 254 | /* The address space that the memory reference uses. */ |
| 255 | unsigned char addrspace; |
| 256 | |
| 257 | union |
| 258 | { |
| 259 | /* A bitmask as wide as the number of bytes in the word that |
| 260 | contains a 1 if the byte may be needed. The store is unused if |
| 261 | all of the bits are 0. This is used if IS_LARGE is false. */ |
| 262 | unsigned HOST_WIDE_INT small_bitmask; |
| 263 | |
| 264 | struct |
| 265 | { |
| 266 | /* A bitmap with one bit per byte, or null if the number of |
| 267 | bytes isn't known at compile time. A cleared bit means |
| 268 | the position is needed. Used if IS_LARGE is true. */ |
| 269 | bitmap bmap; |
| 270 | |
| 271 | /* When BITMAP is nonnull, this counts the number of set bits |
| 272 | (i.e. unneeded bytes) in the bitmap. If it is equal to |
| 273 | WIDTH, the whole store is unused. |
| 274 | |
| 275 | When BITMAP is null: |
| 276 | - the store is definitely not needed when COUNT == 1 |
| 277 | - all the store is needed when COUNT == 0 and RHS is nonnull |
| 278 | - otherwise we don't know which parts of the store are needed. */ |
| 279 | int count; |
| 280 | } large; |
| 281 | } positions_needed; |
| 282 | |
| 283 | /* The next store info for this insn. */ |
| 284 | class store_info *next; |
| 285 | |
| 286 | /* The right hand side of the store. This is used if there is a |
| 287 | subsequent reload of the mems address somewhere later in the |
| 288 | basic block. */ |
| 289 | rtx rhs; |
| 290 | |
| 291 | /* If rhs is or holds a constant, this contains that constant, |
| 292 | otherwise NULL. */ |
| 293 | rtx const_rhs; |
| 294 | |
| 295 | /* Set if this store stores the same constant value as REDUNDANT_REASON |
| 296 | insn stored. These aren't eliminated early, because doing that |
| 297 | might prevent the earlier larger store to be eliminated. */ |
| 298 | struct insn_info_type *redundant_reason; |
| 299 | }; |
| 300 | |
| 301 | /* Return a bitmask with the first N low bits set. */ |
| 302 | |
| 303 | static unsigned HOST_WIDE_INT |
| 304 | lowpart_bitmask (int n) |
| 305 | { |
| 306 | unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U; |
| 307 | return mask >> (HOST_BITS_PER_WIDE_INT - n); |
| 308 | } |
| 309 | |
| 310 | static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool" ); |
| 311 | |
| 312 | static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool" ); |
| 313 | |
| 314 | /* This structure holds information about a load. These are only |
| 315 | built for rtx bases. */ |
| 316 | class read_info_type |
| 317 | { |
| 318 | public: |
| 319 | /* The id of the mem group of the base address. */ |
| 320 | int group_id; |
| 321 | |
| 322 | /* The offset of the first byte associated with the operation. */ |
| 323 | poly_int64 offset; |
| 324 | |
| 325 | /* The number of bytes covered by the operation, or -1 if not known. */ |
| 326 | poly_int64 width; |
| 327 | |
| 328 | /* The mem being read. */ |
| 329 | rtx mem; |
| 330 | |
| 331 | /* The next read_info for this insn. */ |
| 332 | class read_info_type *next; |
| 333 | }; |
| 334 | typedef class read_info_type *read_info_t; |
| 335 | |
| 336 | static object_allocator<read_info_type> read_info_type_pool ("read_info_pool" ); |
| 337 | |
| 338 | /* One of these records is created for each insn. */ |
| 339 | |
| 340 | struct insn_info_type |
| 341 | { |
| 342 | /* Set true if the insn contains a store but the insn itself cannot |
| 343 | be deleted. This is set if the insn is a parallel and there is |
| 344 | more than one non dead output or if the insn is in some way |
| 345 | volatile. */ |
| 346 | bool cannot_delete; |
| 347 | |
| 348 | /* This field is only used by the global algorithm. It is set true |
| 349 | if the insn contains any read of mem except for a (1). This is |
| 350 | also set if the insn is a call or has a clobber mem. If the insn |
| 351 | contains a wild read, the use_rec will be null. */ |
| 352 | bool wild_read; |
| 353 | |
| 354 | /* This is true only for CALL instructions which could potentially read |
| 355 | any non-frame memory location. This field is used by the global |
| 356 | algorithm. */ |
| 357 | bool non_frame_wild_read; |
| 358 | |
| 359 | /* This field is only used for the processing of const functions. |
| 360 | These functions cannot read memory, but they can read the stack |
| 361 | because that is where they may get their parms. We need to be |
| 362 | this conservative because, like the store motion pass, we don't |
| 363 | consider CALL_INSN_FUNCTION_USAGE when processing call insns. |
| 364 | Moreover, we need to distinguish two cases: |
| 365 | 1. Before reload (register elimination), the stores related to |
| 366 | outgoing arguments are stack pointer based and thus deemed |
| 367 | of non-constant base in this pass. This requires special |
| 368 | handling but also means that the frame pointer based stores |
| 369 | need not be killed upon encountering a const function call. |
| 370 | 2. After reload, the stores related to outgoing arguments can be |
| 371 | either stack pointer or hard frame pointer based. This means |
| 372 | that we have no other choice than also killing all the frame |
| 373 | pointer based stores upon encountering a const function call. |
| 374 | This field is set after reload for const function calls and before |
| 375 | reload for const tail function calls on targets where arg pointer |
| 376 | is the frame pointer. Having this set is less severe than a wild |
| 377 | read, it just means that all the frame related stores are killed |
| 378 | rather than all the stores. */ |
| 379 | bool frame_read; |
| 380 | |
| 381 | /* This field is only used for the processing of const functions. |
| 382 | It is set if the insn may contain a stack pointer based store. */ |
| 383 | bool stack_pointer_based; |
| 384 | |
| 385 | /* This is true if any of the sets within the store contains a |
| 386 | cselib base. Such stores can only be deleted by the local |
| 387 | algorithm. */ |
| 388 | bool contains_cselib_groups; |
| 389 | |
| 390 | /* The insn. */ |
| 391 | rtx_insn *insn; |
| 392 | |
| 393 | /* The list of mem sets or mem clobbers that are contained in this |
| 394 | insn. If the insn is deletable, it contains only one mem set. |
| 395 | But it could also contain clobbers. Insns that contain more than |
| 396 | one mem set are not deletable, but each of those mems are here in |
| 397 | order to provide info to delete other insns. */ |
| 398 | store_info *store_rec; |
| 399 | |
| 400 | /* The linked list of mem uses in this insn. Only the reads from |
| 401 | rtx bases are listed here. The reads to cselib bases are |
| 402 | completely processed during the first scan and so are never |
| 403 | created. */ |
| 404 | read_info_t read_rec; |
| 405 | |
| 406 | /* The live fixed registers. We assume only fixed registers can |
| 407 | cause trouble by being clobbered from an expanded pattern; |
| 408 | storing only the live fixed registers (rather than all registers) |
| 409 | means less memory needs to be allocated / copied for the individual |
| 410 | stores. */ |
| 411 | regset fixed_regs_live; |
| 412 | |
| 413 | /* The prev insn in the basic block. */ |
| 414 | struct insn_info_type * prev_insn; |
| 415 | |
| 416 | /* The linked list of insns that are in consideration for removal in |
| 417 | the forwards pass through the basic block. This pointer may be |
| 418 | trash as it is not cleared when a wild read occurs. The only |
| 419 | time it is guaranteed to be correct is when the traversal starts |
| 420 | at active_local_stores. */ |
| 421 | struct insn_info_type * next_local_store; |
| 422 | }; |
| 423 | typedef struct insn_info_type *insn_info_t; |
| 424 | |
| 425 | static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool" ); |
| 426 | |
| 427 | /* The linked list of stores that are under consideration in this |
| 428 | basic block. */ |
| 429 | static insn_info_t active_local_stores; |
| 430 | static int active_local_stores_len; |
| 431 | |
| 432 | struct dse_bb_info_type |
| 433 | { |
| 434 | /* Pointer to the insn info for the last insn in the block. These |
| 435 | are linked so this is how all of the insns are reached. During |
| 436 | scanning this is the current insn being scanned. */ |
| 437 | insn_info_t last_insn; |
| 438 | |
| 439 | /* The info for the global dataflow problem. */ |
| 440 | |
| 441 | |
| 442 | /* This is set if the transfer function should and in the wild_read |
| 443 | bitmap before applying the kill and gen sets. That vector knocks |
| 444 | out most of the bits in the bitmap and thus speeds up the |
| 445 | operations. */ |
| 446 | bool apply_wild_read; |
| 447 | |
| 448 | /* The following 4 bitvectors hold information about which positions |
| 449 | of which stores are live or dead. They are indexed by |
| 450 | get_bitmap_index. */ |
| 451 | |
| 452 | /* The set of store positions that exist in this block before a wild read. */ |
| 453 | bitmap gen; |
| 454 | |
| 455 | /* The set of load positions that exist in this block above the |
| 456 | same position of a store. */ |
| 457 | bitmap kill; |
| 458 | |
| 459 | /* The set of stores that reach the top of the block without being |
| 460 | killed by a read. |
| 461 | |
| 462 | Do not represent the in if it is all ones. Note that this is |
| 463 | what the bitvector should logically be initialized to for a set |
| 464 | intersection problem. However, like the kill set, this is too |
| 465 | expensive. So initially, the in set will only be created for the |
| 466 | exit block and any block that contains a wild read. */ |
| 467 | bitmap in; |
| 468 | |
| 469 | /* The set of stores that reach the bottom of the block from it's |
| 470 | successors. |
| 471 | |
| 472 | Do not represent the in if it is all ones. Note that this is |
| 473 | what the bitvector should logically be initialized to for a set |
| 474 | intersection problem. However, like the kill and in set, this is |
| 475 | too expensive. So what is done is that the confluence operator |
| 476 | just initializes the vector from one of the out sets of the |
| 477 | successors of the block. */ |
| 478 | bitmap out; |
| 479 | |
| 480 | /* The following bitvector is indexed by the reg number. It |
| 481 | contains the set of regs that are live at the current instruction |
| 482 | being processed. While it contains info for all of the |
| 483 | registers, only the hard registers are actually examined. It is used |
| 484 | to assure that shift and/or add sequences that are inserted do not |
| 485 | accidentally clobber live hard regs. */ |
| 486 | bitmap regs_live; |
| 487 | }; |
| 488 | |
| 489 | typedef struct dse_bb_info_type *bb_info_t; |
| 490 | |
| 491 | static object_allocator<dse_bb_info_type> dse_bb_info_type_pool |
| 492 | ("bb_info_pool" ); |
| 493 | |
| 494 | /* Table to hold all bb_infos. */ |
| 495 | static bb_info_t *bb_table; |
| 496 | |
| 497 | /* There is a group_info for each rtx base that is used to reference |
| 498 | memory. There are also not many of the rtx bases because they are |
| 499 | very limited in scope. */ |
| 500 | |
| 501 | struct group_info |
| 502 | { |
| 503 | /* The actual base of the address. */ |
| 504 | rtx rtx_base; |
| 505 | |
| 506 | /* The sequential id of the base. This allows us to have a |
| 507 | canonical ordering of these that is not based on addresses. */ |
| 508 | int id; |
| 509 | |
| 510 | /* True if there are any positions that are to be processed |
| 511 | globally. */ |
| 512 | bool process_globally; |
| 513 | |
| 514 | /* True if the base of this group is either the frame_pointer or |
| 515 | hard_frame_pointer. */ |
| 516 | bool frame_related; |
| 517 | |
| 518 | /* A mem wrapped around the base pointer for the group in order to do |
| 519 | read dependency. It must be given BLKmode in order to encompass all |
| 520 | the possible offsets from the base. */ |
| 521 | rtx base_mem; |
| 522 | |
| 523 | /* Canonized version of base_mem's address. */ |
| 524 | rtx canon_base_addr; |
| 525 | |
| 526 | /* These two sets of two bitmaps are used to keep track of how many |
| 527 | stores are actually referencing that position from this base. We |
| 528 | only do this for rtx bases as this will be used to assign |
| 529 | positions in the bitmaps for the global problem. Bit N is set in |
| 530 | store1 on the first store for offset N. Bit N is set in store2 |
| 531 | for the second store to offset N. This is all we need since we |
| 532 | only care about offsets that have two or more stores for them. |
| 533 | |
| 534 | The "_n" suffix is for offsets less than 0 and the "_p" suffix is |
| 535 | for 0 and greater offsets. |
| 536 | |
| 537 | There is one special case here, for stores into the stack frame, |
| 538 | we will or store1 into store2 before deciding which stores look |
| 539 | at globally. This is because stores to the stack frame that have |
| 540 | no other reads before the end of the function can also be |
| 541 | deleted. */ |
| 542 | bitmap store1_n, store1_p, store2_n, store2_p; |
| 543 | |
| 544 | /* These bitmaps keep track of offsets in this group escape this function. |
| 545 | An offset escapes if it corresponds to a named variable whose |
| 546 | addressable flag is set. */ |
| 547 | bitmap escaped_n, escaped_p; |
| 548 | |
| 549 | /* The positions in this bitmap have the same assignments as the in, |
| 550 | out, gen and kill bitmaps. This bitmap is all zeros except for |
| 551 | the positions that are occupied by stores for this group. */ |
| 552 | bitmap group_kill; |
| 553 | |
| 554 | /* The offset_map is used to map the offsets from this base into |
| 555 | positions in the global bitmaps. It is only created after all of |
| 556 | the all of stores have been scanned and we know which ones we |
| 557 | care about. */ |
| 558 | int *offset_map_n, *offset_map_p; |
| 559 | int offset_map_size_n, offset_map_size_p; |
| 560 | }; |
| 561 | |
| 562 | static object_allocator<group_info> group_info_pool ("rtx_group_info_pool" ); |
| 563 | |
| 564 | /* Index into the rtx_group_vec. */ |
| 565 | static int rtx_group_next_id; |
| 566 | |
| 567 | |
| 568 | static vec<group_info *> rtx_group_vec; |
| 569 | |
| 570 | |
| 571 | /* This structure holds the set of changes that are being deferred |
| 572 | when removing read operation. See replace_read. */ |
| 573 | struct deferred_change |
| 574 | { |
| 575 | |
| 576 | /* The mem that is being replaced. */ |
| 577 | rtx *loc; |
| 578 | |
| 579 | /* The reg it is being replaced with. */ |
| 580 | rtx reg; |
| 581 | |
| 582 | struct deferred_change *next; |
| 583 | }; |
| 584 | |
| 585 | static object_allocator<deferred_change> deferred_change_pool |
| 586 | ("deferred_change_pool" ); |
| 587 | |
| 588 | static deferred_change *deferred_change_list = NULL; |
| 589 | |
| 590 | /* This is true except if cfun->stdarg -- i.e. we cannot do |
| 591 | this for vararg functions because they play games with the frame. */ |
| 592 | static bool stores_off_frame_dead_at_return; |
| 593 | |
| 594 | /* Counter for stats. */ |
| 595 | static int globally_deleted; |
| 596 | static int locally_deleted; |
| 597 | |
| 598 | static bitmap all_blocks; |
| 599 | |
| 600 | /* Locations that are killed by calls in the global phase. */ |
| 601 | static bitmap kill_on_calls; |
| 602 | |
| 603 | /* The number of bits used in the global bitmaps. */ |
| 604 | static unsigned int current_position; |
| 605 | |
| 606 | /* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */ |
| 607 | |
| 608 | static void |
| 609 | print_range (FILE *file, poly_int64 offset, poly_int64 width) |
| 610 | { |
| 611 | fprintf (stream: file, format: "[" ); |
| 612 | print_dec (value: offset, file, sgn: SIGNED); |
| 613 | fprintf (stream: file, format: ".." ); |
| 614 | print_dec (value: offset + width, file, sgn: SIGNED); |
| 615 | fprintf (stream: file, format: ")" ); |
| 616 | } |
| 617 | |
| 618 | /*---------------------------------------------------------------------------- |
| 619 | Zeroth step. |
| 620 | |
| 621 | Initialization. |
| 622 | ----------------------------------------------------------------------------*/ |
| 623 | |
| 624 | |
| 625 | /* Hashtable callbacks for maintaining the "bases" field of |
| 626 | store_group_info, given that the addresses are function invariants. */ |
| 627 | |
| 628 | struct invariant_group_base_hasher : nofree_ptr_hash <group_info> |
| 629 | { |
| 630 | static inline hashval_t hash (const group_info *); |
| 631 | static inline bool equal (const group_info *, const group_info *); |
| 632 | }; |
| 633 | |
| 634 | inline bool |
| 635 | invariant_group_base_hasher::equal (const group_info *gi1, |
| 636 | const group_info *gi2) |
| 637 | { |
| 638 | return rtx_equal_p (gi1->rtx_base, gi2->rtx_base); |
| 639 | } |
| 640 | |
| 641 | inline hashval_t |
| 642 | invariant_group_base_hasher::hash (const group_info *gi) |
| 643 | { |
| 644 | int do_not_record; |
| 645 | return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false); |
| 646 | } |
| 647 | |
| 648 | /* Tables of group_info structures, hashed by base value. */ |
| 649 | static hash_table<invariant_group_base_hasher> *rtx_group_table; |
| 650 | |
| 651 | |
| 652 | /* Get the GROUP for BASE. Add a new group if it is not there. */ |
| 653 | |
| 654 | static group_info * |
| 655 | get_group_info (rtx base) |
| 656 | { |
| 657 | struct group_info tmp_gi; |
| 658 | group_info *gi; |
| 659 | group_info **slot; |
| 660 | |
| 661 | gcc_assert (base != NULL_RTX); |
| 662 | |
| 663 | /* Find the store_base_info structure for BASE, creating a new one |
| 664 | if necessary. */ |
| 665 | tmp_gi.rtx_base = base; |
| 666 | slot = rtx_group_table->find_slot (value: &tmp_gi, insert: INSERT); |
| 667 | gi = *slot; |
| 668 | |
| 669 | if (gi == NULL) |
| 670 | { |
| 671 | *slot = gi = group_info_pool.allocate (); |
| 672 | gi->rtx_base = base; |
| 673 | gi->id = rtx_group_next_id++; |
| 674 | gi->base_mem = gen_rtx_MEM (BLKmode, base); |
| 675 | gi->canon_base_addr = canon_rtx (base); |
| 676 | gi->store1_n = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 677 | gi->store1_p = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 678 | gi->store2_n = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 679 | gi->store2_p = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 680 | gi->escaped_p = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 681 | gi->escaped_n = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 682 | gi->group_kill = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 683 | gi->process_globally = false; |
| 684 | gi->frame_related = |
| 685 | (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx) |
| 686 | || (base == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]); |
| 687 | gi->offset_map_size_n = 0; |
| 688 | gi->offset_map_size_p = 0; |
| 689 | gi->offset_map_n = NULL; |
| 690 | gi->offset_map_p = NULL; |
| 691 | rtx_group_vec.safe_push (obj: gi); |
| 692 | } |
| 693 | |
| 694 | return gi; |
| 695 | } |
| 696 | |
| 697 | |
| 698 | /* Initialization of data structures. */ |
| 699 | |
| 700 | static void |
| 701 | dse_step0 (void) |
| 702 | { |
| 703 | locally_deleted = 0; |
| 704 | globally_deleted = 0; |
| 705 | |
| 706 | bitmap_obstack_initialize (&dse_bitmap_obstack); |
| 707 | gcc_obstack_init (&dse_obstack); |
| 708 | |
| 709 | scratch = BITMAP_ALLOC (obstack: ®_obstack); |
| 710 | kill_on_calls = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 711 | |
| 712 | |
| 713 | rtx_group_table = new hash_table<invariant_group_base_hasher> (11); |
| 714 | |
| 715 | bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun)); |
| 716 | rtx_group_next_id = 0; |
| 717 | |
| 718 | stores_off_frame_dead_at_return = !cfun->stdarg; |
| 719 | |
| 720 | init_alias_analysis (); |
| 721 | } |
| 722 | |
| 723 | |
| 724 | |
| 725 | /*---------------------------------------------------------------------------- |
| 726 | First step. |
| 727 | |
| 728 | Scan all of the insns. Any random ordering of the blocks is fine. |
| 729 | Each block is scanned in forward order to accommodate cselib which |
| 730 | is used to remove stores with non-constant bases. |
| 731 | ----------------------------------------------------------------------------*/ |
| 732 | |
| 733 | /* Delete all of the store_info recs from INSN_INFO. */ |
| 734 | |
| 735 | static void |
| 736 | free_store_info (insn_info_t insn_info) |
| 737 | { |
| 738 | store_info *cur = insn_info->store_rec; |
| 739 | while (cur) |
| 740 | { |
| 741 | store_info *next = cur->next; |
| 742 | if (cur->is_large) |
| 743 | BITMAP_FREE (cur->positions_needed.large.bmap); |
| 744 | if (cur->cse_base) |
| 745 | cse_store_info_pool.remove (object: cur); |
| 746 | else |
| 747 | rtx_store_info_pool.remove (object: cur); |
| 748 | cur = next; |
| 749 | } |
| 750 | |
| 751 | insn_info->cannot_delete = true; |
| 752 | insn_info->contains_cselib_groups = false; |
| 753 | insn_info->store_rec = NULL; |
| 754 | } |
| 755 | |
| 756 | struct note_add_store_info |
| 757 | { |
| 758 | rtx_insn *first, *current; |
| 759 | regset fixed_regs_live; |
| 760 | bool failure; |
| 761 | }; |
| 762 | |
| 763 | /* Callback for emit_inc_dec_insn_before via note_stores. |
| 764 | Check if a register is clobbered which is live afterwards. */ |
| 765 | |
| 766 | static void |
| 767 | note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data) |
| 768 | { |
| 769 | rtx_insn *insn; |
| 770 | note_add_store_info *info = (note_add_store_info *) data; |
| 771 | |
| 772 | if (!REG_P (loc)) |
| 773 | return; |
| 774 | |
| 775 | /* If this register is referenced by the current or an earlier insn, |
| 776 | that's OK. E.g. this applies to the register that is being incremented |
| 777 | with this addition. */ |
| 778 | for (insn = info->first; |
| 779 | insn != NEXT_INSN (insn: info->current); |
| 780 | insn = NEXT_INSN (insn)) |
| 781 | if (reg_referenced_p (loc, PATTERN (insn))) |
| 782 | return; |
| 783 | |
| 784 | /* If we come here, we have a clobber of a register that's only OK |
| 785 | if that register is not live. If we don't have liveness information |
| 786 | available, fail now. */ |
| 787 | if (!info->fixed_regs_live) |
| 788 | { |
| 789 | info->failure = true; |
| 790 | return; |
| 791 | } |
| 792 | /* Now check if this is a live fixed register. */ |
| 793 | unsigned int end_regno = END_REGNO (x: loc); |
| 794 | for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno) |
| 795 | if (REGNO_REG_SET_P (info->fixed_regs_live, regno)) |
| 796 | info->failure = true; |
| 797 | } |
| 798 | |
| 799 | /* Callback for for_each_inc_dec that emits an INSN that sets DEST to |
| 800 | SRC + SRCOFF before insn ARG. */ |
| 801 | |
| 802 | static int |
| 803 | emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED, |
| 804 | rtx op ATTRIBUTE_UNUSED, |
| 805 | rtx dest, rtx src, rtx srcoff, void *arg) |
| 806 | { |
| 807 | insn_info_t insn_info = (insn_info_t) arg; |
| 808 | rtx_insn *insn = insn_info->insn, *new_insn, *cur; |
| 809 | note_add_store_info info; |
| 810 | |
| 811 | /* We can reuse all operands without copying, because we are about |
| 812 | to delete the insn that contained it. */ |
| 813 | if (srcoff) |
| 814 | { |
| 815 | start_sequence (); |
| 816 | emit_insn (gen_add3_insn (dest, src, srcoff)); |
| 817 | new_insn = end_sequence (); |
| 818 | } |
| 819 | else |
| 820 | new_insn = gen_move_insn (dest, src); |
| 821 | info.first = new_insn; |
| 822 | info.fixed_regs_live = insn_info->fixed_regs_live; |
| 823 | info.failure = false; |
| 824 | for (cur = new_insn; cur; cur = NEXT_INSN (insn: cur)) |
| 825 | { |
| 826 | info.current = cur; |
| 827 | note_stores (cur, note_add_store, &info); |
| 828 | } |
| 829 | |
| 830 | /* If a failure was flagged above, return 1 so that for_each_inc_dec will |
| 831 | return it immediately, communicating the failure to its caller. */ |
| 832 | if (info.failure) |
| 833 | return 1; |
| 834 | |
| 835 | emit_insn_before (new_insn, insn); |
| 836 | |
| 837 | return 0; |
| 838 | } |
| 839 | |
| 840 | /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it |
| 841 | is there, is split into a separate insn. |
| 842 | Return true on success (or if there was nothing to do), false on failure. */ |
| 843 | |
| 844 | static bool |
| 845 | check_for_inc_dec_1 (insn_info_t insn_info) |
| 846 | { |
| 847 | rtx_insn *insn = insn_info->insn; |
| 848 | rtx note = find_reg_note (insn, REG_INC, NULL_RTX); |
| 849 | if (note) |
| 850 | return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before, |
| 851 | arg: insn_info) == 0; |
| 852 | |
| 853 | /* Punt on stack pushes, those don't have REG_INC notes and we are |
| 854 | unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */ |
| 855 | subrtx_iterator::array_type array; |
| 856 | FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST) |
| 857 | { |
| 858 | const_rtx x = *iter; |
| 859 | if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC) |
| 860 | return false; |
| 861 | } |
| 862 | |
| 863 | return true; |
| 864 | } |
| 865 | |
| 866 | |
| 867 | /* Entry point for postreload. If you work on reload_cse, or you need this |
| 868 | anywhere else, consider if you can provide register liveness information |
| 869 | and add a parameter to this function so that it can be passed down in |
| 870 | insn_info.fixed_regs_live. */ |
| 871 | bool |
| 872 | check_for_inc_dec (rtx_insn *insn) |
| 873 | { |
| 874 | insn_info_type insn_info; |
| 875 | rtx note; |
| 876 | |
| 877 | insn_info.insn = insn; |
| 878 | insn_info.fixed_regs_live = NULL; |
| 879 | note = find_reg_note (insn, REG_INC, NULL_RTX); |
| 880 | if (note) |
| 881 | return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before, |
| 882 | arg: &insn_info) == 0; |
| 883 | |
| 884 | /* Punt on stack pushes, those don't have REG_INC notes and we are |
| 885 | unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */ |
| 886 | subrtx_iterator::array_type array; |
| 887 | FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST) |
| 888 | { |
| 889 | const_rtx x = *iter; |
| 890 | if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC) |
| 891 | return false; |
| 892 | } |
| 893 | |
| 894 | return true; |
| 895 | } |
| 896 | |
| 897 | /* Delete the insn and free all of the fields inside INSN_INFO. */ |
| 898 | |
| 899 | static void |
| 900 | delete_dead_store_insn (insn_info_t insn_info) |
| 901 | { |
| 902 | read_info_t read_info; |
| 903 | |
| 904 | if (!dbg_cnt (index: dse)) |
| 905 | return; |
| 906 | |
| 907 | if (!check_for_inc_dec_1 (insn_info)) |
| 908 | return; |
| 909 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 910 | fprintf (stream: dump_file, format: "Locally deleting insn %d\n" , |
| 911 | INSN_UID (insn: insn_info->insn)); |
| 912 | |
| 913 | free_store_info (insn_info); |
| 914 | read_info = insn_info->read_rec; |
| 915 | |
| 916 | while (read_info) |
| 917 | { |
| 918 | read_info_t next = read_info->next; |
| 919 | read_info_type_pool.remove (object: read_info); |
| 920 | read_info = next; |
| 921 | } |
| 922 | insn_info->read_rec = NULL; |
| 923 | |
| 924 | delete_insn (insn_info->insn); |
| 925 | locally_deleted++; |
| 926 | insn_info->insn = NULL; |
| 927 | |
| 928 | insn_info->wild_read = false; |
| 929 | } |
| 930 | |
| 931 | /* Return whether DECL, a local variable, can possibly escape the current |
| 932 | function scope. */ |
| 933 | |
| 934 | static bool |
| 935 | local_variable_can_escape (tree decl) |
| 936 | { |
| 937 | if (TREE_ADDRESSABLE (decl)) |
| 938 | return true; |
| 939 | |
| 940 | /* If this is a partitioned variable, we need to consider all the variables |
| 941 | in the partition. This is necessary because a store into one of them can |
| 942 | be replaced with a store into another and this may not change the outcome |
| 943 | of the escape analysis. */ |
| 944 | if (cfun->gimple_df->decls_to_pointers != NULL) |
| 945 | { |
| 946 | tree *namep = cfun->gimple_df->decls_to_pointers->get (k: decl); |
| 947 | if (namep) |
| 948 | return TREE_ADDRESSABLE (*namep); |
| 949 | } |
| 950 | |
| 951 | return false; |
| 952 | } |
| 953 | |
| 954 | /* Return whether EXPR can possibly escape the current function scope. */ |
| 955 | |
| 956 | static bool |
| 957 | can_escape (tree expr) |
| 958 | { |
| 959 | tree base; |
| 960 | if (!expr) |
| 961 | return true; |
| 962 | base = get_base_address (t: expr); |
| 963 | if (DECL_P (base) |
| 964 | && !may_be_aliased (var: base) |
| 965 | && !(VAR_P (base) |
| 966 | && !DECL_EXTERNAL (base) |
| 967 | && !TREE_STATIC (base) |
| 968 | && local_variable_can_escape (decl: base))) |
| 969 | return false; |
| 970 | return true; |
| 971 | } |
| 972 | |
| 973 | /* Set the store* bitmaps offset_map_size* fields in GROUP based on |
| 974 | OFFSET and WIDTH. */ |
| 975 | |
| 976 | static void |
| 977 | set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width, |
| 978 | tree expr) |
| 979 | { |
| 980 | /* Non-constant offsets and widths act as global kills, so there's no point |
| 981 | trying to use them to derive global DSE candidates. */ |
| 982 | HOST_WIDE_INT i, const_offset, const_width; |
| 983 | bool expr_escapes = can_escape (expr); |
| 984 | if (offset.is_constant (const_value: &const_offset) |
| 985 | && width.is_constant (const_value: &const_width) |
| 986 | && const_offset > -MAX_OFFSET |
| 987 | && const_offset + const_width < MAX_OFFSET) |
| 988 | for (i = const_offset; i < const_offset + const_width; ++i) |
| 989 | { |
| 990 | bitmap store1; |
| 991 | bitmap store2; |
| 992 | bitmap escaped; |
| 993 | int ai; |
| 994 | if (i < 0) |
| 995 | { |
| 996 | store1 = group->store1_n; |
| 997 | store2 = group->store2_n; |
| 998 | escaped = group->escaped_n; |
| 999 | ai = -i; |
| 1000 | } |
| 1001 | else |
| 1002 | { |
| 1003 | store1 = group->store1_p; |
| 1004 | store2 = group->store2_p; |
| 1005 | escaped = group->escaped_p; |
| 1006 | ai = i; |
| 1007 | } |
| 1008 | |
| 1009 | if (!bitmap_set_bit (store1, ai)) |
| 1010 | bitmap_set_bit (store2, ai); |
| 1011 | else |
| 1012 | { |
| 1013 | if (i < 0) |
| 1014 | { |
| 1015 | if (group->offset_map_size_n < ai) |
| 1016 | group->offset_map_size_n = ai; |
| 1017 | } |
| 1018 | else |
| 1019 | { |
| 1020 | if (group->offset_map_size_p < ai) |
| 1021 | group->offset_map_size_p = ai; |
| 1022 | } |
| 1023 | } |
| 1024 | if (expr_escapes) |
| 1025 | bitmap_set_bit (escaped, ai); |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | static void |
| 1030 | reset_active_stores (void) |
| 1031 | { |
| 1032 | active_local_stores = NULL; |
| 1033 | active_local_stores_len = 0; |
| 1034 | } |
| 1035 | |
| 1036 | /* Free all READ_REC of the LAST_INSN of BB_INFO. */ |
| 1037 | |
| 1038 | static void |
| 1039 | free_read_records (bb_info_t bb_info) |
| 1040 | { |
| 1041 | insn_info_t insn_info = bb_info->last_insn; |
| 1042 | read_info_t *ptr = &insn_info->read_rec; |
| 1043 | while (*ptr) |
| 1044 | { |
| 1045 | read_info_t next = (*ptr)->next; |
| 1046 | read_info_type_pool.remove (object: *ptr); |
| 1047 | *ptr = next; |
| 1048 | } |
| 1049 | } |
| 1050 | |
| 1051 | /* Set the BB_INFO so that the last insn is marked as a wild read. */ |
| 1052 | |
| 1053 | static void |
| 1054 | add_wild_read (bb_info_t bb_info) |
| 1055 | { |
| 1056 | insn_info_t insn_info = bb_info->last_insn; |
| 1057 | insn_info->wild_read = true; |
| 1058 | free_read_records (bb_info); |
| 1059 | reset_active_stores (); |
| 1060 | } |
| 1061 | |
| 1062 | /* Set the BB_INFO so that the last insn is marked as a wild read of |
| 1063 | non-frame locations. */ |
| 1064 | |
| 1065 | static void |
| 1066 | add_non_frame_wild_read (bb_info_t bb_info) |
| 1067 | { |
| 1068 | insn_info_t insn_info = bb_info->last_insn; |
| 1069 | insn_info->non_frame_wild_read = true; |
| 1070 | free_read_records (bb_info); |
| 1071 | reset_active_stores (); |
| 1072 | } |
| 1073 | |
| 1074 | /* Return true if X is a constant or one of the registers that behave |
| 1075 | as a constant over the life of a function. This is equivalent to |
| 1076 | !rtx_varies_p for memory addresses. */ |
| 1077 | |
| 1078 | static bool |
| 1079 | const_or_frame_p (rtx x) |
| 1080 | { |
| 1081 | if (CONSTANT_P (x)) |
| 1082 | return true; |
| 1083 | |
| 1084 | if (GET_CODE (x) == REG) |
| 1085 | { |
| 1086 | /* Note that we have to test for the actual rtx used for the frame |
| 1087 | and arg pointers and not just the register number in case we have |
| 1088 | eliminated the frame and/or arg pointer and are using it |
| 1089 | for pseudos. */ |
| 1090 | if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx |
| 1091 | /* The arg pointer varies if it is not a fixed register. */ |
| 1092 | || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]) |
| 1093 | || x == pic_offset_table_rtx) |
| 1094 | return true; |
| 1095 | return false; |
| 1096 | } |
| 1097 | |
| 1098 | return false; |
| 1099 | } |
| 1100 | |
| 1101 | /* Take all reasonable action to put the address of MEM into the form |
| 1102 | that we can do analysis on. |
| 1103 | |
| 1104 | The gold standard is to get the address into the form: address + |
| 1105 | OFFSET where address is something that rtx_varies_p considers a |
| 1106 | constant. When we can get the address in this form, we can do |
| 1107 | global analysis on it. Note that for constant bases, address is |
| 1108 | not actually returned, only the group_id. The address can be |
| 1109 | obtained from that. |
| 1110 | |
| 1111 | If that fails, we try cselib to get a value we can at least use |
| 1112 | locally. If that fails we return false. |
| 1113 | |
| 1114 | The GROUP_ID is set to -1 for cselib bases and the index of the |
| 1115 | group for non_varying bases. |
| 1116 | |
| 1117 | FOR_READ is true if this is a mem read and false if not. */ |
| 1118 | |
| 1119 | static bool |
| 1120 | canon_address (rtx mem, |
| 1121 | int *group_id, |
| 1122 | poly_int64 *offset, |
| 1123 | cselib_val **base) |
| 1124 | { |
| 1125 | machine_mode address_mode = get_address_mode (mem); |
| 1126 | rtx mem_address = XEXP (mem, 0); |
| 1127 | rtx expanded_address, address; |
| 1128 | int expanded; |
| 1129 | |
| 1130 | cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem)); |
| 1131 | |
| 1132 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1133 | { |
| 1134 | fprintf (stream: dump_file, format: " mem: " ); |
| 1135 | print_inline_rtx (dump_file, mem_address, 0); |
| 1136 | fprintf (stream: dump_file, format: "\n" ); |
| 1137 | } |
| 1138 | |
| 1139 | /* First see if just canon_rtx (mem_address) is const or frame, |
| 1140 | if not, try cselib_expand_value_rtx and call canon_rtx on that. */ |
| 1141 | address = NULL_RTX; |
| 1142 | for (expanded = 0; expanded < 2; expanded++) |
| 1143 | { |
| 1144 | if (expanded) |
| 1145 | { |
| 1146 | /* Use cselib to replace all of the reg references with the full |
| 1147 | expression. This will take care of the case where we have |
| 1148 | |
| 1149 | r_x = base + offset; |
| 1150 | val = *r_x; |
| 1151 | |
| 1152 | by making it into |
| 1153 | |
| 1154 | val = *(base + offset); */ |
| 1155 | |
| 1156 | expanded_address = cselib_expand_value_rtx (mem_address, |
| 1157 | scratch, 5); |
| 1158 | |
| 1159 | /* If this fails, just go with the address from first |
| 1160 | iteration. */ |
| 1161 | if (!expanded_address) |
| 1162 | break; |
| 1163 | } |
| 1164 | else |
| 1165 | expanded_address = mem_address; |
| 1166 | |
| 1167 | /* Split the address into canonical BASE + OFFSET terms. */ |
| 1168 | address = canon_rtx (expanded_address); |
| 1169 | |
| 1170 | *offset = 0; |
| 1171 | |
| 1172 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1173 | { |
| 1174 | if (expanded) |
| 1175 | { |
| 1176 | fprintf (stream: dump_file, format: "\n after cselib_expand address: " ); |
| 1177 | print_inline_rtx (dump_file, expanded_address, 0); |
| 1178 | fprintf (stream: dump_file, format: "\n" ); |
| 1179 | } |
| 1180 | |
| 1181 | fprintf (stream: dump_file, format: "\n after canon_rtx address: " ); |
| 1182 | print_inline_rtx (dump_file, address, 0); |
| 1183 | fprintf (stream: dump_file, format: "\n" ); |
| 1184 | } |
| 1185 | |
| 1186 | if (GET_CODE (address) == CONST) |
| 1187 | address = XEXP (address, 0); |
| 1188 | |
| 1189 | address = strip_offset_and_add (x: address, offset); |
| 1190 | |
| 1191 | if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem)) |
| 1192 | && const_or_frame_p (x: address) |
| 1193 | /* Literal addresses can alias any base, avoid creating a |
| 1194 | group for them. */ |
| 1195 | && ! CONST_SCALAR_INT_P (address)) |
| 1196 | { |
| 1197 | group_info *group = get_group_info (base: address); |
| 1198 | |
| 1199 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1200 | { |
| 1201 | fprintf (stream: dump_file, format: " gid=%d offset=" , group->id); |
| 1202 | print_dec (value: *offset, file: dump_file); |
| 1203 | fprintf (stream: dump_file, format: "\n" ); |
| 1204 | } |
| 1205 | *base = NULL; |
| 1206 | *group_id = group->id; |
| 1207 | return true; |
| 1208 | } |
| 1209 | } |
| 1210 | |
| 1211 | *base = cselib_lookup (address, address_mode, true, GET_MODE (mem)); |
| 1212 | *group_id = -1; |
| 1213 | |
| 1214 | if (*base == NULL) |
| 1215 | { |
| 1216 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1217 | fprintf (stream: dump_file, format: " no cselib val - should be a wild read.\n" ); |
| 1218 | return false; |
| 1219 | } |
| 1220 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1221 | { |
| 1222 | fprintf (stream: dump_file, format: " varying cselib base=%u:%u offset = " , |
| 1223 | (*base)->uid, (*base)->hash); |
| 1224 | print_dec (value: *offset, file: dump_file); |
| 1225 | fprintf (stream: dump_file, format: "\n" ); |
| 1226 | } |
| 1227 | return true; |
| 1228 | } |
| 1229 | |
| 1230 | |
| 1231 | /* Clear the rhs field from the active_local_stores array. */ |
| 1232 | |
| 1233 | static void |
| 1234 | clear_rhs_from_active_local_stores (void) |
| 1235 | { |
| 1236 | insn_info_t ptr = active_local_stores; |
| 1237 | |
| 1238 | while (ptr) |
| 1239 | { |
| 1240 | store_info *store_info = ptr->store_rec; |
| 1241 | /* Skip the clobbers. */ |
| 1242 | while (!store_info->is_set) |
| 1243 | store_info = store_info->next; |
| 1244 | |
| 1245 | store_info->rhs = NULL; |
| 1246 | store_info->const_rhs = NULL; |
| 1247 | |
| 1248 | ptr = ptr->next_local_store; |
| 1249 | } |
| 1250 | } |
| 1251 | |
| 1252 | |
| 1253 | /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */ |
| 1254 | |
| 1255 | static inline void |
| 1256 | set_position_unneeded (store_info *s_info, int pos) |
| 1257 | { |
| 1258 | if (UNLIKELY (s_info->is_large)) |
| 1259 | { |
| 1260 | if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos)) |
| 1261 | s_info->positions_needed.large.count++; |
| 1262 | } |
| 1263 | else |
| 1264 | s_info->positions_needed.small_bitmask |
| 1265 | &= ~(HOST_WIDE_INT_1U << pos); |
| 1266 | } |
| 1267 | |
| 1268 | /* Mark the whole store S_INFO as unneeded. */ |
| 1269 | |
| 1270 | static inline void |
| 1271 | set_all_positions_unneeded (store_info *s_info) |
| 1272 | { |
| 1273 | if (UNLIKELY (s_info->is_large)) |
| 1274 | { |
| 1275 | HOST_WIDE_INT width; |
| 1276 | if (s_info->width.is_constant (const_value: &width)) |
| 1277 | { |
| 1278 | bitmap_set_range (s_info->positions_needed.large.bmap, 0, width); |
| 1279 | s_info->positions_needed.large.count = width; |
| 1280 | } |
| 1281 | else |
| 1282 | { |
| 1283 | gcc_checking_assert (!s_info->positions_needed.large.bmap); |
| 1284 | s_info->positions_needed.large.count = 1; |
| 1285 | } |
| 1286 | } |
| 1287 | else |
| 1288 | s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U; |
| 1289 | } |
| 1290 | |
| 1291 | /* Return TRUE if any bytes from S_INFO store are needed. */ |
| 1292 | |
| 1293 | static inline bool |
| 1294 | any_positions_needed_p (store_info *s_info) |
| 1295 | { |
| 1296 | if (UNLIKELY (s_info->is_large)) |
| 1297 | { |
| 1298 | HOST_WIDE_INT width; |
| 1299 | if (s_info->width.is_constant (const_value: &width)) |
| 1300 | { |
| 1301 | gcc_checking_assert (s_info->positions_needed.large.bmap); |
| 1302 | return s_info->positions_needed.large.count < width; |
| 1303 | } |
| 1304 | else |
| 1305 | { |
| 1306 | gcc_checking_assert (!s_info->positions_needed.large.bmap); |
| 1307 | return s_info->positions_needed.large.count == 0; |
| 1308 | } |
| 1309 | } |
| 1310 | else |
| 1311 | return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U); |
| 1312 | } |
| 1313 | |
| 1314 | /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO |
| 1315 | store are known to be needed. */ |
| 1316 | |
| 1317 | static inline bool |
| 1318 | all_positions_needed_p (store_info *s_info, poly_int64 start, |
| 1319 | poly_int64 width) |
| 1320 | { |
| 1321 | gcc_assert (s_info->rhs); |
| 1322 | if (!s_info->width.is_constant ()) |
| 1323 | { |
| 1324 | gcc_assert (s_info->is_large |
| 1325 | && !s_info->positions_needed.large.bmap); |
| 1326 | return s_info->positions_needed.large.count == 0; |
| 1327 | } |
| 1328 | |
| 1329 | /* Otherwise, if START and WIDTH are non-constant, we're asking about |
| 1330 | a non-constant region of a constant-sized store. We can't say for |
| 1331 | sure that all positions are needed. */ |
| 1332 | HOST_WIDE_INT const_start, const_width; |
| 1333 | if (!start.is_constant (const_value: &const_start) |
| 1334 | || !width.is_constant (const_value: &const_width)) |
| 1335 | return false; |
| 1336 | |
| 1337 | if (UNLIKELY (s_info->is_large)) |
| 1338 | { |
| 1339 | for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i) |
| 1340 | if (bitmap_bit_p (s_info->positions_needed.large.bmap, i)) |
| 1341 | return false; |
| 1342 | return true; |
| 1343 | } |
| 1344 | else |
| 1345 | { |
| 1346 | unsigned HOST_WIDE_INT mask |
| 1347 | = lowpart_bitmask (n: const_width) << const_start; |
| 1348 | return (s_info->positions_needed.small_bitmask & mask) == mask; |
| 1349 | } |
| 1350 | } |
| 1351 | |
| 1352 | |
| 1353 | static rtx get_stored_val (store_info *, machine_mode, poly_int64, |
| 1354 | poly_int64, basic_block, bool); |
| 1355 | |
| 1356 | |
| 1357 | /* BODY is an instruction pattern that belongs to INSN. Return 1 if |
| 1358 | there is a candidate store, after adding it to the appropriate |
| 1359 | local store group if so. */ |
| 1360 | |
| 1361 | static int |
| 1362 | record_store (rtx body, bb_info_t bb_info) |
| 1363 | { |
| 1364 | rtx mem, rhs, const_rhs, mem_addr; |
| 1365 | poly_int64 offset = 0; |
| 1366 | poly_int64 width = 0; |
| 1367 | insn_info_t insn_info = bb_info->last_insn; |
| 1368 | store_info *store_info = NULL; |
| 1369 | int group_id; |
| 1370 | cselib_val *base = NULL; |
| 1371 | insn_info_t ptr, last, redundant_reason; |
| 1372 | bool store_is_unused; |
| 1373 | |
| 1374 | if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER) |
| 1375 | return 0; |
| 1376 | |
| 1377 | mem = SET_DEST (body); |
| 1378 | |
| 1379 | /* If this is not used, then this cannot be used to keep the insn |
| 1380 | from being deleted. On the other hand, it does provide something |
| 1381 | that can be used to prove that another store is dead. */ |
| 1382 | store_is_unused |
| 1383 | = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL); |
| 1384 | |
| 1385 | /* Check whether that value is a suitable memory location. */ |
| 1386 | if (!MEM_P (mem)) |
| 1387 | { |
| 1388 | /* If the set or clobber is unused, then it does not effect our |
| 1389 | ability to get rid of the entire insn. */ |
| 1390 | if (!store_is_unused) |
| 1391 | insn_info->cannot_delete = true; |
| 1392 | return 0; |
| 1393 | } |
| 1394 | |
| 1395 | /* At this point we know mem is a mem. */ |
| 1396 | if (GET_MODE (mem) == BLKmode) |
| 1397 | { |
| 1398 | HOST_WIDE_INT const_size; |
| 1399 | if (GET_CODE (XEXP (mem, 0)) == SCRATCH) |
| 1400 | { |
| 1401 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1402 | fprintf (stream: dump_file, format: " adding wild read for (clobber (mem:BLK (scratch))\n" ); |
| 1403 | add_wild_read (bb_info); |
| 1404 | insn_info->cannot_delete = true; |
| 1405 | return 0; |
| 1406 | } |
| 1407 | /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0)) |
| 1408 | as memset (addr, 0, 36); */ |
| 1409 | else if (!MEM_SIZE_KNOWN_P (mem) |
| 1410 | || maybe_le (MEM_SIZE (mem), b: 0) |
| 1411 | /* This is a limit on the bitmap size, which is only relevant |
| 1412 | for constant-sized MEMs. */ |
| 1413 | || (MEM_SIZE (mem).is_constant (const_value: &const_size) |
| 1414 | && const_size > MAX_OFFSET) |
| 1415 | || GET_CODE (body) != SET |
| 1416 | || !CONST_INT_P (SET_SRC (body))) |
| 1417 | { |
| 1418 | if (!store_is_unused) |
| 1419 | { |
| 1420 | /* If the set or clobber is unused, then it does not effect our |
| 1421 | ability to get rid of the entire insn. */ |
| 1422 | insn_info->cannot_delete = true; |
| 1423 | clear_rhs_from_active_local_stores (); |
| 1424 | } |
| 1425 | return 0; |
| 1426 | } |
| 1427 | } |
| 1428 | |
| 1429 | /* We can still process a volatile mem, we just cannot delete it. */ |
| 1430 | if (MEM_VOLATILE_P (mem)) |
| 1431 | insn_info->cannot_delete = true; |
| 1432 | |
| 1433 | if (!canon_address (mem, group_id: &group_id, offset: &offset, base: &base)) |
| 1434 | { |
| 1435 | clear_rhs_from_active_local_stores (); |
| 1436 | return 0; |
| 1437 | } |
| 1438 | |
| 1439 | if (GET_MODE (mem) == BLKmode) |
| 1440 | width = MEM_SIZE (mem); |
| 1441 | else |
| 1442 | width = GET_MODE_SIZE (GET_MODE (mem)); |
| 1443 | |
| 1444 | if (!endpoint_representable_p (pos: offset, size: width)) |
| 1445 | { |
| 1446 | clear_rhs_from_active_local_stores (); |
| 1447 | return 0; |
| 1448 | } |
| 1449 | |
| 1450 | if (known_eq (width, 0)) |
| 1451 | return 0; |
| 1452 | |
| 1453 | if (group_id >= 0) |
| 1454 | { |
| 1455 | /* In the restrictive case where the base is a constant or the |
| 1456 | frame pointer we can do global analysis. */ |
| 1457 | |
| 1458 | group_info *group |
| 1459 | = rtx_group_vec[group_id]; |
| 1460 | tree expr = MEM_EXPR (mem); |
| 1461 | |
| 1462 | store_info = rtx_store_info_pool.allocate (); |
| 1463 | set_usage_bits (group, offset, width, expr); |
| 1464 | |
| 1465 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1466 | { |
| 1467 | fprintf (stream: dump_file, format: " processing const base store gid=%d" , |
| 1468 | group_id); |
| 1469 | print_range (file: dump_file, offset, width); |
| 1470 | fprintf (stream: dump_file, format: "\n" ); |
| 1471 | } |
| 1472 | } |
| 1473 | else |
| 1474 | { |
| 1475 | if (may_be_sp_based_p (XEXP (mem, 0))) |
| 1476 | insn_info->stack_pointer_based = true; |
| 1477 | insn_info->contains_cselib_groups = true; |
| 1478 | |
| 1479 | store_info = cse_store_info_pool.allocate (); |
| 1480 | group_id = -1; |
| 1481 | |
| 1482 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1483 | { |
| 1484 | fprintf (stream: dump_file, format: " processing cselib store " ); |
| 1485 | print_range (file: dump_file, offset, width); |
| 1486 | fprintf (stream: dump_file, format: "\n" ); |
| 1487 | } |
| 1488 | } |
| 1489 | |
| 1490 | const_rhs = rhs = NULL_RTX; |
| 1491 | if (GET_CODE (body) == SET |
| 1492 | /* No place to keep the value after ra. */ |
| 1493 | && !reload_completed |
| 1494 | && (REG_P (SET_SRC (body)) |
| 1495 | || GET_CODE (SET_SRC (body)) == SUBREG |
| 1496 | || CONSTANT_P (SET_SRC (body))) |
| 1497 | && !MEM_VOLATILE_P (mem) |
| 1498 | /* Sometimes the store and reload is used for truncation and |
| 1499 | rounding. */ |
| 1500 | && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store))) |
| 1501 | { |
| 1502 | rhs = SET_SRC (body); |
| 1503 | if (CONSTANT_P (rhs)) |
| 1504 | const_rhs = rhs; |
| 1505 | else if (body == PATTERN (insn: insn_info->insn)) |
| 1506 | { |
| 1507 | rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX); |
| 1508 | if (tem && CONSTANT_P (XEXP (tem, 0))) |
| 1509 | const_rhs = XEXP (tem, 0); |
| 1510 | } |
| 1511 | if (const_rhs == NULL_RTX && REG_P (rhs)) |
| 1512 | { |
| 1513 | rtx tem = cselib_expand_value_rtx (rhs, scratch, 5); |
| 1514 | |
| 1515 | if (tem && CONSTANT_P (tem)) |
| 1516 | const_rhs = tem; |
| 1517 | else |
| 1518 | { |
| 1519 | /* If RHS is set only once to a constant, set CONST_RHS |
| 1520 | to the constant. */ |
| 1521 | rtx def_src = df_find_single_def_src (rhs); |
| 1522 | if (def_src != nullptr && CONSTANT_P (def_src)) |
| 1523 | const_rhs = def_src; |
| 1524 | } |
| 1525 | } |
| 1526 | } |
| 1527 | |
| 1528 | /* Check to see if this stores causes some other stores to be |
| 1529 | dead. */ |
| 1530 | ptr = active_local_stores; |
| 1531 | last = NULL; |
| 1532 | redundant_reason = NULL; |
| 1533 | unsigned char addrspace = MEM_ADDR_SPACE (mem); |
| 1534 | mem = canon_rtx (mem); |
| 1535 | |
| 1536 | if (group_id < 0) |
| 1537 | mem_addr = base->val_rtx; |
| 1538 | else |
| 1539 | { |
| 1540 | group_info *group = rtx_group_vec[group_id]; |
| 1541 | mem_addr = group->canon_base_addr; |
| 1542 | } |
| 1543 | if (maybe_ne (a: offset, b: 0)) |
| 1544 | mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset); |
| 1545 | |
| 1546 | while (ptr) |
| 1547 | { |
| 1548 | insn_info_t next = ptr->next_local_store; |
| 1549 | class store_info *s_info = ptr->store_rec; |
| 1550 | bool del = true; |
| 1551 | |
| 1552 | /* Skip the clobbers. We delete the active insn if this insn |
| 1553 | shadows the set. To have been put on the active list, it |
| 1554 | has exactly on set. */ |
| 1555 | while (!s_info->is_set) |
| 1556 | s_info = s_info->next; |
| 1557 | |
| 1558 | if (s_info->group_id == group_id |
| 1559 | && s_info->cse_base == base |
| 1560 | && s_info->addrspace == addrspace) |
| 1561 | { |
| 1562 | HOST_WIDE_INT i; |
| 1563 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1564 | { |
| 1565 | fprintf (stream: dump_file, format: " trying store in insn=%d gid=%d" , |
| 1566 | INSN_UID (insn: ptr->insn), s_info->group_id); |
| 1567 | print_range (file: dump_file, offset: s_info->offset, width: s_info->width); |
| 1568 | fprintf (stream: dump_file, format: "\n" ); |
| 1569 | } |
| 1570 | |
| 1571 | /* Even if PTR won't be eliminated as unneeded, if both |
| 1572 | PTR and this insn store the same constant value, we might |
| 1573 | eliminate this insn instead. */ |
| 1574 | if (s_info->const_rhs |
| 1575 | && const_rhs |
| 1576 | && known_subrange_p (pos1: offset, size1: width, |
| 1577 | pos2: s_info->offset, size2: s_info->width) |
| 1578 | && all_positions_needed_p (s_info, start: offset - s_info->offset, |
| 1579 | width) |
| 1580 | /* We can only remove the later store if the earlier aliases |
| 1581 | at least all accesses the later one. */ |
| 1582 | && mems_same_for_tbaa_p (s_info->mem, mem)) |
| 1583 | { |
| 1584 | if (GET_MODE (mem) == BLKmode) |
| 1585 | { |
| 1586 | if (GET_MODE (s_info->mem) == BLKmode |
| 1587 | && s_info->const_rhs == const_rhs) |
| 1588 | redundant_reason = ptr; |
| 1589 | } |
| 1590 | else if (s_info->const_rhs == const0_rtx |
| 1591 | && const_rhs == const0_rtx) |
| 1592 | redundant_reason = ptr; |
| 1593 | else |
| 1594 | { |
| 1595 | rtx val; |
| 1596 | start_sequence (); |
| 1597 | val = get_stored_val (s_info, GET_MODE (mem), offset, width, |
| 1598 | BLOCK_FOR_INSN (insn: insn_info->insn), |
| 1599 | true); |
| 1600 | if (get_insns () != NULL) |
| 1601 | val = NULL_RTX; |
| 1602 | end_sequence (); |
| 1603 | if (val && rtx_equal_p (val, const_rhs)) |
| 1604 | redundant_reason = ptr; |
| 1605 | } |
| 1606 | } |
| 1607 | |
| 1608 | HOST_WIDE_INT begin_unneeded, const_s_width, const_width; |
| 1609 | if (known_subrange_p (pos1: s_info->offset, size1: s_info->width, pos2: offset, size2: width)) |
| 1610 | /* The new store touches every byte that S_INFO does. */ |
| 1611 | set_all_positions_unneeded (s_info); |
| 1612 | else if ((offset - s_info->offset).is_constant (const_value: &begin_unneeded) |
| 1613 | && s_info->width.is_constant (const_value: &const_s_width) |
| 1614 | && width.is_constant (const_value: &const_width)) |
| 1615 | { |
| 1616 | HOST_WIDE_INT end_unneeded = begin_unneeded + const_width; |
| 1617 | begin_unneeded = MAX (begin_unneeded, 0); |
| 1618 | end_unneeded = MIN (end_unneeded, const_s_width); |
| 1619 | for (i = begin_unneeded; i < end_unneeded; ++i) |
| 1620 | set_position_unneeded (s_info, pos: i); |
| 1621 | } |
| 1622 | else |
| 1623 | { |
| 1624 | /* We don't know which parts of S_INFO are needed and |
| 1625 | which aren't, so invalidate the RHS. */ |
| 1626 | s_info->rhs = NULL; |
| 1627 | s_info->const_rhs = NULL; |
| 1628 | } |
| 1629 | } |
| 1630 | else if (s_info->rhs) |
| 1631 | /* Need to see if it is possible for this store to overwrite |
| 1632 | the value of store_info. If it is, set the rhs to NULL to |
| 1633 | keep it from being used to remove a load. */ |
| 1634 | { |
| 1635 | if (canon_output_dependence (s_info->mem, true, |
| 1636 | mem, GET_MODE (mem), |
| 1637 | mem_addr)) |
| 1638 | { |
| 1639 | s_info->rhs = NULL; |
| 1640 | s_info->const_rhs = NULL; |
| 1641 | } |
| 1642 | } |
| 1643 | |
| 1644 | /* An insn can be deleted if every position of every one of |
| 1645 | its s_infos is zero. */ |
| 1646 | if (any_positions_needed_p (s_info)) |
| 1647 | del = false; |
| 1648 | |
| 1649 | if (del) |
| 1650 | { |
| 1651 | insn_info_t insn_to_delete = ptr; |
| 1652 | |
| 1653 | active_local_stores_len--; |
| 1654 | if (last) |
| 1655 | last->next_local_store = ptr->next_local_store; |
| 1656 | else |
| 1657 | active_local_stores = ptr->next_local_store; |
| 1658 | |
| 1659 | if (!insn_to_delete->cannot_delete) |
| 1660 | delete_dead_store_insn (insn_info: insn_to_delete); |
| 1661 | } |
| 1662 | else |
| 1663 | last = ptr; |
| 1664 | |
| 1665 | ptr = next; |
| 1666 | } |
| 1667 | |
| 1668 | /* Finish filling in the store_info. */ |
| 1669 | store_info->next = insn_info->store_rec; |
| 1670 | insn_info->store_rec = store_info; |
| 1671 | store_info->mem = mem; |
| 1672 | store_info->mem_addr = mem_addr; |
| 1673 | store_info->cse_base = base; |
| 1674 | HOST_WIDE_INT const_width; |
| 1675 | if (!width.is_constant (const_value: &const_width)) |
| 1676 | { |
| 1677 | store_info->is_large = true; |
| 1678 | store_info->positions_needed.large.count = 0; |
| 1679 | store_info->positions_needed.large.bmap = NULL; |
| 1680 | } |
| 1681 | else if (const_width > HOST_BITS_PER_WIDE_INT) |
| 1682 | { |
| 1683 | store_info->is_large = true; |
| 1684 | store_info->positions_needed.large.count = 0; |
| 1685 | store_info->positions_needed.large.bmap = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 1686 | } |
| 1687 | else |
| 1688 | { |
| 1689 | store_info->is_large = false; |
| 1690 | store_info->positions_needed.small_bitmask |
| 1691 | = lowpart_bitmask (n: const_width); |
| 1692 | } |
| 1693 | store_info->group_id = group_id; |
| 1694 | store_info->offset = offset; |
| 1695 | store_info->width = width; |
| 1696 | store_info->is_set = GET_CODE (body) == SET; |
| 1697 | store_info->rhs = rhs; |
| 1698 | store_info->const_rhs = const_rhs; |
| 1699 | store_info->redundant_reason = redundant_reason; |
| 1700 | store_info->addrspace = addrspace; |
| 1701 | |
| 1702 | /* If this is a clobber, we return 0. We will only be able to |
| 1703 | delete this insn if there is only one store USED store, but we |
| 1704 | can use the clobber to delete other stores earlier. */ |
| 1705 | return store_info->is_set ? 1 : 0; |
| 1706 | } |
| 1707 | |
| 1708 | |
| 1709 | static void |
| 1710 | dump_insn_info (const char * start, insn_info_t insn_info) |
| 1711 | { |
| 1712 | fprintf (stream: dump_file, format: "%s insn=%d %s\n" , start, |
| 1713 | INSN_UID (insn: insn_info->insn), |
| 1714 | insn_info->store_rec ? "has store" : "naked" ); |
| 1715 | } |
| 1716 | |
| 1717 | |
| 1718 | /* If the modes are different and the value's source and target do not |
| 1719 | line up, we need to extract the value from lower part of the rhs of |
| 1720 | the store, shift it, and then put it into a form that can be shoved |
| 1721 | into the read_insn. This function generates a right SHIFT of a |
| 1722 | value that is at least ACCESS_BYTES bytes wide of READ_MODE. The |
| 1723 | shift sequence is returned or NULL if we failed to find a |
| 1724 | shift. */ |
| 1725 | |
| 1726 | static rtx |
| 1727 | find_shift_sequence (poly_int64 access_bytes, |
| 1728 | store_info *store_info, |
| 1729 | machine_mode read_mode, |
| 1730 | poly_int64 shift, bool speed, bool require_cst) |
| 1731 | { |
| 1732 | machine_mode store_mode = GET_MODE (store_info->mem); |
| 1733 | scalar_int_mode new_mode; |
| 1734 | rtx read_reg = NULL; |
| 1735 | |
| 1736 | /* If a constant was stored into memory, try to simplify it here, |
| 1737 | otherwise the cost of the shift might preclude this optimization |
| 1738 | e.g. at -Os, even when no actual shift will be needed. */ |
| 1739 | auto access_bits = access_bytes * BITS_PER_UNIT; |
| 1740 | if (store_info->const_rhs |
| 1741 | && known_le (access_bytes, GET_MODE_SIZE (MAX_MODE_INT)) |
| 1742 | && smallest_int_mode_for_size (size: access_bits).exists (mode: &new_mode)) |
| 1743 | { |
| 1744 | auto byte = subreg_lowpart_offset (outermode: new_mode, innermode: store_mode); |
| 1745 | rtx ret |
| 1746 | = simplify_subreg (outermode: new_mode, op: store_info->const_rhs, innermode: store_mode, byte); |
| 1747 | if (ret && CONSTANT_P (ret)) |
| 1748 | { |
| 1749 | rtx shift_rtx = gen_int_shift_amount (new_mode, shift); |
| 1750 | ret = simplify_const_binary_operation (LSHIFTRT, new_mode, ret, |
| 1751 | shift_rtx); |
| 1752 | if (ret && CONSTANT_P (ret)) |
| 1753 | { |
| 1754 | byte = subreg_lowpart_offset (outermode: read_mode, innermode: new_mode); |
| 1755 | ret = simplify_subreg (outermode: read_mode, op: ret, innermode: new_mode, byte); |
| 1756 | if (ret && CONSTANT_P (ret) |
| 1757 | && (set_src_cost (x: ret, mode: read_mode, speed_p: speed) |
| 1758 | <= COSTS_N_INSNS (1))) |
| 1759 | return ret; |
| 1760 | } |
| 1761 | } |
| 1762 | } |
| 1763 | |
| 1764 | if (require_cst) |
| 1765 | return NULL_RTX; |
| 1766 | |
| 1767 | /* Some machines like the x86 have shift insns for each size of |
| 1768 | operand. Other machines like the ppc or the ia-64 may only have |
| 1769 | shift insns that shift values within 32 or 64 bit registers. |
| 1770 | This loop tries to find the smallest shift insn that will right |
| 1771 | justify the value we want to read but is available in one insn on |
| 1772 | the machine. */ |
| 1773 | |
| 1774 | opt_scalar_int_mode new_mode_iter; |
| 1775 | FOR_EACH_MODE_IN_CLASS (new_mode_iter, MODE_INT) |
| 1776 | { |
| 1777 | rtx target, new_reg, new_lhs; |
| 1778 | rtx_insn *shift_seq, *insn; |
| 1779 | int cost; |
| 1780 | |
| 1781 | new_mode = new_mode_iter.require (); |
| 1782 | if (GET_MODE_BITSIZE (mode: new_mode) > BITS_PER_WORD) |
| 1783 | break; |
| 1784 | if (maybe_lt (a: GET_MODE_SIZE (mode: new_mode), b: GET_MODE_SIZE (mode: read_mode))) |
| 1785 | continue; |
| 1786 | |
| 1787 | /* Try a wider mode if truncating the store mode to NEW_MODE |
| 1788 | requires a real instruction. */ |
| 1789 | if (maybe_lt (a: GET_MODE_SIZE (mode: new_mode), b: GET_MODE_SIZE (mode: store_mode)) |
| 1790 | && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode)) |
| 1791 | continue; |
| 1792 | |
| 1793 | /* Also try a wider mode if the necessary punning is either not |
| 1794 | desirable or not possible. */ |
| 1795 | if (!CONSTANT_P (store_info->rhs) |
| 1796 | && !targetm.modes_tieable_p (new_mode, store_mode)) |
| 1797 | continue; |
| 1798 | |
| 1799 | if (multiple_p (a: shift, b: GET_MODE_BITSIZE (mode: new_mode)) |
| 1800 | && known_le (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))) |
| 1801 | { |
| 1802 | /* Try to implement the shift using a subreg. */ |
| 1803 | poly_int64 offset |
| 1804 | = subreg_offset_from_lsb (outer_mode: new_mode, inner_mode: store_mode, lsb_shift: shift); |
| 1805 | rtx rhs_subreg = simplify_gen_subreg (outermode: new_mode, op: store_info->rhs, |
| 1806 | innermode: store_mode, byte: offset); |
| 1807 | if (rhs_subreg) |
| 1808 | { |
| 1809 | read_reg |
| 1810 | = extract_low_bits (read_mode, new_mode, copy_rtx (rhs_subreg)); |
| 1811 | break; |
| 1812 | } |
| 1813 | } |
| 1814 | |
| 1815 | if (maybe_lt (a: GET_MODE_SIZE (mode: new_mode), b: access_bytes)) |
| 1816 | continue; |
| 1817 | |
| 1818 | new_reg = gen_reg_rtx (new_mode); |
| 1819 | |
| 1820 | start_sequence (); |
| 1821 | |
| 1822 | /* In theory we could also check for an ashr. Ian Taylor knows |
| 1823 | of one dsp where the cost of these two was not the same. But |
| 1824 | this really is a rare case anyway. */ |
| 1825 | target = expand_binop (new_mode, lshr_optab, new_reg, |
| 1826 | gen_int_shift_amount (new_mode, shift), |
| 1827 | new_reg, 1, OPTAB_DIRECT); |
| 1828 | |
| 1829 | shift_seq = end_sequence (); |
| 1830 | |
| 1831 | if (target != new_reg || shift_seq == NULL) |
| 1832 | continue; |
| 1833 | |
| 1834 | cost = 0; |
| 1835 | for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn)) |
| 1836 | if (INSN_P (insn)) |
| 1837 | cost += insn_cost (insn, speed); |
| 1838 | |
| 1839 | /* The computation up to here is essentially independent |
| 1840 | of the arguments and could be precomputed. It may |
| 1841 | not be worth doing so. We could precompute if |
| 1842 | worthwhile or at least cache the results. The result |
| 1843 | technically depends on both SHIFT and ACCESS_BYTES, |
| 1844 | but in practice the answer will depend only on ACCESS_BYTES. */ |
| 1845 | |
| 1846 | if (cost > COSTS_N_INSNS (1)) |
| 1847 | continue; |
| 1848 | |
| 1849 | new_lhs = extract_low_bits (new_mode, store_mode, |
| 1850 | copy_rtx (store_info->rhs)); |
| 1851 | if (new_lhs == NULL_RTX) |
| 1852 | continue; |
| 1853 | |
| 1854 | /* We found an acceptable shift. Generate a move to |
| 1855 | take the value from the store and put it into the |
| 1856 | shift pseudo, then shift it, then generate another |
| 1857 | move to put in into the target of the read. */ |
| 1858 | emit_move_insn (new_reg, new_lhs); |
| 1859 | emit_insn (shift_seq); |
| 1860 | read_reg = extract_low_bits (read_mode, new_mode, new_reg); |
| 1861 | break; |
| 1862 | } |
| 1863 | |
| 1864 | return read_reg; |
| 1865 | } |
| 1866 | |
| 1867 | |
| 1868 | /* Call back for note_stores to find the hard regs set or clobbered by |
| 1869 | insn. Data is a bitmap of the hardregs set so far. */ |
| 1870 | |
| 1871 | static void |
| 1872 | look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) |
| 1873 | { |
| 1874 | bitmap regs_set = (bitmap) data; |
| 1875 | |
| 1876 | if (REG_P (x) |
| 1877 | && HARD_REGISTER_P (x)) |
| 1878 | bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x)); |
| 1879 | } |
| 1880 | |
| 1881 | /* Helper function for replace_read and record_store. |
| 1882 | Attempt to return a value of mode READ_MODE stored in STORE_INFO, |
| 1883 | consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL |
| 1884 | if not successful. If REQUIRE_CST is true, return always constant. */ |
| 1885 | |
| 1886 | static rtx |
| 1887 | get_stored_val (store_info *store_info, machine_mode read_mode, |
| 1888 | poly_int64 read_offset, poly_int64 read_width, |
| 1889 | basic_block bb, bool require_cst) |
| 1890 | { |
| 1891 | machine_mode store_mode = GET_MODE (store_info->mem); |
| 1892 | poly_int64 gap; |
| 1893 | rtx read_reg; |
| 1894 | |
| 1895 | /* To get here the read is within the boundaries of the write so |
| 1896 | shift will never be negative. Start out with the shift being in |
| 1897 | bytes. */ |
| 1898 | if (store_mode == BLKmode) |
| 1899 | gap = 0; |
| 1900 | else if (BYTES_BIG_ENDIAN) |
| 1901 | gap = ((store_info->offset + store_info->width) |
| 1902 | - (read_offset + read_width)); |
| 1903 | else |
| 1904 | gap = read_offset - store_info->offset; |
| 1905 | |
| 1906 | if (maybe_ne (a: gap, b: 0)) |
| 1907 | { |
| 1908 | if (!gap.is_constant ()) |
| 1909 | return NULL_RTX; |
| 1910 | |
| 1911 | poly_int64 shift = gap * BITS_PER_UNIT; |
| 1912 | poly_int64 access_size = GET_MODE_SIZE (mode: read_mode) + gap; |
| 1913 | read_reg = find_shift_sequence (access_bytes: access_size, store_info, read_mode, |
| 1914 | shift, speed: optimize_bb_for_speed_p (bb), |
| 1915 | require_cst); |
| 1916 | } |
| 1917 | else if (store_mode == BLKmode) |
| 1918 | { |
| 1919 | /* The store is a memset (addr, const_val, const_size). */ |
| 1920 | gcc_assert (CONST_INT_P (store_info->rhs)); |
| 1921 | scalar_int_mode int_store_mode; |
| 1922 | if (!int_mode_for_mode (read_mode).exists (mode: &int_store_mode)) |
| 1923 | read_reg = NULL_RTX; |
| 1924 | else if (store_info->rhs == const0_rtx) |
| 1925 | read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx); |
| 1926 | else if (GET_MODE_BITSIZE (mode: int_store_mode) > HOST_BITS_PER_WIDE_INT |
| 1927 | || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT) |
| 1928 | read_reg = NULL_RTX; |
| 1929 | else |
| 1930 | { |
| 1931 | unsigned HOST_WIDE_INT c |
| 1932 | = INTVAL (store_info->rhs) |
| 1933 | & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1); |
| 1934 | int shift = BITS_PER_UNIT; |
| 1935 | while (shift < HOST_BITS_PER_WIDE_INT) |
| 1936 | { |
| 1937 | c |= (c << shift); |
| 1938 | shift <<= 1; |
| 1939 | } |
| 1940 | read_reg = gen_int_mode (c, int_store_mode); |
| 1941 | read_reg = extract_low_bits (read_mode, int_store_mode, read_reg); |
| 1942 | } |
| 1943 | } |
| 1944 | else if (store_info->const_rhs |
| 1945 | && (require_cst |
| 1946 | || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode))) |
| 1947 | read_reg = extract_low_bits (read_mode, store_mode, |
| 1948 | copy_rtx (store_info->const_rhs)); |
| 1949 | else if (VECTOR_MODE_P (read_mode) && VECTOR_MODE_P (store_mode) |
| 1950 | && known_le (GET_MODE_BITSIZE (read_mode), GET_MODE_BITSIZE (store_mode)) |
| 1951 | && targetm.modes_tieable_p (read_mode, store_mode) |
| 1952 | && validate_subreg (read_mode, store_mode, copy_rtx (store_info->rhs), |
| 1953 | subreg_lowpart_offset (outermode: read_mode, innermode: store_mode))) |
| 1954 | read_reg = gen_lowpart (read_mode, copy_rtx (store_info->rhs)); |
| 1955 | else |
| 1956 | read_reg = extract_low_bits (read_mode, store_mode, |
| 1957 | copy_rtx (store_info->rhs)); |
| 1958 | if (require_cst && read_reg && !CONSTANT_P (read_reg)) |
| 1959 | read_reg = NULL_RTX; |
| 1960 | return read_reg; |
| 1961 | } |
| 1962 | |
| 1963 | /* Take a sequence of: |
| 1964 | A <- r1 |
| 1965 | ... |
| 1966 | ... <- A |
| 1967 | |
| 1968 | and change it into |
| 1969 | r2 <- r1 |
| 1970 | A <- r1 |
| 1971 | ... |
| 1972 | ... <- r2 |
| 1973 | |
| 1974 | or |
| 1975 | |
| 1976 | r3 <- extract (r1) |
| 1977 | r3 <- r3 >> shift |
| 1978 | r2 <- extract (r3) |
| 1979 | ... <- r2 |
| 1980 | |
| 1981 | or |
| 1982 | |
| 1983 | r2 <- extract (r1) |
| 1984 | ... <- r2 |
| 1985 | |
| 1986 | Depending on the alignment and the mode of the store and |
| 1987 | subsequent load. |
| 1988 | |
| 1989 | |
| 1990 | The STORE_INFO and STORE_INSN are for the store and READ_INFO |
| 1991 | and READ_INSN are for the read. Return true if the replacement |
| 1992 | went ok. */ |
| 1993 | |
| 1994 | static bool |
| 1995 | replace_read (store_info *store_info, insn_info_t store_insn, |
| 1996 | read_info_t read_info, insn_info_t read_insn, rtx *loc) |
| 1997 | { |
| 1998 | machine_mode store_mode = GET_MODE (store_info->mem); |
| 1999 | machine_mode read_mode = GET_MODE (read_info->mem); |
| 2000 | rtx_insn *insns, *this_insn; |
| 2001 | rtx read_reg; |
| 2002 | basic_block bb; |
| 2003 | |
| 2004 | if (!dbg_cnt (index: dse)) |
| 2005 | return false; |
| 2006 | |
| 2007 | /* Create a sequence of instructions to set up the read register. |
| 2008 | This sequence goes immediately before the store and its result |
| 2009 | is read by the load. |
| 2010 | |
| 2011 | We need to keep this in perspective. We are replacing a read |
| 2012 | with a sequence of insns, but the read will almost certainly be |
| 2013 | in cache, so it is not going to be an expensive one. Thus, we |
| 2014 | are not willing to do a multi insn shift or worse a subroutine |
| 2015 | call to get rid of the read. */ |
| 2016 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2017 | fprintf (stream: dump_file, format: "trying to replace %smode load in insn %d" |
| 2018 | " from %smode store in insn %d\n" , |
| 2019 | GET_MODE_NAME (read_mode), INSN_UID (insn: read_insn->insn), |
| 2020 | GET_MODE_NAME (store_mode), INSN_UID (insn: store_insn->insn)); |
| 2021 | start_sequence (); |
| 2022 | bb = BLOCK_FOR_INSN (insn: read_insn->insn); |
| 2023 | read_reg = get_stored_val (store_info, |
| 2024 | read_mode, read_offset: read_info->offset, read_width: read_info->width, |
| 2025 | bb, require_cst: false); |
| 2026 | if (read_reg == NULL_RTX) |
| 2027 | { |
| 2028 | end_sequence (); |
| 2029 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2030 | fprintf (stream: dump_file, format: " -- could not extract bits of stored value\n" ); |
| 2031 | return false; |
| 2032 | } |
| 2033 | /* Force the value into a new register so that it won't be clobbered |
| 2034 | between the store and the load. */ |
| 2035 | if (WORD_REGISTER_OPERATIONS |
| 2036 | && GET_CODE (read_reg) == SUBREG |
| 2037 | && REG_P (SUBREG_REG (read_reg)) |
| 2038 | && GET_MODE (SUBREG_REG (read_reg)) == word_mode) |
| 2039 | { |
| 2040 | /* For WORD_REGISTER_OPERATIONS with subreg of word_mode register |
| 2041 | force SUBREG_REG into a new register rather than the SUBREG. */ |
| 2042 | rtx r = copy_to_mode_reg (word_mode, SUBREG_REG (read_reg)); |
| 2043 | read_reg = shallow_copy_rtx (read_reg); |
| 2044 | SUBREG_REG (read_reg) = r; |
| 2045 | } |
| 2046 | else |
| 2047 | read_reg = copy_to_mode_reg (read_mode, read_reg); |
| 2048 | insns = end_sequence (); |
| 2049 | |
| 2050 | if (insns != NULL_RTX) |
| 2051 | { |
| 2052 | /* Now we have to scan the set of new instructions to see if the |
| 2053 | sequence contains and sets of hardregs that happened to be |
| 2054 | live at this point. For instance, this can happen if one of |
| 2055 | the insns sets the CC and the CC happened to be live at that |
| 2056 | point. This does occasionally happen, see PR 37922. */ |
| 2057 | bitmap regs_set = BITMAP_ALLOC (obstack: ®_obstack); |
| 2058 | |
| 2059 | for (this_insn = insns; |
| 2060 | this_insn != NULL_RTX; this_insn = NEXT_INSN (insn: this_insn)) |
| 2061 | { |
| 2062 | if (insn_invalid_p (this_insn, false)) |
| 2063 | { |
| 2064 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2065 | { |
| 2066 | fprintf (stream: dump_file, format: " -- replacing the loaded MEM with " ); |
| 2067 | print_simple_rtl (dump_file, read_reg); |
| 2068 | fprintf (stream: dump_file, format: " led to an invalid instruction\n" ); |
| 2069 | } |
| 2070 | BITMAP_FREE (regs_set); |
| 2071 | return false; |
| 2072 | } |
| 2073 | note_stores (this_insn, look_for_hardregs, regs_set); |
| 2074 | } |
| 2075 | |
| 2076 | if (store_insn->fixed_regs_live) |
| 2077 | bitmap_and_into (regs_set, store_insn->fixed_regs_live); |
| 2078 | if (!bitmap_empty_p (map: regs_set)) |
| 2079 | { |
| 2080 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2081 | { |
| 2082 | fprintf (stream: dump_file, format: "abandoning replacement because sequence " |
| 2083 | "clobbers live hardregs:" ); |
| 2084 | df_print_regset (file: dump_file, r: regs_set); |
| 2085 | } |
| 2086 | |
| 2087 | BITMAP_FREE (regs_set); |
| 2088 | return false; |
| 2089 | } |
| 2090 | BITMAP_FREE (regs_set); |
| 2091 | } |
| 2092 | |
| 2093 | subrtx_iterator::array_type array; |
| 2094 | FOR_EACH_SUBRTX (iter, array, *loc, NONCONST) |
| 2095 | { |
| 2096 | const_rtx x = *iter; |
| 2097 | if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC) |
| 2098 | { |
| 2099 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2100 | fprintf (stream: dump_file, format: " -- replacing the MEM failed due to address " |
| 2101 | "side-effects\n" ); |
| 2102 | return false; |
| 2103 | } |
| 2104 | } |
| 2105 | |
| 2106 | if (validate_change (read_insn->insn, loc, read_reg, 0)) |
| 2107 | { |
| 2108 | deferred_change *change = deferred_change_pool.allocate (); |
| 2109 | |
| 2110 | /* Insert this right before the store insn where it will be safe |
| 2111 | from later insns that might change it before the read. */ |
| 2112 | emit_insn_before (insns, store_insn->insn); |
| 2113 | |
| 2114 | /* And now for the kludge part: cselib croaks if you just |
| 2115 | return at this point. There are two reasons for this: |
| 2116 | |
| 2117 | 1) Cselib has an idea of how many pseudos there are and |
| 2118 | that does not include the new ones we just added. |
| 2119 | |
| 2120 | 2) Cselib does not know about the move insn we added |
| 2121 | above the store_info, and there is no way to tell it |
| 2122 | about it, because it has "moved on". |
| 2123 | |
| 2124 | Problem (1) is fixable with a certain amount of engineering. |
| 2125 | Problem (2) is requires starting the bb from scratch. This |
| 2126 | could be expensive. |
| 2127 | |
| 2128 | So we are just going to have to lie. The move/extraction |
| 2129 | insns are not really an issue, cselib did not see them. But |
| 2130 | the use of the new pseudo read_insn is a real problem because |
| 2131 | cselib has not scanned this insn. The way that we solve this |
| 2132 | problem is that we are just going to put the mem back for now |
| 2133 | and when we are finished with the block, we undo this. We |
| 2134 | keep a table of mems to get rid of. At the end of the basic |
| 2135 | block we can put them back. */ |
| 2136 | |
| 2137 | *loc = read_info->mem; |
| 2138 | change->next = deferred_change_list; |
| 2139 | deferred_change_list = change; |
| 2140 | change->loc = loc; |
| 2141 | change->reg = read_reg; |
| 2142 | |
| 2143 | /* Get rid of the read_info, from the point of view of the |
| 2144 | rest of dse, play like this read never happened. */ |
| 2145 | read_insn->read_rec = read_info->next; |
| 2146 | read_info_type_pool.remove (object: read_info); |
| 2147 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2148 | { |
| 2149 | fprintf (stream: dump_file, format: " -- replaced the loaded MEM with " ); |
| 2150 | print_simple_rtl (dump_file, read_reg); |
| 2151 | fprintf (stream: dump_file, format: "\n" ); |
| 2152 | } |
| 2153 | return true; |
| 2154 | } |
| 2155 | else |
| 2156 | { |
| 2157 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2158 | { |
| 2159 | fprintf (stream: dump_file, format: " -- replacing the loaded MEM with " ); |
| 2160 | print_simple_rtl (dump_file, read_reg); |
| 2161 | fprintf (stream: dump_file, format: " led to an invalid instruction\n" ); |
| 2162 | } |
| 2163 | return false; |
| 2164 | } |
| 2165 | } |
| 2166 | |
| 2167 | /* Check the address of MEM *LOC and kill any appropriate stores that may |
| 2168 | be active. */ |
| 2169 | |
| 2170 | static void |
| 2171 | check_mem_read_rtx (rtx *loc, bb_info_t bb_info, bool used_in_call = false) |
| 2172 | { |
| 2173 | rtx mem = *loc, mem_addr; |
| 2174 | insn_info_t insn_info; |
| 2175 | poly_int64 offset = 0; |
| 2176 | poly_int64 width = 0; |
| 2177 | cselib_val *base = NULL; |
| 2178 | int group_id; |
| 2179 | read_info_t read_info; |
| 2180 | |
| 2181 | insn_info = bb_info->last_insn; |
| 2182 | |
| 2183 | if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) |
| 2184 | || MEM_VOLATILE_P (mem)) |
| 2185 | { |
| 2186 | if (crtl->stack_protect_guard |
| 2187 | && (MEM_EXPR (mem) == crtl->stack_protect_guard |
| 2188 | || (crtl->stack_protect_guard_decl |
| 2189 | && MEM_EXPR (mem) == crtl->stack_protect_guard_decl)) |
| 2190 | && MEM_VOLATILE_P (mem)) |
| 2191 | { |
| 2192 | /* This is either the stack protector canary on the stack, |
| 2193 | which ought to be written by a MEM_VOLATILE_P store and |
| 2194 | thus shouldn't be deleted and is read at the very end of |
| 2195 | function, but shouldn't conflict with any other store. |
| 2196 | Or it is __stack_chk_guard variable or TLS or whatever else |
| 2197 | MEM holding the canary value, which really shouldn't be |
| 2198 | ever modified in -fstack-protector* protected functions, |
| 2199 | otherwise the prologue store wouldn't match the epilogue |
| 2200 | check. */ |
| 2201 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2202 | fprintf (stream: dump_file, format: " stack protector canary read ignored.\n" ); |
| 2203 | insn_info->cannot_delete = true; |
| 2204 | return; |
| 2205 | } |
| 2206 | |
| 2207 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2208 | fprintf (stream: dump_file, format: " adding wild read, volatile or barrier.\n" ); |
| 2209 | add_wild_read (bb_info); |
| 2210 | insn_info->cannot_delete = true; |
| 2211 | return; |
| 2212 | } |
| 2213 | |
| 2214 | /* If it is reading readonly mem, then there can be no conflict with |
| 2215 | another write. */ |
| 2216 | if (MEM_READONLY_P (mem)) |
| 2217 | return; |
| 2218 | |
| 2219 | if (!canon_address (mem, group_id: &group_id, offset: &offset, base: &base)) |
| 2220 | { |
| 2221 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2222 | fprintf (stream: dump_file, format: " adding wild read, canon_address failure.\n" ); |
| 2223 | add_wild_read (bb_info); |
| 2224 | return; |
| 2225 | } |
| 2226 | |
| 2227 | if (GET_MODE (mem) == BLKmode) |
| 2228 | width = -1; |
| 2229 | else |
| 2230 | width = GET_MODE_SIZE (GET_MODE (mem)); |
| 2231 | |
| 2232 | if (!endpoint_representable_p (pos: offset, known_eq (width, -1) ? 1 : width)) |
| 2233 | { |
| 2234 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2235 | fprintf (stream: dump_file, format: " adding wild read, due to overflow.\n" ); |
| 2236 | add_wild_read (bb_info); |
| 2237 | return; |
| 2238 | } |
| 2239 | |
| 2240 | read_info = read_info_type_pool.allocate (); |
| 2241 | read_info->group_id = group_id; |
| 2242 | read_info->mem = mem; |
| 2243 | read_info->offset = offset; |
| 2244 | read_info->width = width; |
| 2245 | read_info->next = insn_info->read_rec; |
| 2246 | insn_info->read_rec = read_info; |
| 2247 | if (group_id < 0) |
| 2248 | mem_addr = base->val_rtx; |
| 2249 | else |
| 2250 | { |
| 2251 | group_info *group = rtx_group_vec[group_id]; |
| 2252 | mem_addr = group->canon_base_addr; |
| 2253 | } |
| 2254 | if (maybe_ne (a: offset, b: 0)) |
| 2255 | mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset); |
| 2256 | /* Avoid passing VALUE RTXen as mem_addr to canon_true_dependence |
| 2257 | which will over and over re-create proper RTL and re-apply the |
| 2258 | offset above. See PR80960 where we almost allocate 1.6GB of PLUS |
| 2259 | RTXen that way. */ |
| 2260 | mem_addr = get_addr (mem_addr); |
| 2261 | |
| 2262 | if (group_id >= 0) |
| 2263 | { |
| 2264 | /* This is the restricted case where the base is a constant or |
| 2265 | the frame pointer and offset is a constant. */ |
| 2266 | insn_info_t i_ptr = active_local_stores; |
| 2267 | insn_info_t last = NULL; |
| 2268 | |
| 2269 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2270 | { |
| 2271 | if (!known_size_p (a: width)) |
| 2272 | fprintf (stream: dump_file, format: " processing const load gid=%d[BLK]\n" , |
| 2273 | group_id); |
| 2274 | else |
| 2275 | { |
| 2276 | fprintf (stream: dump_file, format: " processing const load gid=%d" , group_id); |
| 2277 | print_range (file: dump_file, offset, width); |
| 2278 | fprintf (stream: dump_file, format: "\n" ); |
| 2279 | } |
| 2280 | } |
| 2281 | |
| 2282 | while (i_ptr) |
| 2283 | { |
| 2284 | bool remove = false; |
| 2285 | store_info *store_info = i_ptr->store_rec; |
| 2286 | |
| 2287 | /* Skip the clobbers. */ |
| 2288 | while (!store_info->is_set) |
| 2289 | store_info = store_info->next; |
| 2290 | |
| 2291 | /* There are three cases here. */ |
| 2292 | if (store_info->group_id < 0) |
| 2293 | /* We have a cselib store followed by a read from a |
| 2294 | const base. */ |
| 2295 | remove |
| 2296 | = canon_true_dependence (store_info->mem, |
| 2297 | GET_MODE (store_info->mem), |
| 2298 | store_info->mem_addr, |
| 2299 | mem, mem_addr); |
| 2300 | |
| 2301 | else if (group_id == store_info->group_id) |
| 2302 | { |
| 2303 | /* This is a block mode load. We may get lucky and |
| 2304 | canon_true_dependence may save the day. */ |
| 2305 | if (!known_size_p (a: width)) |
| 2306 | remove |
| 2307 | = canon_true_dependence (store_info->mem, |
| 2308 | GET_MODE (store_info->mem), |
| 2309 | store_info->mem_addr, |
| 2310 | mem, mem_addr); |
| 2311 | |
| 2312 | /* If this read is just reading back something that we just |
| 2313 | stored, rewrite the read. */ |
| 2314 | else |
| 2315 | { |
| 2316 | if (!used_in_call |
| 2317 | && store_info->rhs |
| 2318 | && known_subrange_p (pos1: offset, size1: width, pos2: store_info->offset, |
| 2319 | size2: store_info->width) |
| 2320 | && all_positions_needed_p (s_info: store_info, |
| 2321 | start: offset - store_info->offset, |
| 2322 | width) |
| 2323 | && replace_read (store_info, store_insn: i_ptr, read_info, |
| 2324 | read_insn: insn_info, loc)) |
| 2325 | return; |
| 2326 | |
| 2327 | /* The bases are the same, just see if the offsets |
| 2328 | could overlap. */ |
| 2329 | if (ranges_maybe_overlap_p (pos1: offset, size1: width, |
| 2330 | pos2: store_info->offset, |
| 2331 | size2: store_info->width)) |
| 2332 | remove = true; |
| 2333 | } |
| 2334 | } |
| 2335 | |
| 2336 | /* else |
| 2337 | The else case that is missing here is that the |
| 2338 | bases are constant but different. There is nothing |
| 2339 | to do here because there is no overlap. */ |
| 2340 | |
| 2341 | if (remove) |
| 2342 | { |
| 2343 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2344 | dump_insn_info (start: "removing from active" , insn_info: i_ptr); |
| 2345 | |
| 2346 | active_local_stores_len--; |
| 2347 | if (last) |
| 2348 | last->next_local_store = i_ptr->next_local_store; |
| 2349 | else |
| 2350 | active_local_stores = i_ptr->next_local_store; |
| 2351 | } |
| 2352 | else |
| 2353 | last = i_ptr; |
| 2354 | i_ptr = i_ptr->next_local_store; |
| 2355 | } |
| 2356 | } |
| 2357 | else |
| 2358 | { |
| 2359 | insn_info_t i_ptr = active_local_stores; |
| 2360 | insn_info_t last = NULL; |
| 2361 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2362 | { |
| 2363 | fprintf (stream: dump_file, format: " processing cselib load mem:" ); |
| 2364 | print_inline_rtx (dump_file, mem, 0); |
| 2365 | fprintf (stream: dump_file, format: "\n" ); |
| 2366 | } |
| 2367 | |
| 2368 | while (i_ptr) |
| 2369 | { |
| 2370 | bool remove = false; |
| 2371 | store_info *store_info = i_ptr->store_rec; |
| 2372 | |
| 2373 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2374 | fprintf (stream: dump_file, format: " processing cselib load against insn %d\n" , |
| 2375 | INSN_UID (insn: i_ptr->insn)); |
| 2376 | |
| 2377 | /* Skip the clobbers. */ |
| 2378 | while (!store_info->is_set) |
| 2379 | store_info = store_info->next; |
| 2380 | |
| 2381 | /* If this read is just reading back something that we just |
| 2382 | stored, rewrite the read. */ |
| 2383 | if (!used_in_call |
| 2384 | && store_info->rhs |
| 2385 | && store_info->group_id == -1 |
| 2386 | && store_info->cse_base == base |
| 2387 | && known_subrange_p (pos1: offset, size1: width, pos2: store_info->offset, |
| 2388 | size2: store_info->width) |
| 2389 | && all_positions_needed_p (s_info: store_info, |
| 2390 | start: offset - store_info->offset, width) |
| 2391 | && replace_read (store_info, store_insn: i_ptr, read_info, read_insn: insn_info, loc)) |
| 2392 | return; |
| 2393 | |
| 2394 | remove = canon_true_dependence (store_info->mem, |
| 2395 | GET_MODE (store_info->mem), |
| 2396 | store_info->mem_addr, |
| 2397 | mem, mem_addr); |
| 2398 | |
| 2399 | if (remove) |
| 2400 | { |
| 2401 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2402 | dump_insn_info (start: "removing from active" , insn_info: i_ptr); |
| 2403 | |
| 2404 | active_local_stores_len--; |
| 2405 | if (last) |
| 2406 | last->next_local_store = i_ptr->next_local_store; |
| 2407 | else |
| 2408 | active_local_stores = i_ptr->next_local_store; |
| 2409 | } |
| 2410 | else |
| 2411 | last = i_ptr; |
| 2412 | i_ptr = i_ptr->next_local_store; |
| 2413 | } |
| 2414 | } |
| 2415 | } |
| 2416 | |
| 2417 | /* A note_uses callback in which DATA points the INSN_INFO for |
| 2418 | as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns |
| 2419 | true for any part of *LOC. */ |
| 2420 | |
| 2421 | static void |
| 2422 | check_mem_read_use (rtx *loc, void *data) |
| 2423 | { |
| 2424 | subrtx_ptr_iterator::array_type array; |
| 2425 | FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST) |
| 2426 | { |
| 2427 | rtx *loc = *iter; |
| 2428 | if (MEM_P (*loc)) |
| 2429 | check_mem_read_rtx (loc, bb_info: (bb_info_t) data); |
| 2430 | } |
| 2431 | } |
| 2432 | |
| 2433 | |
| 2434 | /* Get arguments passed to CALL_INSN. Return TRUE if successful. |
| 2435 | So far it only handles arguments passed in registers. */ |
| 2436 | |
| 2437 | static bool |
| 2438 | get_call_args (rtx call_insn, tree fn, rtx *args, int nargs) |
| 2439 | { |
| 2440 | CUMULATIVE_ARGS args_so_far_v; |
| 2441 | cumulative_args_t args_so_far; |
| 2442 | tree arg; |
| 2443 | int idx; |
| 2444 | |
| 2445 | INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3); |
| 2446 | args_so_far = pack_cumulative_args (arg: &args_so_far_v); |
| 2447 | |
| 2448 | arg = TYPE_ARG_TYPES (TREE_TYPE (fn)); |
| 2449 | for (idx = 0; |
| 2450 | arg != void_list_node && idx < nargs; |
| 2451 | arg = TREE_CHAIN (arg), idx++) |
| 2452 | { |
| 2453 | scalar_int_mode mode; |
| 2454 | rtx reg, link, tmp; |
| 2455 | |
| 2456 | if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), int_mode: &mode)) |
| 2457 | return false; |
| 2458 | |
| 2459 | function_arg_info arg (mode, /*named=*/true); |
| 2460 | reg = targetm.calls.function_arg (args_so_far, arg); |
| 2461 | if (!reg || !REG_P (reg) || GET_MODE (reg) != mode) |
| 2462 | return false; |
| 2463 | |
| 2464 | for (link = CALL_INSN_FUNCTION_USAGE (call_insn); |
| 2465 | link; |
| 2466 | link = XEXP (link, 1)) |
| 2467 | if (GET_CODE (XEXP (link, 0)) == USE) |
| 2468 | { |
| 2469 | scalar_int_mode arg_mode; |
| 2470 | args[idx] = XEXP (XEXP (link, 0), 0); |
| 2471 | if (REG_P (args[idx]) |
| 2472 | && REGNO (args[idx]) == REGNO (reg) |
| 2473 | && (GET_MODE (args[idx]) == mode |
| 2474 | || (is_int_mode (GET_MODE (args[idx]), int_mode: &arg_mode) |
| 2475 | && (GET_MODE_SIZE (mode: arg_mode) <= UNITS_PER_WORD) |
| 2476 | && (GET_MODE_SIZE (mode: arg_mode) > GET_MODE_SIZE (mode))))) |
| 2477 | break; |
| 2478 | } |
| 2479 | if (!link) |
| 2480 | return false; |
| 2481 | |
| 2482 | tmp = cselib_expand_value_rtx (args[idx], scratch, 5); |
| 2483 | if (GET_MODE (args[idx]) != mode) |
| 2484 | { |
| 2485 | if (!tmp || !CONST_INT_P (tmp)) |
| 2486 | return false; |
| 2487 | tmp = gen_int_mode (INTVAL (tmp), mode); |
| 2488 | } |
| 2489 | if (tmp) |
| 2490 | args[idx] = tmp; |
| 2491 | |
| 2492 | targetm.calls.function_arg_advance (args_so_far, arg); |
| 2493 | } |
| 2494 | if (arg != void_list_node || idx != nargs) |
| 2495 | return false; |
| 2496 | return true; |
| 2497 | } |
| 2498 | |
| 2499 | /* Return a bitmap of the fixed registers contained in IN. */ |
| 2500 | |
| 2501 | static bitmap |
| 2502 | copy_fixed_regs (const_bitmap in) |
| 2503 | { |
| 2504 | bitmap ret; |
| 2505 | |
| 2506 | ret = ALLOC_REG_SET (NULL); |
| 2507 | bitmap_and (ret, in, bitmap_view<HARD_REG_SET> (fixed_reg_set)); |
| 2508 | return ret; |
| 2509 | } |
| 2510 | |
| 2511 | /* Apply record_store to all candidate stores in INSN. Mark INSN |
| 2512 | if some part of it is not a candidate store and assigns to a |
| 2513 | non-register target. */ |
| 2514 | |
| 2515 | static void |
| 2516 | scan_insn (bb_info_t bb_info, rtx_insn *insn, int max_active_local_stores) |
| 2517 | { |
| 2518 | rtx body; |
| 2519 | insn_info_type *insn_info = insn_info_type_pool.allocate (); |
| 2520 | int mems_found = 0; |
| 2521 | memset (s: insn_info, c: 0, n: sizeof (struct insn_info_type)); |
| 2522 | |
| 2523 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2524 | fprintf (stream: dump_file, format: "\n**scanning insn=%d\n" , |
| 2525 | INSN_UID (insn)); |
| 2526 | |
| 2527 | insn_info->prev_insn = bb_info->last_insn; |
| 2528 | insn_info->insn = insn; |
| 2529 | bb_info->last_insn = insn_info; |
| 2530 | |
| 2531 | if (DEBUG_INSN_P (insn)) |
| 2532 | { |
| 2533 | insn_info->cannot_delete = true; |
| 2534 | return; |
| 2535 | } |
| 2536 | |
| 2537 | /* Look at all of the uses in the insn. */ |
| 2538 | note_uses (&PATTERN (insn), check_mem_read_use, bb_info); |
| 2539 | |
| 2540 | if (CALL_P (insn)) |
| 2541 | { |
| 2542 | bool const_call; |
| 2543 | rtx call, sym; |
| 2544 | tree memset_call = NULL_TREE; |
| 2545 | |
| 2546 | insn_info->cannot_delete = true; |
| 2547 | |
| 2548 | /* Const functions cannot do anything bad i.e. read memory, |
| 2549 | however, they can read their parameters which may have |
| 2550 | been pushed onto the stack. |
| 2551 | memset and bzero don't read memory either. */ |
| 2552 | const_call = RTL_CONST_CALL_P (insn); |
| 2553 | if (!const_call |
| 2554 | && (call = get_call_rtx_from (insn)) |
| 2555 | && (sym = XEXP (XEXP (call, 0), 0)) |
| 2556 | && GET_CODE (sym) == SYMBOL_REF |
| 2557 | && SYMBOL_REF_DECL (sym) |
| 2558 | && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL |
| 2559 | && fndecl_built_in_p (SYMBOL_REF_DECL (sym), name1: BUILT_IN_MEMSET)) |
| 2560 | memset_call = SYMBOL_REF_DECL (sym); |
| 2561 | |
| 2562 | if (const_call || memset_call) |
| 2563 | { |
| 2564 | insn_info_t i_ptr = active_local_stores; |
| 2565 | insn_info_t last = NULL; |
| 2566 | |
| 2567 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2568 | fprintf (stream: dump_file, format: "%s call %d\n" , |
| 2569 | const_call ? "const" : "memset" , INSN_UID (insn)); |
| 2570 | |
| 2571 | /* See the head comment of the frame_read field. */ |
| 2572 | if (reload_completed |
| 2573 | /* Tail calls are storing their arguments using |
| 2574 | arg pointer. If it is a frame pointer on the target, |
| 2575 | even before reload we need to kill frame pointer based |
| 2576 | stores. */ |
| 2577 | || (SIBLING_CALL_P (insn) |
| 2578 | && HARD_FRAME_POINTER_IS_ARG_POINTER)) |
| 2579 | insn_info->frame_read = true; |
| 2580 | |
| 2581 | /* Loop over the active stores and remove those which are |
| 2582 | killed by the const function call. */ |
| 2583 | while (i_ptr) |
| 2584 | { |
| 2585 | bool remove_store = false; |
| 2586 | |
| 2587 | /* The stack pointer based stores are always killed. */ |
| 2588 | if (i_ptr->stack_pointer_based) |
| 2589 | remove_store = true; |
| 2590 | |
| 2591 | /* If the frame is read, the frame related stores are killed. */ |
| 2592 | else if (insn_info->frame_read) |
| 2593 | { |
| 2594 | store_info *store_info = i_ptr->store_rec; |
| 2595 | |
| 2596 | /* Skip the clobbers. */ |
| 2597 | while (!store_info->is_set) |
| 2598 | store_info = store_info->next; |
| 2599 | |
| 2600 | if (store_info->group_id >= 0 |
| 2601 | && rtx_group_vec[store_info->group_id]->frame_related) |
| 2602 | remove_store = true; |
| 2603 | } |
| 2604 | |
| 2605 | if (remove_store) |
| 2606 | { |
| 2607 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2608 | dump_insn_info (start: "removing from active" , insn_info: i_ptr); |
| 2609 | |
| 2610 | active_local_stores_len--; |
| 2611 | if (last) |
| 2612 | last->next_local_store = i_ptr->next_local_store; |
| 2613 | else |
| 2614 | active_local_stores = i_ptr->next_local_store; |
| 2615 | } |
| 2616 | else |
| 2617 | last = i_ptr; |
| 2618 | |
| 2619 | i_ptr = i_ptr->next_local_store; |
| 2620 | } |
| 2621 | |
| 2622 | if (memset_call) |
| 2623 | { |
| 2624 | rtx args[3]; |
| 2625 | if (get_call_args (call_insn: insn, fn: memset_call, args, nargs: 3) |
| 2626 | && CONST_INT_P (args[1]) |
| 2627 | && CONST_INT_P (args[2]) |
| 2628 | && INTVAL (args[2]) > 0) |
| 2629 | { |
| 2630 | rtx mem = gen_rtx_MEM (BLKmode, args[0]); |
| 2631 | set_mem_size (mem, INTVAL (args[2])); |
| 2632 | body = gen_rtx_SET (mem, args[1]); |
| 2633 | mems_found += record_store (body, bb_info); |
| 2634 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2635 | fprintf (stream: dump_file, format: "handling memset as BLKmode store\n" ); |
| 2636 | if (mems_found == 1) |
| 2637 | { |
| 2638 | if (active_local_stores_len++ >= max_active_local_stores) |
| 2639 | { |
| 2640 | active_local_stores_len = 1; |
| 2641 | active_local_stores = NULL; |
| 2642 | } |
| 2643 | insn_info->fixed_regs_live |
| 2644 | = copy_fixed_regs (in: bb_info->regs_live); |
| 2645 | insn_info->next_local_store = active_local_stores; |
| 2646 | active_local_stores = insn_info; |
| 2647 | } |
| 2648 | } |
| 2649 | else |
| 2650 | clear_rhs_from_active_local_stores (); |
| 2651 | } |
| 2652 | } |
| 2653 | else if (SIBLING_CALL_P (insn) |
| 2654 | && (reload_completed || HARD_FRAME_POINTER_IS_ARG_POINTER)) |
| 2655 | /* Arguments for a sibling call that are pushed to memory are passed |
| 2656 | using the incoming argument pointer of the current function. After |
| 2657 | reload that might be (and likely is) frame pointer based. And, if |
| 2658 | it is a frame pointer on the target, even before reload we need to |
| 2659 | kill frame pointer based stores. */ |
| 2660 | add_wild_read (bb_info); |
| 2661 | else |
| 2662 | /* Every other call, including pure functions, may read any memory |
| 2663 | that is not relative to the frame. */ |
| 2664 | add_non_frame_wild_read (bb_info); |
| 2665 | |
| 2666 | for (rtx link = CALL_INSN_FUNCTION_USAGE (insn); |
| 2667 | link != NULL_RTX; |
| 2668 | link = XEXP (link, 1)) |
| 2669 | if (GET_CODE (XEXP (link, 0)) == USE && MEM_P (XEXP (XEXP (link, 0),0))) |
| 2670 | check_mem_read_rtx (loc: &XEXP (XEXP (link, 0),0), bb_info, used_in_call: true); |
| 2671 | |
| 2672 | return; |
| 2673 | } |
| 2674 | |
| 2675 | /* Assuming that there are sets in these insns, we cannot delete |
| 2676 | them. */ |
| 2677 | if ((GET_CODE (PATTERN (insn)) == CLOBBER) |
| 2678 | || volatile_refs_p (PATTERN (insn)) |
| 2679 | || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn)) |
| 2680 | || (RTX_FRAME_RELATED_P (insn)) |
| 2681 | || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX)) |
| 2682 | insn_info->cannot_delete = true; |
| 2683 | |
| 2684 | body = PATTERN (insn); |
| 2685 | if (GET_CODE (body) == PARALLEL) |
| 2686 | { |
| 2687 | int i; |
| 2688 | for (i = 0; i < XVECLEN (body, 0); i++) |
| 2689 | mems_found += record_store (XVECEXP (body, 0, i), bb_info); |
| 2690 | } |
| 2691 | else |
| 2692 | mems_found += record_store (body, bb_info); |
| 2693 | |
| 2694 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2695 | fprintf (stream: dump_file, format: "mems_found = %d, cannot_delete = %s\n" , |
| 2696 | mems_found, insn_info->cannot_delete ? "true" : "false" ); |
| 2697 | |
| 2698 | /* If we found some sets of mems, add it into the active_local_stores so |
| 2699 | that it can be locally deleted if found dead or used for |
| 2700 | replace_read and redundant constant store elimination. Otherwise mark |
| 2701 | it as cannot delete. This simplifies the processing later. */ |
| 2702 | if (mems_found == 1) |
| 2703 | { |
| 2704 | if (active_local_stores_len++ >= max_active_local_stores) |
| 2705 | { |
| 2706 | active_local_stores_len = 1; |
| 2707 | active_local_stores = NULL; |
| 2708 | } |
| 2709 | insn_info->fixed_regs_live = copy_fixed_regs (in: bb_info->regs_live); |
| 2710 | insn_info->next_local_store = active_local_stores; |
| 2711 | active_local_stores = insn_info; |
| 2712 | } |
| 2713 | else |
| 2714 | insn_info->cannot_delete = true; |
| 2715 | } |
| 2716 | |
| 2717 | |
| 2718 | /* Remove BASE from the set of active_local_stores. This is a |
| 2719 | callback from cselib that is used to get rid of the stores in |
| 2720 | active_local_stores. */ |
| 2721 | |
| 2722 | static void |
| 2723 | remove_useless_values (cselib_val *base) |
| 2724 | { |
| 2725 | insn_info_t insn_info = active_local_stores; |
| 2726 | insn_info_t last = NULL; |
| 2727 | |
| 2728 | while (insn_info) |
| 2729 | { |
| 2730 | store_info *store_info = insn_info->store_rec; |
| 2731 | bool del = false; |
| 2732 | |
| 2733 | /* If ANY of the store_infos match the cselib group that is |
| 2734 | being deleted, then the insn cannot be deleted. */ |
| 2735 | while (store_info) |
| 2736 | { |
| 2737 | if ((store_info->group_id == -1) |
| 2738 | && (store_info->cse_base == base)) |
| 2739 | { |
| 2740 | del = true; |
| 2741 | break; |
| 2742 | } |
| 2743 | store_info = store_info->next; |
| 2744 | } |
| 2745 | |
| 2746 | if (del) |
| 2747 | { |
| 2748 | active_local_stores_len--; |
| 2749 | if (last) |
| 2750 | last->next_local_store = insn_info->next_local_store; |
| 2751 | else |
| 2752 | active_local_stores = insn_info->next_local_store; |
| 2753 | free_store_info (insn_info); |
| 2754 | } |
| 2755 | else |
| 2756 | last = insn_info; |
| 2757 | |
| 2758 | insn_info = insn_info->next_local_store; |
| 2759 | } |
| 2760 | } |
| 2761 | |
| 2762 | |
| 2763 | /* Do all of step 1. */ |
| 2764 | |
| 2765 | static void |
| 2766 | dse_step1 (void) |
| 2767 | { |
| 2768 | basic_block bb; |
| 2769 | bitmap regs_live = BITMAP_ALLOC (obstack: ®_obstack); |
| 2770 | |
| 2771 | cselib_init (0); |
| 2772 | all_blocks = BITMAP_ALLOC (NULL); |
| 2773 | bitmap_set_bit (all_blocks, ENTRY_BLOCK); |
| 2774 | bitmap_set_bit (all_blocks, EXIT_BLOCK); |
| 2775 | |
| 2776 | /* For -O1 reduce the maximum number of active local stores for RTL DSE |
| 2777 | since this can consume huge amounts of memory (PR89115). */ |
| 2778 | int max_active_local_stores = param_max_dse_active_local_stores; |
| 2779 | if (optimize < 2) |
| 2780 | max_active_local_stores /= 10; |
| 2781 | |
| 2782 | FOR_ALL_BB_FN (bb, cfun) |
| 2783 | { |
| 2784 | insn_info_t ptr; |
| 2785 | bb_info_t bb_info = dse_bb_info_type_pool.allocate (); |
| 2786 | |
| 2787 | memset (s: bb_info, c: 0, n: sizeof (dse_bb_info_type)); |
| 2788 | bitmap_set_bit (all_blocks, bb->index); |
| 2789 | bb_info->regs_live = regs_live; |
| 2790 | |
| 2791 | bitmap_copy (regs_live, DF_LR_IN (bb)); |
| 2792 | df_simulate_initialize_forwards (bb, regs_live); |
| 2793 | |
| 2794 | bb_table[bb->index] = bb_info; |
| 2795 | cselib_discard_hook = remove_useless_values; |
| 2796 | |
| 2797 | if (bb->index >= NUM_FIXED_BLOCKS) |
| 2798 | { |
| 2799 | rtx_insn *insn; |
| 2800 | |
| 2801 | active_local_stores = NULL; |
| 2802 | active_local_stores_len = 0; |
| 2803 | cselib_clear_table (); |
| 2804 | |
| 2805 | /* Scan the insns. */ |
| 2806 | FOR_BB_INSNS (bb, insn) |
| 2807 | { |
| 2808 | if (INSN_P (insn)) |
| 2809 | scan_insn (bb_info, insn, max_active_local_stores); |
| 2810 | cselib_process_insn (insn); |
| 2811 | if (INSN_P (insn)) |
| 2812 | df_simulate_one_insn_forwards (bb, insn, regs_live); |
| 2813 | } |
| 2814 | |
| 2815 | /* This is something of a hack, because the global algorithm |
| 2816 | is supposed to take care of the case where stores go dead |
| 2817 | at the end of the function. However, the global |
| 2818 | algorithm must take a more conservative view of block |
| 2819 | mode reads than the local alg does. So to get the case |
| 2820 | where you have a store to the frame followed by a non |
| 2821 | overlapping block more read, we look at the active local |
| 2822 | stores at the end of the function and delete all of the |
| 2823 | frame and spill based ones. */ |
| 2824 | if (stores_off_frame_dead_at_return |
| 2825 | && (EDGE_COUNT (bb->succs) == 0 |
| 2826 | || (single_succ_p (bb) |
| 2827 | && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun) |
| 2828 | && ! crtl->calls_eh_return))) |
| 2829 | { |
| 2830 | insn_info_t i_ptr = active_local_stores; |
| 2831 | while (i_ptr) |
| 2832 | { |
| 2833 | store_info *store_info = i_ptr->store_rec; |
| 2834 | |
| 2835 | /* Skip the clobbers. */ |
| 2836 | while (!store_info->is_set) |
| 2837 | store_info = store_info->next; |
| 2838 | if (store_info->group_id >= 0) |
| 2839 | { |
| 2840 | group_info *group = rtx_group_vec[store_info->group_id]; |
| 2841 | if (group->frame_related && !i_ptr->cannot_delete) |
| 2842 | delete_dead_store_insn (insn_info: i_ptr); |
| 2843 | } |
| 2844 | |
| 2845 | i_ptr = i_ptr->next_local_store; |
| 2846 | } |
| 2847 | } |
| 2848 | |
| 2849 | /* Get rid of the loads that were discovered in |
| 2850 | replace_read. Cselib is finished with this block. */ |
| 2851 | while (deferred_change_list) |
| 2852 | { |
| 2853 | deferred_change *next = deferred_change_list->next; |
| 2854 | |
| 2855 | /* There is no reason to validate this change. That was |
| 2856 | done earlier. */ |
| 2857 | *deferred_change_list->loc = deferred_change_list->reg; |
| 2858 | deferred_change_pool.remove (object: deferred_change_list); |
| 2859 | deferred_change_list = next; |
| 2860 | } |
| 2861 | |
| 2862 | /* Get rid of all of the cselib based store_infos in this |
| 2863 | block and mark the containing insns as not being |
| 2864 | deletable. */ |
| 2865 | ptr = bb_info->last_insn; |
| 2866 | while (ptr) |
| 2867 | { |
| 2868 | if (ptr->contains_cselib_groups) |
| 2869 | { |
| 2870 | store_info *s_info = ptr->store_rec; |
| 2871 | while (s_info && !s_info->is_set) |
| 2872 | s_info = s_info->next; |
| 2873 | if (s_info |
| 2874 | && s_info->redundant_reason |
| 2875 | && s_info->redundant_reason->insn |
| 2876 | && !ptr->cannot_delete) |
| 2877 | { |
| 2878 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2879 | fprintf (stream: dump_file, format: "Locally deleting insn %d " |
| 2880 | "because insn %d stores the " |
| 2881 | "same value and couldn't be " |
| 2882 | "eliminated\n" , |
| 2883 | INSN_UID (insn: ptr->insn), |
| 2884 | INSN_UID (insn: s_info->redundant_reason->insn)); |
| 2885 | delete_dead_store_insn (insn_info: ptr); |
| 2886 | } |
| 2887 | free_store_info (insn_info: ptr); |
| 2888 | } |
| 2889 | else |
| 2890 | { |
| 2891 | store_info *s_info; |
| 2892 | |
| 2893 | /* Free at least positions_needed bitmaps. */ |
| 2894 | for (s_info = ptr->store_rec; s_info; s_info = s_info->next) |
| 2895 | if (s_info->is_large) |
| 2896 | { |
| 2897 | BITMAP_FREE (s_info->positions_needed.large.bmap); |
| 2898 | s_info->is_large = false; |
| 2899 | } |
| 2900 | } |
| 2901 | ptr = ptr->prev_insn; |
| 2902 | } |
| 2903 | |
| 2904 | cse_store_info_pool.release (); |
| 2905 | } |
| 2906 | bb_info->regs_live = NULL; |
| 2907 | } |
| 2908 | |
| 2909 | BITMAP_FREE (regs_live); |
| 2910 | cselib_finish (); |
| 2911 | rtx_group_table->empty (); |
| 2912 | } |
| 2913 | |
| 2914 | |
| 2915 | /*---------------------------------------------------------------------------- |
| 2916 | Second step. |
| 2917 | |
| 2918 | Assign each byte position in the stores that we are going to |
| 2919 | analyze globally to a position in the bitmaps. Returns true if |
| 2920 | there are any bit positions assigned. |
| 2921 | ----------------------------------------------------------------------------*/ |
| 2922 | |
| 2923 | static void |
| 2924 | dse_step2_init (void) |
| 2925 | { |
| 2926 | unsigned int i; |
| 2927 | group_info *group; |
| 2928 | |
| 2929 | FOR_EACH_VEC_ELT (rtx_group_vec, i, group) |
| 2930 | { |
| 2931 | /* For all non stack related bases, we only consider a store to |
| 2932 | be deletable if there are two or more stores for that |
| 2933 | position. This is because it takes one store to make the |
| 2934 | other store redundant. However, for the stores that are |
| 2935 | stack related, we consider them if there is only one store |
| 2936 | for the position. We do this because the stack related |
| 2937 | stores can be deleted if their is no read between them and |
| 2938 | the end of the function. |
| 2939 | |
| 2940 | To make this work in the current framework, we take the stack |
| 2941 | related bases add all of the bits from store1 into store2. |
| 2942 | This has the effect of making the eligible even if there is |
| 2943 | only one store. */ |
| 2944 | |
| 2945 | if (stores_off_frame_dead_at_return && group->frame_related) |
| 2946 | { |
| 2947 | bitmap_ior_into (group->store2_n, group->store1_n); |
| 2948 | bitmap_ior_into (group->store2_p, group->store1_p); |
| 2949 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2950 | fprintf (stream: dump_file, format: "group %d is frame related " , i); |
| 2951 | } |
| 2952 | |
| 2953 | group->offset_map_size_n++; |
| 2954 | group->offset_map_n = XOBNEWVEC (&dse_obstack, int, |
| 2955 | group->offset_map_size_n); |
| 2956 | group->offset_map_size_p++; |
| 2957 | group->offset_map_p = XOBNEWVEC (&dse_obstack, int, |
| 2958 | group->offset_map_size_p); |
| 2959 | group->process_globally = false; |
| 2960 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2961 | { |
| 2962 | fprintf (stream: dump_file, format: "group %d(%d+%d): " , i, |
| 2963 | (int)bitmap_count_bits (group->store2_n), |
| 2964 | (int)bitmap_count_bits (group->store2_p)); |
| 2965 | bitmap_print (dump_file, group->store2_n, "n " , " " ); |
| 2966 | bitmap_print (dump_file, group->store2_p, "p " , "\n" ); |
| 2967 | } |
| 2968 | } |
| 2969 | } |
| 2970 | |
| 2971 | |
| 2972 | /* Init the offset tables. */ |
| 2973 | |
| 2974 | static bool |
| 2975 | dse_step2 (void) |
| 2976 | { |
| 2977 | unsigned int i; |
| 2978 | group_info *group; |
| 2979 | /* Position 0 is unused because 0 is used in the maps to mean |
| 2980 | unused. */ |
| 2981 | current_position = 1; |
| 2982 | FOR_EACH_VEC_ELT (rtx_group_vec, i, group) |
| 2983 | { |
| 2984 | bitmap_iterator bi; |
| 2985 | unsigned int j; |
| 2986 | |
| 2987 | memset (s: group->offset_map_n, c: 0, n: sizeof (int) * group->offset_map_size_n); |
| 2988 | memset (s: group->offset_map_p, c: 0, n: sizeof (int) * group->offset_map_size_p); |
| 2989 | bitmap_clear (group->group_kill); |
| 2990 | |
| 2991 | EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi) |
| 2992 | { |
| 2993 | bitmap_set_bit (group->group_kill, current_position); |
| 2994 | if (bitmap_bit_p (group->escaped_n, j)) |
| 2995 | bitmap_set_bit (kill_on_calls, current_position); |
| 2996 | group->offset_map_n[j] = current_position++; |
| 2997 | group->process_globally = true; |
| 2998 | } |
| 2999 | EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi) |
| 3000 | { |
| 3001 | bitmap_set_bit (group->group_kill, current_position); |
| 3002 | if (bitmap_bit_p (group->escaped_p, j)) |
| 3003 | bitmap_set_bit (kill_on_calls, current_position); |
| 3004 | group->offset_map_p[j] = current_position++; |
| 3005 | group->process_globally = true; |
| 3006 | } |
| 3007 | } |
| 3008 | return current_position != 1; |
| 3009 | } |
| 3010 | |
| 3011 | |
| 3012 | |
| 3013 | /*---------------------------------------------------------------------------- |
| 3014 | Third step. |
| 3015 | |
| 3016 | Build the bit vectors for the transfer functions. |
| 3017 | ----------------------------------------------------------------------------*/ |
| 3018 | |
| 3019 | |
| 3020 | /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not |
| 3021 | there, return 0. */ |
| 3022 | |
| 3023 | static int |
| 3024 | get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset) |
| 3025 | { |
| 3026 | if (offset < 0) |
| 3027 | { |
| 3028 | HOST_WIDE_INT offset_p = -offset; |
| 3029 | if (offset_p >= group_info->offset_map_size_n) |
| 3030 | return 0; |
| 3031 | return group_info->offset_map_n[offset_p]; |
| 3032 | } |
| 3033 | else |
| 3034 | { |
| 3035 | if (offset >= group_info->offset_map_size_p) |
| 3036 | return 0; |
| 3037 | return group_info->offset_map_p[offset]; |
| 3038 | } |
| 3039 | } |
| 3040 | |
| 3041 | |
| 3042 | /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL |
| 3043 | may be NULL. */ |
| 3044 | |
| 3045 | static void |
| 3046 | scan_stores (store_info *store_info, bitmap gen, bitmap kill) |
| 3047 | { |
| 3048 | while (store_info) |
| 3049 | { |
| 3050 | HOST_WIDE_INT i, offset, width; |
| 3051 | group_info *group_info |
| 3052 | = rtx_group_vec[store_info->group_id]; |
| 3053 | /* We can (conservatively) ignore stores whose bounds aren't known; |
| 3054 | they simply don't generate new global dse opportunities. */ |
| 3055 | if (group_info->process_globally |
| 3056 | && store_info->offset.is_constant (const_value: &offset) |
| 3057 | && store_info->width.is_constant (const_value: &width)) |
| 3058 | { |
| 3059 | HOST_WIDE_INT end = offset + width; |
| 3060 | for (i = offset; i < end; i++) |
| 3061 | { |
| 3062 | int index = get_bitmap_index (group_info, offset: i); |
| 3063 | if (index != 0) |
| 3064 | { |
| 3065 | bitmap_set_bit (gen, index); |
| 3066 | if (kill) |
| 3067 | bitmap_clear_bit (kill, index); |
| 3068 | } |
| 3069 | } |
| 3070 | } |
| 3071 | store_info = store_info->next; |
| 3072 | } |
| 3073 | } |
| 3074 | |
| 3075 | |
| 3076 | /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL |
| 3077 | may be NULL. */ |
| 3078 | |
| 3079 | static void |
| 3080 | scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill) |
| 3081 | { |
| 3082 | read_info_t read_info = insn_info->read_rec; |
| 3083 | int i; |
| 3084 | group_info *group; |
| 3085 | |
| 3086 | /* If this insn reads the frame, kill all the frame related stores. */ |
| 3087 | if (insn_info->frame_read) |
| 3088 | { |
| 3089 | FOR_EACH_VEC_ELT (rtx_group_vec, i, group) |
| 3090 | if (group->process_globally && group->frame_related) |
| 3091 | { |
| 3092 | if (kill) |
| 3093 | bitmap_ior_into (kill, group->group_kill); |
| 3094 | bitmap_and_compl_into (gen, group->group_kill); |
| 3095 | } |
| 3096 | } |
| 3097 | if (insn_info->non_frame_wild_read) |
| 3098 | { |
| 3099 | /* Kill all non-frame related stores. Kill all stores of variables that |
| 3100 | escape. */ |
| 3101 | if (kill) |
| 3102 | bitmap_ior_into (kill, kill_on_calls); |
| 3103 | bitmap_and_compl_into (gen, kill_on_calls); |
| 3104 | FOR_EACH_VEC_ELT (rtx_group_vec, i, group) |
| 3105 | if (group->process_globally && !group->frame_related) |
| 3106 | { |
| 3107 | if (kill) |
| 3108 | bitmap_ior_into (kill, group->group_kill); |
| 3109 | bitmap_and_compl_into (gen, group->group_kill); |
| 3110 | } |
| 3111 | } |
| 3112 | while (read_info) |
| 3113 | { |
| 3114 | FOR_EACH_VEC_ELT (rtx_group_vec, i, group) |
| 3115 | { |
| 3116 | if (group->process_globally) |
| 3117 | { |
| 3118 | if (i == read_info->group_id) |
| 3119 | { |
| 3120 | HOST_WIDE_INT offset, width; |
| 3121 | /* Reads with non-constant size kill all DSE opportunities |
| 3122 | in the group. */ |
| 3123 | if (!read_info->offset.is_constant (const_value: &offset) |
| 3124 | || !read_info->width.is_constant (const_value: &width) |
| 3125 | || !known_size_p (a: width)) |
| 3126 | { |
| 3127 | /* Handle block mode reads. */ |
| 3128 | if (kill) |
| 3129 | bitmap_ior_into (kill, group->group_kill); |
| 3130 | bitmap_and_compl_into (gen, group->group_kill); |
| 3131 | } |
| 3132 | else |
| 3133 | { |
| 3134 | /* The groups are the same, just process the |
| 3135 | offsets. */ |
| 3136 | HOST_WIDE_INT j; |
| 3137 | HOST_WIDE_INT end = offset + width; |
| 3138 | for (j = offset; j < end; j++) |
| 3139 | { |
| 3140 | int index = get_bitmap_index (group_info: group, offset: j); |
| 3141 | if (index != 0) |
| 3142 | { |
| 3143 | if (kill) |
| 3144 | bitmap_set_bit (kill, index); |
| 3145 | bitmap_clear_bit (gen, index); |
| 3146 | } |
| 3147 | } |
| 3148 | } |
| 3149 | } |
| 3150 | else |
| 3151 | { |
| 3152 | /* The groups are different, if the alias sets |
| 3153 | conflict, clear the entire group. We only need |
| 3154 | to apply this test if the read_info is a cselib |
| 3155 | read. Anything with a constant base cannot alias |
| 3156 | something else with a different constant |
| 3157 | base. */ |
| 3158 | if ((read_info->group_id < 0) |
| 3159 | && canon_true_dependence (group->base_mem, |
| 3160 | GET_MODE (group->base_mem), |
| 3161 | group->canon_base_addr, |
| 3162 | read_info->mem, NULL_RTX)) |
| 3163 | { |
| 3164 | if (kill) |
| 3165 | bitmap_ior_into (kill, group->group_kill); |
| 3166 | bitmap_and_compl_into (gen, group->group_kill); |
| 3167 | } |
| 3168 | } |
| 3169 | } |
| 3170 | } |
| 3171 | |
| 3172 | read_info = read_info->next; |
| 3173 | } |
| 3174 | } |
| 3175 | |
| 3176 | |
| 3177 | /* Return the insn in BB_INFO before the first wild read or if there |
| 3178 | are no wild reads in the block, return the last insn. */ |
| 3179 | |
| 3180 | static insn_info_t |
| 3181 | find_insn_before_first_wild_read (bb_info_t bb_info) |
| 3182 | { |
| 3183 | insn_info_t insn_info = bb_info->last_insn; |
| 3184 | insn_info_t last_wild_read = NULL; |
| 3185 | |
| 3186 | while (insn_info) |
| 3187 | { |
| 3188 | if (insn_info->wild_read) |
| 3189 | { |
| 3190 | last_wild_read = insn_info->prev_insn; |
| 3191 | /* Block starts with wild read. */ |
| 3192 | if (!last_wild_read) |
| 3193 | return NULL; |
| 3194 | } |
| 3195 | |
| 3196 | insn_info = insn_info->prev_insn; |
| 3197 | } |
| 3198 | |
| 3199 | if (last_wild_read) |
| 3200 | return last_wild_read; |
| 3201 | else |
| 3202 | return bb_info->last_insn; |
| 3203 | } |
| 3204 | |
| 3205 | |
| 3206 | /* Scan the insns in BB_INFO starting at PTR and going to the top of |
| 3207 | the block in order to build the gen and kill sets for the block. |
| 3208 | We start at ptr which may be the last insn in the block or may be |
| 3209 | the first insn with a wild read. In the latter case we are able to |
| 3210 | skip the rest of the block because it just does not matter: |
| 3211 | anything that happens is hidden by the wild read. */ |
| 3212 | |
| 3213 | static void |
| 3214 | dse_step3_scan (basic_block bb) |
| 3215 | { |
| 3216 | bb_info_t bb_info = bb_table[bb->index]; |
| 3217 | insn_info_t insn_info; |
| 3218 | |
| 3219 | insn_info = find_insn_before_first_wild_read (bb_info); |
| 3220 | |
| 3221 | /* In the spill case or in the no_spill case if there is no wild |
| 3222 | read in the block, we will need a kill set. */ |
| 3223 | if (insn_info == bb_info->last_insn) |
| 3224 | { |
| 3225 | if (bb_info->kill) |
| 3226 | bitmap_clear (bb_info->kill); |
| 3227 | else |
| 3228 | bb_info->kill = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 3229 | } |
| 3230 | else |
| 3231 | if (bb_info->kill) |
| 3232 | BITMAP_FREE (bb_info->kill); |
| 3233 | |
| 3234 | while (insn_info) |
| 3235 | { |
| 3236 | /* There may have been code deleted by the dce pass run before |
| 3237 | this phase. */ |
| 3238 | if (insn_info->insn && INSN_P (insn_info->insn)) |
| 3239 | { |
| 3240 | scan_stores (store_info: insn_info->store_rec, gen: bb_info->gen, kill: bb_info->kill); |
| 3241 | scan_reads (insn_info, gen: bb_info->gen, kill: bb_info->kill); |
| 3242 | } |
| 3243 | |
| 3244 | insn_info = insn_info->prev_insn; |
| 3245 | } |
| 3246 | } |
| 3247 | |
| 3248 | |
| 3249 | /* Set the gen set of the exit block, and also any block with no |
| 3250 | successors that does not have a wild read. */ |
| 3251 | |
| 3252 | static void |
| 3253 | dse_step3_exit_block_scan (bb_info_t bb_info) |
| 3254 | { |
| 3255 | /* The gen set is all 0's for the exit block except for the |
| 3256 | frame_pointer_group. */ |
| 3257 | |
| 3258 | if (stores_off_frame_dead_at_return) |
| 3259 | { |
| 3260 | unsigned int i; |
| 3261 | group_info *group; |
| 3262 | |
| 3263 | FOR_EACH_VEC_ELT (rtx_group_vec, i, group) |
| 3264 | { |
| 3265 | if (group->process_globally && group->frame_related) |
| 3266 | bitmap_ior_into (bb_info->gen, group->group_kill); |
| 3267 | } |
| 3268 | } |
| 3269 | } |
| 3270 | |
| 3271 | |
| 3272 | /* Find all of the blocks that are not backwards reachable from the |
| 3273 | exit block or any block with no successors (BB). These are the |
| 3274 | infinite loops or infinite self loops. These blocks will still |
| 3275 | have their bits set in UNREACHABLE_BLOCKS. */ |
| 3276 | |
| 3277 | static void |
| 3278 | mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb) |
| 3279 | { |
| 3280 | edge e; |
| 3281 | edge_iterator ei; |
| 3282 | |
| 3283 | if (bitmap_bit_p (map: unreachable_blocks, bitno: bb->index)) |
| 3284 | { |
| 3285 | bitmap_clear_bit (map: unreachable_blocks, bitno: bb->index); |
| 3286 | FOR_EACH_EDGE (e, ei, bb->preds) |
| 3287 | { |
| 3288 | mark_reachable_blocks (unreachable_blocks, bb: e->src); |
| 3289 | } |
| 3290 | } |
| 3291 | } |
| 3292 | |
| 3293 | /* Build the transfer functions for the function. */ |
| 3294 | |
| 3295 | static void |
| 3296 | dse_step3 () |
| 3297 | { |
| 3298 | basic_block bb; |
| 3299 | sbitmap_iterator sbi; |
| 3300 | bitmap all_ones = NULL; |
| 3301 | unsigned int i; |
| 3302 | |
| 3303 | auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun)); |
| 3304 | bitmap_ones (unreachable_blocks); |
| 3305 | |
| 3306 | FOR_ALL_BB_FN (bb, cfun) |
| 3307 | { |
| 3308 | bb_info_t bb_info = bb_table[bb->index]; |
| 3309 | if (bb_info->gen) |
| 3310 | bitmap_clear (bb_info->gen); |
| 3311 | else |
| 3312 | bb_info->gen = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 3313 | |
| 3314 | if (bb->index == ENTRY_BLOCK) |
| 3315 | ; |
| 3316 | else if (bb->index == EXIT_BLOCK) |
| 3317 | dse_step3_exit_block_scan (bb_info); |
| 3318 | else |
| 3319 | dse_step3_scan (bb); |
| 3320 | if (EDGE_COUNT (bb->succs) == 0) |
| 3321 | mark_reachable_blocks (unreachable_blocks, bb); |
| 3322 | |
| 3323 | /* If this is the second time dataflow is run, delete the old |
| 3324 | sets. */ |
| 3325 | if (bb_info->in) |
| 3326 | BITMAP_FREE (bb_info->in); |
| 3327 | if (bb_info->out) |
| 3328 | BITMAP_FREE (bb_info->out); |
| 3329 | } |
| 3330 | |
| 3331 | /* For any block in an infinite loop, we must initialize the out set |
| 3332 | to all ones. This could be expensive, but almost never occurs in |
| 3333 | practice. However, it is common in regression tests. */ |
| 3334 | EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi) |
| 3335 | { |
| 3336 | if (bitmap_bit_p (all_blocks, i)) |
| 3337 | { |
| 3338 | bb_info_t bb_info = bb_table[i]; |
| 3339 | if (!all_ones) |
| 3340 | { |
| 3341 | unsigned int j; |
| 3342 | group_info *group; |
| 3343 | |
| 3344 | all_ones = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 3345 | FOR_EACH_VEC_ELT (rtx_group_vec, j, group) |
| 3346 | bitmap_ior_into (all_ones, group->group_kill); |
| 3347 | } |
| 3348 | if (!bb_info->out) |
| 3349 | { |
| 3350 | bb_info->out = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 3351 | bitmap_copy (bb_info->out, all_ones); |
| 3352 | } |
| 3353 | } |
| 3354 | } |
| 3355 | |
| 3356 | if (all_ones) |
| 3357 | BITMAP_FREE (all_ones); |
| 3358 | } |
| 3359 | |
| 3360 | |
| 3361 | |
| 3362 | /*---------------------------------------------------------------------------- |
| 3363 | Fourth step. |
| 3364 | |
| 3365 | Solve the bitvector equations. |
| 3366 | ----------------------------------------------------------------------------*/ |
| 3367 | |
| 3368 | |
| 3369 | /* Confluence function for blocks with no successors. Create an out |
| 3370 | set from the gen set of the exit block. This block logically has |
| 3371 | the exit block as a successor. */ |
| 3372 | |
| 3373 | |
| 3374 | |
| 3375 | static void |
| 3376 | dse_confluence_0 (basic_block bb) |
| 3377 | { |
| 3378 | bb_info_t bb_info = bb_table[bb->index]; |
| 3379 | |
| 3380 | if (bb->index == EXIT_BLOCK) |
| 3381 | return; |
| 3382 | |
| 3383 | if (!bb_info->out) |
| 3384 | { |
| 3385 | bb_info->out = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 3386 | bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen); |
| 3387 | } |
| 3388 | } |
| 3389 | |
| 3390 | /* Propagate the information from the in set of the dest of E to the |
| 3391 | out set of the src of E. If the various in or out sets are not |
| 3392 | there, that means they are all ones. */ |
| 3393 | |
| 3394 | static bool |
| 3395 | dse_confluence_n (edge e) |
| 3396 | { |
| 3397 | bb_info_t src_info = bb_table[e->src->index]; |
| 3398 | bb_info_t dest_info = bb_table[e->dest->index]; |
| 3399 | |
| 3400 | if (dest_info->in) |
| 3401 | { |
| 3402 | if (src_info->out) |
| 3403 | bitmap_and_into (src_info->out, dest_info->in); |
| 3404 | else |
| 3405 | { |
| 3406 | src_info->out = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 3407 | bitmap_copy (src_info->out, dest_info->in); |
| 3408 | } |
| 3409 | } |
| 3410 | return true; |
| 3411 | } |
| 3412 | |
| 3413 | |
| 3414 | /* Propagate the info from the out to the in set of BB_INDEX's basic |
| 3415 | block. There are three cases: |
| 3416 | |
| 3417 | 1) The block has no kill set. In this case the kill set is all |
| 3418 | ones. It does not matter what the out set of the block is, none of |
| 3419 | the info can reach the top. The only thing that reaches the top is |
| 3420 | the gen set and we just copy the set. |
| 3421 | |
| 3422 | 2) There is a kill set but no out set and bb has successors. In |
| 3423 | this case we just return. Eventually an out set will be created and |
| 3424 | it is better to wait than to create a set of ones. |
| 3425 | |
| 3426 | 3) There is both a kill and out set. We apply the obvious transfer |
| 3427 | function. |
| 3428 | */ |
| 3429 | |
| 3430 | static bool |
| 3431 | dse_transfer_function (int bb_index) |
| 3432 | { |
| 3433 | bb_info_t bb_info = bb_table[bb_index]; |
| 3434 | |
| 3435 | if (bb_info->kill) |
| 3436 | { |
| 3437 | if (bb_info->out) |
| 3438 | { |
| 3439 | /* Case 3 above. */ |
| 3440 | if (bb_info->in) |
| 3441 | return bitmap_ior_and_compl (DST: bb_info->in, A: bb_info->gen, |
| 3442 | B: bb_info->out, C: bb_info->kill); |
| 3443 | else |
| 3444 | { |
| 3445 | bb_info->in = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 3446 | bitmap_ior_and_compl (DST: bb_info->in, A: bb_info->gen, |
| 3447 | B: bb_info->out, C: bb_info->kill); |
| 3448 | return true; |
| 3449 | } |
| 3450 | } |
| 3451 | else |
| 3452 | /* Case 2 above. */ |
| 3453 | return false; |
| 3454 | } |
| 3455 | else |
| 3456 | { |
| 3457 | /* Case 1 above. If there is already an in set, nothing |
| 3458 | happens. */ |
| 3459 | if (bb_info->in) |
| 3460 | return false; |
| 3461 | else |
| 3462 | { |
| 3463 | bb_info->in = BITMAP_ALLOC (obstack: &dse_bitmap_obstack); |
| 3464 | bitmap_copy (bb_info->in, bb_info->gen); |
| 3465 | return true; |
| 3466 | } |
| 3467 | } |
| 3468 | } |
| 3469 | |
| 3470 | /* Solve the dataflow equations. */ |
| 3471 | |
| 3472 | static void |
| 3473 | dse_step4 (void) |
| 3474 | { |
| 3475 | df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0, |
| 3476 | dse_confluence_n, dse_transfer_function, |
| 3477 | all_blocks, df_get_postorder (DF_BACKWARD), |
| 3478 | df_get_n_blocks (DF_BACKWARD)); |
| 3479 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 3480 | { |
| 3481 | basic_block bb; |
| 3482 | |
| 3483 | fprintf (stream: dump_file, format: "\n\n*** Global dataflow info after analysis.\n" ); |
| 3484 | FOR_ALL_BB_FN (bb, cfun) |
| 3485 | { |
| 3486 | bb_info_t bb_info = bb_table[bb->index]; |
| 3487 | |
| 3488 | df_print_bb_index (bb, file: dump_file); |
| 3489 | if (bb_info->in) |
| 3490 | bitmap_print (dump_file, bb_info->in, " in: " , "\n" ); |
| 3491 | else |
| 3492 | fprintf (stream: dump_file, format: " in: *MISSING*\n" ); |
| 3493 | if (bb_info->gen) |
| 3494 | bitmap_print (dump_file, bb_info->gen, " gen: " , "\n" ); |
| 3495 | else |
| 3496 | fprintf (stream: dump_file, format: " gen: *MISSING*\n" ); |
| 3497 | if (bb_info->kill) |
| 3498 | bitmap_print (dump_file, bb_info->kill, " kill: " , "\n" ); |
| 3499 | else |
| 3500 | fprintf (stream: dump_file, format: " kill: *MISSING*\n" ); |
| 3501 | if (bb_info->out) |
| 3502 | bitmap_print (dump_file, bb_info->out, " out: " , "\n" ); |
| 3503 | else |
| 3504 | fprintf (stream: dump_file, format: " out: *MISSING*\n\n" ); |
| 3505 | } |
| 3506 | } |
| 3507 | } |
| 3508 | |
| 3509 | |
| 3510 | |
| 3511 | /*---------------------------------------------------------------------------- |
| 3512 | Fifth step. |
| 3513 | |
| 3514 | Delete the stores that can only be deleted using the global information. |
| 3515 | ----------------------------------------------------------------------------*/ |
| 3516 | |
| 3517 | |
| 3518 | static void |
| 3519 | dse_step5 (void) |
| 3520 | { |
| 3521 | basic_block bb; |
| 3522 | FOR_EACH_BB_FN (bb, cfun) |
| 3523 | { |
| 3524 | bb_info_t bb_info = bb_table[bb->index]; |
| 3525 | insn_info_t insn_info = bb_info->last_insn; |
| 3526 | bitmap v = bb_info->out; |
| 3527 | |
| 3528 | while (insn_info) |
| 3529 | { |
| 3530 | bool deleted = false; |
| 3531 | if (dump_file && insn_info->insn) |
| 3532 | { |
| 3533 | fprintf (stream: dump_file, format: "starting to process insn %d\n" , |
| 3534 | INSN_UID (insn: insn_info->insn)); |
| 3535 | bitmap_print (dump_file, v, " v: " , "\n" ); |
| 3536 | } |
| 3537 | |
| 3538 | /* There may have been code deleted by the dce pass run before |
| 3539 | this phase. */ |
| 3540 | if (insn_info->insn |
| 3541 | && INSN_P (insn_info->insn) |
| 3542 | && (!insn_info->cannot_delete) |
| 3543 | && (!bitmap_empty_p (map: v))) |
| 3544 | { |
| 3545 | store_info *store_info = insn_info->store_rec; |
| 3546 | |
| 3547 | /* Try to delete the current insn. */ |
| 3548 | deleted = true; |
| 3549 | |
| 3550 | /* Skip the clobbers. */ |
| 3551 | while (!store_info->is_set) |
| 3552 | store_info = store_info->next; |
| 3553 | |
| 3554 | HOST_WIDE_INT i, offset, width; |
| 3555 | group_info *group_info = rtx_group_vec[store_info->group_id]; |
| 3556 | |
| 3557 | if (!store_info->offset.is_constant (const_value: &offset) |
| 3558 | || !store_info->width.is_constant (const_value: &width)) |
| 3559 | deleted = false; |
| 3560 | else |
| 3561 | { |
| 3562 | HOST_WIDE_INT end = offset + width; |
| 3563 | for (i = offset; i < end; i++) |
| 3564 | { |
| 3565 | int index = get_bitmap_index (group_info, offset: i); |
| 3566 | |
| 3567 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 3568 | fprintf (stream: dump_file, format: "i = %d, index = %d\n" , |
| 3569 | (int) i, index); |
| 3570 | if (index == 0 || !bitmap_bit_p (v, index)) |
| 3571 | { |
| 3572 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 3573 | fprintf (stream: dump_file, format: "failing at i = %d\n" , |
| 3574 | (int) i); |
| 3575 | deleted = false; |
| 3576 | break; |
| 3577 | } |
| 3578 | } |
| 3579 | } |
| 3580 | if (deleted) |
| 3581 | { |
| 3582 | if (dbg_cnt (index: dse) |
| 3583 | && check_for_inc_dec_1 (insn_info)) |
| 3584 | { |
| 3585 | delete_insn (insn_info->insn); |
| 3586 | insn_info->insn = NULL; |
| 3587 | globally_deleted++; |
| 3588 | } |
| 3589 | } |
| 3590 | } |
| 3591 | /* We do want to process the local info if the insn was |
| 3592 | deleted. For instance, if the insn did a wild read, we |
| 3593 | no longer need to trash the info. */ |
| 3594 | if (insn_info->insn |
| 3595 | && INSN_P (insn_info->insn) |
| 3596 | && (!deleted)) |
| 3597 | { |
| 3598 | scan_stores (store_info: insn_info->store_rec, gen: v, NULL); |
| 3599 | if (insn_info->wild_read) |
| 3600 | { |
| 3601 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 3602 | fprintf (stream: dump_file, format: "wild read\n" ); |
| 3603 | bitmap_clear (v); |
| 3604 | } |
| 3605 | else if (insn_info->read_rec |
| 3606 | || insn_info->non_frame_wild_read |
| 3607 | || insn_info->frame_read) |
| 3608 | { |
| 3609 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 3610 | { |
| 3611 | if (!insn_info->non_frame_wild_read |
| 3612 | && !insn_info->frame_read) |
| 3613 | fprintf (stream: dump_file, format: "regular read\n" ); |
| 3614 | if (insn_info->non_frame_wild_read) |
| 3615 | fprintf (stream: dump_file, format: "non-frame wild read\n" ); |
| 3616 | if (insn_info->frame_read) |
| 3617 | fprintf (stream: dump_file, format: "frame read\n" ); |
| 3618 | } |
| 3619 | scan_reads (insn_info, gen: v, NULL); |
| 3620 | } |
| 3621 | } |
| 3622 | |
| 3623 | insn_info = insn_info->prev_insn; |
| 3624 | } |
| 3625 | } |
| 3626 | } |
| 3627 | |
| 3628 | |
| 3629 | |
| 3630 | /*---------------------------------------------------------------------------- |
| 3631 | Sixth step. |
| 3632 | |
| 3633 | Delete stores made redundant by earlier stores (which store the same |
| 3634 | value) that couldn't be eliminated. |
| 3635 | ----------------------------------------------------------------------------*/ |
| 3636 | |
| 3637 | static void |
| 3638 | dse_step6 (void) |
| 3639 | { |
| 3640 | basic_block bb; |
| 3641 | |
| 3642 | FOR_ALL_BB_FN (bb, cfun) |
| 3643 | { |
| 3644 | bb_info_t bb_info = bb_table[bb->index]; |
| 3645 | insn_info_t insn_info = bb_info->last_insn; |
| 3646 | |
| 3647 | while (insn_info) |
| 3648 | { |
| 3649 | /* There may have been code deleted by the dce pass run before |
| 3650 | this phase. */ |
| 3651 | if (insn_info->insn |
| 3652 | && INSN_P (insn_info->insn) |
| 3653 | && !insn_info->cannot_delete) |
| 3654 | { |
| 3655 | store_info *s_info = insn_info->store_rec; |
| 3656 | |
| 3657 | while (s_info && !s_info->is_set) |
| 3658 | s_info = s_info->next; |
| 3659 | if (s_info |
| 3660 | && s_info->redundant_reason |
| 3661 | && s_info->redundant_reason->insn |
| 3662 | && INSN_P (s_info->redundant_reason->insn)) |
| 3663 | { |
| 3664 | rtx_insn *rinsn = s_info->redundant_reason->insn; |
| 3665 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 3666 | fprintf (stream: dump_file, format: "Locally deleting insn %d " |
| 3667 | "because insn %d stores the " |
| 3668 | "same value and couldn't be " |
| 3669 | "eliminated\n" , |
| 3670 | INSN_UID (insn: insn_info->insn), |
| 3671 | INSN_UID (insn: rinsn)); |
| 3672 | delete_dead_store_insn (insn_info); |
| 3673 | } |
| 3674 | } |
| 3675 | insn_info = insn_info->prev_insn; |
| 3676 | } |
| 3677 | } |
| 3678 | } |
| 3679 | |
| 3680 | /*---------------------------------------------------------------------------- |
| 3681 | Seventh step. |
| 3682 | |
| 3683 | Destroy everything left standing. |
| 3684 | ----------------------------------------------------------------------------*/ |
| 3685 | |
| 3686 | static void |
| 3687 | dse_step7 (void) |
| 3688 | { |
| 3689 | bitmap_obstack_release (&dse_bitmap_obstack); |
| 3690 | obstack_free (&dse_obstack, NULL); |
| 3691 | |
| 3692 | end_alias_analysis (); |
| 3693 | free (ptr: bb_table); |
| 3694 | delete rtx_group_table; |
| 3695 | rtx_group_table = NULL; |
| 3696 | rtx_group_vec.release (); |
| 3697 | BITMAP_FREE (all_blocks); |
| 3698 | BITMAP_FREE (scratch); |
| 3699 | |
| 3700 | rtx_store_info_pool.release (); |
| 3701 | read_info_type_pool.release (); |
| 3702 | insn_info_type_pool.release (); |
| 3703 | dse_bb_info_type_pool.release (); |
| 3704 | group_info_pool.release (); |
| 3705 | deferred_change_pool.release (); |
| 3706 | } |
| 3707 | |
| 3708 | |
| 3709 | /* ------------------------------------------------------------------------- |
| 3710 | DSE |
| 3711 | ------------------------------------------------------------------------- */ |
| 3712 | |
| 3713 | /* Callback for running pass_rtl_dse. */ |
| 3714 | |
| 3715 | static unsigned int |
| 3716 | rest_of_handle_dse (void) |
| 3717 | { |
| 3718 | df_set_flags (DF_DEFER_INSN_RESCAN); |
| 3719 | |
| 3720 | /* Need the notes since we must track live hardregs in the forwards |
| 3721 | direction. */ |
| 3722 | df_note_add_problem (); |
| 3723 | df_analyze (); |
| 3724 | |
| 3725 | dse_step0 (); |
| 3726 | dse_step1 (); |
| 3727 | /* DSE can eliminate potentially-trapping MEMs. |
| 3728 | Remove any EH edges associated with them, since otherwise |
| 3729 | DF_LR_RUN_DCE will complain later. */ |
| 3730 | if ((locally_deleted || globally_deleted) |
| 3731 | && cfun->can_throw_non_call_exceptions |
| 3732 | && purge_all_dead_edges ()) |
| 3733 | { |
| 3734 | free_dominance_info (CDI_DOMINATORS); |
| 3735 | delete_unreachable_blocks (); |
| 3736 | } |
| 3737 | dse_step2_init (); |
| 3738 | if (dse_step2 ()) |
| 3739 | { |
| 3740 | df_set_flags (DF_LR_RUN_DCE); |
| 3741 | df_analyze (); |
| 3742 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 3743 | fprintf (stream: dump_file, format: "doing global processing\n" ); |
| 3744 | dse_step3 (); |
| 3745 | dse_step4 (); |
| 3746 | dse_step5 (); |
| 3747 | } |
| 3748 | |
| 3749 | dse_step6 (); |
| 3750 | dse_step7 (); |
| 3751 | |
| 3752 | if (dump_file) |
| 3753 | fprintf (stream: dump_file, format: "dse: local deletions = %d, global deletions = %d\n" , |
| 3754 | locally_deleted, globally_deleted); |
| 3755 | |
| 3756 | /* DSE can eliminate potentially-trapping MEMs. |
| 3757 | Remove any EH edges associated with them. */ |
| 3758 | if ((locally_deleted || globally_deleted) |
| 3759 | && cfun->can_throw_non_call_exceptions |
| 3760 | && purge_all_dead_edges ()) |
| 3761 | { |
| 3762 | free_dominance_info (CDI_DOMINATORS); |
| 3763 | cleanup_cfg (0); |
| 3764 | } |
| 3765 | |
| 3766 | return 0; |
| 3767 | } |
| 3768 | |
| 3769 | namespace { |
| 3770 | |
| 3771 | const pass_data pass_data_rtl_dse1 = |
| 3772 | { |
| 3773 | .type: RTL_PASS, /* type */ |
| 3774 | .name: "dse1" , /* name */ |
| 3775 | .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */ |
| 3776 | .tv_id: TV_DSE1, /* tv_id */ |
| 3777 | .properties_required: 0, /* properties_required */ |
| 3778 | .properties_provided: 0, /* properties_provided */ |
| 3779 | .properties_destroyed: 0, /* properties_destroyed */ |
| 3780 | .todo_flags_start: 0, /* todo_flags_start */ |
| 3781 | TODO_df_finish, /* todo_flags_finish */ |
| 3782 | }; |
| 3783 | |
| 3784 | class pass_rtl_dse1 : public rtl_opt_pass |
| 3785 | { |
| 3786 | public: |
| 3787 | pass_rtl_dse1 (gcc::context *ctxt) |
| 3788 | : rtl_opt_pass (pass_data_rtl_dse1, ctxt) |
| 3789 | {} |
| 3790 | |
| 3791 | /* opt_pass methods: */ |
| 3792 | bool gate (function *) final override |
| 3793 | { |
| 3794 | return optimize > 0 && flag_dse && dbg_cnt (index: dse1); |
| 3795 | } |
| 3796 | |
| 3797 | unsigned int execute (function *) final override |
| 3798 | { |
| 3799 | return rest_of_handle_dse (); |
| 3800 | } |
| 3801 | |
| 3802 | }; // class pass_rtl_dse1 |
| 3803 | |
| 3804 | } // anon namespace |
| 3805 | |
| 3806 | rtl_opt_pass * |
| 3807 | make_pass_rtl_dse1 (gcc::context *ctxt) |
| 3808 | { |
| 3809 | return new pass_rtl_dse1 (ctxt); |
| 3810 | } |
| 3811 | |
| 3812 | namespace { |
| 3813 | |
| 3814 | const pass_data pass_data_rtl_dse2 = |
| 3815 | { |
| 3816 | .type: RTL_PASS, /* type */ |
| 3817 | .name: "dse2" , /* name */ |
| 3818 | .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */ |
| 3819 | .tv_id: TV_DSE2, /* tv_id */ |
| 3820 | .properties_required: 0, /* properties_required */ |
| 3821 | .properties_provided: 0, /* properties_provided */ |
| 3822 | .properties_destroyed: 0, /* properties_destroyed */ |
| 3823 | .todo_flags_start: 0, /* todo_flags_start */ |
| 3824 | TODO_df_finish, /* todo_flags_finish */ |
| 3825 | }; |
| 3826 | |
| 3827 | class pass_rtl_dse2 : public rtl_opt_pass |
| 3828 | { |
| 3829 | public: |
| 3830 | pass_rtl_dse2 (gcc::context *ctxt) |
| 3831 | : rtl_opt_pass (pass_data_rtl_dse2, ctxt) |
| 3832 | {} |
| 3833 | |
| 3834 | /* opt_pass methods: */ |
| 3835 | bool gate (function *) final override |
| 3836 | { |
| 3837 | return optimize > 0 && flag_dse && dbg_cnt (index: dse2); |
| 3838 | } |
| 3839 | |
| 3840 | unsigned int execute (function *) final override |
| 3841 | { |
| 3842 | return rest_of_handle_dse (); |
| 3843 | } |
| 3844 | |
| 3845 | }; // class pass_rtl_dse2 |
| 3846 | |
| 3847 | } // anon namespace |
| 3848 | |
| 3849 | rtl_opt_pass * |
| 3850 | make_pass_rtl_dse2 (gcc::context *ctxt) |
| 3851 | { |
| 3852 | return new pass_rtl_dse2 (ctxt); |
| 3853 | } |
| 3854 | |