1 | /* Dwarf2 Call Frame Information helper routines. |
2 | Copyright (C) 1992-2025 Free Software Foundation, Inc. |
3 | |
4 | This file is part of GCC. |
5 | |
6 | GCC is free software; you can redistribute it and/or modify it under |
7 | the terms of the GNU General Public License as published by the Free |
8 | Software Foundation; either version 3, or (at your option) any later |
9 | version. |
10 | |
11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | for more details. |
15 | |
16 | You should have received a copy of the GNU General Public License |
17 | along with GCC; see the file COPYING3. If not see |
18 | <http://www.gnu.org/licenses/>. */ |
19 | |
20 | #include "config.h" |
21 | #include "system.h" |
22 | #include "coretypes.h" |
23 | #include "target.h" |
24 | #include "function.h" |
25 | #include "rtl.h" |
26 | #include "tree.h" |
27 | #include "tree-pass.h" |
28 | #include "memmodel.h" |
29 | #include "tm_p.h" |
30 | #include "emit-rtl.h" |
31 | #include "stor-layout.h" |
32 | #include "cfgbuild.h" |
33 | #include "dwarf2out.h" |
34 | #include "dwarf2asm.h" |
35 | #include "common/common-target.h" |
36 | |
37 | #include "except.h" /* expand_builtin_dwarf_sp_column */ |
38 | #include "profile-count.h" /* For expr.h */ |
39 | #include "expr.h" /* init_return_column_size */ |
40 | #include "output.h" /* asm_out_file */ |
41 | #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */ |
42 | #include "flags.h" /* dwarf_debuginfo_p */ |
43 | |
44 | /* ??? Poison these here until it can be done generically. They've been |
45 | totally replaced in this file; make sure it stays that way. */ |
46 | #undef DWARF2_UNWIND_INFO |
47 | #undef DWARF2_FRAME_INFO |
48 | #if (GCC_VERSION >= 3000) |
49 | #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO |
50 | #endif |
51 | |
52 | #ifndef INCOMING_RETURN_ADDR_RTX |
53 | #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX) |
54 | #endif |
55 | |
56 | #ifndef DEFAULT_INCOMING_FRAME_SP_OFFSET |
57 | #define DEFAULT_INCOMING_FRAME_SP_OFFSET INCOMING_FRAME_SP_OFFSET |
58 | #endif |
59 | |
60 | |
61 | /* Signing method used for return address authentication. |
62 | (AArch64 extension) */ |
63 | typedef enum |
64 | { |
65 | ra_no_signing = 0x0, |
66 | ra_signing_sp = 0x1, |
67 | } ra_signing_method_t; |
68 | |
69 | /* A collected description of an entire row of the abstract CFI table. */ |
70 | struct GTY(()) dw_cfi_row |
71 | { |
72 | /* The expression that computes the CFA, expressed in two different ways. |
73 | The CFA member for the simple cases, and the full CFI expression for |
74 | the complex cases. The later will be a DW_CFA_cfa_expression. */ |
75 | dw_cfa_location cfa; |
76 | dw_cfi_ref cfa_cfi; |
77 | |
78 | /* The expressions for any register column that is saved. */ |
79 | cfi_vec reg_save; |
80 | |
81 | /* SPARC extension for DW_CFA_GNU_window_save. |
82 | True if the register window is saved. */ |
83 | bool window_save; |
84 | |
85 | /* AArch64 extension for DW_CFA_AARCH64_negate_ra_state. |
86 | Enum which stores the return address state. */ |
87 | ra_signing_method_t ra_state; |
88 | }; |
89 | |
90 | /* The caller's ORIG_REG is saved in SAVED_IN_REG. */ |
91 | struct GTY(()) reg_saved_in_data { |
92 | rtx orig_reg; |
93 | rtx saved_in_reg; |
94 | }; |
95 | |
96 | |
97 | /* Since we no longer have a proper CFG, we're going to create a facsimile |
98 | of one on the fly while processing the frame-related insns. |
99 | |
100 | We create dw_trace_info structures for each extended basic block beginning |
101 | and ending at a "save point". Save points are labels, barriers, certain |
102 | notes, and of course the beginning and end of the function. |
103 | |
104 | As we encounter control transfer insns, we propagate the "current" |
105 | row state across the edges to the starts of traces. When checking is |
106 | enabled, we validate that we propagate the same data from all sources. |
107 | |
108 | All traces are members of the TRACE_INFO array, in the order in which |
109 | they appear in the instruction stream. |
110 | |
111 | All save points are present in the TRACE_INDEX hash, mapping the insn |
112 | starting a trace to the dw_trace_info describing the trace. */ |
113 | |
114 | struct dw_trace_info |
115 | { |
116 | /* The insn that begins the trace. */ |
117 | rtx_insn *head; |
118 | |
119 | /* The row state at the beginning and end of the trace. */ |
120 | dw_cfi_row *beg_row, *end_row; |
121 | |
122 | /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find |
123 | while scanning insns. However, the args_size value is irrelevant at |
124 | any point except can_throw_internal_p insns. Therefore the "delay" |
125 | sizes the values that must actually be emitted for this trace. */ |
126 | poly_int64 beg_true_args_size, end_true_args_size; |
127 | poly_int64 beg_delay_args_size, end_delay_args_size; |
128 | |
129 | /* The first EH insn in the trace, where beg_delay_args_size must be set. */ |
130 | rtx_insn *eh_head; |
131 | |
132 | /* The following variables contain data used in interpreting frame related |
133 | expressions. These are not part of the "real" row state as defined by |
134 | Dwarf, but it seems like they need to be propagated into a trace in case |
135 | frame related expressions have been sunk. */ |
136 | /* ??? This seems fragile. These variables are fragments of a larger |
137 | expression. If we do not keep the entire expression together, we risk |
138 | not being able to put it together properly. Consider forcing targets |
139 | to generate self-contained expressions and dropping all of the magic |
140 | interpretation code in this file. Or at least refusing to shrink wrap |
141 | any frame related insn that doesn't contain a complete expression. */ |
142 | |
143 | /* The register used for saving registers to the stack, and its offset |
144 | from the CFA. */ |
145 | dw_cfa_location cfa_store; |
146 | |
147 | /* A temporary register holding an integral value used in adjusting SP |
148 | or setting up the store_reg. The "offset" field holds the integer |
149 | value, not an offset. */ |
150 | dw_cfa_location cfa_temp; |
151 | |
152 | /* A set of registers saved in other registers. This is the inverse of |
153 | the row->reg_save info, if the entry is a DW_CFA_register. This is |
154 | implemented as a flat array because it normally contains zero or 1 |
155 | entry, depending on the target. IA-64 is the big spender here, using |
156 | a maximum of 5 entries. */ |
157 | vec<reg_saved_in_data> regs_saved_in_regs; |
158 | |
159 | /* An identifier for this trace. Used only for debugging dumps. */ |
160 | unsigned id; |
161 | |
162 | /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */ |
163 | bool switch_sections; |
164 | |
165 | /* True if we've seen different values incoming to beg_true_args_size. */ |
166 | bool args_size_undefined; |
167 | |
168 | /* True if we've seen an insn with a REG_ARGS_SIZE note before EH_HEAD. */ |
169 | bool args_size_defined_for_eh; |
170 | }; |
171 | |
172 | |
173 | /* Hashtable helpers. */ |
174 | |
175 | struct trace_info_hasher : nofree_ptr_hash <dw_trace_info> |
176 | { |
177 | static inline hashval_t hash (const dw_trace_info *); |
178 | static inline bool equal (const dw_trace_info *, const dw_trace_info *); |
179 | }; |
180 | |
181 | inline hashval_t |
182 | trace_info_hasher::hash (const dw_trace_info *ti) |
183 | { |
184 | return INSN_UID (insn: ti->head); |
185 | } |
186 | |
187 | inline bool |
188 | trace_info_hasher::equal (const dw_trace_info *a, const dw_trace_info *b) |
189 | { |
190 | return a->head == b->head; |
191 | } |
192 | |
193 | |
194 | /* The variables making up the pseudo-cfg, as described above. */ |
195 | static vec<dw_trace_info> trace_info; |
196 | static vec<dw_trace_info *> trace_work_list; |
197 | static hash_table<trace_info_hasher> *trace_index; |
198 | |
199 | /* A vector of call frame insns for the CIE. */ |
200 | cfi_vec cie_cfi_vec; |
201 | |
202 | /* The state of the first row of the FDE table, which includes the |
203 | state provided by the CIE. */ |
204 | static GTY(()) dw_cfi_row *cie_cfi_row; |
205 | |
206 | static GTY(()) reg_saved_in_data *cie_return_save; |
207 | |
208 | static GTY(()) unsigned long dwarf2out_cfi_label_num; |
209 | |
210 | /* The insn after which a new CFI note should be emitted. */ |
211 | static rtx_insn *add_cfi_insn; |
212 | |
213 | /* When non-null, add_cfi will add the CFI to this vector. */ |
214 | static cfi_vec *add_cfi_vec; |
215 | |
216 | /* The current instruction trace. */ |
217 | static dw_trace_info *cur_trace; |
218 | |
219 | /* The current, i.e. most recently generated, row of the CFI table. */ |
220 | static dw_cfi_row *cur_row; |
221 | |
222 | /* A copy of the current CFA, for use during the processing of a |
223 | single insn. */ |
224 | static dw_cfa_location *cur_cfa; |
225 | |
226 | /* We delay emitting a register save until either (a) we reach the end |
227 | of the prologue or (b) the register is clobbered. This clusters |
228 | register saves so that there are fewer pc advances. */ |
229 | |
230 | struct queued_reg_save { |
231 | rtx reg; |
232 | rtx saved_reg; |
233 | poly_int64 cfa_offset; |
234 | }; |
235 | |
236 | |
237 | static vec<queued_reg_save> queued_reg_saves; |
238 | |
239 | /* True if any CFI directives were emitted at the current insn. */ |
240 | static bool any_cfis_emitted; |
241 | |
242 | /* Short-hand for commonly used register numbers. */ |
243 | static struct cfa_reg dw_stack_pointer_regnum; |
244 | static struct cfa_reg dw_frame_pointer_regnum; |
245 | |
246 | /* Hook used by __throw. */ |
247 | |
248 | rtx |
249 | expand_builtin_dwarf_sp_column (void) |
250 | { |
251 | unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM); |
252 | return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1)); |
253 | } |
254 | |
255 | /* MEM is a memory reference for the register size table, each element of |
256 | which has mode MODE. Initialize column C as a return address column. */ |
257 | |
258 | static void |
259 | init_return_column_size (scalar_int_mode mode, rtx mem, unsigned int c) |
260 | { |
261 | HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode); |
262 | HOST_WIDE_INT size = GET_MODE_SIZE (Pmode); |
263 | emit_move_insn (adjust_address (mem, mode, offset), |
264 | gen_int_mode (size, mode)); |
265 | } |
266 | |
267 | /* Datastructure used by expand_builtin_init_dwarf_reg_sizes and |
268 | init_one_dwarf_reg_size to communicate on what has been done by the |
269 | latter. */ |
270 | |
271 | struct init_one_dwarf_reg_state |
272 | { |
273 | /* Whether the dwarf return column was initialized. */ |
274 | bool wrote_return_column; |
275 | |
276 | /* For each hard register REGNO, whether init_one_dwarf_reg_size |
277 | was given REGNO to process already. */ |
278 | bool processed_regno [FIRST_PSEUDO_REGISTER]; |
279 | |
280 | }; |
281 | |
282 | /* Helper for expand_builtin_init_dwarf_reg_sizes. Generate code to |
283 | initialize the dwarf register size table entry corresponding to register |
284 | REGNO in REGMODE. TABLE is the table base address, SLOTMODE is the mode to |
285 | use for the size entry to initialize, and INIT_STATE is the communication |
286 | datastructure conveying what we're doing to our caller. */ |
287 | |
288 | static |
289 | void init_one_dwarf_reg_size (int regno, machine_mode regmode, |
290 | rtx table, machine_mode slotmode, |
291 | init_one_dwarf_reg_state *init_state) |
292 | { |
293 | const unsigned int dnum = DWARF_FRAME_REGNUM (regno); |
294 | const unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1); |
295 | const unsigned int dcol = DWARF_REG_TO_UNWIND_COLUMN (rnum); |
296 | |
297 | poly_int64 slotoffset = dcol * GET_MODE_SIZE (mode: slotmode); |
298 | poly_int64 regsize = GET_MODE_SIZE (mode: regmode); |
299 | |
300 | init_state->processed_regno[regno] = true; |
301 | |
302 | if (rnum >= DWARF_FRAME_REGISTERS) |
303 | return; |
304 | |
305 | if (dnum == DWARF_FRAME_RETURN_COLUMN) |
306 | { |
307 | if (regmode == VOIDmode) |
308 | return; |
309 | init_state->wrote_return_column = true; |
310 | } |
311 | |
312 | /* ??? When is this true? Should it be a test based on DCOL instead? */ |
313 | if (maybe_lt (a: slotoffset, b: 0)) |
314 | return; |
315 | |
316 | emit_move_insn (adjust_address (table, slotmode, slotoffset), |
317 | gen_int_mode (regsize, slotmode)); |
318 | } |
319 | |
320 | /* Generate code to initialize the dwarf register size table located |
321 | at the provided ADDRESS. */ |
322 | |
323 | void |
324 | expand_builtin_init_dwarf_reg_sizes (tree address) |
325 | { |
326 | unsigned int i; |
327 | scalar_int_mode mode = SCALAR_INT_TYPE_MODE (char_type_node); |
328 | rtx addr = expand_normal (exp: address); |
329 | rtx mem = gen_rtx_MEM (BLKmode, addr); |
330 | |
331 | init_one_dwarf_reg_state init_state; |
332 | |
333 | memset (s: (char *)&init_state, c: 0, n: sizeof (init_state)); |
334 | |
335 | for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
336 | { |
337 | machine_mode save_mode; |
338 | rtx span; |
339 | |
340 | /* No point in processing a register multiple times. This could happen |
341 | with register spans, e.g. when a reg is first processed as a piece of |
342 | a span, then as a register on its own later on. */ |
343 | |
344 | if (init_state.processed_regno[i]) |
345 | continue; |
346 | |
347 | save_mode = targetm.dwarf_frame_reg_mode (i); |
348 | span = targetm.dwarf_register_span (gen_rtx_REG (save_mode, i)); |
349 | |
350 | if (!span) |
351 | init_one_dwarf_reg_size (regno: i, regmode: save_mode, table: mem, slotmode: mode, init_state: &init_state); |
352 | else |
353 | { |
354 | for (int si = 0; si < XVECLEN (span, 0); si++) |
355 | { |
356 | rtx reg = XVECEXP (span, 0, si); |
357 | |
358 | init_one_dwarf_reg_size |
359 | (REGNO (reg), GET_MODE (reg), table: mem, slotmode: mode, init_state: &init_state); |
360 | } |
361 | } |
362 | } |
363 | |
364 | if (!init_state.wrote_return_column) |
365 | init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN); |
366 | |
367 | #ifdef DWARF_ALT_FRAME_RETURN_COLUMN |
368 | init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN); |
369 | #endif |
370 | |
371 | targetm.init_dwarf_reg_sizes_extra (address); |
372 | } |
373 | |
374 | |
375 | static dw_trace_info * |
376 | get_trace_info (rtx_insn *insn) |
377 | { |
378 | dw_trace_info dummy; |
379 | dummy.head = insn; |
380 | return trace_index->find_with_hash (comparable: &dummy, hash: INSN_UID (insn)); |
381 | } |
382 | |
383 | static bool |
384 | save_point_p (rtx_insn *insn) |
385 | { |
386 | /* Labels, except those that are really jump tables. */ |
387 | if (LABEL_P (insn)) |
388 | return inside_basic_block_p (insn); |
389 | |
390 | /* We split traces at the prologue/epilogue notes because those |
391 | are points at which the unwind info is usually stable. This |
392 | makes it easier to find spots with identical unwind info so |
393 | that we can use remember/restore_state opcodes. */ |
394 | if (NOTE_P (insn)) |
395 | switch (NOTE_KIND (insn)) |
396 | { |
397 | case NOTE_INSN_PROLOGUE_END: |
398 | case NOTE_INSN_EPILOGUE_BEG: |
399 | return true; |
400 | } |
401 | |
402 | return false; |
403 | } |
404 | |
405 | /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */ |
406 | |
407 | static inline HOST_WIDE_INT |
408 | div_data_align (HOST_WIDE_INT off) |
409 | { |
410 | HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT; |
411 | gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off); |
412 | return r; |
413 | } |
414 | |
415 | /* Return true if we need a signed version of a given opcode |
416 | (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */ |
417 | |
418 | static inline bool |
419 | need_data_align_sf_opcode (HOST_WIDE_INT off) |
420 | { |
421 | return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0; |
422 | } |
423 | |
424 | /* Return a pointer to a newly allocated Call Frame Instruction. */ |
425 | |
426 | static inline dw_cfi_ref |
427 | new_cfi (void) |
428 | { |
429 | dw_cfi_ref cfi = ggc_alloc<dw_cfi_node> (); |
430 | |
431 | cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0; |
432 | cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0; |
433 | |
434 | return cfi; |
435 | } |
436 | |
437 | /* Return a newly allocated CFI row, with no defined data. */ |
438 | |
439 | static dw_cfi_row * |
440 | new_cfi_row (void) |
441 | { |
442 | dw_cfi_row *row = ggc_cleared_alloc<dw_cfi_row> (); |
443 | |
444 | row->cfa.reg.set_by_dwreg (INVALID_REGNUM); |
445 | |
446 | return row; |
447 | } |
448 | |
449 | /* Return a copy of an existing CFI row. */ |
450 | |
451 | static dw_cfi_row * |
452 | copy_cfi_row (dw_cfi_row *src) |
453 | { |
454 | dw_cfi_row *dst = ggc_alloc<dw_cfi_row> (); |
455 | |
456 | *dst = *src; |
457 | dst->reg_save = vec_safe_copy (src: src->reg_save); |
458 | |
459 | return dst; |
460 | } |
461 | |
462 | /* Return a copy of an existing CFA location. */ |
463 | |
464 | static dw_cfa_location * |
465 | copy_cfa (dw_cfa_location *src) |
466 | { |
467 | dw_cfa_location *dst = ggc_alloc<dw_cfa_location> (); |
468 | *dst = *src; |
469 | return dst; |
470 | } |
471 | |
472 | /* Generate a new label for the CFI info to refer to. */ |
473 | |
474 | static char * |
475 | dwarf2out_cfi_label (void) |
476 | { |
477 | int num = dwarf2out_cfi_label_num++; |
478 | char label[20]; |
479 | |
480 | ASM_GENERATE_INTERNAL_LABEL (label, "LCFI" , num); |
481 | |
482 | return xstrdup (label); |
483 | } |
484 | |
485 | /* Add CFI either to the current insn stream or to a vector, or both. */ |
486 | |
487 | static void |
488 | add_cfi (dw_cfi_ref cfi) |
489 | { |
490 | any_cfis_emitted = true; |
491 | |
492 | if (add_cfi_insn != NULL) |
493 | { |
494 | add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn); |
495 | NOTE_CFI (add_cfi_insn) = cfi; |
496 | } |
497 | |
498 | if (add_cfi_vec != NULL) |
499 | vec_safe_push (v&: *add_cfi_vec, obj: cfi); |
500 | } |
501 | |
502 | static void |
503 | add_cfi_args_size (poly_int64 size) |
504 | { |
505 | /* We don't yet have a representation for polynomial sizes. */ |
506 | HOST_WIDE_INT const_size = size.to_constant (); |
507 | |
508 | dw_cfi_ref cfi = new_cfi (); |
509 | |
510 | /* While we can occasionally have args_size < 0 internally, this state |
511 | should not persist at a point we actually need an opcode. */ |
512 | gcc_assert (const_size >= 0); |
513 | |
514 | cfi->dw_cfi_opc = DW_CFA_GNU_args_size; |
515 | cfi->dw_cfi_oprnd1.dw_cfi_offset = const_size; |
516 | |
517 | add_cfi (cfi); |
518 | } |
519 | |
520 | static void |
521 | add_cfi_restore (unsigned reg) |
522 | { |
523 | dw_cfi_ref cfi = new_cfi (); |
524 | |
525 | cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore); |
526 | cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg; |
527 | |
528 | add_cfi (cfi); |
529 | } |
530 | |
531 | /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating |
532 | that the register column is no longer saved. */ |
533 | |
534 | static void |
535 | update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi) |
536 | { |
537 | if (vec_safe_length (v: row->reg_save) <= column) |
538 | vec_safe_grow_cleared (v&: row->reg_save, len: column + 1, exact: true); |
539 | (*row->reg_save)[column] = cfi; |
540 | } |
541 | |
542 | /* This function fills in aa dw_cfa_location structure from a dwarf location |
543 | descriptor sequence. */ |
544 | |
545 | static void |
546 | get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_node *loc) |
547 | { |
548 | struct dw_loc_descr_node *ptr; |
549 | cfa->offset = 0; |
550 | cfa->base_offset = 0; |
551 | cfa->indirect = 0; |
552 | cfa->reg.set_by_dwreg (INVALID_REGNUM); |
553 | |
554 | for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next) |
555 | { |
556 | enum dwarf_location_atom op = ptr->dw_loc_opc; |
557 | |
558 | switch (op) |
559 | { |
560 | case DW_OP_reg0: |
561 | case DW_OP_reg1: |
562 | case DW_OP_reg2: |
563 | case DW_OP_reg3: |
564 | case DW_OP_reg4: |
565 | case DW_OP_reg5: |
566 | case DW_OP_reg6: |
567 | case DW_OP_reg7: |
568 | case DW_OP_reg8: |
569 | case DW_OP_reg9: |
570 | case DW_OP_reg10: |
571 | case DW_OP_reg11: |
572 | case DW_OP_reg12: |
573 | case DW_OP_reg13: |
574 | case DW_OP_reg14: |
575 | case DW_OP_reg15: |
576 | case DW_OP_reg16: |
577 | case DW_OP_reg17: |
578 | case DW_OP_reg18: |
579 | case DW_OP_reg19: |
580 | case DW_OP_reg20: |
581 | case DW_OP_reg21: |
582 | case DW_OP_reg22: |
583 | case DW_OP_reg23: |
584 | case DW_OP_reg24: |
585 | case DW_OP_reg25: |
586 | case DW_OP_reg26: |
587 | case DW_OP_reg27: |
588 | case DW_OP_reg28: |
589 | case DW_OP_reg29: |
590 | case DW_OP_reg30: |
591 | case DW_OP_reg31: |
592 | cfa->reg.set_by_dwreg (op - DW_OP_reg0); |
593 | break; |
594 | case DW_OP_regx: |
595 | cfa->reg.set_by_dwreg (ptr->dw_loc_oprnd1.v.val_int); |
596 | break; |
597 | case DW_OP_breg0: |
598 | case DW_OP_breg1: |
599 | case DW_OP_breg2: |
600 | case DW_OP_breg3: |
601 | case DW_OP_breg4: |
602 | case DW_OP_breg5: |
603 | case DW_OP_breg6: |
604 | case DW_OP_breg7: |
605 | case DW_OP_breg8: |
606 | case DW_OP_breg9: |
607 | case DW_OP_breg10: |
608 | case DW_OP_breg11: |
609 | case DW_OP_breg12: |
610 | case DW_OP_breg13: |
611 | case DW_OP_breg14: |
612 | case DW_OP_breg15: |
613 | case DW_OP_breg16: |
614 | case DW_OP_breg17: |
615 | case DW_OP_breg18: |
616 | case DW_OP_breg19: |
617 | case DW_OP_breg20: |
618 | case DW_OP_breg21: |
619 | case DW_OP_breg22: |
620 | case DW_OP_breg23: |
621 | case DW_OP_breg24: |
622 | case DW_OP_breg25: |
623 | case DW_OP_breg26: |
624 | case DW_OP_breg27: |
625 | case DW_OP_breg28: |
626 | case DW_OP_breg29: |
627 | case DW_OP_breg30: |
628 | case DW_OP_breg31: |
629 | case DW_OP_bregx: |
630 | if (cfa->reg.reg == INVALID_REGNUM) |
631 | { |
632 | unsigned regno |
633 | = (op == DW_OP_bregx |
634 | ? ptr->dw_loc_oprnd1.v.val_int : op - DW_OP_breg0); |
635 | cfa->reg.set_by_dwreg (regno); |
636 | cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int; |
637 | } |
638 | else |
639 | { |
640 | /* Handle case when span can cover multiple registers. We |
641 | only support the simple case of consecutive registers |
642 | all with the same size. DWARF that we are dealing with |
643 | will look something like: |
644 | <DW_OP_bregx: (r49) 0; DW_OP_const1u: 32; DW_OP_shl; |
645 | DW_OP_bregx: (r48) 0; DW_OP_plus> */ |
646 | |
647 | unsigned regno |
648 | = (op == DW_OP_bregx |
649 | ? ptr->dw_loc_oprnd1.v.val_int : op - DW_OP_breg0); |
650 | gcc_assert (regno == cfa->reg.reg - 1); |
651 | cfa->reg.span++; |
652 | /* From all the consecutive registers used, we want to set |
653 | cfa->reg.reg to lower number register. */ |
654 | cfa->reg.reg = regno; |
655 | /* The offset was the shift value. Use it to get the |
656 | span_width and then set it to 0. */ |
657 | cfa->reg.span_width = cfa->offset.to_constant () / 8; |
658 | cfa->offset = 0; |
659 | } |
660 | break; |
661 | case DW_OP_deref: |
662 | cfa->indirect = 1; |
663 | break; |
664 | case DW_OP_shl: |
665 | break; |
666 | case DW_OP_lit0: |
667 | case DW_OP_lit1: |
668 | case DW_OP_lit2: |
669 | case DW_OP_lit3: |
670 | case DW_OP_lit4: |
671 | case DW_OP_lit5: |
672 | case DW_OP_lit6: |
673 | case DW_OP_lit7: |
674 | case DW_OP_lit8: |
675 | case DW_OP_lit9: |
676 | case DW_OP_lit10: |
677 | case DW_OP_lit11: |
678 | case DW_OP_lit12: |
679 | case DW_OP_lit13: |
680 | case DW_OP_lit14: |
681 | case DW_OP_lit15: |
682 | case DW_OP_lit16: |
683 | case DW_OP_lit17: |
684 | case DW_OP_lit18: |
685 | case DW_OP_lit19: |
686 | case DW_OP_lit20: |
687 | case DW_OP_lit21: |
688 | case DW_OP_lit22: |
689 | case DW_OP_lit23: |
690 | case DW_OP_lit24: |
691 | case DW_OP_lit25: |
692 | case DW_OP_lit26: |
693 | case DW_OP_lit27: |
694 | case DW_OP_lit28: |
695 | case DW_OP_lit29: |
696 | case DW_OP_lit30: |
697 | case DW_OP_lit31: |
698 | gcc_assert (known_eq (cfa->offset, 0)); |
699 | cfa->offset = op - DW_OP_lit0; |
700 | break; |
701 | case DW_OP_const1u: |
702 | case DW_OP_const1s: |
703 | case DW_OP_const2u: |
704 | case DW_OP_const2s: |
705 | case DW_OP_const4s: |
706 | case DW_OP_const8s: |
707 | case DW_OP_constu: |
708 | case DW_OP_consts: |
709 | gcc_assert (known_eq (cfa->offset, 0)); |
710 | cfa->offset = ptr->dw_loc_oprnd1.v.val_int; |
711 | break; |
712 | case DW_OP_minus: |
713 | cfa->offset = -cfa->offset; |
714 | break; |
715 | case DW_OP_plus: |
716 | /* The offset is already in place. */ |
717 | break; |
718 | case DW_OP_plus_uconst: |
719 | cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned; |
720 | break; |
721 | default: |
722 | gcc_unreachable (); |
723 | } |
724 | } |
725 | } |
726 | |
727 | /* Find the previous value for the CFA, iteratively. CFI is the opcode |
728 | to interpret, *LOC will be updated as necessary, *REMEMBER is used for |
729 | one level of remember/restore state processing. */ |
730 | |
731 | void |
732 | lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember) |
733 | { |
734 | switch (cfi->dw_cfi_opc) |
735 | { |
736 | case DW_CFA_def_cfa_offset: |
737 | case DW_CFA_def_cfa_offset_sf: |
738 | loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset; |
739 | break; |
740 | case DW_CFA_def_cfa_register: |
741 | loc->reg.set_by_dwreg (cfi->dw_cfi_oprnd1.dw_cfi_reg_num); |
742 | break; |
743 | case DW_CFA_def_cfa: |
744 | case DW_CFA_def_cfa_sf: |
745 | loc->reg.set_by_dwreg (cfi->dw_cfi_oprnd1.dw_cfi_reg_num); |
746 | loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset; |
747 | break; |
748 | case DW_CFA_def_cfa_expression: |
749 | if (cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc) |
750 | *loc = *cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc; |
751 | else |
752 | get_cfa_from_loc_descr (cfa: loc, loc: cfi->dw_cfi_oprnd1.dw_cfi_loc); |
753 | break; |
754 | |
755 | case DW_CFA_remember_state: |
756 | gcc_assert (!remember->in_use); |
757 | *remember = *loc; |
758 | remember->in_use = 1; |
759 | break; |
760 | case DW_CFA_restore_state: |
761 | gcc_assert (remember->in_use); |
762 | *loc = *remember; |
763 | remember->in_use = 0; |
764 | break; |
765 | |
766 | default: |
767 | break; |
768 | } |
769 | } |
770 | |
771 | /* Determine if two dw_cfa_location structures define the same data. */ |
772 | |
773 | bool |
774 | cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2) |
775 | { |
776 | return (loc1->reg == loc2->reg |
777 | && known_eq (loc1->offset, loc2->offset) |
778 | && loc1->indirect == loc2->indirect |
779 | && (loc1->indirect == 0 |
780 | || known_eq (loc1->base_offset, loc2->base_offset))); |
781 | } |
782 | |
783 | /* Determine if two CFI operands are identical. */ |
784 | |
785 | static bool |
786 | cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b) |
787 | { |
788 | switch (t) |
789 | { |
790 | case dw_cfi_oprnd_unused: |
791 | return true; |
792 | case dw_cfi_oprnd_reg_num: |
793 | return a->dw_cfi_reg_num == b->dw_cfi_reg_num; |
794 | case dw_cfi_oprnd_offset: |
795 | return a->dw_cfi_offset == b->dw_cfi_offset; |
796 | case dw_cfi_oprnd_addr: |
797 | return (a->dw_cfi_addr == b->dw_cfi_addr |
798 | || strcmp (s1: a->dw_cfi_addr, s2: b->dw_cfi_addr) == 0); |
799 | case dw_cfi_oprnd_loc: |
800 | return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc); |
801 | case dw_cfi_oprnd_cfa_loc: |
802 | /* If any of them is NULL, don't dereference either. */ |
803 | if (!a->dw_cfi_cfa_loc || !b->dw_cfi_cfa_loc) |
804 | return a->dw_cfi_cfa_loc == b->dw_cfi_cfa_loc; |
805 | return cfa_equal_p (loc1: a->dw_cfi_cfa_loc, loc2: b->dw_cfi_cfa_loc); |
806 | } |
807 | gcc_unreachable (); |
808 | } |
809 | |
810 | /* Determine if two CFI entries are identical. */ |
811 | |
812 | static bool |
813 | cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b) |
814 | { |
815 | /* Make things easier for our callers, including missing operands. */ |
816 | if (a == b) |
817 | return true; |
818 | if (a == NULL || b == NULL) |
819 | return false; |
820 | |
821 | /* Obviously, the opcodes must match. */ |
822 | dwarf_call_frame_info opc = a->dw_cfi_opc; |
823 | if (opc != b->dw_cfi_opc) |
824 | return false; |
825 | |
826 | /* Compare the two operands, re-using the type of the operands as |
827 | already exposed elsewhere. */ |
828 | return (cfi_oprnd_equal_p (t: dw_cfi_oprnd1_desc (cfi: opc), |
829 | a: &a->dw_cfi_oprnd1, b: &b->dw_cfi_oprnd1) |
830 | && cfi_oprnd_equal_p (t: dw_cfi_oprnd2_desc (cfi: opc), |
831 | a: &a->dw_cfi_oprnd2, b: &b->dw_cfi_oprnd2)); |
832 | } |
833 | |
834 | /* Determine if two CFI_ROW structures are identical. */ |
835 | |
836 | static bool |
837 | cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b) |
838 | { |
839 | size_t i, n_a, n_b, n_max; |
840 | |
841 | if (a->cfa_cfi) |
842 | { |
843 | if (!cfi_equal_p (a: a->cfa_cfi, b: b->cfa_cfi)) |
844 | return false; |
845 | } |
846 | else if (!cfa_equal_p (loc1: &a->cfa, loc2: &b->cfa)) |
847 | return false; |
848 | |
849 | n_a = vec_safe_length (v: a->reg_save); |
850 | n_b = vec_safe_length (v: b->reg_save); |
851 | n_max = MAX (n_a, n_b); |
852 | |
853 | for (i = 0; i < n_max; ++i) |
854 | { |
855 | dw_cfi_ref r_a = NULL, r_b = NULL; |
856 | |
857 | if (i < n_a) |
858 | r_a = (*a->reg_save)[i]; |
859 | if (i < n_b) |
860 | r_b = (*b->reg_save)[i]; |
861 | |
862 | if (!cfi_equal_p (a: r_a, b: r_b)) |
863 | return false; |
864 | } |
865 | |
866 | if (a->window_save != b->window_save) |
867 | return false; |
868 | |
869 | if (a->ra_state != b->ra_state) |
870 | return false; |
871 | |
872 | return true; |
873 | } |
874 | |
875 | /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining |
876 | what opcode to emit. Returns the CFI opcode to effect the change, or |
877 | NULL if NEW_CFA == OLD_CFA. */ |
878 | |
879 | static dw_cfi_ref |
880 | def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa) |
881 | { |
882 | dw_cfi_ref cfi; |
883 | |
884 | /* If nothing changed, no need to issue any call frame instructions. */ |
885 | if (cfa_equal_p (loc1: old_cfa, loc2: new_cfa)) |
886 | return NULL; |
887 | |
888 | cfi = new_cfi (); |
889 | |
890 | HOST_WIDE_INT const_offset; |
891 | if (new_cfa->reg == old_cfa->reg |
892 | && new_cfa->reg.span == 1 |
893 | && !new_cfa->indirect |
894 | && !old_cfa->indirect |
895 | && new_cfa->offset.is_constant (const_value: &const_offset)) |
896 | { |
897 | /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating |
898 | the CFA register did not change but the offset did. The data |
899 | factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or |
900 | in the assembler via the .cfi_def_cfa_offset directive. */ |
901 | if (const_offset < 0) |
902 | cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf; |
903 | else |
904 | cfi->dw_cfi_opc = DW_CFA_def_cfa_offset; |
905 | cfi->dw_cfi_oprnd1.dw_cfi_offset = const_offset; |
906 | } |
907 | else if (new_cfa->offset.is_constant () |
908 | && known_eq (new_cfa->offset, old_cfa->offset) |
909 | && old_cfa->reg.reg != INVALID_REGNUM |
910 | && new_cfa->reg.span == 1 |
911 | && !new_cfa->indirect |
912 | && !old_cfa->indirect) |
913 | { |
914 | /* Construct a "DW_CFA_def_cfa_register <register>" instruction, |
915 | indicating the CFA register has changed to <register> but the |
916 | offset has not changed. This requires the old CFA to have |
917 | been set as a register plus offset rather than a general |
918 | DW_CFA_def_cfa_expression. */ |
919 | cfi->dw_cfi_opc = DW_CFA_def_cfa_register; |
920 | cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg.reg; |
921 | } |
922 | else if (new_cfa->indirect == 0 |
923 | && new_cfa->offset.is_constant (const_value: &const_offset) |
924 | && new_cfa->reg.span == 1) |
925 | { |
926 | /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction, |
927 | indicating the CFA register has changed to <register> with |
928 | the specified offset. The data factoring for DW_CFA_def_cfa_sf |
929 | happens in output_cfi, or in the assembler via the .cfi_def_cfa |
930 | directive. */ |
931 | if (const_offset < 0) |
932 | cfi->dw_cfi_opc = DW_CFA_def_cfa_sf; |
933 | else |
934 | cfi->dw_cfi_opc = DW_CFA_def_cfa; |
935 | cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg.reg; |
936 | cfi->dw_cfi_oprnd2.dw_cfi_offset = const_offset; |
937 | } |
938 | else |
939 | { |
940 | /* Construct a DW_CFA_def_cfa_expression instruction to |
941 | calculate the CFA using a full location expression since no |
942 | register-offset pair is available. */ |
943 | struct dw_loc_descr_node *loc_list; |
944 | |
945 | cfi->dw_cfi_opc = DW_CFA_def_cfa_expression; |
946 | loc_list = build_cfa_loc (new_cfa, 0); |
947 | cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list; |
948 | if (!new_cfa->offset.is_constant () |
949 | || !new_cfa->base_offset.is_constant ()) |
950 | /* It's hard to reconstruct the CFA location for a polynomial |
951 | expression, so just cache it instead. */ |
952 | cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc = copy_cfa (src: new_cfa); |
953 | else |
954 | cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc = NULL; |
955 | } |
956 | |
957 | return cfi; |
958 | } |
959 | |
960 | /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */ |
961 | |
962 | static void |
963 | def_cfa_1 (dw_cfa_location *new_cfa) |
964 | { |
965 | dw_cfi_ref cfi; |
966 | |
967 | if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0) |
968 | cur_trace->cfa_store.offset = new_cfa->offset; |
969 | |
970 | cfi = def_cfa_0 (old_cfa: &cur_row->cfa, new_cfa); |
971 | if (cfi) |
972 | { |
973 | cur_row->cfa = *new_cfa; |
974 | cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression |
975 | ? cfi : NULL); |
976 | |
977 | add_cfi (cfi); |
978 | } |
979 | } |
980 | |
981 | /* Add the CFI for saving a register. REG is the CFA column number. |
982 | If SREG is INVALID_REGISTER, the register is saved at OFFSET from the CFA; |
983 | otherwise it is saved in SREG. */ |
984 | |
985 | static void |
986 | reg_save (unsigned int reg, struct cfa_reg sreg, poly_int64 offset) |
987 | { |
988 | dw_fde_ref fde = cfun ? cfun->fde : NULL; |
989 | dw_cfi_ref cfi = new_cfi (); |
990 | |
991 | cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg; |
992 | |
993 | if (sreg.reg == INVALID_REGNUM) |
994 | { |
995 | HOST_WIDE_INT const_offset; |
996 | /* When stack is aligned, store REG using DW_CFA_expression with FP. */ |
997 | if (fde && fde->stack_realign) |
998 | { |
999 | cfi->dw_cfi_opc = DW_CFA_expression; |
1000 | cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg; |
1001 | cfi->dw_cfi_oprnd2.dw_cfi_loc |
1002 | = build_cfa_aligned_loc (&cur_row->cfa, offset, |
1003 | fde->stack_realignment); |
1004 | } |
1005 | else if (offset.is_constant (const_value: &const_offset)) |
1006 | { |
1007 | if (need_data_align_sf_opcode (off: const_offset)) |
1008 | cfi->dw_cfi_opc = DW_CFA_offset_extended_sf; |
1009 | else if (reg & ~0x3f) |
1010 | cfi->dw_cfi_opc = DW_CFA_offset_extended; |
1011 | else |
1012 | cfi->dw_cfi_opc = DW_CFA_offset; |
1013 | cfi->dw_cfi_oprnd2.dw_cfi_offset = const_offset; |
1014 | } |
1015 | else |
1016 | { |
1017 | cfi->dw_cfi_opc = DW_CFA_expression; |
1018 | cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg; |
1019 | cfi->dw_cfi_oprnd2.dw_cfi_loc |
1020 | = build_cfa_loc (&cur_row->cfa, offset); |
1021 | } |
1022 | } |
1023 | else if (sreg.reg == reg) |
1024 | { |
1025 | /* While we could emit something like DW_CFA_same_value or |
1026 | DW_CFA_restore, we never expect to see something like that |
1027 | in a prologue. This is more likely to be a bug. A backend |
1028 | can always bypass this by using REG_CFA_RESTORE directly. */ |
1029 | gcc_unreachable (); |
1030 | } |
1031 | else if (sreg.span > 1) |
1032 | { |
1033 | cfi->dw_cfi_opc = DW_CFA_expression; |
1034 | cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg; |
1035 | cfi->dw_cfi_oprnd2.dw_cfi_loc = build_span_loc (sreg); |
1036 | } |
1037 | else |
1038 | { |
1039 | cfi->dw_cfi_opc = DW_CFA_register; |
1040 | cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg.reg; |
1041 | } |
1042 | |
1043 | add_cfi (cfi); |
1044 | update_row_reg_save (row: cur_row, column: reg, cfi); |
1045 | } |
1046 | |
1047 | /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note |
1048 | and adjust data structures to match. */ |
1049 | |
1050 | static void |
1051 | notice_args_size (rtx_insn *insn) |
1052 | { |
1053 | poly_int64 args_size, delta; |
1054 | rtx note; |
1055 | |
1056 | note = find_reg_note (insn, REG_ARGS_SIZE, NULL); |
1057 | if (note == NULL) |
1058 | return; |
1059 | |
1060 | if (!cur_trace->eh_head) |
1061 | cur_trace->args_size_defined_for_eh = true; |
1062 | |
1063 | args_size = get_args_size (note); |
1064 | delta = args_size - cur_trace->end_true_args_size; |
1065 | if (known_eq (delta, 0)) |
1066 | return; |
1067 | |
1068 | cur_trace->end_true_args_size = args_size; |
1069 | |
1070 | /* If the CFA is computed off the stack pointer, then we must adjust |
1071 | the computation of the CFA as well. */ |
1072 | if (cur_cfa->reg == dw_stack_pointer_regnum) |
1073 | { |
1074 | gcc_assert (!cur_cfa->indirect); |
1075 | |
1076 | /* Convert a change in args_size (always a positive in the |
1077 | direction of stack growth) to a change in stack pointer. */ |
1078 | if (!STACK_GROWS_DOWNWARD) |
1079 | delta = -delta; |
1080 | |
1081 | cur_cfa->offset += delta; |
1082 | } |
1083 | } |
1084 | |
1085 | /* A subroutine of scan_trace. INSN is can_throw_internal. Update the |
1086 | data within the trace related to EH insns and args_size. */ |
1087 | |
1088 | static void |
1089 | notice_eh_throw (rtx_insn *insn) |
1090 | { |
1091 | poly_int64 args_size = cur_trace->end_true_args_size; |
1092 | if (cur_trace->eh_head == NULL) |
1093 | { |
1094 | cur_trace->eh_head = insn; |
1095 | cur_trace->beg_delay_args_size = args_size; |
1096 | cur_trace->end_delay_args_size = args_size; |
1097 | } |
1098 | else if (maybe_ne (a: cur_trace->end_delay_args_size, b: args_size)) |
1099 | { |
1100 | cur_trace->end_delay_args_size = args_size; |
1101 | |
1102 | /* ??? If the CFA is the stack pointer, search backward for the last |
1103 | CFI note and insert there. Given that the stack changed for the |
1104 | args_size change, there *must* be such a note in between here and |
1105 | the last eh insn. */ |
1106 | add_cfi_args_size (size: args_size); |
1107 | } |
1108 | } |
1109 | |
1110 | /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */ |
1111 | /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is |
1112 | used in places where rtl is prohibited. */ |
1113 | |
1114 | static inline unsigned |
1115 | dwf_regno (const_rtx reg) |
1116 | { |
1117 | gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER); |
1118 | return DWARF_FRAME_REGNUM (REGNO (reg)); |
1119 | } |
1120 | |
1121 | /* Like dwf_regno, but when the value can span multiple registers. */ |
1122 | |
1123 | static struct cfa_reg |
1124 | dwf_cfa_reg (rtx reg) |
1125 | { |
1126 | struct cfa_reg result; |
1127 | |
1128 | result.reg = dwf_regno (reg); |
1129 | result.span = 1; |
1130 | result.span_width = 0; |
1131 | |
1132 | rtx span = targetm.dwarf_register_span (reg); |
1133 | if (span) |
1134 | { |
1135 | /* We only support the simple case of consecutive registers all with the |
1136 | same size. */ |
1137 | result.span = XVECLEN (span, 0); |
1138 | result.span_width = GET_MODE_SIZE (GET_MODE (XVECEXP (span, 0, 0))) |
1139 | .to_constant (); |
1140 | |
1141 | if (CHECKING_P) |
1142 | { |
1143 | /* Ensure that the above assumption is accurate. */ |
1144 | for (unsigned int i = 0; i < result.span; i++) |
1145 | { |
1146 | gcc_assert (GET_MODE_SIZE (GET_MODE (XVECEXP (span, 0, i))) |
1147 | .to_constant () == result.span_width); |
1148 | gcc_assert (REG_P (XVECEXP (span, 0, i))); |
1149 | gcc_assert (dwf_regno (XVECEXP (span, 0, i)) == result.reg + i); |
1150 | } |
1151 | } |
1152 | } |
1153 | |
1154 | return result; |
1155 | } |
1156 | |
1157 | /* More efficient comparisons that don't call targetm.dwarf_register_span |
1158 | unnecessarily. These cfa_reg vs. rtx comparisons should be done at |
1159 | least for call-saved REGs that might not be CFA related (like stack |
1160 | pointer, hard frame pointer or DRAP registers are), in other cases it is |
1161 | just a compile time and memory optimization. */ |
1162 | |
1163 | static bool |
1164 | operator== (cfa_reg &cfa, rtx reg) |
1165 | { |
1166 | unsigned int regno = dwf_regno (reg); |
1167 | if (cfa.reg != regno) |
1168 | return false; |
1169 | struct cfa_reg other = dwf_cfa_reg (reg); |
1170 | return cfa == other; |
1171 | } |
1172 | |
1173 | static inline bool |
1174 | operator!= (cfa_reg &cfa, rtx reg) |
1175 | { |
1176 | return !(cfa == reg); |
1177 | } |
1178 | |
1179 | /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */ |
1180 | |
1181 | static bool |
1182 | compare_reg_or_pc (rtx x, rtx y) |
1183 | { |
1184 | if (REG_P (x) && REG_P (y)) |
1185 | return REGNO (x) == REGNO (y); |
1186 | return x == y; |
1187 | } |
1188 | |
1189 | /* Record SRC as being saved in DEST. DEST may be null to delete an |
1190 | existing entry. SRC may be a register or PC_RTX. */ |
1191 | |
1192 | static void |
1193 | record_reg_saved_in_reg (rtx dest, rtx src) |
1194 | { |
1195 | reg_saved_in_data *elt; |
1196 | size_t i; |
1197 | |
1198 | FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, elt) |
1199 | if (compare_reg_or_pc (x: elt->orig_reg, y: src)) |
1200 | { |
1201 | if (dest == NULL) |
1202 | cur_trace->regs_saved_in_regs.unordered_remove (ix: i); |
1203 | else |
1204 | elt->saved_in_reg = dest; |
1205 | return; |
1206 | } |
1207 | |
1208 | if (dest == NULL) |
1209 | return; |
1210 | |
1211 | reg_saved_in_data e = {.orig_reg: src, .saved_in_reg: dest}; |
1212 | cur_trace->regs_saved_in_regs.safe_push (obj: e); |
1213 | } |
1214 | |
1215 | /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at |
1216 | SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */ |
1217 | |
1218 | static void |
1219 | queue_reg_save (rtx reg, rtx sreg, poly_int64 offset) |
1220 | { |
1221 | queued_reg_save *q; |
1222 | queued_reg_save e = {.reg: reg, .saved_reg: sreg, .cfa_offset: offset}; |
1223 | size_t i; |
1224 | |
1225 | /* Duplicates waste space, but it's also necessary to remove them |
1226 | for correctness, since the queue gets output in reverse order. */ |
1227 | FOR_EACH_VEC_ELT (queued_reg_saves, i, q) |
1228 | if (compare_reg_or_pc (x: q->reg, y: reg)) |
1229 | { |
1230 | *q = e; |
1231 | return; |
1232 | } |
1233 | |
1234 | queued_reg_saves.safe_push (obj: e); |
1235 | } |
1236 | |
1237 | /* Output all the entries in QUEUED_REG_SAVES. */ |
1238 | |
1239 | static void |
1240 | dwarf2out_flush_queued_reg_saves (void) |
1241 | { |
1242 | queued_reg_save *q; |
1243 | size_t i; |
1244 | |
1245 | FOR_EACH_VEC_ELT (queued_reg_saves, i, q) |
1246 | { |
1247 | unsigned int reg; |
1248 | struct cfa_reg sreg; |
1249 | |
1250 | record_reg_saved_in_reg (dest: q->saved_reg, src: q->reg); |
1251 | |
1252 | if (q->reg == pc_rtx) |
1253 | reg = DWARF_FRAME_RETURN_COLUMN; |
1254 | else |
1255 | reg = dwf_regno (reg: q->reg); |
1256 | if (q->saved_reg) |
1257 | sreg = dwf_cfa_reg (reg: q->saved_reg); |
1258 | else |
1259 | sreg.set_by_dwreg (INVALID_REGNUM); |
1260 | reg_save (reg, sreg, offset: q->cfa_offset); |
1261 | } |
1262 | |
1263 | queued_reg_saves.truncate (size: 0); |
1264 | } |
1265 | |
1266 | /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved |
1267 | location for? Or, does it clobber a register which we've previously |
1268 | said that some other register is saved in, and for which we now |
1269 | have a new location for? */ |
1270 | |
1271 | static bool |
1272 | clobbers_queued_reg_save (const_rtx insn) |
1273 | { |
1274 | queued_reg_save *q; |
1275 | size_t iq; |
1276 | |
1277 | FOR_EACH_VEC_ELT (queued_reg_saves, iq, q) |
1278 | { |
1279 | size_t ir; |
1280 | reg_saved_in_data *rir; |
1281 | |
1282 | if (modified_in_p (q->reg, insn)) |
1283 | return true; |
1284 | |
1285 | FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, ir, rir) |
1286 | if (compare_reg_or_pc (x: q->reg, y: rir->orig_reg) |
1287 | && modified_in_p (rir->saved_in_reg, insn)) |
1288 | return true; |
1289 | } |
1290 | |
1291 | return false; |
1292 | } |
1293 | |
1294 | /* What register, if any, is currently saved in REG? */ |
1295 | |
1296 | static rtx |
1297 | reg_saved_in (rtx reg) |
1298 | { |
1299 | unsigned int regn = REGNO (reg); |
1300 | queued_reg_save *q; |
1301 | reg_saved_in_data *rir; |
1302 | size_t i; |
1303 | |
1304 | FOR_EACH_VEC_ELT (queued_reg_saves, i, q) |
1305 | if (q->saved_reg && regn == REGNO (q->saved_reg)) |
1306 | return q->reg; |
1307 | |
1308 | FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, rir) |
1309 | if (regn == REGNO (rir->saved_in_reg)) |
1310 | return rir->orig_reg; |
1311 | |
1312 | return NULL_RTX; |
1313 | } |
1314 | |
1315 | /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */ |
1316 | |
1317 | static void |
1318 | dwarf2out_frame_debug_def_cfa (rtx pat) |
1319 | { |
1320 | memset (s: cur_cfa, c: 0, n: sizeof (*cur_cfa)); |
1321 | |
1322 | pat = strip_offset (pat, &cur_cfa->offset); |
1323 | if (MEM_P (pat)) |
1324 | { |
1325 | cur_cfa->indirect = 1; |
1326 | pat = strip_offset (XEXP (pat, 0), &cur_cfa->base_offset); |
1327 | } |
1328 | /* ??? If this fails, we could be calling into the _loc functions to |
1329 | define a full expression. So far no port does that. */ |
1330 | gcc_assert (REG_P (pat)); |
1331 | cur_cfa->reg = dwf_cfa_reg (reg: pat); |
1332 | } |
1333 | |
1334 | /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */ |
1335 | |
1336 | static void |
1337 | dwarf2out_frame_debug_adjust_cfa (rtx pat) |
1338 | { |
1339 | rtx src, dest; |
1340 | |
1341 | gcc_assert (GET_CODE (pat) == SET); |
1342 | dest = XEXP (pat, 0); |
1343 | src = XEXP (pat, 1); |
1344 | |
1345 | switch (GET_CODE (src)) |
1346 | { |
1347 | case PLUS: |
1348 | gcc_assert (cur_cfa->reg == XEXP (src, 0)); |
1349 | cur_cfa->offset -= rtx_to_poly_int64 (XEXP (src, 1)); |
1350 | break; |
1351 | |
1352 | case REG: |
1353 | break; |
1354 | |
1355 | default: |
1356 | gcc_unreachable (); |
1357 | } |
1358 | |
1359 | cur_cfa->reg = dwf_cfa_reg (reg: dest); |
1360 | gcc_assert (cur_cfa->indirect == 0); |
1361 | } |
1362 | |
1363 | /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */ |
1364 | |
1365 | static void |
1366 | dwarf2out_frame_debug_cfa_offset (rtx set) |
1367 | { |
1368 | poly_int64 offset; |
1369 | rtx src, addr, span; |
1370 | unsigned int sregno; |
1371 | |
1372 | src = XEXP (set, 1); |
1373 | addr = XEXP (set, 0); |
1374 | gcc_assert (MEM_P (addr)); |
1375 | addr = XEXP (addr, 0); |
1376 | |
1377 | /* As documented, only consider extremely simple addresses. */ |
1378 | switch (GET_CODE (addr)) |
1379 | { |
1380 | case REG: |
1381 | gcc_assert (cur_cfa->reg == addr); |
1382 | offset = -cur_cfa->offset; |
1383 | break; |
1384 | case PLUS: |
1385 | gcc_assert (cur_cfa->reg == XEXP (addr, 0)); |
1386 | offset = rtx_to_poly_int64 (XEXP (addr, 1)) - cur_cfa->offset; |
1387 | break; |
1388 | default: |
1389 | gcc_unreachable (); |
1390 | } |
1391 | |
1392 | if (src == pc_rtx) |
1393 | { |
1394 | span = NULL; |
1395 | sregno = DWARF_FRAME_RETURN_COLUMN; |
1396 | } |
1397 | else |
1398 | { |
1399 | span = targetm.dwarf_register_span (src); |
1400 | sregno = dwf_regno (reg: src); |
1401 | } |
1402 | |
1403 | /* ??? We'd like to use queue_reg_save, but we need to come up with |
1404 | a different flushing heuristic for epilogues. */ |
1405 | struct cfa_reg invalid; |
1406 | invalid.set_by_dwreg (INVALID_REGNUM); |
1407 | if (!span) |
1408 | reg_save (reg: sregno, sreg: invalid, offset); |
1409 | else |
1410 | { |
1411 | /* We have a PARALLEL describing where the contents of SRC live. |
1412 | Adjust the offset for each piece of the PARALLEL. */ |
1413 | poly_int64 span_offset = offset; |
1414 | |
1415 | gcc_assert (GET_CODE (span) == PARALLEL); |
1416 | |
1417 | const int par_len = XVECLEN (span, 0); |
1418 | for (int par_index = 0; par_index < par_len; par_index++) |
1419 | { |
1420 | rtx elem = XVECEXP (span, 0, par_index); |
1421 | sregno = dwf_regno (reg: src); |
1422 | reg_save (reg: sregno, sreg: invalid, offset: span_offset); |
1423 | span_offset += GET_MODE_SIZE (GET_MODE (elem)); |
1424 | } |
1425 | } |
1426 | } |
1427 | |
1428 | /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */ |
1429 | |
1430 | static void |
1431 | dwarf2out_frame_debug_cfa_register (rtx set) |
1432 | { |
1433 | rtx src, dest; |
1434 | unsigned sregno; |
1435 | struct cfa_reg dregno; |
1436 | |
1437 | src = XEXP (set, 1); |
1438 | dest = XEXP (set, 0); |
1439 | |
1440 | record_reg_saved_in_reg (dest, src); |
1441 | if (src == pc_rtx) |
1442 | sregno = DWARF_FRAME_RETURN_COLUMN; |
1443 | else |
1444 | sregno = dwf_regno (reg: src); |
1445 | |
1446 | dregno = dwf_cfa_reg (reg: dest); |
1447 | |
1448 | /* ??? We'd like to use queue_reg_save, but we need to come up with |
1449 | a different flushing heuristic for epilogues. */ |
1450 | reg_save (reg: sregno, sreg: dregno, offset: 0); |
1451 | } |
1452 | |
1453 | /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */ |
1454 | |
1455 | static void |
1456 | dwarf2out_frame_debug_cfa_expression (rtx set) |
1457 | { |
1458 | rtx src, dest, span; |
1459 | dw_cfi_ref cfi = new_cfi (); |
1460 | unsigned regno; |
1461 | |
1462 | dest = SET_DEST (set); |
1463 | src = SET_SRC (set); |
1464 | |
1465 | gcc_assert (REG_P (src)); |
1466 | gcc_assert (MEM_P (dest)); |
1467 | |
1468 | span = targetm.dwarf_register_span (src); |
1469 | gcc_assert (!span); |
1470 | |
1471 | regno = dwf_regno (reg: src); |
1472 | |
1473 | cfi->dw_cfi_opc = DW_CFA_expression; |
1474 | cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno; |
1475 | cfi->dw_cfi_oprnd2.dw_cfi_loc |
1476 | = mem_loc_descriptor (XEXP (dest, 0), mode: get_address_mode (mem: dest), |
1477 | GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED); |
1478 | |
1479 | /* ??? We'd like to use queue_reg_save, were the interface different, |
1480 | and, as above, we could manage flushing for epilogues. */ |
1481 | add_cfi (cfi); |
1482 | update_row_reg_save (row: cur_row, column: regno, cfi); |
1483 | } |
1484 | |
1485 | /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_VAL_EXPRESSION |
1486 | note. */ |
1487 | |
1488 | static void |
1489 | dwarf2out_frame_debug_cfa_val_expression (rtx set) |
1490 | { |
1491 | rtx dest = SET_DEST (set); |
1492 | gcc_assert (REG_P (dest)); |
1493 | |
1494 | rtx span = targetm.dwarf_register_span (dest); |
1495 | gcc_assert (!span); |
1496 | |
1497 | rtx src = SET_SRC (set); |
1498 | dw_cfi_ref cfi = new_cfi (); |
1499 | cfi->dw_cfi_opc = DW_CFA_val_expression; |
1500 | cfi->dw_cfi_oprnd1.dw_cfi_reg_num = dwf_regno (reg: dest); |
1501 | cfi->dw_cfi_oprnd2.dw_cfi_loc |
1502 | = mem_loc_descriptor (src, GET_MODE (src), |
1503 | GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED); |
1504 | add_cfi (cfi); |
1505 | update_row_reg_save (row: cur_row, column: dwf_regno (reg: dest), cfi); |
1506 | } |
1507 | |
1508 | /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE |
1509 | note. When called with EMIT_CFI set to false emitting a CFI |
1510 | statement is suppressed. */ |
1511 | |
1512 | static void |
1513 | dwarf2out_frame_debug_cfa_restore (rtx reg, bool emit_cfi) |
1514 | { |
1515 | gcc_assert (REG_P (reg)); |
1516 | |
1517 | rtx span = targetm.dwarf_register_span (reg); |
1518 | if (!span) |
1519 | { |
1520 | unsigned int regno = dwf_regno (reg); |
1521 | if (emit_cfi) |
1522 | add_cfi_restore (reg: regno); |
1523 | update_row_reg_save (row: cur_row, column: regno, NULL); |
1524 | } |
1525 | else |
1526 | { |
1527 | /* We have a PARALLEL describing where the contents of REG live. |
1528 | Restore the register for each piece of the PARALLEL. */ |
1529 | gcc_assert (GET_CODE (span) == PARALLEL); |
1530 | |
1531 | const int par_len = XVECLEN (span, 0); |
1532 | for (int par_index = 0; par_index < par_len; par_index++) |
1533 | { |
1534 | reg = XVECEXP (span, 0, par_index); |
1535 | gcc_assert (REG_P (reg)); |
1536 | unsigned int regno = dwf_regno (reg); |
1537 | if (emit_cfi) |
1538 | add_cfi_restore (reg: regno); |
1539 | update_row_reg_save (row: cur_row, column: regno, NULL); |
1540 | } |
1541 | } |
1542 | } |
1543 | |
1544 | /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE. |
1545 | |
1546 | ??? Perhaps we should note in the CIE where windows are saved (instead |
1547 | of assuming 0(cfa)) and what registers are in the window. */ |
1548 | |
1549 | static void |
1550 | dwarf2out_frame_debug_cfa_window_save (void) |
1551 | { |
1552 | dw_cfi_ref cfi = new_cfi (); |
1553 | |
1554 | cfi->dw_cfi_opc = DW_CFA_GNU_window_save; |
1555 | add_cfi (cfi); |
1556 | cur_row->window_save = true; |
1557 | } |
1558 | |
1559 | /* A subroutine of dwarf2out_frame_debug, process REG_CFA_NEGATE_RA_STATE. */ |
1560 | |
1561 | static void |
1562 | dwarf2out_frame_debug_cfa_negate_ra_state (void) |
1563 | { |
1564 | dw_cfi_ref cfi = new_cfi (); |
1565 | cfi->dw_cfi_opc = DW_CFA_AARCH64_negate_ra_state; |
1566 | cur_row->ra_state |
1567 | = (cur_row->ra_state == ra_no_signing |
1568 | ? ra_signing_sp |
1569 | : ra_no_signing); |
1570 | add_cfi (cfi); |
1571 | } |
1572 | |
1573 | /* Record call frame debugging information for an expression EXPR, |
1574 | which either sets SP or FP (adjusting how we calculate the frame |
1575 | address) or saves a register to the stack or another register. |
1576 | LABEL indicates the address of EXPR. |
1577 | |
1578 | This function encodes a state machine mapping rtxes to actions on |
1579 | cfa, cfa_store, and cfa_temp.reg. We describe these rules so |
1580 | users need not read the source code. |
1581 | |
1582 | The High-Level Picture |
1583 | |
1584 | Changes in the register we use to calculate the CFA: Currently we |
1585 | assume that if you copy the CFA register into another register, we |
1586 | should take the other one as the new CFA register; this seems to |
1587 | work pretty well. If it's wrong for some target, it's simple |
1588 | enough not to set RTX_FRAME_RELATED_P on the insn in question. |
1589 | |
1590 | Changes in the register we use for saving registers to the stack: |
1591 | This is usually SP, but not always. Again, we deduce that if you |
1592 | copy SP into another register (and SP is not the CFA register), |
1593 | then the new register is the one we will be using for register |
1594 | saves. This also seems to work. |
1595 | |
1596 | Register saves: There's not much guesswork about this one; if |
1597 | RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a |
1598 | register save, and the register used to calculate the destination |
1599 | had better be the one we think we're using for this purpose. |
1600 | It's also assumed that a copy from a call-saved register to another |
1601 | register is saving that register if RTX_FRAME_RELATED_P is set on |
1602 | that instruction. If the copy is from a call-saved register to |
1603 | the *same* register, that means that the register is now the same |
1604 | value as in the caller. |
1605 | |
1606 | Except: If the register being saved is the CFA register, and the |
1607 | offset is nonzero, we are saving the CFA, so we assume we have to |
1608 | use DW_CFA_def_cfa_expression. If the offset is 0, we assume that |
1609 | the intent is to save the value of SP from the previous frame. |
1610 | |
1611 | In addition, if a register has previously been saved to a different |
1612 | register, |
1613 | |
1614 | Invariants / Summaries of Rules |
1615 | |
1616 | cfa current rule for calculating the CFA. It usually |
1617 | consists of a register and an offset. This is |
1618 | actually stored in *cur_cfa, but abbreviated |
1619 | for the purposes of this documentation. |
1620 | cfa_store register used by prologue code to save things to the stack |
1621 | cfa_store.offset is the offset from the value of |
1622 | cfa_store.reg to the actual CFA |
1623 | cfa_temp register holding an integral value. cfa_temp.offset |
1624 | stores the value, which will be used to adjust the |
1625 | stack pointer. cfa_temp is also used like cfa_store, |
1626 | to track stores to the stack via fp or a temp reg. |
1627 | |
1628 | Rules 1- 4: Setting a register's value to cfa.reg or an expression |
1629 | with cfa.reg as the first operand changes the cfa.reg and its |
1630 | cfa.offset. Rule 1 and 4 also set cfa_temp.reg and |
1631 | cfa_temp.offset. |
1632 | |
1633 | Rules 6- 9: Set a non-cfa.reg register value to a constant or an |
1634 | expression yielding a constant. This sets cfa_temp.reg |
1635 | and cfa_temp.offset. |
1636 | |
1637 | Rule 5: Create a new register cfa_store used to save items to the |
1638 | stack. |
1639 | |
1640 | Rules 10-14: Save a register to the stack. Define offset as the |
1641 | difference of the original location and cfa_store's |
1642 | location (or cfa_temp's location if cfa_temp is used). |
1643 | |
1644 | Rules 16-20: If AND operation happens on sp in prologue, we assume |
1645 | stack is realigned. We will use a group of DW_OP_XXX |
1646 | expressions to represent the location of the stored |
1647 | register instead of CFA+offset. |
1648 | |
1649 | The Rules |
1650 | |
1651 | "{a,b}" indicates a choice of a xor b. |
1652 | "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg. |
1653 | |
1654 | Rule 1: |
1655 | (set <reg1> <reg2>:cfa.reg) |
1656 | effects: cfa.reg = <reg1> |
1657 | cfa.offset unchanged |
1658 | cfa_temp.reg = <reg1> |
1659 | cfa_temp.offset = cfa.offset |
1660 | |
1661 | Rule 2: |
1662 | (set sp ({minus,plus,losum} {sp,fp}:cfa.reg |
1663 | {<const_int>,<reg>:cfa_temp.reg})) |
1664 | effects: cfa.reg = sp if fp used |
1665 | cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp |
1666 | cfa_store.offset += {+/- <const_int>, cfa_temp.offset} |
1667 | if cfa_store.reg==sp |
1668 | |
1669 | Rule 3: |
1670 | (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>)) |
1671 | effects: cfa.reg = fp |
1672 | cfa_offset += +/- <const_int> |
1673 | |
1674 | Rule 4: |
1675 | (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>)) |
1676 | constraints: <reg1> != fp |
1677 | <reg1> != sp |
1678 | effects: cfa.reg = <reg1> |
1679 | cfa_temp.reg = <reg1> |
1680 | cfa_temp.offset = cfa.offset |
1681 | |
1682 | Rule 5: |
1683 | (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg)) |
1684 | constraints: <reg1> != fp |
1685 | <reg1> != sp |
1686 | effects: cfa_store.reg = <reg1> |
1687 | cfa_store.offset = cfa.offset - cfa_temp.offset |
1688 | |
1689 | Rule 6: |
1690 | (set <reg> <const_int>) |
1691 | effects: cfa_temp.reg = <reg> |
1692 | cfa_temp.offset = <const_int> |
1693 | |
1694 | Rule 7: |
1695 | (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>)) |
1696 | effects: cfa_temp.reg = <reg1> |
1697 | cfa_temp.offset |= <const_int> |
1698 | |
1699 | Rule 8: |
1700 | (set <reg> (high <exp>)) |
1701 | effects: none |
1702 | |
1703 | Rule 9: |
1704 | (set <reg> (lo_sum <exp> <const_int>)) |
1705 | effects: cfa_temp.reg = <reg> |
1706 | cfa_temp.offset = <const_int> |
1707 | |
1708 | Rule 10: |
1709 | (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>) |
1710 | effects: cfa_store.offset -= <const_int> |
1711 | cfa.offset = cfa_store.offset if cfa.reg == sp |
1712 | cfa.reg = sp |
1713 | cfa.base_offset = -cfa_store.offset |
1714 | |
1715 | Rule 11: |
1716 | (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>) |
1717 | effects: cfa_store.offset += -/+ mode_size(mem) |
1718 | cfa.offset = cfa_store.offset if cfa.reg == sp |
1719 | cfa.reg = sp |
1720 | cfa.base_offset = -cfa_store.offset |
1721 | |
1722 | Rule 12: |
1723 | (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>)) |
1724 | |
1725 | <reg2>) |
1726 | effects: cfa.reg = <reg1> |
1727 | cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset |
1728 | |
1729 | Rule 13: |
1730 | (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>) |
1731 | effects: cfa.reg = <reg1> |
1732 | cfa.base_offset = -{cfa_store,cfa_temp}.offset |
1733 | |
1734 | Rule 14: |
1735 | (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>) |
1736 | effects: cfa.reg = <reg1> |
1737 | cfa.base_offset = -cfa_temp.offset |
1738 | cfa_temp.offset -= mode_size(mem) |
1739 | |
1740 | Rule 15: |
1741 | (set <reg> {unspec, unspec_volatile}) |
1742 | effects: target-dependent |
1743 | |
1744 | Rule 16: |
1745 | (set sp (and: sp <const_int>)) |
1746 | constraints: cfa_store.reg == sp |
1747 | effects: cfun->fde.stack_realign = 1 |
1748 | cfa_store.offset = 0 |
1749 | fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp |
1750 | |
1751 | Rule 17: |
1752 | (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int)))) |
1753 | effects: cfa_store.offset += -/+ mode_size(mem) |
1754 | |
1755 | Rule 18: |
1756 | (set (mem ({pre_inc, pre_dec} sp)) fp) |
1757 | constraints: fde->stack_realign == 1 |
1758 | effects: cfa_store.offset = 0 |
1759 | cfa.reg != HARD_FRAME_POINTER_REGNUM |
1760 | |
1761 | Rule 19: |
1762 | (set (mem ({pre_inc, pre_dec} sp)) cfa.reg) |
1763 | constraints: fde->stack_realign == 1 |
1764 | && cfa.offset == 0 |
1765 | && cfa.indirect == 0 |
1766 | && cfa.reg != HARD_FRAME_POINTER_REGNUM |
1767 | effects: Use DW_CFA_def_cfa_expression to define cfa |
1768 | cfa.reg == fde->drap_reg */ |
1769 | |
1770 | static void |
1771 | dwarf2out_frame_debug_expr (rtx expr) |
1772 | { |
1773 | rtx src, dest, span; |
1774 | poly_int64 offset; |
1775 | dw_fde_ref fde; |
1776 | |
1777 | /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of |
1778 | the PARALLEL independently. The first element is always processed if |
1779 | it is a SET. This is for backward compatibility. Other elements |
1780 | are processed only if they are SETs and the RTX_FRAME_RELATED_P |
1781 | flag is set in them. */ |
1782 | if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE) |
1783 | { |
1784 | int par_index; |
1785 | int limit = XVECLEN (expr, 0); |
1786 | rtx elem; |
1787 | |
1788 | /* PARALLELs have strict read-modify-write semantics, so we |
1789 | ought to evaluate every rvalue before changing any lvalue. |
1790 | It's cumbersome to do that in general, but there's an |
1791 | easy approximation that is enough for all current users: |
1792 | handle register saves before register assignments. */ |
1793 | if (GET_CODE (expr) == PARALLEL) |
1794 | for (par_index = 0; par_index < limit; par_index++) |
1795 | { |
1796 | elem = XVECEXP (expr, 0, par_index); |
1797 | if (GET_CODE (elem) == SET |
1798 | && MEM_P (SET_DEST (elem)) |
1799 | && (RTX_FRAME_RELATED_P (elem) || par_index == 0)) |
1800 | dwarf2out_frame_debug_expr (expr: elem); |
1801 | } |
1802 | |
1803 | for (par_index = 0; par_index < limit; par_index++) |
1804 | { |
1805 | elem = XVECEXP (expr, 0, par_index); |
1806 | if (GET_CODE (elem) == SET |
1807 | && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE) |
1808 | && (RTX_FRAME_RELATED_P (elem) || par_index == 0)) |
1809 | dwarf2out_frame_debug_expr (expr: elem); |
1810 | } |
1811 | return; |
1812 | } |
1813 | |
1814 | gcc_assert (GET_CODE (expr) == SET); |
1815 | |
1816 | src = SET_SRC (expr); |
1817 | dest = SET_DEST (expr); |
1818 | |
1819 | if (REG_P (src)) |
1820 | { |
1821 | rtx rsi = reg_saved_in (reg: src); |
1822 | if (rsi) |
1823 | src = rsi; |
1824 | } |
1825 | |
1826 | fde = cfun->fde; |
1827 | |
1828 | switch (GET_CODE (dest)) |
1829 | { |
1830 | case REG: |
1831 | switch (GET_CODE (src)) |
1832 | { |
1833 | /* Setting FP from SP. */ |
1834 | case REG: |
1835 | if (cur_cfa->reg == src) |
1836 | { |
1837 | /* Rule 1 */ |
1838 | /* Update the CFA rule wrt SP or FP. Make sure src is |
1839 | relative to the current CFA register. |
1840 | |
1841 | We used to require that dest be either SP or FP, but the |
1842 | ARM copies SP to a temporary register, and from there to |
1843 | FP. So we just rely on the backends to only set |
1844 | RTX_FRAME_RELATED_P on appropriate insns. */ |
1845 | cur_cfa->reg = dwf_cfa_reg (reg: dest); |
1846 | cur_trace->cfa_temp.reg = cur_cfa->reg; |
1847 | cur_trace->cfa_temp.offset = cur_cfa->offset; |
1848 | } |
1849 | else |
1850 | { |
1851 | /* Saving a register in a register. */ |
1852 | gcc_assert (!fixed_regs [REGNO (dest)] |
1853 | /* For the SPARC and its register window. */ |
1854 | || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN)); |
1855 | |
1856 | /* After stack is aligned, we can only save SP in FP |
1857 | if drap register is used. In this case, we have |
1858 | to restore stack pointer with the CFA value and we |
1859 | don't generate this DWARF information. */ |
1860 | if (fde |
1861 | && fde->stack_realign |
1862 | && REGNO (src) == STACK_POINTER_REGNUM) |
1863 | { |
1864 | gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM |
1865 | && fde->drap_reg != INVALID_REGNUM |
1866 | && cur_cfa->reg != src |
1867 | && fde->rule18); |
1868 | fde->rule18 = 0; |
1869 | /* The save of hard frame pointer has been deferred |
1870 | until this point when Rule 18 applied. Emit it now. */ |
1871 | queue_reg_save (reg: dest, NULL_RTX, offset: 0); |
1872 | /* And as the instruction modifies the hard frame pointer, |
1873 | flush the queue as well. */ |
1874 | dwarf2out_flush_queued_reg_saves (); |
1875 | } |
1876 | else |
1877 | queue_reg_save (reg: src, sreg: dest, offset: 0); |
1878 | } |
1879 | break; |
1880 | |
1881 | case PLUS: |
1882 | case MINUS: |
1883 | case LO_SUM: |
1884 | if (dest == stack_pointer_rtx) |
1885 | { |
1886 | /* Rule 2 */ |
1887 | /* Adjusting SP. */ |
1888 | if (REG_P (XEXP (src, 1))) |
1889 | { |
1890 | gcc_assert (cur_trace->cfa_temp.reg == XEXP (src, 1)); |
1891 | offset = cur_trace->cfa_temp.offset; |
1892 | } |
1893 | else if (!poly_int_rtx_p (XEXP (src, 1), res: &offset)) |
1894 | gcc_unreachable (); |
1895 | |
1896 | if (XEXP (src, 0) == hard_frame_pointer_rtx) |
1897 | { |
1898 | /* Restoring SP from FP in the epilogue. */ |
1899 | gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum); |
1900 | cur_cfa->reg = dw_stack_pointer_regnum; |
1901 | } |
1902 | else if (GET_CODE (src) == LO_SUM) |
1903 | /* Assume we've set the source reg of the LO_SUM from sp. */ |
1904 | ; |
1905 | else |
1906 | gcc_assert (XEXP (src, 0) == stack_pointer_rtx); |
1907 | |
1908 | if (GET_CODE (src) != MINUS) |
1909 | offset = -offset; |
1910 | if (cur_cfa->reg == dw_stack_pointer_regnum) |
1911 | cur_cfa->offset += offset; |
1912 | if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum) |
1913 | cur_trace->cfa_store.offset += offset; |
1914 | } |
1915 | else if (dest == hard_frame_pointer_rtx) |
1916 | { |
1917 | /* Rule 3 */ |
1918 | /* Either setting the FP from an offset of the SP, |
1919 | or adjusting the FP */ |
1920 | gcc_assert (frame_pointer_needed); |
1921 | |
1922 | gcc_assert (REG_P (XEXP (src, 0)) |
1923 | && cur_cfa->reg == XEXP (src, 0)); |
1924 | offset = rtx_to_poly_int64 (XEXP (src, 1)); |
1925 | if (GET_CODE (src) != MINUS) |
1926 | offset = -offset; |
1927 | cur_cfa->offset += offset; |
1928 | cur_cfa->reg = dw_frame_pointer_regnum; |
1929 | } |
1930 | else |
1931 | { |
1932 | gcc_assert (GET_CODE (src) != MINUS); |
1933 | |
1934 | /* Rule 4 */ |
1935 | if (REG_P (XEXP (src, 0)) |
1936 | && cur_cfa->reg == XEXP (src, 0) |
1937 | && poly_int_rtx_p (XEXP (src, 1), res: &offset)) |
1938 | { |
1939 | /* Setting a temporary CFA register that will be copied |
1940 | into the FP later on. */ |
1941 | offset = -offset; |
1942 | cur_cfa->offset += offset; |
1943 | cur_cfa->reg = dwf_cfa_reg (reg: dest); |
1944 | /* Or used to save regs to the stack. */ |
1945 | cur_trace->cfa_temp.reg = cur_cfa->reg; |
1946 | cur_trace->cfa_temp.offset = cur_cfa->offset; |
1947 | } |
1948 | |
1949 | /* Rule 5 */ |
1950 | else if (REG_P (XEXP (src, 0)) |
1951 | && cur_trace->cfa_temp.reg == XEXP (src, 0) |
1952 | && XEXP (src, 1) == stack_pointer_rtx) |
1953 | { |
1954 | /* Setting a scratch register that we will use instead |
1955 | of SP for saving registers to the stack. */ |
1956 | gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum); |
1957 | cur_trace->cfa_store.reg = dwf_cfa_reg (reg: dest); |
1958 | cur_trace->cfa_store.offset |
1959 | = cur_cfa->offset - cur_trace->cfa_temp.offset; |
1960 | } |
1961 | |
1962 | /* Rule 9 */ |
1963 | else if (GET_CODE (src) == LO_SUM |
1964 | && poly_int_rtx_p (XEXP (src, 1), |
1965 | res: &cur_trace->cfa_temp.offset)) |
1966 | cur_trace->cfa_temp.reg = dwf_cfa_reg (reg: dest); |
1967 | else |
1968 | gcc_unreachable (); |
1969 | } |
1970 | break; |
1971 | |
1972 | /* Rule 6 */ |
1973 | case CONST_INT: |
1974 | case CONST_POLY_INT: |
1975 | cur_trace->cfa_temp.reg = dwf_cfa_reg (reg: dest); |
1976 | cur_trace->cfa_temp.offset = rtx_to_poly_int64 (x: src); |
1977 | break; |
1978 | |
1979 | /* Rule 7 */ |
1980 | case IOR: |
1981 | gcc_assert (REG_P (XEXP (src, 0)) |
1982 | && cur_trace->cfa_temp.reg == XEXP (src, 0) |
1983 | && CONST_INT_P (XEXP (src, 1))); |
1984 | |
1985 | cur_trace->cfa_temp.reg = dwf_cfa_reg (reg: dest); |
1986 | if (!can_ior_p (a: cur_trace->cfa_temp.offset, INTVAL (XEXP (src, 1)), |
1987 | result: &cur_trace->cfa_temp.offset)) |
1988 | /* The target shouldn't generate this kind of CFI note if we |
1989 | can't represent it. */ |
1990 | gcc_unreachable (); |
1991 | break; |
1992 | |
1993 | /* Skip over HIGH, assuming it will be followed by a LO_SUM, |
1994 | which will fill in all of the bits. */ |
1995 | /* Rule 8 */ |
1996 | case HIGH: |
1997 | break; |
1998 | |
1999 | /* Rule 15 */ |
2000 | case UNSPEC: |
2001 | case UNSPEC_VOLATILE: |
2002 | /* All unspecs should be represented by REG_CFA_* notes. */ |
2003 | gcc_unreachable (); |
2004 | return; |
2005 | |
2006 | /* Rule 16 */ |
2007 | case AND: |
2008 | /* If this AND operation happens on stack pointer in prologue, |
2009 | we assume the stack is realigned and we extract the |
2010 | alignment. */ |
2011 | if (fde && XEXP (src, 0) == stack_pointer_rtx) |
2012 | { |
2013 | /* We interpret reg_save differently with stack_realign set. |
2014 | Thus we must flush whatever we have queued first. */ |
2015 | dwarf2out_flush_queued_reg_saves (); |
2016 | |
2017 | gcc_assert (cur_trace->cfa_store.reg |
2018 | == XEXP (src, 0)); |
2019 | fde->stack_realign = 1; |
2020 | fde->stack_realignment = INTVAL (XEXP (src, 1)); |
2021 | cur_trace->cfa_store.offset = 0; |
2022 | |
2023 | if (cur_cfa->reg != dw_stack_pointer_regnum |
2024 | && cur_cfa->reg != dw_frame_pointer_regnum) |
2025 | { |
2026 | gcc_assert (cur_cfa->reg.span == 1); |
2027 | fde->drap_reg = cur_cfa->reg.reg; |
2028 | } |
2029 | } |
2030 | return; |
2031 | |
2032 | default: |
2033 | gcc_unreachable (); |
2034 | } |
2035 | break; |
2036 | |
2037 | case MEM: |
2038 | |
2039 | /* Saving a register to the stack. Make sure dest is relative to the |
2040 | CFA register. */ |
2041 | switch (GET_CODE (XEXP (dest, 0))) |
2042 | { |
2043 | /* Rule 10 */ |
2044 | /* With a push. */ |
2045 | case PRE_MODIFY: |
2046 | case POST_MODIFY: |
2047 | /* We can't handle variable size modifications. */ |
2048 | offset = -rtx_to_poly_int64 (XEXP (XEXP (XEXP (dest, 0), 1), 1)); |
2049 | |
2050 | gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM |
2051 | && cur_trace->cfa_store.reg == dw_stack_pointer_regnum); |
2052 | |
2053 | cur_trace->cfa_store.offset += offset; |
2054 | if (cur_cfa->reg == dw_stack_pointer_regnum) |
2055 | cur_cfa->offset = cur_trace->cfa_store.offset; |
2056 | |
2057 | if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY) |
2058 | offset -= cur_trace->cfa_store.offset; |
2059 | else |
2060 | offset = -cur_trace->cfa_store.offset; |
2061 | break; |
2062 | |
2063 | /* Rule 11 */ |
2064 | case PRE_INC: |
2065 | case PRE_DEC: |
2066 | case POST_DEC: |
2067 | offset = GET_MODE_SIZE (GET_MODE (dest)); |
2068 | if (GET_CODE (XEXP (dest, 0)) == PRE_INC) |
2069 | offset = -offset; |
2070 | |
2071 | gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0)) |
2072 | == STACK_POINTER_REGNUM) |
2073 | && cur_trace->cfa_store.reg == dw_stack_pointer_regnum); |
2074 | |
2075 | cur_trace->cfa_store.offset += offset; |
2076 | |
2077 | /* Rule 18: If stack is aligned, we will use FP as a |
2078 | reference to represent the address of the stored |
2079 | regiser. */ |
2080 | if (fde |
2081 | && fde->stack_realign |
2082 | && REG_P (src) |
2083 | && REGNO (src) == HARD_FRAME_POINTER_REGNUM) |
2084 | { |
2085 | gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum); |
2086 | cur_trace->cfa_store.offset = 0; |
2087 | fde->rule18 = 1; |
2088 | } |
2089 | |
2090 | if (cur_cfa->reg == dw_stack_pointer_regnum) |
2091 | cur_cfa->offset = cur_trace->cfa_store.offset; |
2092 | |
2093 | if (GET_CODE (XEXP (dest, 0)) == POST_DEC) |
2094 | offset += -cur_trace->cfa_store.offset; |
2095 | else |
2096 | offset = -cur_trace->cfa_store.offset; |
2097 | break; |
2098 | |
2099 | /* Rule 12 */ |
2100 | /* With an offset. */ |
2101 | case PLUS: |
2102 | case MINUS: |
2103 | case LO_SUM: |
2104 | { |
2105 | struct cfa_reg regno; |
2106 | |
2107 | gcc_assert (REG_P (XEXP (XEXP (dest, 0), 0))); |
2108 | offset = rtx_to_poly_int64 (XEXP (XEXP (dest, 0), 1)); |
2109 | if (GET_CODE (XEXP (dest, 0)) == MINUS) |
2110 | offset = -offset; |
2111 | |
2112 | regno = dwf_cfa_reg (XEXP (XEXP (dest, 0), 0)); |
2113 | |
2114 | if (cur_cfa->reg == regno) |
2115 | offset -= cur_cfa->offset; |
2116 | else if (cur_trace->cfa_store.reg == regno) |
2117 | offset -= cur_trace->cfa_store.offset; |
2118 | else |
2119 | { |
2120 | gcc_assert (cur_trace->cfa_temp.reg == regno); |
2121 | offset -= cur_trace->cfa_temp.offset; |
2122 | } |
2123 | } |
2124 | break; |
2125 | |
2126 | /* Rule 13 */ |
2127 | /* Without an offset. */ |
2128 | case REG: |
2129 | { |
2130 | struct cfa_reg regno = dwf_cfa_reg (XEXP (dest, 0)); |
2131 | |
2132 | if (cur_cfa->reg == regno) |
2133 | offset = -cur_cfa->offset; |
2134 | else if (cur_trace->cfa_store.reg == regno) |
2135 | offset = -cur_trace->cfa_store.offset; |
2136 | else |
2137 | { |
2138 | gcc_assert (cur_trace->cfa_temp.reg == regno); |
2139 | offset = -cur_trace->cfa_temp.offset; |
2140 | } |
2141 | } |
2142 | break; |
2143 | |
2144 | /* Rule 14 */ |
2145 | case POST_INC: |
2146 | gcc_assert (cur_trace->cfa_temp.reg == XEXP (XEXP (dest, 0), 0)); |
2147 | offset = -cur_trace->cfa_temp.offset; |
2148 | cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest)); |
2149 | break; |
2150 | |
2151 | default: |
2152 | gcc_unreachable (); |
2153 | } |
2154 | |
2155 | /* Rule 17 */ |
2156 | /* If the source operand of this MEM operation is a memory, |
2157 | we only care how much stack grew. */ |
2158 | if (MEM_P (src)) |
2159 | break; |
2160 | |
2161 | if (REG_P (src) |
2162 | && REGNO (src) != STACK_POINTER_REGNUM |
2163 | && REGNO (src) != HARD_FRAME_POINTER_REGNUM |
2164 | && cur_cfa->reg == src) |
2165 | { |
2166 | /* We're storing the current CFA reg into the stack. */ |
2167 | |
2168 | if (known_eq (cur_cfa->offset, 0)) |
2169 | { |
2170 | /* Rule 19 */ |
2171 | /* If stack is aligned, putting CFA reg into stack means |
2172 | we can no longer use reg + offset to represent CFA. |
2173 | Here we use DW_CFA_def_cfa_expression instead. The |
2174 | result of this expression equals to the original CFA |
2175 | value. */ |
2176 | if (fde |
2177 | && fde->stack_realign |
2178 | && cur_cfa->indirect == 0 |
2179 | && cur_cfa->reg != dw_frame_pointer_regnum) |
2180 | { |
2181 | gcc_assert (fde->drap_reg == cur_cfa->reg.reg); |
2182 | |
2183 | cur_cfa->indirect = 1; |
2184 | cur_cfa->reg = dw_frame_pointer_regnum; |
2185 | cur_cfa->base_offset = offset; |
2186 | cur_cfa->offset = 0; |
2187 | |
2188 | fde->drap_reg_saved = 1; |
2189 | break; |
2190 | } |
2191 | |
2192 | /* If the source register is exactly the CFA, assume |
2193 | we're saving SP like any other register; this happens |
2194 | on the ARM. */ |
2195 | queue_reg_save (stack_pointer_rtx, NULL_RTX, offset); |
2196 | break; |
2197 | } |
2198 | else |
2199 | { |
2200 | /* Otherwise, we'll need to look in the stack to |
2201 | calculate the CFA. */ |
2202 | rtx x = XEXP (dest, 0); |
2203 | |
2204 | if (!REG_P (x)) |
2205 | x = XEXP (x, 0); |
2206 | gcc_assert (REG_P (x)); |
2207 | |
2208 | cur_cfa->reg = dwf_cfa_reg (reg: x); |
2209 | cur_cfa->base_offset = offset; |
2210 | cur_cfa->indirect = 1; |
2211 | break; |
2212 | } |
2213 | } |
2214 | |
2215 | if (REG_P (src)) |
2216 | span = targetm.dwarf_register_span (src); |
2217 | else |
2218 | span = NULL; |
2219 | |
2220 | if (!span) |
2221 | { |
2222 | if (fde->rule18) |
2223 | /* Just verify the hard frame pointer save when doing dynamic |
2224 | realignment uses expected offset. The actual queue_reg_save |
2225 | needs to be deferred until the instruction that sets |
2226 | hard frame pointer to stack pointer, see PR99334 for |
2227 | details. */ |
2228 | gcc_assert (known_eq (offset, 0)); |
2229 | else |
2230 | queue_reg_save (reg: src, NULL_RTX, offset); |
2231 | } |
2232 | else |
2233 | { |
2234 | /* We have a PARALLEL describing where the contents of SRC live. |
2235 | Queue register saves for each piece of the PARALLEL. */ |
2236 | poly_int64 span_offset = offset; |
2237 | |
2238 | gcc_assert (GET_CODE (span) == PARALLEL); |
2239 | |
2240 | const int par_len = XVECLEN (span, 0); |
2241 | for (int par_index = 0; par_index < par_len; par_index++) |
2242 | { |
2243 | rtx elem = XVECEXP (span, 0, par_index); |
2244 | queue_reg_save (reg: elem, NULL_RTX, offset: span_offset); |
2245 | span_offset += GET_MODE_SIZE (GET_MODE (elem)); |
2246 | } |
2247 | } |
2248 | break; |
2249 | |
2250 | default: |
2251 | gcc_unreachable (); |
2252 | } |
2253 | } |
2254 | |
2255 | /* Record call frame debugging information for INSN, which either sets |
2256 | SP or FP (adjusting how we calculate the frame address) or saves a |
2257 | register to the stack. */ |
2258 | |
2259 | static void |
2260 | dwarf2out_frame_debug (rtx_insn *insn) |
2261 | { |
2262 | rtx note, n, pat; |
2263 | bool handled_one = false; |
2264 | |
2265 | for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) |
2266 | switch (REG_NOTE_KIND (note)) |
2267 | { |
2268 | case REG_FRAME_RELATED_EXPR: |
2269 | pat = XEXP (note, 0); |
2270 | goto do_frame_expr; |
2271 | |
2272 | case REG_CFA_DEF_CFA: |
2273 | dwarf2out_frame_debug_def_cfa (XEXP (note, 0)); |
2274 | handled_one = true; |
2275 | break; |
2276 | |
2277 | case REG_CFA_ADJUST_CFA: |
2278 | n = XEXP (note, 0); |
2279 | if (n == NULL) |
2280 | { |
2281 | n = PATTERN (insn); |
2282 | if (GET_CODE (n) == PARALLEL) |
2283 | n = XVECEXP (n, 0, 0); |
2284 | } |
2285 | dwarf2out_frame_debug_adjust_cfa (pat: n); |
2286 | handled_one = true; |
2287 | break; |
2288 | |
2289 | case REG_CFA_OFFSET: |
2290 | n = XEXP (note, 0); |
2291 | if (n == NULL) |
2292 | n = single_set (insn); |
2293 | dwarf2out_frame_debug_cfa_offset (set: n); |
2294 | handled_one = true; |
2295 | break; |
2296 | |
2297 | case REG_CFA_REGISTER: |
2298 | n = XEXP (note, 0); |
2299 | if (n == NULL) |
2300 | { |
2301 | n = PATTERN (insn); |
2302 | if (GET_CODE (n) == PARALLEL) |
2303 | n = XVECEXP (n, 0, 0); |
2304 | } |
2305 | dwarf2out_frame_debug_cfa_register (set: n); |
2306 | handled_one = true; |
2307 | break; |
2308 | |
2309 | case REG_CFA_EXPRESSION: |
2310 | case REG_CFA_VAL_EXPRESSION: |
2311 | n = XEXP (note, 0); |
2312 | if (n == NULL) |
2313 | n = single_set (insn); |
2314 | |
2315 | if (REG_NOTE_KIND (note) == REG_CFA_EXPRESSION) |
2316 | dwarf2out_frame_debug_cfa_expression (set: n); |
2317 | else |
2318 | dwarf2out_frame_debug_cfa_val_expression (set: n); |
2319 | |
2320 | handled_one = true; |
2321 | break; |
2322 | |
2323 | case REG_CFA_RESTORE: |
2324 | case REG_CFA_NO_RESTORE: |
2325 | n = XEXP (note, 0); |
2326 | if (n == NULL) |
2327 | { |
2328 | n = PATTERN (insn); |
2329 | if (GET_CODE (n) == PARALLEL) |
2330 | n = XVECEXP (n, 0, 0); |
2331 | n = XEXP (n, 0); |
2332 | } |
2333 | dwarf2out_frame_debug_cfa_restore (reg: n, REG_NOTE_KIND (note) == REG_CFA_RESTORE); |
2334 | handled_one = true; |
2335 | break; |
2336 | |
2337 | case REG_CFA_SET_VDRAP: |
2338 | n = XEXP (note, 0); |
2339 | if (REG_P (n)) |
2340 | { |
2341 | dw_fde_ref fde = cfun->fde; |
2342 | if (fde) |
2343 | { |
2344 | gcc_assert (fde->vdrap_reg == INVALID_REGNUM); |
2345 | if (REG_P (n)) |
2346 | fde->vdrap_reg = dwf_regno (reg: n); |
2347 | } |
2348 | } |
2349 | handled_one = true; |
2350 | break; |
2351 | |
2352 | case REG_CFA_NEGATE_RA_STATE: |
2353 | dwarf2out_frame_debug_cfa_negate_ra_state (); |
2354 | handled_one = true; |
2355 | break; |
2356 | |
2357 | case REG_CFA_WINDOW_SAVE: |
2358 | dwarf2out_frame_debug_cfa_window_save (); |
2359 | handled_one = true; |
2360 | break; |
2361 | |
2362 | case REG_CFA_FLUSH_QUEUE: |
2363 | /* The actual flush happens elsewhere. */ |
2364 | handled_one = true; |
2365 | break; |
2366 | |
2367 | default: |
2368 | break; |
2369 | } |
2370 | |
2371 | if (!handled_one) |
2372 | { |
2373 | pat = PATTERN (insn); |
2374 | do_frame_expr: |
2375 | dwarf2out_frame_debug_expr (expr: pat); |
2376 | |
2377 | /* Check again. A parallel can save and update the same register. |
2378 | We could probably check just once, here, but this is safer than |
2379 | removing the check at the start of the function. */ |
2380 | if (clobbers_queued_reg_save (insn: pat)) |
2381 | dwarf2out_flush_queued_reg_saves (); |
2382 | } |
2383 | } |
2384 | |
2385 | /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */ |
2386 | |
2387 | static void |
2388 | change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row) |
2389 | { |
2390 | size_t i, n_old, n_new, n_max; |
2391 | dw_cfi_ref cfi; |
2392 | |
2393 | if (new_row->cfa_cfi && !cfi_equal_p (a: old_row->cfa_cfi, b: new_row->cfa_cfi)) |
2394 | add_cfi (cfi: new_row->cfa_cfi); |
2395 | else |
2396 | { |
2397 | cfi = def_cfa_0 (old_cfa: &old_row->cfa, new_cfa: &new_row->cfa); |
2398 | if (cfi) |
2399 | add_cfi (cfi); |
2400 | } |
2401 | |
2402 | n_old = vec_safe_length (v: old_row->reg_save); |
2403 | n_new = vec_safe_length (v: new_row->reg_save); |
2404 | n_max = MAX (n_old, n_new); |
2405 | |
2406 | for (i = 0; i < n_max; ++i) |
2407 | { |
2408 | dw_cfi_ref r_old = NULL, r_new = NULL; |
2409 | |
2410 | if (i < n_old) |
2411 | r_old = (*old_row->reg_save)[i]; |
2412 | if (i < n_new) |
2413 | r_new = (*new_row->reg_save)[i]; |
2414 | |
2415 | if (r_old == r_new) |
2416 | ; |
2417 | else if (r_new == NULL) |
2418 | add_cfi_restore (reg: i); |
2419 | else if (!cfi_equal_p (a: r_old, b: r_new)) |
2420 | add_cfi (cfi: r_new); |
2421 | } |
2422 | |
2423 | if (!old_row->window_save && new_row->window_save) |
2424 | { |
2425 | dw_cfi_ref cfi = new_cfi (); |
2426 | |
2427 | gcc_assert (!old_row->ra_state && !new_row->ra_state); |
2428 | cfi->dw_cfi_opc = DW_CFA_GNU_window_save; |
2429 | add_cfi (cfi); |
2430 | } |
2431 | |
2432 | if (old_row->ra_state != new_row->ra_state) |
2433 | { |
2434 | dw_cfi_ref cfi = new_cfi (); |
2435 | |
2436 | gcc_assert (!old_row->window_save && !new_row->window_save); |
2437 | cfi->dw_cfi_opc = DW_CFA_AARCH64_negate_ra_state; |
2438 | add_cfi (cfi); |
2439 | } |
2440 | } |
2441 | |
2442 | /* Examine CFI and return true if a cfi label and set_loc is needed |
2443 | beforehand. Even when generating CFI assembler instructions, we |
2444 | still have to add the cfi to the list so that lookup_cfa_1 works |
2445 | later on. When -g2 and above we even need to force emitting of |
2446 | CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list |
2447 | purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa |
2448 | and so don't use convert_cfa_to_fb_loc_list. */ |
2449 | |
2450 | static bool |
2451 | cfi_label_required_p (dw_cfi_ref cfi) |
2452 | { |
2453 | if (!dwarf2out_do_cfi_asm ()) |
2454 | return true; |
2455 | |
2456 | if (dwarf_version == 2 |
2457 | && debug_info_level > DINFO_LEVEL_TERSE |
2458 | && dwarf_debuginfo_p ()) |
2459 | { |
2460 | switch (cfi->dw_cfi_opc) |
2461 | { |
2462 | case DW_CFA_def_cfa_offset: |
2463 | case DW_CFA_def_cfa_offset_sf: |
2464 | case DW_CFA_def_cfa_register: |
2465 | case DW_CFA_def_cfa: |
2466 | case DW_CFA_def_cfa_sf: |
2467 | case DW_CFA_def_cfa_expression: |
2468 | case DW_CFA_restore_state: |
2469 | return true; |
2470 | default: |
2471 | return false; |
2472 | } |
2473 | } |
2474 | return false; |
2475 | } |
2476 | |
2477 | /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the |
2478 | function's FDE, adding CFI labels and set_loc/advance_loc opcodes as |
2479 | necessary. */ |
2480 | static void |
2481 | add_cfis_to_fde (void) |
2482 | { |
2483 | dw_fde_ref fde = cfun->fde; |
2484 | rtx_insn *insn, *next; |
2485 | |
2486 | for (insn = get_insns (); insn; insn = next) |
2487 | { |
2488 | next = NEXT_INSN (insn); |
2489 | |
2490 | if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS) |
2491 | fde->dw_fde_switch_cfi_index = vec_safe_length (v: fde->dw_fde_cfi); |
2492 | |
2493 | if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI) |
2494 | { |
2495 | bool required = cfi_label_required_p (NOTE_CFI (insn)); |
2496 | while (next) |
2497 | if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI) |
2498 | { |
2499 | required |= cfi_label_required_p (NOTE_CFI (next)); |
2500 | next = NEXT_INSN (insn: next); |
2501 | } |
2502 | else if (active_insn_p (next) |
2503 | || (NOTE_P (next) && (NOTE_KIND (next) |
2504 | == NOTE_INSN_SWITCH_TEXT_SECTIONS))) |
2505 | break; |
2506 | else |
2507 | next = NEXT_INSN (insn: next); |
2508 | if (required) |
2509 | { |
2510 | int num = dwarf2out_cfi_label_num; |
2511 | const char *label = dwarf2out_cfi_label (); |
2512 | dw_cfi_ref xcfi; |
2513 | |
2514 | /* Set the location counter to the new label. */ |
2515 | xcfi = new_cfi (); |
2516 | xcfi->dw_cfi_opc = DW_CFA_advance_loc4; |
2517 | xcfi->dw_cfi_oprnd1.dw_cfi_addr = label; |
2518 | vec_safe_push (v&: fde->dw_fde_cfi, obj: xcfi); |
2519 | |
2520 | rtx_note *tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn); |
2521 | NOTE_LABEL_NUMBER (tmp) = num; |
2522 | } |
2523 | |
2524 | do |
2525 | { |
2526 | if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI) |
2527 | vec_safe_push (v&: fde->dw_fde_cfi, NOTE_CFI (insn)); |
2528 | insn = NEXT_INSN (insn); |
2529 | } |
2530 | while (insn != next); |
2531 | } |
2532 | } |
2533 | } |
2534 | |
2535 | static void dump_cfi_row (FILE *f, dw_cfi_row *row); |
2536 | |
2537 | /* If LABEL is the start of a trace, then initialize the state of that |
2538 | trace from CUR_TRACE and CUR_ROW. */ |
2539 | |
2540 | static void |
2541 | maybe_record_trace_start (rtx_insn *start, rtx_insn *origin) |
2542 | { |
2543 | dw_trace_info *ti; |
2544 | |
2545 | ti = get_trace_info (insn: start); |
2546 | gcc_assert (ti != NULL); |
2547 | |
2548 | if (dump_file) |
2549 | { |
2550 | fprintf (stream: dump_file, format: " saw edge from trace %u to %u (via %s %d)\n" , |
2551 | cur_trace->id, ti->id, |
2552 | (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru" ), |
2553 | (origin ? INSN_UID (insn: origin) : 0)); |
2554 | } |
2555 | |
2556 | poly_int64 args_size = cur_trace->end_true_args_size; |
2557 | if (ti->beg_row == NULL) |
2558 | { |
2559 | /* This is the first time we've encountered this trace. Propagate |
2560 | state across the edge and push the trace onto the work list. */ |
2561 | ti->beg_row = copy_cfi_row (src: cur_row); |
2562 | ti->beg_true_args_size = args_size; |
2563 | |
2564 | ti->cfa_store = cur_trace->cfa_store; |
2565 | ti->cfa_temp = cur_trace->cfa_temp; |
2566 | ti->regs_saved_in_regs = cur_trace->regs_saved_in_regs.copy (); |
2567 | |
2568 | trace_work_list.safe_push (obj: ti); |
2569 | |
2570 | if (dump_file) |
2571 | fprintf (stream: dump_file, format: "\tpush trace %u to worklist\n" , ti->id); |
2572 | } |
2573 | else |
2574 | { |
2575 | |
2576 | /* We ought to have the same state incoming to a given trace no |
2577 | matter how we arrive at the trace. Anything else means we've |
2578 | got some kind of optimization error. */ |
2579 | #if CHECKING_P |
2580 | if (!cfi_row_equal_p (a: cur_row, b: ti->beg_row)) |
2581 | { |
2582 | if (dump_file) |
2583 | { |
2584 | fprintf (stream: dump_file, format: "Inconsistent CFI state!\n" ); |
2585 | fprintf (stream: dump_file, format: "SHOULD have:\n" ); |
2586 | dump_cfi_row (f: dump_file, row: ti->beg_row); |
2587 | fprintf (stream: dump_file, format: "DO have:\n" ); |
2588 | dump_cfi_row (f: dump_file, row: cur_row); |
2589 | } |
2590 | |
2591 | gcc_unreachable (); |
2592 | } |
2593 | #endif |
2594 | |
2595 | /* The args_size is allowed to conflict if it isn't actually used. */ |
2596 | if (maybe_ne (a: ti->beg_true_args_size, b: args_size)) |
2597 | ti->args_size_undefined = true; |
2598 | } |
2599 | } |
2600 | |
2601 | /* Similarly, but handle the args_size and CFA reset across EH |
2602 | and non-local goto edges. */ |
2603 | |
2604 | static void |
2605 | maybe_record_trace_start_abnormal (rtx_insn *start, rtx_insn *origin) |
2606 | { |
2607 | poly_int64 save_args_size, delta; |
2608 | dw_cfa_location save_cfa; |
2609 | |
2610 | save_args_size = cur_trace->end_true_args_size; |
2611 | if (known_eq (save_args_size, 0)) |
2612 | { |
2613 | maybe_record_trace_start (start, origin); |
2614 | return; |
2615 | } |
2616 | |
2617 | delta = -save_args_size; |
2618 | cur_trace->end_true_args_size = 0; |
2619 | |
2620 | save_cfa = cur_row->cfa; |
2621 | if (cur_row->cfa.reg == dw_stack_pointer_regnum) |
2622 | { |
2623 | /* Convert a change in args_size (always a positive in the |
2624 | direction of stack growth) to a change in stack pointer. */ |
2625 | if (!STACK_GROWS_DOWNWARD) |
2626 | delta = -delta; |
2627 | |
2628 | cur_row->cfa.offset += delta; |
2629 | } |
2630 | |
2631 | maybe_record_trace_start (start, origin); |
2632 | |
2633 | cur_trace->end_true_args_size = save_args_size; |
2634 | cur_row->cfa = save_cfa; |
2635 | } |
2636 | |
2637 | /* Propagate CUR_TRACE state to the destinations implied by INSN. */ |
2638 | /* ??? Sadly, this is in large part a duplicate of make_edges. */ |
2639 | |
2640 | static void |
2641 | create_trace_edges (rtx_insn *insn) |
2642 | { |
2643 | rtx tmp; |
2644 | int i, n; |
2645 | |
2646 | if (JUMP_P (insn)) |
2647 | { |
2648 | rtx_jump_table_data *table; |
2649 | |
2650 | if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX)) |
2651 | return; |
2652 | |
2653 | if (tablejump_p (insn, NULL, &table)) |
2654 | { |
2655 | rtvec vec = table->get_labels (); |
2656 | |
2657 | n = GET_NUM_ELEM (vec); |
2658 | for (i = 0; i < n; ++i) |
2659 | { |
2660 | rtx_insn *lab = as_a <rtx_insn *> (XEXP (RTVEC_ELT (vec, i), 0)); |
2661 | maybe_record_trace_start (start: lab, origin: insn); |
2662 | } |
2663 | |
2664 | /* Handle casesi dispatch insns. */ |
2665 | if ((tmp = tablejump_casesi_pattern (insn)) != NULL_RTX) |
2666 | { |
2667 | rtx_insn * lab = label_ref_label (XEXP (SET_SRC (tmp), 2)); |
2668 | maybe_record_trace_start (start: lab, origin: insn); |
2669 | } |
2670 | } |
2671 | else if (computed_jump_p (insn)) |
2672 | { |
2673 | rtx_insn *temp; |
2674 | unsigned int i; |
2675 | FOR_EACH_VEC_SAFE_ELT (forced_labels, i, temp) |
2676 | maybe_record_trace_start (start: temp, origin: insn); |
2677 | } |
2678 | else if (returnjump_p (insn)) |
2679 | ; |
2680 | else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL) |
2681 | { |
2682 | n = ASM_OPERANDS_LABEL_LENGTH (tmp); |
2683 | for (i = 0; i < n; ++i) |
2684 | { |
2685 | rtx_insn *lab = |
2686 | as_a <rtx_insn *> (XEXP (ASM_OPERANDS_LABEL (tmp, i), 0)); |
2687 | maybe_record_trace_start (start: lab, origin: insn); |
2688 | } |
2689 | } |
2690 | else |
2691 | { |
2692 | rtx_insn *lab = JUMP_LABEL_AS_INSN (insn); |
2693 | gcc_assert (lab != NULL); |
2694 | maybe_record_trace_start (start: lab, origin: insn); |
2695 | } |
2696 | } |
2697 | else if (CALL_P (insn)) |
2698 | { |
2699 | /* Sibling calls don't have edges inside this function. */ |
2700 | if (SIBLING_CALL_P (insn)) |
2701 | return; |
2702 | |
2703 | /* Process non-local goto edges. */ |
2704 | if (can_nonlocal_goto (insn)) |
2705 | for (rtx_insn_list *lab = nonlocal_goto_handler_labels; |
2706 | lab; |
2707 | lab = lab->next ()) |
2708 | maybe_record_trace_start_abnormal (start: lab->insn (), origin: insn); |
2709 | } |
2710 | else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (p: PATTERN (insn))) |
2711 | { |
2712 | int i, n = seq->len (); |
2713 | for (i = 0; i < n; ++i) |
2714 | create_trace_edges (insn: seq->insn (index: i)); |
2715 | return; |
2716 | } |
2717 | |
2718 | /* Process EH edges. */ |
2719 | if (CALL_P (insn) || cfun->can_throw_non_call_exceptions) |
2720 | { |
2721 | eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn); |
2722 | if (lp) |
2723 | maybe_record_trace_start_abnormal (start: lp->landing_pad, origin: insn); |
2724 | } |
2725 | } |
2726 | |
2727 | /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */ |
2728 | |
2729 | static void |
2730 | scan_insn_after (rtx_insn *insn) |
2731 | { |
2732 | if (RTX_FRAME_RELATED_P (insn)) |
2733 | dwarf2out_frame_debug (insn); |
2734 | notice_args_size (insn); |
2735 | } |
2736 | |
2737 | /* Scan the trace beginning at INSN and create the CFI notes for the |
2738 | instructions therein. */ |
2739 | |
2740 | static void |
2741 | scan_trace (dw_trace_info *trace, bool entry) |
2742 | { |
2743 | rtx_insn *prev, *insn = trace->head; |
2744 | dw_cfa_location this_cfa; |
2745 | |
2746 | if (dump_file) |
2747 | fprintf (stream: dump_file, format: "Processing trace %u : start at %s %d\n" , |
2748 | trace->id, rtx_name[(int) GET_CODE (insn)], |
2749 | INSN_UID (insn)); |
2750 | |
2751 | trace->end_row = copy_cfi_row (src: trace->beg_row); |
2752 | trace->end_true_args_size = trace->beg_true_args_size; |
2753 | |
2754 | cur_trace = trace; |
2755 | cur_row = trace->end_row; |
2756 | |
2757 | this_cfa = cur_row->cfa; |
2758 | cur_cfa = &this_cfa; |
2759 | |
2760 | /* If the current function starts with a non-standard incoming frame |
2761 | sp offset, emit a note before the first instruction. */ |
2762 | if (entry |
2763 | && DEFAULT_INCOMING_FRAME_SP_OFFSET != INCOMING_FRAME_SP_OFFSET) |
2764 | { |
2765 | add_cfi_insn = insn; |
2766 | gcc_assert (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED); |
2767 | this_cfa.offset = INCOMING_FRAME_SP_OFFSET; |
2768 | def_cfa_1 (new_cfa: &this_cfa); |
2769 | } |
2770 | |
2771 | for (prev = insn, insn = NEXT_INSN (insn); |
2772 | insn; |
2773 | prev = insn, insn = NEXT_INSN (insn)) |
2774 | { |
2775 | rtx_insn *control; |
2776 | |
2777 | /* Do everything that happens "before" the insn. */ |
2778 | add_cfi_insn = prev; |
2779 | |
2780 | /* Notice the end of a trace. */ |
2781 | if (BARRIER_P (insn)) |
2782 | { |
2783 | /* Don't bother saving the unneeded queued registers at all. */ |
2784 | queued_reg_saves.truncate (size: 0); |
2785 | break; |
2786 | } |
2787 | if (save_point_p (insn)) |
2788 | { |
2789 | /* Propagate across fallthru edges. */ |
2790 | dwarf2out_flush_queued_reg_saves (); |
2791 | maybe_record_trace_start (start: insn, NULL); |
2792 | break; |
2793 | } |
2794 | |
2795 | if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn)) |
2796 | continue; |
2797 | |
2798 | /* Handle all changes to the row state. Sequences require special |
2799 | handling for the positioning of the notes. */ |
2800 | if (rtx_sequence *pat = dyn_cast <rtx_sequence *> (p: PATTERN (insn))) |
2801 | { |
2802 | rtx_insn *elt; |
2803 | int i, n = pat->len (); |
2804 | |
2805 | control = pat->insn (index: 0); |
2806 | if (can_throw_internal (control)) |
2807 | notice_eh_throw (insn: control); |
2808 | dwarf2out_flush_queued_reg_saves (); |
2809 | |
2810 | if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control)) |
2811 | { |
2812 | /* ??? Hopefully multiple delay slots are not annulled. */ |
2813 | gcc_assert (n == 2); |
2814 | gcc_assert (!RTX_FRAME_RELATED_P (control)); |
2815 | gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL)); |
2816 | |
2817 | elt = pat->insn (index: 1); |
2818 | |
2819 | if (INSN_FROM_TARGET_P (elt)) |
2820 | { |
2821 | cfi_vec save_row_reg_save; |
2822 | |
2823 | /* If ELT is an instruction from target of an annulled |
2824 | branch, the effects are for the target only and so |
2825 | the args_size and CFA along the current path |
2826 | shouldn't change. */ |
2827 | add_cfi_insn = NULL; |
2828 | poly_int64 restore_args_size = cur_trace->end_true_args_size; |
2829 | cur_cfa = &cur_row->cfa; |
2830 | save_row_reg_save = vec_safe_copy (src: cur_row->reg_save); |
2831 | |
2832 | scan_insn_after (insn: elt); |
2833 | |
2834 | /* ??? Should we instead save the entire row state? */ |
2835 | gcc_assert (!queued_reg_saves.length ()); |
2836 | |
2837 | create_trace_edges (insn: control); |
2838 | |
2839 | cur_trace->end_true_args_size = restore_args_size; |
2840 | cur_row->cfa = this_cfa; |
2841 | cur_row->reg_save = save_row_reg_save; |
2842 | cur_cfa = &this_cfa; |
2843 | } |
2844 | else |
2845 | { |
2846 | /* If ELT is a annulled branch-taken instruction (i.e. |
2847 | executed only when branch is not taken), the args_size |
2848 | and CFA should not change through the jump. */ |
2849 | create_trace_edges (insn: control); |
2850 | |
2851 | /* Update and continue with the trace. */ |
2852 | add_cfi_insn = insn; |
2853 | scan_insn_after (insn: elt); |
2854 | def_cfa_1 (new_cfa: &this_cfa); |
2855 | } |
2856 | continue; |
2857 | } |
2858 | |
2859 | /* The insns in the delay slot should all be considered to happen |
2860 | "before" a call insn. Consider a call with a stack pointer |
2861 | adjustment in the delay slot. The backtrace from the callee |
2862 | should include the sp adjustment. Unfortunately, that leaves |
2863 | us with an unavoidable unwinding error exactly at the call insn |
2864 | itself. For jump insns we'd prefer to avoid this error by |
2865 | placing the notes after the sequence. */ |
2866 | if (JUMP_P (control)) |
2867 | add_cfi_insn = insn; |
2868 | |
2869 | for (i = 1; i < n; ++i) |
2870 | { |
2871 | elt = pat->insn (index: i); |
2872 | scan_insn_after (insn: elt); |
2873 | } |
2874 | |
2875 | /* Make sure any register saves are visible at the jump target. */ |
2876 | dwarf2out_flush_queued_reg_saves (); |
2877 | any_cfis_emitted = false; |
2878 | |
2879 | /* However, if there is some adjustment on the call itself, e.g. |
2880 | a call_pop, that action should be considered to happen after |
2881 | the call returns. */ |
2882 | add_cfi_insn = insn; |
2883 | scan_insn_after (insn: control); |
2884 | } |
2885 | else |
2886 | { |
2887 | /* Flush data before calls and jumps, and of course if necessary. */ |
2888 | if (can_throw_internal (insn)) |
2889 | { |
2890 | notice_eh_throw (insn); |
2891 | dwarf2out_flush_queued_reg_saves (); |
2892 | } |
2893 | else if (!NONJUMP_INSN_P (insn) |
2894 | || clobbers_queued_reg_save (insn) |
2895 | || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL)) |
2896 | dwarf2out_flush_queued_reg_saves (); |
2897 | any_cfis_emitted = false; |
2898 | |
2899 | add_cfi_insn = insn; |
2900 | scan_insn_after (insn); |
2901 | control = insn; |
2902 | } |
2903 | |
2904 | /* Between frame-related-p and args_size we might have otherwise |
2905 | emitted two cfa adjustments. Do it now. */ |
2906 | def_cfa_1 (new_cfa: &this_cfa); |
2907 | |
2908 | /* Minimize the number of advances by emitting the entire queue |
2909 | once anything is emitted. */ |
2910 | if (any_cfis_emitted |
2911 | || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL)) |
2912 | dwarf2out_flush_queued_reg_saves (); |
2913 | |
2914 | /* Note that a test for control_flow_insn_p does exactly the |
2915 | same tests as are done to actually create the edges. So |
2916 | always call the routine and let it not create edges for |
2917 | non-control-flow insns. */ |
2918 | create_trace_edges (insn: control); |
2919 | } |
2920 | |
2921 | gcc_assert (!cfun->fde || !cfun->fde->rule18); |
2922 | add_cfi_insn = NULL; |
2923 | cur_row = NULL; |
2924 | cur_trace = NULL; |
2925 | cur_cfa = NULL; |
2926 | } |
2927 | |
2928 | /* Scan the function and create the initial set of CFI notes. */ |
2929 | |
2930 | static void |
2931 | create_cfi_notes (void) |
2932 | { |
2933 | dw_trace_info *ti; |
2934 | |
2935 | gcc_checking_assert (!queued_reg_saves.exists ()); |
2936 | gcc_checking_assert (!trace_work_list.exists ()); |
2937 | |
2938 | /* Always begin at the entry trace. */ |
2939 | ti = &trace_info[0]; |
2940 | scan_trace (trace: ti, entry: true); |
2941 | |
2942 | while (!trace_work_list.is_empty ()) |
2943 | { |
2944 | ti = trace_work_list.pop (); |
2945 | scan_trace (trace: ti, entry: false); |
2946 | } |
2947 | |
2948 | queued_reg_saves.release (); |
2949 | trace_work_list.release (); |
2950 | } |
2951 | |
2952 | /* Return the insn before the first NOTE_INSN_CFI after START. */ |
2953 | |
2954 | static rtx_insn * |
2955 | before_next_cfi_note (rtx_insn *start) |
2956 | { |
2957 | rtx_insn *prev = start; |
2958 | while (start) |
2959 | { |
2960 | if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI) |
2961 | return prev; |
2962 | prev = start; |
2963 | start = NEXT_INSN (insn: start); |
2964 | } |
2965 | gcc_unreachable (); |
2966 | } |
2967 | |
2968 | /* Insert CFI notes between traces to properly change state between them. */ |
2969 | |
2970 | static void |
2971 | connect_traces (void) |
2972 | { |
2973 | unsigned i, n; |
2974 | dw_trace_info *prev_ti, *ti; |
2975 | |
2976 | /* ??? Ideally, we should have both queued and processed every trace. |
2977 | However the current representation of constant pools on various targets |
2978 | is indistinguishable from unreachable code. Assume for the moment that |
2979 | we can simply skip over such traces. */ |
2980 | /* ??? Consider creating a DATA_INSN rtx code to indicate that |
2981 | these are not "real" instructions, and should not be considered. |
2982 | This could be generically useful for tablejump data as well. */ |
2983 | /* Remove all unprocessed traces from the list. */ |
2984 | unsigned ix, ix2; |
2985 | VEC_ORDERED_REMOVE_IF_FROM_TO (trace_info, ix, ix2, ti, 1, |
2986 | trace_info.length (), ti->beg_row == NULL); |
2987 | FOR_EACH_VEC_ELT (trace_info, ix, ti) |
2988 | gcc_assert (ti->end_row != NULL); |
2989 | |
2990 | /* Work from the end back to the beginning. This lets us easily insert |
2991 | remember/restore_state notes in the correct order wrt other notes. */ |
2992 | n = trace_info.length (); |
2993 | prev_ti = &trace_info[n - 1]; |
2994 | for (i = n - 1; i > 0; --i) |
2995 | { |
2996 | dw_cfi_row *old_row; |
2997 | |
2998 | ti = prev_ti; |
2999 | prev_ti = &trace_info[i - 1]; |
3000 | |
3001 | add_cfi_insn = ti->head; |
3002 | |
3003 | /* In dwarf2out_switch_text_section, we'll begin a new FDE |
3004 | for the portion of the function in the alternate text |
3005 | section. The row state at the very beginning of that |
3006 | new FDE will be exactly the row state from the CIE. */ |
3007 | if (ti->switch_sections) |
3008 | old_row = cie_cfi_row; |
3009 | else |
3010 | { |
3011 | old_row = prev_ti->end_row; |
3012 | /* If there's no change from the previous end state, fine. */ |
3013 | if (cfi_row_equal_p (a: old_row, b: ti->beg_row)) |
3014 | ; |
3015 | /* Otherwise check for the common case of sharing state with |
3016 | the beginning of an epilogue, but not the end. Insert |
3017 | remember/restore opcodes in that case. */ |
3018 | else if (cfi_row_equal_p (a: prev_ti->beg_row, b: ti->beg_row)) |
3019 | { |
3020 | dw_cfi_ref cfi; |
3021 | |
3022 | /* Note that if we blindly insert the remember at the |
3023 | start of the trace, we can wind up increasing the |
3024 | size of the unwind info due to extra advance opcodes. |
3025 | Instead, put the remember immediately before the next |
3026 | state change. We know there must be one, because the |
3027 | state at the beginning and head of the trace differ. */ |
3028 | add_cfi_insn = before_next_cfi_note (start: prev_ti->head); |
3029 | cfi = new_cfi (); |
3030 | cfi->dw_cfi_opc = DW_CFA_remember_state; |
3031 | add_cfi (cfi); |
3032 | |
3033 | add_cfi_insn = ti->head; |
3034 | cfi = new_cfi (); |
3035 | cfi->dw_cfi_opc = DW_CFA_restore_state; |
3036 | add_cfi (cfi); |
3037 | |
3038 | /* If the target unwinder does not save the CFA as part of the |
3039 | register state, we need to restore it separately. */ |
3040 | if (targetm.asm_out.should_restore_cfa_state () |
3041 | && (cfi = def_cfa_0 (old_cfa: &old_row->cfa, new_cfa: &ti->beg_row->cfa))) |
3042 | add_cfi (cfi); |
3043 | |
3044 | old_row = prev_ti->beg_row; |
3045 | } |
3046 | /* Otherwise, we'll simply change state from the previous end. */ |
3047 | } |
3048 | |
3049 | change_cfi_row (old_row, new_row: ti->beg_row); |
3050 | |
3051 | if (dump_file && add_cfi_insn != ti->head) |
3052 | { |
3053 | rtx_insn *note; |
3054 | |
3055 | fprintf (stream: dump_file, format: "Fixup between trace %u and %u:\n" , |
3056 | prev_ti->id, ti->id); |
3057 | |
3058 | note = ti->head; |
3059 | do |
3060 | { |
3061 | note = NEXT_INSN (insn: note); |
3062 | gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI); |
3063 | output_cfi_directive (f: dump_file, NOTE_CFI (note)); |
3064 | } |
3065 | while (note != add_cfi_insn); |
3066 | } |
3067 | } |
3068 | |
3069 | /* Connect args_size between traces that have can_throw_internal insns. */ |
3070 | if (cfun->eh->lp_array) |
3071 | { |
3072 | poly_int64 prev_args_size = 0; |
3073 | |
3074 | for (i = 0; i < n; ++i) |
3075 | { |
3076 | ti = &trace_info[i]; |
3077 | |
3078 | if (ti->switch_sections) |
3079 | prev_args_size = 0; |
3080 | |
3081 | if (ti->eh_head == NULL) |
3082 | continue; |
3083 | |
3084 | /* We require either the incoming args_size values to match or the |
3085 | presence of an insn setting it before the first EH insn. */ |
3086 | gcc_assert (!ti->args_size_undefined || ti->args_size_defined_for_eh); |
3087 | |
3088 | /* In the latter case, we force the creation of a CFI note. */ |
3089 | if (ti->args_size_undefined |
3090 | || maybe_ne (a: ti->beg_delay_args_size, b: prev_args_size)) |
3091 | { |
3092 | /* ??? Search back to previous CFI note. */ |
3093 | add_cfi_insn = PREV_INSN (insn: ti->eh_head); |
3094 | add_cfi_args_size (size: ti->beg_delay_args_size); |
3095 | } |
3096 | |
3097 | prev_args_size = ti->end_delay_args_size; |
3098 | } |
3099 | } |
3100 | } |
3101 | |
3102 | /* Set up the pseudo-cfg of instruction traces, as described at the |
3103 | block comment at the top of the file. */ |
3104 | |
3105 | static void |
3106 | create_pseudo_cfg (void) |
3107 | { |
3108 | bool saw_barrier, switch_sections; |
3109 | dw_trace_info ti; |
3110 | rtx_insn *insn; |
3111 | unsigned i; |
3112 | |
3113 | /* The first trace begins at the start of the function, |
3114 | and begins with the CIE row state. */ |
3115 | trace_info.create (nelems: 16); |
3116 | memset (s: &ti, c: 0, n: sizeof (ti)); |
3117 | ti.head = get_insns (); |
3118 | ti.beg_row = cie_cfi_row; |
3119 | ti.cfa_store = cie_cfi_row->cfa; |
3120 | ti.cfa_temp.reg.set_by_dwreg (INVALID_REGNUM); |
3121 | trace_info.quick_push (obj: ti); |
3122 | |
3123 | if (cie_return_save) |
3124 | ti.regs_saved_in_regs.safe_push (obj: *cie_return_save); |
3125 | |
3126 | /* Walk all the insns, collecting start of trace locations. */ |
3127 | saw_barrier = false; |
3128 | switch_sections = false; |
3129 | for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) |
3130 | { |
3131 | if (BARRIER_P (insn)) |
3132 | saw_barrier = true; |
3133 | else if (NOTE_P (insn) |
3134 | && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS) |
3135 | { |
3136 | /* We should have just seen a barrier. */ |
3137 | gcc_assert (saw_barrier); |
3138 | switch_sections = true; |
3139 | } |
3140 | /* Watch out for save_point notes between basic blocks. |
3141 | In particular, a note after a barrier. Do not record these, |
3142 | delaying trace creation until the label. */ |
3143 | else if (save_point_p (insn) |
3144 | && (LABEL_P (insn) || !saw_barrier)) |
3145 | { |
3146 | memset (s: &ti, c: 0, n: sizeof (ti)); |
3147 | ti.head = insn; |
3148 | ti.switch_sections = switch_sections; |
3149 | ti.id = trace_info.length (); |
3150 | trace_info.safe_push (obj: ti); |
3151 | |
3152 | saw_barrier = false; |
3153 | switch_sections = false; |
3154 | } |
3155 | } |
3156 | |
3157 | /* Create the trace index after we've finished building trace_info, |
3158 | avoiding stale pointer problems due to reallocation. */ |
3159 | trace_index |
3160 | = new hash_table<trace_info_hasher> (trace_info.length ()); |
3161 | dw_trace_info *tp; |
3162 | FOR_EACH_VEC_ELT (trace_info, i, tp) |
3163 | { |
3164 | dw_trace_info **slot; |
3165 | |
3166 | if (dump_file) |
3167 | fprintf (stream: dump_file, format: "Creating trace %u : start at %s %d%s\n" , tp->id, |
3168 | rtx_name[(int) GET_CODE (tp->head)], INSN_UID (insn: tp->head), |
3169 | tp->switch_sections ? " (section switch)" : "" ); |
3170 | |
3171 | slot = trace_index->find_slot_with_hash (comparable: tp, hash: INSN_UID (insn: tp->head), insert: INSERT); |
3172 | gcc_assert (*slot == NULL); |
3173 | *slot = tp; |
3174 | } |
3175 | } |
3176 | |
3177 | /* Record the initial position of the return address. RTL is |
3178 | INCOMING_RETURN_ADDR_RTX. */ |
3179 | |
3180 | static void |
3181 | initial_return_save (rtx rtl) |
3182 | { |
3183 | struct cfa_reg reg; |
3184 | reg.set_by_dwreg (INVALID_REGNUM); |
3185 | poly_int64 offset = 0; |
3186 | |
3187 | switch (GET_CODE (rtl)) |
3188 | { |
3189 | case REG: |
3190 | /* RA is in a register. */ |
3191 | reg = dwf_cfa_reg (reg: rtl); |
3192 | break; |
3193 | |
3194 | case MEM: |
3195 | /* RA is on the stack. */ |
3196 | rtl = XEXP (rtl, 0); |
3197 | switch (GET_CODE (rtl)) |
3198 | { |
3199 | case REG: |
3200 | gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM); |
3201 | offset = 0; |
3202 | break; |
3203 | |
3204 | case PLUS: |
3205 | gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM); |
3206 | offset = rtx_to_poly_int64 (XEXP (rtl, 1)); |
3207 | break; |
3208 | |
3209 | case MINUS: |
3210 | gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM); |
3211 | offset = -rtx_to_poly_int64 (XEXP (rtl, 1)); |
3212 | break; |
3213 | |
3214 | default: |
3215 | gcc_unreachable (); |
3216 | } |
3217 | |
3218 | break; |
3219 | |
3220 | case PLUS: |
3221 | /* The return address is at some offset from any value we can |
3222 | actually load. For instance, on the SPARC it is in %i7+8. Just |
3223 | ignore the offset for now; it doesn't matter for unwinding frames. */ |
3224 | gcc_assert (CONST_INT_P (XEXP (rtl, 1))); |
3225 | initial_return_save (XEXP (rtl, 0)); |
3226 | return; |
3227 | |
3228 | default: |
3229 | gcc_unreachable (); |
3230 | } |
3231 | |
3232 | if (reg.reg != DWARF_FRAME_RETURN_COLUMN) |
3233 | { |
3234 | if (reg.reg != INVALID_REGNUM) |
3235 | record_reg_saved_in_reg (dest: rtl, src: pc_rtx); |
3236 | reg_save (DWARF_FRAME_RETURN_COLUMN, sreg: reg, offset: offset - cur_row->cfa.offset); |
3237 | } |
3238 | } |
3239 | |
3240 | static void |
3241 | create_cie_data (void) |
3242 | { |
3243 | dw_cfa_location loc; |
3244 | dw_trace_info cie_trace; |
3245 | |
3246 | dw_stack_pointer_regnum = dwf_cfa_reg (stack_pointer_rtx); |
3247 | |
3248 | memset (s: &cie_trace, c: 0, n: sizeof (cie_trace)); |
3249 | cur_trace = &cie_trace; |
3250 | |
3251 | add_cfi_vec = &cie_cfi_vec; |
3252 | cie_cfi_row = cur_row = new_cfi_row (); |
3253 | |
3254 | /* On entry, the Canonical Frame Address is at SP. */ |
3255 | memset (s: &loc, c: 0, n: sizeof (loc)); |
3256 | loc.reg = dw_stack_pointer_regnum; |
3257 | /* create_cie_data is called just once per TU, and when using .cfi_startproc |
3258 | is even done by the assembler rather than the compiler. If the target |
3259 | has different incoming frame sp offsets depending on what kind of |
3260 | function it is, use a single constant offset for the target and |
3261 | if needed, adjust before the first instruction in insn stream. */ |
3262 | loc.offset = DEFAULT_INCOMING_FRAME_SP_OFFSET; |
3263 | def_cfa_1 (new_cfa: &loc); |
3264 | |
3265 | if (targetm.debug_unwind_info () == UI_DWARF2 |
3266 | || targetm_common.except_unwind_info (&global_options) == UI_DWARF2) |
3267 | { |
3268 | initial_return_save (INCOMING_RETURN_ADDR_RTX); |
3269 | |
3270 | /* For a few targets, we have the return address incoming into a |
3271 | register, but choose a different return column. This will result |
3272 | in a DW_CFA_register for the return, and an entry in |
3273 | regs_saved_in_regs to match. If the target later stores that |
3274 | return address register to the stack, we want to be able to emit |
3275 | the DW_CFA_offset against the return column, not the intermediate |
3276 | save register. Save the contents of regs_saved_in_regs so that |
3277 | we can re-initialize it at the start of each function. */ |
3278 | switch (cie_trace.regs_saved_in_regs.length ()) |
3279 | { |
3280 | case 0: |
3281 | break; |
3282 | case 1: |
3283 | cie_return_save = ggc_alloc<reg_saved_in_data> (); |
3284 | *cie_return_save = cie_trace.regs_saved_in_regs[0]; |
3285 | cie_trace.regs_saved_in_regs.release (); |
3286 | break; |
3287 | default: |
3288 | gcc_unreachable (); |
3289 | } |
3290 | } |
3291 | |
3292 | add_cfi_vec = NULL; |
3293 | cur_row = NULL; |
3294 | cur_trace = NULL; |
3295 | } |
3296 | |
3297 | /* Annotate the function with NOTE_INSN_CFI notes to record the CFI |
3298 | state at each location within the function. These notes will be |
3299 | emitted during pass_final. */ |
3300 | |
3301 | static void |
3302 | execute_dwarf2_frame (void) |
3303 | { |
3304 | /* Different HARD_FRAME_POINTER_REGNUM might coexist in the same file. */ |
3305 | dw_frame_pointer_regnum = dwf_cfa_reg (hard_frame_pointer_rtx); |
3306 | |
3307 | /* The first time we're called, compute the incoming frame state. */ |
3308 | if (cie_cfi_vec == NULL) |
3309 | create_cie_data (); |
3310 | |
3311 | dwarf2out_alloc_current_fde (); |
3312 | |
3313 | create_pseudo_cfg (); |
3314 | |
3315 | /* Do the work. */ |
3316 | create_cfi_notes (); |
3317 | connect_traces (); |
3318 | add_cfis_to_fde (); |
3319 | |
3320 | /* Free all the data we allocated. */ |
3321 | { |
3322 | size_t i; |
3323 | dw_trace_info *ti; |
3324 | |
3325 | FOR_EACH_VEC_ELT (trace_info, i, ti) |
3326 | ti->regs_saved_in_regs.release (); |
3327 | } |
3328 | trace_info.release (); |
3329 | |
3330 | delete trace_index; |
3331 | trace_index = NULL; |
3332 | } |
3333 | |
3334 | /* Convert a DWARF call frame info. operation to its string name */ |
3335 | |
3336 | static const char * |
3337 | dwarf_cfi_name (unsigned int cfi_opc) |
3338 | { |
3339 | const char *name = get_DW_CFA_name (opc: cfi_opc); |
3340 | |
3341 | if (name != NULL) |
3342 | return name; |
3343 | |
3344 | return "DW_CFA_<unknown>" ; |
3345 | } |
3346 | |
3347 | /* This routine will generate the correct assembly data for a location |
3348 | description based on a cfi entry with a complex address. */ |
3349 | |
3350 | static void |
3351 | output_cfa_loc (dw_cfi_ref cfi, int for_eh) |
3352 | { |
3353 | dw_loc_descr_ref loc; |
3354 | unsigned long size; |
3355 | |
3356 | if (cfi->dw_cfi_opc == DW_CFA_expression |
3357 | || cfi->dw_cfi_opc == DW_CFA_val_expression) |
3358 | { |
3359 | unsigned r = |
3360 | DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); |
3361 | dw2_asm_output_data (1, r, NULL); |
3362 | loc = cfi->dw_cfi_oprnd2.dw_cfi_loc; |
3363 | } |
3364 | else |
3365 | loc = cfi->dw_cfi_oprnd1.dw_cfi_loc; |
3366 | |
3367 | /* Output the size of the block. */ |
3368 | size = size_of_locs (loc); |
3369 | dw2_asm_output_data_uleb128 (size, NULL); |
3370 | |
3371 | /* Now output the operations themselves. */ |
3372 | output_loc_sequence (loc, for_eh); |
3373 | } |
3374 | |
3375 | /* Similar, but used for .cfi_escape. */ |
3376 | |
3377 | static void |
3378 | output_cfa_loc_raw (dw_cfi_ref cfi) |
3379 | { |
3380 | dw_loc_descr_ref loc; |
3381 | unsigned long size; |
3382 | |
3383 | if (cfi->dw_cfi_opc == DW_CFA_expression |
3384 | || cfi->dw_cfi_opc == DW_CFA_val_expression) |
3385 | { |
3386 | unsigned r = |
3387 | DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); |
3388 | fprintf (stream: asm_out_file, format: "%#x," , r); |
3389 | loc = cfi->dw_cfi_oprnd2.dw_cfi_loc; |
3390 | } |
3391 | else |
3392 | loc = cfi->dw_cfi_oprnd1.dw_cfi_loc; |
3393 | |
3394 | /* Output the size of the block. */ |
3395 | size = size_of_locs (loc); |
3396 | dw2_asm_output_data_uleb128_raw (size); |
3397 | fputc (c: ',', stream: asm_out_file); |
3398 | |
3399 | /* Now output the operations themselves. */ |
3400 | output_loc_sequence_raw (loc); |
3401 | } |
3402 | |
3403 | /* Output a Call Frame Information opcode and its operand(s). */ |
3404 | |
3405 | void |
3406 | output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh) |
3407 | { |
3408 | unsigned long r; |
3409 | HOST_WIDE_INT off; |
3410 | |
3411 | if (cfi->dw_cfi_opc == DW_CFA_advance_loc) |
3412 | dw2_asm_output_data (1, (cfi->dw_cfi_opc |
3413 | | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)), |
3414 | "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX, |
3415 | ((unsigned HOST_WIDE_INT) |
3416 | cfi->dw_cfi_oprnd1.dw_cfi_offset)); |
3417 | else if (cfi->dw_cfi_opc == DW_CFA_offset) |
3418 | { |
3419 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); |
3420 | dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)), |
3421 | "DW_CFA_offset, column %#lx" , r); |
3422 | off = div_data_align (off: cfi->dw_cfi_oprnd2.dw_cfi_offset); |
3423 | dw2_asm_output_data_uleb128 (off, NULL); |
3424 | } |
3425 | else if (cfi->dw_cfi_opc == DW_CFA_restore) |
3426 | { |
3427 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); |
3428 | dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)), |
3429 | "DW_CFA_restore, column %#lx" , r); |
3430 | } |
3431 | else |
3432 | { |
3433 | dw2_asm_output_data (1, cfi->dw_cfi_opc, |
3434 | "%s" , dwarf_cfi_name (cfi_opc: cfi->dw_cfi_opc)); |
3435 | |
3436 | switch (cfi->dw_cfi_opc) |
3437 | { |
3438 | case DW_CFA_set_loc: |
3439 | if (for_eh) |
3440 | dw2_asm_output_encoded_addr_rtx ( |
3441 | ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0), |
3442 | gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr), |
3443 | false, NULL); |
3444 | else |
3445 | dw2_asm_output_addr (DWARF2_ADDR_SIZE, |
3446 | cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL); |
3447 | fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr; |
3448 | break; |
3449 | |
3450 | case DW_CFA_advance_loc1: |
3451 | dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr, |
3452 | fde->dw_fde_current_label, NULL); |
3453 | fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr; |
3454 | break; |
3455 | |
3456 | case DW_CFA_advance_loc2: |
3457 | dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr, |
3458 | fde->dw_fde_current_label, NULL); |
3459 | fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr; |
3460 | break; |
3461 | |
3462 | case DW_CFA_advance_loc4: |
3463 | dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr, |
3464 | fde->dw_fde_current_label, NULL); |
3465 | fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr; |
3466 | break; |
3467 | |
3468 | case DW_CFA_MIPS_advance_loc8: |
3469 | dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr, |
3470 | fde->dw_fde_current_label, NULL); |
3471 | fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr; |
3472 | break; |
3473 | |
3474 | case DW_CFA_offset_extended: |
3475 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); |
3476 | dw2_asm_output_data_uleb128 (r, NULL); |
3477 | off = div_data_align (off: cfi->dw_cfi_oprnd2.dw_cfi_offset); |
3478 | dw2_asm_output_data_uleb128 (off, NULL); |
3479 | break; |
3480 | |
3481 | case DW_CFA_def_cfa: |
3482 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); |
3483 | dw2_asm_output_data_uleb128 (r, NULL); |
3484 | dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL); |
3485 | break; |
3486 | |
3487 | case DW_CFA_offset_extended_sf: |
3488 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); |
3489 | dw2_asm_output_data_uleb128 (r, NULL); |
3490 | off = div_data_align (off: cfi->dw_cfi_oprnd2.dw_cfi_offset); |
3491 | dw2_asm_output_data_sleb128 (off, NULL); |
3492 | break; |
3493 | |
3494 | case DW_CFA_def_cfa_sf: |
3495 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); |
3496 | dw2_asm_output_data_uleb128 (r, NULL); |
3497 | off = div_data_align (off: cfi->dw_cfi_oprnd2.dw_cfi_offset); |
3498 | dw2_asm_output_data_sleb128 (off, NULL); |
3499 | break; |
3500 | |
3501 | case DW_CFA_restore_extended: |
3502 | case DW_CFA_undefined: |
3503 | case DW_CFA_same_value: |
3504 | case DW_CFA_def_cfa_register: |
3505 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); |
3506 | dw2_asm_output_data_uleb128 (r, NULL); |
3507 | break; |
3508 | |
3509 | case DW_CFA_register: |
3510 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh); |
3511 | dw2_asm_output_data_uleb128 (r, NULL); |
3512 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh); |
3513 | dw2_asm_output_data_uleb128 (r, NULL); |
3514 | break; |
3515 | |
3516 | case DW_CFA_def_cfa_offset: |
3517 | case DW_CFA_GNU_args_size: |
3518 | dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL); |
3519 | break; |
3520 | |
3521 | case DW_CFA_def_cfa_offset_sf: |
3522 | off = div_data_align (off: cfi->dw_cfi_oprnd1.dw_cfi_offset); |
3523 | dw2_asm_output_data_sleb128 (off, NULL); |
3524 | break; |
3525 | |
3526 | case DW_CFA_def_cfa_expression: |
3527 | case DW_CFA_expression: |
3528 | case DW_CFA_val_expression: |
3529 | output_cfa_loc (cfi, for_eh); |
3530 | break; |
3531 | |
3532 | case DW_CFA_GNU_negative_offset_extended: |
3533 | /* Obsoleted by DW_CFA_offset_extended_sf. */ |
3534 | gcc_unreachable (); |
3535 | |
3536 | default: |
3537 | break; |
3538 | } |
3539 | } |
3540 | } |
3541 | |
3542 | /* Similar, but do it via assembler directives instead. */ |
3543 | |
3544 | void |
3545 | output_cfi_directive (FILE *f, dw_cfi_ref cfi) |
3546 | { |
3547 | unsigned long r, r2; |
3548 | |
3549 | switch (cfi->dw_cfi_opc) |
3550 | { |
3551 | case DW_CFA_advance_loc: |
3552 | case DW_CFA_advance_loc1: |
3553 | case DW_CFA_advance_loc2: |
3554 | case DW_CFA_advance_loc4: |
3555 | case DW_CFA_MIPS_advance_loc8: |
3556 | case DW_CFA_set_loc: |
3557 | /* Should only be created in a code path not followed when emitting |
3558 | via directives. The assembler is going to take care of this for |
3559 | us. But this routines is also used for debugging dumps, so |
3560 | print something. */ |
3561 | gcc_assert (f != asm_out_file); |
3562 | fprintf (stream: f, format: "\t.cfi_advance_loc\n" ); |
3563 | break; |
3564 | |
3565 | case DW_CFA_offset: |
3566 | case DW_CFA_offset_extended: |
3567 | case DW_CFA_offset_extended_sf: |
3568 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); |
3569 | fprintf (stream: f, format: "\t.cfi_offset %lu, " HOST_WIDE_INT_PRINT_DEC"\n" , |
3570 | r, cfi->dw_cfi_oprnd2.dw_cfi_offset); |
3571 | break; |
3572 | |
3573 | case DW_CFA_restore: |
3574 | case DW_CFA_restore_extended: |
3575 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); |
3576 | fprintf (stream: f, format: "\t.cfi_restore %lu\n" , r); |
3577 | break; |
3578 | |
3579 | case DW_CFA_undefined: |
3580 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); |
3581 | fprintf (stream: f, format: "\t.cfi_undefined %lu\n" , r); |
3582 | break; |
3583 | |
3584 | case DW_CFA_same_value: |
3585 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); |
3586 | fprintf (stream: f, format: "\t.cfi_same_value %lu\n" , r); |
3587 | break; |
3588 | |
3589 | case DW_CFA_def_cfa: |
3590 | case DW_CFA_def_cfa_sf: |
3591 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); |
3592 | fprintf (stream: f, format: "\t.cfi_def_cfa %lu, " HOST_WIDE_INT_PRINT_DEC"\n" , |
3593 | r, cfi->dw_cfi_oprnd2.dw_cfi_offset); |
3594 | break; |
3595 | |
3596 | case DW_CFA_def_cfa_register: |
3597 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); |
3598 | fprintf (stream: f, format: "\t.cfi_def_cfa_register %lu\n" , r); |
3599 | break; |
3600 | |
3601 | case DW_CFA_register: |
3602 | r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1); |
3603 | r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1); |
3604 | fprintf (stream: f, format: "\t.cfi_register %lu, %lu\n" , r, r2); |
3605 | break; |
3606 | |
3607 | case DW_CFA_def_cfa_offset: |
3608 | case DW_CFA_def_cfa_offset_sf: |
3609 | fprintf (stream: f, format: "\t.cfi_def_cfa_offset " |
3610 | HOST_WIDE_INT_PRINT_DEC"\n" , |
3611 | cfi->dw_cfi_oprnd1.dw_cfi_offset); |
3612 | break; |
3613 | |
3614 | case DW_CFA_remember_state: |
3615 | fprintf (stream: f, format: "\t.cfi_remember_state\n" ); |
3616 | break; |
3617 | case DW_CFA_restore_state: |
3618 | fprintf (stream: f, format: "\t.cfi_restore_state\n" ); |
3619 | break; |
3620 | |
3621 | case DW_CFA_GNU_args_size: |
3622 | if (f == asm_out_file) |
3623 | { |
3624 | fprintf (stream: f, format: "\t.cfi_escape %#x," , DW_CFA_GNU_args_size); |
3625 | dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset); |
3626 | if (flag_debug_asm) |
3627 | fprintf (stream: f, format: "\t%s args_size " HOST_WIDE_INT_PRINT_DEC, |
3628 | ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset); |
3629 | fputc (c: '\n', stream: f); |
3630 | } |
3631 | else |
3632 | { |
3633 | fprintf (stream: f, format: "\t.cfi_GNU_args_size " HOST_WIDE_INT_PRINT_DEC "\n" , |
3634 | cfi->dw_cfi_oprnd1.dw_cfi_offset); |
3635 | } |
3636 | break; |
3637 | |
3638 | case DW_CFA_def_cfa_expression: |
3639 | case DW_CFA_expression: |
3640 | case DW_CFA_val_expression: |
3641 | if (f != asm_out_file) |
3642 | { |
3643 | fprintf (stream: f, format: "\t.cfi_%scfa_%sexpression ...\n" , |
3644 | cfi->dw_cfi_opc == DW_CFA_def_cfa_expression ? "def_" : "" , |
3645 | cfi->dw_cfi_opc == DW_CFA_val_expression ? "val_" : "" ); |
3646 | break; |
3647 | } |
3648 | fprintf (stream: f, format: "\t.cfi_escape %#x," , cfi->dw_cfi_opc); |
3649 | output_cfa_loc_raw (cfi); |
3650 | fputc (c: '\n', stream: f); |
3651 | break; |
3652 | |
3653 | default: |
3654 | if (!targetm.output_cfi_directive (f, cfi)) |
3655 | gcc_unreachable (); |
3656 | } |
3657 | } |
3658 | |
3659 | void |
3660 | dwarf2out_emit_cfi (dw_cfi_ref cfi) |
3661 | { |
3662 | if (dwarf2out_do_cfi_asm ()) |
3663 | output_cfi_directive (f: asm_out_file, cfi); |
3664 | } |
3665 | |
3666 | static void |
3667 | dump_cfi_row (FILE *f, dw_cfi_row *row) |
3668 | { |
3669 | dw_cfi_ref cfi; |
3670 | unsigned i; |
3671 | |
3672 | cfi = row->cfa_cfi; |
3673 | if (!cfi) |
3674 | { |
3675 | dw_cfa_location dummy; |
3676 | memset (s: &dummy, c: 0, n: sizeof (dummy)); |
3677 | dummy.reg.set_by_dwreg (INVALID_REGNUM); |
3678 | cfi = def_cfa_0 (old_cfa: &dummy, new_cfa: &row->cfa); |
3679 | } |
3680 | output_cfi_directive (f, cfi); |
3681 | |
3682 | FOR_EACH_VEC_SAFE_ELT (row->reg_save, i, cfi) |
3683 | if (cfi) |
3684 | output_cfi_directive (f, cfi); |
3685 | } |
3686 | |
3687 | void debug_cfi_row (dw_cfi_row *row); |
3688 | |
3689 | void |
3690 | debug_cfi_row (dw_cfi_row *row) |
3691 | { |
3692 | dump_cfi_row (stderr, row); |
3693 | } |
3694 | |
3695 | |
3696 | /* Save the result of dwarf2out_do_frame across PCH. |
3697 | This variable is tri-state, with 0 unset, >0 true, <0 false. */ |
3698 | static GTY(()) signed char saved_do_cfi_asm = 0; |
3699 | |
3700 | /* Decide whether to emit EH frame unwind information for the current |
3701 | translation unit. */ |
3702 | |
3703 | bool |
3704 | dwarf2out_do_eh_frame (void) |
3705 | { |
3706 | return |
3707 | (flag_unwind_tables || flag_exceptions) |
3708 | && targetm_common.except_unwind_info (&global_options) == UI_DWARF2; |
3709 | } |
3710 | |
3711 | /* Decide whether we want to emit frame unwind information for the current |
3712 | translation unit. */ |
3713 | |
3714 | bool |
3715 | dwarf2out_do_frame (void) |
3716 | { |
3717 | /* We want to emit correct CFA location expressions or lists, so we |
3718 | have to return true if we're going to generate debug info, even if |
3719 | we're not going to output frame or unwind info. */ |
3720 | if (dwarf_debuginfo_p () || dwarf_based_debuginfo_p ()) |
3721 | return true; |
3722 | |
3723 | if (saved_do_cfi_asm > 0) |
3724 | return true; |
3725 | |
3726 | if (targetm.debug_unwind_info () == UI_DWARF2) |
3727 | return true; |
3728 | |
3729 | if (dwarf2out_do_eh_frame ()) |
3730 | return true; |
3731 | |
3732 | return false; |
3733 | } |
3734 | |
3735 | /* Decide whether to emit frame unwind via assembler directives. */ |
3736 | |
3737 | bool |
3738 | dwarf2out_do_cfi_asm (void) |
3739 | { |
3740 | int enc; |
3741 | |
3742 | if (saved_do_cfi_asm != 0) |
3743 | return saved_do_cfi_asm > 0; |
3744 | |
3745 | /* Assume failure for a moment. */ |
3746 | saved_do_cfi_asm = -1; |
3747 | |
3748 | if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ()) |
3749 | return false; |
3750 | if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE) |
3751 | return false; |
3752 | |
3753 | /* Make sure the personality encoding is one the assembler can support. |
3754 | In particular, aligned addresses can't be handled. */ |
3755 | enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1); |
3756 | if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel) |
3757 | return false; |
3758 | enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0); |
3759 | if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel) |
3760 | return false; |
3761 | |
3762 | /* If we can't get the assembler to emit only .debug_frame, and we don't need |
3763 | dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */ |
3764 | if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE && !dwarf2out_do_eh_frame ()) |
3765 | return false; |
3766 | |
3767 | /* Success! */ |
3768 | saved_do_cfi_asm = 1; |
3769 | return true; |
3770 | } |
3771 | |
3772 | namespace { |
3773 | |
3774 | const pass_data pass_data_dwarf2_frame = |
3775 | { |
3776 | .type: RTL_PASS, /* type */ |
3777 | .name: "dwarf2" , /* name */ |
3778 | .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */ |
3779 | .tv_id: TV_FINAL, /* tv_id */ |
3780 | .properties_required: 0, /* properties_required */ |
3781 | .properties_provided: 0, /* properties_provided */ |
3782 | .properties_destroyed: 0, /* properties_destroyed */ |
3783 | .todo_flags_start: 0, /* todo_flags_start */ |
3784 | .todo_flags_finish: 0, /* todo_flags_finish */ |
3785 | }; |
3786 | |
3787 | class pass_dwarf2_frame : public rtl_opt_pass |
3788 | { |
3789 | public: |
3790 | pass_dwarf2_frame (gcc::context *ctxt) |
3791 | : rtl_opt_pass (pass_data_dwarf2_frame, ctxt) |
3792 | {} |
3793 | |
3794 | /* opt_pass methods: */ |
3795 | bool gate (function *) final override; |
3796 | unsigned int execute (function *) final override |
3797 | { |
3798 | execute_dwarf2_frame (); |
3799 | return 0; |
3800 | } |
3801 | |
3802 | }; // class pass_dwarf2_frame |
3803 | |
3804 | bool |
3805 | pass_dwarf2_frame::gate (function *) |
3806 | { |
3807 | /* Targets which still implement the prologue in assembler text |
3808 | cannot use the generic dwarf2 unwinding. */ |
3809 | if (!targetm.have_prologue ()) |
3810 | return false; |
3811 | |
3812 | /* ??? What to do for UI_TARGET unwinding? They might be able to benefit |
3813 | from the optimized shrink-wrapping annotations that we will compute. |
3814 | For now, only produce the CFI notes for dwarf2. */ |
3815 | return dwarf2out_do_frame (); |
3816 | } |
3817 | |
3818 | } // anon namespace |
3819 | |
3820 | rtl_opt_pass * |
3821 | make_pass_dwarf2_frame (gcc::context *ctxt) |
3822 | { |
3823 | return new pass_dwarf2_frame (ctxt); |
3824 | } |
3825 | |
3826 | void dwarf2cfi_cc_finalize () |
3827 | { |
3828 | add_cfi_insn = NULL; |
3829 | add_cfi_vec = NULL; |
3830 | cur_trace = NULL; |
3831 | cur_row = NULL; |
3832 | cur_cfa = NULL; |
3833 | } |
3834 | |
3835 | #include "gt-dwarf2cfi.h" |
3836 | |