1/* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8Free Software Foundation; either version 3, or (at your option) any
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "rtl.h"
25#include "tree.h"
26#include "gimple.h"
27#include "tree-pass.h"
28#include "ssa.h"
29#include "gimple-pretty-print.h"
30#include "diagnostic-core.h"
31#include "stor-layout.h"
32#include "fold-const.h"
33#include "calls.h"
34#include "intl.h"
35#include "gimplify.h"
36#include "gimple-iterator.h"
37#include "tree-cfg.h"
38#include "tree-ssa-loop-ivopts.h"
39#include "tree-ssa-loop-niter.h"
40#include "tree-ssa-loop.h"
41#include "cfgloop.h"
42#include "tree-chrec.h"
43#include "tree-scalar-evolution.h"
44#include "tree-dfa.h"
45#include "internal-fn.h"
46#include "gimple-range.h"
47#include "sreal.h"
48
49
50/* The maximum number of dominator BBs we search for conditions
51 of loop header copies we use for simplifying a conditional
52 expression. */
53#define MAX_DOMINATORS_TO_WALK 8
54
55/*
56
57 Analysis of number of iterations of an affine exit test.
58
59*/
60
61/* Bounds on some value, BELOW <= X <= UP. */
62
63struct bounds
64{
65 mpz_t below, up;
66};
67
68/* Splits expression EXPR to a variable part VAR and constant OFFSET. */
69
70static void
71split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
72{
73 tree type = TREE_TYPE (expr);
74 tree op0, op1;
75 bool negate = false;
76
77 *var = expr;
78 mpz_set_ui (offset, 0);
79
80 switch (TREE_CODE (expr))
81 {
82 case MINUS_EXPR:
83 negate = true;
84 /* Fallthru. */
85
86 case PLUS_EXPR:
87 case POINTER_PLUS_EXPR:
88 op0 = TREE_OPERAND (expr, 0);
89 op1 = TREE_OPERAND (expr, 1);
90
91 if (TREE_CODE (op1) != INTEGER_CST)
92 break;
93
94 *var = op0;
95 /* Always sign extend the offset. */
96 wi::to_mpz (wi::to_wide (t: op1), offset, SIGNED);
97 if (negate)
98 mpz_neg (gmp_w: offset, gmp_u: offset);
99 break;
100
101 case INTEGER_CST:
102 *var = build_int_cst_type (type, 0);
103 wi::to_mpz (wi::to_wide (t: expr), offset, TYPE_SIGN (type));
104 break;
105
106 default:
107 break;
108 }
109}
110
111/* From condition C0 CMP C1 derives information regarding the value range
112 of VAR, which is of TYPE. Results are stored in to BELOW and UP. */
113
114static void
115refine_value_range_using_guard (tree type, tree var,
116 tree c0, enum tree_code cmp, tree c1,
117 mpz_t below, mpz_t up)
118{
119 tree varc0, varc1, ctype;
120 mpz_t offc0, offc1;
121 mpz_t mint, maxt, minc1, maxc1;
122 bool no_wrap = nowrap_type_p (type);
123 bool c0_ok, c1_ok;
124 signop sgn = TYPE_SIGN (type);
125
126 switch (cmp)
127 {
128 case LT_EXPR:
129 case LE_EXPR:
130 case GT_EXPR:
131 case GE_EXPR:
132 STRIP_SIGN_NOPS (c0);
133 STRIP_SIGN_NOPS (c1);
134 ctype = TREE_TYPE (c0);
135 if (!useless_type_conversion_p (ctype, type))
136 return;
137
138 break;
139
140 case EQ_EXPR:
141 /* We could derive quite precise information from EQ_EXPR, however,
142 such a guard is unlikely to appear, so we do not bother with
143 handling it. */
144 return;
145
146 case NE_EXPR:
147 /* NE_EXPR comparisons do not contain much of useful information,
148 except for cases of comparing with bounds. */
149 if (TREE_CODE (c1) != INTEGER_CST
150 || !INTEGRAL_TYPE_P (type))
151 return;
152
153 /* Ensure that the condition speaks about an expression in the same
154 type as X and Y. */
155 ctype = TREE_TYPE (c0);
156 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
157 return;
158 c0 = fold_convert (type, c0);
159 c1 = fold_convert (type, c1);
160
161 if (operand_equal_p (var, c0, flags: 0))
162 {
163 /* Case of comparing VAR with its below/up bounds. */
164 auto_mpz valc1;
165 wi::to_mpz (wi::to_wide (t: c1), valc1, TYPE_SIGN (type));
166 if (mpz_cmp (valc1, below) == 0)
167 cmp = GT_EXPR;
168 if (mpz_cmp (valc1, up) == 0)
169 cmp = LT_EXPR;
170 }
171 else
172 {
173 /* Case of comparing with the bounds of the type. */
174 wide_int min = wi::min_value (type);
175 wide_int max = wi::max_value (type);
176
177 if (wi::to_wide (t: c1) == min)
178 cmp = GT_EXPR;
179 if (wi::to_wide (t: c1) == max)
180 cmp = LT_EXPR;
181 }
182
183 /* Quick return if no useful information. */
184 if (cmp == NE_EXPR)
185 return;
186
187 break;
188
189 default:
190 return;
191 }
192
193 mpz_init (offc0);
194 mpz_init (offc1);
195 split_to_var_and_offset (expr: expand_simple_operations (c0), var: &varc0, offset: offc0);
196 split_to_var_and_offset (expr: expand_simple_operations (c1), var: &varc1, offset: offc1);
197
198 /* We are only interested in comparisons of expressions based on VAR. */
199 if (operand_equal_p (var, varc1, flags: 0))
200 {
201 std::swap (a&: varc0, b&: varc1);
202 mpz_swap (offc0, offc1);
203 cmp = swap_tree_comparison (cmp);
204 }
205 else if (!operand_equal_p (var, varc0, flags: 0))
206 {
207 mpz_clear (offc0);
208 mpz_clear (offc1);
209 return;
210 }
211
212 mpz_init (mint);
213 mpz_init (maxt);
214 get_type_static_bounds (type, mint, maxt);
215 mpz_init (minc1);
216 mpz_init (maxc1);
217 Value_Range r (TREE_TYPE (varc1));
218 /* Setup range information for varc1. */
219 if (integer_zerop (varc1))
220 {
221 wi::to_mpz (0, minc1, TYPE_SIGN (type));
222 wi::to_mpz (0, maxc1, TYPE_SIGN (type));
223 }
224 else if (TREE_CODE (varc1) == SSA_NAME
225 && INTEGRAL_TYPE_P (type)
226 && get_range_query (cfun)->range_of_expr (r, expr: varc1)
227 && !r.undefined_p ()
228 && !r.varying_p ())
229 {
230 gcc_assert (wi::le_p (r.lower_bound (), r.upper_bound (), sgn));
231 wi::to_mpz (r.lower_bound (), minc1, sgn);
232 wi::to_mpz (r.upper_bound (), maxc1, sgn);
233 }
234 else
235 {
236 mpz_set (minc1, mint);
237 mpz_set (maxc1, maxt);
238 }
239
240 /* Compute valid range information for varc1 + offc1. Note nothing
241 useful can be derived if it overflows or underflows. Overflow or
242 underflow could happen when:
243
244 offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
245 offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */
246 mpz_add (minc1, minc1, offc1);
247 mpz_add (maxc1, maxc1, offc1);
248 c1_ok = (no_wrap
249 || mpz_sgn (offc1) == 0
250 || (mpz_sgn (offc1) < 0 && mpz_cmp (minc1, mint) >= 0)
251 || (mpz_sgn (offc1) > 0 && mpz_cmp (maxc1, maxt) <= 0));
252 if (!c1_ok)
253 goto end;
254
255 if (mpz_cmp (minc1, mint) < 0)
256 mpz_set (minc1, mint);
257 if (mpz_cmp (maxc1, maxt) > 0)
258 mpz_set (maxc1, maxt);
259
260 if (cmp == LT_EXPR)
261 {
262 cmp = LE_EXPR;
263 mpz_sub_ui (maxc1, maxc1, 1);
264 }
265 if (cmp == GT_EXPR)
266 {
267 cmp = GE_EXPR;
268 mpz_add_ui (minc1, minc1, 1);
269 }
270
271 /* Compute range information for varc0. If there is no overflow,
272 the condition implied that
273
274 (varc0) cmp (varc1 + offc1 - offc0)
275
276 We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
277 or the below bound if cmp is GE_EXPR.
278
279 To prove there is no overflow/underflow, we need to check below
280 four cases:
281 1) cmp == LE_EXPR && offc0 > 0
282
283 (varc0 + offc0) doesn't overflow
284 && (varc1 + offc1 - offc0) doesn't underflow
285
286 2) cmp == LE_EXPR && offc0 < 0
287
288 (varc0 + offc0) doesn't underflow
289 && (varc1 + offc1 - offc0) doesn't overfloe
290
291 In this case, (varc0 + offc0) will never underflow if we can
292 prove (varc1 + offc1 - offc0) doesn't overflow.
293
294 3) cmp == GE_EXPR && offc0 < 0
295
296 (varc0 + offc0) doesn't underflow
297 && (varc1 + offc1 - offc0) doesn't overflow
298
299 4) cmp == GE_EXPR && offc0 > 0
300
301 (varc0 + offc0) doesn't overflow
302 && (varc1 + offc1 - offc0) doesn't underflow
303
304 In this case, (varc0 + offc0) will never overflow if we can
305 prove (varc1 + offc1 - offc0) doesn't underflow.
306
307 Note we only handle case 2 and 4 in below code. */
308
309 mpz_sub (minc1, minc1, offc0);
310 mpz_sub (maxc1, maxc1, offc0);
311 c0_ok = (no_wrap
312 || mpz_sgn (offc0) == 0
313 || (cmp == LE_EXPR
314 && mpz_sgn (offc0) < 0 && mpz_cmp (maxc1, maxt) <= 0)
315 || (cmp == GE_EXPR
316 && mpz_sgn (offc0) > 0 && mpz_cmp (minc1, mint) >= 0));
317 if (!c0_ok)
318 goto end;
319
320 if (cmp == LE_EXPR)
321 {
322 if (mpz_cmp (up, maxc1) > 0)
323 mpz_set (up, maxc1);
324 }
325 else
326 {
327 if (mpz_cmp (below, minc1) < 0)
328 mpz_set (below, minc1);
329 }
330
331end:
332 mpz_clear (mint);
333 mpz_clear (maxt);
334 mpz_clear (minc1);
335 mpz_clear (maxc1);
336 mpz_clear (offc0);
337 mpz_clear (offc1);
338}
339
340/* Stores estimate on the minimum/maximum value of the expression VAR + OFF
341 in TYPE to MIN and MAX. */
342
343static void
344determine_value_range (class loop *loop, tree type, tree var, mpz_t off,
345 mpz_t min, mpz_t max)
346{
347 int cnt = 0;
348 mpz_t minm, maxm;
349 basic_block bb;
350 wide_int minv, maxv;
351 enum value_range_kind rtype = VR_VARYING;
352
353 /* If the expression is a constant, we know its value exactly. */
354 if (integer_zerop (var))
355 {
356 mpz_set (min, off);
357 mpz_set (max, off);
358 return;
359 }
360
361 get_type_static_bounds (type, min, max);
362
363 /* See if we have some range info from VRP. */
364 if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
365 {
366 edge e = loop_preheader_edge (loop);
367 signop sgn = TYPE_SIGN (type);
368 gphi_iterator gsi;
369
370 /* Either for VAR itself... */
371 Value_Range var_range (TREE_TYPE (var));
372 get_range_query (cfun)->range_of_expr (r&: var_range, expr: var);
373 if (var_range.varying_p () || var_range.undefined_p ())
374 rtype = VR_VARYING;
375 else
376 rtype = VR_RANGE;
377 if (!var_range.undefined_p ())
378 {
379 minv = var_range.lower_bound ();
380 maxv = var_range.upper_bound ();
381 }
382
383 /* Or for PHI results in loop->header where VAR is used as
384 PHI argument from the loop preheader edge. */
385 Value_Range phi_range (TREE_TYPE (var));
386 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
387 {
388 gphi *phi = gsi.phi ();
389 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
390 && get_range_query (cfun)->range_of_expr (r&: phi_range,
391 expr: gimple_phi_result (gs: phi))
392 && !phi_range.varying_p ()
393 && !phi_range.undefined_p ())
394 {
395 if (rtype != VR_RANGE)
396 {
397 rtype = VR_RANGE;
398 minv = phi_range.lower_bound ();
399 maxv = phi_range.upper_bound ();
400 }
401 else
402 {
403 minv = wi::max (x: minv, y: phi_range.lower_bound (), sgn);
404 maxv = wi::min (x: maxv, y: phi_range.upper_bound (), sgn);
405 /* If the PHI result range are inconsistent with
406 the VAR range, give up on looking at the PHI
407 results. This can happen if VR_UNDEFINED is
408 involved. */
409 if (wi::gt_p (x: minv, y: maxv, sgn))
410 {
411 Value_Range vr (TREE_TYPE (var));
412 get_range_query (cfun)->range_of_expr (r&: vr, expr: var);
413 if (vr.varying_p () || vr.undefined_p ())
414 rtype = VR_VARYING;
415 else
416 rtype = VR_RANGE;
417 if (!vr.undefined_p ())
418 {
419 minv = vr.lower_bound ();
420 maxv = vr.upper_bound ();
421 }
422 break;
423 }
424 }
425 }
426 }
427 mpz_init (minm);
428 mpz_init (maxm);
429 if (rtype != VR_RANGE)
430 {
431 mpz_set (minm, min);
432 mpz_set (maxm, max);
433 }
434 else
435 {
436 gcc_assert (wi::le_p (minv, maxv, sgn));
437 wi::to_mpz (minv, minm, sgn);
438 wi::to_mpz (maxv, maxm, sgn);
439 }
440 /* Now walk the dominators of the loop header and use the entry
441 guards to refine the estimates. */
442 for (bb = loop->header;
443 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
444 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
445 {
446 edge e;
447 tree c0, c1;
448 enum tree_code cmp;
449
450 if (!single_pred_p (bb))
451 continue;
452 e = single_pred_edge (bb);
453
454 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
455 continue;
456
457 gcond *cond = as_a <gcond *> (p: *gsi_last_bb (bb: e->src));
458 c0 = gimple_cond_lhs (gs: cond);
459 cmp = gimple_cond_code (gs: cond);
460 c1 = gimple_cond_rhs (gs: cond);
461
462 if (e->flags & EDGE_FALSE_VALUE)
463 cmp = invert_tree_comparison (cmp, false);
464
465 refine_value_range_using_guard (type, var, c0, cmp, c1, below: minm, up: maxm);
466 ++cnt;
467 }
468
469 mpz_add (minm, minm, off);
470 mpz_add (maxm, maxm, off);
471 /* If the computation may not wrap or off is zero, then this
472 is always fine. If off is negative and minv + off isn't
473 smaller than type's minimum, or off is positive and
474 maxv + off isn't bigger than type's maximum, use the more
475 precise range too. */
476 if (nowrap_type_p (type)
477 || mpz_sgn (off) == 0
478 || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
479 || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
480 {
481 mpz_set (min, minm);
482 mpz_set (max, maxm);
483 mpz_clear (minm);
484 mpz_clear (maxm);
485 return;
486 }
487 mpz_clear (minm);
488 mpz_clear (maxm);
489 }
490
491 /* If the computation may wrap, we know nothing about the value, except for
492 the range of the type. */
493 if (!nowrap_type_p (type))
494 return;
495
496 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
497 add it to MIN, otherwise to MAX. */
498 if (mpz_sgn (off) < 0)
499 mpz_add (max, max, off);
500 else
501 mpz_add (min, min, off);
502}
503
504/* Stores the bounds on the difference of the values of the expressions
505 (var + X) and (var + Y), computed in TYPE, to BNDS. */
506
507static void
508bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
509 bounds *bnds)
510{
511 int rel = mpz_cmp (x, y);
512 bool may_wrap = !nowrap_type_p (type);
513
514 /* If X == Y, then the expressions are always equal.
515 If X > Y, there are the following possibilities:
516 a) neither of var + X and var + Y overflow or underflow, or both of
517 them do. Then their difference is X - Y.
518 b) var + X overflows, and var + Y does not. Then the values of the
519 expressions are var + X - M and var + Y, where M is the range of
520 the type, and their difference is X - Y - M.
521 c) var + Y underflows and var + X does not. Their difference again
522 is M - X + Y.
523 Therefore, if the arithmetics in type does not overflow, then the
524 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
525 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
526 (X - Y, X - Y + M). */
527
528 if (rel == 0)
529 {
530 mpz_set_ui (bnds->below, 0);
531 mpz_set_ui (bnds->up, 0);
532 return;
533 }
534
535 auto_mpz m;
536 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
537 mpz_add_ui (m, m, 1);
538 mpz_sub (bnds->up, x, y);
539 mpz_set (bnds->below, bnds->up);
540
541 if (may_wrap)
542 {
543 if (rel > 0)
544 mpz_sub (bnds->below, bnds->below, m);
545 else
546 mpz_add (bnds->up, bnds->up, m);
547 }
548}
549
550/* From condition C0 CMP C1 derives information regarding the
551 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
552 and stores it to BNDS. */
553
554static void
555refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
556 tree vary, mpz_t offy,
557 tree c0, enum tree_code cmp, tree c1,
558 bounds *bnds)
559{
560 tree varc0, varc1, ctype;
561 mpz_t offc0, offc1, loffx, loffy, bnd;
562 bool lbound = false;
563 bool no_wrap = nowrap_type_p (type);
564 bool x_ok, y_ok;
565
566 switch (cmp)
567 {
568 case LT_EXPR:
569 case LE_EXPR:
570 case GT_EXPR:
571 case GE_EXPR:
572 STRIP_SIGN_NOPS (c0);
573 STRIP_SIGN_NOPS (c1);
574 ctype = TREE_TYPE (c0);
575 if (!useless_type_conversion_p (ctype, type))
576 return;
577
578 break;
579
580 case EQ_EXPR:
581 /* We could derive quite precise information from EQ_EXPR, however, such
582 a guard is unlikely to appear, so we do not bother with handling
583 it. */
584 return;
585
586 case NE_EXPR:
587 /* NE_EXPR comparisons do not contain much of useful information, except for
588 special case of comparing with the bounds of the type. */
589 if (TREE_CODE (c1) != INTEGER_CST
590 || !INTEGRAL_TYPE_P (type))
591 return;
592
593 /* Ensure that the condition speaks about an expression in the same type
594 as X and Y. */
595 ctype = TREE_TYPE (c0);
596 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
597 return;
598 c0 = fold_convert (type, c0);
599 c1 = fold_convert (type, c1);
600
601 if (TYPE_MIN_VALUE (type)
602 && operand_equal_p (c1, TYPE_MIN_VALUE (type), flags: 0))
603 {
604 cmp = GT_EXPR;
605 break;
606 }
607 if (TYPE_MAX_VALUE (type)
608 && operand_equal_p (c1, TYPE_MAX_VALUE (type), flags: 0))
609 {
610 cmp = LT_EXPR;
611 break;
612 }
613
614 return;
615 default:
616 return;
617 }
618
619 mpz_init (offc0);
620 mpz_init (offc1);
621 split_to_var_and_offset (expr: expand_simple_operations (c0), var: &varc0, offset: offc0);
622 split_to_var_and_offset (expr: expand_simple_operations (c1), var: &varc1, offset: offc1);
623
624 /* We are only interested in comparisons of expressions based on VARX and
625 VARY. TODO -- we might also be able to derive some bounds from
626 expressions containing just one of the variables. */
627
628 if (operand_equal_p (varx, varc1, flags: 0))
629 {
630 std::swap (a&: varc0, b&: varc1);
631 mpz_swap (offc0, offc1);
632 cmp = swap_tree_comparison (cmp);
633 }
634
635 if (!operand_equal_p (varx, varc0, flags: 0)
636 || !operand_equal_p (vary, varc1, flags: 0))
637 goto end;
638
639 mpz_init_set (loffx, offx);
640 mpz_init_set (loffy, offy);
641
642 if (cmp == GT_EXPR || cmp == GE_EXPR)
643 {
644 std::swap (a&: varx, b&: vary);
645 mpz_swap (offc0, offc1);
646 mpz_swap (loffx, loffy);
647 cmp = swap_tree_comparison (cmp);
648 lbound = true;
649 }
650
651 /* If there is no overflow, the condition implies that
652
653 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
654
655 The overflows and underflows may complicate things a bit; each
656 overflow decreases the appropriate offset by M, and underflow
657 increases it by M. The above inequality would not necessarily be
658 true if
659
660 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
661 VARX + OFFC0 overflows, but VARX + OFFX does not.
662 This may only happen if OFFX < OFFC0.
663 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
664 VARY + OFFC1 underflows and VARY + OFFY does not.
665 This may only happen if OFFY > OFFC1. */
666
667 if (no_wrap)
668 {
669 x_ok = true;
670 y_ok = true;
671 }
672 else
673 {
674 x_ok = (integer_zerop (varx)
675 || mpz_cmp (loffx, offc0) >= 0);
676 y_ok = (integer_zerop (vary)
677 || mpz_cmp (loffy, offc1) <= 0);
678 }
679
680 if (x_ok && y_ok)
681 {
682 mpz_init (bnd);
683 mpz_sub (bnd, loffx, loffy);
684 mpz_add (bnd, bnd, offc1);
685 mpz_sub (bnd, bnd, offc0);
686
687 if (cmp == LT_EXPR)
688 mpz_sub_ui (bnd, bnd, 1);
689
690 if (lbound)
691 {
692 mpz_neg (gmp_w: bnd, gmp_u: bnd);
693 if (mpz_cmp (bnds->below, bnd) < 0)
694 mpz_set (bnds->below, bnd);
695 }
696 else
697 {
698 if (mpz_cmp (bnd, bnds->up) < 0)
699 mpz_set (bnds->up, bnd);
700 }
701 mpz_clear (bnd);
702 }
703
704 mpz_clear (loffx);
705 mpz_clear (loffy);
706end:
707 mpz_clear (offc0);
708 mpz_clear (offc1);
709}
710
711/* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
712 The subtraction is considered to be performed in arbitrary precision,
713 without overflows.
714
715 We do not attempt to be too clever regarding the value ranges of X and
716 Y; most of the time, they are just integers or ssa names offsetted by
717 integer. However, we try to use the information contained in the
718 comparisons before the loop (usually created by loop header copying). */
719
720static void
721bound_difference (class loop *loop, tree x, tree y, bounds *bnds)
722{
723 tree type = TREE_TYPE (x);
724 tree varx, vary;
725 mpz_t offx, offy;
726 int cnt = 0;
727 edge e;
728 basic_block bb;
729 tree c0, c1;
730 enum tree_code cmp;
731
732 /* Get rid of unnecessary casts, but preserve the value of
733 the expressions. */
734 STRIP_SIGN_NOPS (x);
735 STRIP_SIGN_NOPS (y);
736
737 mpz_init (bnds->below);
738 mpz_init (bnds->up);
739 mpz_init (offx);
740 mpz_init (offy);
741 split_to_var_and_offset (expr: x, var: &varx, offset: offx);
742 split_to_var_and_offset (expr: y, var: &vary, offset: offy);
743
744 if (!integer_zerop (varx)
745 && operand_equal_p (varx, vary, flags: 0))
746 {
747 /* Special case VARX == VARY -- we just need to compare the
748 offsets. The matters are a bit more complicated in the
749 case addition of offsets may wrap. */
750 bound_difference_of_offsetted_base (type, x: offx, y: offy, bnds);
751 }
752 else
753 {
754 /* Otherwise, use the value ranges to determine the initial
755 estimates on below and up. */
756 auto_mpz minx, maxx, miny, maxy;
757 determine_value_range (loop, type, var: varx, off: offx, min: minx, max: maxx);
758 determine_value_range (loop, type, var: vary, off: offy, min: miny, max: maxy);
759
760 mpz_sub (bnds->below, minx, maxy);
761 mpz_sub (bnds->up, maxx, miny);
762 }
763
764 /* If both X and Y are constants, we cannot get any more precise. */
765 if (integer_zerop (varx) && integer_zerop (vary))
766 goto end;
767
768 /* Now walk the dominators of the loop header and use the entry
769 guards to refine the estimates. */
770 for (bb = loop->header;
771 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
772 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
773 {
774 if (!single_pred_p (bb))
775 continue;
776 e = single_pred_edge (bb);
777
778 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
779 continue;
780
781 gcond *cond = as_a <gcond *> (p: *gsi_last_bb (bb: e->src));
782 c0 = gimple_cond_lhs (gs: cond);
783 cmp = gimple_cond_code (gs: cond);
784 c1 = gimple_cond_rhs (gs: cond);
785
786 if (e->flags & EDGE_FALSE_VALUE)
787 cmp = invert_tree_comparison (cmp, false);
788
789 refine_bounds_using_guard (type, varx, offx, vary, offy,
790 c0, cmp, c1, bnds);
791 ++cnt;
792 }
793
794end:
795 mpz_clear (offx);
796 mpz_clear (offy);
797}
798
799/* Update the bounds in BNDS that restrict the value of X to the bounds
800 that restrict the value of X + DELTA. X can be obtained as a
801 difference of two values in TYPE. */
802
803static void
804bounds_add (bounds *bnds, const widest_int &delta, tree type)
805{
806 mpz_t mdelta, max;
807
808 mpz_init (mdelta);
809 wi::to_mpz (delta, mdelta, SIGNED);
810
811 mpz_init (max);
812 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
813
814 mpz_add (bnds->up, bnds->up, mdelta);
815 mpz_add (bnds->below, bnds->below, mdelta);
816
817 if (mpz_cmp (bnds->up, max) > 0)
818 mpz_set (bnds->up, max);
819
820 mpz_neg (gmp_w: max, gmp_u: max);
821 if (mpz_cmp (bnds->below, max) < 0)
822 mpz_set (bnds->below, max);
823
824 mpz_clear (mdelta);
825 mpz_clear (max);
826}
827
828/* Update the bounds in BNDS that restrict the value of X to the bounds
829 that restrict the value of -X. */
830
831static void
832bounds_negate (bounds *bnds)
833{
834 mpz_t tmp;
835
836 mpz_init_set (tmp, bnds->up);
837 mpz_neg (gmp_w: bnds->up, gmp_u: bnds->below);
838 mpz_neg (gmp_w: bnds->below, gmp_u: tmp);
839 mpz_clear (tmp);
840}
841
842/* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
843
844static tree
845inverse (tree x, tree mask)
846{
847 tree type = TREE_TYPE (x);
848 tree rslt;
849 unsigned ctr = tree_floor_log2 (mask);
850
851 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
852 {
853 unsigned HOST_WIDE_INT ix;
854 unsigned HOST_WIDE_INT imask;
855 unsigned HOST_WIDE_INT irslt = 1;
856
857 gcc_assert (cst_and_fits_in_hwi (x));
858 gcc_assert (cst_and_fits_in_hwi (mask));
859
860 ix = int_cst_value (x);
861 imask = int_cst_value (mask);
862
863 for (; ctr; ctr--)
864 {
865 irslt *= ix;
866 ix *= ix;
867 }
868 irslt &= imask;
869
870 rslt = build_int_cst_type (type, irslt);
871 }
872 else
873 {
874 rslt = build_int_cst (type, 1);
875 for (; ctr; ctr--)
876 {
877 rslt = int_const_binop (MULT_EXPR, rslt, x);
878 x = int_const_binop (MULT_EXPR, x, x);
879 }
880 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
881 }
882
883 return rslt;
884}
885
886/* Derives the upper bound BND on the number of executions of loop with exit
887 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
888 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
889 that the loop ends through this exit, i.e., the induction variable ever
890 reaches the value of C.
891
892 The value C is equal to final - base, where final and base are the final and
893 initial value of the actual induction variable in the analysed loop. BNDS
894 bounds the value of this difference when computed in signed type with
895 unbounded range, while the computation of C is performed in an unsigned
896 type with the range matching the range of the type of the induction variable.
897 In particular, BNDS.up contains an upper bound on C in the following cases:
898 -- if the iv must reach its final value without overflow, i.e., if
899 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
900 -- if final >= base, which we know to hold when BNDS.below >= 0. */
901
902static void
903number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
904 bounds *bnds, bool exit_must_be_taken)
905{
906 widest_int max;
907 mpz_t d;
908 tree type = TREE_TYPE (c);
909 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
910 || mpz_sgn (bnds->below) >= 0);
911
912 if (integer_onep (s)
913 || (TREE_CODE (c) == INTEGER_CST
914 && TREE_CODE (s) == INTEGER_CST
915 && wi::mod_trunc (x: wi::to_wide (t: c), y: wi::to_wide (t: s),
916 TYPE_SIGN (type)) == 0)
917 || (TYPE_OVERFLOW_UNDEFINED (type)
918 && multiple_of_p (type, c, s)))
919 {
920 /* If C is an exact multiple of S, then its value will be reached before
921 the induction variable overflows (unless the loop is exited in some
922 other way before). Note that the actual induction variable in the
923 loop (which ranges from base to final instead of from 0 to C) may
924 overflow, in which case BNDS.up will not be giving a correct upper
925 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
926 no_overflow = true;
927 exit_must_be_taken = true;
928 }
929
930 /* If the induction variable can overflow, the number of iterations is at
931 most the period of the control variable (or infinite, but in that case
932 the whole # of iterations analysis will fail). */
933 if (!no_overflow)
934 {
935 max = wi::mask <widest_int> (TYPE_PRECISION (type)
936 - wi::ctz (wi::to_wide (t: s)), negate_p: false);
937 wi::to_mpz (max, bnd, UNSIGNED);
938 return;
939 }
940
941 /* Now we know that the induction variable does not overflow, so the loop
942 iterates at most (range of type / S) times. */
943 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);
944
945 /* If the induction variable is guaranteed to reach the value of C before
946 overflow, ... */
947 if (exit_must_be_taken)
948 {
949 /* ... then we can strengthen this to C / S, and possibly we can use
950 the upper bound on C given by BNDS. */
951 if (TREE_CODE (c) == INTEGER_CST)
952 wi::to_mpz (wi::to_wide (t: c), bnd, UNSIGNED);
953 else if (bnds_u_valid)
954 mpz_set (bnd, bnds->up);
955 }
956
957 mpz_init (d);
958 wi::to_mpz (wi::to_wide (t: s), d, UNSIGNED);
959 mpz_fdiv_q (bnd, bnd, d);
960 mpz_clear (d);
961}
962
963/* Determines number of iterations of loop whose ending condition
964 is IV <> FINAL. TYPE is the type of the iv. The number of
965 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
966 we know that the exit must be taken eventually, i.e., that the IV
967 ever reaches the value FINAL (we derived this earlier, and possibly set
968 NITER->assumptions to make sure this is the case). BNDS contains the
969 bounds on the difference FINAL - IV->base. */
970
971static bool
972number_of_iterations_ne (class loop *loop, tree type, affine_iv *iv,
973 tree final, class tree_niter_desc *niter,
974 bool exit_must_be_taken, bounds *bnds)
975{
976 tree niter_type = unsigned_type_for (type);
977 tree s, c, d, bits, assumption, tmp, bound;
978
979 niter->control = *iv;
980 niter->bound = final;
981 niter->cmp = NE_EXPR;
982
983 /* Rearrange the terms so that we get inequality S * i <> C, with S
984 positive. Also cast everything to the unsigned type. If IV does
985 not overflow, BNDS bounds the value of C. Also, this is the
986 case if the computation |FINAL - IV->base| does not overflow, i.e.,
987 if BNDS->below in the result is nonnegative. */
988 if (tree_int_cst_sign_bit (iv->step))
989 {
990 s = fold_convert (niter_type,
991 fold_build1 (NEGATE_EXPR, type, iv->step));
992 c = fold_build2 (MINUS_EXPR, niter_type,
993 fold_convert (niter_type, iv->base),
994 fold_convert (niter_type, final));
995 bounds_negate (bnds);
996 }
997 else
998 {
999 s = fold_convert (niter_type, iv->step);
1000 c = fold_build2 (MINUS_EXPR, niter_type,
1001 fold_convert (niter_type, final),
1002 fold_convert (niter_type, iv->base));
1003 }
1004
1005 auto_mpz max;
1006 number_of_iterations_ne_max (bnd: max, no_overflow: iv->no_overflow, c, s, bnds,
1007 exit_must_be_taken);
1008 niter->max = widest_int::from (x: wi::from_mpz (niter_type, max, false),
1009 TYPE_SIGN (niter_type));
1010
1011 /* Compute no-overflow information for the control iv. This can be
1012 proven when below two conditions are satisfied:
1013
1014 1) IV evaluates toward FINAL at beginning, i.e:
1015 base <= FINAL ; step > 0
1016 base >= FINAL ; step < 0
1017
1018 2) |FINAL - base| is an exact multiple of step.
1019
1020 Unfortunately, it's hard to prove above conditions after pass loop-ch
1021 because loop with exit condition (IV != FINAL) usually will be guarded
1022 by initial-condition (IV.base - IV.step != FINAL). In this case, we
1023 can alternatively try to prove below conditions:
1024
1025 1') IV evaluates toward FINAL at beginning, i.e:
1026 new_base = base - step < FINAL ; step > 0
1027 && base - step doesn't underflow
1028 new_base = base - step > FINAL ; step < 0
1029 && base - step doesn't overflow
1030
1031 Please refer to PR34114 as an example of loop-ch's impact.
1032
1033 Note, for NE_EXPR, base equals to FINAL is a special case, in
1034 which the loop exits immediately, and the iv does not overflow.
1035
1036 Also note, we prove condition 2) by checking base and final seperately
1037 along with condition 1) or 1'). Since we ensure the difference
1038 computation of c does not wrap with cond below and the adjusted s
1039 will fit a signed type as well as an unsigned we can safely do
1040 this using the type of the IV if it is not pointer typed. */
1041 tree mtype = type;
1042 if (POINTER_TYPE_P (type))
1043 mtype = niter_type;
1044 if (!niter->control.no_overflow
1045 && (integer_onep (s)
1046 || (multiple_of_p (mtype, fold_convert (mtype, iv->base),
1047 fold_convert (mtype, s), false)
1048 && multiple_of_p (mtype, fold_convert (mtype, final),
1049 fold_convert (mtype, s), false))))
1050 {
1051 tree t, cond, relaxed_cond = boolean_false_node;
1052
1053 if (tree_int_cst_sign_bit (iv->step))
1054 {
1055 cond = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
1056 if (TREE_CODE (type) == INTEGER_TYPE)
1057 {
1058 /* Only when base - step doesn't overflow. */
1059 t = TYPE_MAX_VALUE (type);
1060 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1061 t = fold_build2 (GE_EXPR, boolean_type_node, t, iv->base);
1062 if (integer_nonzerop (t))
1063 {
1064 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1065 relaxed_cond = fold_build2 (GT_EXPR, boolean_type_node, t,
1066 final);
1067 }
1068 }
1069 }
1070 else
1071 {
1072 cond = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
1073 if (TREE_CODE (type) == INTEGER_TYPE)
1074 {
1075 /* Only when base - step doesn't underflow. */
1076 t = TYPE_MIN_VALUE (type);
1077 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1078 t = fold_build2 (LE_EXPR, boolean_type_node, t, iv->base);
1079 if (integer_nonzerop (t))
1080 {
1081 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1082 relaxed_cond = fold_build2 (LT_EXPR, boolean_type_node, t,
1083 final);
1084 }
1085 }
1086 }
1087
1088 t = simplify_using_initial_conditions (loop, cond);
1089 if (!t || !integer_onep (t))
1090 t = simplify_using_initial_conditions (loop, relaxed_cond);
1091
1092 if (t && integer_onep (t))
1093 {
1094 niter->control.no_overflow = true;
1095 niter->niter = fold_build2 (EXACT_DIV_EXPR, niter_type, c, s);
1096 return true;
1097 }
1098 }
1099
1100 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
1101 is infinite. Otherwise, the number of iterations is
1102 (inverse(s/d) * (c/d)) mod (size of mode/d). */
1103 bits = num_ending_zeros (s);
1104 bound = build_low_bits_mask (niter_type,
1105 (TYPE_PRECISION (niter_type)
1106 - tree_to_uhwi (bits)));
1107
1108 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
1109 build_int_cst (niter_type, 1), bits);
1110 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
1111
1112 if (!exit_must_be_taken)
1113 {
1114 /* If we cannot assume that the exit is taken eventually, record the
1115 assumptions for divisibility of c. */
1116 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
1117 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
1118 assumption, build_int_cst (niter_type, 0));
1119 if (!integer_nonzerop (assumption))
1120 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1121 niter->assumptions, assumption);
1122 }
1123
1124 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
1125 if (integer_onep (s))
1126 {
1127 niter->niter = c;
1128 }
1129 else
1130 {
1131 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
1132 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
1133 }
1134 return true;
1135}
1136
1137/* Checks whether we can determine the final value of the control variable
1138 of the loop with ending condition IV0 < IV1 (computed in TYPE).
1139 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
1140 of the step. The assumptions necessary to ensure that the computation
1141 of the final value does not overflow are recorded in NITER. If we
1142 find the final value, we adjust DELTA and return TRUE. Otherwise
1143 we return false. BNDS bounds the value of IV1->base - IV0->base,
1144 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
1145 true if we know that the exit must be taken eventually. */
1146
1147static bool
1148number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
1149 class tree_niter_desc *niter,
1150 tree *delta, tree step,
1151 bool exit_must_be_taken, bounds *bnds)
1152{
1153 tree niter_type = TREE_TYPE (step);
1154 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
1155 tree tmod;
1156 tree assumption = boolean_true_node, bound, noloop;
1157 bool fv_comp_no_overflow;
1158 tree type1 = type;
1159 if (POINTER_TYPE_P (type))
1160 type1 = sizetype;
1161
1162 if (TREE_CODE (mod) != INTEGER_CST)
1163 return false;
1164 if (integer_nonzerop (mod))
1165 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
1166 tmod = fold_convert (type1, mod);
1167
1168 auto_mpz mmod;
1169 wi::to_mpz (wi::to_wide (t: mod), mmod, UNSIGNED);
1170 mpz_neg (gmp_w: mmod, gmp_u: mmod);
1171
1172 /* If the induction variable does not overflow and the exit is taken,
1173 then the computation of the final value does not overflow. This is
1174 also obviously the case if the new final value is equal to the
1175 current one. Finally, we postulate this for pointer type variables,
1176 as the code cannot rely on the object to that the pointer points being
1177 placed at the end of the address space (and more pragmatically,
1178 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
1179 if (integer_zerop (mod) || POINTER_TYPE_P (type))
1180 fv_comp_no_overflow = true;
1181 else if (!exit_must_be_taken)
1182 fv_comp_no_overflow = false;
1183 else
1184 fv_comp_no_overflow =
1185 (iv0->no_overflow && integer_nonzerop (iv0->step))
1186 || (iv1->no_overflow && integer_nonzerop (iv1->step));
1187
1188 if (integer_nonzerop (iv0->step))
1189 {
1190 /* The final value of the iv is iv1->base + MOD, assuming that this
1191 computation does not overflow, and that
1192 iv0->base <= iv1->base + MOD. */
1193 if (!fv_comp_no_overflow)
1194 {
1195 bound = fold_build2 (MINUS_EXPR, type1,
1196 TYPE_MAX_VALUE (type1), tmod);
1197 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1198 iv1->base, bound);
1199 if (integer_zerop (assumption))
1200 return false;
1201 }
1202 if (mpz_cmp (mmod, bnds->below) < 0)
1203 noloop = boolean_false_node;
1204 else if (POINTER_TYPE_P (type))
1205 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1206 iv0->base,
1207 fold_build_pointer_plus (iv1->base, tmod));
1208 else
1209 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1210 iv0->base,
1211 fold_build2 (PLUS_EXPR, type1,
1212 iv1->base, tmod));
1213 }
1214 else
1215 {
1216 /* The final value of the iv is iv0->base - MOD, assuming that this
1217 computation does not overflow, and that
1218 iv0->base - MOD <= iv1->base. */
1219 if (!fv_comp_no_overflow)
1220 {
1221 bound = fold_build2 (PLUS_EXPR, type1,
1222 TYPE_MIN_VALUE (type1), tmod);
1223 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1224 iv0->base, bound);
1225 if (integer_zerop (assumption))
1226 return false;
1227 }
1228 if (mpz_cmp (mmod, bnds->below) < 0)
1229 noloop = boolean_false_node;
1230 else if (POINTER_TYPE_P (type))
1231 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1232 fold_build_pointer_plus (iv0->base,
1233 fold_build1 (NEGATE_EXPR,
1234 type1, tmod)),
1235 iv1->base);
1236 else
1237 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1238 fold_build2 (MINUS_EXPR, type1,
1239 iv0->base, tmod),
1240 iv1->base);
1241 }
1242
1243 if (!integer_nonzerop (assumption))
1244 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1245 niter->assumptions,
1246 assumption);
1247 if (!integer_zerop (noloop))
1248 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1249 niter->may_be_zero,
1250 noloop);
1251 bounds_add (bnds, delta: wi::to_widest (t: mod), type);
1252 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
1253
1254 return true;
1255}
1256
1257/* Add assertions to NITER that ensure that the control variable of the loop
1258 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
1259 are TYPE. Returns false if we can prove that there is an overflow, true
1260 otherwise. STEP is the absolute value of the step. */
1261
1262static bool
1263assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1264 class tree_niter_desc *niter, tree step)
1265{
1266 tree bound, d, assumption, diff;
1267 tree niter_type = TREE_TYPE (step);
1268
1269 if (integer_nonzerop (iv0->step))
1270 {
1271 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
1272 if (iv0->no_overflow)
1273 return true;
1274
1275 /* If iv0->base is a constant, we can determine the last value before
1276 overflow precisely; otherwise we conservatively assume
1277 MAX - STEP + 1. */
1278
1279 if (TREE_CODE (iv0->base) == INTEGER_CST)
1280 {
1281 d = fold_build2 (MINUS_EXPR, niter_type,
1282 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
1283 fold_convert (niter_type, iv0->base));
1284 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1285 }
1286 else
1287 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1288 build_int_cst (niter_type, 1));
1289 bound = fold_build2 (MINUS_EXPR, type,
1290 TYPE_MAX_VALUE (type), fold_convert (type, diff));
1291 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1292 iv1->base, bound);
1293 }
1294 else
1295 {
1296 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
1297 if (iv1->no_overflow)
1298 return true;
1299
1300 if (TREE_CODE (iv1->base) == INTEGER_CST)
1301 {
1302 d = fold_build2 (MINUS_EXPR, niter_type,
1303 fold_convert (niter_type, iv1->base),
1304 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
1305 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1306 }
1307 else
1308 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1309 build_int_cst (niter_type, 1));
1310 bound = fold_build2 (PLUS_EXPR, type,
1311 TYPE_MIN_VALUE (type), fold_convert (type, diff));
1312 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1313 iv0->base, bound);
1314 }
1315
1316 if (integer_zerop (assumption))
1317 return false;
1318 if (!integer_nonzerop (assumption))
1319 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1320 niter->assumptions, assumption);
1321
1322 iv0->no_overflow = true;
1323 iv1->no_overflow = true;
1324 return true;
1325}
1326
1327/* Add an assumption to NITER that a loop whose ending condition
1328 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
1329 bounds the value of IV1->base - IV0->base. */
1330
1331static void
1332assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1333 class tree_niter_desc *niter, bounds *bnds)
1334{
1335 tree assumption = boolean_true_node, bound, diff;
1336 tree mbz, mbzl, mbzr, type1;
1337 bool rolls_p, no_overflow_p;
1338 widest_int dstep;
1339 mpz_t mstep, max;
1340
1341 /* We are going to compute the number of iterations as
1342 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
1343 variant of TYPE. This formula only works if
1344
1345 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1346
1347 (where MAX is the maximum value of the unsigned variant of TYPE, and
1348 the computations in this formula are performed in full precision,
1349 i.e., without overflows).
1350
1351 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1352 we have a condition of the form iv0->base - step < iv1->base before the loop,
1353 and for loops iv0->base < iv1->base - step * i the condition
1354 iv0->base < iv1->base + step, due to loop header copying, which enable us
1355 to prove the lower bound.
1356
1357 The upper bound is more complicated. Unless the expressions for initial
1358 and final value themselves contain enough information, we usually cannot
1359 derive it from the context. */
1360
1361 /* First check whether the answer does not follow from the bounds we gathered
1362 before. */
1363 if (integer_nonzerop (iv0->step))
1364 dstep = wi::to_widest (t: iv0->step);
1365 else
1366 {
1367 dstep = wi::sext (x: wi::to_widest (t: iv1->step), TYPE_PRECISION (type));
1368 dstep = -dstep;
1369 }
1370
1371 mpz_init (mstep);
1372 wi::to_mpz (dstep, mstep, UNSIGNED);
1373 mpz_neg (gmp_w: mstep, gmp_u: mstep);
1374 mpz_add_ui (mstep, mstep, 1);
1375
1376 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
1377
1378 mpz_init (max);
1379 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
1380 mpz_add (max, max, mstep);
1381 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
1382 /* For pointers, only values lying inside a single object
1383 can be compared or manipulated by pointer arithmetics.
1384 Gcc in general does not allow or handle objects larger
1385 than half of the address space, hence the upper bound
1386 is satisfied for pointers. */
1387 || POINTER_TYPE_P (type));
1388 mpz_clear (mstep);
1389 mpz_clear (max);
1390
1391 if (rolls_p && no_overflow_p)
1392 return;
1393
1394 type1 = type;
1395 if (POINTER_TYPE_P (type))
1396 type1 = sizetype;
1397
1398 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1399 we must be careful not to introduce overflow. */
1400
1401 if (integer_nonzerop (iv0->step))
1402 {
1403 diff = fold_build2 (MINUS_EXPR, type1,
1404 iv0->step, build_int_cst (type1, 1));
1405
1406 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1407 0 address never belongs to any object, we can assume this for
1408 pointers. */
1409 if (!POINTER_TYPE_P (type))
1410 {
1411 bound = fold_build2 (PLUS_EXPR, type1,
1412 TYPE_MIN_VALUE (type), diff);
1413 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1414 iv0->base, bound);
1415 }
1416
1417 /* And then we can compute iv0->base - diff, and compare it with
1418 iv1->base. */
1419 mbzl = fold_build2 (MINUS_EXPR, type1,
1420 fold_convert (type1, iv0->base), diff);
1421 mbzr = fold_convert (type1, iv1->base);
1422 }
1423 else
1424 {
1425 diff = fold_build2 (PLUS_EXPR, type1,
1426 iv1->step, build_int_cst (type1, 1));
1427
1428 if (!POINTER_TYPE_P (type))
1429 {
1430 bound = fold_build2 (PLUS_EXPR, type1,
1431 TYPE_MAX_VALUE (type), diff);
1432 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1433 iv1->base, bound);
1434 }
1435
1436 mbzl = fold_convert (type1, iv0->base);
1437 mbzr = fold_build2 (MINUS_EXPR, type1,
1438 fold_convert (type1, iv1->base), diff);
1439 }
1440
1441 if (!integer_nonzerop (assumption))
1442 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1443 niter->assumptions, assumption);
1444 if (!rolls_p)
1445 {
1446 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1447 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1448 niter->may_be_zero, mbz);
1449 }
1450}
1451
1452/* Determines number of iterations of loop whose ending condition
1453 is IV0 < IV1 which likes: {base, -C} < n, or n < {base, C}.
1454 The number of iterations is stored to NITER. */
1455
1456static bool
1457number_of_iterations_until_wrap (class loop *loop, tree type, affine_iv *iv0,
1458 affine_iv *iv1, class tree_niter_desc *niter)
1459{
1460 tree niter_type = unsigned_type_for (type);
1461 tree step, num, assumptions, may_be_zero, span;
1462 wide_int high, low, max, min;
1463
1464 may_be_zero = fold_build2 (LE_EXPR, boolean_type_node, iv1->base, iv0->base);
1465 if (integer_onep (may_be_zero))
1466 return false;
1467
1468 int prec = TYPE_PRECISION (type);
1469 signop sgn = TYPE_SIGN (type);
1470 min = wi::min_value (prec, sgn);
1471 max = wi::max_value (prec, sgn);
1472
1473 /* n < {base, C}. */
1474 if (integer_zerop (iv0->step) && !tree_int_cst_sign_bit (iv1->step))
1475 {
1476 step = iv1->step;
1477 /* MIN + C - 1 <= n. */
1478 tree last = wide_int_to_tree (type, cst: min + wi::to_wide (t: step) - 1);
1479 assumptions = fold_build2 (LE_EXPR, boolean_type_node, last, iv0->base);
1480 if (integer_zerop (assumptions))
1481 return false;
1482
1483 num = fold_build2 (MINUS_EXPR, niter_type,
1484 wide_int_to_tree (niter_type, max),
1485 fold_convert (niter_type, iv1->base));
1486
1487 /* When base has the form iv + 1, if we know iv >= n, then iv + 1 < n
1488 only when iv + 1 overflows, i.e. when iv == TYPE_VALUE_MAX. */
1489 if (sgn == UNSIGNED
1490 && integer_onep (step)
1491 && TREE_CODE (iv1->base) == PLUS_EXPR
1492 && integer_onep (TREE_OPERAND (iv1->base, 1)))
1493 {
1494 tree cond = fold_build2 (GE_EXPR, boolean_type_node,
1495 TREE_OPERAND (iv1->base, 0), iv0->base);
1496 cond = simplify_using_initial_conditions (loop, cond);
1497 if (integer_onep (cond))
1498 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node,
1499 TREE_OPERAND (iv1->base, 0),
1500 TYPE_MAX_VALUE (type));
1501 }
1502
1503 high = max;
1504 if (TREE_CODE (iv1->base) == INTEGER_CST)
1505 low = wi::to_wide (t: iv1->base) - 1;
1506 else if (TREE_CODE (iv0->base) == INTEGER_CST)
1507 low = wi::to_wide (t: iv0->base);
1508 else
1509 low = min;
1510 }
1511 /* {base, -C} < n. */
1512 else if (tree_int_cst_sign_bit (iv0->step) && integer_zerop (iv1->step))
1513 {
1514 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv0->step), iv0->step);
1515 /* MAX - C + 1 >= n. */
1516 tree last = wide_int_to_tree (type, cst: max - wi::to_wide (t: step) + 1);
1517 assumptions = fold_build2 (GE_EXPR, boolean_type_node, last, iv1->base);
1518 if (integer_zerop (assumptions))
1519 return false;
1520
1521 num = fold_build2 (MINUS_EXPR, niter_type,
1522 fold_convert (niter_type, iv0->base),
1523 wide_int_to_tree (niter_type, min));
1524 low = min;
1525 if (TREE_CODE (iv0->base) == INTEGER_CST)
1526 high = wi::to_wide (t: iv0->base) + 1;
1527 else if (TREE_CODE (iv1->base) == INTEGER_CST)
1528 high = wi::to_wide (t: iv1->base);
1529 else
1530 high = max;
1531 }
1532 else
1533 return false;
1534
1535 /* (delta + step - 1) / step */
1536 step = fold_convert (niter_type, step);
1537 num = fold_build2 (PLUS_EXPR, niter_type, num, step);
1538 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, num, step);
1539
1540 widest_int delta, s;
1541 delta = widest_int::from (x: high, sgn) - widest_int::from (x: low, sgn);
1542 s = wi::to_widest (t: step);
1543 delta = delta + s - 1;
1544 niter->max = wi::udiv_floor (x: delta, y: s);
1545
1546 niter->may_be_zero = may_be_zero;
1547
1548 if (!integer_nonzerop (assumptions))
1549 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1550 niter->assumptions, assumptions);
1551
1552 niter->control.no_overflow = false;
1553
1554 /* Update bound and exit condition as:
1555 bound = niter * STEP + (IVbase - STEP).
1556 { IVbase - STEP, +, STEP } != bound
1557 Here, biasing IVbase by 1 step makes 'bound' be the value before wrap.
1558 */
1559 tree base_type = TREE_TYPE (niter->control.base);
1560 if (POINTER_TYPE_P (base_type))
1561 {
1562 tree utype = unsigned_type_for (base_type);
1563 niter->control.base
1564 = fold_build2 (MINUS_EXPR, utype,
1565 fold_convert (utype, niter->control.base),
1566 fold_convert (utype, niter->control.step));
1567 niter->control.base = fold_convert (base_type, niter->control.base);
1568 }
1569 else
1570 niter->control.base
1571 = fold_build2 (MINUS_EXPR, base_type, niter->control.base,
1572 niter->control.step);
1573
1574 span = fold_build2 (MULT_EXPR, niter_type, niter->niter,
1575 fold_convert (niter_type, niter->control.step));
1576 niter->bound = fold_build2 (PLUS_EXPR, niter_type, span,
1577 fold_convert (niter_type, niter->control.base));
1578 niter->bound = fold_convert (type, niter->bound);
1579 niter->cmp = NE_EXPR;
1580
1581 return true;
1582}
1583
1584/* Determines number of iterations of loop whose ending condition
1585 is IV0 < IV1. TYPE is the type of the iv. The number of
1586 iterations is stored to NITER. BNDS bounds the difference
1587 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1588 that the exit must be taken eventually. */
1589
1590static bool
1591number_of_iterations_lt (class loop *loop, tree type, affine_iv *iv0,
1592 affine_iv *iv1, class tree_niter_desc *niter,
1593 bool exit_must_be_taken, bounds *bnds)
1594{
1595 tree niter_type = unsigned_type_for (type);
1596 tree delta, step, s;
1597 mpz_t mstep, tmp;
1598
1599 if (integer_nonzerop (iv0->step))
1600 {
1601 niter->control = *iv0;
1602 niter->cmp = LT_EXPR;
1603 niter->bound = iv1->base;
1604 }
1605 else
1606 {
1607 niter->control = *iv1;
1608 niter->cmp = GT_EXPR;
1609 niter->bound = iv0->base;
1610 }
1611
1612 /* {base, -C} < n, or n < {base, C} */
1613 if (tree_int_cst_sign_bit (iv0->step)
1614 || (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step)))
1615 return number_of_iterations_until_wrap (loop, type, iv0, iv1, niter);
1616
1617 delta = fold_build2 (MINUS_EXPR, niter_type,
1618 fold_convert (niter_type, iv1->base),
1619 fold_convert (niter_type, iv0->base));
1620
1621 /* First handle the special case that the step is +-1. */
1622 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1623 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1624 {
1625 /* for (i = iv0->base; i < iv1->base; i++)
1626
1627 or
1628
1629 for (i = iv1->base; i > iv0->base; i--).
1630
1631 In both cases # of iterations is iv1->base - iv0->base, assuming that
1632 iv1->base >= iv0->base.
1633
1634 First try to derive a lower bound on the value of
1635 iv1->base - iv0->base, computed in full precision. If the difference
1636 is nonnegative, we are done, otherwise we must record the
1637 condition. */
1638
1639 if (mpz_sgn (bnds->below) < 0)
1640 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1641 iv1->base, iv0->base);
1642 niter->niter = delta;
1643 niter->max = widest_int::from (x: wi::from_mpz (niter_type, bnds->up, false),
1644 TYPE_SIGN (niter_type));
1645 niter->control.no_overflow = true;
1646 return true;
1647 }
1648
1649 if (integer_nonzerop (iv0->step))
1650 step = fold_convert (niter_type, iv0->step);
1651 else
1652 step = fold_convert (niter_type,
1653 fold_build1 (NEGATE_EXPR, type, iv1->step));
1654
1655 /* If we can determine the final value of the control iv exactly, we can
1656 transform the condition to != comparison. In particular, this will be
1657 the case if DELTA is constant. */
1658 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, delta: &delta, step,
1659 exit_must_be_taken, bnds))
1660 {
1661 affine_iv zps;
1662
1663 zps.base = build_int_cst (niter_type, 0);
1664 zps.step = step;
1665 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1666 zps does not overflow. */
1667 zps.no_overflow = true;
1668
1669 return number_of_iterations_ne (loop, type, iv: &zps,
1670 final: delta, niter, exit_must_be_taken: true, bnds);
1671 }
1672
1673 /* Make sure that the control iv does not overflow. */
1674 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1675 return false;
1676
1677 /* We determine the number of iterations as (delta + step - 1) / step. For
1678 this to work, we must know that iv1->base >= iv0->base - step + 1,
1679 otherwise the loop does not roll. */
1680 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1681
1682 s = fold_build2 (MINUS_EXPR, niter_type,
1683 step, build_int_cst (niter_type, 1));
1684 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1685 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1686
1687 mpz_init (mstep);
1688 mpz_init (tmp);
1689 wi::to_mpz (wi::to_wide (t: step), mstep, UNSIGNED);
1690 mpz_add (tmp, bnds->up, mstep);
1691 mpz_sub_ui (tmp, tmp, 1);
1692 mpz_fdiv_q (tmp, tmp, mstep);
1693 niter->max = widest_int::from (x: wi::from_mpz (niter_type, tmp, false),
1694 TYPE_SIGN (niter_type));
1695 mpz_clear (mstep);
1696 mpz_clear (tmp);
1697
1698 return true;
1699}
1700
1701/* Determines number of iterations of loop whose ending condition
1702 is IV0 <= IV1. TYPE is the type of the iv. The number of
1703 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1704 we know that this condition must eventually become false (we derived this
1705 earlier, and possibly set NITER->assumptions to make sure this
1706 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1707
1708static bool
1709number_of_iterations_le (class loop *loop, tree type, affine_iv *iv0,
1710 affine_iv *iv1, class tree_niter_desc *niter,
1711 bool exit_must_be_taken, bounds *bnds)
1712{
1713 tree assumption;
1714 tree type1 = type;
1715 if (POINTER_TYPE_P (type))
1716 type1 = sizetype;
1717
1718 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1719 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1720 value of the type. This we must know anyway, since if it is
1721 equal to this value, the loop rolls forever. We do not check
1722 this condition for pointer type ivs, as the code cannot rely on
1723 the object to that the pointer points being placed at the end of
1724 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1725 not defined for pointers). */
1726
1727 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1728 {
1729 if (integer_nonzerop (iv0->step))
1730 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1731 iv1->base, TYPE_MAX_VALUE (type));
1732 else
1733 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1734 iv0->base, TYPE_MIN_VALUE (type));
1735
1736 if (integer_zerop (assumption))
1737 return false;
1738 if (!integer_nonzerop (assumption))
1739 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1740 niter->assumptions, assumption);
1741 }
1742
1743 if (integer_nonzerop (iv0->step))
1744 {
1745 if (POINTER_TYPE_P (type))
1746 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1747 else
1748 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1749 build_int_cst (type1, 1));
1750 }
1751 else if (POINTER_TYPE_P (type))
1752 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1753 else
1754 iv0->base = fold_build2 (MINUS_EXPR, type1,
1755 iv0->base, build_int_cst (type1, 1));
1756
1757 bounds_add (bnds, delta: 1, type: type1);
1758
1759 return number_of_iterations_lt (loop, type, iv0, iv1, niter, exit_must_be_taken,
1760 bnds);
1761}
1762
1763/* Dumps description of affine induction variable IV to FILE. */
1764
1765static void
1766dump_affine_iv (FILE *file, affine_iv *iv)
1767{
1768 if (!integer_zerop (iv->step))
1769 fprintf (stream: file, format: "[");
1770
1771 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1772
1773 if (!integer_zerop (iv->step))
1774 {
1775 fprintf (stream: file, format: ", + , ");
1776 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1777 fprintf (stream: file, format: "]%s", iv->no_overflow ? "(no_overflow)" : "");
1778 }
1779}
1780
1781/* Determine the number of iterations according to condition (for staying
1782 inside loop) which compares two induction variables using comparison
1783 operator CODE. The induction variable on left side of the comparison
1784 is IV0, the right-hand side is IV1. Both induction variables must have
1785 type TYPE, which must be an integer or pointer type. The steps of the
1786 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1787
1788 LOOP is the loop whose number of iterations we are determining.
1789
1790 ONLY_EXIT is true if we are sure this is the only way the loop could be
1791 exited (including possibly non-returning function calls, exceptions, etc.)
1792 -- in this case we can use the information whether the control induction
1793 variables can overflow or not in a more efficient way.
1794
1795 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1796
1797 The results (number of iterations and assumptions as described in
1798 comments at class tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1799 Returns false if it fails to determine number of iterations, true if it
1800 was determined (possibly with some assumptions). */
1801
1802static bool
1803number_of_iterations_cond (class loop *loop,
1804 tree type, affine_iv *iv0, enum tree_code code,
1805 affine_iv *iv1, class tree_niter_desc *niter,
1806 bool only_exit, bool every_iteration)
1807{
1808 bool exit_must_be_taken = false, ret;
1809 bounds bnds;
1810
1811 /* If the test is not executed every iteration, wrapping may make the test
1812 to pass again.
1813 TODO: the overflow case can be still used as unreliable estimate of upper
1814 bound. But we have no API to pass it down to number of iterations code
1815 and, at present, it will not use it anyway. */
1816 if (!every_iteration
1817 && (!iv0->no_overflow || !iv1->no_overflow
1818 || code == NE_EXPR || code == EQ_EXPR))
1819 return false;
1820
1821 /* The meaning of these assumptions is this:
1822 if !assumptions
1823 then the rest of information does not have to be valid
1824 if may_be_zero then the loop does not roll, even if
1825 niter != 0. */
1826 niter->assumptions = boolean_true_node;
1827 niter->may_be_zero = boolean_false_node;
1828 niter->niter = NULL_TREE;
1829 niter->max = 0;
1830 niter->bound = NULL_TREE;
1831 niter->cmp = ERROR_MARK;
1832
1833 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1834 the control variable is on lhs. */
1835 if (code == GE_EXPR || code == GT_EXPR
1836 || (code == NE_EXPR && integer_zerop (iv0->step)))
1837 {
1838 std::swap (a&: iv0, b&: iv1);
1839 code = swap_tree_comparison (code);
1840 }
1841
1842 if (POINTER_TYPE_P (type))
1843 {
1844 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1845 to the same object. If they do, the control variable cannot wrap
1846 (as wrap around the bounds of memory will never return a pointer
1847 that would be guaranteed to point to the same object, even if we
1848 avoid undefined behavior by casting to size_t and back). */
1849 iv0->no_overflow = true;
1850 iv1->no_overflow = true;
1851 }
1852
1853 /* If the control induction variable does not overflow and the only exit
1854 from the loop is the one that we analyze, we know it must be taken
1855 eventually. */
1856 if (only_exit)
1857 {
1858 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1859 exit_must_be_taken = true;
1860 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1861 exit_must_be_taken = true;
1862 }
1863
1864 /* We can handle cases which neither of the sides of the comparison is
1865 invariant:
1866
1867 {iv0.base, iv0.step} cmp_code {iv1.base, iv1.step}
1868 as if:
1869 {iv0.base, iv0.step - iv1.step} cmp_code {iv1.base, 0}
1870
1871 provided that either below condition is satisfied:
1872
1873 a) the test is NE_EXPR;
1874 b) iv0 and iv1 do not overflow and iv0.step - iv1.step is of
1875 the same sign and of less or equal magnitude than iv0.step
1876
1877 This rarely occurs in practice, but it is simple enough to manage. */
1878 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1879 {
1880 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1881 tree step = fold_binary_to_constant (MINUS_EXPR, step_type,
1882 iv0->step, iv1->step);
1883
1884 /* For code other than NE_EXPR we have to ensure moving the evolution
1885 of IV1 to that of IV0 does not introduce overflow. */
1886 if (TREE_CODE (step) != INTEGER_CST
1887 || !iv0->no_overflow || !iv1->no_overflow)
1888 {
1889 if (code != NE_EXPR)
1890 return false;
1891 iv0->no_overflow = false;
1892 }
1893 /* If the new step of IV0 has changed sign or is of greater
1894 magnitude then we do not know whether IV0 does overflow
1895 and thus the transform is not valid for code other than NE_EXPR. */
1896 else if (tree_int_cst_sign_bit (step) != tree_int_cst_sign_bit (iv0->step)
1897 || wi::gtu_p (x: wi::abs (x: wi::to_widest (t: step)),
1898 y: wi::abs (x: wi::to_widest (t: iv0->step))))
1899 {
1900 if (POINTER_TYPE_P (type) && code != NE_EXPR)
1901 /* For relational pointer compares we have further guarantees
1902 that the pointers always point to the same object (or one
1903 after it) and that objects do not cross the zero page. So
1904 not only is the transform always valid for relational
1905 pointer compares, we also know the resulting IV does not
1906 overflow. */
1907 ;
1908 else if (code != NE_EXPR)
1909 return false;
1910 else
1911 iv0->no_overflow = false;
1912 }
1913
1914 iv0->step = step;
1915 iv1->step = build_int_cst (step_type, 0);
1916 iv1->no_overflow = true;
1917 }
1918
1919 /* If the result of the comparison is a constant, the loop is weird. More
1920 precise handling would be possible, but the situation is not common enough
1921 to waste time on it. */
1922 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1923 return false;
1924
1925 /* If the loop exits immediately, there is nothing to do. */
1926 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1927 if (tem && integer_zerop (tem))
1928 {
1929 if (!every_iteration)
1930 return false;
1931 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1932 niter->max = 0;
1933 return true;
1934 }
1935
1936 /* OK, now we know we have a senseful loop. Handle several cases, depending
1937 on what comparison operator is used. */
1938 bound_difference (loop, x: iv1->base, y: iv0->base, bnds: &bnds);
1939
1940 if (dump_file && (dump_flags & TDF_DETAILS))
1941 {
1942 fprintf (stream: dump_file,
1943 format: "Analyzing # of iterations of loop %d\n", loop->num);
1944
1945 fprintf (stream: dump_file, format: " exit condition ");
1946 dump_affine_iv (file: dump_file, iv: iv0);
1947 fprintf (stream: dump_file, format: " %s ",
1948 code == NE_EXPR ? "!="
1949 : code == LT_EXPR ? "<"
1950 : "<=");
1951 dump_affine_iv (file: dump_file, iv: iv1);
1952 fprintf (stream: dump_file, format: "\n");
1953
1954 fprintf (stream: dump_file, format: " bounds on difference of bases: ");
1955 mpz_out_str (dump_file, 10, bnds.below);
1956 fprintf (stream: dump_file, format: " ... ");
1957 mpz_out_str (dump_file, 10, bnds.up);
1958 fprintf (stream: dump_file, format: "\n");
1959 }
1960
1961 switch (code)
1962 {
1963 case NE_EXPR:
1964 gcc_assert (integer_zerop (iv1->step));
1965 ret = number_of_iterations_ne (loop, type, iv: iv0, final: iv1->base, niter,
1966 exit_must_be_taken, bnds: &bnds);
1967 break;
1968
1969 case LT_EXPR:
1970 ret = number_of_iterations_lt (loop, type, iv0, iv1, niter,
1971 exit_must_be_taken, bnds: &bnds);
1972 break;
1973
1974 case LE_EXPR:
1975 ret = number_of_iterations_le (loop, type, iv0, iv1, niter,
1976 exit_must_be_taken, bnds: &bnds);
1977 break;
1978
1979 default:
1980 gcc_unreachable ();
1981 }
1982
1983 mpz_clear (bnds.up);
1984 mpz_clear (bnds.below);
1985
1986 if (dump_file && (dump_flags & TDF_DETAILS))
1987 {
1988 if (ret)
1989 {
1990 fprintf (stream: dump_file, format: " result:\n");
1991 if (!integer_nonzerop (niter->assumptions))
1992 {
1993 fprintf (stream: dump_file, format: " under assumptions ");
1994 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1995 fprintf (stream: dump_file, format: "\n");
1996 }
1997
1998 if (!integer_zerop (niter->may_be_zero))
1999 {
2000 fprintf (stream: dump_file, format: " zero if ");
2001 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
2002 fprintf (stream: dump_file, format: "\n");
2003 }
2004
2005 fprintf (stream: dump_file, format: " # of iterations ");
2006 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
2007 fprintf (stream: dump_file, format: ", bounded by ");
2008 print_decu (wi: niter->max, file: dump_file);
2009 fprintf (stream: dump_file, format: "\n");
2010 }
2011 else
2012 fprintf (stream: dump_file, format: " failed\n\n");
2013 }
2014 return ret;
2015}
2016
2017/* Return an expression that computes the popcount of src. */
2018
2019static tree
2020build_popcount_expr (tree src)
2021{
2022 tree fn;
2023 bool use_ifn = false;
2024 int prec = TYPE_PRECISION (TREE_TYPE (src));
2025 int i_prec = TYPE_PRECISION (integer_type_node);
2026 int li_prec = TYPE_PRECISION (long_integer_type_node);
2027 int lli_prec = TYPE_PRECISION (long_long_integer_type_node);
2028
2029 tree utype = unsigned_type_for (TREE_TYPE (src));
2030 src = fold_convert (utype, src);
2031
2032 if (direct_internal_fn_supported_p (IFN_POPCOUNT, utype, OPTIMIZE_FOR_BOTH))
2033 use_ifn = true;
2034 else if (prec <= i_prec)
2035 fn = builtin_decl_implicit (fncode: BUILT_IN_POPCOUNT);
2036 else if (prec == li_prec)
2037 fn = builtin_decl_implicit (fncode: BUILT_IN_POPCOUNTL);
2038 else if (prec == lli_prec || prec == 2 * lli_prec)
2039 fn = builtin_decl_implicit (fncode: BUILT_IN_POPCOUNTLL);
2040 else
2041 return NULL_TREE;
2042
2043 tree call;
2044 if (use_ifn)
2045 call = build_call_expr_internal_loc (UNKNOWN_LOCATION, IFN_POPCOUNT,
2046 integer_type_node, 1, src);
2047 else if (prec == 2 * lli_prec)
2048 {
2049 tree src1 = fold_convert (long_long_unsigned_type_node,
2050 fold_build2 (RSHIFT_EXPR, TREE_TYPE (src),
2051 unshare_expr (src),
2052 build_int_cst (integer_type_node,
2053 lli_prec)));
2054 tree src2 = fold_convert (long_long_unsigned_type_node, src);
2055 tree call1 = build_call_expr (fn, 1, src1);
2056 tree call2 = build_call_expr (fn, 1, src2);
2057 call = fold_build2 (PLUS_EXPR, integer_type_node, call1, call2);
2058 }
2059 else
2060 {
2061 if (prec < i_prec)
2062 src = fold_convert (unsigned_type_node, src);
2063
2064 call = build_call_expr (fn, 1, src);
2065 }
2066
2067 return call;
2068}
2069
2070/* Utility function to check if OP is defined by a stmt
2071 that is a val - 1. */
2072
2073static bool
2074ssa_defined_by_minus_one_stmt_p (tree op, tree val)
2075{
2076 gimple *stmt;
2077 return (TREE_CODE (op) == SSA_NAME
2078 && (stmt = SSA_NAME_DEF_STMT (op))
2079 && is_gimple_assign (gs: stmt)
2080 && (gimple_assign_rhs_code (gs: stmt) == PLUS_EXPR)
2081 && val == gimple_assign_rhs1 (gs: stmt)
2082 && integer_minus_onep (gimple_assign_rhs2 (gs: stmt)));
2083}
2084
2085/* See comment below for number_of_iterations_bitcount.
2086 For popcount, we have:
2087
2088 modify:
2089 _1 = iv_1 + -1
2090 iv_2 = iv_1 & _1
2091
2092 test:
2093 if (iv != 0)
2094
2095 modification count:
2096 popcount (src)
2097
2098 */
2099
2100static bool
2101number_of_iterations_popcount (loop_p loop, edge exit,
2102 enum tree_code code,
2103 class tree_niter_desc *niter)
2104{
2105 bool modify_before_test = true;
2106 HOST_WIDE_INT max;
2107
2108 /* Check that condition for staying inside the loop is like
2109 if (iv != 0). */
2110 gcond *cond_stmt = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: exit->src));
2111 if (!cond_stmt
2112 || code != NE_EXPR
2113 || !integer_zerop (gimple_cond_rhs (gs: cond_stmt))
2114 || TREE_CODE (gimple_cond_lhs (cond_stmt)) != SSA_NAME)
2115 return false;
2116
2117 tree iv_2 = gimple_cond_lhs (gs: cond_stmt);
2118 gimple *iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2119
2120 /* If the test comes before the iv modification, then these will actually be
2121 iv_1 and a phi node. */
2122 if (gimple_code (g: iv_2_stmt) == GIMPLE_PHI
2123 && gimple_bb (g: iv_2_stmt) == loop->header
2124 && gimple_phi_num_args (gs: iv_2_stmt) == 2
2125 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt,
2126 loop_latch_edge (loop)->dest_idx))
2127 == SSA_NAME))
2128 {
2129 /* iv_2 is actually one of the inputs to the phi. */
2130 iv_2 = gimple_phi_arg_def (gs: iv_2_stmt, index: loop_latch_edge (loop)->dest_idx);
2131 iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2132 modify_before_test = false;
2133 }
2134
2135 /* Make sure iv_2_stmt is an and stmt (iv_2 = _1 & iv_1). */
2136 if (!is_gimple_assign (gs: iv_2_stmt)
2137 || gimple_assign_rhs_code (gs: iv_2_stmt) != BIT_AND_EXPR)
2138 return false;
2139
2140 tree iv_1 = gimple_assign_rhs1 (gs: iv_2_stmt);
2141 tree _1 = gimple_assign_rhs2 (gs: iv_2_stmt);
2142
2143 /* Check that _1 is defined by (_1 = iv_1 + -1).
2144 Also make sure that _1 is the same in and_stmt and _1 defining stmt.
2145 Also canonicalize if _1 and _b11 are revrsed. */
2146 if (ssa_defined_by_minus_one_stmt_p (op: iv_1, val: _1))
2147 std::swap (a&: iv_1, b&: _1);
2148 else if (ssa_defined_by_minus_one_stmt_p (op: _1, val: iv_1))
2149 ;
2150 else
2151 return false;
2152
2153 /* Check the recurrence. */
2154 gimple *phi = SSA_NAME_DEF_STMT (iv_1);
2155 if (gimple_code (g: phi) != GIMPLE_PHI
2156 || (gimple_bb (g: phi) != loop_latch_edge (loop)->dest)
2157 || (iv_2 != gimple_phi_arg_def (gs: phi, index: loop_latch_edge (loop)->dest_idx)))
2158 return false;
2159
2160 /* We found a match. */
2161 tree src = gimple_phi_arg_def (gs: phi, index: loop_preheader_edge (loop)->dest_idx);
2162 int src_precision = TYPE_PRECISION (TREE_TYPE (src));
2163
2164 /* Get the corresponding popcount builtin. */
2165 tree expr = build_popcount_expr (src);
2166
2167 if (!expr)
2168 return false;
2169
2170 max = src_precision;
2171
2172 tree may_be_zero = boolean_false_node;
2173
2174 if (modify_before_test)
2175 {
2176 expr = fold_build2 (MINUS_EXPR, integer_type_node, expr,
2177 integer_one_node);
2178 max = max - 1;
2179 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
2180 build_zero_cst (TREE_TYPE (src)));
2181 }
2182
2183 expr = fold_convert (unsigned_type_node, expr);
2184
2185 niter->assumptions = boolean_true_node;
2186 niter->may_be_zero = simplify_using_initial_conditions (loop, may_be_zero);
2187 niter->niter = simplify_using_initial_conditions(loop, expr);
2188
2189 if (TREE_CODE (niter->niter) == INTEGER_CST)
2190 niter->max = tree_to_uhwi (niter->niter);
2191 else
2192 niter->max = max;
2193
2194 niter->bound = NULL_TREE;
2195 niter->cmp = ERROR_MARK;
2196 return true;
2197}
2198
2199/* Return an expression that counts the leading/trailing zeroes of src.
2200
2201 If define_at_zero is true, then the built expression will be defined to
2202 return the precision of src when src == 0 (using either a conditional
2203 expression or a suitable internal function).
2204 Otherwise, we can elide the conditional expression and let src = 0 invoke
2205 undefined behaviour. */
2206
2207static tree
2208build_cltz_expr (tree src, bool leading, bool define_at_zero)
2209{
2210 tree fn;
2211 internal_fn ifn = leading ? IFN_CLZ : IFN_CTZ;
2212 bool use_ifn = false;
2213 int prec = TYPE_PRECISION (TREE_TYPE (src));
2214 int i_prec = TYPE_PRECISION (integer_type_node);
2215 int li_prec = TYPE_PRECISION (long_integer_type_node);
2216 int lli_prec = TYPE_PRECISION (long_long_integer_type_node);
2217
2218 tree utype = unsigned_type_for (TREE_TYPE (src));
2219 src = fold_convert (utype, src);
2220
2221 if (direct_internal_fn_supported_p (ifn, utype, OPTIMIZE_FOR_BOTH))
2222 use_ifn = true;
2223 else if (prec <= i_prec)
2224 fn = leading ? builtin_decl_implicit (fncode: BUILT_IN_CLZ)
2225 : builtin_decl_implicit (fncode: BUILT_IN_CTZ);
2226 else if (prec == li_prec)
2227 fn = leading ? builtin_decl_implicit (fncode: BUILT_IN_CLZL)
2228 : builtin_decl_implicit (fncode: BUILT_IN_CTZL);
2229 else if (prec == lli_prec || prec == 2 * lli_prec)
2230 fn = leading ? builtin_decl_implicit (fncode: BUILT_IN_CLZLL)
2231 : builtin_decl_implicit (fncode: BUILT_IN_CTZLL);
2232 else
2233 return NULL_TREE;
2234
2235 tree call;
2236 if (use_ifn)
2237 {
2238 call = build_call_expr_internal_loc (UNKNOWN_LOCATION, ifn,
2239 integer_type_node, 1, src);
2240 int val;
2241 int optab_defined_at_zero
2242 = (leading
2243 ? CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (utype), val)
2244 : CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (utype), val));
2245 if (define_at_zero && !(optab_defined_at_zero == 2 && val == prec))
2246 {
2247 tree is_zero = fold_build2 (NE_EXPR, boolean_type_node, src,
2248 build_zero_cst (TREE_TYPE (src)));
2249 call = fold_build3 (COND_EXPR, integer_type_node, is_zero, call,
2250 build_int_cst (integer_type_node, prec));
2251 }
2252 }
2253 else if (prec == 2 * lli_prec)
2254 {
2255 tree src1 = fold_convert (long_long_unsigned_type_node,
2256 fold_build2 (RSHIFT_EXPR, TREE_TYPE (src),
2257 unshare_expr (src),
2258 build_int_cst (integer_type_node,
2259 lli_prec)));
2260 tree src2 = fold_convert (long_long_unsigned_type_node, src);
2261 /* We count the zeroes in src1, and add the number in src2 when src1
2262 is 0. */
2263 if (!leading)
2264 std::swap (a&: src1, b&: src2);
2265 tree call1 = build_call_expr (fn, 1, src1);
2266 tree call2 = build_call_expr (fn, 1, src2);
2267 if (define_at_zero)
2268 {
2269 tree is_zero2 = fold_build2 (NE_EXPR, boolean_type_node, src2,
2270 build_zero_cst (TREE_TYPE (src2)));
2271 call2 = fold_build3 (COND_EXPR, integer_type_node, is_zero2, call2,
2272 build_int_cst (integer_type_node, lli_prec));
2273 }
2274 tree is_zero1 = fold_build2 (NE_EXPR, boolean_type_node, src1,
2275 build_zero_cst (TREE_TYPE (src1)));
2276 call = fold_build3 (COND_EXPR, integer_type_node, is_zero1, call1,
2277 fold_build2 (PLUS_EXPR, integer_type_node, call2,
2278 build_int_cst (integer_type_node,
2279 lli_prec)));
2280 }
2281 else
2282 {
2283 if (prec < i_prec)
2284 src = fold_convert (unsigned_type_node, src);
2285
2286 call = build_call_expr (fn, 1, src);
2287 if (define_at_zero)
2288 {
2289 tree is_zero = fold_build2 (NE_EXPR, boolean_type_node, src,
2290 build_zero_cst (TREE_TYPE (src)));
2291 call = fold_build3 (COND_EXPR, integer_type_node, is_zero, call,
2292 build_int_cst (integer_type_node, prec));
2293 }
2294
2295 if (leading && prec < i_prec)
2296 call = fold_build2 (MINUS_EXPR, integer_type_node, call,
2297 build_int_cst (integer_type_node, i_prec - prec));
2298 }
2299
2300 return call;
2301}
2302
2303/* See comment below for number_of_iterations_bitcount.
2304 For c[lt]z, we have:
2305
2306 modify:
2307 iv_2 = iv_1 << 1 OR iv_1 >> 1
2308
2309 test:
2310 if (iv & 1 << (prec-1)) OR (iv & 1)
2311
2312 modification count:
2313 src precision - c[lt]z (src)
2314
2315 */
2316
2317static bool
2318number_of_iterations_cltz (loop_p loop, edge exit,
2319 enum tree_code code,
2320 class tree_niter_desc *niter)
2321{
2322 bool modify_before_test = true;
2323 HOST_WIDE_INT max;
2324 int checked_bit;
2325 tree iv_2;
2326
2327 /* Check that condition for staying inside the loop is like
2328 if (iv == 0). */
2329 gcond *cond_stmt = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: exit->src));
2330 if (!cond_stmt
2331 || (code != EQ_EXPR && code != GE_EXPR)
2332 || !integer_zerop (gimple_cond_rhs (gs: cond_stmt))
2333 || TREE_CODE (gimple_cond_lhs (cond_stmt)) != SSA_NAME)
2334 return false;
2335
2336 if (code == EQ_EXPR)
2337 {
2338 /* Make sure we check a bitwise and with a suitable constant */
2339 gimple *and_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond_stmt));
2340 if (!is_gimple_assign (gs: and_stmt)
2341 || gimple_assign_rhs_code (gs: and_stmt) != BIT_AND_EXPR
2342 || !integer_pow2p (gimple_assign_rhs2 (gs: and_stmt))
2343 || TREE_CODE (gimple_assign_rhs1 (and_stmt)) != SSA_NAME)
2344 return false;
2345
2346 checked_bit = tree_log2 (gimple_assign_rhs2 (gs: and_stmt));
2347
2348 iv_2 = gimple_assign_rhs1 (gs: and_stmt);
2349 }
2350 else
2351 {
2352 /* We have a GE_EXPR - a signed comparison with zero is equivalent to
2353 testing the leading bit, so check for this pattern too. */
2354
2355 iv_2 = gimple_cond_lhs (gs: cond_stmt);
2356 tree test_value_type = TREE_TYPE (iv_2);
2357
2358 if (TYPE_UNSIGNED (test_value_type))
2359 return false;
2360
2361 gimple *test_value_stmt = SSA_NAME_DEF_STMT (iv_2);
2362
2363 if (is_gimple_assign (gs: test_value_stmt)
2364 && gimple_assign_rhs_code (gs: test_value_stmt) == NOP_EXPR)
2365 {
2366 /* If the test value comes from a NOP_EXPR, then we need to unwrap
2367 this. We conservatively require that both types have the same
2368 precision. */
2369 iv_2 = gimple_assign_rhs1 (gs: test_value_stmt);
2370 tree rhs_type = TREE_TYPE (iv_2);
2371 if (TREE_CODE (iv_2) != SSA_NAME
2372 || TREE_CODE (rhs_type) != INTEGER_TYPE
2373 || (TYPE_PRECISION (rhs_type)
2374 != TYPE_PRECISION (test_value_type)))
2375 return false;
2376 }
2377
2378 checked_bit = TYPE_PRECISION (test_value_type) - 1;
2379 }
2380
2381 gimple *iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2382
2383 /* If the test comes before the iv modification, then these will actually be
2384 iv_1 and a phi node. */
2385 if (gimple_code (g: iv_2_stmt) == GIMPLE_PHI
2386 && gimple_bb (g: iv_2_stmt) == loop->header
2387 && gimple_phi_num_args (gs: iv_2_stmt) == 2
2388 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt,
2389 loop_latch_edge (loop)->dest_idx))
2390 == SSA_NAME))
2391 {
2392 /* iv_2 is actually one of the inputs to the phi. */
2393 iv_2 = gimple_phi_arg_def (gs: iv_2_stmt, index: loop_latch_edge (loop)->dest_idx);
2394 iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2395 modify_before_test = false;
2396 }
2397
2398 /* Make sure iv_2_stmt is a logical shift by one stmt:
2399 iv_2 = iv_1 {<<|>>} 1 */
2400 if (!is_gimple_assign (gs: iv_2_stmt)
2401 || (gimple_assign_rhs_code (gs: iv_2_stmt) != LSHIFT_EXPR
2402 && (gimple_assign_rhs_code (gs: iv_2_stmt) != RSHIFT_EXPR
2403 || !TYPE_UNSIGNED (TREE_TYPE (gimple_assign_lhs (iv_2_stmt)))))
2404 || !integer_onep (gimple_assign_rhs2 (gs: iv_2_stmt)))
2405 return false;
2406
2407 bool left_shift = (gimple_assign_rhs_code (gs: iv_2_stmt) == LSHIFT_EXPR);
2408
2409 tree iv_1 = gimple_assign_rhs1 (gs: iv_2_stmt);
2410
2411 /* Check the recurrence. */
2412 gimple *phi = SSA_NAME_DEF_STMT (iv_1);
2413 if (gimple_code (g: phi) != GIMPLE_PHI
2414 || (gimple_bb (g: phi) != loop_latch_edge (loop)->dest)
2415 || (iv_2 != gimple_phi_arg_def (gs: phi, index: loop_latch_edge (loop)->dest_idx)))
2416 return false;
2417
2418 /* We found a match. */
2419 tree src = gimple_phi_arg_def (gs: phi, index: loop_preheader_edge (loop)->dest_idx);
2420 int src_precision = TYPE_PRECISION (TREE_TYPE (src));
2421
2422 /* Apply any needed preprocessing to src. */
2423 int num_ignored_bits;
2424 if (left_shift)
2425 num_ignored_bits = src_precision - checked_bit - 1;
2426 else
2427 num_ignored_bits = checked_bit;
2428
2429 if (modify_before_test)
2430 num_ignored_bits++;
2431
2432 if (num_ignored_bits != 0)
2433 src = fold_build2 (left_shift ? LSHIFT_EXPR : RSHIFT_EXPR,
2434 TREE_TYPE (src), src,
2435 build_int_cst (integer_type_node, num_ignored_bits));
2436
2437 /* Get the corresponding c[lt]z builtin. */
2438 tree expr = build_cltz_expr (src, leading: left_shift, define_at_zero: false);
2439
2440 if (!expr)
2441 return false;
2442
2443 max = src_precision - num_ignored_bits - 1;
2444
2445 expr = fold_convert (unsigned_type_node, expr);
2446
2447 tree assumptions = fold_build2 (NE_EXPR, boolean_type_node, src,
2448 build_zero_cst (TREE_TYPE (src)));
2449
2450 niter->assumptions = simplify_using_initial_conditions (loop, assumptions);
2451 niter->may_be_zero = boolean_false_node;
2452 niter->niter = simplify_using_initial_conditions (loop, expr);
2453
2454 if (TREE_CODE (niter->niter) == INTEGER_CST)
2455 niter->max = tree_to_uhwi (niter->niter);
2456 else
2457 niter->max = max;
2458
2459 niter->bound = NULL_TREE;
2460 niter->cmp = ERROR_MARK;
2461
2462 return true;
2463}
2464
2465/* See comment below for number_of_iterations_bitcount.
2466 For c[lt]z complement, we have:
2467
2468 modify:
2469 iv_2 = iv_1 >> 1 OR iv_1 << 1
2470
2471 test:
2472 if (iv != 0)
2473
2474 modification count:
2475 src precision - c[lt]z (src)
2476
2477 */
2478
2479static bool
2480number_of_iterations_cltz_complement (loop_p loop, edge exit,
2481 enum tree_code code,
2482 class tree_niter_desc *niter)
2483{
2484 bool modify_before_test = true;
2485 HOST_WIDE_INT max;
2486
2487 /* Check that condition for staying inside the loop is like
2488 if (iv != 0). */
2489 gcond *cond_stmt = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: exit->src));
2490 if (!cond_stmt
2491 || code != NE_EXPR
2492 || !integer_zerop (gimple_cond_rhs (gs: cond_stmt))
2493 || TREE_CODE (gimple_cond_lhs (cond_stmt)) != SSA_NAME)
2494 return false;
2495
2496 tree iv_2 = gimple_cond_lhs (gs: cond_stmt);
2497 gimple *iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2498
2499 /* If the test comes before the iv modification, then these will actually be
2500 iv_1 and a phi node. */
2501 if (gimple_code (g: iv_2_stmt) == GIMPLE_PHI
2502 && gimple_bb (g: iv_2_stmt) == loop->header
2503 && gimple_phi_num_args (gs: iv_2_stmt) == 2
2504 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt,
2505 loop_latch_edge (loop)->dest_idx))
2506 == SSA_NAME))
2507 {
2508 /* iv_2 is actually one of the inputs to the phi. */
2509 iv_2 = gimple_phi_arg_def (gs: iv_2_stmt, index: loop_latch_edge (loop)->dest_idx);
2510 iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2511 modify_before_test = false;
2512 }
2513
2514 /* Make sure iv_2_stmt is a logical shift by one stmt:
2515 iv_2 = iv_1 {>>|<<} 1 */
2516 if (!is_gimple_assign (gs: iv_2_stmt)
2517 || (gimple_assign_rhs_code (gs: iv_2_stmt) != LSHIFT_EXPR
2518 && (gimple_assign_rhs_code (gs: iv_2_stmt) != RSHIFT_EXPR
2519 || !TYPE_UNSIGNED (TREE_TYPE (gimple_assign_lhs (iv_2_stmt)))))
2520 || !integer_onep (gimple_assign_rhs2 (gs: iv_2_stmt)))
2521 return false;
2522
2523 bool left_shift = (gimple_assign_rhs_code (gs: iv_2_stmt) == LSHIFT_EXPR);
2524
2525 tree iv_1 = gimple_assign_rhs1 (gs: iv_2_stmt);
2526
2527 /* Check the recurrence. */
2528 gimple *phi = SSA_NAME_DEF_STMT (iv_1);
2529 if (gimple_code (g: phi) != GIMPLE_PHI
2530 || (gimple_bb (g: phi) != loop_latch_edge (loop)->dest)
2531 || (iv_2 != gimple_phi_arg_def (gs: phi, index: loop_latch_edge (loop)->dest_idx)))
2532 return false;
2533
2534 /* We found a match. */
2535 tree src = gimple_phi_arg_def (gs: phi, index: loop_preheader_edge (loop)->dest_idx);
2536 int src_precision = TYPE_PRECISION (TREE_TYPE (src));
2537
2538 /* Get the corresponding c[lt]z builtin. */
2539 tree expr = build_cltz_expr (src, leading: !left_shift, define_at_zero: true);
2540
2541 if (!expr)
2542 return false;
2543
2544 expr = fold_build2 (MINUS_EXPR, integer_type_node,
2545 build_int_cst (integer_type_node, src_precision),
2546 expr);
2547
2548 max = src_precision;
2549
2550 tree may_be_zero = boolean_false_node;
2551
2552 if (modify_before_test)
2553 {
2554 expr = fold_build2 (MINUS_EXPR, integer_type_node, expr,
2555 integer_one_node);
2556 max = max - 1;
2557 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
2558 build_zero_cst (TREE_TYPE (src)));
2559 }
2560
2561 expr = fold_convert (unsigned_type_node, expr);
2562
2563 niter->assumptions = boolean_true_node;
2564 niter->may_be_zero = simplify_using_initial_conditions (loop, may_be_zero);
2565 niter->niter = simplify_using_initial_conditions (loop, expr);
2566
2567 if (TREE_CODE (niter->niter) == INTEGER_CST)
2568 niter->max = tree_to_uhwi (niter->niter);
2569 else
2570 niter->max = max;
2571
2572 niter->bound = NULL_TREE;
2573 niter->cmp = ERROR_MARK;
2574 return true;
2575}
2576
2577/* See if LOOP contains a bit counting idiom. The idiom consists of two parts:
2578 1. A modification to the induction variabler;.
2579 2. A test to determine whether or not to exit the loop.
2580
2581 These can come in either order - i.e.:
2582
2583 <bb 3>
2584 iv_1 = PHI <src(2), iv_2(4)>
2585 if (test (iv_1))
2586 goto <bb 4>
2587 else
2588 goto <bb 5>
2589
2590 <bb 4>
2591 iv_2 = modify (iv_1)
2592 goto <bb 3>
2593
2594 OR
2595
2596 <bb 3>
2597 iv_1 = PHI <src(2), iv_2(4)>
2598 iv_2 = modify (iv_1)
2599
2600 <bb 4>
2601 if (test (iv_2))
2602 goto <bb 3>
2603 else
2604 goto <bb 5>
2605
2606 The second form can be generated by copying the loop header out of the loop.
2607
2608 In the first case, the number of latch executions will be equal to the
2609 number of induction variable modifications required before the test fails.
2610
2611 In the second case (modify_before_test), if we assume that the number of
2612 modifications required before the test fails is nonzero, then the number of
2613 latch executions will be one less than this number.
2614
2615 If we recognise the pattern, then we update niter accordingly, and return
2616 true. */
2617
2618static bool
2619number_of_iterations_bitcount (loop_p loop, edge exit,
2620 enum tree_code code,
2621 class tree_niter_desc *niter)
2622{
2623 return (number_of_iterations_popcount (loop, exit, code, niter)
2624 || number_of_iterations_cltz (loop, exit, code, niter)
2625 || number_of_iterations_cltz_complement (loop, exit, code, niter));
2626}
2627
2628/* Substitute NEW_TREE for OLD in EXPR and fold the result.
2629 If VALUEIZE is non-NULL then OLD and NEW_TREE are ignored and instead
2630 all SSA names are replaced with the result of calling the VALUEIZE
2631 function with the SSA name as argument. */
2632
2633tree
2634simplify_replace_tree (tree expr, tree old, tree new_tree,
2635 tree (*valueize) (tree, void*), void *context,
2636 bool do_fold)
2637{
2638 unsigned i, n;
2639 tree ret = NULL_TREE, e, se;
2640
2641 if (!expr)
2642 return NULL_TREE;
2643
2644 /* Do not bother to replace constants. */
2645 if (CONSTANT_CLASS_P (expr))
2646 return expr;
2647
2648 if (valueize)
2649 {
2650 if (TREE_CODE (expr) == SSA_NAME)
2651 {
2652 new_tree = valueize (expr, context);
2653 if (new_tree != expr)
2654 return new_tree;
2655 }
2656 }
2657 else if (expr == old
2658 || operand_equal_p (expr, old, flags: 0))
2659 return unshare_expr (new_tree);
2660
2661 if (!EXPR_P (expr))
2662 return expr;
2663
2664 n = TREE_OPERAND_LENGTH (expr);
2665 for (i = 0; i < n; i++)
2666 {
2667 e = TREE_OPERAND (expr, i);
2668 se = simplify_replace_tree (expr: e, old, new_tree, valueize, context, do_fold);
2669 if (e == se)
2670 continue;
2671
2672 if (!ret)
2673 ret = copy_node (expr);
2674
2675 TREE_OPERAND (ret, i) = se;
2676 }
2677
2678 return (ret ? (do_fold ? fold (ret) : ret) : expr);
2679}
2680
2681/* Expand definitions of ssa names in EXPR as long as they are simple
2682 enough, and return the new expression. If STOP is specified, stop
2683 expanding if EXPR equals to it. */
2684
2685static tree
2686expand_simple_operations (tree expr, tree stop, hash_map<tree, tree> &cache)
2687{
2688 unsigned i, n;
2689 tree ret = NULL_TREE, e, ee, e1;
2690 enum tree_code code;
2691 gimple *stmt;
2692
2693 if (expr == NULL_TREE)
2694 return expr;
2695
2696 if (is_gimple_min_invariant (expr))
2697 return expr;
2698
2699 code = TREE_CODE (expr);
2700 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
2701 {
2702 n = TREE_OPERAND_LENGTH (expr);
2703 for (i = 0; i < n; i++)
2704 {
2705 e = TREE_OPERAND (expr, i);
2706 if (!e)
2707 continue;
2708 /* SCEV analysis feeds us with a proper expression
2709 graph matching the SSA graph. Avoid turning it
2710 into a tree here, thus handle tree sharing
2711 properly.
2712 ??? The SSA walk below still turns the SSA graph
2713 into a tree but until we find a testcase do not
2714 introduce additional tree sharing here. */
2715 bool existed_p;
2716 tree &cee = cache.get_or_insert (k: e, existed: &existed_p);
2717 if (existed_p)
2718 ee = cee;
2719 else
2720 {
2721 cee = e;
2722 ee = expand_simple_operations (expr: e, stop, cache);
2723 if (ee != e)
2724 *cache.get (k: e) = ee;
2725 }
2726 if (e == ee)
2727 continue;
2728
2729 if (!ret)
2730 ret = copy_node (expr);
2731
2732 TREE_OPERAND (ret, i) = ee;
2733 }
2734
2735 if (!ret)
2736 return expr;
2737
2738 fold_defer_overflow_warnings ();
2739 ret = fold (ret);
2740 fold_undefer_and_ignore_overflow_warnings ();
2741 return ret;
2742 }
2743
2744 /* Stop if it's not ssa name or the one we don't want to expand. */
2745 if (TREE_CODE (expr) != SSA_NAME || expr == stop)
2746 return expr;
2747
2748 stmt = SSA_NAME_DEF_STMT (expr);
2749 if (gimple_code (g: stmt) == GIMPLE_PHI)
2750 {
2751 basic_block src, dest;
2752
2753 if (gimple_phi_num_args (gs: stmt) != 1)
2754 return expr;
2755 e = PHI_ARG_DEF (stmt, 0);
2756
2757 /* Avoid propagating through loop exit phi nodes, which
2758 could break loop-closed SSA form restrictions. */
2759 dest = gimple_bb (g: stmt);
2760 src = single_pred (bb: dest);
2761 if (TREE_CODE (e) == SSA_NAME
2762 && src->loop_father != dest->loop_father)
2763 return expr;
2764
2765 return expand_simple_operations (expr: e, stop, cache);
2766 }
2767 if (gimple_code (g: stmt) != GIMPLE_ASSIGN)
2768 return expr;
2769
2770 /* Avoid expanding to expressions that contain SSA names that need
2771 to take part in abnormal coalescing. */
2772 ssa_op_iter iter;
2773 FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
2774 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
2775 return expr;
2776
2777 e = gimple_assign_rhs1 (gs: stmt);
2778 code = gimple_assign_rhs_code (gs: stmt);
2779 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2780 {
2781 if (is_gimple_min_invariant (e))
2782 return e;
2783
2784 if (code == SSA_NAME)
2785 return expand_simple_operations (expr: e, stop, cache);
2786 else if (code == ADDR_EXPR)
2787 {
2788 poly_int64 offset;
2789 tree base = get_addr_base_and_unit_offset (TREE_OPERAND (e, 0),
2790 &offset);
2791 if (base
2792 && TREE_CODE (base) == MEM_REF)
2793 {
2794 ee = expand_simple_operations (TREE_OPERAND (base, 0), stop,
2795 cache);
2796 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (expr), ee,
2797 wide_int_to_tree (sizetype,
2798 mem_ref_offset (base)
2799 + offset));
2800 }
2801 }
2802
2803 return expr;
2804 }
2805
2806 switch (code)
2807 {
2808 CASE_CONVERT:
2809 /* Casts are simple. */
2810 ee = expand_simple_operations (expr: e, stop, cache);
2811 return fold_build1 (code, TREE_TYPE (expr), ee);
2812
2813 case PLUS_EXPR:
2814 case MINUS_EXPR:
2815 case MULT_EXPR:
2816 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr))
2817 && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr)))
2818 return expr;
2819 /* Fallthru. */
2820 case POINTER_PLUS_EXPR:
2821 /* And increments and decrements by a constant are simple. */
2822 e1 = gimple_assign_rhs2 (gs: stmt);
2823 if (!is_gimple_min_invariant (e1))
2824 return expr;
2825
2826 ee = expand_simple_operations (expr: e, stop, cache);
2827 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
2828
2829 default:
2830 return expr;
2831 }
2832}
2833
2834tree
2835expand_simple_operations (tree expr, tree stop)
2836{
2837 hash_map<tree, tree> cache;
2838 return expand_simple_operations (expr, stop, cache);
2839}
2840
2841/* Tries to simplify EXPR using the condition COND. Returns the simplified
2842 expression (or EXPR unchanged, if no simplification was possible). */
2843
2844static tree
2845tree_simplify_using_condition_1 (tree cond, tree expr)
2846{
2847 bool changed;
2848 tree e, e0, e1, e2, notcond;
2849 enum tree_code code = TREE_CODE (expr);
2850
2851 if (code == INTEGER_CST)
2852 return expr;
2853
2854 if (code == TRUTH_OR_EXPR
2855 || code == TRUTH_AND_EXPR
2856 || code == COND_EXPR)
2857 {
2858 changed = false;
2859
2860 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
2861 if (TREE_OPERAND (expr, 0) != e0)
2862 changed = true;
2863
2864 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
2865 if (TREE_OPERAND (expr, 1) != e1)
2866 changed = true;
2867
2868 if (code == COND_EXPR)
2869 {
2870 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
2871 if (TREE_OPERAND (expr, 2) != e2)
2872 changed = true;
2873 }
2874 else
2875 e2 = NULL_TREE;
2876
2877 if (changed)
2878 {
2879 if (code == COND_EXPR)
2880 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2881 else
2882 expr = fold_build2 (code, boolean_type_node, e0, e1);
2883 }
2884
2885 return expr;
2886 }
2887
2888 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
2889 propagation, and vice versa. Fold does not handle this, since it is
2890 considered too expensive. */
2891 if (TREE_CODE (cond) == EQ_EXPR)
2892 {
2893 e0 = TREE_OPERAND (cond, 0);
2894 e1 = TREE_OPERAND (cond, 1);
2895
2896 /* We know that e0 == e1. Check whether we cannot simplify expr
2897 using this fact. */
2898 e = simplify_replace_tree (expr, old: e0, new_tree: e1);
2899 if (integer_zerop (e) || integer_nonzerop (e))
2900 return e;
2901
2902 e = simplify_replace_tree (expr, old: e1, new_tree: e0);
2903 if (integer_zerop (e) || integer_nonzerop (e))
2904 return e;
2905 }
2906 if (TREE_CODE (expr) == EQ_EXPR)
2907 {
2908 e0 = TREE_OPERAND (expr, 0);
2909 e1 = TREE_OPERAND (expr, 1);
2910
2911 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
2912 e = simplify_replace_tree (expr: cond, old: e0, new_tree: e1);
2913 if (integer_zerop (e))
2914 return e;
2915 e = simplify_replace_tree (expr: cond, old: e1, new_tree: e0);
2916 if (integer_zerop (e))
2917 return e;
2918 }
2919 if (TREE_CODE (expr) == NE_EXPR)
2920 {
2921 e0 = TREE_OPERAND (expr, 0);
2922 e1 = TREE_OPERAND (expr, 1);
2923
2924 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
2925 e = simplify_replace_tree (expr: cond, old: e0, new_tree: e1);
2926 if (integer_zerop (e))
2927 return boolean_true_node;
2928 e = simplify_replace_tree (expr: cond, old: e1, new_tree: e0);
2929 if (integer_zerop (e))
2930 return boolean_true_node;
2931 }
2932
2933 /* Check whether COND ==> EXPR. */
2934 notcond = invert_truthvalue (cond);
2935 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, expr);
2936 if (e && integer_nonzerop (e))
2937 return e;
2938
2939 /* Check whether COND ==> not EXPR. */
2940 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, expr);
2941 if (e && integer_zerop (e))
2942 return e;
2943
2944 return expr;
2945}
2946
2947/* Tries to simplify EXPR using the condition COND. Returns the simplified
2948 expression (or EXPR unchanged, if no simplification was possible).
2949 Wrapper around tree_simplify_using_condition_1 that ensures that chains
2950 of simple operations in definitions of ssa names in COND are expanded,
2951 so that things like casts or incrementing the value of the bound before
2952 the loop do not cause us to fail. */
2953
2954static tree
2955tree_simplify_using_condition (tree cond, tree expr)
2956{
2957 cond = expand_simple_operations (expr: cond);
2958
2959 return tree_simplify_using_condition_1 (cond, expr);
2960}
2961
2962/* Tries to simplify EXPR using the conditions on entry to LOOP.
2963 Returns the simplified expression (or EXPR unchanged, if no
2964 simplification was possible). */
2965
2966tree
2967simplify_using_initial_conditions (class loop *loop, tree expr)
2968{
2969 edge e;
2970 basic_block bb;
2971 tree cond, expanded, backup;
2972 int cnt = 0;
2973
2974 if (TREE_CODE (expr) == INTEGER_CST)
2975 return expr;
2976
2977 backup = expanded = expand_simple_operations (expr);
2978
2979 /* Limit walking the dominators to avoid quadraticness in
2980 the number of BBs times the number of loops in degenerate
2981 cases. */
2982 for (bb = loop->header;
2983 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
2984 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
2985 {
2986 if (!single_pred_p (bb))
2987 continue;
2988 e = single_pred_edge (bb);
2989
2990 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2991 continue;
2992
2993 gcond *stmt = as_a <gcond *> (p: *gsi_last_bb (bb: e->src));
2994 cond = fold_build2 (gimple_cond_code (stmt),
2995 boolean_type_node,
2996 gimple_cond_lhs (stmt),
2997 gimple_cond_rhs (stmt));
2998 if (e->flags & EDGE_FALSE_VALUE)
2999 cond = invert_truthvalue (cond);
3000 expanded = tree_simplify_using_condition (cond, expr: expanded);
3001 /* Break if EXPR is simplified to const values. */
3002 if (expanded
3003 && (integer_zerop (expanded) || integer_nonzerop (expanded)))
3004 return expanded;
3005
3006 ++cnt;
3007 }
3008
3009 /* Return the original expression if no simplification is done. */
3010 return operand_equal_p (backup, expanded, flags: 0) ? expr : expanded;
3011}
3012
3013/* Tries to simplify EXPR using the evolutions of the loop invariants
3014 in the superloops of LOOP. Returns the simplified expression
3015 (or EXPR unchanged, if no simplification was possible). */
3016
3017static tree
3018simplify_using_outer_evolutions (class loop *loop, tree expr)
3019{
3020 enum tree_code code = TREE_CODE (expr);
3021 bool changed;
3022 tree e, e0, e1, e2;
3023
3024 if (is_gimple_min_invariant (expr))
3025 return expr;
3026
3027 if (code == TRUTH_OR_EXPR
3028 || code == TRUTH_AND_EXPR
3029 || code == COND_EXPR)
3030 {
3031 changed = false;
3032
3033 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
3034 if (TREE_OPERAND (expr, 0) != e0)
3035 changed = true;
3036
3037 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
3038 if (TREE_OPERAND (expr, 1) != e1)
3039 changed = true;
3040
3041 if (code == COND_EXPR)
3042 {
3043 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
3044 if (TREE_OPERAND (expr, 2) != e2)
3045 changed = true;
3046 }
3047 else
3048 e2 = NULL_TREE;
3049
3050 if (changed)
3051 {
3052 if (code == COND_EXPR)
3053 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
3054 else
3055 expr = fold_build2 (code, boolean_type_node, e0, e1);
3056 }
3057
3058 return expr;
3059 }
3060
3061 e = instantiate_parameters (loop, chrec: expr);
3062 if (is_gimple_min_invariant (e))
3063 return e;
3064
3065 return expr;
3066}
3067
3068/* Returns true if EXIT is the only possible exit from LOOP. */
3069
3070bool
3071loop_only_exit_p (const class loop *loop, basic_block *body, const_edge exit)
3072{
3073 gimple_stmt_iterator bsi;
3074 unsigned i;
3075
3076 if (exit != single_exit (loop))
3077 return false;
3078
3079 for (i = 0; i < loop->num_nodes; i++)
3080 for (bsi = gsi_start_bb (bb: body[i]); !gsi_end_p (i: bsi); gsi_next (i: &bsi))
3081 if (stmt_can_terminate_bb_p (gsi_stmt (i: bsi)))
3082 return false;
3083
3084 return true;
3085}
3086
3087/* Stores description of number of iterations of LOOP derived from
3088 EXIT (an exit edge of the LOOP) in NITER. Returns true if some useful
3089 information could be derived (and fields of NITER have meaning described
3090 in comments at class tree_niter_desc declaration), false otherwise.
3091 When EVERY_ITERATION is true, only tests that are known to be executed
3092 every iteration are considered (i.e. only test that alone bounds the loop).
3093 If AT_STMT is not NULL, this function stores LOOP's condition statement in
3094 it when returning true. */
3095
3096bool
3097number_of_iterations_exit_assumptions (class loop *loop, edge exit,
3098 class tree_niter_desc *niter,
3099 gcond **at_stmt, bool every_iteration,
3100 basic_block *body)
3101{
3102 tree type;
3103 tree op0, op1;
3104 enum tree_code code;
3105 affine_iv iv0, iv1;
3106 bool safe;
3107
3108 /* The condition at a fake exit (if it exists) does not control its
3109 execution. */
3110 if (exit->flags & EDGE_FAKE)
3111 return false;
3112
3113 /* Nothing to analyze if the loop is known to be infinite. */
3114 if (loop_constraint_set_p (loop, LOOP_C_INFINITE))
3115 return false;
3116
3117 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
3118
3119 if (every_iteration && !safe)
3120 return false;
3121
3122 niter->assumptions = boolean_false_node;
3123 niter->control.base = NULL_TREE;
3124 niter->control.step = NULL_TREE;
3125 niter->control.no_overflow = false;
3126 gcond *stmt = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: exit->src));
3127 if (!stmt)
3128 return false;
3129
3130 if (at_stmt)
3131 *at_stmt = stmt;
3132
3133 /* We want the condition for staying inside loop. */
3134 code = gimple_cond_code (gs: stmt);
3135 if (exit->flags & EDGE_TRUE_VALUE)
3136 code = invert_tree_comparison (code, false);
3137
3138 switch (code)
3139 {
3140 case GT_EXPR:
3141 case GE_EXPR:
3142 case LT_EXPR:
3143 case LE_EXPR:
3144 case NE_EXPR:
3145 break;
3146
3147 case EQ_EXPR:
3148 return number_of_iterations_cltz (loop, exit, code, niter);
3149
3150 default:
3151 return false;
3152 }
3153
3154 op0 = gimple_cond_lhs (gs: stmt);
3155 op1 = gimple_cond_rhs (gs: stmt);
3156 type = TREE_TYPE (op0);
3157
3158 if (TREE_CODE (type) != INTEGER_TYPE
3159 && !POINTER_TYPE_P (type))
3160 return false;
3161
3162 tree iv0_niters = NULL_TREE;
3163 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
3164 op0, &iv0, safe ? &iv0_niters : NULL, false))
3165 return number_of_iterations_bitcount (loop, exit, code, niter);
3166 tree iv1_niters = NULL_TREE;
3167 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
3168 op1, &iv1, safe ? &iv1_niters : NULL, false))
3169 return false;
3170 /* Give up on complicated case. */
3171 if (iv0_niters && iv1_niters)
3172 return false;
3173
3174 /* We don't want to see undefined signed overflow warnings while
3175 computing the number of iterations. */
3176 fold_defer_overflow_warnings ();
3177
3178 iv0.base = expand_simple_operations (expr: iv0.base);
3179 iv1.base = expand_simple_operations (expr: iv1.base);
3180 bool body_from_caller = true;
3181 if (!body)
3182 {
3183 body = get_loop_body (loop);
3184 body_from_caller = false;
3185 }
3186 bool only_exit_p = loop_only_exit_p (loop, body, exit);
3187 if (!body_from_caller)
3188 free (ptr: body);
3189 if (!number_of_iterations_cond (loop, type, iv0: &iv0, code, iv1: &iv1, niter,
3190 only_exit: only_exit_p, every_iteration: safe))
3191 {
3192 fold_undefer_and_ignore_overflow_warnings ();
3193 return false;
3194 }
3195
3196 /* Incorporate additional assumption implied by control iv. */
3197 tree iv_niters = iv0_niters ? iv0_niters : iv1_niters;
3198 if (iv_niters)
3199 {
3200 tree assumption = fold_build2 (LE_EXPR, boolean_type_node, niter->niter,
3201 fold_convert (TREE_TYPE (niter->niter),
3202 iv_niters));
3203
3204 if (!integer_nonzerop (assumption))
3205 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3206 niter->assumptions, assumption);
3207
3208 /* Refine upper bound if possible. */
3209 if (TREE_CODE (iv_niters) == INTEGER_CST
3210 && niter->max > wi::to_widest (t: iv_niters))
3211 niter->max = wi::to_widest (t: iv_niters);
3212 }
3213
3214 /* There is no assumptions if the loop is known to be finite. */
3215 if (!integer_zerop (niter->assumptions)
3216 && loop_constraint_set_p (loop, LOOP_C_FINITE))
3217 niter->assumptions = boolean_true_node;
3218
3219 if (optimize >= 3)
3220 {
3221 niter->assumptions = simplify_using_outer_evolutions (loop,
3222 expr: niter->assumptions);
3223 niter->may_be_zero = simplify_using_outer_evolutions (loop,
3224 expr: niter->may_be_zero);
3225 niter->niter = simplify_using_outer_evolutions (loop, expr: niter->niter);
3226 }
3227
3228 niter->assumptions
3229 = simplify_using_initial_conditions (loop,
3230 expr: niter->assumptions);
3231 niter->may_be_zero
3232 = simplify_using_initial_conditions (loop,
3233 expr: niter->may_be_zero);
3234
3235 fold_undefer_and_ignore_overflow_warnings ();
3236
3237 /* If NITER has simplified into a constant, update MAX. */
3238 if (TREE_CODE (niter->niter) == INTEGER_CST)
3239 niter->max = wi::to_widest (t: niter->niter);
3240
3241 return (!integer_zerop (niter->assumptions));
3242}
3243
3244/* Like number_of_iterations_exit_assumptions, but return TRUE only if
3245 the niter information holds unconditionally. */
3246
3247bool
3248number_of_iterations_exit (class loop *loop, edge exit,
3249 class tree_niter_desc *niter,
3250 bool warn, bool every_iteration,
3251 basic_block *body)
3252{
3253 gcond *stmt;
3254 if (!number_of_iterations_exit_assumptions (loop, exit, niter,
3255 at_stmt: &stmt, every_iteration, body))
3256 return false;
3257
3258 if (integer_nonzerop (niter->assumptions))
3259 return true;
3260
3261 if (warn && dump_enabled_p ())
3262 dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmt,
3263 "missed loop optimization: niters analysis ends up "
3264 "with assumptions.\n");
3265
3266 return false;
3267}
3268
3269/* Try to determine the number of iterations of LOOP. If we succeed,
3270 expression giving number of iterations is returned and *EXIT is
3271 set to the edge from that the information is obtained. Otherwise
3272 chrec_dont_know is returned. */
3273
3274tree
3275find_loop_niter (class loop *loop, edge *exit)
3276{
3277 unsigned i;
3278 auto_vec<edge> exits = get_loop_exit_edges (loop);
3279 edge ex;
3280 tree niter = NULL_TREE, aniter;
3281 class tree_niter_desc desc;
3282
3283 *exit = NULL;
3284 FOR_EACH_VEC_ELT (exits, i, ex)
3285 {
3286 if (!number_of_iterations_exit (loop, exit: ex, niter: &desc, warn: false))
3287 continue;
3288
3289 if (integer_nonzerop (desc.may_be_zero))
3290 {
3291 /* We exit in the first iteration through this exit.
3292 We won't find anything better. */
3293 niter = build_int_cst (unsigned_type_node, 0);
3294 *exit = ex;
3295 break;
3296 }
3297
3298 if (!integer_zerop (desc.may_be_zero))
3299 continue;
3300
3301 aniter = desc.niter;
3302
3303 if (!niter)
3304 {
3305 /* Nothing recorded yet. */
3306 niter = aniter;
3307 *exit = ex;
3308 continue;
3309 }
3310
3311 /* Prefer constants, the lower the better. */
3312 if (TREE_CODE (aniter) != INTEGER_CST)
3313 continue;
3314
3315 if (TREE_CODE (niter) != INTEGER_CST)
3316 {
3317 niter = aniter;
3318 *exit = ex;
3319 continue;
3320 }
3321
3322 if (tree_int_cst_lt (t1: aniter, t2: niter))
3323 {
3324 niter = aniter;
3325 *exit = ex;
3326 continue;
3327 }
3328 }
3329
3330 return niter ? niter : chrec_dont_know;
3331}
3332
3333/* Return true if loop is known to have bounded number of iterations. */
3334
3335bool
3336finite_loop_p (class loop *loop)
3337{
3338 widest_int nit;
3339 int flags;
3340
3341 if (loop->finite_p)
3342 {
3343 unsigned i;
3344 auto_vec<edge> exits = get_loop_exit_edges (loop);
3345 edge ex;
3346
3347 /* If the loop has a normal exit, we can assume it will terminate. */
3348 FOR_EACH_VEC_ELT (exits, i, ex)
3349 if (!(ex->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_FAKE)))
3350 {
3351 if (dump_file)
3352 fprintf (stream: dump_file, format: "Assume loop %i to be finite: it has an exit "
3353 "and -ffinite-loops is on or loop was "
3354 "previously finite.\n",
3355 loop->num);
3356 return true;
3357 }
3358 }
3359
3360 flags = flags_from_decl_or_type (current_function_decl);
3361 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
3362 {
3363 if (dump_file && (dump_flags & TDF_DETAILS))
3364 fprintf (stream: dump_file,
3365 format: "Found loop %i to be finite: it is within "
3366 "pure or const function.\n",
3367 loop->num);
3368 loop->finite_p = true;
3369 return true;
3370 }
3371
3372 if (loop->any_upper_bound
3373 /* Loop with no normal exit will not pass max_loop_iterations. */
3374 || (!loop->finite_p && max_loop_iterations (loop, &nit)))
3375 {
3376 if (dump_file && (dump_flags & TDF_DETAILS))
3377 fprintf (stream: dump_file, format: "Found loop %i to be finite: upper bound found.\n",
3378 loop->num);
3379 loop->finite_p = true;
3380 return true;
3381 }
3382
3383 return false;
3384}
3385
3386/*
3387
3388 Analysis of a number of iterations of a loop by a brute-force evaluation.
3389
3390*/
3391
3392/* Bound on the number of iterations we try to evaluate. */
3393
3394#define MAX_ITERATIONS_TO_TRACK \
3395 ((unsigned) param_max_iterations_to_track)
3396
3397/* Returns the loop phi node of LOOP such that ssa name X is derived from its
3398 result by a chain of operations such that all but exactly one of their
3399 operands are constants. */
3400
3401static gphi *
3402chain_of_csts_start (class loop *loop, tree x)
3403{
3404 gimple *stmt = SSA_NAME_DEF_STMT (x);
3405 tree use;
3406 basic_block bb = gimple_bb (g: stmt);
3407 enum tree_code code;
3408
3409 if (!bb
3410 || !flow_bb_inside_loop_p (loop, bb))
3411 return NULL;
3412
3413 if (gimple_code (g: stmt) == GIMPLE_PHI)
3414 {
3415 if (bb == loop->header)
3416 return as_a <gphi *> (p: stmt);
3417
3418 return NULL;
3419 }
3420
3421 if (gimple_code (g: stmt) != GIMPLE_ASSIGN
3422 || gimple_assign_rhs_class (gs: stmt) == GIMPLE_TERNARY_RHS)
3423 return NULL;
3424
3425 code = gimple_assign_rhs_code (gs: stmt);
3426 if (gimple_references_memory_p (stmt)
3427 || TREE_CODE_CLASS (code) == tcc_reference
3428 || (code == ADDR_EXPR
3429 && !is_gimple_min_invariant (gimple_assign_rhs1 (gs: stmt))))
3430 return NULL;
3431
3432 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
3433 if (use == NULL_TREE)
3434 return NULL;
3435
3436 return chain_of_csts_start (loop, x: use);
3437}
3438
3439/* Determines whether the expression X is derived from a result of a phi node
3440 in header of LOOP such that
3441
3442 * the derivation of X consists only from operations with constants
3443 * the initial value of the phi node is constant
3444 * the value of the phi node in the next iteration can be derived from the
3445 value in the current iteration by a chain of operations with constants,
3446 or is also a constant
3447
3448 If such phi node exists, it is returned, otherwise NULL is returned. */
3449
3450static gphi *
3451get_base_for (class loop *loop, tree x)
3452{
3453 gphi *phi;
3454 tree init, next;
3455
3456 if (is_gimple_min_invariant (x))
3457 return NULL;
3458
3459 phi = chain_of_csts_start (loop, x);
3460 if (!phi)
3461 return NULL;
3462
3463 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
3464 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
3465
3466 if (!is_gimple_min_invariant (init))
3467 return NULL;
3468
3469 if (TREE_CODE (next) == SSA_NAME
3470 && chain_of_csts_start (loop, x: next) != phi)
3471 return NULL;
3472
3473 return phi;
3474}
3475
3476/* Given an expression X, then
3477
3478 * if X is NULL_TREE, we return the constant BASE.
3479 * if X is a constant, we return the constant X.
3480 * otherwise X is a SSA name, whose value in the considered loop is derived
3481 by a chain of operations with constant from a result of a phi node in
3482 the header of the loop. Then we return value of X when the value of the
3483 result of this phi node is given by the constant BASE. */
3484
3485static tree
3486get_val_for (tree x, tree base)
3487{
3488 gimple *stmt;
3489
3490 gcc_checking_assert (is_gimple_min_invariant (base));
3491
3492 if (!x)
3493 return base;
3494 else if (is_gimple_min_invariant (x))
3495 return x;
3496
3497 stmt = SSA_NAME_DEF_STMT (x);
3498 if (gimple_code (g: stmt) == GIMPLE_PHI)
3499 return base;
3500
3501 gcc_checking_assert (is_gimple_assign (stmt));
3502
3503 /* STMT must be either an assignment of a single SSA name or an
3504 expression involving an SSA name and a constant. Try to fold that
3505 expression using the value for the SSA name. */
3506 if (gimple_assign_ssa_name_copy_p (stmt))
3507 return get_val_for (x: gimple_assign_rhs1 (gs: stmt), base);
3508 else if (gimple_assign_rhs_class (gs: stmt) == GIMPLE_UNARY_RHS
3509 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
3510 return fold_build1 (gimple_assign_rhs_code (stmt),
3511 TREE_TYPE (gimple_assign_lhs (stmt)),
3512 get_val_for (gimple_assign_rhs1 (stmt), base));
3513 else if (gimple_assign_rhs_class (gs: stmt) == GIMPLE_BINARY_RHS)
3514 {
3515 tree rhs1 = gimple_assign_rhs1 (gs: stmt);
3516 tree rhs2 = gimple_assign_rhs2 (gs: stmt);
3517 if (TREE_CODE (rhs1) == SSA_NAME)
3518 rhs1 = get_val_for (x: rhs1, base);
3519 else if (TREE_CODE (rhs2) == SSA_NAME)
3520 rhs2 = get_val_for (x: rhs2, base);
3521 else
3522 gcc_unreachable ();
3523 return fold_build2 (gimple_assign_rhs_code (stmt),
3524 TREE_TYPE (gimple_assign_lhs (stmt)), rhs1, rhs2);
3525 }
3526 else
3527 gcc_unreachable ();
3528}
3529
3530
3531/* Tries to count the number of iterations of LOOP till it exits by EXIT
3532 by brute force -- i.e. by determining the value of the operands of the
3533 condition at EXIT in first few iterations of the loop (assuming that
3534 these values are constant) and determining the first one in that the
3535 condition is not satisfied. Returns the constant giving the number
3536 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
3537
3538tree
3539loop_niter_by_eval (class loop *loop, edge exit)
3540{
3541 tree acnd;
3542 tree op[2], val[2], next[2], aval[2];
3543 gphi *phi;
3544 unsigned i, j;
3545 enum tree_code cmp;
3546
3547 gcond *cond = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: exit->src));
3548 if (!cond)
3549 return chrec_dont_know;
3550
3551 cmp = gimple_cond_code (gs: cond);
3552 if (exit->flags & EDGE_TRUE_VALUE)
3553 cmp = invert_tree_comparison (cmp, false);
3554
3555 switch (cmp)
3556 {
3557 case EQ_EXPR:
3558 case NE_EXPR:
3559 case GT_EXPR:
3560 case GE_EXPR:
3561 case LT_EXPR:
3562 case LE_EXPR:
3563 op[0] = gimple_cond_lhs (gs: cond);
3564 op[1] = gimple_cond_rhs (gs: cond);
3565 break;
3566
3567 default:
3568 return chrec_dont_know;
3569 }
3570
3571 for (j = 0; j < 2; j++)
3572 {
3573 if (is_gimple_min_invariant (op[j]))
3574 {
3575 val[j] = op[j];
3576 next[j] = NULL_TREE;
3577 op[j] = NULL_TREE;
3578 }
3579 else
3580 {
3581 phi = get_base_for (loop, x: op[j]);
3582 if (!phi)
3583 return chrec_dont_know;
3584 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
3585 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
3586 }
3587 }
3588
3589 /* Don't issue signed overflow warnings. */
3590 fold_defer_overflow_warnings ();
3591
3592 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
3593 {
3594 for (j = 0; j < 2; j++)
3595 aval[j] = get_val_for (x: op[j], base: val[j]);
3596
3597 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
3598 if (acnd && integer_zerop (acnd))
3599 {
3600 fold_undefer_and_ignore_overflow_warnings ();
3601 if (dump_file && (dump_flags & TDF_DETAILS))
3602 fprintf (stream: dump_file,
3603 format: "Proved that loop %d iterates %d times using brute force.\n",
3604 loop->num, i);
3605 return build_int_cst (unsigned_type_node, i);
3606 }
3607
3608 for (j = 0; j < 2; j++)
3609 {
3610 aval[j] = val[j];
3611 val[j] = get_val_for (x: next[j], base: val[j]);
3612 if (!is_gimple_min_invariant (val[j]))
3613 {
3614 fold_undefer_and_ignore_overflow_warnings ();
3615 return chrec_dont_know;
3616 }
3617 }
3618
3619 /* If the next iteration would use the same base values
3620 as the current one, there is no point looping further,
3621 all following iterations will be the same as this one. */
3622 if (val[0] == aval[0] && val[1] == aval[1])
3623 break;
3624 }
3625
3626 fold_undefer_and_ignore_overflow_warnings ();
3627
3628 return chrec_dont_know;
3629}
3630
3631/* Finds the exit of the LOOP by that the loop exits after a constant
3632 number of iterations and stores the exit edge to *EXIT. The constant
3633 giving the number of iterations of LOOP is returned. The number of
3634 iterations is determined using loop_niter_by_eval (i.e. by brute force
3635 evaluation). If we are unable to find the exit for that loop_niter_by_eval
3636 determines the number of iterations, chrec_dont_know is returned. */
3637
3638tree
3639find_loop_niter_by_eval (class loop *loop, edge *exit)
3640{
3641 unsigned i;
3642 auto_vec<edge> exits = get_loop_exit_edges (loop);
3643 edge ex;
3644 tree niter = NULL_TREE, aniter;
3645
3646 *exit = NULL;
3647
3648 /* Loops with multiple exits are expensive to handle and less important. */
3649 if (!flag_expensive_optimizations
3650 && exits.length () > 1)
3651 return chrec_dont_know;
3652
3653 FOR_EACH_VEC_ELT (exits, i, ex)
3654 {
3655 if (!just_once_each_iteration_p (loop, ex->src))
3656 continue;
3657
3658 aniter = loop_niter_by_eval (loop, exit: ex);
3659 if (chrec_contains_undetermined (aniter))
3660 continue;
3661
3662 if (niter
3663 && !tree_int_cst_lt (t1: aniter, t2: niter))
3664 continue;
3665
3666 niter = aniter;
3667 *exit = ex;
3668 }
3669
3670 return niter ? niter : chrec_dont_know;
3671}
3672
3673/*
3674
3675 Analysis of upper bounds on number of iterations of a loop.
3676
3677*/
3678
3679static widest_int derive_constant_upper_bound_ops (tree, tree,
3680 enum tree_code, tree);
3681
3682/* Returns a constant upper bound on the value of the right-hand side of
3683 an assignment statement STMT. */
3684
3685static widest_int
3686derive_constant_upper_bound_assign (gimple *stmt)
3687{
3688 enum tree_code code = gimple_assign_rhs_code (gs: stmt);
3689 tree op0 = gimple_assign_rhs1 (gs: stmt);
3690 tree op1 = gimple_assign_rhs2 (gs: stmt);
3691
3692 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
3693 op0, code, op1);
3694}
3695
3696/* Returns a constant upper bound on the value of expression VAL. VAL
3697 is considered to be unsigned. If its type is signed, its value must
3698 be nonnegative. */
3699
3700static widest_int
3701derive_constant_upper_bound (tree val)
3702{
3703 enum tree_code code;
3704 tree op0, op1, op2;
3705
3706 extract_ops_from_tree (val, &code, &op0, &op1, &op2);
3707 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
3708}
3709
3710/* Returns a constant upper bound on the value of expression OP0 CODE OP1,
3711 whose type is TYPE. The expression is considered to be unsigned. If
3712 its type is signed, its value must be nonnegative. */
3713
3714static widest_int
3715derive_constant_upper_bound_ops (tree type, tree op0,
3716 enum tree_code code, tree op1)
3717{
3718 tree subtype, maxt;
3719 widest_int bnd, max, cst;
3720 gimple *stmt;
3721
3722 if (INTEGRAL_TYPE_P (type))
3723 maxt = TYPE_MAX_VALUE (type);
3724 else
3725 maxt = upper_bound_in_type (type, type);
3726
3727 max = wi::to_widest (t: maxt);
3728
3729 switch (code)
3730 {
3731 case INTEGER_CST:
3732 return wi::to_widest (t: op0);
3733
3734 CASE_CONVERT:
3735 subtype = TREE_TYPE (op0);
3736 if (!TYPE_UNSIGNED (subtype)
3737 /* If TYPE is also signed, the fact that VAL is nonnegative implies
3738 that OP0 is nonnegative. */
3739 && TYPE_UNSIGNED (type)
3740 && !tree_expr_nonnegative_p (op0))
3741 {
3742 /* If we cannot prove that the casted expression is nonnegative,
3743 we cannot establish more useful upper bound than the precision
3744 of the type gives us. */
3745 return max;
3746 }
3747
3748 /* We now know that op0 is an nonnegative value. Try deriving an upper
3749 bound for it. */
3750 bnd = derive_constant_upper_bound (val: op0);
3751
3752 /* If the bound does not fit in TYPE, max. value of TYPE could be
3753 attained. */
3754 if (wi::ltu_p (x: max, y: bnd))
3755 return max;
3756
3757 return bnd;
3758
3759 case PLUS_EXPR:
3760 case POINTER_PLUS_EXPR:
3761 case MINUS_EXPR:
3762 if (TREE_CODE (op1) != INTEGER_CST
3763 || !tree_expr_nonnegative_p (op0))
3764 return max;
3765
3766 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
3767 choose the most logical way how to treat this constant regardless
3768 of the signedness of the type. */
3769 cst = wi::sext (x: wi::to_widest (t: op1), TYPE_PRECISION (type));
3770 if (code != MINUS_EXPR)
3771 cst = -cst;
3772
3773 bnd = derive_constant_upper_bound (val: op0);
3774
3775 if (wi::neg_p (x: cst))
3776 {
3777 cst = -cst;
3778 /* Avoid CST == 0x80000... */
3779 if (wi::neg_p (x: cst))
3780 return max;
3781
3782 /* OP0 + CST. We need to check that
3783 BND <= MAX (type) - CST. */
3784
3785 widest_int mmax = max - cst;
3786 if (wi::leu_p (x: bnd, y: mmax))
3787 return max;
3788
3789 return bnd + cst;
3790 }
3791 else
3792 {
3793 /* OP0 - CST, where CST >= 0.
3794
3795 If TYPE is signed, we have already verified that OP0 >= 0, and we
3796 know that the result is nonnegative. This implies that
3797 VAL <= BND - CST.
3798
3799 If TYPE is unsigned, we must additionally know that OP0 >= CST,
3800 otherwise the operation underflows.
3801 */
3802
3803 /* This should only happen if the type is unsigned; however, for
3804 buggy programs that use overflowing signed arithmetics even with
3805 -fno-wrapv, this condition may also be true for signed values. */
3806 if (wi::ltu_p (x: bnd, y: cst))
3807 return max;
3808
3809 if (TYPE_UNSIGNED (type))
3810 {
3811 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
3812 wide_int_to_tree (type, cst));
3813 if (!tem || integer_nonzerop (tem))
3814 return max;
3815 }
3816
3817 bnd -= cst;
3818 }
3819
3820 return bnd;
3821
3822 case FLOOR_DIV_EXPR:
3823 case EXACT_DIV_EXPR:
3824 if (TREE_CODE (op1) != INTEGER_CST
3825 || tree_int_cst_sign_bit (op1))
3826 return max;
3827
3828 bnd = derive_constant_upper_bound (val: op0);
3829 return wi::udiv_floor (x: bnd, y: wi::to_widest (t: op1));
3830
3831 case BIT_AND_EXPR:
3832 if (TREE_CODE (op1) != INTEGER_CST
3833 || tree_int_cst_sign_bit (op1))
3834 return max;
3835 return wi::to_widest (t: op1);
3836
3837 case SSA_NAME:
3838 stmt = SSA_NAME_DEF_STMT (op0);
3839 if (gimple_code (g: stmt) != GIMPLE_ASSIGN
3840 || gimple_assign_lhs (gs: stmt) != op0)
3841 return max;
3842 return derive_constant_upper_bound_assign (stmt);
3843
3844 default:
3845 return max;
3846 }
3847}
3848
3849/* Emit a -Waggressive-loop-optimizations warning if needed. */
3850
3851static void
3852do_warn_aggressive_loop_optimizations (class loop *loop,
3853 widest_int i_bound, gimple *stmt)
3854{
3855 /* Don't warn if the loop doesn't have known constant bound. */
3856 if (!loop->nb_iterations
3857 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
3858 || !warn_aggressive_loop_optimizations
3859 /* To avoid warning multiple times for the same loop,
3860 only start warning when we preserve loops. */
3861 || (cfun->curr_properties & PROP_loops) == 0
3862 /* Only warn once per loop. */
3863 || loop->warned_aggressive_loop_optimizations
3864 /* Only warn if undefined behavior gives us lower estimate than the
3865 known constant bound. */
3866 || wi::cmpu (x: i_bound, y: wi::to_widest (t: loop->nb_iterations)) >= 0
3867 /* And undefined behavior happens unconditionally. */
3868 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (g: stmt)))
3869 return;
3870
3871 edge e = single_exit (loop);
3872 if (e == NULL)
3873 return;
3874
3875 gimple *estmt = last_nondebug_stmt (e->src);
3876 char buf[WIDE_INT_PRINT_BUFFER_SIZE], *p;
3877 unsigned len;
3878 if (print_dec_buf_size (wi: i_bound, TYPE_SIGN (TREE_TYPE (loop->nb_iterations)),
3879 len: &len))
3880 p = XALLOCAVEC (char, len);
3881 else
3882 p = buf;
3883 print_dec (wi: i_bound, buf: p, TYPE_SIGN (TREE_TYPE (loop->nb_iterations)));
3884 auto_diagnostic_group d;
3885 if (warning_at (gimple_location (g: stmt), OPT_Waggressive_loop_optimizations,
3886 "iteration %s invokes undefined behavior", p))
3887 inform (gimple_location (g: estmt), "within this loop");
3888 loop->warned_aggressive_loop_optimizations = true;
3889}
3890
3891/* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
3892 is true if the loop is exited immediately after STMT, and this exit
3893 is taken at last when the STMT is executed BOUND + 1 times.
3894 REALISTIC is true if BOUND is expected to be close to the real number
3895 of iterations. UPPER is true if we are sure the loop iterates at most
3896 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
3897
3898static void
3899record_estimate (class loop *loop, tree bound, const widest_int &i_bound,
3900 gimple *at_stmt, bool is_exit, bool realistic, bool upper)
3901{
3902 widest_int delta;
3903
3904 if (dump_file && (dump_flags & TDF_DETAILS))
3905 {
3906 fprintf (stream: dump_file, format: "Statement %s", is_exit ? "(exit)" : "");
3907 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
3908 fprintf (stream: dump_file, format: " is %sexecuted at most ",
3909 upper ? "" : "probably ");
3910 print_generic_expr (dump_file, bound, TDF_SLIM);
3911 fprintf (stream: dump_file, format: " (bounded by ");
3912 print_decu (wi: i_bound, file: dump_file);
3913 fprintf (stream: dump_file, format: ") + 1 times in loop %d.\n", loop->num);
3914 }
3915
3916 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
3917 real number of iterations. */
3918 if (TREE_CODE (bound) != INTEGER_CST)
3919 realistic = false;
3920 else
3921 gcc_checking_assert (i_bound == wi::to_widest (bound));
3922
3923 if (wi::min_precision (x: i_bound, sgn: SIGNED) > bound_wide_int ().get_precision ())
3924 return;
3925
3926 /* If we have a guaranteed upper bound, record it in the appropriate
3927 list, unless this is an !is_exit bound (i.e. undefined behavior in
3928 at_stmt) in a loop with known constant number of iterations. */
3929 if (upper
3930 && (is_exit
3931 || loop->nb_iterations == NULL_TREE
3932 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
3933 {
3934 class nb_iter_bound *elt = ggc_alloc<nb_iter_bound> ();
3935
3936 elt->bound = bound_wide_int::from (x: i_bound, sgn: SIGNED);
3937 elt->stmt = at_stmt;
3938 elt->is_exit = is_exit;
3939 elt->next = loop->bounds;
3940 loop->bounds = elt;
3941 }
3942
3943 /* If statement is executed on every path to the loop latch, we can directly
3944 infer the upper bound on the # of iterations of the loop. */
3945 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (g: at_stmt)))
3946 upper = false;
3947
3948 /* Update the number of iteration estimates according to the bound.
3949 If at_stmt is an exit then the loop latch is executed at most BOUND times,
3950 otherwise it can be executed BOUND + 1 times. We will lower the estimate
3951 later if such statement must be executed on last iteration */
3952 if (is_exit)
3953 delta = 0;
3954 else
3955 delta = 1;
3956 widest_int new_i_bound = i_bound + delta;
3957
3958 /* If an overflow occurred, ignore the result. */
3959 if (wi::ltu_p (x: new_i_bound, y: delta))
3960 return;
3961
3962 if (upper && !is_exit)
3963 do_warn_aggressive_loop_optimizations (loop, i_bound: new_i_bound, stmt: at_stmt);
3964 record_niter_bound (loop, new_i_bound, realistic, upper);
3965}
3966
3967/* Records the control iv analyzed in NITER for LOOP if the iv is valid
3968 and doesn't overflow. */
3969
3970static void
3971record_control_iv (class loop *loop, class tree_niter_desc *niter)
3972{
3973 struct control_iv *iv;
3974
3975 if (!niter->control.base || !niter->control.step)
3976 return;
3977
3978 if (!integer_onep (niter->assumptions) || !niter->control.no_overflow)
3979 return;
3980
3981 iv = ggc_alloc<control_iv> ();
3982 iv->base = niter->control.base;
3983 iv->step = niter->control.step;
3984 iv->next = loop->control_ivs;
3985 loop->control_ivs = iv;
3986
3987 return;
3988}
3989
3990/* This function returns TRUE if below conditions are satisfied:
3991 1) VAR is SSA variable.
3992 2) VAR is an IV:{base, step} in its defining loop.
3993 3) IV doesn't overflow.
3994 4) Both base and step are integer constants.
3995 5) Base is the MIN/MAX value depends on IS_MIN.
3996 Store value of base to INIT correspondingly. */
3997
3998static bool
3999get_cst_init_from_scev (tree var, wide_int *init, bool is_min)
4000{
4001 if (TREE_CODE (var) != SSA_NAME)
4002 return false;
4003
4004 gimple *def_stmt = SSA_NAME_DEF_STMT (var);
4005 class loop *loop = loop_containing_stmt (stmt: def_stmt);
4006
4007 if (loop == NULL)
4008 return false;
4009
4010 affine_iv iv;
4011 if (!simple_iv (loop, loop, var, &iv, false))
4012 return false;
4013
4014 if (!iv.no_overflow)
4015 return false;
4016
4017 if (TREE_CODE (iv.base) != INTEGER_CST || TREE_CODE (iv.step) != INTEGER_CST)
4018 return false;
4019
4020 if (is_min == tree_int_cst_sign_bit (iv.step))
4021 return false;
4022
4023 *init = wi::to_wide (t: iv.base);
4024 return true;
4025}
4026
4027/* Record the estimate on number of iterations of LOOP based on the fact that
4028 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
4029 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
4030 estimated number of iterations is expected to be close to the real one.
4031 UPPER is true if we are sure the induction variable does not wrap. */
4032
4033static void
4034record_nonwrapping_iv (class loop *loop, tree base, tree step, gimple *stmt,
4035 tree low, tree high, bool realistic, bool upper)
4036{
4037 tree niter_bound, extreme, delta;
4038 tree type = TREE_TYPE (base), unsigned_type;
4039 tree orig_base = base;
4040
4041 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
4042 return;
4043
4044 if (dump_file && (dump_flags & TDF_DETAILS))
4045 {
4046 fprintf (stream: dump_file, format: "Induction variable (");
4047 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
4048 fprintf (stream: dump_file, format: ") ");
4049 print_generic_expr (dump_file, base, TDF_SLIM);
4050 fprintf (stream: dump_file, format: " + ");
4051 print_generic_expr (dump_file, step, TDF_SLIM);
4052 fprintf (stream: dump_file, format: " * iteration does not wrap in statement ");
4053 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
4054 fprintf (stream: dump_file, format: " in loop %d.\n", loop->num);
4055 }
4056
4057 unsigned_type = unsigned_type_for (type);
4058 base = fold_convert (unsigned_type, base);
4059 step = fold_convert (unsigned_type, step);
4060
4061 if (tree_int_cst_sign_bit (step))
4062 {
4063 wide_int max;
4064 Value_Range base_range (TREE_TYPE (orig_base));
4065 if (get_range_query (cfun)->range_of_expr (r&: base_range, expr: orig_base)
4066 && !base_range.undefined_p ())
4067 max = base_range.upper_bound ();
4068 extreme = fold_convert (unsigned_type, low);
4069 if (TREE_CODE (orig_base) == SSA_NAME
4070 && TREE_CODE (high) == INTEGER_CST
4071 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
4072 && ((!base_range.varying_p ()
4073 && !base_range.undefined_p ())
4074 || get_cst_init_from_scev (var: orig_base, init: &max, is_min: false))
4075 && wi::gts_p (x: wi::to_wide (t: high), y: max))
4076 base = wide_int_to_tree (type: unsigned_type, cst: max);
4077 else if (TREE_CODE (base) != INTEGER_CST
4078 && dominated_by_p (CDI_DOMINATORS,
4079 loop->latch, gimple_bb (g: stmt)))
4080 base = fold_convert (unsigned_type, high);
4081 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
4082 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
4083 }
4084 else
4085 {
4086 wide_int min;
4087 Value_Range base_range (TREE_TYPE (orig_base));
4088 if (get_range_query (cfun)->range_of_expr (r&: base_range, expr: orig_base)
4089 && !base_range.undefined_p ())
4090 min = base_range.lower_bound ();
4091 extreme = fold_convert (unsigned_type, high);
4092 if (TREE_CODE (orig_base) == SSA_NAME
4093 && TREE_CODE (low) == INTEGER_CST
4094 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
4095 && ((!base_range.varying_p ()
4096 && !base_range.undefined_p ())
4097 || get_cst_init_from_scev (var: orig_base, init: &min, is_min: true))
4098 && wi::gts_p (x: min, y: wi::to_wide (t: low)))
4099 base = wide_int_to_tree (type: unsigned_type, cst: min);
4100 else if (TREE_CODE (base) != INTEGER_CST
4101 && dominated_by_p (CDI_DOMINATORS,
4102 loop->latch, gimple_bb (g: stmt)))
4103 base = fold_convert (unsigned_type, low);
4104 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
4105 }
4106
4107 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
4108 would get out of the range. */
4109 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
4110 widest_int max = derive_constant_upper_bound (val: niter_bound);
4111 record_estimate (loop, bound: niter_bound, i_bound: max, at_stmt: stmt, is_exit: false, realistic, upper);
4112}
4113
4114/* Determine information about number of iterations a LOOP from the index
4115 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
4116 guaranteed to be executed in every iteration of LOOP. Callback for
4117 for_each_index. */
4118
4119struct ilb_data
4120{
4121 class loop *loop;
4122 gimple *stmt;
4123};
4124
4125static bool
4126idx_infer_loop_bounds (tree base, tree *idx, void *dta)
4127{
4128 struct ilb_data *data = (struct ilb_data *) dta;
4129 tree ev, init, step;
4130 tree low, high, type, next;
4131 bool sign, upper = true, has_flexible_size = false;
4132 class loop *loop = data->loop;
4133
4134 if (TREE_CODE (base) != ARRAY_REF)
4135 return true;
4136
4137 /* For arrays that might have flexible sizes, it is not guaranteed that they
4138 do not really extend over their declared size. */
4139 if (array_ref_flexible_size_p (base))
4140 {
4141 has_flexible_size = true;
4142 upper = false;
4143 }
4144
4145 class loop *dloop = loop_containing_stmt (stmt: data->stmt);
4146 if (!dloop)
4147 return true;
4148
4149 ev = analyze_scalar_evolution (dloop, *idx);
4150 ev = instantiate_parameters (loop, chrec: ev);
4151 init = initial_condition (ev);
4152 step = evolution_part_in_loop_num (ev, loop->num);
4153
4154 if (!init
4155 || !step
4156 || TREE_CODE (step) != INTEGER_CST
4157 || integer_zerop (step)
4158 || tree_contains_chrecs (init, NULL)
4159 || chrec_contains_symbols_defined_in_loop (init, loop->num))
4160 return true;
4161
4162 low = array_ref_low_bound (base);
4163 high = array_ref_up_bound (base);
4164
4165 /* The case of nonconstant bounds could be handled, but it would be
4166 complicated. */
4167 if (TREE_CODE (low) != INTEGER_CST
4168 || !high
4169 || TREE_CODE (high) != INTEGER_CST)
4170 return true;
4171 sign = tree_int_cst_sign_bit (step);
4172 type = TREE_TYPE (step);
4173
4174 /* The array that might have flexible size most likely extends
4175 beyond its bounds. */
4176 if (has_flexible_size
4177 && operand_equal_p (low, high, flags: 0))
4178 return true;
4179
4180 /* In case the relevant bound of the array does not fit in type, or
4181 it does, but bound + step (in type) still belongs into the range of the
4182 array, the index may wrap and still stay within the range of the array
4183 (consider e.g. if the array is indexed by the full range of
4184 unsigned char).
4185
4186 To make things simpler, we require both bounds to fit into type, although
4187 there are cases where this would not be strictly necessary. */
4188 if (!int_fits_type_p (high, type)
4189 || !int_fits_type_p (low, type))
4190 return true;
4191 low = fold_convert (type, low);
4192 high = fold_convert (type, high);
4193
4194 if (sign)
4195 next = fold_binary (PLUS_EXPR, type, low, step);
4196 else
4197 next = fold_binary (PLUS_EXPR, type, high, step);
4198
4199 if (tree_int_cst_compare (t1: low, t2: next) <= 0
4200 && tree_int_cst_compare (t1: next, t2: high) <= 0)
4201 return true;
4202
4203 /* If access is not executed on every iteration, we must ensure that overlow
4204 may not make the access valid later. */
4205 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (g: data->stmt))
4206 && scev_probably_wraps_p (NULL_TREE,
4207 initial_condition_in_loop_num (ev, loop->num),
4208 step, data->stmt, loop, true))
4209 upper = false;
4210
4211 record_nonwrapping_iv (loop, base: init, step, stmt: data->stmt, low, high, realistic: false, upper);
4212 return true;
4213}
4214
4215/* Determine information about number of iterations a LOOP from the bounds
4216 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
4217 STMT is guaranteed to be executed in every iteration of LOOP.*/
4218
4219static void
4220infer_loop_bounds_from_ref (class loop *loop, gimple *stmt, tree ref)
4221{
4222 struct ilb_data data;
4223
4224 data.loop = loop;
4225 data.stmt = stmt;
4226 for_each_index (&ref, idx_infer_loop_bounds, &data);
4227}
4228
4229/* Determine information about number of iterations of a LOOP from the way
4230 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
4231 executed in every iteration of LOOP. */
4232
4233static void
4234infer_loop_bounds_from_array (class loop *loop, gimple *stmt)
4235{
4236 if (is_gimple_assign (gs: stmt))
4237 {
4238 tree op0 = gimple_assign_lhs (gs: stmt);
4239 tree op1 = gimple_assign_rhs1 (gs: stmt);
4240
4241 /* For each memory access, analyze its access function
4242 and record a bound on the loop iteration domain. */
4243 if (REFERENCE_CLASS_P (op0))
4244 infer_loop_bounds_from_ref (loop, stmt, ref: op0);
4245
4246 if (REFERENCE_CLASS_P (op1))
4247 infer_loop_bounds_from_ref (loop, stmt, ref: op1);
4248 }
4249 else if (is_gimple_call (gs: stmt))
4250 {
4251 tree arg, lhs;
4252 unsigned i, n = gimple_call_num_args (gs: stmt);
4253
4254 lhs = gimple_call_lhs (gs: stmt);
4255 if (lhs && REFERENCE_CLASS_P (lhs))
4256 infer_loop_bounds_from_ref (loop, stmt, ref: lhs);
4257
4258 for (i = 0; i < n; i++)
4259 {
4260 arg = gimple_call_arg (gs: stmt, index: i);
4261 if (REFERENCE_CLASS_P (arg))
4262 infer_loop_bounds_from_ref (loop, stmt, ref: arg);
4263 }
4264 }
4265}
4266
4267/* Determine information about number of iterations of a LOOP from the fact
4268 that pointer arithmetics in STMT does not overflow. */
4269
4270static void
4271infer_loop_bounds_from_pointer_arith (class loop *loop, gimple *stmt)
4272{
4273 tree def, base, step, scev, type, low, high;
4274 tree var, ptr;
4275
4276 if (!is_gimple_assign (gs: stmt)
4277 || gimple_assign_rhs_code (gs: stmt) != POINTER_PLUS_EXPR)
4278 return;
4279
4280 def = gimple_assign_lhs (gs: stmt);
4281 if (TREE_CODE (def) != SSA_NAME)
4282 return;
4283
4284 type = TREE_TYPE (def);
4285 if (!nowrap_type_p (type))
4286 return;
4287
4288 ptr = gimple_assign_rhs1 (gs: stmt);
4289 if (!expr_invariant_in_loop_p (loop, ptr))
4290 return;
4291
4292 var = gimple_assign_rhs2 (gs: stmt);
4293 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
4294 return;
4295
4296 class loop *uloop = loop_containing_stmt (stmt);
4297 scev = instantiate_parameters (loop, chrec: analyze_scalar_evolution (uloop, def));
4298 if (chrec_contains_undetermined (scev))
4299 return;
4300
4301 base = initial_condition_in_loop_num (scev, loop->num);
4302 step = evolution_part_in_loop_num (scev, loop->num);
4303
4304 if (!base || !step
4305 || TREE_CODE (step) != INTEGER_CST
4306 || tree_contains_chrecs (base, NULL)
4307 || chrec_contains_symbols_defined_in_loop (base, loop->num))
4308 return;
4309
4310 low = lower_bound_in_type (type, type);
4311 high = upper_bound_in_type (type, type);
4312
4313 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
4314 produce a NULL pointer. The contrary would mean NULL points to an object,
4315 while NULL is supposed to compare unequal with the address of all objects.
4316 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
4317 NULL pointer since that would mean wrapping, which we assume here not to
4318 happen. So, we can exclude NULL from the valid range of pointer
4319 arithmetic. */
4320 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
4321 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
4322
4323 record_nonwrapping_iv (loop, base, step, stmt, low, high, realistic: false, upper: true);
4324}
4325
4326/* Determine information about number of iterations of a LOOP from the fact
4327 that signed arithmetics in STMT does not overflow. */
4328
4329static void
4330infer_loop_bounds_from_signedness (class loop *loop, gimple *stmt)
4331{
4332 tree def, base, step, scev, type, low, high;
4333
4334 if (gimple_code (g: stmt) != GIMPLE_ASSIGN)
4335 return;
4336
4337 def = gimple_assign_lhs (gs: stmt);
4338
4339 if (TREE_CODE (def) != SSA_NAME)
4340 return;
4341
4342 type = TREE_TYPE (def);
4343 if (!INTEGRAL_TYPE_P (type)
4344 || !TYPE_OVERFLOW_UNDEFINED (type))
4345 return;
4346
4347 scev = instantiate_parameters (loop, chrec: analyze_scalar_evolution (loop, def));
4348 if (chrec_contains_undetermined (scev))
4349 return;
4350
4351 base = initial_condition_in_loop_num (scev, loop->num);
4352 step = evolution_part_in_loop_num (scev, loop->num);
4353
4354 if (!base || !step
4355 || TREE_CODE (step) != INTEGER_CST
4356 || tree_contains_chrecs (base, NULL)
4357 || chrec_contains_symbols_defined_in_loop (base, loop->num))
4358 return;
4359
4360 low = lower_bound_in_type (type, type);
4361 high = upper_bound_in_type (type, type);
4362 Value_Range r (TREE_TYPE (def));
4363 get_range_query (cfun)->range_of_expr (r, expr: def);
4364 if (!r.varying_p () && !r.undefined_p ())
4365 {
4366 low = wide_int_to_tree (type, cst: r.lower_bound ());
4367 high = wide_int_to_tree (type, cst: r.upper_bound ());
4368 }
4369
4370 record_nonwrapping_iv (loop, base, step, stmt, low, high, realistic: false, upper: true);
4371}
4372
4373/* The following analyzers are extracting informations on the bounds
4374 of LOOP from the following undefined behaviors:
4375
4376 - data references should not access elements over the statically
4377 allocated size,
4378
4379 - signed variables should not overflow when flag_wrapv is not set.
4380*/
4381
4382static void
4383infer_loop_bounds_from_undefined (class loop *loop, basic_block *bbs)
4384{
4385 unsigned i;
4386 gimple_stmt_iterator bsi;
4387 basic_block bb;
4388 bool reliable;
4389
4390 for (i = 0; i < loop->num_nodes; i++)
4391 {
4392 bb = bbs[i];
4393
4394 /* If BB is not executed in each iteration of the loop, we cannot
4395 use the operations in it to infer reliable upper bound on the
4396 # of iterations of the loop. However, we can use it as a guess.
4397 Reliable guesses come only from array bounds. */
4398 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
4399
4400 for (bsi = gsi_start_bb (bb); !gsi_end_p (i: bsi); gsi_next (i: &bsi))
4401 {
4402 gimple *stmt = gsi_stmt (i: bsi);
4403
4404 infer_loop_bounds_from_array (loop, stmt);
4405
4406 if (reliable)
4407 {
4408 infer_loop_bounds_from_signedness (loop, stmt);
4409 infer_loop_bounds_from_pointer_arith (loop, stmt);
4410 }
4411 }
4412
4413 }
4414}
4415
4416/* Compare wide ints, callback for qsort. */
4417
4418static int
4419wide_int_cmp (const void *p1, const void *p2)
4420{
4421 const bound_wide_int *d1 = (const bound_wide_int *) p1;
4422 const bound_wide_int *d2 = (const bound_wide_int *) p2;
4423 return wi::cmpu (x: *d1, y: *d2);
4424}
4425
4426/* Return index of BOUND in BOUNDS array sorted in increasing order.
4427 Lookup by binary search. */
4428
4429static int
4430bound_index (const vec<bound_wide_int> &bounds, const bound_wide_int &bound)
4431{
4432 unsigned int end = bounds.length ();
4433 unsigned int begin = 0;
4434
4435 /* Find a matching index by means of a binary search. */
4436 while (begin != end)
4437 {
4438 unsigned int middle = (begin + end) / 2;
4439 bound_wide_int index = bounds[middle];
4440
4441 if (index == bound)
4442 return middle;
4443 else if (wi::ltu_p (x: index, y: bound))
4444 begin = middle + 1;
4445 else
4446 end = middle;
4447 }
4448 gcc_unreachable ();
4449}
4450
4451/* We recorded loop bounds only for statements dominating loop latch (and thus
4452 executed each loop iteration). If there are any bounds on statements not
4453 dominating the loop latch we can improve the estimate by walking the loop
4454 body and seeing if every path from loop header to loop latch contains
4455 some bounded statement. */
4456
4457static void
4458discover_iteration_bound_by_body_walk (class loop *loop)
4459{
4460 class nb_iter_bound *elt;
4461 auto_vec<bound_wide_int> bounds;
4462 vec<vec<basic_block> > queues = vNULL;
4463 vec<basic_block> queue = vNULL;
4464 ptrdiff_t queue_index;
4465 ptrdiff_t latch_index = 0;
4466
4467 /* Discover what bounds may interest us. */
4468 for (elt = loop->bounds; elt; elt = elt->next)
4469 {
4470 bound_wide_int bound = elt->bound;
4471
4472 /* Exit terminates loop at given iteration, while non-exits produce undefined
4473 effect on the next iteration. */
4474 if (!elt->is_exit)
4475 {
4476 bound += 1;
4477 /* If an overflow occurred, ignore the result. */
4478 if (bound == 0)
4479 continue;
4480 }
4481
4482 if (!loop->any_upper_bound
4483 || wi::ltu_p (x: bound, y: loop->nb_iterations_upper_bound))
4484 bounds.safe_push (obj: bound);
4485 }
4486
4487 /* Exit early if there is nothing to do. */
4488 if (!bounds.exists ())
4489 return;
4490
4491 if (dump_file && (dump_flags & TDF_DETAILS))
4492 fprintf (stream: dump_file, format: " Trying to walk loop body to reduce the bound.\n");
4493
4494 /* Sort the bounds in decreasing order. */
4495 bounds.qsort (wide_int_cmp);
4496
4497 /* For every basic block record the lowest bound that is guaranteed to
4498 terminate the loop. */
4499
4500 hash_map<basic_block, ptrdiff_t> bb_bounds;
4501 for (elt = loop->bounds; elt; elt = elt->next)
4502 {
4503 bound_wide_int bound = elt->bound;
4504 if (!elt->is_exit)
4505 {
4506 bound += 1;
4507 /* If an overflow occurred, ignore the result. */
4508 if (bound == 0)
4509 continue;
4510 }
4511
4512 if (!loop->any_upper_bound
4513 || wi::ltu_p (x: bound, y: loop->nb_iterations_upper_bound))
4514 {
4515 ptrdiff_t index = bound_index (bounds, bound);
4516 ptrdiff_t *entry = bb_bounds.get (k: gimple_bb (g: elt->stmt));
4517 if (!entry)
4518 bb_bounds.put (k: gimple_bb (g: elt->stmt), v: index);
4519 else if ((ptrdiff_t)*entry > index)
4520 *entry = index;
4521 }
4522 }
4523
4524 hash_map<basic_block, ptrdiff_t> block_priority;
4525
4526 /* Perform shortest path discovery loop->header ... loop->latch.
4527
4528 The "distance" is given by the smallest loop bound of basic block
4529 present in the path and we look for path with largest smallest bound
4530 on it.
4531
4532 To avoid the need for fibonacci heap on double ints we simply compress
4533 double ints into indexes to BOUNDS array and then represent the queue
4534 as arrays of queues for every index.
4535 Index of BOUNDS.length() means that the execution of given BB has
4536 no bounds determined.
4537
4538 VISITED is a pointer map translating basic block into smallest index
4539 it was inserted into the priority queue with. */
4540 latch_index = -1;
4541
4542 /* Start walk in loop header with index set to infinite bound. */
4543 queue_index = bounds.length ();
4544 queues.safe_grow_cleared (len: queue_index + 1, exact: true);
4545 queue.safe_push (obj: loop->header);
4546 queues[queue_index] = queue;
4547 block_priority.put (k: loop->header, v: queue_index);
4548
4549 for (; queue_index >= 0; queue_index--)
4550 {
4551 if (latch_index < queue_index)
4552 {
4553 while (queues[queue_index].length ())
4554 {
4555 basic_block bb;
4556 ptrdiff_t bound_index = queue_index;
4557 edge e;
4558 edge_iterator ei;
4559
4560 queue = queues[queue_index];
4561 bb = queue.pop ();
4562
4563 /* OK, we later inserted the BB with lower priority, skip it. */
4564 if (*block_priority.get (k: bb) > queue_index)
4565 continue;
4566
4567 /* See if we can improve the bound. */
4568 ptrdiff_t *entry = bb_bounds.get (k: bb);
4569 if (entry && *entry < bound_index)
4570 bound_index = *entry;
4571
4572 /* Insert succesors into the queue, watch for latch edge
4573 and record greatest index we saw. */
4574 FOR_EACH_EDGE (e, ei, bb->succs)
4575 {
4576 bool insert = false;
4577
4578 if (loop_exit_edge_p (loop, e))
4579 continue;
4580
4581 if (e == loop_latch_edge (loop)
4582 && latch_index < bound_index)
4583 latch_index = bound_index;
4584 else if (!(entry = block_priority.get (k: e->dest)))
4585 {
4586 insert = true;
4587 block_priority.put (k: e->dest, v: bound_index);
4588 }
4589 else if (*entry < bound_index)
4590 {
4591 insert = true;
4592 *entry = bound_index;
4593 }
4594
4595 if (insert)
4596 queues[bound_index].safe_push (obj: e->dest);
4597 }
4598 }
4599 }
4600 queues[queue_index].release ();
4601 }
4602
4603 gcc_assert (latch_index >= 0);
4604 if ((unsigned)latch_index < bounds.length ())
4605 {
4606 if (dump_file && (dump_flags & TDF_DETAILS))
4607 {
4608 fprintf (stream: dump_file, format: "Found better loop bound ");
4609 print_decu (wi: bounds[latch_index], file: dump_file);
4610 fprintf (stream: dump_file, format: "\n");
4611 }
4612 record_niter_bound (loop, widest_int::from (x: bounds[latch_index],
4613 sgn: SIGNED), false, true);
4614 }
4615
4616 queues.release ();
4617}
4618
4619/* See if every path cross the loop goes through a statement that is known
4620 to not execute at the last iteration. In that case we can decrese iteration
4621 count by 1. */
4622
4623static void
4624maybe_lower_iteration_bound (class loop *loop)
4625{
4626 hash_set<gimple *> *not_executed_last_iteration = NULL;
4627 class nb_iter_bound *elt;
4628 bool found_exit = false;
4629 auto_vec<basic_block> queue;
4630 bitmap visited;
4631
4632 /* Collect all statements with interesting (i.e. lower than
4633 nb_iterations_upper_bound) bound on them.
4634
4635 TODO: Due to the way record_estimate choose estimates to store, the bounds
4636 will be always nb_iterations_upper_bound-1. We can change this to record
4637 also statements not dominating the loop latch and update the walk bellow
4638 to the shortest path algorithm. */
4639 for (elt = loop->bounds; elt; elt = elt->next)
4640 {
4641 if (!elt->is_exit
4642 && wi::ltu_p (x: elt->bound, y: loop->nb_iterations_upper_bound))
4643 {
4644 if (!not_executed_last_iteration)
4645 not_executed_last_iteration = new hash_set<gimple *>;
4646 not_executed_last_iteration->add (k: elt->stmt);
4647 }
4648 }
4649 if (!not_executed_last_iteration)
4650 return;
4651
4652 /* Start DFS walk in the loop header and see if we can reach the
4653 loop latch or any of the exits (including statements with side
4654 effects that may terminate the loop otherwise) without visiting
4655 any of the statements known to have undefined effect on the last
4656 iteration. */
4657 queue.safe_push (obj: loop->header);
4658 visited = BITMAP_ALLOC (NULL);
4659 bitmap_set_bit (visited, loop->header->index);
4660 found_exit = false;
4661
4662 do
4663 {
4664 basic_block bb = queue.pop ();
4665 gimple_stmt_iterator gsi;
4666 bool stmt_found = false;
4667
4668 /* Loop for possible exits and statements bounding the execution. */
4669 for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
4670 {
4671 gimple *stmt = gsi_stmt (i: gsi);
4672 if (not_executed_last_iteration->contains (k: stmt))
4673 {
4674 stmt_found = true;
4675 break;
4676 }
4677 if (gimple_has_side_effects (stmt))
4678 {
4679 found_exit = true;
4680 break;
4681 }
4682 }
4683 if (found_exit)
4684 break;
4685
4686 /* If no bounding statement is found, continue the walk. */
4687 if (!stmt_found)
4688 {
4689 edge e;
4690 edge_iterator ei;
4691
4692 FOR_EACH_EDGE (e, ei, bb->succs)
4693 {
4694 if (loop_exit_edge_p (loop, e)
4695 || e == loop_latch_edge (loop))
4696 {
4697 found_exit = true;
4698 break;
4699 }
4700 if (bitmap_set_bit (visited, e->dest->index))
4701 queue.safe_push (obj: e->dest);
4702 }
4703 }
4704 }
4705 while (queue.length () && !found_exit);
4706
4707 /* If every path through the loop reach bounding statement before exit,
4708 then we know the last iteration of the loop will have undefined effect
4709 and we can decrease number of iterations. */
4710
4711 if (!found_exit)
4712 {
4713 if (dump_file && (dump_flags & TDF_DETAILS))
4714 fprintf (stream: dump_file, format: "Reducing loop iteration estimate by 1; "
4715 "undefined statement must be executed at the last iteration.\n");
4716 record_niter_bound (loop, widest_int::from (x: loop->nb_iterations_upper_bound,
4717 sgn: SIGNED) - 1,
4718 false, true);
4719 }
4720
4721 BITMAP_FREE (visited);
4722 delete not_executed_last_iteration;
4723}
4724
4725/* Get expected upper bound for number of loop iterations for
4726 BUILT_IN_EXPECT_WITH_PROBABILITY for a condition COND. */
4727
4728static tree
4729get_upper_bound_based_on_builtin_expr_with_prob (gcond *cond)
4730{
4731 if (cond == NULL)
4732 return NULL_TREE;
4733
4734 tree lhs = gimple_cond_lhs (gs: cond);
4735 if (TREE_CODE (lhs) != SSA_NAME)
4736 return NULL_TREE;
4737
4738 gimple *stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
4739 gcall *def = dyn_cast<gcall *> (p: stmt);
4740 if (def == NULL)
4741 return NULL_TREE;
4742
4743 tree decl = gimple_call_fndecl (gs: def);
4744 if (!decl
4745 || !fndecl_built_in_p (node: decl, name1: BUILT_IN_EXPECT_WITH_PROBABILITY)
4746 || gimple_call_num_args (gs: stmt) != 3)
4747 return NULL_TREE;
4748
4749 tree c = gimple_call_arg (gs: def, index: 1);
4750 tree condt = TREE_TYPE (lhs);
4751 tree res = fold_build2 (gimple_cond_code (cond),
4752 condt, c,
4753 gimple_cond_rhs (cond));
4754 if (TREE_CODE (res) != INTEGER_CST)
4755 return NULL_TREE;
4756
4757
4758 tree prob = gimple_call_arg (gs: def, index: 2);
4759 tree t = TREE_TYPE (prob);
4760 tree one
4761 = build_real_from_int_cst (t,
4762 integer_one_node);
4763 if (integer_zerop (res))
4764 prob = fold_build2 (MINUS_EXPR, t, one, prob);
4765 tree r = fold_build2 (RDIV_EXPR, t, one, prob);
4766 if (TREE_CODE (r) != REAL_CST)
4767 return NULL_TREE;
4768
4769 HOST_WIDE_INT probi
4770 = real_to_integer (TREE_REAL_CST_PTR (r));
4771 return build_int_cst (condt, probi);
4772}
4773
4774/* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
4775 is true also use estimates derived from undefined behavior. */
4776
4777void
4778estimate_numbers_of_iterations (class loop *loop)
4779{
4780 tree niter, type;
4781 unsigned i;
4782 class tree_niter_desc niter_desc;
4783 edge ex;
4784 widest_int bound;
4785 edge likely_exit;
4786
4787 /* Give up if we already have tried to compute an estimation. */
4788 if (loop->estimate_state != EST_NOT_COMPUTED)
4789 return;
4790
4791 if (dump_file && (dump_flags & TDF_DETAILS))
4792 fprintf (stream: dump_file, format: "Estimating # of iterations of loop %d\n", loop->num);
4793
4794 loop->estimate_state = EST_AVAILABLE;
4795
4796 sreal nit;
4797 bool reliable;
4798
4799 /* If we have a measured profile, use it to estimate the number of
4800 iterations. Normally this is recorded by branch_prob right after
4801 reading the profile. In case we however found a new loop, record the
4802 information here.
4803
4804 Explicitly check for profile status so we do not report
4805 wrong prediction hitrates for guessed loop iterations heuristics.
4806 Do not recompute already recorded bounds - we ought to be better on
4807 updating iteration bounds than updating profile in general and thus
4808 recomputing iteration bounds later in the compilation process will just
4809 introduce random roundoff errors. */
4810 if (!loop->any_estimate
4811 && expected_loop_iterations_by_profile (loop, ret: &nit, reliable: &reliable)
4812 && reliable)
4813 {
4814 bound = nit.to_nearest_int ();
4815 record_niter_bound (loop, bound, true, false);
4816 }
4817
4818 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
4819 to be constant, we avoid undefined behavior implied bounds and instead
4820 diagnose those loops with -Waggressive-loop-optimizations. */
4821 number_of_latch_executions (loop);
4822
4823 basic_block *body = get_loop_body (loop);
4824 auto_vec<edge> exits = get_loop_exit_edges (loop, body);
4825 likely_exit = single_likely_exit (loop, exits);
4826 FOR_EACH_VEC_ELT (exits, i, ex)
4827 {
4828 if (ex == likely_exit)
4829 {
4830 gimple *stmt = *gsi_last_bb (bb: ex->src);
4831 if (stmt != NULL)
4832 {
4833 gcond *cond = dyn_cast<gcond *> (p: stmt);
4834 tree niter_bound
4835 = get_upper_bound_based_on_builtin_expr_with_prob (cond);
4836 if (niter_bound != NULL_TREE)
4837 {
4838 widest_int max = derive_constant_upper_bound (val: niter_bound);
4839 record_estimate (loop, bound: niter_bound, i_bound: max, at_stmt: cond,
4840 is_exit: true, realistic: true, upper: false);
4841 }
4842 }
4843 }
4844
4845 if (!number_of_iterations_exit (loop, exit: ex, niter: &niter_desc,
4846 warn: false, every_iteration: false, body))
4847 continue;
4848
4849 niter = niter_desc.niter;
4850 type = TREE_TYPE (niter);
4851 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
4852 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
4853 build_int_cst (type, 0),
4854 niter);
4855 record_estimate (loop, bound: niter, i_bound: niter_desc.max,
4856 at_stmt: last_nondebug_stmt (ex->src),
4857 is_exit: true, realistic: ex == likely_exit, upper: true);
4858 record_control_iv (loop, niter: &niter_desc);
4859 }
4860
4861 if (flag_aggressive_loop_optimizations)
4862 infer_loop_bounds_from_undefined (loop, bbs: body);
4863 free (ptr: body);
4864
4865 discover_iteration_bound_by_body_walk (loop);
4866
4867 maybe_lower_iteration_bound (loop);
4868
4869 /* If we know the exact number of iterations of this loop, try to
4870 not break code with undefined behavior by not recording smaller
4871 maximum number of iterations. */
4872 if (loop->nb_iterations
4873 && TREE_CODE (loop->nb_iterations) == INTEGER_CST
4874 && (wi::min_precision (x: wi::to_widest (t: loop->nb_iterations), sgn: SIGNED)
4875 <= bound_wide_int ().get_precision ()))
4876 {
4877 loop->any_upper_bound = true;
4878 loop->nb_iterations_upper_bound
4879 = bound_wide_int::from (x: wi::to_widest (t: loop->nb_iterations), sgn: SIGNED);
4880 }
4881}
4882
4883/* Sets NIT to the estimated number of executions of the latch of the
4884 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
4885 large as the number of iterations. If we have no reliable estimate,
4886 the function returns false, otherwise returns true. */
4887
4888bool
4889estimated_loop_iterations (class loop *loop, widest_int *nit)
4890{
4891 /* When SCEV information is available, try to update loop iterations
4892 estimate. Otherwise just return whatever we recorded earlier. */
4893 if (scev_initialized_p ())
4894 estimate_numbers_of_iterations (loop);
4895
4896 return (get_estimated_loop_iterations (loop, nit));
4897}
4898
4899/* Similar to estimated_loop_iterations, but returns the estimate only
4900 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4901 on the number of iterations of LOOP could not be derived, returns -1. */
4902
4903HOST_WIDE_INT
4904estimated_loop_iterations_int (class loop *loop)
4905{
4906 widest_int nit;
4907 HOST_WIDE_INT hwi_nit;
4908
4909 if (!estimated_loop_iterations (loop, nit: &nit))
4910 return -1;
4911
4912 if (!wi::fits_shwi_p (x: nit))
4913 return -1;
4914 hwi_nit = nit.to_shwi ();
4915
4916 return hwi_nit < 0 ? -1 : hwi_nit;
4917}
4918
4919
4920/* Sets NIT to an upper bound for the maximum number of executions of the
4921 latch of the LOOP. If we have no reliable estimate, the function returns
4922 false, otherwise returns true. */
4923
4924bool
4925max_loop_iterations (class loop *loop, widest_int *nit)
4926{
4927 /* When SCEV information is available, try to update loop iterations
4928 estimate. Otherwise just return whatever we recorded earlier. */
4929 if (scev_initialized_p ())
4930 estimate_numbers_of_iterations (loop);
4931
4932 return get_max_loop_iterations (loop, nit);
4933}
4934
4935/* Similar to max_loop_iterations, but returns the estimate only
4936 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4937 on the number of iterations of LOOP could not be derived, returns -1. */
4938
4939HOST_WIDE_INT
4940max_loop_iterations_int (class loop *loop)
4941{
4942 widest_int nit;
4943 HOST_WIDE_INT hwi_nit;
4944
4945 if (!max_loop_iterations (loop, nit: &nit))
4946 return -1;
4947
4948 if (!wi::fits_shwi_p (x: nit))
4949 return -1;
4950 hwi_nit = nit.to_shwi ();
4951
4952 return hwi_nit < 0 ? -1 : hwi_nit;
4953}
4954
4955/* Sets NIT to an likely upper bound for the maximum number of executions of the
4956 latch of the LOOP. If we have no reliable estimate, the function returns
4957 false, otherwise returns true. */
4958
4959bool
4960likely_max_loop_iterations (class loop *loop, widest_int *nit)
4961{
4962 /* When SCEV information is available, try to update loop iterations
4963 estimate. Otherwise just return whatever we recorded earlier. */
4964 if (scev_initialized_p ())
4965 estimate_numbers_of_iterations (loop);
4966
4967 return get_likely_max_loop_iterations (loop, nit);
4968}
4969
4970/* Similar to max_loop_iterations, but returns the estimate only
4971 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4972 on the number of iterations of LOOP could not be derived, returns -1. */
4973
4974HOST_WIDE_INT
4975likely_max_loop_iterations_int (class loop *loop)
4976{
4977 widest_int nit;
4978 HOST_WIDE_INT hwi_nit;
4979
4980 if (!likely_max_loop_iterations (loop, nit: &nit))
4981 return -1;
4982
4983 if (!wi::fits_shwi_p (x: nit))
4984 return -1;
4985 hwi_nit = nit.to_shwi ();
4986
4987 return hwi_nit < 0 ? -1 : hwi_nit;
4988}
4989
4990/* Returns an estimate for the number of executions of statements
4991 in the LOOP. For statements before the loop exit, this exceeds
4992 the number of execution of the latch by one. */
4993
4994HOST_WIDE_INT
4995estimated_stmt_executions_int (class loop *loop)
4996{
4997 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
4998 HOST_WIDE_INT snit;
4999
5000 if (nit == -1)
5001 return -1;
5002
5003 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
5004
5005 /* If the computation overflows, return -1. */
5006 return snit < 0 ? -1 : snit;
5007}
5008
5009/* Sets NIT to the maximum number of executions of the latch of the
5010 LOOP, plus one. If we have no reliable estimate, the function returns
5011 false, otherwise returns true. */
5012
5013bool
5014max_stmt_executions (class loop *loop, widest_int *nit)
5015{
5016 widest_int nit_minus_one;
5017
5018 if (!max_loop_iterations (loop, nit))
5019 return false;
5020
5021 nit_minus_one = *nit;
5022
5023 *nit += 1;
5024
5025 return wi::gtu_p (x: *nit, y: nit_minus_one);
5026}
5027
5028/* Sets NIT to the estimated maximum number of executions of the latch of the
5029 LOOP, plus one. If we have no likely estimate, the function returns
5030 false, otherwise returns true. */
5031
5032bool
5033likely_max_stmt_executions (class loop *loop, widest_int *nit)
5034{
5035 widest_int nit_minus_one;
5036
5037 if (!likely_max_loop_iterations (loop, nit))
5038 return false;
5039
5040 nit_minus_one = *nit;
5041
5042 *nit += 1;
5043
5044 return wi::gtu_p (x: *nit, y: nit_minus_one);
5045}
5046
5047/* Sets NIT to the estimated number of executions of the latch of the
5048 LOOP, plus one. If we have no reliable estimate, the function returns
5049 false, otherwise returns true. */
5050
5051bool
5052estimated_stmt_executions (class loop *loop, widest_int *nit)
5053{
5054 widest_int nit_minus_one;
5055
5056 if (!estimated_loop_iterations (loop, nit))
5057 return false;
5058
5059 nit_minus_one = *nit;
5060
5061 *nit += 1;
5062
5063 return wi::gtu_p (x: *nit, y: nit_minus_one);
5064}
5065
5066/* Records estimates on numbers of iterations of loops. */
5067
5068void
5069estimate_numbers_of_iterations (function *fn)
5070{
5071 /* We don't want to issue signed overflow warnings while getting
5072 loop iteration estimates. */
5073 fold_defer_overflow_warnings ();
5074
5075 for (auto loop : loops_list (fn, 0))
5076 estimate_numbers_of_iterations (loop);
5077
5078 fold_undefer_and_ignore_overflow_warnings ();
5079}
5080
5081/* Returns true if statement S1 dominates statement S2. */
5082
5083bool
5084stmt_dominates_stmt_p (gimple *s1, gimple *s2)
5085{
5086 basic_block bb1 = gimple_bb (g: s1), bb2 = gimple_bb (g: s2);
5087
5088 if (!bb1
5089 || s1 == s2)
5090 return true;
5091
5092 if (bb1 == bb2)
5093 {
5094 gimple_stmt_iterator bsi;
5095
5096 if (gimple_code (g: s2) == GIMPLE_PHI)
5097 return false;
5098
5099 if (gimple_code (g: s1) == GIMPLE_PHI)
5100 return true;
5101
5102 for (bsi = gsi_start_bb (bb: bb1); gsi_stmt (i: bsi) != s2; gsi_next (i: &bsi))
5103 if (gsi_stmt (i: bsi) == s1)
5104 return true;
5105
5106 return false;
5107 }
5108
5109 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
5110}
5111
5112/* Returns true when we can prove that the number of executions of
5113 STMT in the loop is at most NITER, according to the bound on
5114 the number of executions of the statement NITER_BOUND->stmt recorded in
5115 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
5116
5117 ??? This code can become quite a CPU hog - we can have many bounds,
5118 and large basic block forcing stmt_dominates_stmt_p to be queried
5119 many times on a large basic blocks, so the whole thing is O(n^2)
5120 for scev_probably_wraps_p invocation (that can be done n times).
5121
5122 It would make more sense (and give better answers) to remember BB
5123 bounds computed by discover_iteration_bound_by_body_walk. */
5124
5125static bool
5126n_of_executions_at_most (gimple *stmt,
5127 class nb_iter_bound *niter_bound,
5128 tree niter)
5129{
5130 widest_int bound = widest_int::from (x: niter_bound->bound, sgn: SIGNED);
5131 tree nit_type = TREE_TYPE (niter), e;
5132 enum tree_code cmp;
5133
5134 gcc_assert (TYPE_UNSIGNED (nit_type));
5135
5136 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
5137 the number of iterations is small. */
5138 if (!wi::fits_to_tree_p (x: bound, type: nit_type))
5139 return false;
5140
5141 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
5142 times. This means that:
5143
5144 -- if NITER_BOUND->is_exit is true, then everything after
5145 it at most NITER_BOUND->bound times.
5146
5147 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
5148 is executed, then NITER_BOUND->stmt is executed as well in the same
5149 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
5150
5151 If we can determine that NITER_BOUND->stmt is always executed
5152 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
5153 We conclude that if both statements belong to the same
5154 basic block and STMT is before NITER_BOUND->stmt and there are no
5155 statements with side effects in between. */
5156
5157 if (niter_bound->is_exit)
5158 {
5159 if (stmt == niter_bound->stmt
5160 || !stmt_dominates_stmt_p (s1: niter_bound->stmt, s2: stmt))
5161 return false;
5162 cmp = GE_EXPR;
5163 }
5164 else
5165 {
5166 if (!stmt_dominates_stmt_p (s1: niter_bound->stmt, s2: stmt))
5167 {
5168 gimple_stmt_iterator bsi;
5169 if (gimple_bb (g: stmt) != gimple_bb (g: niter_bound->stmt)
5170 || gimple_code (g: stmt) == GIMPLE_PHI
5171 || gimple_code (g: niter_bound->stmt) == GIMPLE_PHI)
5172 return false;
5173
5174 /* By stmt_dominates_stmt_p we already know that STMT appears
5175 before NITER_BOUND->STMT. Still need to test that the loop
5176 cannot be terinated by a side effect in between. */
5177 for (bsi = gsi_for_stmt (stmt); gsi_stmt (i: bsi) != niter_bound->stmt;
5178 gsi_next (i: &bsi))
5179 if (gimple_has_side_effects (gsi_stmt (i: bsi)))
5180 return false;
5181 bound += 1;
5182 if (bound == 0
5183 || !wi::fits_to_tree_p (x: bound, type: nit_type))
5184 return false;
5185 }
5186 cmp = GT_EXPR;
5187 }
5188
5189 e = fold_binary (cmp, boolean_type_node,
5190 niter, wide_int_to_tree (nit_type, bound));
5191 return e && integer_nonzerop (e);
5192}
5193
5194/* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
5195
5196bool
5197nowrap_type_p (tree type)
5198{
5199 if (ANY_INTEGRAL_TYPE_P (type)
5200 && TYPE_OVERFLOW_UNDEFINED (type))
5201 return true;
5202
5203 if (POINTER_TYPE_P (type))
5204 return true;
5205
5206 return false;
5207}
5208
5209/* Return true if we can prove LOOP is exited before evolution of induction
5210 variable {BASE, STEP} overflows with respect to its type bound. */
5211
5212static bool
5213loop_exits_before_overflow (tree base, tree step,
5214 gimple *at_stmt, class loop *loop)
5215{
5216 widest_int niter;
5217 struct control_iv *civ;
5218 class nb_iter_bound *bound;
5219 tree e, delta, step_abs, unsigned_base;
5220 tree type = TREE_TYPE (step);
5221 tree unsigned_type, valid_niter;
5222
5223 /* Don't issue signed overflow warnings. */
5224 fold_defer_overflow_warnings ();
5225
5226 /* Compute the number of iterations before we reach the bound of the
5227 type, and verify that the loop is exited before this occurs. */
5228 unsigned_type = unsigned_type_for (type);
5229 unsigned_base = fold_convert (unsigned_type, base);
5230
5231 if (tree_int_cst_sign_bit (step))
5232 {
5233 tree extreme = fold_convert (unsigned_type,
5234 lower_bound_in_type (type, type));
5235 delta = fold_build2 (MINUS_EXPR, unsigned_type, unsigned_base, extreme);
5236 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
5237 fold_convert (unsigned_type, step));
5238 }
5239 else
5240 {
5241 tree extreme = fold_convert (unsigned_type,
5242 upper_bound_in_type (type, type));
5243 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, unsigned_base);
5244 step_abs = fold_convert (unsigned_type, step);
5245 }
5246
5247 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
5248
5249 estimate_numbers_of_iterations (loop);
5250
5251 if (max_loop_iterations (loop, nit: &niter)
5252 && wi::fits_to_tree_p (x: niter, TREE_TYPE (valid_niter))
5253 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
5254 wide_int_to_tree (TREE_TYPE (valid_niter),
5255 niter))) != NULL
5256 && integer_nonzerop (e))
5257 {
5258 fold_undefer_and_ignore_overflow_warnings ();
5259 return true;
5260 }
5261 if (at_stmt)
5262 for (bound = loop->bounds; bound; bound = bound->next)
5263 {
5264 if (n_of_executions_at_most (stmt: at_stmt, niter_bound: bound, niter: valid_niter))
5265 {
5266 fold_undefer_and_ignore_overflow_warnings ();
5267 return true;
5268 }
5269 }
5270 fold_undefer_and_ignore_overflow_warnings ();
5271
5272 /* Try to prove loop is exited before {base, step} overflows with the
5273 help of analyzed loop control IV. This is done only for IVs with
5274 constant step because otherwise we don't have the information. */
5275 if (TREE_CODE (step) == INTEGER_CST)
5276 {
5277 for (civ = loop->control_ivs; civ; civ = civ->next)
5278 {
5279 enum tree_code code;
5280 tree civ_type = TREE_TYPE (civ->step);
5281
5282 /* Have to consider type difference because operand_equal_p ignores
5283 that for constants. */
5284 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (civ_type)
5285 || element_precision (type) != element_precision (civ_type))
5286 continue;
5287
5288 /* Only consider control IV with same step. */
5289 if (!operand_equal_p (step, civ->step, flags: 0))
5290 continue;
5291
5292 /* Done proving if this is a no-overflow control IV. */
5293 if (operand_equal_p (base, civ->base, flags: 0))
5294 return true;
5295
5296 /* Control IV is recorded after expanding simple operations,
5297 Here we expand base and compare it too. */
5298 tree expanded_base = expand_simple_operations (expr: base);
5299 if (operand_equal_p (expanded_base, civ->base, flags: 0))
5300 return true;
5301
5302 /* If this is a before stepping control IV, in other words, we have
5303
5304 {civ_base, step} = {base + step, step}
5305
5306 Because civ {base + step, step} doesn't overflow during loop
5307 iterations, {base, step} will not overflow if we can prove the
5308 operation "base + step" does not overflow. Specifically, we try
5309 to prove below conditions are satisfied:
5310
5311 base <= UPPER_BOUND (type) - step ;;step > 0
5312 base >= LOWER_BOUND (type) - step ;;step < 0
5313
5314 by proving the reverse conditions are false using loop's initial
5315 condition. */
5316 if (POINTER_TYPE_P (TREE_TYPE (base)))
5317 code = POINTER_PLUS_EXPR;
5318 else
5319 code = PLUS_EXPR;
5320
5321 tree stepped = fold_build2 (code, TREE_TYPE (base), base, step);
5322 tree expanded_stepped = fold_build2 (code, TREE_TYPE (base),
5323 expanded_base, step);
5324 if (operand_equal_p (stepped, civ->base, flags: 0)
5325 || operand_equal_p (expanded_stepped, civ->base, flags: 0))
5326 {
5327 tree extreme;
5328
5329 if (tree_int_cst_sign_bit (step))
5330 {
5331 code = LT_EXPR;
5332 extreme = lower_bound_in_type (type, type);
5333 }
5334 else
5335 {
5336 code = GT_EXPR;
5337 extreme = upper_bound_in_type (type, type);
5338 }
5339 extreme = fold_build2 (MINUS_EXPR, type, extreme, step);
5340 e = fold_build2 (code, boolean_type_node, base, extreme);
5341 e = simplify_using_initial_conditions (loop, expr: e);
5342 if (integer_zerop (e))
5343 return true;
5344 }
5345 }
5346 }
5347
5348 return false;
5349}
5350
5351/* VAR is scev variable whose evolution part is constant STEP, this function
5352 proves that VAR can't overflow by using value range info. If VAR's value
5353 range is [MIN, MAX], it can be proven by:
5354 MAX + step doesn't overflow ; if step > 0
5355 or
5356 MIN + step doesn't underflow ; if step < 0.
5357
5358 We can only do this if var is computed in every loop iteration, i.e, var's
5359 definition has to dominate loop latch. Consider below example:
5360
5361 {
5362 unsigned int i;
5363
5364 <bb 3>:
5365
5366 <bb 4>:
5367 # RANGE [0, 4294967294] NONZERO 65535
5368 # i_21 = PHI <0(3), i_18(9)>
5369 if (i_21 != 0)
5370 goto <bb 6>;
5371 else
5372 goto <bb 8>;
5373
5374 <bb 6>:
5375 # RANGE [0, 65533] NONZERO 65535
5376 _6 = i_21 + 4294967295;
5377 # RANGE [0, 65533] NONZERO 65535
5378 _7 = (long unsigned int) _6;
5379 # RANGE [0, 524264] NONZERO 524280
5380 _8 = _7 * 8;
5381 # PT = nonlocal escaped
5382 _9 = a_14 + _8;
5383 *_9 = 0;
5384
5385 <bb 8>:
5386 # RANGE [1, 65535] NONZERO 65535
5387 i_18 = i_21 + 1;
5388 if (i_18 >= 65535)
5389 goto <bb 10>;
5390 else
5391 goto <bb 9>;
5392
5393 <bb 9>:
5394 goto <bb 4>;
5395
5396 <bb 10>:
5397 return;
5398 }
5399
5400 VAR _6 doesn't overflow only with pre-condition (i_21 != 0), here we
5401 can't use _6 to prove no-overlfow for _7. In fact, var _7 takes value
5402 sequence (4294967295, 0, 1, ..., 65533) in loop life time, rather than
5403 (4294967295, 4294967296, ...). */
5404
5405static bool
5406scev_var_range_cant_overflow (tree var, tree step, class loop *loop)
5407{
5408 tree type;
5409 wide_int minv, maxv, diff, step_wi;
5410
5411 if (TREE_CODE (step) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (var)))
5412 return false;
5413
5414 /* Check if VAR evaluates in every loop iteration. It's not the case
5415 if VAR is default definition or does not dominate loop's latch. */
5416 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
5417 if (!def_bb || !dominated_by_p (CDI_DOMINATORS, loop->latch, def_bb))
5418 return false;
5419
5420 Value_Range r (TREE_TYPE (var));
5421 get_range_query (cfun)->range_of_expr (r, expr: var);
5422 if (r.varying_p () || r.undefined_p ())
5423 return false;
5424
5425 /* VAR is a scev whose evolution part is STEP and value range info
5426 is [MIN, MAX], we can prove its no-overflowness by conditions:
5427
5428 type_MAX - MAX >= step ; if step > 0
5429 MIN - type_MIN >= |step| ; if step < 0.
5430
5431 Or VAR must take value outside of value range, which is not true. */
5432 step_wi = wi::to_wide (t: step);
5433 type = TREE_TYPE (var);
5434 if (tree_int_cst_sign_bit (step))
5435 {
5436 diff = r.lower_bound () - wi::to_wide (t: lower_bound_in_type (type, type));
5437 step_wi = - step_wi;
5438 }
5439 else
5440 diff = wi::to_wide (t: upper_bound_in_type (type, type)) - r.upper_bound ();
5441
5442 return (wi::geu_p (x: diff, y: step_wi));
5443}
5444
5445/* Return false only when the induction variable BASE + STEP * I is
5446 known to not overflow: i.e. when the number of iterations is small
5447 enough with respect to the step and initial condition in order to
5448 keep the evolution confined in TYPEs bounds. Return true when the
5449 iv is known to overflow or when the property is not computable.
5450
5451 USE_OVERFLOW_SEMANTICS is true if this function should assume that
5452 the rules for overflow of the given language apply (e.g., that signed
5453 arithmetics in C does not overflow).
5454
5455 If VAR is a ssa variable, this function also returns false if VAR can
5456 be proven not overflow with value range info. */
5457
5458bool
5459scev_probably_wraps_p (tree var, tree base, tree step,
5460 gimple *at_stmt, class loop *loop,
5461 bool use_overflow_semantics)
5462{
5463 /* FIXME: We really need something like
5464 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
5465
5466 We used to test for the following situation that frequently appears
5467 during address arithmetics:
5468
5469 D.1621_13 = (long unsigned intD.4) D.1620_12;
5470 D.1622_14 = D.1621_13 * 8;
5471 D.1623_15 = (doubleD.29 *) D.1622_14;
5472
5473 And derived that the sequence corresponding to D_14
5474 can be proved to not wrap because it is used for computing a
5475 memory access; however, this is not really the case -- for example,
5476 if D_12 = (unsigned char) [254,+,1], then D_14 has values
5477 2032, 2040, 0, 8, ..., but the code is still legal. */
5478
5479 if (chrec_contains_undetermined (base)
5480 || chrec_contains_undetermined (step))
5481 return true;
5482
5483 if (integer_zerop (step))
5484 return false;
5485
5486 /* If we can use the fact that signed and pointer arithmetics does not
5487 wrap, we are done. */
5488 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
5489 return false;
5490
5491 /* To be able to use estimates on number of iterations of the loop,
5492 we must have an upper bound on the absolute value of the step. */
5493 if (TREE_CODE (step) != INTEGER_CST)
5494 return true;
5495
5496 /* Check if var can be proven not overflow with value range info. */
5497 if (var && TREE_CODE (var) == SSA_NAME
5498 && scev_var_range_cant_overflow (var, step, loop))
5499 return false;
5500
5501 if (loop_exits_before_overflow (base, step, at_stmt, loop))
5502 return false;
5503
5504 /* At this point we still don't have a proof that the iv does not
5505 overflow: give up. */
5506 return true;
5507}
5508
5509/* Frees the information on upper bounds on numbers of iterations of LOOP. */
5510
5511void
5512free_numbers_of_iterations_estimates (class loop *loop)
5513{
5514 struct control_iv *civ;
5515 class nb_iter_bound *bound;
5516
5517 loop->nb_iterations = NULL;
5518 loop->estimate_state = EST_NOT_COMPUTED;
5519 for (bound = loop->bounds; bound;)
5520 {
5521 class nb_iter_bound *next = bound->next;
5522 ggc_free (bound);
5523 bound = next;
5524 }
5525 loop->bounds = NULL;
5526
5527 for (civ = loop->control_ivs; civ;)
5528 {
5529 struct control_iv *next = civ->next;
5530 ggc_free (civ);
5531 civ = next;
5532 }
5533 loop->control_ivs = NULL;
5534}
5535
5536/* Frees the information on upper bounds on numbers of iterations of loops. */
5537
5538void
5539free_numbers_of_iterations_estimates (function *fn)
5540{
5541 for (auto loop : loops_list (fn, 0))
5542 free_numbers_of_iterations_estimates (loop);
5543}
5544
5545/* Substitute value VAL for ssa name NAME inside expressions held
5546 at LOOP. */
5547
5548void
5549substitute_in_loop_info (class loop *loop, tree name, tree val)
5550{
5551 loop->nb_iterations = simplify_replace_tree (expr: loop->nb_iterations, old: name, new_tree: val);
5552}
5553

source code of gcc/tree-ssa-loop-niter.cc