1/* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2023 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8Free Software Foundation; either version 3, or (at your option) any
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 by the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.cc, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87#include "config.h"
88#include "system.h"
89#include "coretypes.h"
90#include "backend.h"
91#include "target.h"
92#include "rtl.h"
93#include "tree.h"
94#include "gimple.h"
95#include "predict.h"
96#include "alloc-pool.h"
97#include "tree-pass.h"
98#include "ssa.h"
99#include "optabs-tree.h"
100#include "gimple-pretty-print.h"
101#include "alias.h"
102#include "fold-const.h"
103#include "gimple-iterator.h"
104#include "gimple-fold.h"
105#include "gimplify.h"
106#include "gimplify-me.h"
107#include "stor-layout.h"
108#include "tree-cfg.h"
109#include "tree-dfa.h"
110#include "tree-ssa.h"
111#include "builtins.h"
112#include "internal-fn.h"
113#include "case-cfn-macros.h"
114#include "optabs-libfuncs.h"
115#include "tree-eh.h"
116#include "targhooks.h"
117#include "domwalk.h"
118#include "tree-ssa-math-opts.h"
119#include "dbgcnt.h"
120
121/* This structure represents one basic block that either computes a
122 division, or is a common dominator for basic block that compute a
123 division. */
124struct occurrence {
125 /* The basic block represented by this structure. */
126 basic_block bb = basic_block();
127
128 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
129 inserted in BB. */
130 tree recip_def = tree();
131
132 /* If non-NULL, the SSA_NAME holding the definition for a squared
133 reciprocal inserted in BB. */
134 tree square_recip_def = tree();
135
136 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
137 was inserted in BB. */
138 gimple *recip_def_stmt = nullptr;
139
140 /* Pointer to a list of "struct occurrence"s for blocks dominated
141 by BB. */
142 struct occurrence *children = nullptr;
143
144 /* Pointer to the next "struct occurrence"s in the list of blocks
145 sharing a common dominator. */
146 struct occurrence *next = nullptr;
147
148 /* The number of divisions that are in BB before compute_merit. The
149 number of divisions that are in BB or post-dominate it after
150 compute_merit. */
151 int num_divisions = 0;
152
153 /* True if the basic block has a division, false if it is a common
154 dominator for basic blocks that do. If it is false and trapping
155 math is active, BB is not a candidate for inserting a reciprocal. */
156 bool bb_has_division = false;
157
158 /* Construct a struct occurrence for basic block BB, and whose
159 children list is headed by CHILDREN. */
160 occurrence (basic_block bb, struct occurrence *children)
161 : bb (bb), children (children)
162 {
163 bb->aux = this;
164 }
165
166 /* Destroy a struct occurrence and remove it from its basic block. */
167 ~occurrence ()
168 {
169 bb->aux = nullptr;
170 }
171
172 /* Allocate memory for a struct occurrence from OCC_POOL. */
173 static void* operator new (size_t);
174
175 /* Return memory for a struct occurrence to OCC_POOL. */
176 static void operator delete (void*, size_t);
177};
178
179static struct
180{
181 /* Number of 1.0/X ops inserted. */
182 int rdivs_inserted;
183
184 /* Number of 1.0/FUNC ops inserted. */
185 int rfuncs_inserted;
186} reciprocal_stats;
187
188static struct
189{
190 /* Number of cexpi calls inserted. */
191 int inserted;
192
193 /* Number of conversions removed. */
194 int conv_removed;
195
196} sincos_stats;
197
198static struct
199{
200 /* Number of widening multiplication ops inserted. */
201 int widen_mults_inserted;
202
203 /* Number of integer multiply-and-accumulate ops inserted. */
204 int maccs_inserted;
205
206 /* Number of fp fused multiply-add ops inserted. */
207 int fmas_inserted;
208
209 /* Number of divmod calls inserted. */
210 int divmod_calls_inserted;
211
212 /* Number of highpart multiplication ops inserted. */
213 int highpart_mults_inserted;
214} widen_mul_stats;
215
216/* The instance of "struct occurrence" representing the highest
217 interesting block in the dominator tree. */
218static struct occurrence *occ_head;
219
220/* Allocation pool for getting instances of "struct occurrence". */
221static object_allocator<occurrence> *occ_pool;
222
223void* occurrence::operator new (size_t n)
224{
225 gcc_assert (n == sizeof(occurrence));
226 return occ_pool->allocate_raw ();
227}
228
229void occurrence::operator delete (void *occ, size_t n)
230{
231 gcc_assert (n == sizeof(occurrence));
232 occ_pool->remove_raw (object: occ);
233}
234
235/* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
236 list of "struct occurrence"s, one per basic block, having IDOM as
237 their common dominator.
238
239 We try to insert NEW_OCC as deep as possible in the tree, and we also
240 insert any other block that is a common dominator for BB and one
241 block already in the tree. */
242
243static void
244insert_bb (struct occurrence *new_occ, basic_block idom,
245 struct occurrence **p_head)
246{
247 struct occurrence *occ, **p_occ;
248
249 for (p_occ = p_head; (occ = *p_occ) != NULL; )
250 {
251 basic_block bb = new_occ->bb, occ_bb = occ->bb;
252 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
253 if (dom == bb)
254 {
255 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
256 from its list. */
257 *p_occ = occ->next;
258 occ->next = new_occ->children;
259 new_occ->children = occ;
260
261 /* Try the next block (it may as well be dominated by BB). */
262 }
263
264 else if (dom == occ_bb)
265 {
266 /* OCC_BB dominates BB. Tail recurse to look deeper. */
267 insert_bb (new_occ, idom: dom, p_head: &occ->children);
268 return;
269 }
270
271 else if (dom != idom)
272 {
273 gcc_assert (!dom->aux);
274
275 /* There is a dominator between IDOM and BB, add it and make
276 two children out of NEW_OCC and OCC. First, remove OCC from
277 its list. */
278 *p_occ = occ->next;
279 new_occ->next = occ;
280 occ->next = NULL;
281
282 /* None of the previous blocks has DOM as a dominator: if we tail
283 recursed, we would reexamine them uselessly. Just switch BB with
284 DOM, and go on looking for blocks dominated by DOM. */
285 new_occ = new occurrence (dom, new_occ);
286 }
287
288 else
289 {
290 /* Nothing special, go on with the next element. */
291 p_occ = &occ->next;
292 }
293 }
294
295 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
296 new_occ->next = *p_head;
297 *p_head = new_occ;
298}
299
300/* Register that we found a division in BB.
301 IMPORTANCE is a measure of how much weighting to give
302 that division. Use IMPORTANCE = 2 to register a single
303 division. If the division is going to be found multiple
304 times use 1 (as it is with squares). */
305
306static inline void
307register_division_in (basic_block bb, int importance)
308{
309 struct occurrence *occ;
310
311 occ = (struct occurrence *) bb->aux;
312 if (!occ)
313 {
314 occ = new occurrence (bb, NULL);
315 insert_bb (new_occ: occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), p_head: &occ_head);
316 }
317
318 occ->bb_has_division = true;
319 occ->num_divisions += importance;
320}
321
322
323/* Compute the number of divisions that postdominate each block in OCC and
324 its children. */
325
326static void
327compute_merit (struct occurrence *occ)
328{
329 struct occurrence *occ_child;
330 basic_block dom = occ->bb;
331
332 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
333 {
334 basic_block bb;
335 if (occ_child->children)
336 compute_merit (occ: occ_child);
337
338 if (flag_exceptions)
339 bb = single_noncomplex_succ (bb: dom);
340 else
341 bb = dom;
342
343 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
344 occ->num_divisions += occ_child->num_divisions;
345 }
346}
347
348
349/* Return whether USE_STMT is a floating-point division by DEF. */
350static inline bool
351is_division_by (gimple *use_stmt, tree def)
352{
353 return is_gimple_assign (gs: use_stmt)
354 && gimple_assign_rhs_code (gs: use_stmt) == RDIV_EXPR
355 && gimple_assign_rhs2 (gs: use_stmt) == def
356 /* Do not recognize x / x as valid division, as we are getting
357 confused later by replacing all immediate uses x in such
358 a stmt. */
359 && gimple_assign_rhs1 (gs: use_stmt) != def
360 && !stmt_can_throw_internal (cfun, use_stmt);
361}
362
363/* Return TRUE if USE_STMT is a multiplication of DEF by A. */
364static inline bool
365is_mult_by (gimple *use_stmt, tree def, tree a)
366{
367 if (gimple_code (g: use_stmt) == GIMPLE_ASSIGN
368 && gimple_assign_rhs_code (gs: use_stmt) == MULT_EXPR)
369 {
370 tree op0 = gimple_assign_rhs1 (gs: use_stmt);
371 tree op1 = gimple_assign_rhs2 (gs: use_stmt);
372
373 return (op0 == def && op1 == a)
374 || (op0 == a && op1 == def);
375 }
376 return 0;
377}
378
379/* Return whether USE_STMT is DEF * DEF. */
380static inline bool
381is_square_of (gimple *use_stmt, tree def)
382{
383 return is_mult_by (use_stmt, def, a: def);
384}
385
386/* Return whether USE_STMT is a floating-point division by
387 DEF * DEF. */
388static inline bool
389is_division_by_square (gimple *use_stmt, tree def)
390{
391 if (gimple_code (g: use_stmt) == GIMPLE_ASSIGN
392 && gimple_assign_rhs_code (gs: use_stmt) == RDIV_EXPR
393 && gimple_assign_rhs1 (gs: use_stmt) != gimple_assign_rhs2 (gs: use_stmt)
394 && !stmt_can_throw_internal (cfun, use_stmt))
395 {
396 tree denominator = gimple_assign_rhs2 (gs: use_stmt);
397 if (TREE_CODE (denominator) == SSA_NAME)
398 return is_square_of (SSA_NAME_DEF_STMT (denominator), def);
399 }
400 return 0;
401}
402
403/* Walk the subset of the dominator tree rooted at OCC, setting the
404 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
405 the given basic block. The field may be left NULL, of course,
406 if it is not possible or profitable to do the optimization.
407
408 DEF_BSI is an iterator pointing at the statement defining DEF.
409 If RECIP_DEF is set, a dominator already has a computation that can
410 be used.
411
412 If should_insert_square_recip is set, then this also inserts
413 the square of the reciprocal immediately after the definition
414 of the reciprocal. */
415
416static void
417insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
418 tree def, tree recip_def, tree square_recip_def,
419 int should_insert_square_recip, int threshold)
420{
421 tree type;
422 gassign *new_stmt, *new_square_stmt;
423 gimple_stmt_iterator gsi;
424 struct occurrence *occ_child;
425
426 if (!recip_def
427 && (occ->bb_has_division || !flag_trapping_math)
428 /* Divide by two as all divisions are counted twice in
429 the costing loop. */
430 && occ->num_divisions / 2 >= threshold)
431 {
432 /* Make a variable with the replacement and substitute it. */
433 type = TREE_TYPE (def);
434 recip_def = create_tmp_reg (type, "reciptmp");
435 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
436 build_one_cst (type), def);
437
438 if (should_insert_square_recip)
439 {
440 square_recip_def = create_tmp_reg (type, "powmult_reciptmp");
441 new_square_stmt = gimple_build_assign (square_recip_def, MULT_EXPR,
442 recip_def, recip_def);
443 }
444
445 if (occ->bb_has_division)
446 {
447 /* Case 1: insert before an existing division. */
448 gsi = gsi_after_labels (bb: occ->bb);
449 while (!gsi_end_p (i: gsi)
450 && (!is_division_by (use_stmt: gsi_stmt (i: gsi), def))
451 && (!is_division_by_square (use_stmt: gsi_stmt (i: gsi), def)))
452 gsi_next (i: &gsi);
453
454 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
455 if (should_insert_square_recip)
456 gsi_insert_before (&gsi, new_square_stmt, GSI_SAME_STMT);
457 }
458 else if (def_gsi && occ->bb == gsi_bb (i: *def_gsi))
459 {
460 /* Case 2: insert right after the definition. Note that this will
461 never happen if the definition statement can throw, because in
462 that case the sole successor of the statement's basic block will
463 dominate all the uses as well. */
464 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
465 if (should_insert_square_recip)
466 gsi_insert_after (def_gsi, new_square_stmt, GSI_NEW_STMT);
467 }
468 else
469 {
470 /* Case 3: insert in a basic block not containing defs/uses. */
471 gsi = gsi_after_labels (bb: occ->bb);
472 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
473 if (should_insert_square_recip)
474 gsi_insert_before (&gsi, new_square_stmt, GSI_SAME_STMT);
475 }
476
477 reciprocal_stats.rdivs_inserted++;
478
479 occ->recip_def_stmt = new_stmt;
480 }
481
482 occ->recip_def = recip_def;
483 occ->square_recip_def = square_recip_def;
484 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
485 insert_reciprocals (def_gsi, occ: occ_child, def, recip_def,
486 square_recip_def, should_insert_square_recip,
487 threshold);
488}
489
490/* Replace occurrences of expr / (x * x) with expr * ((1 / x) * (1 / x)).
491 Take as argument the use for (x * x). */
492static inline void
493replace_reciprocal_squares (use_operand_p use_p)
494{
495 gimple *use_stmt = USE_STMT (use_p);
496 basic_block bb = gimple_bb (g: use_stmt);
497 struct occurrence *occ = (struct occurrence *) bb->aux;
498
499 if (optimize_bb_for_speed_p (bb) && occ->square_recip_def
500 && occ->recip_def)
501 {
502 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
503 gimple_assign_set_rhs_code (s: use_stmt, code: MULT_EXPR);
504 gimple_assign_set_rhs2 (gs: use_stmt, rhs: occ->square_recip_def);
505 SET_USE (use_p, occ->square_recip_def);
506 fold_stmt_inplace (&gsi);
507 update_stmt (s: use_stmt);
508 }
509}
510
511
512/* Replace the division at USE_P with a multiplication by the reciprocal, if
513 possible. */
514
515static inline void
516replace_reciprocal (use_operand_p use_p)
517{
518 gimple *use_stmt = USE_STMT (use_p);
519 basic_block bb = gimple_bb (g: use_stmt);
520 struct occurrence *occ = (struct occurrence *) bb->aux;
521
522 if (optimize_bb_for_speed_p (bb)
523 && occ->recip_def && use_stmt != occ->recip_def_stmt)
524 {
525 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
526 gimple_assign_set_rhs_code (s: use_stmt, code: MULT_EXPR);
527 SET_USE (use_p, occ->recip_def);
528 fold_stmt_inplace (&gsi);
529 update_stmt (s: use_stmt);
530 }
531}
532
533
534/* Free OCC and return one more "struct occurrence" to be freed. */
535
536static struct occurrence *
537free_bb (struct occurrence *occ)
538{
539 struct occurrence *child, *next;
540
541 /* First get the two pointers hanging off OCC. */
542 next = occ->next;
543 child = occ->children;
544 delete occ;
545
546 /* Now ensure that we don't recurse unless it is necessary. */
547 if (!child)
548 return next;
549 else
550 {
551 while (next)
552 next = free_bb (occ: next);
553
554 return child;
555 }
556}
557
558/* Transform sequences like
559 t = sqrt (a)
560 x = 1.0 / t;
561 r1 = x * x;
562 r2 = a * x;
563 into:
564 t = sqrt (a)
565 r1 = 1.0 / a;
566 r2 = t;
567 x = r1 * r2;
568 depending on the uses of x, r1, r2. This removes one multiplication and
569 allows the sqrt and division operations to execute in parallel.
570 DEF_GSI is the gsi of the initial division by sqrt that defines
571 DEF (x in the example above). */
572
573static void
574optimize_recip_sqrt (gimple_stmt_iterator *def_gsi, tree def)
575{
576 gimple *use_stmt;
577 imm_use_iterator use_iter;
578 gimple *stmt = gsi_stmt (i: *def_gsi);
579 tree x = def;
580 tree orig_sqrt_ssa_name = gimple_assign_rhs2 (gs: stmt);
581 tree div_rhs1 = gimple_assign_rhs1 (gs: stmt);
582
583 if (TREE_CODE (orig_sqrt_ssa_name) != SSA_NAME
584 || TREE_CODE (div_rhs1) != REAL_CST
585 || !real_equal (&TREE_REAL_CST (div_rhs1), &dconst1))
586 return;
587
588 gcall *sqrt_stmt
589 = dyn_cast <gcall *> (SSA_NAME_DEF_STMT (orig_sqrt_ssa_name));
590
591 if (!sqrt_stmt || !gimple_call_lhs (gs: sqrt_stmt))
592 return;
593
594 switch (gimple_call_combined_fn (sqrt_stmt))
595 {
596 CASE_CFN_SQRT:
597 CASE_CFN_SQRT_FN:
598 break;
599
600 default:
601 return;
602 }
603 tree a = gimple_call_arg (gs: sqrt_stmt, index: 0);
604
605 /* We have 'a' and 'x'. Now analyze the uses of 'x'. */
606
607 /* Statements that use x in x * x. */
608 auto_vec<gimple *> sqr_stmts;
609 /* Statements that use x in a * x. */
610 auto_vec<gimple *> mult_stmts;
611 bool has_other_use = false;
612 bool mult_on_main_path = false;
613
614 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, x)
615 {
616 if (is_gimple_debug (gs: use_stmt))
617 continue;
618 if (is_square_of (use_stmt, def: x))
619 {
620 sqr_stmts.safe_push (obj: use_stmt);
621 if (gimple_bb (g: use_stmt) == gimple_bb (g: stmt))
622 mult_on_main_path = true;
623 }
624 else if (is_mult_by (use_stmt, def: x, a))
625 {
626 mult_stmts.safe_push (obj: use_stmt);
627 if (gimple_bb (g: use_stmt) == gimple_bb (g: stmt))
628 mult_on_main_path = true;
629 }
630 else
631 has_other_use = true;
632 }
633
634 /* In the x * x and a * x cases we just rewire stmt operands or
635 remove multiplications. In the has_other_use case we introduce
636 a multiplication so make sure we don't introduce a multiplication
637 on a path where there was none. */
638 if (has_other_use && !mult_on_main_path)
639 return;
640
641 if (sqr_stmts.is_empty () && mult_stmts.is_empty ())
642 return;
643
644 /* If x = 1.0 / sqrt (a) has uses other than those optimized here we want
645 to be able to compose it from the sqr and mult cases. */
646 if (has_other_use && (sqr_stmts.is_empty () || mult_stmts.is_empty ()))
647 return;
648
649 if (dump_file)
650 {
651 fprintf (stream: dump_file, format: "Optimizing reciprocal sqrt multiplications of\n");
652 print_gimple_stmt (dump_file, sqrt_stmt, 0, TDF_NONE);
653 print_gimple_stmt (dump_file, stmt, 0, TDF_NONE);
654 fprintf (stream: dump_file, format: "\n");
655 }
656
657 bool delete_div = !has_other_use;
658 tree sqr_ssa_name = NULL_TREE;
659 if (!sqr_stmts.is_empty ())
660 {
661 /* r1 = x * x. Transform the original
662 x = 1.0 / t
663 into
664 tmp1 = 1.0 / a
665 r1 = tmp1. */
666
667 sqr_ssa_name
668 = make_temp_ssa_name (TREE_TYPE (a), NULL, name: "recip_sqrt_sqr");
669
670 if (dump_file)
671 {
672 fprintf (stream: dump_file, format: "Replacing original division\n");
673 print_gimple_stmt (dump_file, stmt, 0, TDF_NONE);
674 fprintf (stream: dump_file, format: "with new division\n");
675 }
676 stmt
677 = gimple_build_assign (sqr_ssa_name, gimple_assign_rhs_code (gs: stmt),
678 gimple_assign_rhs1 (gs: stmt), a);
679 gsi_insert_before (def_gsi, stmt, GSI_SAME_STMT);
680 gsi_remove (def_gsi, true);
681 *def_gsi = gsi_for_stmt (stmt);
682 fold_stmt_inplace (def_gsi);
683 update_stmt (s: stmt);
684
685 if (dump_file)
686 print_gimple_stmt (dump_file, stmt, 0, TDF_NONE);
687
688 delete_div = false;
689 gimple *sqr_stmt;
690 unsigned int i;
691 FOR_EACH_VEC_ELT (sqr_stmts, i, sqr_stmt)
692 {
693 gimple_stmt_iterator gsi2 = gsi_for_stmt (sqr_stmt);
694 gimple_assign_set_rhs_from_tree (&gsi2, sqr_ssa_name);
695 update_stmt (s: sqr_stmt);
696 }
697 }
698 if (!mult_stmts.is_empty ())
699 {
700 /* r2 = a * x. Transform this into:
701 r2 = t (The original sqrt (a)). */
702 unsigned int i;
703 gimple *mult_stmt = NULL;
704 FOR_EACH_VEC_ELT (mult_stmts, i, mult_stmt)
705 {
706 gimple_stmt_iterator gsi2 = gsi_for_stmt (mult_stmt);
707
708 if (dump_file)
709 {
710 fprintf (stream: dump_file, format: "Replacing squaring multiplication\n");
711 print_gimple_stmt (dump_file, mult_stmt, 0, TDF_NONE);
712 fprintf (stream: dump_file, format: "with assignment\n");
713 }
714 gimple_assign_set_rhs_from_tree (&gsi2, orig_sqrt_ssa_name);
715 fold_stmt_inplace (&gsi2);
716 update_stmt (s: mult_stmt);
717 if (dump_file)
718 print_gimple_stmt (dump_file, mult_stmt, 0, TDF_NONE);
719 }
720 }
721
722 if (has_other_use)
723 {
724 /* Using the two temporaries tmp1, tmp2 from above
725 the original x is now:
726 x = tmp1 * tmp2. */
727 gcc_assert (orig_sqrt_ssa_name);
728 gcc_assert (sqr_ssa_name);
729
730 gimple *new_stmt
731 = gimple_build_assign (x, MULT_EXPR,
732 orig_sqrt_ssa_name, sqr_ssa_name);
733 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
734 update_stmt (s: stmt);
735 }
736 else if (delete_div)
737 {
738 /* Remove the original division. */
739 gimple_stmt_iterator gsi2 = gsi_for_stmt (stmt);
740 gsi_remove (&gsi2, true);
741 release_defs (stmt);
742 }
743 else
744 release_ssa_name (name: x);
745}
746
747/* Look for floating-point divisions among DEF's uses, and try to
748 replace them by multiplications with the reciprocal. Add
749 as many statements computing the reciprocal as needed.
750
751 DEF must be a GIMPLE register of a floating-point type. */
752
753static void
754execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
755{
756 use_operand_p use_p, square_use_p;
757 imm_use_iterator use_iter, square_use_iter;
758 tree square_def;
759 struct occurrence *occ;
760 int count = 0;
761 int threshold;
762 int square_recip_count = 0;
763 int sqrt_recip_count = 0;
764
765 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && TREE_CODE (def) == SSA_NAME);
766 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
767
768 /* If DEF is a square (x * x), count the number of divisions by x.
769 If there are more divisions by x than by (DEF * DEF), prefer to optimize
770 the reciprocal of x instead of DEF. This improves cases like:
771 def = x * x
772 t0 = a / def
773 t1 = b / def
774 t2 = c / x
775 Reciprocal optimization of x results in 1 division rather than 2 or 3. */
776 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
777
778 if (is_gimple_assign (gs: def_stmt)
779 && gimple_assign_rhs_code (gs: def_stmt) == MULT_EXPR
780 && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
781 && gimple_assign_rhs1 (gs: def_stmt) == gimple_assign_rhs2 (gs: def_stmt))
782 {
783 tree op0 = gimple_assign_rhs1 (gs: def_stmt);
784
785 FOR_EACH_IMM_USE_FAST (use_p, use_iter, op0)
786 {
787 gimple *use_stmt = USE_STMT (use_p);
788 if (is_division_by (use_stmt, def: op0))
789 sqrt_recip_count++;
790 }
791 }
792
793 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
794 {
795 gimple *use_stmt = USE_STMT (use_p);
796 if (is_division_by (use_stmt, def))
797 {
798 register_division_in (bb: gimple_bb (g: use_stmt), importance: 2);
799 count++;
800 }
801
802 if (is_square_of (use_stmt, def))
803 {
804 square_def = gimple_assign_lhs (gs: use_stmt);
805 FOR_EACH_IMM_USE_FAST (square_use_p, square_use_iter, square_def)
806 {
807 gimple *square_use_stmt = USE_STMT (square_use_p);
808 if (is_division_by (use_stmt: square_use_stmt, def: square_def))
809 {
810 /* This is executed twice for each division by a square. */
811 register_division_in (bb: gimple_bb (g: square_use_stmt), importance: 1);
812 square_recip_count++;
813 }
814 }
815 }
816 }
817
818 /* Square reciprocals were counted twice above. */
819 square_recip_count /= 2;
820
821 /* If it is more profitable to optimize 1 / x, don't optimize 1 / (x * x). */
822 if (sqrt_recip_count > square_recip_count)
823 goto out;
824
825 /* Do the expensive part only if we can hope to optimize something. */
826 if (count + square_recip_count >= threshold && count >= 1)
827 {
828 gimple *use_stmt;
829 for (occ = occ_head; occ; occ = occ->next)
830 {
831 compute_merit (occ);
832 insert_reciprocals (def_gsi, occ, def, NULL, NULL,
833 should_insert_square_recip: square_recip_count, threshold);
834 }
835
836 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
837 {
838 if (is_division_by (use_stmt, def))
839 {
840 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
841 replace_reciprocal (use_p);
842 }
843 else if (square_recip_count > 0 && is_square_of (use_stmt, def))
844 {
845 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
846 {
847 /* Find all uses of the square that are divisions and
848 * replace them by multiplications with the inverse. */
849 imm_use_iterator square_iterator;
850 gimple *powmult_use_stmt = USE_STMT (use_p);
851 tree powmult_def_name = gimple_assign_lhs (gs: powmult_use_stmt);
852
853 FOR_EACH_IMM_USE_STMT (powmult_use_stmt,
854 square_iterator, powmult_def_name)
855 FOR_EACH_IMM_USE_ON_STMT (square_use_p, square_iterator)
856 {
857 gimple *powmult_use_stmt = USE_STMT (square_use_p);
858 if (is_division_by (use_stmt: powmult_use_stmt, def: powmult_def_name))
859 replace_reciprocal_squares (use_p: square_use_p);
860 }
861 }
862 }
863 }
864 }
865
866out:
867 for (occ = occ_head; occ; )
868 occ = free_bb (occ);
869
870 occ_head = NULL;
871}
872
873/* Return an internal function that implements the reciprocal of CALL,
874 or IFN_LAST if there is no such function that the target supports. */
875
876internal_fn
877internal_fn_reciprocal (gcall *call)
878{
879 internal_fn ifn;
880
881 switch (gimple_call_combined_fn (call))
882 {
883 CASE_CFN_SQRT:
884 CASE_CFN_SQRT_FN:
885 ifn = IFN_RSQRT;
886 break;
887
888 default:
889 return IFN_LAST;
890 }
891
892 tree_pair types = direct_internal_fn_types (ifn, call);
893 if (!direct_internal_fn_supported_p (ifn, types, OPTIMIZE_FOR_SPEED))
894 return IFN_LAST;
895
896 return ifn;
897}
898
899/* Go through all the floating-point SSA_NAMEs, and call
900 execute_cse_reciprocals_1 on each of them. */
901namespace {
902
903const pass_data pass_data_cse_reciprocals =
904{
905 .type: GIMPLE_PASS, /* type */
906 .name: "recip", /* name */
907 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
908 .tv_id: TV_TREE_RECIP, /* tv_id */
909 PROP_ssa, /* properties_required */
910 .properties_provided: 0, /* properties_provided */
911 .properties_destroyed: 0, /* properties_destroyed */
912 .todo_flags_start: 0, /* todo_flags_start */
913 TODO_update_ssa, /* todo_flags_finish */
914};
915
916class pass_cse_reciprocals : public gimple_opt_pass
917{
918public:
919 pass_cse_reciprocals (gcc::context *ctxt)
920 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
921 {}
922
923 /* opt_pass methods: */
924 bool gate (function *) final override
925 {
926 return optimize && flag_reciprocal_math;
927 }
928 unsigned int execute (function *) final override;
929
930}; // class pass_cse_reciprocals
931
932unsigned int
933pass_cse_reciprocals::execute (function *fun)
934{
935 basic_block bb;
936 tree arg;
937
938 occ_pool = new object_allocator<occurrence> ("dominators for recip");
939
940 memset (s: &reciprocal_stats, c: 0, n: sizeof (reciprocal_stats));
941 calculate_dominance_info (CDI_DOMINATORS);
942 calculate_dominance_info (CDI_POST_DOMINATORS);
943
944 if (flag_checking)
945 FOR_EACH_BB_FN (bb, fun)
946 gcc_assert (!bb->aux);
947
948 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
949 if (FLOAT_TYPE_P (TREE_TYPE (arg))
950 && is_gimple_reg (arg))
951 {
952 tree name = ssa_default_def (fun, arg);
953 if (name)
954 execute_cse_reciprocals_1 (NULL, def: name);
955 }
956
957 FOR_EACH_BB_FN (bb, fun)
958 {
959 tree def;
960
961 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (i: gsi);
962 gsi_next (i: &gsi))
963 {
964 gphi *phi = gsi.phi ();
965 def = PHI_RESULT (phi);
966 if (! virtual_operand_p (op: def)
967 && FLOAT_TYPE_P (TREE_TYPE (def)))
968 execute_cse_reciprocals_1 (NULL, def);
969 }
970
971 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (i: gsi);
972 gsi_next (i: &gsi))
973 {
974 gimple *stmt = gsi_stmt (i: gsi);
975
976 if (gimple_has_lhs (stmt)
977 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
978 && FLOAT_TYPE_P (TREE_TYPE (def))
979 && TREE_CODE (def) == SSA_NAME)
980 {
981 execute_cse_reciprocals_1 (def_gsi: &gsi, def);
982 stmt = gsi_stmt (i: gsi);
983 if (flag_unsafe_math_optimizations
984 && is_gimple_assign (gs: stmt)
985 && gimple_assign_lhs (gs: stmt) == def
986 && !stmt_can_throw_internal (cfun, stmt)
987 && gimple_assign_rhs_code (gs: stmt) == RDIV_EXPR)
988 optimize_recip_sqrt (def_gsi: &gsi, def);
989 }
990 }
991
992 if (optimize_bb_for_size_p (bb))
993 continue;
994
995 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
996 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (i: gsi);
997 gsi_next (i: &gsi))
998 {
999 gimple *stmt = gsi_stmt (i: gsi);
1000
1001 if (is_gimple_assign (gs: stmt)
1002 && gimple_assign_rhs_code (gs: stmt) == RDIV_EXPR)
1003 {
1004 tree arg1 = gimple_assign_rhs2 (gs: stmt);
1005 gimple *stmt1;
1006
1007 if (TREE_CODE (arg1) != SSA_NAME)
1008 continue;
1009
1010 stmt1 = SSA_NAME_DEF_STMT (arg1);
1011
1012 if (is_gimple_call (gs: stmt1)
1013 && gimple_call_lhs (gs: stmt1))
1014 {
1015 bool fail;
1016 imm_use_iterator ui;
1017 use_operand_p use_p;
1018 tree fndecl = NULL_TREE;
1019
1020 gcall *call = as_a <gcall *> (p: stmt1);
1021 internal_fn ifn = internal_fn_reciprocal (call);
1022 if (ifn == IFN_LAST)
1023 {
1024 fndecl = gimple_call_fndecl (gs: call);
1025 if (!fndecl
1026 || !fndecl_built_in_p (node: fndecl, klass: BUILT_IN_MD))
1027 continue;
1028 fndecl = targetm.builtin_reciprocal (fndecl);
1029 if (!fndecl)
1030 continue;
1031 }
1032
1033 /* Check that all uses of the SSA name are divisions,
1034 otherwise replacing the defining statement will do
1035 the wrong thing. */
1036 fail = false;
1037 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
1038 {
1039 gimple *stmt2 = USE_STMT (use_p);
1040 if (is_gimple_debug (gs: stmt2))
1041 continue;
1042 if (!is_gimple_assign (gs: stmt2)
1043 || gimple_assign_rhs_code (gs: stmt2) != RDIV_EXPR
1044 || gimple_assign_rhs1 (gs: stmt2) == arg1
1045 || gimple_assign_rhs2 (gs: stmt2) != arg1)
1046 {
1047 fail = true;
1048 break;
1049 }
1050 }
1051 if (fail)
1052 continue;
1053
1054 gimple_replace_ssa_lhs (call, arg1);
1055 if (gimple_call_internal_p (gs: call) != (ifn != IFN_LAST))
1056 {
1057 auto_vec<tree, 4> args;
1058 for (unsigned int i = 0;
1059 i < gimple_call_num_args (gs: call); i++)
1060 args.safe_push (obj: gimple_call_arg (gs: call, index: i));
1061 gcall *stmt2;
1062 if (ifn == IFN_LAST)
1063 stmt2 = gimple_build_call_vec (fndecl, args);
1064 else
1065 stmt2 = gimple_build_call_internal_vec (ifn, args);
1066 gimple_call_set_lhs (gs: stmt2, lhs: arg1);
1067 gimple_move_vops (stmt2, call);
1068 gimple_call_set_nothrow (s: stmt2,
1069 nothrow_p: gimple_call_nothrow_p (s: call));
1070 gimple_stmt_iterator gsi2 = gsi_for_stmt (call);
1071 gsi_replace (&gsi2, stmt2, true);
1072 }
1073 else
1074 {
1075 if (ifn == IFN_LAST)
1076 gimple_call_set_fndecl (gs: call, decl: fndecl);
1077 else
1078 gimple_call_set_internal_fn (call_stmt: call, fn: ifn);
1079 update_stmt (s: call);
1080 }
1081 reciprocal_stats.rfuncs_inserted++;
1082
1083 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
1084 {
1085 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1086 gimple_assign_set_rhs_code (s: stmt, code: MULT_EXPR);
1087 fold_stmt_inplace (&gsi);
1088 update_stmt (s: stmt);
1089 }
1090 }
1091 }
1092 }
1093 }
1094
1095 statistics_counter_event (fun, "reciprocal divs inserted",
1096 reciprocal_stats.rdivs_inserted);
1097 statistics_counter_event (fun, "reciprocal functions inserted",
1098 reciprocal_stats.rfuncs_inserted);
1099
1100 free_dominance_info (CDI_DOMINATORS);
1101 free_dominance_info (CDI_POST_DOMINATORS);
1102 delete occ_pool;
1103 return 0;
1104}
1105
1106} // anon namespace
1107
1108gimple_opt_pass *
1109make_pass_cse_reciprocals (gcc::context *ctxt)
1110{
1111 return new pass_cse_reciprocals (ctxt);
1112}
1113
1114/* If NAME is the result of a type conversion, look for other
1115 equivalent dominating or dominated conversions, and replace all
1116 uses with the earliest dominating name, removing the redundant
1117 conversions. Return the prevailing name. */
1118
1119static tree
1120execute_cse_conv_1 (tree name, bool *cfg_changed)
1121{
1122 if (SSA_NAME_IS_DEFAULT_DEF (name)
1123 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1124 return name;
1125
1126 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1127
1128 if (!gimple_assign_cast_p (s: def_stmt))
1129 return name;
1130
1131 tree src = gimple_assign_rhs1 (gs: def_stmt);
1132
1133 if (TREE_CODE (src) != SSA_NAME)
1134 return name;
1135
1136 imm_use_iterator use_iter;
1137 gimple *use_stmt;
1138
1139 /* Find the earliest dominating def. */
1140 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, src)
1141 {
1142 if (use_stmt == def_stmt
1143 || !gimple_assign_cast_p (s: use_stmt))
1144 continue;
1145
1146 tree lhs = gimple_assign_lhs (gs: use_stmt);
1147
1148 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
1149 || (gimple_assign_rhs1 (gs: use_stmt)
1150 != gimple_assign_rhs1 (gs: def_stmt))
1151 || !types_compatible_p (TREE_TYPE (name), TREE_TYPE (lhs)))
1152 continue;
1153
1154 bool use_dominates;
1155 if (gimple_bb (g: def_stmt) == gimple_bb (g: use_stmt))
1156 {
1157 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
1158 while (!gsi_end_p (i: gsi) && gsi_stmt (i: gsi) != def_stmt)
1159 gsi_next (i: &gsi);
1160 use_dominates = !gsi_end_p (i: gsi);
1161 }
1162 else if (dominated_by_p (CDI_DOMINATORS, gimple_bb (g: use_stmt),
1163 gimple_bb (g: def_stmt)))
1164 use_dominates = false;
1165 else if (dominated_by_p (CDI_DOMINATORS, gimple_bb (g: def_stmt),
1166 gimple_bb (g: use_stmt)))
1167 use_dominates = true;
1168 else
1169 continue;
1170
1171 if (use_dominates)
1172 {
1173 std::swap (a&: name, b&: lhs);
1174 std::swap (a&: def_stmt, b&: use_stmt);
1175 }
1176 }
1177
1178 /* Now go through all uses of SRC again, replacing the equivalent
1179 dominated conversions. We may replace defs that were not
1180 dominated by the then-prevailing defs when we first visited
1181 them. */
1182 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, src)
1183 {
1184 if (use_stmt == def_stmt
1185 || !gimple_assign_cast_p (s: use_stmt))
1186 continue;
1187
1188 tree lhs = gimple_assign_lhs (gs: use_stmt);
1189
1190 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
1191 || (gimple_assign_rhs1 (gs: use_stmt)
1192 != gimple_assign_rhs1 (gs: def_stmt))
1193 || !types_compatible_p (TREE_TYPE (name), TREE_TYPE (lhs)))
1194 continue;
1195
1196 basic_block use_bb = gimple_bb (g: use_stmt);
1197 if (gimple_bb (g: def_stmt) == use_bb
1198 || dominated_by_p (CDI_DOMINATORS, use_bb, gimple_bb (g: def_stmt)))
1199 {
1200 sincos_stats.conv_removed++;
1201
1202 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
1203 replace_uses_by (lhs, name);
1204 if (gsi_remove (&gsi, true)
1205 && gimple_purge_dead_eh_edges (use_bb))
1206 *cfg_changed = true;
1207 release_defs (use_stmt);
1208 }
1209 }
1210
1211 return name;
1212}
1213
1214/* Records an occurrence at statement USE_STMT in the vector of trees
1215 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
1216 is not yet initialized. Returns true if the occurrence was pushed on
1217 the vector. Adjusts *TOP_BB to be the basic block dominating all
1218 statements in the vector. */
1219
1220static bool
1221maybe_record_sincos (vec<gimple *> *stmts,
1222 basic_block *top_bb, gimple *use_stmt)
1223{
1224 basic_block use_bb = gimple_bb (g: use_stmt);
1225 if (*top_bb
1226 && (*top_bb == use_bb
1227 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
1228 stmts->safe_push (obj: use_stmt);
1229 else if (!*top_bb
1230 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
1231 {
1232 stmts->safe_push (obj: use_stmt);
1233 *top_bb = use_bb;
1234 }
1235 else
1236 return false;
1237
1238 return true;
1239}
1240
1241/* Look for sin, cos and cexpi calls with the same argument NAME and
1242 create a single call to cexpi CSEing the result in this case.
1243 We first walk over all immediate uses of the argument collecting
1244 statements that we can CSE in a vector and in a second pass replace
1245 the statement rhs with a REALPART or IMAGPART expression on the
1246 result of the cexpi call we insert before the use statement that
1247 dominates all other candidates. */
1248
1249static bool
1250execute_cse_sincos_1 (tree name)
1251{
1252 gimple_stmt_iterator gsi;
1253 imm_use_iterator use_iter;
1254 tree fndecl, res, type = NULL_TREE;
1255 gimple *def_stmt, *use_stmt, *stmt;
1256 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
1257 auto_vec<gimple *> stmts;
1258 basic_block top_bb = NULL;
1259 int i;
1260 bool cfg_changed = false;
1261
1262 name = execute_cse_conv_1 (name, cfg_changed: &cfg_changed);
1263
1264 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
1265 {
1266 if (gimple_code (g: use_stmt) != GIMPLE_CALL
1267 || !gimple_call_lhs (gs: use_stmt))
1268 continue;
1269
1270 switch (gimple_call_combined_fn (use_stmt))
1271 {
1272 CASE_CFN_COS:
1273 seen_cos |= maybe_record_sincos (stmts: &stmts, top_bb: &top_bb, use_stmt) ? 1 : 0;
1274 break;
1275
1276 CASE_CFN_SIN:
1277 seen_sin |= maybe_record_sincos (stmts: &stmts, top_bb: &top_bb, use_stmt) ? 1 : 0;
1278 break;
1279
1280 CASE_CFN_CEXPI:
1281 seen_cexpi |= maybe_record_sincos (stmts: &stmts, top_bb: &top_bb, use_stmt) ? 1 : 0;
1282 break;
1283
1284 default:;
1285 continue;
1286 }
1287
1288 tree t = mathfn_built_in_type (gimple_call_combined_fn (use_stmt));
1289 if (!type)
1290 {
1291 type = t;
1292 t = TREE_TYPE (name);
1293 }
1294 /* This checks that NAME has the right type in the first round,
1295 and, in subsequent rounds, that the built_in type is the same
1296 type, or a compatible type. */
1297 if (type != t && !types_compatible_p (type1: type, type2: t))
1298 return false;
1299 }
1300 if (seen_cos + seen_sin + seen_cexpi <= 1)
1301 return false;
1302
1303 /* Simply insert cexpi at the beginning of top_bb but not earlier than
1304 the name def statement. */
1305 fndecl = mathfn_built_in (type, fn: BUILT_IN_CEXPI);
1306 if (!fndecl)
1307 return false;
1308 stmt = gimple_build_call (fndecl, 1, name);
1309 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, name: "sincostmp");
1310 gimple_call_set_lhs (gs: stmt, lhs: res);
1311
1312 def_stmt = SSA_NAME_DEF_STMT (name);
1313 if (!SSA_NAME_IS_DEFAULT_DEF (name)
1314 && gimple_code (g: def_stmt) != GIMPLE_PHI
1315 && gimple_bb (g: def_stmt) == top_bb)
1316 {
1317 gsi = gsi_for_stmt (def_stmt);
1318 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
1319 }
1320 else
1321 {
1322 gsi = gsi_after_labels (bb: top_bb);
1323 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1324 }
1325 sincos_stats.inserted++;
1326
1327 /* And adjust the recorded old call sites. */
1328 for (i = 0; stmts.iterate (ix: i, ptr: &use_stmt); ++i)
1329 {
1330 tree rhs = NULL;
1331
1332 switch (gimple_call_combined_fn (use_stmt))
1333 {
1334 CASE_CFN_COS:
1335 rhs = fold_build1 (REALPART_EXPR, type, res);
1336 break;
1337
1338 CASE_CFN_SIN:
1339 rhs = fold_build1 (IMAGPART_EXPR, type, res);
1340 break;
1341
1342 CASE_CFN_CEXPI:
1343 rhs = res;
1344 break;
1345
1346 default:;
1347 gcc_unreachable ();
1348 }
1349
1350 /* Replace call with a copy. */
1351 stmt = gimple_build_assign (gimple_call_lhs (gs: use_stmt), rhs);
1352
1353 gsi = gsi_for_stmt (use_stmt);
1354 gsi_replace (&gsi, stmt, true);
1355 if (gimple_purge_dead_eh_edges (gimple_bb (g: stmt)))
1356 cfg_changed = true;
1357 }
1358
1359 return cfg_changed;
1360}
1361
1362/* To evaluate powi(x,n), the floating point value x raised to the
1363 constant integer exponent n, we use a hybrid algorithm that
1364 combines the "window method" with look-up tables. For an
1365 introduction to exponentiation algorithms and "addition chains",
1366 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
1367 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
1368 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
1369 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
1370
1371/* Provide a default value for POWI_MAX_MULTS, the maximum number of
1372 multiplications to inline before calling the system library's pow
1373 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
1374 so this default never requires calling pow, powf or powl. */
1375
1376#ifndef POWI_MAX_MULTS
1377#define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
1378#endif
1379
1380/* The size of the "optimal power tree" lookup table. All
1381 exponents less than this value are simply looked up in the
1382 powi_table below. This threshold is also used to size the
1383 cache of pseudo registers that hold intermediate results. */
1384#define POWI_TABLE_SIZE 256
1385
1386/* The size, in bits of the window, used in the "window method"
1387 exponentiation algorithm. This is equivalent to a radix of
1388 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
1389#define POWI_WINDOW_SIZE 3
1390
1391/* The following table is an efficient representation of an
1392 "optimal power tree". For each value, i, the corresponding
1393 value, j, in the table states than an optimal evaluation
1394 sequence for calculating pow(x,i) can be found by evaluating
1395 pow(x,j)*pow(x,i-j). An optimal power tree for the first
1396 100 integers is given in Knuth's "Seminumerical algorithms". */
1397
1398static const unsigned char powi_table[POWI_TABLE_SIZE] =
1399 {
1400 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
1401 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
1402 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
1403 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
1404 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
1405 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
1406 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
1407 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
1408 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
1409 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
1410 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
1411 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
1412 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
1413 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
1414 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
1415 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
1416 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
1417 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
1418 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
1419 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
1420 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
1421 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
1422 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
1423 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
1424 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
1425 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
1426 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
1427 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
1428 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
1429 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
1430 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
1431 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
1432 };
1433
1434
1435/* Return the number of multiplications required to calculate
1436 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
1437 subroutine of powi_cost. CACHE is an array indicating
1438 which exponents have already been calculated. */
1439
1440static int
1441powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
1442{
1443 /* If we've already calculated this exponent, then this evaluation
1444 doesn't require any additional multiplications. */
1445 if (cache[n])
1446 return 0;
1447
1448 cache[n] = true;
1449 return powi_lookup_cost (n: n - powi_table[n], cache)
1450 + powi_lookup_cost (n: powi_table[n], cache) + 1;
1451}
1452
1453/* Return the number of multiplications required to calculate
1454 powi(x,n) for an arbitrary x, given the exponent N. This
1455 function needs to be kept in sync with powi_as_mults below. */
1456
1457static int
1458powi_cost (HOST_WIDE_INT n)
1459{
1460 bool cache[POWI_TABLE_SIZE];
1461 unsigned HOST_WIDE_INT digit;
1462 unsigned HOST_WIDE_INT val;
1463 int result;
1464
1465 if (n == 0)
1466 return 0;
1467
1468 /* Ignore the reciprocal when calculating the cost. */
1469 val = absu_hwi (x: n);
1470
1471 /* Initialize the exponent cache. */
1472 memset (s: cache, c: 0, POWI_TABLE_SIZE * sizeof (bool));
1473 cache[1] = true;
1474
1475 result = 0;
1476
1477 while (val >= POWI_TABLE_SIZE)
1478 {
1479 if (val & 1)
1480 {
1481 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
1482 result += powi_lookup_cost (n: digit, cache)
1483 + POWI_WINDOW_SIZE + 1;
1484 val >>= POWI_WINDOW_SIZE;
1485 }
1486 else
1487 {
1488 val >>= 1;
1489 result++;
1490 }
1491 }
1492
1493 return result + powi_lookup_cost (n: val, cache);
1494}
1495
1496/* Recursive subroutine of powi_as_mults. This function takes the
1497 array, CACHE, of already calculated exponents and an exponent N and
1498 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
1499
1500static tree
1501powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
1502 unsigned HOST_WIDE_INT n, tree *cache)
1503{
1504 tree op0, op1, ssa_target;
1505 unsigned HOST_WIDE_INT digit;
1506 gassign *mult_stmt;
1507
1508 if (n < POWI_TABLE_SIZE && cache[n])
1509 return cache[n];
1510
1511 ssa_target = make_temp_ssa_name (type, NULL, name: "powmult");
1512
1513 if (n < POWI_TABLE_SIZE)
1514 {
1515 cache[n] = ssa_target;
1516 op0 = powi_as_mults_1 (gsi, loc, type, n: n - powi_table[n], cache);
1517 op1 = powi_as_mults_1 (gsi, loc, type, n: powi_table[n], cache);
1518 }
1519 else if (n & 1)
1520 {
1521 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1522 op0 = powi_as_mults_1 (gsi, loc, type, n: n - digit, cache);
1523 op1 = powi_as_mults_1 (gsi, loc, type, n: digit, cache);
1524 }
1525 else
1526 {
1527 op0 = powi_as_mults_1 (gsi, loc, type, n: n >> 1, cache);
1528 op1 = op0;
1529 }
1530
1531 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1532 gimple_set_location (g: mult_stmt, location: loc);
1533 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1534
1535 return ssa_target;
1536}
1537
1538/* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1539 This function needs to be kept in sync with powi_cost above. */
1540
1541tree
1542powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1543 tree arg0, HOST_WIDE_INT n)
1544{
1545 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1546 gassign *div_stmt;
1547 tree target;
1548
1549 if (n == 0)
1550 return build_one_cst (type);
1551
1552 memset (s: cache, c: 0, n: sizeof (cache));
1553 cache[1] = arg0;
1554
1555 result = powi_as_mults_1 (gsi, loc, type, n: absu_hwi (x: n), cache);
1556 if (n >= 0)
1557 return result;
1558
1559 /* If the original exponent was negative, reciprocate the result. */
1560 target = make_temp_ssa_name (type, NULL, name: "powmult");
1561 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1562 build_real (type, dconst1), result);
1563 gimple_set_location (g: div_stmt, location: loc);
1564 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1565
1566 return target;
1567}
1568
1569/* ARG0 and N are the two arguments to a powi builtin in GSI with
1570 location info LOC. If the arguments are appropriate, create an
1571 equivalent sequence of statements prior to GSI using an optimal
1572 number of multiplications, and return an expession holding the
1573 result. */
1574
1575static tree
1576gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1577 tree arg0, HOST_WIDE_INT n)
1578{
1579 if ((n >= -1 && n <= 2)
1580 || (optimize_function_for_speed_p (cfun)
1581 && powi_cost (n) <= POWI_MAX_MULTS))
1582 return powi_as_mults (gsi, loc, arg0, n);
1583
1584 return NULL_TREE;
1585}
1586
1587/* Build a gimple call statement that calls FN with argument ARG.
1588 Set the lhs of the call statement to a fresh SSA name. Insert the
1589 statement prior to GSI's current position, and return the fresh
1590 SSA name. */
1591
1592static tree
1593build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1594 tree fn, tree arg)
1595{
1596 gcall *call_stmt;
1597 tree ssa_target;
1598
1599 call_stmt = gimple_build_call (fn, 1, arg);
1600 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, name: "powroot");
1601 gimple_set_lhs (call_stmt, ssa_target);
1602 gimple_set_location (g: call_stmt, location: loc);
1603 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1604
1605 return ssa_target;
1606}
1607
1608/* Build a gimple binary operation with the given CODE and arguments
1609 ARG0, ARG1, assigning the result to a new SSA name for variable
1610 TARGET. Insert the statement prior to GSI's current position, and
1611 return the fresh SSA name.*/
1612
1613static tree
1614build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1615 const char *name, enum tree_code code,
1616 tree arg0, tree arg1)
1617{
1618 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1619 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1620 gimple_set_location (g: stmt, location: loc);
1621 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1622 return result;
1623}
1624
1625/* Build a gimple reference operation with the given CODE and argument
1626 ARG, assigning the result to a new SSA name of TYPE with NAME.
1627 Insert the statement prior to GSI's current position, and return
1628 the fresh SSA name. */
1629
1630static inline tree
1631build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1632 const char *name, enum tree_code code, tree arg0)
1633{
1634 tree result = make_temp_ssa_name (type, NULL, name);
1635 gimple *stmt = gimple_build_assign (result, build1 (code, type, arg0));
1636 gimple_set_location (g: stmt, location: loc);
1637 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1638 return result;
1639}
1640
1641/* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1642 prior to GSI's current position, and return the fresh SSA name. */
1643
1644static tree
1645build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1646 tree type, tree val)
1647{
1648 tree result = make_ssa_name (var: type);
1649 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1650 gimple_set_location (g: stmt, location: loc);
1651 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1652 return result;
1653}
1654
1655struct pow_synth_sqrt_info
1656{
1657 bool *factors;
1658 unsigned int deepest;
1659 unsigned int num_mults;
1660};
1661
1662/* Return true iff the real value C can be represented as a
1663 sum of powers of 0.5 up to N. That is:
1664 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1665 Record in INFO the various parameters of the synthesis algorithm such
1666 as the factors a[i], the maximum 0.5 power and the number of
1667 multiplications that will be required. */
1668
1669bool
1670representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
1671 struct pow_synth_sqrt_info *info)
1672{
1673 REAL_VALUE_TYPE factor = dconsthalf;
1674 REAL_VALUE_TYPE remainder = c;
1675
1676 info->deepest = 0;
1677 info->num_mults = 0;
1678 memset (s: info->factors, c: 0, n: n * sizeof (bool));
1679
1680 for (unsigned i = 0; i < n; i++)
1681 {
1682 REAL_VALUE_TYPE res;
1683
1684 /* If something inexact happened bail out now. */
1685 if (real_arithmetic (&res, MINUS_EXPR, &remainder, &factor))
1686 return false;
1687
1688 /* We have hit zero. The number is representable as a sum
1689 of powers of 0.5. */
1690 if (real_equal (&res, &dconst0))
1691 {
1692 info->factors[i] = true;
1693 info->deepest = i + 1;
1694 return true;
1695 }
1696 else if (!REAL_VALUE_NEGATIVE (res))
1697 {
1698 remainder = res;
1699 info->factors[i] = true;
1700 info->num_mults++;
1701 }
1702 else
1703 info->factors[i] = false;
1704
1705 real_arithmetic (&factor, MULT_EXPR, &factor, &dconsthalf);
1706 }
1707 return false;
1708}
1709
1710/* Return the tree corresponding to FN being applied
1711 to ARG N times at GSI and LOC.
1712 Look up previous results from CACHE if need be.
1713 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1714
1715static tree
1716get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
1717 tree fn, location_t loc, tree *cache)
1718{
1719 tree res = cache[n];
1720 if (!res)
1721 {
1722 tree prev = get_fn_chain (arg, n: n - 1, gsi, fn, loc, cache);
1723 res = build_and_insert_call (gsi, loc, fn, arg: prev);
1724 cache[n] = res;
1725 }
1726
1727 return res;
1728}
1729
1730/* Print to STREAM the repeated application of function FNAME to ARG
1731 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1732 "foo (foo (x))". */
1733
1734static void
1735print_nested_fn (FILE* stream, const char *fname, const char* arg,
1736 unsigned int n)
1737{
1738 if (n == 0)
1739 fprintf (stream: stream, format: "%s", arg);
1740 else
1741 {
1742 fprintf (stream: stream, format: "%s (", fname);
1743 print_nested_fn (stream, fname, arg, n: n - 1);
1744 fprintf (stream: stream, format: ")");
1745 }
1746}
1747
1748/* Print to STREAM the fractional sequence of sqrt chains
1749 applied to ARG, described by INFO. Used for the dump file. */
1750
1751static void
1752dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
1753 struct pow_synth_sqrt_info *info)
1754{
1755 for (unsigned int i = 0; i < info->deepest; i++)
1756 {
1757 bool is_set = info->factors[i];
1758 if (is_set)
1759 {
1760 print_nested_fn (stream, fname: "sqrt", arg, n: i + 1);
1761 if (i != info->deepest - 1)
1762 fprintf (stream: stream, format: " * ");
1763 }
1764 }
1765}
1766
1767/* Print to STREAM a representation of raising ARG to an integer
1768 power N. Used for the dump file. */
1769
1770static void
1771dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
1772{
1773 if (n > 1)
1774 fprintf (stream: stream, format: "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
1775 else if (n == 1)
1776 fprintf (stream: stream, format: "%s", arg);
1777}
1778
1779/* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1780 square roots. Place at GSI and LOC. Limit the maximum depth
1781 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1782 result of the expanded sequence or NULL_TREE if the expansion failed.
1783
1784 This routine assumes that ARG1 is a real number with a fractional part
1785 (the integer exponent case will have been handled earlier in
1786 gimple_expand_builtin_pow).
1787
1788 For ARG1 > 0.0:
1789 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1790 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1791 FRAC_PART == ARG1 - WHOLE_PART:
1792 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1793 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1794 if it can be expressed as such, that is if FRAC_PART satisfies:
1795 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1796 where integer a[i] is either 0 or 1.
1797
1798 Example:
1799 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1800 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1801
1802 For ARG1 < 0.0 there are two approaches:
1803 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1804 is calculated as above.
1805
1806 Example:
1807 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1808 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1809
1810 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1811 FRAC_PART := ARG1 - WHOLE_PART
1812 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1813 Example:
1814 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1815 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1816
1817 For ARG1 < 0.0 we choose between (A) and (B) depending on
1818 how many multiplications we'd have to do.
1819 So, for the example in (B): POW (x, -5.875), if we were to
1820 follow algorithm (A) we would produce:
1821 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1822 which contains more multiplications than approach (B).
1823
1824 Hopefully, this approach will eliminate potentially expensive POW library
1825 calls when unsafe floating point math is enabled and allow the compiler to
1826 further optimise the multiplies, square roots and divides produced by this
1827 function. */
1828
1829static tree
1830expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
1831 tree arg0, tree arg1, HOST_WIDE_INT max_depth)
1832{
1833 tree type = TREE_TYPE (arg0);
1834 machine_mode mode = TYPE_MODE (type);
1835 tree sqrtfn = mathfn_built_in (type, fn: BUILT_IN_SQRT);
1836 bool one_over = true;
1837
1838 if (!sqrtfn)
1839 return NULL_TREE;
1840
1841 if (TREE_CODE (arg1) != REAL_CST)
1842 return NULL_TREE;
1843
1844 REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
1845
1846 gcc_assert (max_depth > 0);
1847 tree *cache = XALLOCAVEC (tree, max_depth + 1);
1848
1849 struct pow_synth_sqrt_info synth_info;
1850 synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1851 synth_info.deepest = 0;
1852 synth_info.num_mults = 0;
1853
1854 bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
1855 REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
1856
1857 /* The whole and fractional parts of exp. */
1858 REAL_VALUE_TYPE whole_part;
1859 REAL_VALUE_TYPE frac_part;
1860
1861 real_floor (&whole_part, mode, &exp);
1862 real_arithmetic (&frac_part, MINUS_EXPR, &exp, &whole_part);
1863
1864
1865 REAL_VALUE_TYPE ceil_whole = dconst0;
1866 REAL_VALUE_TYPE ceil_fract = dconst0;
1867
1868 if (neg_exp)
1869 {
1870 real_ceil (&ceil_whole, mode, &exp);
1871 real_arithmetic (&ceil_fract, MINUS_EXPR, &ceil_whole, &exp);
1872 }
1873
1874 if (!representable_as_half_series_p (c: frac_part, n: max_depth, info: &synth_info))
1875 return NULL_TREE;
1876
1877 /* Check whether it's more profitable to not use 1.0 / ... */
1878 if (neg_exp)
1879 {
1880 struct pow_synth_sqrt_info alt_synth_info;
1881 alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1882 alt_synth_info.deepest = 0;
1883 alt_synth_info.num_mults = 0;
1884
1885 if (representable_as_half_series_p (c: ceil_fract, n: max_depth,
1886 info: &alt_synth_info)
1887 && alt_synth_info.deepest <= synth_info.deepest
1888 && alt_synth_info.num_mults < synth_info.num_mults)
1889 {
1890 whole_part = ceil_whole;
1891 frac_part = ceil_fract;
1892 synth_info.deepest = alt_synth_info.deepest;
1893 synth_info.num_mults = alt_synth_info.num_mults;
1894 memcpy (dest: synth_info.factors, src: alt_synth_info.factors,
1895 n: (max_depth + 1) * sizeof (bool));
1896 one_over = false;
1897 }
1898 }
1899
1900 HOST_WIDE_INT n = real_to_integer (&whole_part);
1901 REAL_VALUE_TYPE cint;
1902 real_from_integer (&cint, VOIDmode, n, SIGNED);
1903
1904 if (!real_identical (&whole_part, &cint))
1905 return NULL_TREE;
1906
1907 if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
1908 return NULL_TREE;
1909
1910 memset (s: cache, c: 0, n: (max_depth + 1) * sizeof (tree));
1911
1912 tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
1913
1914 /* Calculate the integer part of the exponent. */
1915 if (n > 1)
1916 {
1917 integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
1918 if (!integer_res)
1919 return NULL_TREE;
1920 }
1921
1922 if (dump_file)
1923 {
1924 char string[64];
1925
1926 real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
1927 fprintf (stream: dump_file, format: "synthesizing pow (x, %s) as:\n", string);
1928
1929 if (neg_exp)
1930 {
1931 if (one_over)
1932 {
1933 fprintf (stream: dump_file, format: "1.0 / (");
1934 dump_integer_part (stream: dump_file, arg: "x", n);
1935 if (n > 0)
1936 fprintf (stream: dump_file, format: " * ");
1937 dump_fractional_sqrt_sequence (stream: dump_file, arg: "x", info: &synth_info);
1938 fprintf (stream: dump_file, format: ")");
1939 }
1940 else
1941 {
1942 dump_fractional_sqrt_sequence (stream: dump_file, arg: "x", info: &synth_info);
1943 fprintf (stream: dump_file, format: " / (");
1944 dump_integer_part (stream: dump_file, arg: "x", n);
1945 fprintf (stream: dump_file, format: ")");
1946 }
1947 }
1948 else
1949 {
1950 dump_fractional_sqrt_sequence (stream: dump_file, arg: "x", info: &synth_info);
1951 if (n > 0)
1952 fprintf (stream: dump_file, format: " * ");
1953 dump_integer_part (stream: dump_file, arg: "x", n);
1954 }
1955
1956 fprintf (stream: dump_file, format: "\ndeepest sqrt chain: %d\n", synth_info.deepest);
1957 }
1958
1959
1960 tree fract_res = NULL_TREE;
1961 cache[0] = arg0;
1962
1963 /* Calculate the fractional part of the exponent. */
1964 for (unsigned i = 0; i < synth_info.deepest; i++)
1965 {
1966 if (synth_info.factors[i])
1967 {
1968 tree sqrt_chain = get_fn_chain (arg: arg0, n: i + 1, gsi, fn: sqrtfn, loc, cache);
1969
1970 if (!fract_res)
1971 fract_res = sqrt_chain;
1972
1973 else
1974 fract_res = build_and_insert_binop (gsi, loc, name: "powroot", code: MULT_EXPR,
1975 arg0: fract_res, arg1: sqrt_chain);
1976 }
1977 }
1978
1979 tree res = NULL_TREE;
1980
1981 if (neg_exp)
1982 {
1983 if (one_over)
1984 {
1985 if (n > 0)
1986 res = build_and_insert_binop (gsi, loc, name: "powroot", code: MULT_EXPR,
1987 arg0: fract_res, arg1: integer_res);
1988 else
1989 res = fract_res;
1990
1991 res = build_and_insert_binop (gsi, loc, name: "powrootrecip", code: RDIV_EXPR,
1992 arg0: build_real (type, dconst1), arg1: res);
1993 }
1994 else
1995 {
1996 res = build_and_insert_binop (gsi, loc, name: "powroot", code: RDIV_EXPR,
1997 arg0: fract_res, arg1: integer_res);
1998 }
1999 }
2000 else
2001 res = build_and_insert_binop (gsi, loc, name: "powroot", code: MULT_EXPR,
2002 arg0: fract_res, arg1: integer_res);
2003 return res;
2004}
2005
2006/* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
2007 with location info LOC. If possible, create an equivalent and
2008 less expensive sequence of statements prior to GSI, and return an
2009 expession holding the result. */
2010
2011static tree
2012gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
2013 tree arg0, tree arg1)
2014{
2015 REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
2016 REAL_VALUE_TYPE c2, dconst3;
2017 HOST_WIDE_INT n;
2018 tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
2019 machine_mode mode;
2020 bool speed_p = optimize_bb_for_speed_p (gsi_bb (i: *gsi));
2021 bool hw_sqrt_exists, c_is_int, c2_is_int;
2022
2023 dconst1_4 = dconst1;
2024 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
2025
2026 /* If the exponent isn't a constant, there's nothing of interest
2027 to be done. */
2028 if (TREE_CODE (arg1) != REAL_CST)
2029 return NULL_TREE;
2030
2031 /* Don't perform the operation if flag_signaling_nans is on
2032 and the operand is a signaling NaN. */
2033 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
2034 && ((TREE_CODE (arg0) == REAL_CST
2035 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0)))
2036 || REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1))))
2037 return NULL_TREE;
2038
2039 /* If the exponent is equivalent to an integer, expand to an optimal
2040 multiplication sequence when profitable. */
2041 c = TREE_REAL_CST (arg1);
2042 n = real_to_integer (&c);
2043 real_from_integer (&cint, VOIDmode, n, SIGNED);
2044 c_is_int = real_identical (&c, &cint);
2045
2046 if (c_is_int
2047 && ((n >= -1 && n <= 2)
2048 || (flag_unsafe_math_optimizations
2049 && speed_p
2050 && powi_cost (n) <= POWI_MAX_MULTS)))
2051 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
2052
2053 /* Attempt various optimizations using sqrt and cbrt. */
2054 type = TREE_TYPE (arg0);
2055 mode = TYPE_MODE (type);
2056 sqrtfn = mathfn_built_in (type, fn: BUILT_IN_SQRT);
2057
2058 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
2059 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
2060 sqrt(-0) = -0. */
2061 if (sqrtfn
2062 && real_equal (&c, &dconsthalf)
2063 && !HONOR_SIGNED_ZEROS (mode))
2064 return build_and_insert_call (gsi, loc, fn: sqrtfn, arg: arg0);
2065
2066 hw_sqrt_exists = optab_handler (op: sqrt_optab, mode) != CODE_FOR_nothing;
2067
2068 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
2069 optimizations since 1./3. is not exactly representable. If x
2070 is negative and finite, the correct value of pow(x,1./3.) is
2071 a NaN with the "invalid" exception raised, because the value
2072 of 1./3. actually has an even denominator. The correct value
2073 of cbrt(x) is a negative real value. */
2074 cbrtfn = mathfn_built_in (type, fn: BUILT_IN_CBRT);
2075 dconst1_3 = real_value_truncate (mode, dconst_third ());
2076
2077 if (flag_unsafe_math_optimizations
2078 && cbrtfn
2079 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
2080 && real_equal (&c, &dconst1_3))
2081 return build_and_insert_call (gsi, loc, fn: cbrtfn, arg: arg0);
2082
2083 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
2084 if we don't have a hardware sqrt insn. */
2085 dconst1_6 = dconst1_3;
2086 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
2087
2088 if (flag_unsafe_math_optimizations
2089 && sqrtfn
2090 && cbrtfn
2091 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
2092 && speed_p
2093 && hw_sqrt_exists
2094 && real_equal (&c, &dconst1_6))
2095 {
2096 /* sqrt(x) */
2097 sqrt_arg0 = build_and_insert_call (gsi, loc, fn: sqrtfn, arg: arg0);
2098
2099 /* cbrt(sqrt(x)) */
2100 return build_and_insert_call (gsi, loc, fn: cbrtfn, arg: sqrt_arg0);
2101 }
2102
2103
2104 /* Attempt to expand the POW as a product of square root chains.
2105 Expand the 0.25 case even when otpimising for size. */
2106 if (flag_unsafe_math_optimizations
2107 && sqrtfn
2108 && hw_sqrt_exists
2109 && (speed_p || real_equal (&c, &dconst1_4))
2110 && !HONOR_SIGNED_ZEROS (mode))
2111 {
2112 unsigned int max_depth = speed_p
2113 ? param_max_pow_sqrt_depth
2114 : 2;
2115
2116 tree expand_with_sqrts
2117 = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);
2118
2119 if (expand_with_sqrts)
2120 return expand_with_sqrts;
2121 }
2122
2123 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
2124 n = real_to_integer (&c2);
2125 real_from_integer (&cint, VOIDmode, n, SIGNED);
2126 c2_is_int = real_identical (&c2, &cint);
2127
2128 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
2129
2130 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
2131 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
2132
2133 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
2134 different from pow(x, 1./3.) due to rounding and behavior with
2135 negative x, we need to constrain this transformation to unsafe
2136 math and positive x or finite math. */
2137 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
2138 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
2139 real_round (&c2, mode, &c2);
2140 n = real_to_integer (&c2);
2141 real_from_integer (&cint, VOIDmode, n, SIGNED);
2142 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
2143 real_convert (&c2, mode, &c2);
2144
2145 if (flag_unsafe_math_optimizations
2146 && cbrtfn
2147 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
2148 && real_identical (&c2, &c)
2149 && !c2_is_int
2150 && optimize_function_for_speed_p (cfun)
2151 && powi_cost (n: n / 3) <= POWI_MAX_MULTS)
2152 {
2153 tree powi_x_ndiv3 = NULL_TREE;
2154
2155 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
2156 possible or profitable, give up. Skip the degenerate case when
2157 abs(n) < 3, where the result is always 1. */
2158 if (absu_hwi (x: n) >= 3)
2159 {
2160 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
2161 n: abs_hwi (x: n / 3));
2162 if (!powi_x_ndiv3)
2163 return NULL_TREE;
2164 }
2165
2166 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
2167 as that creates an unnecessary variable. Instead, just produce
2168 either cbrt(x) or cbrt(x) * cbrt(x). */
2169 cbrt_x = build_and_insert_call (gsi, loc, fn: cbrtfn, arg: arg0);
2170
2171 if (absu_hwi (x: n) % 3 == 1)
2172 powi_cbrt_x = cbrt_x;
2173 else
2174 powi_cbrt_x = build_and_insert_binop (gsi, loc, name: "powroot", code: MULT_EXPR,
2175 arg0: cbrt_x, arg1: cbrt_x);
2176
2177 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
2178 if (absu_hwi (x: n) < 3)
2179 result = powi_cbrt_x;
2180 else
2181 result = build_and_insert_binop (gsi, loc, name: "powroot", code: MULT_EXPR,
2182 arg0: powi_x_ndiv3, arg1: powi_cbrt_x);
2183
2184 /* If n is negative, reciprocate the result. */
2185 if (n < 0)
2186 result = build_and_insert_binop (gsi, loc, name: "powroot", code: RDIV_EXPR,
2187 arg0: build_real (type, dconst1), arg1: result);
2188
2189 return result;
2190 }
2191
2192 /* No optimizations succeeded. */
2193 return NULL_TREE;
2194}
2195
2196/* ARG is the argument to a cabs builtin call in GSI with location info
2197 LOC. Create a sequence of statements prior to GSI that calculates
2198 sqrt(R*R + I*I), where R and I are the real and imaginary components
2199 of ARG, respectively. Return an expression holding the result. */
2200
2201static tree
2202gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
2203{
2204 tree real_part, imag_part, addend1, addend2, sum, result;
2205 tree type = TREE_TYPE (TREE_TYPE (arg));
2206 tree sqrtfn = mathfn_built_in (type, fn: BUILT_IN_SQRT);
2207 machine_mode mode = TYPE_MODE (type);
2208
2209 if (!flag_unsafe_math_optimizations
2210 || !optimize_bb_for_speed_p (gimple_bb (g: gsi_stmt (i: *gsi)))
2211 || !sqrtfn
2212 || optab_handler (op: sqrt_optab, mode) == CODE_FOR_nothing)
2213 return NULL_TREE;
2214
2215 real_part = build_and_insert_ref (gsi, loc, type, name: "cabs",
2216 code: REALPART_EXPR, arg0: arg);
2217 addend1 = build_and_insert_binop (gsi, loc, name: "cabs", code: MULT_EXPR,
2218 arg0: real_part, arg1: real_part);
2219 imag_part = build_and_insert_ref (gsi, loc, type, name: "cabs",
2220 code: IMAGPART_EXPR, arg0: arg);
2221 addend2 = build_and_insert_binop (gsi, loc, name: "cabs", code: MULT_EXPR,
2222 arg0: imag_part, arg1: imag_part);
2223 sum = build_and_insert_binop (gsi, loc, name: "cabs", code: PLUS_EXPR, arg0: addend1, arg1: addend2);
2224 result = build_and_insert_call (gsi, loc, fn: sqrtfn, arg: sum);
2225
2226 return result;
2227}
2228
2229/* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
2230 on the SSA_NAME argument of each of them. */
2231
2232namespace {
2233
2234const pass_data pass_data_cse_sincos =
2235{
2236 .type: GIMPLE_PASS, /* type */
2237 .name: "sincos", /* name */
2238 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
2239 .tv_id: TV_TREE_SINCOS, /* tv_id */
2240 PROP_ssa, /* properties_required */
2241 .properties_provided: 0, /* properties_provided */
2242 .properties_destroyed: 0, /* properties_destroyed */
2243 .todo_flags_start: 0, /* todo_flags_start */
2244 TODO_update_ssa, /* todo_flags_finish */
2245};
2246
2247class pass_cse_sincos : public gimple_opt_pass
2248{
2249public:
2250 pass_cse_sincos (gcc::context *ctxt)
2251 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
2252 {}
2253
2254 /* opt_pass methods: */
2255 bool gate (function *) final override
2256 {
2257 return optimize;
2258 }
2259
2260 unsigned int execute (function *) final override;
2261
2262}; // class pass_cse_sincos
2263
2264unsigned int
2265pass_cse_sincos::execute (function *fun)
2266{
2267 basic_block bb;
2268 bool cfg_changed = false;
2269
2270 calculate_dominance_info (CDI_DOMINATORS);
2271 memset (s: &sincos_stats, c: 0, n: sizeof (sincos_stats));
2272
2273 FOR_EACH_BB_FN (bb, fun)
2274 {
2275 gimple_stmt_iterator gsi;
2276
2277 for (gsi = gsi_after_labels (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
2278 {
2279 gimple *stmt = gsi_stmt (i: gsi);
2280
2281 if (is_gimple_call (gs: stmt)
2282 && gimple_call_lhs (gs: stmt))
2283 {
2284 tree arg;
2285 switch (gimple_call_combined_fn (stmt))
2286 {
2287 CASE_CFN_COS:
2288 CASE_CFN_SIN:
2289 CASE_CFN_CEXPI:
2290 arg = gimple_call_arg (gs: stmt, index: 0);
2291 /* Make sure we have either sincos or cexp. */
2292 if (!targetm.libc_has_function (function_c99_math_complex,
2293 TREE_TYPE (arg))
2294 && !targetm.libc_has_function (function_sincos,
2295 TREE_TYPE (arg)))
2296 break;
2297
2298 if (TREE_CODE (arg) == SSA_NAME)
2299 cfg_changed |= execute_cse_sincos_1 (name: arg);
2300 break;
2301 default:
2302 break;
2303 }
2304 }
2305 }
2306 }
2307
2308 statistics_counter_event (fun, "sincos statements inserted",
2309 sincos_stats.inserted);
2310 statistics_counter_event (fun, "conv statements removed",
2311 sincos_stats.conv_removed);
2312
2313 return cfg_changed ? TODO_cleanup_cfg : 0;
2314}
2315
2316} // anon namespace
2317
2318gimple_opt_pass *
2319make_pass_cse_sincos (gcc::context *ctxt)
2320{
2321 return new pass_cse_sincos (ctxt);
2322}
2323
2324/* Expand powi(x,n) into an optimal number of multiplies, when n is a constant.
2325 Also expand CABS. */
2326namespace {
2327
2328const pass_data pass_data_expand_powcabs =
2329{
2330 .type: GIMPLE_PASS, /* type */
2331 .name: "powcabs", /* name */
2332 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
2333 .tv_id: TV_TREE_POWCABS, /* tv_id */
2334 PROP_ssa, /* properties_required */
2335 PROP_gimple_opt_math, /* properties_provided */
2336 .properties_destroyed: 0, /* properties_destroyed */
2337 .todo_flags_start: 0, /* todo_flags_start */
2338 TODO_update_ssa, /* todo_flags_finish */
2339};
2340
2341class pass_expand_powcabs : public gimple_opt_pass
2342{
2343public:
2344 pass_expand_powcabs (gcc::context *ctxt)
2345 : gimple_opt_pass (pass_data_expand_powcabs, ctxt)
2346 {}
2347
2348 /* opt_pass methods: */
2349 bool gate (function *) final override
2350 {
2351 return optimize;
2352 }
2353
2354 unsigned int execute (function *) final override;
2355
2356}; // class pass_expand_powcabs
2357
2358unsigned int
2359pass_expand_powcabs::execute (function *fun)
2360{
2361 basic_block bb;
2362 bool cfg_changed = false;
2363
2364 calculate_dominance_info (CDI_DOMINATORS);
2365
2366 FOR_EACH_BB_FN (bb, fun)
2367 {
2368 gimple_stmt_iterator gsi;
2369 bool cleanup_eh = false;
2370
2371 for (gsi = gsi_after_labels (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
2372 {
2373 gimple *stmt = gsi_stmt (i: gsi);
2374
2375 /* Only the last stmt in a bb could throw, no need to call
2376 gimple_purge_dead_eh_edges if we change something in the middle
2377 of a basic block. */
2378 cleanup_eh = false;
2379
2380 if (is_gimple_call (gs: stmt)
2381 && gimple_call_lhs (gs: stmt))
2382 {
2383 tree arg0, arg1, result;
2384 HOST_WIDE_INT n;
2385 location_t loc;
2386
2387 switch (gimple_call_combined_fn (stmt))
2388 {
2389 CASE_CFN_POW:
2390 arg0 = gimple_call_arg (gs: stmt, index: 0);
2391 arg1 = gimple_call_arg (gs: stmt, index: 1);
2392
2393 loc = gimple_location (g: stmt);
2394 result = gimple_expand_builtin_pow (gsi: &gsi, loc, arg0, arg1);
2395
2396 if (result)
2397 {
2398 tree lhs = gimple_get_lhs (stmt);
2399 gassign *new_stmt = gimple_build_assign (lhs, result);
2400 gimple_set_location (g: new_stmt, location: loc);
2401 unlink_stmt_vdef (stmt);
2402 gsi_replace (&gsi, new_stmt, true);
2403 cleanup_eh = true;
2404 if (gimple_vdef (g: stmt))
2405 release_ssa_name (name: gimple_vdef (g: stmt));
2406 }
2407 break;
2408
2409 CASE_CFN_POWI:
2410 arg0 = gimple_call_arg (gs: stmt, index: 0);
2411 arg1 = gimple_call_arg (gs: stmt, index: 1);
2412 loc = gimple_location (g: stmt);
2413
2414 if (real_minus_onep (arg0))
2415 {
2416 tree t0, t1, cond, one, minus_one;
2417 gassign *stmt;
2418
2419 t0 = TREE_TYPE (arg0);
2420 t1 = TREE_TYPE (arg1);
2421 one = build_real (t0, dconst1);
2422 minus_one = build_real (t0, dconstm1);
2423
2424 cond = make_temp_ssa_name (type: t1, NULL, name: "powi_cond");
2425 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
2426 arg1, build_int_cst (t1, 1));
2427 gimple_set_location (g: stmt, location: loc);
2428 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
2429
2430 result = make_temp_ssa_name (type: t0, NULL, name: "powi");
2431 stmt = gimple_build_assign (result, COND_EXPR, cond,
2432 minus_one, one);
2433 gimple_set_location (g: stmt, location: loc);
2434 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
2435 }
2436 else
2437 {
2438 if (!tree_fits_shwi_p (arg1))
2439 break;
2440
2441 n = tree_to_shwi (arg1);
2442 result = gimple_expand_builtin_powi (gsi: &gsi, loc, arg0, n);
2443 }
2444
2445 if (result)
2446 {
2447 tree lhs = gimple_get_lhs (stmt);
2448 gassign *new_stmt = gimple_build_assign (lhs, result);
2449 gimple_set_location (g: new_stmt, location: loc);
2450 unlink_stmt_vdef (stmt);
2451 gsi_replace (&gsi, new_stmt, true);
2452 cleanup_eh = true;
2453 if (gimple_vdef (g: stmt))
2454 release_ssa_name (name: gimple_vdef (g: stmt));
2455 }
2456 break;
2457
2458 CASE_CFN_CABS:
2459 arg0 = gimple_call_arg (gs: stmt, index: 0);
2460 loc = gimple_location (g: stmt);
2461 result = gimple_expand_builtin_cabs (gsi: &gsi, loc, arg: arg0);
2462
2463 if (result)
2464 {
2465 tree lhs = gimple_get_lhs (stmt);
2466 gassign *new_stmt = gimple_build_assign (lhs, result);
2467 gimple_set_location (g: new_stmt, location: loc);
2468 unlink_stmt_vdef (stmt);
2469 gsi_replace (&gsi, new_stmt, true);
2470 cleanup_eh = true;
2471 if (gimple_vdef (g: stmt))
2472 release_ssa_name (name: gimple_vdef (g: stmt));
2473 }
2474 break;
2475
2476 default:;
2477 }
2478 }
2479 }
2480 if (cleanup_eh)
2481 cfg_changed |= gimple_purge_dead_eh_edges (bb);
2482 }
2483
2484 return cfg_changed ? TODO_cleanup_cfg : 0;
2485}
2486
2487} // anon namespace
2488
2489gimple_opt_pass *
2490make_pass_expand_powcabs (gcc::context *ctxt)
2491{
2492 return new pass_expand_powcabs (ctxt);
2493}
2494
2495/* Return true if stmt is a type conversion operation that can be stripped
2496 when used in a widening multiply operation. */
2497static bool
2498widening_mult_conversion_strippable_p (tree result_type, gimple *stmt)
2499{
2500 enum tree_code rhs_code = gimple_assign_rhs_code (gs: stmt);
2501
2502 if (TREE_CODE (result_type) == INTEGER_TYPE)
2503 {
2504 tree op_type;
2505 tree inner_op_type;
2506
2507 if (!CONVERT_EXPR_CODE_P (rhs_code))
2508 return false;
2509
2510 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2511
2512 /* If the type of OP has the same precision as the result, then
2513 we can strip this conversion. The multiply operation will be
2514 selected to create the correct extension as a by-product. */
2515 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2516 return true;
2517
2518 /* We can also strip a conversion if it preserves the signed-ness of
2519 the operation and doesn't narrow the range. */
2520 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2521
2522 /* If the inner-most type is unsigned, then we can strip any
2523 intermediate widening operation. If it's signed, then the
2524 intermediate widening operation must also be signed. */
2525 if ((TYPE_UNSIGNED (inner_op_type)
2526 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2527 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2528 return true;
2529
2530 return false;
2531 }
2532
2533 return rhs_code == FIXED_CONVERT_EXPR;
2534}
2535
2536/* Return true if RHS is a suitable operand for a widening multiplication,
2537 assuming a target type of TYPE.
2538 There are two cases:
2539
2540 - RHS makes some value at least twice as wide. Store that value
2541 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2542
2543 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2544 but leave *TYPE_OUT untouched. */
2545
2546static bool
2547is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2548 tree *new_rhs_out)
2549{
2550 gimple *stmt;
2551 tree type1, rhs1;
2552
2553 if (TREE_CODE (rhs) == SSA_NAME)
2554 {
2555 stmt = SSA_NAME_DEF_STMT (rhs);
2556 if (is_gimple_assign (gs: stmt))
2557 {
2558 if (! widening_mult_conversion_strippable_p (result_type: type, stmt))
2559 rhs1 = rhs;
2560 else
2561 {
2562 rhs1 = gimple_assign_rhs1 (gs: stmt);
2563
2564 if (TREE_CODE (rhs1) == INTEGER_CST)
2565 {
2566 *new_rhs_out = rhs1;
2567 *type_out = NULL;
2568 return true;
2569 }
2570 }
2571 }
2572 else
2573 rhs1 = rhs;
2574
2575 type1 = TREE_TYPE (rhs1);
2576
2577 if (TREE_CODE (type1) != TREE_CODE (type)
2578 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2579 return false;
2580
2581 *new_rhs_out = rhs1;
2582 *type_out = type1;
2583 return true;
2584 }
2585
2586 if (TREE_CODE (rhs) == INTEGER_CST)
2587 {
2588 *new_rhs_out = rhs;
2589 *type_out = NULL;
2590 return true;
2591 }
2592
2593 return false;
2594}
2595
2596/* Return true if STMT performs a widening multiplication, assuming the
2597 output type is TYPE. If so, store the unwidened types of the operands
2598 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2599 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2600 and *TYPE2_OUT would give the operands of the multiplication. */
2601
2602static bool
2603is_widening_mult_p (gimple *stmt,
2604 tree *type1_out, tree *rhs1_out,
2605 tree *type2_out, tree *rhs2_out)
2606{
2607 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2608
2609 if (TREE_CODE (type) == INTEGER_TYPE)
2610 {
2611 if (TYPE_OVERFLOW_TRAPS (type))
2612 return false;
2613 }
2614 else if (TREE_CODE (type) != FIXED_POINT_TYPE)
2615 return false;
2616
2617 if (!is_widening_mult_rhs_p (type, rhs: gimple_assign_rhs1 (gs: stmt), type_out: type1_out,
2618 new_rhs_out: rhs1_out))
2619 return false;
2620
2621 if (!is_widening_mult_rhs_p (type, rhs: gimple_assign_rhs2 (gs: stmt), type_out: type2_out,
2622 new_rhs_out: rhs2_out))
2623 return false;
2624
2625 if (*type1_out == NULL)
2626 {
2627 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2628 return false;
2629 *type1_out = *type2_out;
2630 }
2631
2632 if (*type2_out == NULL)
2633 {
2634 if (!int_fits_type_p (*rhs2_out, *type1_out))
2635 return false;
2636 *type2_out = *type1_out;
2637 }
2638
2639 /* Ensure that the larger of the two operands comes first. */
2640 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2641 {
2642 std::swap (a&: *type1_out, b&: *type2_out);
2643 std::swap (a&: *rhs1_out, b&: *rhs2_out);
2644 }
2645
2646 return true;
2647}
2648
2649/* Check to see if the CALL statement is an invocation of copysign
2650 with 1. being the first argument. */
2651static bool
2652is_copysign_call_with_1 (gimple *call)
2653{
2654 gcall *c = dyn_cast <gcall *> (p: call);
2655 if (! c)
2656 return false;
2657
2658 enum combined_fn code = gimple_call_combined_fn (c);
2659
2660 if (code == CFN_LAST)
2661 return false;
2662
2663 if (builtin_fn_p (code))
2664 {
2665 switch (as_builtin_fn (code))
2666 {
2667 CASE_FLT_FN (BUILT_IN_COPYSIGN):
2668 CASE_FLT_FN_FLOATN_NX (BUILT_IN_COPYSIGN):
2669 return real_onep (gimple_call_arg (gs: c, index: 0));
2670 default:
2671 return false;
2672 }
2673 }
2674
2675 if (internal_fn_p (code))
2676 {
2677 switch (as_internal_fn (code))
2678 {
2679 case IFN_COPYSIGN:
2680 return real_onep (gimple_call_arg (gs: c, index: 0));
2681 default:
2682 return false;
2683 }
2684 }
2685
2686 return false;
2687}
2688
2689/* Try to expand the pattern x * copysign (1, y) into xorsign (x, y).
2690 This only happens when the xorsign optab is defined, if the
2691 pattern is not a xorsign pattern or if expansion fails FALSE is
2692 returned, otherwise TRUE is returned. */
2693static bool
2694convert_expand_mult_copysign (gimple *stmt, gimple_stmt_iterator *gsi)
2695{
2696 tree treeop0, treeop1, lhs, type;
2697 location_t loc = gimple_location (g: stmt);
2698 lhs = gimple_assign_lhs (gs: stmt);
2699 treeop0 = gimple_assign_rhs1 (gs: stmt);
2700 treeop1 = gimple_assign_rhs2 (gs: stmt);
2701 type = TREE_TYPE (lhs);
2702 machine_mode mode = TYPE_MODE (type);
2703
2704 if (HONOR_SNANS (type))
2705 return false;
2706
2707 if (TREE_CODE (treeop0) == SSA_NAME && TREE_CODE (treeop1) == SSA_NAME)
2708 {
2709 gimple *call0 = SSA_NAME_DEF_STMT (treeop0);
2710 if (!has_single_use (var: treeop0) || !is_copysign_call_with_1 (call: call0))
2711 {
2712 call0 = SSA_NAME_DEF_STMT (treeop1);
2713 if (!has_single_use (var: treeop1) || !is_copysign_call_with_1 (call: call0))
2714 return false;
2715
2716 treeop1 = treeop0;
2717 }
2718 if (optab_handler (op: xorsign_optab, mode) == CODE_FOR_nothing)
2719 return false;
2720
2721 gcall *c = as_a<gcall*> (p: call0);
2722 treeop0 = gimple_call_arg (gs: c, index: 1);
2723
2724 gcall *call_stmt
2725 = gimple_build_call_internal (IFN_XORSIGN, 2, treeop1, treeop0);
2726 gimple_set_lhs (call_stmt, lhs);
2727 gimple_set_location (g: call_stmt, location: loc);
2728 gsi_replace (gsi, call_stmt, true);
2729 return true;
2730 }
2731
2732 return false;
2733}
2734
2735/* Process a single gimple statement STMT, which has a MULT_EXPR as
2736 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2737 value is true iff we converted the statement. */
2738
2739static bool
2740convert_mult_to_widen (gimple *stmt, gimple_stmt_iterator *gsi)
2741{
2742 tree lhs, rhs1, rhs2, type, type1, type2;
2743 enum insn_code handler;
2744 scalar_int_mode to_mode, from_mode, actual_mode;
2745 optab op;
2746 int actual_precision;
2747 location_t loc = gimple_location (g: stmt);
2748 bool from_unsigned1, from_unsigned2;
2749
2750 lhs = gimple_assign_lhs (gs: stmt);
2751 type = TREE_TYPE (lhs);
2752 if (TREE_CODE (type) != INTEGER_TYPE)
2753 return false;
2754
2755 if (!is_widening_mult_p (stmt, type1_out: &type1, rhs1_out: &rhs1, type2_out: &type2, rhs2_out: &rhs2))
2756 return false;
2757
2758 /* if any one of rhs1 and rhs2 is subject to abnormal coalescing,
2759 avoid the tranform. */
2760 if ((TREE_CODE (rhs1) == SSA_NAME
2761 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs1))
2762 || (TREE_CODE (rhs2) == SSA_NAME
2763 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs2)))
2764 return false;
2765
2766 to_mode = SCALAR_INT_TYPE_MODE (type);
2767 from_mode = SCALAR_INT_TYPE_MODE (type1);
2768 if (to_mode == from_mode)
2769 return false;
2770
2771 from_unsigned1 = TYPE_UNSIGNED (type1);
2772 from_unsigned2 = TYPE_UNSIGNED (type2);
2773
2774 if (from_unsigned1 && from_unsigned2)
2775 op = umul_widen_optab;
2776 else if (!from_unsigned1 && !from_unsigned2)
2777 op = smul_widen_optab;
2778 else
2779 op = usmul_widen_optab;
2780
2781 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2782 found_mode: &actual_mode);
2783
2784 if (handler == CODE_FOR_nothing)
2785 {
2786 if (op != smul_widen_optab)
2787 {
2788 /* We can use a signed multiply with unsigned types as long as
2789 there is a wider mode to use, or it is the smaller of the two
2790 types that is unsigned. Note that type1 >= type2, always. */
2791 if ((TYPE_UNSIGNED (type1)
2792 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (mode: from_mode))
2793 || (TYPE_UNSIGNED (type2)
2794 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (mode: from_mode)))
2795 {
2796 if (!GET_MODE_WIDER_MODE (m: from_mode).exists (mode: &from_mode)
2797 || GET_MODE_SIZE (mode: to_mode) <= GET_MODE_SIZE (mode: from_mode))
2798 return false;
2799 }
2800
2801 op = smul_widen_optab;
2802 handler = find_widening_optab_handler_and_mode (op, to_mode,
2803 from_mode,
2804 found_mode: &actual_mode);
2805
2806 if (handler == CODE_FOR_nothing)
2807 return false;
2808
2809 from_unsigned1 = from_unsigned2 = false;
2810 }
2811 else
2812 {
2813 /* Expand can synthesize smul_widen_optab if the target
2814 supports umul_widen_optab. */
2815 op = umul_widen_optab;
2816 handler = find_widening_optab_handler_and_mode (op, to_mode,
2817 from_mode,
2818 found_mode: &actual_mode);
2819 if (handler == CODE_FOR_nothing)
2820 return false;
2821 }
2822 }
2823
2824 /* Ensure that the inputs to the handler are in the correct precison
2825 for the opcode. This will be the full mode size. */
2826 actual_precision = GET_MODE_PRECISION (mode: actual_mode);
2827 if (2 * actual_precision > TYPE_PRECISION (type))
2828 return false;
2829 if (actual_precision != TYPE_PRECISION (type1)
2830 || from_unsigned1 != TYPE_UNSIGNED (type1))
2831 rhs1 = build_and_insert_cast (gsi, loc,
2832 type: build_nonstandard_integer_type
2833 (actual_precision, from_unsigned1), val: rhs1);
2834 if (actual_precision != TYPE_PRECISION (type2)
2835 || from_unsigned2 != TYPE_UNSIGNED (type2))
2836 rhs2 = build_and_insert_cast (gsi, loc,
2837 type: build_nonstandard_integer_type
2838 (actual_precision, from_unsigned2), val: rhs2);
2839
2840 /* Handle constants. */
2841 if (TREE_CODE (rhs1) == INTEGER_CST)
2842 rhs1 = fold_convert (type1, rhs1);
2843 if (TREE_CODE (rhs2) == INTEGER_CST)
2844 rhs2 = fold_convert (type2, rhs2);
2845
2846 gimple_assign_set_rhs1 (gs: stmt, rhs: rhs1);
2847 gimple_assign_set_rhs2 (gs: stmt, rhs: rhs2);
2848 gimple_assign_set_rhs_code (s: stmt, code: WIDEN_MULT_EXPR);
2849 update_stmt (s: stmt);
2850 widen_mul_stats.widen_mults_inserted++;
2851 return true;
2852}
2853
2854/* Process a single gimple statement STMT, which is found at the
2855 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2856 rhs (given by CODE), and try to convert it into a
2857 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2858 is true iff we converted the statement. */
2859
2860static bool
2861convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple *stmt,
2862 enum tree_code code)
2863{
2864 gimple *rhs1_stmt = NULL, *rhs2_stmt = NULL;
2865 gimple *conv1_stmt = NULL, *conv2_stmt = NULL, *conv_stmt;
2866 tree type, type1, type2, optype;
2867 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2868 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2869 optab this_optab;
2870 enum tree_code wmult_code;
2871 enum insn_code handler;
2872 scalar_mode to_mode, from_mode, actual_mode;
2873 location_t loc = gimple_location (g: stmt);
2874 int actual_precision;
2875 bool from_unsigned1, from_unsigned2;
2876
2877 lhs = gimple_assign_lhs (gs: stmt);
2878 type = TREE_TYPE (lhs);
2879 if (TREE_CODE (type) != INTEGER_TYPE
2880 && TREE_CODE (type) != FIXED_POINT_TYPE)
2881 return false;
2882
2883 if (code == MINUS_EXPR)
2884 wmult_code = WIDEN_MULT_MINUS_EXPR;
2885 else
2886 wmult_code = WIDEN_MULT_PLUS_EXPR;
2887
2888 rhs1 = gimple_assign_rhs1 (gs: stmt);
2889 rhs2 = gimple_assign_rhs2 (gs: stmt);
2890
2891 if (TREE_CODE (rhs1) == SSA_NAME)
2892 {
2893 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2894 if (is_gimple_assign (gs: rhs1_stmt))
2895 rhs1_code = gimple_assign_rhs_code (gs: rhs1_stmt);
2896 }
2897
2898 if (TREE_CODE (rhs2) == SSA_NAME)
2899 {
2900 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2901 if (is_gimple_assign (gs: rhs2_stmt))
2902 rhs2_code = gimple_assign_rhs_code (gs: rhs2_stmt);
2903 }
2904
2905 /* Allow for one conversion statement between the multiply
2906 and addition/subtraction statement. If there are more than
2907 one conversions then we assume they would invalidate this
2908 transformation. If that's not the case then they should have
2909 been folded before now. */
2910 if (CONVERT_EXPR_CODE_P (rhs1_code))
2911 {
2912 conv1_stmt = rhs1_stmt;
2913 rhs1 = gimple_assign_rhs1 (gs: rhs1_stmt);
2914 if (TREE_CODE (rhs1) == SSA_NAME)
2915 {
2916 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2917 if (is_gimple_assign (gs: rhs1_stmt))
2918 rhs1_code = gimple_assign_rhs_code (gs: rhs1_stmt);
2919 }
2920 else
2921 return false;
2922 }
2923 if (CONVERT_EXPR_CODE_P (rhs2_code))
2924 {
2925 conv2_stmt = rhs2_stmt;
2926 rhs2 = gimple_assign_rhs1 (gs: rhs2_stmt);
2927 if (TREE_CODE (rhs2) == SSA_NAME)
2928 {
2929 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2930 if (is_gimple_assign (gs: rhs2_stmt))
2931 rhs2_code = gimple_assign_rhs_code (gs: rhs2_stmt);
2932 }
2933 else
2934 return false;
2935 }
2936
2937 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2938 is_widening_mult_p, but we still need the rhs returns.
2939
2940 It might also appear that it would be sufficient to use the existing
2941 operands of the widening multiply, but that would limit the choice of
2942 multiply-and-accumulate instructions.
2943
2944 If the widened-multiplication result has more than one uses, it is
2945 probably wiser not to do the conversion. Also restrict this operation
2946 to single basic block to avoid moving the multiply to a different block
2947 with a higher execution frequency. */
2948 if (code == PLUS_EXPR
2949 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2950 {
2951 if (!has_single_use (var: rhs1)
2952 || gimple_bb (g: rhs1_stmt) != gimple_bb (g: stmt)
2953 || !is_widening_mult_p (stmt: rhs1_stmt, type1_out: &type1, rhs1_out: &mult_rhs1,
2954 type2_out: &type2, rhs2_out: &mult_rhs2))
2955 return false;
2956 add_rhs = rhs2;
2957 conv_stmt = conv1_stmt;
2958 }
2959 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2960 {
2961 if (!has_single_use (var: rhs2)
2962 || gimple_bb (g: rhs2_stmt) != gimple_bb (g: stmt)
2963 || !is_widening_mult_p (stmt: rhs2_stmt, type1_out: &type1, rhs1_out: &mult_rhs1,
2964 type2_out: &type2, rhs2_out: &mult_rhs2))
2965 return false;
2966 add_rhs = rhs1;
2967 conv_stmt = conv2_stmt;
2968 }
2969 else
2970 return false;
2971
2972 to_mode = SCALAR_TYPE_MODE (type);
2973 from_mode = SCALAR_TYPE_MODE (type1);
2974 if (to_mode == from_mode)
2975 return false;
2976
2977 from_unsigned1 = TYPE_UNSIGNED (type1);
2978 from_unsigned2 = TYPE_UNSIGNED (type2);
2979 optype = type1;
2980
2981 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2982 if (from_unsigned1 != from_unsigned2)
2983 {
2984 if (!INTEGRAL_TYPE_P (type))
2985 return false;
2986 /* We can use a signed multiply with unsigned types as long as
2987 there is a wider mode to use, or it is the smaller of the two
2988 types that is unsigned. Note that type1 >= type2, always. */
2989 if ((from_unsigned1
2990 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (mode: from_mode))
2991 || (from_unsigned2
2992 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (mode: from_mode)))
2993 {
2994 if (!GET_MODE_WIDER_MODE (m: from_mode).exists (mode: &from_mode)
2995 || GET_MODE_SIZE (mode: from_mode) >= GET_MODE_SIZE (mode: to_mode))
2996 return false;
2997 }
2998
2999 from_unsigned1 = from_unsigned2 = false;
3000 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (mode: from_mode),
3001 false);
3002 }
3003
3004 /* If there was a conversion between the multiply and addition
3005 then we need to make sure it fits a multiply-and-accumulate.
3006 The should be a single mode change which does not change the
3007 value. */
3008 if (conv_stmt)
3009 {
3010 /* We use the original, unmodified data types for this. */
3011 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
3012 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
3013 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
3014 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
3015
3016 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
3017 {
3018 /* Conversion is a truncate. */
3019 if (TYPE_PRECISION (to_type) < data_size)
3020 return false;
3021 }
3022 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
3023 {
3024 /* Conversion is an extend. Check it's the right sort. */
3025 if (TYPE_UNSIGNED (from_type) != is_unsigned
3026 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
3027 return false;
3028 }
3029 /* else convert is a no-op for our purposes. */
3030 }
3031
3032 /* Verify that the machine can perform a widening multiply
3033 accumulate in this mode/signedness combination, otherwise
3034 this transformation is likely to pessimize code. */
3035 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
3036 handler = find_widening_optab_handler_and_mode (op: this_optab, to_mode,
3037 from_mode, found_mode: &actual_mode);
3038
3039 if (handler == CODE_FOR_nothing)
3040 return false;
3041
3042 /* Ensure that the inputs to the handler are in the correct precison
3043 for the opcode. This will be the full mode size. */
3044 actual_precision = GET_MODE_PRECISION (mode: actual_mode);
3045 if (actual_precision != TYPE_PRECISION (type1)
3046 || from_unsigned1 != TYPE_UNSIGNED (type1))
3047 mult_rhs1 = build_and_insert_cast (gsi, loc,
3048 type: build_nonstandard_integer_type
3049 (actual_precision, from_unsigned1),
3050 val: mult_rhs1);
3051 if (actual_precision != TYPE_PRECISION (type2)
3052 || from_unsigned2 != TYPE_UNSIGNED (type2))
3053 mult_rhs2 = build_and_insert_cast (gsi, loc,
3054 type: build_nonstandard_integer_type
3055 (actual_precision, from_unsigned2),
3056 val: mult_rhs2);
3057
3058 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
3059 add_rhs = build_and_insert_cast (gsi, loc, type, val: add_rhs);
3060
3061 /* Handle constants. */
3062 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
3063 mult_rhs1 = fold_convert (type1, mult_rhs1);
3064 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
3065 mult_rhs2 = fold_convert (type2, mult_rhs2);
3066
3067 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
3068 add_rhs);
3069 update_stmt (s: gsi_stmt (i: *gsi));
3070 widen_mul_stats.maccs_inserted++;
3071 return true;
3072}
3073
3074/* Given a result MUL_RESULT which is a result of a multiplication of OP1 and
3075 OP2 and which we know is used in statements that can be, together with the
3076 multiplication, converted to FMAs, perform the transformation. */
3077
3078static void
3079convert_mult_to_fma_1 (tree mul_result, tree op1, tree op2)
3080{
3081 tree type = TREE_TYPE (mul_result);
3082 gimple *use_stmt;
3083 imm_use_iterator imm_iter;
3084 gcall *fma_stmt;
3085
3086 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3087 {
3088 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3089 tree addop, mulop1 = op1, result = mul_result;
3090 bool negate_p = false;
3091 gimple_seq seq = NULL;
3092
3093 if (is_gimple_debug (gs: use_stmt))
3094 continue;
3095
3096 if (is_gimple_assign (gs: use_stmt)
3097 && gimple_assign_rhs_code (gs: use_stmt) == NEGATE_EXPR)
3098 {
3099 result = gimple_assign_lhs (gs: use_stmt);
3100 use_operand_p use_p;
3101 gimple *neguse_stmt;
3102 single_imm_use (var: gimple_assign_lhs (gs: use_stmt), use_p: &use_p, stmt: &neguse_stmt);
3103 gsi_remove (&gsi, true);
3104 release_defs (use_stmt);
3105
3106 use_stmt = neguse_stmt;
3107 gsi = gsi_for_stmt (use_stmt);
3108 negate_p = true;
3109 }
3110
3111 tree cond, else_value, ops[3], len, bias;
3112 tree_code code;
3113 if (!can_interpret_as_conditional_op_p (use_stmt, &cond, &code,
3114 ops, &else_value,
3115 &len, &bias))
3116 gcc_unreachable ();
3117 addop = ops[0] == result ? ops[1] : ops[0];
3118
3119 if (code == MINUS_EXPR)
3120 {
3121 if (ops[0] == result)
3122 /* a * b - c -> a * b + (-c) */
3123 addop = gimple_build (seq: &seq, code: NEGATE_EXPR, type, ops: addop);
3124 else
3125 /* a - b * c -> (-b) * c + a */
3126 negate_p = !negate_p;
3127 }
3128
3129 if (negate_p)
3130 mulop1 = gimple_build (seq: &seq, code: NEGATE_EXPR, type, ops: mulop1);
3131
3132 if (seq)
3133 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
3134
3135 if (len)
3136 fma_stmt
3137 = gimple_build_call_internal (IFN_COND_LEN_FMA, 7, cond, mulop1, op2,
3138 addop, else_value, len, bias);
3139 else if (cond)
3140 fma_stmt = gimple_build_call_internal (IFN_COND_FMA, 5, cond, mulop1,
3141 op2, addop, else_value);
3142 else
3143 fma_stmt = gimple_build_call_internal (IFN_FMA, 3, mulop1, op2, addop);
3144 gimple_set_lhs (fma_stmt, gimple_get_lhs (use_stmt));
3145 gimple_call_set_nothrow (s: fma_stmt, nothrow_p: !stmt_can_throw_internal (cfun,
3146 use_stmt));
3147 gsi_replace (&gsi, fma_stmt, true);
3148 /* Follow all SSA edges so that we generate FMS, FNMA and FNMS
3149 regardless of where the negation occurs. */
3150 gimple *orig_stmt = gsi_stmt (i: gsi);
3151 if (fold_stmt (&gsi, follow_all_ssa_edges))
3152 {
3153 if (maybe_clean_or_replace_eh_stmt (orig_stmt, gsi_stmt (i: gsi)))
3154 gcc_unreachable ();
3155 update_stmt (s: gsi_stmt (i: gsi));
3156 }
3157
3158 if (dump_file && (dump_flags & TDF_DETAILS))
3159 {
3160 fprintf (stream: dump_file, format: "Generated FMA ");
3161 print_gimple_stmt (dump_file, gsi_stmt (i: gsi), 0, TDF_NONE);
3162 fprintf (stream: dump_file, format: "\n");
3163 }
3164
3165 /* If the FMA result is negated in a single use, fold the negation
3166 too. */
3167 orig_stmt = gsi_stmt (i: gsi);
3168 use_operand_p use_p;
3169 gimple *neg_stmt;
3170 if (is_gimple_call (gs: orig_stmt)
3171 && gimple_call_internal_p (gs: orig_stmt)
3172 && gimple_call_lhs (gs: orig_stmt)
3173 && TREE_CODE (gimple_call_lhs (orig_stmt)) == SSA_NAME
3174 && single_imm_use (var: gimple_call_lhs (gs: orig_stmt), use_p: &use_p, stmt: &neg_stmt)
3175 && is_gimple_assign (gs: neg_stmt)
3176 && gimple_assign_rhs_code (gs: neg_stmt) == NEGATE_EXPR
3177 && !stmt_could_throw_p (cfun, neg_stmt))
3178 {
3179 gsi = gsi_for_stmt (neg_stmt);
3180 if (fold_stmt (&gsi, follow_all_ssa_edges))
3181 {
3182 if (maybe_clean_or_replace_eh_stmt (neg_stmt, gsi_stmt (i: gsi)))
3183 gcc_unreachable ();
3184 update_stmt (s: gsi_stmt (i: gsi));
3185 if (dump_file && (dump_flags & TDF_DETAILS))
3186 {
3187 fprintf (stream: dump_file, format: "Folded FMA negation ");
3188 print_gimple_stmt (dump_file, gsi_stmt (i: gsi), 0, TDF_NONE);
3189 fprintf (stream: dump_file, format: "\n");
3190 }
3191 }
3192 }
3193
3194 widen_mul_stats.fmas_inserted++;
3195 }
3196}
3197
3198/* Data necessary to perform the actual transformation from a multiplication
3199 and an addition to an FMA after decision is taken it should be done and to
3200 then delete the multiplication statement from the function IL. */
3201
3202struct fma_transformation_info
3203{
3204 gimple *mul_stmt;
3205 tree mul_result;
3206 tree op1;
3207 tree op2;
3208};
3209
3210/* Structure containing the current state of FMA deferring, i.e. whether we are
3211 deferring, whether to continue deferring, and all data necessary to come
3212 back and perform all deferred transformations. */
3213
3214class fma_deferring_state
3215{
3216public:
3217 /* Class constructor. Pass true as PERFORM_DEFERRING in order to actually
3218 do any deferring. */
3219
3220 fma_deferring_state (bool perform_deferring)
3221 : m_candidates (), m_mul_result_set (), m_initial_phi (NULL),
3222 m_last_result (NULL_TREE), m_deferring_p (perform_deferring) {}
3223
3224 /* List of FMA candidates for which we the transformation has been determined
3225 possible but we at this point in BB analysis we do not consider them
3226 beneficial. */
3227 auto_vec<fma_transformation_info, 8> m_candidates;
3228
3229 /* Set of results of multiplication that are part of an already deferred FMA
3230 candidates. */
3231 hash_set<tree> m_mul_result_set;
3232
3233 /* The PHI that supposedly feeds back result of a FMA to another over loop
3234 boundary. */
3235 gphi *m_initial_phi;
3236
3237 /* Result of the last produced FMA candidate or NULL if there has not been
3238 one. */
3239 tree m_last_result;
3240
3241 /* If true, deferring might still be profitable. If false, transform all
3242 candidates and no longer defer. */
3243 bool m_deferring_p;
3244};
3245
3246/* Transform all deferred FMA candidates and mark STATE as no longer
3247 deferring. */
3248
3249static void
3250cancel_fma_deferring (fma_deferring_state *state)
3251{
3252 if (!state->m_deferring_p)
3253 return;
3254
3255 for (unsigned i = 0; i < state->m_candidates.length (); i++)
3256 {
3257 if (dump_file && (dump_flags & TDF_DETAILS))
3258 fprintf (stream: dump_file, format: "Generating deferred FMA\n");
3259
3260 const fma_transformation_info &fti = state->m_candidates[i];
3261 convert_mult_to_fma_1 (mul_result: fti.mul_result, op1: fti.op1, op2: fti.op2);
3262
3263 gimple_stmt_iterator gsi = gsi_for_stmt (fti.mul_stmt);
3264 gsi_remove (&gsi, true);
3265 release_defs (fti.mul_stmt);
3266 }
3267 state->m_deferring_p = false;
3268}
3269
3270/* If OP is an SSA name defined by a PHI node, return the PHI statement.
3271 Otherwise return NULL. */
3272
3273static gphi *
3274result_of_phi (tree op)
3275{
3276 if (TREE_CODE (op) != SSA_NAME)
3277 return NULL;
3278
3279 return dyn_cast <gphi *> (SSA_NAME_DEF_STMT (op));
3280}
3281
3282/* After processing statements of a BB and recording STATE, return true if the
3283 initial phi is fed by the last FMA candidate result ore one such result from
3284 previously processed BBs marked in LAST_RESULT_SET. */
3285
3286static bool
3287last_fma_candidate_feeds_initial_phi (fma_deferring_state *state,
3288 hash_set<tree> *last_result_set)
3289{
3290 ssa_op_iter iter;
3291 use_operand_p use;
3292 FOR_EACH_PHI_ARG (use, state->m_initial_phi, iter, SSA_OP_USE)
3293 {
3294 tree t = USE_FROM_PTR (use);
3295 if (t == state->m_last_result
3296 || last_result_set->contains (k: t))
3297 return true;
3298 }
3299
3300 return false;
3301}
3302
3303/* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3304 with uses in additions and subtractions to form fused multiply-add
3305 operations. Returns true if successful and MUL_STMT should be removed.
3306 If MUL_COND is nonnull, the multiplication in MUL_STMT is conditional
3307 on MUL_COND, otherwise it is unconditional.
3308
3309 If STATE indicates that we are deferring FMA transformation, that means
3310 that we do not produce FMAs for basic blocks which look like:
3311
3312 <bb 6>
3313 # accumulator_111 = PHI <0.0(5), accumulator_66(6)>
3314 _65 = _14 * _16;
3315 accumulator_66 = _65 + accumulator_111;
3316
3317 or its unrolled version, i.e. with several FMA candidates that feed result
3318 of one into the addend of another. Instead, we add them to a list in STATE
3319 and if we later discover an FMA candidate that is not part of such a chain,
3320 we go back and perform all deferred past candidates. */
3321
3322static bool
3323convert_mult_to_fma (gimple *mul_stmt, tree op1, tree op2,
3324 fma_deferring_state *state, tree mul_cond = NULL_TREE,
3325 tree mul_len = NULL_TREE, tree mul_bias = NULL_TREE)
3326{
3327 tree mul_result = gimple_get_lhs (mul_stmt);
3328 /* If there isn't a LHS then this can't be an FMA. There can be no LHS
3329 if the statement was left just for the side-effects. */
3330 if (!mul_result)
3331 return false;
3332 tree type = TREE_TYPE (mul_result);
3333 gimple *use_stmt, *neguse_stmt;
3334 use_operand_p use_p;
3335 imm_use_iterator imm_iter;
3336
3337 if (FLOAT_TYPE_P (type)
3338 && flag_fp_contract_mode != FP_CONTRACT_FAST)
3339 return false;
3340
3341 /* We don't want to do bitfield reduction ops. */
3342 if (INTEGRAL_TYPE_P (type)
3343 && (!type_has_mode_precision_p (t: type) || TYPE_OVERFLOW_TRAPS (type)))
3344 return false;
3345
3346 /* If the target doesn't support it, don't generate it. We assume that
3347 if fma isn't available then fms, fnma or fnms are not either. */
3348 optimization_type opt_type = bb_optimization_type (gimple_bb (g: mul_stmt));
3349 if (!direct_internal_fn_supported_p (IFN_FMA, type, opt_type))
3350 return false;
3351
3352 /* If the multiplication has zero uses, it is kept around probably because
3353 of -fnon-call-exceptions. Don't optimize it away in that case,
3354 it is DCE job. */
3355 if (has_zero_uses (var: mul_result))
3356 return false;
3357
3358 bool check_defer
3359 = (state->m_deferring_p
3360 && maybe_le (a: tree_to_poly_int64 (TYPE_SIZE (type)),
3361 param_avoid_fma_max_bits));
3362 bool defer = check_defer;
3363 bool seen_negate_p = false;
3364
3365 /* There is no numerical difference between fused and unfused integer FMAs,
3366 and the assumption below that FMA is as cheap as addition is unlikely
3367 to be true, especially if the multiplication occurs multiple times on
3368 the same chain. E.g., for something like:
3369
3370 (((a * b) + c) >> 1) + (a * b)
3371
3372 we do not want to duplicate the a * b into two additions, not least
3373 because the result is not a natural FMA chain. */
3374 if (ANY_INTEGRAL_TYPE_P (type)
3375 && !has_single_use (var: mul_result))
3376 return false;
3377
3378 if (!dbg_cnt (index: form_fma))
3379 return false;
3380
3381 /* Make sure that the multiplication statement becomes dead after
3382 the transformation, thus that all uses are transformed to FMAs.
3383 This means we assume that an FMA operation has the same cost
3384 as an addition. */
3385 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3386 {
3387 tree result = mul_result;
3388 bool negate_p = false;
3389
3390 use_stmt = USE_STMT (use_p);
3391
3392 if (is_gimple_debug (gs: use_stmt))
3393 continue;
3394
3395 /* For now restrict this operations to single basic blocks. In theory
3396 we would want to support sinking the multiplication in
3397 m = a*b;
3398 if ()
3399 ma = m + c;
3400 else
3401 d = m;
3402 to form a fma in the then block and sink the multiplication to the
3403 else block. */
3404 if (gimple_bb (g: use_stmt) != gimple_bb (g: mul_stmt))
3405 return false;
3406
3407 /* A negate on the multiplication leads to FNMA. */
3408 if (is_gimple_assign (gs: use_stmt)
3409 && gimple_assign_rhs_code (gs: use_stmt) == NEGATE_EXPR)
3410 {
3411 ssa_op_iter iter;
3412 use_operand_p usep;
3413
3414 /* If (due to earlier missed optimizations) we have two
3415 negates of the same value, treat them as equivalent
3416 to a single negate with multiple uses. */
3417 if (seen_negate_p)
3418 return false;
3419
3420 result = gimple_assign_lhs (gs: use_stmt);
3421
3422 /* Make sure the negate statement becomes dead with this
3423 single transformation. */
3424 if (!single_imm_use (var: gimple_assign_lhs (gs: use_stmt),
3425 use_p: &use_p, stmt: &neguse_stmt))
3426 return false;
3427
3428 /* Make sure the multiplication isn't also used on that stmt. */
3429 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3430 if (USE_FROM_PTR (usep) == mul_result)
3431 return false;
3432
3433 /* Re-validate. */
3434 use_stmt = neguse_stmt;
3435 if (gimple_bb (g: use_stmt) != gimple_bb (g: mul_stmt))
3436 return false;
3437
3438 negate_p = seen_negate_p = true;
3439 }
3440
3441 tree cond, else_value, ops[3], len, bias;
3442 tree_code code;
3443 if (!can_interpret_as_conditional_op_p (use_stmt, &cond, &code, ops,
3444 &else_value, &len, &bias))
3445 return false;
3446
3447 switch (code)
3448 {
3449 case MINUS_EXPR:
3450 if (ops[1] == result)
3451 negate_p = !negate_p;
3452 break;
3453 case PLUS_EXPR:
3454 break;
3455 default:
3456 /* FMA can only be formed from PLUS and MINUS. */
3457 return false;
3458 }
3459
3460 if (len)
3461 {
3462 /* For COND_LEN_* operations, we may have dummpy mask which is
3463 the all true mask. Such TREE type may be mul_cond != cond
3464 but we still consider they are equal. */
3465 if (mul_cond && cond != mul_cond
3466 && !(integer_truep (mul_cond) && integer_truep (cond)))
3467 return false;
3468
3469 if (else_value == result)
3470 return false;
3471
3472 if (!direct_internal_fn_supported_p (IFN_COND_LEN_FMA, type,
3473 opt_type))
3474 return false;
3475
3476 if (mul_len)
3477 {
3478 poly_int64 mul_value, value;
3479 if (poly_int_tree_p (t: mul_len, value: &mul_value)
3480 && poly_int_tree_p (t: len, value: &value)
3481 && maybe_ne (a: mul_value, b: value))
3482 return false;
3483 else if (mul_len != len)
3484 return false;
3485
3486 if (wi::to_widest (t: mul_bias) != wi::to_widest (t: bias))
3487 return false;
3488 }
3489 }
3490 else
3491 {
3492 if (mul_cond && cond != mul_cond)
3493 return false;
3494
3495 if (cond)
3496 {
3497 if (cond == result || else_value == result)
3498 return false;
3499 if (!direct_internal_fn_supported_p (IFN_COND_FMA, type,
3500 opt_type))
3501 return false;
3502 }
3503 }
3504
3505 /* If the subtrahend (OPS[1]) is computed by a MULT_EXPR that
3506 we'll visit later, we might be able to get a more profitable
3507 match with fnma.
3508 OTOH, if we don't, a negate / fma pair has likely lower latency
3509 that a mult / subtract pair. */
3510 if (code == MINUS_EXPR
3511 && !negate_p
3512 && ops[0] == result
3513 && !direct_internal_fn_supported_p (IFN_FMS, type, opt_type)
3514 && direct_internal_fn_supported_p (IFN_FNMA, type, opt_type)
3515 && TREE_CODE (ops[1]) == SSA_NAME
3516 && has_single_use (var: ops[1]))
3517 {
3518 gimple *stmt2 = SSA_NAME_DEF_STMT (ops[1]);
3519 if (is_gimple_assign (gs: stmt2)
3520 && gimple_assign_rhs_code (gs: stmt2) == MULT_EXPR)
3521 return false;
3522 }
3523
3524 /* We can't handle a * b + a * b. */
3525 if (ops[0] == ops[1])
3526 return false;
3527 /* If deferring, make sure we are not looking at an instruction that
3528 wouldn't have existed if we were not. */
3529 if (state->m_deferring_p
3530 && (state->m_mul_result_set.contains (k: ops[0])
3531 || state->m_mul_result_set.contains (k: ops[1])))
3532 return false;
3533
3534 if (check_defer)
3535 {
3536 tree use_lhs = gimple_get_lhs (use_stmt);
3537 if (state->m_last_result)
3538 {
3539 if (ops[1] == state->m_last_result
3540 || ops[0] == state->m_last_result)
3541 defer = true;
3542 else
3543 defer = false;
3544 }
3545 else
3546 {
3547 gcc_checking_assert (!state->m_initial_phi);
3548 gphi *phi;
3549 if (ops[0] == result)
3550 phi = result_of_phi (op: ops[1]);
3551 else
3552 {
3553 gcc_assert (ops[1] == result);
3554 phi = result_of_phi (op: ops[0]);
3555 }
3556
3557 if (phi)
3558 {
3559 state->m_initial_phi = phi;
3560 defer = true;
3561 }
3562 else
3563 defer = false;
3564 }
3565
3566 state->m_last_result = use_lhs;
3567 check_defer = false;
3568 }
3569 else
3570 defer = false;
3571
3572 /* While it is possible to validate whether or not the exact form that
3573 we've recognized is available in the backend, the assumption is that
3574 if the deferring logic above did not trigger, the transformation is
3575 never a loss. For instance, suppose the target only has the plain FMA
3576 pattern available. Consider a*b-c -> fma(a,b,-c): we've exchanged
3577 MUL+SUB for FMA+NEG, which is still two operations. Consider
3578 -(a*b)-c -> fma(-a,b,-c): we still have 3 operations, but in the FMA
3579 form the two NEGs are independent and could be run in parallel. */
3580 }
3581
3582 if (defer)
3583 {
3584 fma_transformation_info fti;
3585 fti.mul_stmt = mul_stmt;
3586 fti.mul_result = mul_result;
3587 fti.op1 = op1;
3588 fti.op2 = op2;
3589 state->m_candidates.safe_push (obj: fti);
3590 state->m_mul_result_set.add (k: mul_result);
3591
3592 if (dump_file && (dump_flags & TDF_DETAILS))
3593 {
3594 fprintf (stream: dump_file, format: "Deferred generating FMA for multiplication ");
3595 print_gimple_stmt (dump_file, mul_stmt, 0, TDF_NONE);
3596 fprintf (stream: dump_file, format: "\n");
3597 }
3598
3599 return false;
3600 }
3601 else
3602 {
3603 if (state->m_deferring_p)
3604 cancel_fma_deferring (state);
3605 convert_mult_to_fma_1 (mul_result, op1, op2);
3606 return true;
3607 }
3608}
3609
3610
3611/* Helper function of match_arith_overflow. For MUL_OVERFLOW, if we have
3612 a check for non-zero like:
3613 _1 = x_4(D) * y_5(D);
3614 *res_7(D) = _1;
3615 if (x_4(D) != 0)
3616 goto <bb 3>; [50.00%]
3617 else
3618 goto <bb 4>; [50.00%]
3619
3620 <bb 3> [local count: 536870913]:
3621 _2 = _1 / x_4(D);
3622 _9 = _2 != y_5(D);
3623 _10 = (int) _9;
3624
3625 <bb 4> [local count: 1073741824]:
3626 # iftmp.0_3 = PHI <_10(3), 0(2)>
3627 then in addition to using .MUL_OVERFLOW (x_4(D), y_5(D)) we can also
3628 optimize the x_4(D) != 0 condition to 1. */
3629
3630static void
3631maybe_optimize_guarding_check (vec<gimple *> &mul_stmts, gimple *cond_stmt,
3632 gimple *div_stmt, bool *cfg_changed)
3633{
3634 basic_block bb = gimple_bb (g: cond_stmt);
3635 if (gimple_bb (g: div_stmt) != bb || !single_pred_p (bb))
3636 return;
3637 edge pred_edge = single_pred_edge (bb);
3638 basic_block pred_bb = pred_edge->src;
3639 if (EDGE_COUNT (pred_bb->succs) != 2)
3640 return;
3641 edge other_edge = EDGE_SUCC (pred_bb, EDGE_SUCC (pred_bb, 0) == pred_edge);
3642 edge other_succ_edge = NULL;
3643 if (gimple_code (g: cond_stmt) == GIMPLE_COND)
3644 {
3645 if (EDGE_COUNT (bb->succs) != 2)
3646 return;
3647 other_succ_edge = EDGE_SUCC (bb, 0);
3648 if (gimple_cond_code (gs: cond_stmt) == NE_EXPR)
3649 {
3650 if (other_succ_edge->flags & EDGE_TRUE_VALUE)
3651 other_succ_edge = EDGE_SUCC (bb, 1);
3652 }
3653 else if (other_succ_edge->flags & EDGE_FALSE_VALUE)
3654 other_succ_edge = EDGE_SUCC (bb, 0);
3655 if (other_edge->dest != other_succ_edge->dest)
3656 return;
3657 }
3658 else if (!single_succ_p (bb) || other_edge->dest != single_succ (bb))
3659 return;
3660 gcond *zero_cond = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: pred_bb));
3661 if (zero_cond == NULL
3662 || (gimple_cond_code (gs: zero_cond)
3663 != ((pred_edge->flags & EDGE_TRUE_VALUE) ? NE_EXPR : EQ_EXPR))
3664 || !integer_zerop (gimple_cond_rhs (gs: zero_cond)))
3665 return;
3666 tree zero_cond_lhs = gimple_cond_lhs (gs: zero_cond);
3667 if (TREE_CODE (zero_cond_lhs) != SSA_NAME)
3668 return;
3669 if (gimple_assign_rhs2 (gs: div_stmt) != zero_cond_lhs)
3670 {
3671 /* Allow the divisor to be result of a same precision cast
3672 from zero_cond_lhs. */
3673 tree rhs2 = gimple_assign_rhs2 (gs: div_stmt);
3674 if (TREE_CODE (rhs2) != SSA_NAME)
3675 return;
3676 gimple *g = SSA_NAME_DEF_STMT (rhs2);
3677 if (!gimple_assign_cast_p (s: g)
3678 || gimple_assign_rhs1 (gs: g) != gimple_cond_lhs (gs: zero_cond)
3679 || !INTEGRAL_TYPE_P (TREE_TYPE (zero_cond_lhs))
3680 || (TYPE_PRECISION (TREE_TYPE (zero_cond_lhs))
3681 != TYPE_PRECISION (TREE_TYPE (rhs2))))
3682 return;
3683 }
3684 gimple_stmt_iterator gsi = gsi_after_labels (bb);
3685 mul_stmts.quick_push (obj: div_stmt);
3686 if (is_gimple_debug (gs: gsi_stmt (i: gsi)))
3687 gsi_next_nondebug (i: &gsi);
3688 unsigned cast_count = 0;
3689 while (gsi_stmt (i: gsi) != cond_stmt)
3690 {
3691 /* If original mul_stmt has a single use, allow it in the same bb,
3692 we are looking then just at __builtin_mul_overflow_p.
3693 Though, in that case the original mul_stmt will be replaced
3694 by .MUL_OVERFLOW, REALPART_EXPR and IMAGPART_EXPR stmts. */
3695 gimple *mul_stmt;
3696 unsigned int i;
3697 bool ok = false;
3698 FOR_EACH_VEC_ELT (mul_stmts, i, mul_stmt)
3699 {
3700 if (gsi_stmt (i: gsi) == mul_stmt)
3701 {
3702 ok = true;
3703 break;
3704 }
3705 }
3706 if (!ok && gimple_assign_cast_p (s: gsi_stmt (i: gsi)) && ++cast_count < 4)
3707 ok = true;
3708 if (!ok)
3709 return;
3710 gsi_next_nondebug (i: &gsi);
3711 }
3712 if (gimple_code (g: cond_stmt) == GIMPLE_COND)
3713 {
3714 basic_block succ_bb = other_edge->dest;
3715 for (gphi_iterator gpi = gsi_start_phis (succ_bb); !gsi_end_p (i: gpi);
3716 gsi_next (i: &gpi))
3717 {
3718 gphi *phi = gpi.phi ();
3719 tree v1 = gimple_phi_arg_def (gs: phi, index: other_edge->dest_idx);
3720 tree v2 = gimple_phi_arg_def (gs: phi, index: other_succ_edge->dest_idx);
3721 if (!operand_equal_p (v1, v2, flags: 0))
3722 return;
3723 }
3724 }
3725 else
3726 {
3727 tree lhs = gimple_assign_lhs (gs: cond_stmt);
3728 if (!lhs || !INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
3729 return;
3730 gsi_next_nondebug (i: &gsi);
3731 if (!gsi_end_p (i: gsi))
3732 {
3733 if (gimple_assign_rhs_code (gs: cond_stmt) == COND_EXPR)
3734 return;
3735 gimple *cast_stmt = gsi_stmt (i: gsi);
3736 if (!gimple_assign_cast_p (s: cast_stmt))
3737 return;
3738 tree new_lhs = gimple_assign_lhs (gs: cast_stmt);
3739 gsi_next_nondebug (i: &gsi);
3740 if (!gsi_end_p (i: gsi)
3741 || !new_lhs
3742 || !INTEGRAL_TYPE_P (TREE_TYPE (new_lhs))
3743 || TYPE_PRECISION (TREE_TYPE (new_lhs)) <= 1)
3744 return;
3745 lhs = new_lhs;
3746 }
3747 edge succ_edge = single_succ_edge (bb);
3748 basic_block succ_bb = succ_edge->dest;
3749 gsi = gsi_start_phis (succ_bb);
3750 if (gsi_end_p (i: gsi))
3751 return;
3752 gphi *phi = as_a <gphi *> (p: gsi_stmt (i: gsi));
3753 gsi_next (i: &gsi);
3754 if (!gsi_end_p (i: gsi))
3755 return;
3756 if (gimple_phi_arg_def (gs: phi, index: succ_edge->dest_idx) != lhs)
3757 return;
3758 tree other_val = gimple_phi_arg_def (gs: phi, index: other_edge->dest_idx);
3759 if (gimple_assign_rhs_code (gs: cond_stmt) == COND_EXPR)
3760 {
3761 tree cond = gimple_assign_rhs1 (gs: cond_stmt);
3762 if (TREE_CODE (cond) == NE_EXPR)
3763 {
3764 if (!operand_equal_p (other_val,
3765 gimple_assign_rhs3 (gs: cond_stmt), flags: 0))
3766 return;
3767 }
3768 else if (!operand_equal_p (other_val,
3769 gimple_assign_rhs2 (gs: cond_stmt), flags: 0))
3770 return;
3771 }
3772 else if (gimple_assign_rhs_code (gs: cond_stmt) == NE_EXPR)
3773 {
3774 if (!integer_zerop (other_val))
3775 return;
3776 }
3777 else if (!integer_onep (other_val))
3778 return;
3779 }
3780 if (pred_edge->flags & EDGE_TRUE_VALUE)
3781 gimple_cond_make_true (gs: zero_cond);
3782 else
3783 gimple_cond_make_false (gs: zero_cond);
3784 update_stmt (s: zero_cond);
3785 *cfg_changed = true;
3786}
3787
3788/* Helper function for arith_overflow_check_p. Return true
3789 if VAL1 is equal to VAL2 cast to corresponding integral type
3790 with other signedness or vice versa. */
3791
3792static bool
3793arith_cast_equal_p (tree val1, tree val2)
3794{
3795 if (TREE_CODE (val1) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
3796 return wi::eq_p (x: wi::to_wide (t: val1), y: wi::to_wide (t: val2));
3797 else if (TREE_CODE (val1) != SSA_NAME || TREE_CODE (val2) != SSA_NAME)
3798 return false;
3799 if (gimple_assign_cast_p (SSA_NAME_DEF_STMT (val1))
3800 && gimple_assign_rhs1 (SSA_NAME_DEF_STMT (val1)) == val2)
3801 return true;
3802 if (gimple_assign_cast_p (SSA_NAME_DEF_STMT (val2))
3803 && gimple_assign_rhs1 (SSA_NAME_DEF_STMT (val2)) == val1)
3804 return true;
3805 return false;
3806}
3807
3808/* Helper function of match_arith_overflow. Return 1
3809 if USE_STMT is unsigned overflow check ovf != 0 for
3810 STMT, -1 if USE_STMT is unsigned overflow check ovf == 0
3811 and 0 otherwise. */
3812
3813static int
3814arith_overflow_check_p (gimple *stmt, gimple *cast_stmt, gimple *&use_stmt,
3815 tree maxval, tree *other)
3816{
3817 enum tree_code ccode = ERROR_MARK;
3818 tree crhs1 = NULL_TREE, crhs2 = NULL_TREE;
3819 enum tree_code code = gimple_assign_rhs_code (gs: stmt);
3820 tree lhs = gimple_assign_lhs (gs: cast_stmt ? cast_stmt : stmt);
3821 tree rhs1 = gimple_assign_rhs1 (gs: stmt);
3822 tree rhs2 = gimple_assign_rhs2 (gs: stmt);
3823 tree multop = NULL_TREE, divlhs = NULL_TREE;
3824 gimple *cur_use_stmt = use_stmt;
3825
3826 if (code == MULT_EXPR)
3827 {
3828 if (!is_gimple_assign (gs: use_stmt))
3829 return 0;
3830 if (gimple_assign_rhs_code (gs: use_stmt) != TRUNC_DIV_EXPR)
3831 return 0;
3832 if (gimple_assign_rhs1 (gs: use_stmt) != lhs)
3833 return 0;
3834 if (cast_stmt)
3835 {
3836 if (arith_cast_equal_p (val1: gimple_assign_rhs2 (gs: use_stmt), val2: rhs1))
3837 multop = rhs2;
3838 else if (arith_cast_equal_p (val1: gimple_assign_rhs2 (gs: use_stmt), val2: rhs2))
3839 multop = rhs1;
3840 else
3841 return 0;
3842 }
3843 else if (gimple_assign_rhs2 (gs: use_stmt) == rhs1)
3844 multop = rhs2;
3845 else if (operand_equal_p (gimple_assign_rhs2 (gs: use_stmt), rhs2, flags: 0))
3846 multop = rhs1;
3847 else
3848 return 0;
3849 if (stmt_ends_bb_p (use_stmt))
3850 return 0;
3851 divlhs = gimple_assign_lhs (gs: use_stmt);
3852 if (!divlhs)
3853 return 0;
3854 use_operand_p use;
3855 if (!single_imm_use (var: divlhs, use_p: &use, stmt: &cur_use_stmt))
3856 return 0;
3857 if (cast_stmt && gimple_assign_cast_p (s: cur_use_stmt))
3858 {
3859 tree cast_lhs = gimple_assign_lhs (gs: cur_use_stmt);
3860 if (INTEGRAL_TYPE_P (TREE_TYPE (cast_lhs))
3861 && TYPE_UNSIGNED (TREE_TYPE (cast_lhs))
3862 && (TYPE_PRECISION (TREE_TYPE (cast_lhs))
3863 == TYPE_PRECISION (TREE_TYPE (divlhs)))
3864 && single_imm_use (var: cast_lhs, use_p: &use, stmt: &cur_use_stmt))
3865 {
3866 cast_stmt = NULL;
3867 divlhs = cast_lhs;
3868 }
3869 else
3870 return 0;
3871 }
3872 }
3873 if (gimple_code (g: cur_use_stmt) == GIMPLE_COND)
3874 {
3875 ccode = gimple_cond_code (gs: cur_use_stmt);
3876 crhs1 = gimple_cond_lhs (gs: cur_use_stmt);
3877 crhs2 = gimple_cond_rhs (gs: cur_use_stmt);
3878 }
3879 else if (is_gimple_assign (gs: cur_use_stmt))
3880 {
3881 if (gimple_assign_rhs_class (gs: cur_use_stmt) == GIMPLE_BINARY_RHS)
3882 {
3883 ccode = gimple_assign_rhs_code (gs: cur_use_stmt);
3884 crhs1 = gimple_assign_rhs1 (gs: cur_use_stmt);
3885 crhs2 = gimple_assign_rhs2 (gs: cur_use_stmt);
3886 }
3887 else if (gimple_assign_rhs_code (gs: cur_use_stmt) == COND_EXPR)
3888 {
3889 tree cond = gimple_assign_rhs1 (gs: cur_use_stmt);
3890 if (COMPARISON_CLASS_P (cond))
3891 {
3892 ccode = TREE_CODE (cond);
3893 crhs1 = TREE_OPERAND (cond, 0);
3894 crhs2 = TREE_OPERAND (cond, 1);
3895 }
3896 else
3897 return 0;
3898 }
3899 else
3900 return 0;
3901 }
3902 else
3903 return 0;
3904
3905 if (TREE_CODE_CLASS (ccode) != tcc_comparison)
3906 return 0;
3907
3908 switch (ccode)
3909 {
3910 case GT_EXPR:
3911 case LE_EXPR:
3912 if (maxval)
3913 {
3914 /* r = a + b; r > maxval or r <= maxval */
3915 if (crhs1 == lhs
3916 && TREE_CODE (crhs2) == INTEGER_CST
3917 && tree_int_cst_equal (crhs2, maxval))
3918 return ccode == GT_EXPR ? 1 : -1;
3919 break;
3920 }
3921 /* r = a - b; r > a or r <= a
3922 r = a + b; a > r or a <= r or b > r or b <= r. */
3923 if ((code == MINUS_EXPR && crhs1 == lhs && crhs2 == rhs1)
3924 || (code == PLUS_EXPR && (crhs1 == rhs1 || crhs1 == rhs2)
3925 && crhs2 == lhs))
3926 return ccode == GT_EXPR ? 1 : -1;
3927 /* r = ~a; b > r or b <= r. */
3928 if (code == BIT_NOT_EXPR && crhs2 == lhs)
3929 {
3930 if (other)
3931 *other = crhs1;
3932 return ccode == GT_EXPR ? 1 : -1;
3933 }
3934 break;
3935 case LT_EXPR:
3936 case GE_EXPR:
3937 if (maxval)
3938 break;
3939 /* r = a - b; a < r or a >= r
3940 r = a + b; r < a or r >= a or r < b or r >= b. */
3941 if ((code == MINUS_EXPR && crhs1 == rhs1 && crhs2 == lhs)
3942 || (code == PLUS_EXPR && crhs1 == lhs
3943 && (crhs2 == rhs1 || crhs2 == rhs2)))
3944 return ccode == LT_EXPR ? 1 : -1;
3945 /* r = ~a; r < b or r >= b. */
3946 if (code == BIT_NOT_EXPR && crhs1 == lhs)
3947 {
3948 if (other)
3949 *other = crhs2;
3950 return ccode == LT_EXPR ? 1 : -1;
3951 }
3952 break;
3953 case EQ_EXPR:
3954 case NE_EXPR:
3955 /* r = a * b; _1 = r / a; _1 == b
3956 r = a * b; _1 = r / b; _1 == a
3957 r = a * b; _1 = r / a; _1 != b
3958 r = a * b; _1 = r / b; _1 != a. */
3959 if (code == MULT_EXPR)
3960 {
3961 if (cast_stmt)
3962 {
3963 if ((crhs1 == divlhs && arith_cast_equal_p (val1: crhs2, val2: multop))
3964 || (crhs2 == divlhs && arith_cast_equal_p (val1: crhs1, val2: multop)))
3965 {
3966 use_stmt = cur_use_stmt;
3967 return ccode == NE_EXPR ? 1 : -1;
3968 }
3969 }
3970 else if ((crhs1 == divlhs && operand_equal_p (crhs2, multop, flags: 0))
3971 || (crhs2 == divlhs && crhs1 == multop))
3972 {
3973 use_stmt = cur_use_stmt;
3974 return ccode == NE_EXPR ? 1 : -1;
3975 }
3976 }
3977 break;
3978 default:
3979 break;
3980 }
3981 return 0;
3982}
3983
3984/* Recognize for unsigned x
3985 x = y - z;
3986 if (x > y)
3987 where there are other uses of x and replace it with
3988 _7 = .SUB_OVERFLOW (y, z);
3989 x = REALPART_EXPR <_7>;
3990 _8 = IMAGPART_EXPR <_7>;
3991 if (_8)
3992 and similarly for addition.
3993
3994 Also recognize:
3995 yc = (type) y;
3996 zc = (type) z;
3997 x = yc + zc;
3998 if (x > max)
3999 where y and z have unsigned types with maximum max
4000 and there are other uses of x and all of those cast x
4001 back to that unsigned type and again replace it with
4002 _7 = .ADD_OVERFLOW (y, z);
4003 _9 = REALPART_EXPR <_7>;
4004 _8 = IMAGPART_EXPR <_7>;
4005 if (_8)
4006 and replace (utype) x with _9.
4007
4008 Also recognize:
4009 x = ~z;
4010 if (y > x)
4011 and replace it with
4012 _7 = .ADD_OVERFLOW (y, z);
4013 _8 = IMAGPART_EXPR <_7>;
4014 if (_8)
4015
4016 And also recognize:
4017 z = x * y;
4018 if (x != 0)
4019 goto <bb 3>; [50.00%]
4020 else
4021 goto <bb 4>; [50.00%]
4022
4023 <bb 3> [local count: 536870913]:
4024 _2 = z / x;
4025 _9 = _2 != y;
4026 _10 = (int) _9;
4027
4028 <bb 4> [local count: 1073741824]:
4029 # iftmp.0_3 = PHI <_10(3), 0(2)>
4030 and replace it with
4031 _7 = .MUL_OVERFLOW (x, y);
4032 z = IMAGPART_EXPR <_7>;
4033 _8 = IMAGPART_EXPR <_7>;
4034 _9 = _8 != 0;
4035 iftmp.0_3 = (int) _9; */
4036
4037static bool
4038match_arith_overflow (gimple_stmt_iterator *gsi, gimple *stmt,
4039 enum tree_code code, bool *cfg_changed)
4040{
4041 tree lhs = gimple_assign_lhs (gs: stmt);
4042 tree type = TREE_TYPE (lhs);
4043 use_operand_p use_p;
4044 imm_use_iterator iter;
4045 bool use_seen = false;
4046 bool ovf_use_seen = false;
4047 gimple *use_stmt;
4048 gimple *add_stmt = NULL;
4049 bool add_first = false;
4050 gimple *cond_stmt = NULL;
4051 gimple *cast_stmt = NULL;
4052 tree cast_lhs = NULL_TREE;
4053
4054 gcc_checking_assert (code == PLUS_EXPR
4055 || code == MINUS_EXPR
4056 || code == MULT_EXPR
4057 || code == BIT_NOT_EXPR);
4058 if (!INTEGRAL_TYPE_P (type)
4059 || !TYPE_UNSIGNED (type)
4060 || has_zero_uses (var: lhs)
4061 || (code != PLUS_EXPR
4062 && code != MULT_EXPR
4063 && optab_handler (op: code == MINUS_EXPR ? usubv4_optab : uaddv4_optab,
4064 TYPE_MODE (type)) == CODE_FOR_nothing))
4065 return false;
4066
4067 tree rhs1 = gimple_assign_rhs1 (gs: stmt);
4068 tree rhs2 = gimple_assign_rhs2 (gs: stmt);
4069 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
4070 {
4071 use_stmt = USE_STMT (use_p);
4072 if (is_gimple_debug (gs: use_stmt))
4073 continue;
4074
4075 tree other = NULL_TREE;
4076 if (arith_overflow_check_p (stmt, NULL, use_stmt, NULL_TREE, other: &other))
4077 {
4078 if (code == BIT_NOT_EXPR)
4079 {
4080 gcc_assert (other);
4081 if (TREE_CODE (other) != SSA_NAME)
4082 return false;
4083 if (rhs2 == NULL)
4084 rhs2 = other;
4085 else
4086 return false;
4087 cond_stmt = use_stmt;
4088 }
4089 ovf_use_seen = true;
4090 }
4091 else
4092 {
4093 use_seen = true;
4094 if (code == MULT_EXPR
4095 && cast_stmt == NULL
4096 && gimple_assign_cast_p (s: use_stmt))
4097 {
4098 cast_lhs = gimple_assign_lhs (gs: use_stmt);
4099 if (INTEGRAL_TYPE_P (TREE_TYPE (cast_lhs))
4100 && !TYPE_UNSIGNED (TREE_TYPE (cast_lhs))
4101 && (TYPE_PRECISION (TREE_TYPE (cast_lhs))
4102 == TYPE_PRECISION (TREE_TYPE (lhs))))
4103 cast_stmt = use_stmt;
4104 else
4105 cast_lhs = NULL_TREE;
4106 }
4107 }
4108 if (ovf_use_seen && use_seen)
4109 break;
4110 }
4111
4112 if (!ovf_use_seen
4113 && code == MULT_EXPR
4114 && cast_stmt)
4115 {
4116 if (TREE_CODE (rhs1) != SSA_NAME
4117 || (TREE_CODE (rhs2) != SSA_NAME && TREE_CODE (rhs2) != INTEGER_CST))
4118 return false;
4119 FOR_EACH_IMM_USE_FAST (use_p, iter, cast_lhs)
4120 {
4121 use_stmt = USE_STMT (use_p);
4122 if (is_gimple_debug (gs: use_stmt))
4123 continue;
4124
4125 if (arith_overflow_check_p (stmt, cast_stmt, use_stmt,
4126 NULL_TREE, NULL))
4127 ovf_use_seen = true;
4128 }
4129 }
4130 else
4131 {
4132 cast_stmt = NULL;
4133 cast_lhs = NULL_TREE;
4134 }
4135
4136 tree maxval = NULL_TREE;
4137 if (!ovf_use_seen
4138 || (code != MULT_EXPR && (code == BIT_NOT_EXPR ? use_seen : !use_seen))
4139 || (code == PLUS_EXPR
4140 && optab_handler (op: uaddv4_optab,
4141 TYPE_MODE (type)) == CODE_FOR_nothing)
4142 || (code == MULT_EXPR
4143 && optab_handler (op: cast_stmt ? mulv4_optab : umulv4_optab,
4144 TYPE_MODE (type)) == CODE_FOR_nothing
4145 && (use_seen
4146 || cast_stmt
4147 || !can_mult_highpart_p (TYPE_MODE (type), true))))
4148 {
4149 if (code != PLUS_EXPR)
4150 return false;
4151 if (TREE_CODE (rhs1) != SSA_NAME
4152 || !gimple_assign_cast_p (SSA_NAME_DEF_STMT (rhs1)))
4153 return false;
4154 rhs1 = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (rhs1));
4155 tree type1 = TREE_TYPE (rhs1);
4156 if (!INTEGRAL_TYPE_P (type1)
4157 || !TYPE_UNSIGNED (type1)
4158 || TYPE_PRECISION (type1) >= TYPE_PRECISION (type)
4159 || (TYPE_PRECISION (type1)
4160 != GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type1))))
4161 return false;
4162 if (TREE_CODE (rhs2) == INTEGER_CST)
4163 {
4164 if (wi::ne_p (x: wi::rshift (x: wi::to_wide (t: rhs2),
4165 TYPE_PRECISION (type1),
4166 sgn: UNSIGNED), y: 0))
4167 return false;
4168 rhs2 = fold_convert (type1, rhs2);
4169 }
4170 else
4171 {
4172 if (TREE_CODE (rhs2) != SSA_NAME
4173 || !gimple_assign_cast_p (SSA_NAME_DEF_STMT (rhs2)))
4174 return false;
4175 rhs2 = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (rhs2));
4176 tree type2 = TREE_TYPE (rhs2);
4177 if (!INTEGRAL_TYPE_P (type2)
4178 || !TYPE_UNSIGNED (type2)
4179 || TYPE_PRECISION (type2) >= TYPE_PRECISION (type)
4180 || (TYPE_PRECISION (type2)
4181 != GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type2))))
4182 return false;
4183 }
4184 if (TYPE_PRECISION (type1) >= TYPE_PRECISION (TREE_TYPE (rhs2)))
4185 type = type1;
4186 else
4187 type = TREE_TYPE (rhs2);
4188
4189 if (TREE_CODE (type) != INTEGER_TYPE
4190 || optab_handler (op: uaddv4_optab,
4191 TYPE_MODE (type)) == CODE_FOR_nothing)
4192 return false;
4193
4194 maxval = wide_int_to_tree (type, cst: wi::max_value (TYPE_PRECISION (type),
4195 UNSIGNED));
4196 ovf_use_seen = false;
4197 use_seen = false;
4198 basic_block use_bb = NULL;
4199 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
4200 {
4201 use_stmt = USE_STMT (use_p);
4202 if (is_gimple_debug (gs: use_stmt))
4203 continue;
4204
4205 if (arith_overflow_check_p (stmt, NULL, use_stmt, maxval, NULL))
4206 {
4207 ovf_use_seen = true;
4208 use_bb = gimple_bb (g: use_stmt);
4209 }
4210 else
4211 {
4212 if (!gimple_assign_cast_p (s: use_stmt)
4213 || gimple_assign_rhs_code (gs: use_stmt) == VIEW_CONVERT_EXPR)
4214 return false;
4215 tree use_lhs = gimple_assign_lhs (gs: use_stmt);
4216 if (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
4217 || (TYPE_PRECISION (TREE_TYPE (use_lhs))
4218 > TYPE_PRECISION (type)))
4219 return false;
4220 use_seen = true;
4221 }
4222 }
4223 if (!ovf_use_seen)
4224 return false;
4225 if (!useless_type_conversion_p (type, TREE_TYPE (rhs1)))
4226 {
4227 if (!use_seen)
4228 return false;
4229 tree new_rhs1 = make_ssa_name (var: type);
4230 gimple *g = gimple_build_assign (new_rhs1, NOP_EXPR, rhs1);
4231 gsi_insert_before (gsi, g, GSI_SAME_STMT);
4232 rhs1 = new_rhs1;
4233 }
4234 else if (!useless_type_conversion_p (type, TREE_TYPE (rhs2)))
4235 {
4236 if (!use_seen)
4237 return false;
4238 tree new_rhs2 = make_ssa_name (var: type);
4239 gimple *g = gimple_build_assign (new_rhs2, NOP_EXPR, rhs2);
4240 gsi_insert_before (gsi, g, GSI_SAME_STMT);
4241 rhs2 = new_rhs2;
4242 }
4243 else if (!use_seen)
4244 {
4245 /* If there are no uses of the wider addition, check if
4246 forwprop has not created a narrower addition.
4247 Require it to be in the same bb as the overflow check. */
4248 FOR_EACH_IMM_USE_FAST (use_p, iter, rhs1)
4249 {
4250 use_stmt = USE_STMT (use_p);
4251 if (is_gimple_debug (gs: use_stmt))
4252 continue;
4253
4254 if (use_stmt == stmt)
4255 continue;
4256
4257 if (!is_gimple_assign (gs: use_stmt)
4258 || gimple_bb (g: use_stmt) != use_bb
4259 || gimple_assign_rhs_code (gs: use_stmt) != PLUS_EXPR)
4260 continue;
4261
4262 if (gimple_assign_rhs1 (gs: use_stmt) == rhs1)
4263 {
4264 if (!operand_equal_p (gimple_assign_rhs2 (gs: use_stmt),
4265 rhs2, flags: 0))
4266 continue;
4267 }
4268 else if (gimple_assign_rhs2 (gs: use_stmt) == rhs1)
4269 {
4270 if (gimple_assign_rhs1 (gs: use_stmt) != rhs2)
4271 continue;
4272 }
4273 else
4274 continue;
4275
4276 add_stmt = use_stmt;
4277 break;
4278 }
4279 if (add_stmt == NULL)
4280 return false;
4281
4282 /* If stmt and add_stmt are in the same bb, we need to find out
4283 which one is earlier. If they are in different bbs, we've
4284 checked add_stmt is in the same bb as one of the uses of the
4285 stmt lhs, so stmt needs to dominate add_stmt too. */
4286 if (gimple_bb (g: stmt) == gimple_bb (g: add_stmt))
4287 {
4288 gimple_stmt_iterator gsif = *gsi;
4289 gimple_stmt_iterator gsib = *gsi;
4290 int i;
4291 /* Search both forward and backward from stmt and have a small
4292 upper bound. */
4293 for (i = 0; i < 128; i++)
4294 {
4295 if (!gsi_end_p (i: gsib))
4296 {
4297 gsi_prev_nondebug (i: &gsib);
4298 if (gsi_stmt (i: gsib) == add_stmt)
4299 {
4300 add_first = true;
4301 break;
4302 }
4303 }
4304 else if (gsi_end_p (i: gsif))
4305 break;
4306 if (!gsi_end_p (i: gsif))
4307 {
4308 gsi_next_nondebug (i: &gsif);
4309 if (gsi_stmt (i: gsif) == add_stmt)
4310 break;
4311 }
4312 }
4313 if (i == 128)
4314 return false;
4315 if (add_first)
4316 *gsi = gsi_for_stmt (add_stmt);
4317 }
4318 }
4319 }
4320
4321 if (code == BIT_NOT_EXPR)
4322 *gsi = gsi_for_stmt (cond_stmt);
4323
4324 auto_vec<gimple *, 8> mul_stmts;
4325 if (code == MULT_EXPR && cast_stmt)
4326 {
4327 type = TREE_TYPE (cast_lhs);
4328 gimple *g = SSA_NAME_DEF_STMT (rhs1);
4329 if (gimple_assign_cast_p (s: g)
4330 && useless_type_conversion_p (type,
4331 TREE_TYPE (gimple_assign_rhs1 (g)))
4332 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (g)))
4333 rhs1 = gimple_assign_rhs1 (gs: g);
4334 else
4335 {
4336 g = gimple_build_assign (make_ssa_name (var: type), NOP_EXPR, rhs1);
4337 gsi_insert_before (gsi, g, GSI_SAME_STMT);
4338 rhs1 = gimple_assign_lhs (gs: g);
4339 mul_stmts.quick_push (obj: g);
4340 }
4341 if (TREE_CODE (rhs2) == INTEGER_CST)
4342 rhs2 = fold_convert (type, rhs2);
4343 else
4344 {
4345 g = SSA_NAME_DEF_STMT (rhs2);
4346 if (gimple_assign_cast_p (s: g)
4347 && useless_type_conversion_p (type,
4348 TREE_TYPE (gimple_assign_rhs1 (g)))
4349 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (g)))
4350 rhs2 = gimple_assign_rhs1 (gs: g);
4351 else
4352 {
4353 g = gimple_build_assign (make_ssa_name (var: type), NOP_EXPR, rhs2);
4354 gsi_insert_before (gsi, g, GSI_SAME_STMT);
4355 rhs2 = gimple_assign_lhs (gs: g);
4356 mul_stmts.quick_push (obj: g);
4357 }
4358 }
4359 }
4360 tree ctype = build_complex_type (type);
4361 gcall *g = gimple_build_call_internal (code == MULT_EXPR
4362 ? IFN_MUL_OVERFLOW
4363 : code != MINUS_EXPR
4364 ? IFN_ADD_OVERFLOW : IFN_SUB_OVERFLOW,
4365 2, rhs1, rhs2);
4366 tree ctmp = make_ssa_name (var: ctype);
4367 gimple_call_set_lhs (gs: g, lhs: ctmp);
4368 gsi_insert_before (gsi, g, GSI_SAME_STMT);
4369 tree new_lhs = (maxval || cast_stmt) ? make_ssa_name (var: type) : lhs;
4370 gassign *g2;
4371 if (code != BIT_NOT_EXPR)
4372 {
4373 g2 = gimple_build_assign (new_lhs, REALPART_EXPR,
4374 build1 (REALPART_EXPR, type, ctmp));
4375 if (maxval || cast_stmt)
4376 {
4377 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
4378 if (add_first)
4379 *gsi = gsi_for_stmt (stmt);
4380 }
4381 else
4382 gsi_replace (gsi, g2, true);
4383 if (code == MULT_EXPR)
4384 {
4385 mul_stmts.quick_push (obj: g);
4386 mul_stmts.quick_push (obj: g2);
4387 if (cast_stmt)
4388 {
4389 g2 = gimple_build_assign (lhs, NOP_EXPR, new_lhs);
4390 gsi_replace (gsi, g2, true);
4391 mul_stmts.quick_push (obj: g2);
4392 }
4393 }
4394 }
4395 tree ovf = make_ssa_name (var: type);
4396 g2 = gimple_build_assign (ovf, IMAGPART_EXPR,
4397 build1 (IMAGPART_EXPR, type, ctmp));
4398 if (code != BIT_NOT_EXPR)
4399 gsi_insert_after (gsi, g2, GSI_NEW_STMT);
4400 else
4401 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
4402 if (code == MULT_EXPR)
4403 mul_stmts.quick_push (obj: g2);
4404
4405 FOR_EACH_IMM_USE_STMT (use_stmt, iter, cast_lhs ? cast_lhs : lhs)
4406 {
4407 if (is_gimple_debug (gs: use_stmt))
4408 continue;
4409
4410 gimple *orig_use_stmt = use_stmt;
4411 int ovf_use = arith_overflow_check_p (stmt, cast_stmt, use_stmt,
4412 maxval, NULL);
4413 if (ovf_use == 0)
4414 {
4415 gcc_assert (code != BIT_NOT_EXPR);
4416 if (maxval)
4417 {
4418 tree use_lhs = gimple_assign_lhs (gs: use_stmt);
4419 gimple_assign_set_rhs1 (gs: use_stmt, rhs: new_lhs);
4420 if (useless_type_conversion_p (TREE_TYPE (use_lhs),
4421 TREE_TYPE (new_lhs)))
4422 gimple_assign_set_rhs_code (s: use_stmt, code: SSA_NAME);
4423 update_stmt (s: use_stmt);
4424 }
4425 continue;
4426 }
4427 if (gimple_code (g: use_stmt) == GIMPLE_COND)
4428 {
4429 gcond *cond_stmt = as_a <gcond *> (p: use_stmt);
4430 gimple_cond_set_lhs (gs: cond_stmt, lhs: ovf);
4431 gimple_cond_set_rhs (gs: cond_stmt, rhs: build_int_cst (type, 0));
4432 gimple_cond_set_code (gs: cond_stmt, code: ovf_use == 1 ? NE_EXPR : EQ_EXPR);
4433 }
4434 else
4435 {
4436 gcc_checking_assert (is_gimple_assign (use_stmt));
4437 if (gimple_assign_rhs_class (gs: use_stmt) == GIMPLE_BINARY_RHS)
4438 {
4439 gimple_assign_set_rhs1 (gs: use_stmt, rhs: ovf);
4440 gimple_assign_set_rhs2 (gs: use_stmt, rhs: build_int_cst (type, 0));
4441 gimple_assign_set_rhs_code (s: use_stmt,
4442 code: ovf_use == 1 ? NE_EXPR : EQ_EXPR);
4443 }
4444 else
4445 {
4446 gcc_checking_assert (gimple_assign_rhs_code (use_stmt)
4447 == COND_EXPR);
4448 tree cond = build2 (ovf_use == 1 ? NE_EXPR : EQ_EXPR,
4449 boolean_type_node, ovf,
4450 build_int_cst (type, 0));
4451 gimple_assign_set_rhs1 (gs: use_stmt, rhs: cond);
4452 }
4453 }
4454 update_stmt (s: use_stmt);
4455 if (code == MULT_EXPR && use_stmt != orig_use_stmt)
4456 {
4457 gimple_stmt_iterator gsi2 = gsi_for_stmt (orig_use_stmt);
4458 maybe_optimize_guarding_check (mul_stmts, cond_stmt: use_stmt, div_stmt: orig_use_stmt,
4459 cfg_changed);
4460 use_operand_p use;
4461 gimple *cast_stmt;
4462 if (single_imm_use (var: gimple_assign_lhs (gs: orig_use_stmt), use_p: &use,
4463 stmt: &cast_stmt)
4464 && gimple_assign_cast_p (s: cast_stmt))
4465 {
4466 gimple_stmt_iterator gsi3 = gsi_for_stmt (cast_stmt);
4467 gsi_remove (&gsi3, true);
4468 release_ssa_name (name: gimple_assign_lhs (gs: cast_stmt));
4469 }
4470 gsi_remove (&gsi2, true);
4471 release_ssa_name (name: gimple_assign_lhs (gs: orig_use_stmt));
4472 }
4473 }
4474 if (maxval)
4475 {
4476 gimple_stmt_iterator gsi2 = gsi_for_stmt (stmt);
4477 gsi_remove (&gsi2, true);
4478 if (add_stmt)
4479 {
4480 gimple *g = gimple_build_assign (gimple_assign_lhs (gs: add_stmt),
4481 new_lhs);
4482 gsi2 = gsi_for_stmt (add_stmt);
4483 gsi_replace (&gsi2, g, true);
4484 }
4485 }
4486 else if (code == BIT_NOT_EXPR)
4487 {
4488 *gsi = gsi_for_stmt (stmt);
4489 gsi_remove (gsi, true);
4490 release_ssa_name (name: lhs);
4491 return true;
4492 }
4493 return false;
4494}
4495
4496/* Helper of match_uaddc_usubc. Look through an integral cast
4497 which should preserve [0, 1] range value (unless source has
4498 1-bit signed type) and the cast has single use. */
4499
4500static gimple *
4501uaddc_cast (gimple *g)
4502{
4503 if (!gimple_assign_cast_p (s: g))
4504 return g;
4505 tree op = gimple_assign_rhs1 (gs: g);
4506 if (TREE_CODE (op) == SSA_NAME
4507 && INTEGRAL_TYPE_P (TREE_TYPE (op))
4508 && (TYPE_PRECISION (TREE_TYPE (op)) > 1
4509 || TYPE_UNSIGNED (TREE_TYPE (op)))
4510 && has_single_use (var: gimple_assign_lhs (gs: g)))
4511 return SSA_NAME_DEF_STMT (op);
4512 return g;
4513}
4514
4515/* Helper of match_uaddc_usubc. Look through a NE_EXPR
4516 comparison with 0 which also preserves [0, 1] value range. */
4517
4518static gimple *
4519uaddc_ne0 (gimple *g)
4520{
4521 if (is_gimple_assign (gs: g)
4522 && gimple_assign_rhs_code (gs: g) == NE_EXPR
4523 && integer_zerop (gimple_assign_rhs2 (gs: g))
4524 && TREE_CODE (gimple_assign_rhs1 (g)) == SSA_NAME
4525 && has_single_use (var: gimple_assign_lhs (gs: g)))
4526 return SSA_NAME_DEF_STMT (gimple_assign_rhs1 (g));
4527 return g;
4528}
4529
4530/* Return true if G is {REAL,IMAG}PART_EXPR PART with SSA_NAME
4531 operand. */
4532
4533static bool
4534uaddc_is_cplxpart (gimple *g, tree_code part)
4535{
4536 return (is_gimple_assign (gs: g)
4537 && gimple_assign_rhs_code (gs: g) == part
4538 && TREE_CODE (TREE_OPERAND (gimple_assign_rhs1 (g), 0)) == SSA_NAME);
4539}
4540
4541/* Try to match e.g.
4542 _29 = .ADD_OVERFLOW (_3, _4);
4543 _30 = REALPART_EXPR <_29>;
4544 _31 = IMAGPART_EXPR <_29>;
4545 _32 = .ADD_OVERFLOW (_30, _38);
4546 _33 = REALPART_EXPR <_32>;
4547 _34 = IMAGPART_EXPR <_32>;
4548 _35 = _31 + _34;
4549 as
4550 _36 = .UADDC (_3, _4, _38);
4551 _33 = REALPART_EXPR <_36>;
4552 _35 = IMAGPART_EXPR <_36>;
4553 or
4554 _22 = .SUB_OVERFLOW (_6, _5);
4555 _23 = REALPART_EXPR <_22>;
4556 _24 = IMAGPART_EXPR <_22>;
4557 _25 = .SUB_OVERFLOW (_23, _37);
4558 _26 = REALPART_EXPR <_25>;
4559 _27 = IMAGPART_EXPR <_25>;
4560 _28 = _24 | _27;
4561 as
4562 _29 = .USUBC (_6, _5, _37);
4563 _26 = REALPART_EXPR <_29>;
4564 _288 = IMAGPART_EXPR <_29>;
4565 provided _38 or _37 above have [0, 1] range
4566 and _3, _4 and _30 or _6, _5 and _23 are unsigned
4567 integral types with the same precision. Whether + or | or ^ is
4568 used on the IMAGPART_EXPR results doesn't matter, with one of
4569 added or subtracted operands in [0, 1] range at most one
4570 .ADD_OVERFLOW or .SUB_OVERFLOW will indicate overflow. */
4571
4572static bool
4573match_uaddc_usubc (gimple_stmt_iterator *gsi, gimple *stmt, tree_code code)
4574{
4575 tree rhs[4];
4576 rhs[0] = gimple_assign_rhs1 (gs: stmt);
4577 rhs[1] = gimple_assign_rhs2 (gs: stmt);
4578 rhs[2] = NULL_TREE;
4579 rhs[3] = NULL_TREE;
4580 tree type = TREE_TYPE (rhs[0]);
4581 if (!INTEGRAL_TYPE_P (type) || !TYPE_UNSIGNED (type))
4582 return false;
4583
4584 auto_vec<gimple *, 2> temp_stmts;
4585 if (code != BIT_IOR_EXPR && code != BIT_XOR_EXPR)
4586 {
4587 /* If overflow flag is ignored on the MSB limb, we can end up with
4588 the most significant limb handled as r = op1 + op2 + ovf1 + ovf2;
4589 or r = op1 - op2 - ovf1 - ovf2; or various equivalent expressions
4590 thereof. Handle those like the ovf = ovf1 + ovf2; case to recognize
4591 the limb below the MSB, but also create another .UADDC/.USUBC call
4592 for the last limb.
4593
4594 First look through assignments with the same rhs code as CODE,
4595 with the exception that subtraction of a constant is canonicalized
4596 into addition of its negation. rhs[0] will be minuend for
4597 subtractions and one of addends for addition, all other assigned
4598 rhs[i] operands will be subtrahends or other addends. */
4599 while (TREE_CODE (rhs[0]) == SSA_NAME && !rhs[3])
4600 {
4601 gimple *g = SSA_NAME_DEF_STMT (rhs[0]);
4602 if (has_single_use (var: rhs[0])
4603 && is_gimple_assign (gs: g)
4604 && (gimple_assign_rhs_code (gs: g) == code
4605 || (code == MINUS_EXPR
4606 && gimple_assign_rhs_code (gs: g) == PLUS_EXPR
4607 && TREE_CODE (gimple_assign_rhs2 (g)) == INTEGER_CST)))
4608 {
4609 tree r2 = gimple_assign_rhs2 (gs: g);
4610 if (gimple_assign_rhs_code (gs: g) != code)
4611 {
4612 r2 = const_unop (NEGATE_EXPR, TREE_TYPE (r2), r2);
4613 if (!r2)
4614 break;
4615 }
4616 rhs[0] = gimple_assign_rhs1 (gs: g);
4617 tree &r = rhs[2] ? rhs[3] : rhs[2];
4618 r = r2;
4619 temp_stmts.quick_push (obj: g);
4620 }
4621 else
4622 break;
4623 }
4624 for (int i = 1; i <= 2; ++i)
4625 while (rhs[i] && TREE_CODE (rhs[i]) == SSA_NAME && !rhs[3])
4626 {
4627 gimple *g = SSA_NAME_DEF_STMT (rhs[i]);
4628 if (has_single_use (var: rhs[i])
4629 && is_gimple_assign (gs: g)
4630 && gimple_assign_rhs_code (gs: g) == PLUS_EXPR)
4631 {
4632 rhs[i] = gimple_assign_rhs1 (gs: g);
4633 if (rhs[2])
4634 rhs[3] = gimple_assign_rhs2 (gs: g);
4635 else
4636 rhs[2] = gimple_assign_rhs2 (gs: g);
4637 temp_stmts.quick_push (obj: g);
4638 }
4639 else
4640 break;
4641 }
4642 /* If there are just 3 addends or one minuend and two subtrahends,
4643 check for UADDC or USUBC being pattern recognized earlier.
4644 Say r = op1 + op2 + ovf1 + ovf2; where the (ovf1 + ovf2) part
4645 got pattern matched earlier as __imag__ .UADDC (arg1, arg2, arg3)
4646 etc. */
4647 if (rhs[2] && !rhs[3])
4648 {
4649 for (int i = (code == MINUS_EXPR ? 1 : 0); i < 3; ++i)
4650 if (TREE_CODE (rhs[i]) == SSA_NAME)
4651 {
4652 gimple *im = uaddc_cast (SSA_NAME_DEF_STMT (rhs[i]));
4653 im = uaddc_ne0 (g: im);
4654 if (uaddc_is_cplxpart (g: im, part: IMAGPART_EXPR))
4655 {
4656 /* We found one of the 3 addends or 2 subtrahends to be
4657 __imag__ of something, verify it is .UADDC/.USUBC. */
4658 tree rhs1 = gimple_assign_rhs1 (gs: im);
4659 gimple *ovf = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs1, 0));
4660 tree ovf_lhs = NULL_TREE;
4661 tree ovf_arg1 = NULL_TREE, ovf_arg2 = NULL_TREE;
4662 if (gimple_call_internal_p (gs: ovf, fn: code == PLUS_EXPR
4663 ? IFN_ADD_OVERFLOW
4664 : IFN_SUB_OVERFLOW))
4665 {
4666 /* Or verify it is .ADD_OVERFLOW/.SUB_OVERFLOW.
4667 This is for the case of 2 chained .UADDC/.USUBC,
4668 where the first one uses 0 carry-in and the second
4669 one ignores the carry-out.
4670 So, something like:
4671 _16 = .ADD_OVERFLOW (_1, _2);
4672 _17 = REALPART_EXPR <_16>;
4673 _18 = IMAGPART_EXPR <_16>;
4674 _15 = _3 + _4;
4675 _12 = _15 + _18;
4676 where the first 3 statements come from the lower
4677 limb addition and the last 2 from the higher limb
4678 which ignores carry-out. */
4679 ovf_lhs = gimple_call_lhs (gs: ovf);
4680 tree ovf_lhs_type = TREE_TYPE (TREE_TYPE (ovf_lhs));
4681 ovf_arg1 = gimple_call_arg (gs: ovf, index: 0);
4682 ovf_arg2 = gimple_call_arg (gs: ovf, index: 1);
4683 /* In that case we need to punt if the types don't
4684 mismatch. */
4685 if (!types_compatible_p (type1: type, type2: ovf_lhs_type)
4686 || !types_compatible_p (type1: type, TREE_TYPE (ovf_arg1))
4687 || !types_compatible_p (type1: type,
4688 TREE_TYPE (ovf_arg2)))
4689 ovf_lhs = NULL_TREE;
4690 else
4691 {
4692 for (int i = (code == PLUS_EXPR ? 1 : 0);
4693 i >= 0; --i)
4694 {
4695 tree r = gimple_call_arg (gs: ovf, index: i);
4696 if (TREE_CODE (r) != SSA_NAME)
4697 continue;
4698 if (uaddc_is_cplxpart (SSA_NAME_DEF_STMT (r),
4699 part: REALPART_EXPR))
4700 {
4701 /* Punt if one of the args which isn't
4702 subtracted isn't __real__; that could
4703 then prevent better match later.
4704 Consider:
4705 _3 = .ADD_OVERFLOW (_1, _2);
4706 _4 = REALPART_EXPR <_3>;
4707 _5 = IMAGPART_EXPR <_3>;
4708 _7 = .ADD_OVERFLOW (_4, _6);
4709 _8 = REALPART_EXPR <_7>;
4710 _9 = IMAGPART_EXPR <_7>;
4711 _12 = _10 + _11;
4712 _13 = _12 + _9;
4713 _14 = _13 + _5;
4714 We want to match this when called on
4715 the last stmt as a pair of .UADDC calls,
4716 but without this check we could turn
4717 that prematurely on _13 = _12 + _9;
4718 stmt into .UADDC with 0 carry-in just
4719 on the second .ADD_OVERFLOW call and
4720 another replacing the _12 and _13
4721 additions. */
4722 ovf_lhs = NULL_TREE;
4723 break;
4724 }
4725 }
4726 }
4727 if (ovf_lhs)
4728 {
4729 use_operand_p use_p;
4730 imm_use_iterator iter;
4731 tree re_lhs = NULL_TREE;
4732 FOR_EACH_IMM_USE_FAST (use_p, iter, ovf_lhs)
4733 {
4734 gimple *use_stmt = USE_STMT (use_p);
4735 if (is_gimple_debug (gs: use_stmt))
4736 continue;
4737 if (use_stmt == im)
4738 continue;
4739 if (!uaddc_is_cplxpart (g: use_stmt,
4740 part: REALPART_EXPR))
4741 {
4742 ovf_lhs = NULL_TREE;
4743 break;
4744 }
4745 re_lhs = gimple_assign_lhs (gs: use_stmt);
4746 }
4747 if (ovf_lhs && re_lhs)
4748 {
4749 FOR_EACH_IMM_USE_FAST (use_p, iter, re_lhs)
4750 {
4751 gimple *use_stmt = USE_STMT (use_p);
4752 if (is_gimple_debug (gs: use_stmt))
4753 continue;
4754 internal_fn ifn
4755 = gimple_call_internal_fn (gs: ovf);
4756 /* Punt if the __real__ of lhs is used
4757 in the same .*_OVERFLOW call.
4758 Consider:
4759 _3 = .ADD_OVERFLOW (_1, _2);
4760 _4 = REALPART_EXPR <_3>;
4761 _5 = IMAGPART_EXPR <_3>;
4762 _7 = .ADD_OVERFLOW (_4, _6);
4763 _8 = REALPART_EXPR <_7>;
4764 _9 = IMAGPART_EXPR <_7>;
4765 _12 = _10 + _11;
4766 _13 = _12 + _5;
4767 _14 = _13 + _9;
4768 We want to match this when called on
4769 the last stmt as a pair of .UADDC calls,
4770 but without this check we could turn
4771 that prematurely on _13 = _12 + _5;
4772 stmt into .UADDC with 0 carry-in just
4773 on the first .ADD_OVERFLOW call and
4774 another replacing the _12 and _13
4775 additions. */
4776 if (gimple_call_internal_p (gs: use_stmt, fn: ifn))
4777 {
4778 ovf_lhs = NULL_TREE;
4779 break;
4780 }
4781 }
4782 }
4783 }
4784 }
4785 if ((ovf_lhs
4786 || gimple_call_internal_p (gs: ovf,
4787 fn: code == PLUS_EXPR
4788 ? IFN_UADDC : IFN_USUBC))
4789 && (optab_handler (op: code == PLUS_EXPR
4790 ? uaddc5_optab : usubc5_optab,
4791 TYPE_MODE (type))
4792 != CODE_FOR_nothing))
4793 {
4794 /* And in that case build another .UADDC/.USUBC
4795 call for the most significand limb addition.
4796 Overflow bit is ignored here. */
4797 if (i != 2)
4798 std::swap (a&: rhs[i], b&: rhs[2]);
4799 gimple *g
4800 = gimple_build_call_internal (code == PLUS_EXPR
4801 ? IFN_UADDC
4802 : IFN_USUBC,
4803 3, rhs[0], rhs[1],
4804 rhs[2]);
4805 tree nlhs = make_ssa_name (var: build_complex_type (type));
4806 gimple_call_set_lhs (gs: g, lhs: nlhs);
4807 gsi_insert_before (gsi, g, GSI_SAME_STMT);
4808 tree ilhs = gimple_assign_lhs (gs: stmt);
4809 g = gimple_build_assign (ilhs, REALPART_EXPR,
4810 build1 (REALPART_EXPR,
4811 TREE_TYPE (ilhs),
4812 nlhs));
4813 gsi_replace (gsi, g, true);
4814 /* And if it is initialized from result of __imag__
4815 of .{ADD,SUB}_OVERFLOW call, replace that
4816 call with .U{ADD,SUB}C call with the same arguments,
4817 just 0 added as third argument. This isn't strictly
4818 necessary, .ADD_OVERFLOW (x, y) and .UADDC (x, y, 0)
4819 produce the same result, but may result in better
4820 generated code on some targets where the backend can
4821 better prepare in how the result will be used. */
4822 if (ovf_lhs)
4823 {
4824 tree zero = build_zero_cst (type);
4825 g = gimple_build_call_internal (code == PLUS_EXPR
4826 ? IFN_UADDC
4827 : IFN_USUBC,
4828 3, ovf_arg1,
4829 ovf_arg2, zero);
4830 gimple_call_set_lhs (gs: g, lhs: ovf_lhs);
4831 gimple_stmt_iterator gsi2 = gsi_for_stmt (ovf);
4832 gsi_replace (&gsi2, g, true);
4833 }
4834 return true;
4835 }
4836 }
4837 }
4838 return false;
4839 }
4840 if (code == MINUS_EXPR && !rhs[2])
4841 return false;
4842 if (code == MINUS_EXPR)
4843 /* Code below expects rhs[0] and rhs[1] to have the IMAGPART_EXPRs.
4844 So, for MINUS_EXPR swap the single added rhs operand (others are
4845 subtracted) to rhs[3]. */
4846 std::swap (a&: rhs[0], b&: rhs[3]);
4847 }
4848 /* Walk from both operands of STMT (for +/- even sometimes from
4849 all the 4 addends or 3 subtrahends), see through casts and != 0
4850 statements which would preserve [0, 1] range of values and
4851 check which is initialized from __imag__. */
4852 gimple *im1 = NULL, *im2 = NULL;
4853 for (int i = 0; i < (code == MINUS_EXPR ? 3 : 4); i++)
4854 if (rhs[i] && TREE_CODE (rhs[i]) == SSA_NAME)
4855 {
4856 gimple *im = uaddc_cast (SSA_NAME_DEF_STMT (rhs[i]));
4857 im = uaddc_ne0 (g: im);
4858 if (uaddc_is_cplxpart (g: im, part: IMAGPART_EXPR))
4859 {
4860 if (im1 == NULL)
4861 {
4862 im1 = im;
4863 if (i != 0)
4864 std::swap (a&: rhs[0], b&: rhs[i]);
4865 }
4866 else
4867 {
4868 im2 = im;
4869 if (i != 1)
4870 std::swap (a&: rhs[1], b&: rhs[i]);
4871 break;
4872 }
4873 }
4874 }
4875 /* If we don't find at least two, punt. */
4876 if (!im2)
4877 return false;
4878 /* Check they are __imag__ of .ADD_OVERFLOW or .SUB_OVERFLOW call results,
4879 either both .ADD_OVERFLOW or both .SUB_OVERFLOW and that we have
4880 uaddc5/usubc5 named pattern for the corresponding mode. */
4881 gimple *ovf1
4882 = SSA_NAME_DEF_STMT (TREE_OPERAND (gimple_assign_rhs1 (im1), 0));
4883 gimple *ovf2
4884 = SSA_NAME_DEF_STMT (TREE_OPERAND (gimple_assign_rhs1 (im2), 0));
4885 internal_fn ifn;
4886 if (!is_gimple_call (gs: ovf1)
4887 || !gimple_call_internal_p (gs: ovf1)
4888 || ((ifn = gimple_call_internal_fn (gs: ovf1)) != IFN_ADD_OVERFLOW
4889 && ifn != IFN_SUB_OVERFLOW)
4890 || !gimple_call_internal_p (gs: ovf2, fn: ifn)
4891 || optab_handler (op: ifn == IFN_ADD_OVERFLOW ? uaddc5_optab : usubc5_optab,
4892 TYPE_MODE (type)) == CODE_FOR_nothing
4893 || (rhs[2]
4894 && optab_handler (op: code == PLUS_EXPR ? uaddc5_optab : usubc5_optab,
4895 TYPE_MODE (type)) == CODE_FOR_nothing))
4896 return false;
4897 tree arg1, arg2, arg3 = NULL_TREE;
4898 gimple *re1 = NULL, *re2 = NULL;
4899 /* On one of the two calls, one of the .ADD_OVERFLOW/.SUB_OVERFLOW arguments
4900 should be initialized from __real__ of the other of the two calls.
4901 Though, for .SUB_OVERFLOW, it has to be the first argument, not the
4902 second one. */
4903 for (int i = (ifn == IFN_ADD_OVERFLOW ? 1 : 0); i >= 0; --i)
4904 for (gimple *ovf = ovf1; ovf; ovf = (ovf == ovf1 ? ovf2 : NULL))
4905 {
4906 tree arg = gimple_call_arg (gs: ovf, index: i);
4907 if (TREE_CODE (arg) != SSA_NAME)
4908 continue;
4909 re1 = SSA_NAME_DEF_STMT (arg);
4910 if (uaddc_is_cplxpart (g: re1, part: REALPART_EXPR)
4911 && (SSA_NAME_DEF_STMT (TREE_OPERAND (gimple_assign_rhs1 (re1), 0))
4912 == (ovf == ovf1 ? ovf2 : ovf1)))
4913 {
4914 if (ovf == ovf1)
4915 {
4916 /* Make sure ovf2 is the .*_OVERFLOW call with argument
4917 initialized from __real__ of ovf1. */
4918 std::swap (a&: rhs[0], b&: rhs[1]);
4919 std::swap (a&: im1, b&: im2);
4920 std::swap (a&: ovf1, b&: ovf2);
4921 }
4922 arg3 = gimple_call_arg (gs: ovf, index: 1 - i);
4923 i = -1;
4924 break;
4925 }
4926 }
4927 if (!arg3)
4928 return false;
4929 arg1 = gimple_call_arg (gs: ovf1, index: 0);
4930 arg2 = gimple_call_arg (gs: ovf1, index: 1);
4931 if (!types_compatible_p (type1: type, TREE_TYPE (arg1)))
4932 return false;
4933 int kind[2] = { 0, 0 };
4934 tree arg_im[2] = { NULL_TREE, NULL_TREE };
4935 /* At least one of arg2 and arg3 should have type compatible
4936 with arg1/rhs[0], and the other one should have value in [0, 1]
4937 range. If both are in [0, 1] range and type compatible with
4938 arg1/rhs[0], try harder to find after looking through casts,
4939 != 0 comparisons which one is initialized to __imag__ of
4940 .{ADD,SUB}_OVERFLOW or .U{ADD,SUB}C call results. */
4941 for (int i = 0; i < 2; ++i)
4942 {
4943 tree arg = i == 0 ? arg2 : arg3;
4944 if (types_compatible_p (type1: type, TREE_TYPE (arg)))
4945 kind[i] = 1;
4946 if (!INTEGRAL_TYPE_P (TREE_TYPE (arg))
4947 || (TYPE_PRECISION (TREE_TYPE (arg)) == 1
4948 && !TYPE_UNSIGNED (TREE_TYPE (arg))))
4949 continue;
4950 if (tree_zero_one_valued_p (arg))
4951 kind[i] |= 2;
4952 if (TREE_CODE (arg) == SSA_NAME)
4953 {
4954 gimple *g = SSA_NAME_DEF_STMT (arg);
4955 if (gimple_assign_cast_p (s: g))
4956 {
4957 tree op = gimple_assign_rhs1 (gs: g);
4958 if (TREE_CODE (op) == SSA_NAME
4959 && INTEGRAL_TYPE_P (TREE_TYPE (op)))
4960 g = SSA_NAME_DEF_STMT (op);
4961 }
4962 g = uaddc_ne0 (g);
4963 if (!uaddc_is_cplxpart (g, part: IMAGPART_EXPR))
4964 continue;
4965 arg_im[i] = gimple_assign_lhs (gs: g);
4966 g = SSA_NAME_DEF_STMT (TREE_OPERAND (gimple_assign_rhs1 (g), 0));
4967 if (!is_gimple_call (gs: g) || !gimple_call_internal_p (gs: g))
4968 continue;
4969 switch (gimple_call_internal_fn (gs: g))
4970 {
4971 case IFN_ADD_OVERFLOW:
4972 case IFN_SUB_OVERFLOW:
4973 case IFN_UADDC:
4974 case IFN_USUBC:
4975 break;
4976 default:
4977 continue;
4978 }
4979 kind[i] |= 4;
4980 }
4981 }
4982 /* Make arg2 the one with compatible type and arg3 the one
4983 with [0, 1] range. If both is true for both operands,
4984 prefer as arg3 result of __imag__ of some ifn. */
4985 if ((kind[0] & 1) == 0 || ((kind[1] & 1) != 0 && kind[0] > kind[1]))
4986 {
4987 std::swap (a&: arg2, b&: arg3);
4988 std::swap (a&: kind[0], b&: kind[1]);
4989 std::swap (a&: arg_im[0], b&: arg_im[1]);
4990 }
4991 if ((kind[0] & 1) == 0 || (kind[1] & 6) == 0)
4992 return false;
4993 if (!has_single_use (var: gimple_assign_lhs (gs: im1))
4994 || !has_single_use (var: gimple_assign_lhs (gs: im2))
4995 || !has_single_use (var: gimple_assign_lhs (gs: re1))
4996 || num_imm_uses (var: gimple_call_lhs (gs: ovf1)) != 2)
4997 return false;
4998 /* Check that ovf2's result is used in __real__ and set re2
4999 to that statement. */
5000 use_operand_p use_p;
5001 imm_use_iterator iter;
5002 tree lhs = gimple_call_lhs (gs: ovf2);
5003 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
5004 {
5005 gimple *use_stmt = USE_STMT (use_p);
5006 if (is_gimple_debug (gs: use_stmt))
5007 continue;
5008 if (use_stmt == im2)
5009 continue;
5010 if (re2)
5011 return false;
5012 if (!uaddc_is_cplxpart (g: use_stmt, part: REALPART_EXPR))
5013 return false;
5014 re2 = use_stmt;
5015 }
5016 /* Build .UADDC/.USUBC call which will be placed before the stmt. */
5017 gimple_stmt_iterator gsi2 = gsi_for_stmt (ovf2);
5018 gimple *g;
5019 if ((kind[1] & 4) != 0 && types_compatible_p (type1: type, TREE_TYPE (arg_im[1])))
5020 arg3 = arg_im[1];
5021 if ((kind[1] & 1) == 0)
5022 {
5023 if (TREE_CODE (arg3) == INTEGER_CST)
5024 arg3 = fold_convert (type, arg3);
5025 else
5026 {
5027 g = gimple_build_assign (make_ssa_name (var: type), NOP_EXPR, arg3);
5028 gsi_insert_before (&gsi2, g, GSI_SAME_STMT);
5029 arg3 = gimple_assign_lhs (gs: g);
5030 }
5031 }
5032 g = gimple_build_call_internal (ifn == IFN_ADD_OVERFLOW
5033 ? IFN_UADDC : IFN_USUBC,
5034 3, arg1, arg2, arg3);
5035 tree nlhs = make_ssa_name (TREE_TYPE (lhs));
5036 gimple_call_set_lhs (gs: g, lhs: nlhs);
5037 gsi_insert_before (&gsi2, g, GSI_SAME_STMT);
5038 /* In the case where stmt is | or ^ of two overflow flags
5039 or addition of those, replace stmt with __imag__ of the above
5040 added call. In case of arg1 + arg2 + (ovf1 + ovf2) or
5041 arg1 - arg2 - (ovf1 + ovf2) just emit it before stmt. */
5042 tree ilhs = rhs[2] ? make_ssa_name (var: type) : gimple_assign_lhs (gs: stmt);
5043 g = gimple_build_assign (ilhs, IMAGPART_EXPR,
5044 build1 (IMAGPART_EXPR, TREE_TYPE (ilhs), nlhs));
5045 if (rhs[2])
5046 {
5047 gsi_insert_before (gsi, g, GSI_SAME_STMT);
5048 /* Remove some further statements which can't be kept in the IL because
5049 they can use SSA_NAMEs whose setter is going to be removed too. */
5050 while (temp_stmts.length ())
5051 {
5052 g = temp_stmts.pop ();
5053 gsi2 = gsi_for_stmt (g);
5054 gsi_remove (&gsi2, true);
5055 }
5056 }
5057 else
5058 gsi_replace (gsi, g, true);
5059 /* Remove some statements which can't be kept in the IL because they
5060 use SSA_NAME whose setter is going to be removed too. */
5061 tree rhs1 = rhs[1];
5062 for (int i = 0; i < 2; i++)
5063 if (rhs1 == gimple_assign_lhs (gs: im2))
5064 break;
5065 else
5066 {
5067 g = SSA_NAME_DEF_STMT (rhs1);
5068 rhs1 = gimple_assign_rhs1 (gs: g);
5069 gsi2 = gsi_for_stmt (g);
5070 gsi_remove (&gsi2, true);
5071 }
5072 gcc_checking_assert (rhs1 == gimple_assign_lhs (im2));
5073 gsi2 = gsi_for_stmt (im2);
5074 gsi_remove (&gsi2, true);
5075 /* Replace the re2 statement with __real__ of the newly added
5076 .UADDC/.USUBC call. */
5077 if (re2)
5078 {
5079 gsi2 = gsi_for_stmt (re2);
5080 tree rlhs = gimple_assign_lhs (gs: re2);
5081 g = gimple_build_assign (rlhs, REALPART_EXPR,
5082 build1 (REALPART_EXPR, TREE_TYPE (rlhs), nlhs));
5083 gsi_replace (&gsi2, g, true);
5084 }
5085 if (rhs[2])
5086 {
5087 /* If this is the arg1 + arg2 + (ovf1 + ovf2) or
5088 arg1 - arg2 - (ovf1 + ovf2) case for the most significant limb,
5089 replace stmt with __real__ of another .UADDC/.USUBC call which
5090 handles the most significant limb. Overflow flag from this is
5091 ignored. */
5092 g = gimple_build_call_internal (code == PLUS_EXPR
5093 ? IFN_UADDC : IFN_USUBC,
5094 3, rhs[3], rhs[2], ilhs);
5095 nlhs = make_ssa_name (TREE_TYPE (lhs));
5096 gimple_call_set_lhs (gs: g, lhs: nlhs);
5097 gsi_insert_before (gsi, g, GSI_SAME_STMT);
5098 ilhs = gimple_assign_lhs (gs: stmt);
5099 g = gimple_build_assign (ilhs, REALPART_EXPR,
5100 build1 (REALPART_EXPR, TREE_TYPE (ilhs), nlhs));
5101 gsi_replace (gsi, g, true);
5102 }
5103 if (TREE_CODE (arg3) == SSA_NAME)
5104 {
5105 /* When pattern recognizing the second least significant limb
5106 above (i.e. first pair of .{ADD,SUB}_OVERFLOW calls for one limb),
5107 check if the [0, 1] range argument (i.e. carry in) isn't the
5108 result of another .{ADD,SUB}_OVERFLOW call (one handling the
5109 least significant limb). Again look through casts and != 0. */
5110 gimple *im3 = SSA_NAME_DEF_STMT (arg3);
5111 for (int i = 0; i < 2; ++i)
5112 {
5113 gimple *im4 = uaddc_cast (g: im3);
5114 if (im4 == im3)
5115 break;
5116 else
5117 im3 = im4;
5118 }
5119 im3 = uaddc_ne0 (g: im3);
5120 if (uaddc_is_cplxpart (g: im3, part: IMAGPART_EXPR))
5121 {
5122 gimple *ovf3
5123 = SSA_NAME_DEF_STMT (TREE_OPERAND (gimple_assign_rhs1 (im3), 0));
5124 if (gimple_call_internal_p (gs: ovf3, fn: ifn))
5125 {
5126 lhs = gimple_call_lhs (gs: ovf3);
5127 arg1 = gimple_call_arg (gs: ovf3, index: 0);
5128 arg2 = gimple_call_arg (gs: ovf3, index: 1);
5129 if (types_compatible_p (type1: type, TREE_TYPE (TREE_TYPE (lhs)))
5130 && types_compatible_p (type1: type, TREE_TYPE (arg1))
5131 && types_compatible_p (type1: type, TREE_TYPE (arg2)))
5132 {
5133 /* And if it is initialized from result of __imag__
5134 of .{ADD,SUB}_OVERFLOW call, replace that
5135 call with .U{ADD,SUB}C call with the same arguments,
5136 just 0 added as third argument. This isn't strictly
5137 necessary, .ADD_OVERFLOW (x, y) and .UADDC (x, y, 0)
5138 produce the same result, but may result in better
5139 generated code on some targets where the backend can
5140 better prepare in how the result will be used. */
5141 g = gimple_build_call_internal (ifn == IFN_ADD_OVERFLOW
5142 ? IFN_UADDC : IFN_USUBC,
5143 3, arg1, arg2,
5144 build_zero_cst (type));
5145 gimple_call_set_lhs (gs: g, lhs);
5146 gsi2 = gsi_for_stmt (ovf3);
5147 gsi_replace (&gsi2, g, true);
5148 }
5149 }
5150 }
5151 }
5152 return true;
5153}
5154
5155/* Return true if target has support for divmod. */
5156
5157static bool
5158target_supports_divmod_p (optab divmod_optab, optab div_optab, machine_mode mode)
5159{
5160 /* If target supports hardware divmod insn, use it for divmod. */
5161 if (optab_handler (op: divmod_optab, mode) != CODE_FOR_nothing)
5162 return true;
5163
5164 /* Check if libfunc for divmod is available. */
5165 rtx libfunc = optab_libfunc (divmod_optab, mode);
5166 if (libfunc != NULL_RTX)
5167 {
5168 /* If optab_handler exists for div_optab, perhaps in a wider mode,
5169 we don't want to use the libfunc even if it exists for given mode. */
5170 machine_mode div_mode;
5171 FOR_EACH_MODE_FROM (div_mode, mode)
5172 if (optab_handler (op: div_optab, mode: div_mode) != CODE_FOR_nothing)
5173 return false;
5174
5175 return targetm.expand_divmod_libfunc != NULL;
5176 }
5177
5178 return false;
5179}
5180
5181/* Check if stmt is candidate for divmod transform. */
5182
5183static bool
5184divmod_candidate_p (gassign *stmt)
5185{
5186 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
5187 machine_mode mode = TYPE_MODE (type);
5188 optab divmod_optab, div_optab;
5189
5190 if (TYPE_UNSIGNED (type))
5191 {
5192 divmod_optab = udivmod_optab;
5193 div_optab = udiv_optab;
5194 }
5195 else
5196 {
5197 divmod_optab = sdivmod_optab;
5198 div_optab = sdiv_optab;
5199 }
5200
5201 tree op1 = gimple_assign_rhs1 (gs: stmt);
5202 tree op2 = gimple_assign_rhs2 (gs: stmt);
5203
5204 /* Disable the transform if either is a constant, since division-by-constant
5205 may have specialized expansion. */
5206 if (CONSTANT_CLASS_P (op1))
5207 return false;
5208
5209 if (CONSTANT_CLASS_P (op2))
5210 {
5211 if (integer_pow2p (op2))
5212 return false;
5213
5214 if (element_precision (type) <= HOST_BITS_PER_WIDE_INT
5215 && element_precision (type) <= BITS_PER_WORD)
5216 return false;
5217
5218 /* If the divisor is not power of 2 and the precision wider than
5219 HWI, expand_divmod punts on that, so in that case it is better
5220 to use divmod optab or libfunc. Similarly if choose_multiplier
5221 might need pre/post shifts of BITS_PER_WORD or more. */
5222 }
5223
5224 /* Exclude the case where TYPE_OVERFLOW_TRAPS (type) as that should
5225 expand using the [su]divv optabs. */
5226 if (TYPE_OVERFLOW_TRAPS (type))
5227 return false;
5228
5229 if (!target_supports_divmod_p (divmod_optab, div_optab, mode))
5230 return false;
5231
5232 return true;
5233}
5234
5235/* This function looks for:
5236 t1 = a TRUNC_DIV_EXPR b;
5237 t2 = a TRUNC_MOD_EXPR b;
5238 and transforms it to the following sequence:
5239 complex_tmp = DIVMOD (a, b);
5240 t1 = REALPART_EXPR(a);
5241 t2 = IMAGPART_EXPR(b);
5242 For conditions enabling the transform see divmod_candidate_p().
5243
5244 The pass has three parts:
5245 1) Find top_stmt which is trunc_div or trunc_mod stmt and dominates all
5246 other trunc_div_expr and trunc_mod_expr stmts.
5247 2) Add top_stmt and all trunc_div and trunc_mod stmts dominated by top_stmt
5248 to stmts vector.
5249 3) Insert DIVMOD call just before top_stmt and update entries in
5250 stmts vector to use return value of DIMOVD (REALEXPR_PART for div,
5251 IMAGPART_EXPR for mod). */
5252
5253static bool
5254convert_to_divmod (gassign *stmt)
5255{
5256 if (stmt_can_throw_internal (cfun, stmt)
5257 || !divmod_candidate_p (stmt))
5258 return false;
5259
5260 tree op1 = gimple_assign_rhs1 (gs: stmt);
5261 tree op2 = gimple_assign_rhs2 (gs: stmt);
5262
5263 imm_use_iterator use_iter;
5264 gimple *use_stmt;
5265 auto_vec<gimple *> stmts;
5266
5267 gimple *top_stmt = stmt;
5268 basic_block top_bb = gimple_bb (g: stmt);
5269
5270 /* Part 1: Try to set top_stmt to "topmost" stmt that dominates
5271 at-least stmt and possibly other trunc_div/trunc_mod stmts
5272 having same operands as stmt. */
5273
5274 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, op1)
5275 {
5276 if (is_gimple_assign (gs: use_stmt)
5277 && (gimple_assign_rhs_code (gs: use_stmt) == TRUNC_DIV_EXPR
5278 || gimple_assign_rhs_code (gs: use_stmt) == TRUNC_MOD_EXPR)
5279 && operand_equal_p (op1, gimple_assign_rhs1 (gs: use_stmt), flags: 0)
5280 && operand_equal_p (op2, gimple_assign_rhs2 (gs: use_stmt), flags: 0))
5281 {
5282 if (stmt_can_throw_internal (cfun, use_stmt))
5283 continue;
5284
5285 basic_block bb = gimple_bb (g: use_stmt);
5286
5287 if (bb == top_bb)
5288 {
5289 if (gimple_uid (g: use_stmt) < gimple_uid (g: top_stmt))
5290 top_stmt = use_stmt;
5291 }
5292 else if (dominated_by_p (CDI_DOMINATORS, top_bb, bb))
5293 {
5294 top_bb = bb;
5295 top_stmt = use_stmt;
5296 }
5297 }
5298 }
5299
5300 tree top_op1 = gimple_assign_rhs1 (gs: top_stmt);
5301 tree top_op2 = gimple_assign_rhs2 (gs: top_stmt);
5302
5303 stmts.safe_push (obj: top_stmt);
5304 bool div_seen = (gimple_assign_rhs_code (gs: top_stmt) == TRUNC_DIV_EXPR);
5305
5306 /* Part 2: Add all trunc_div/trunc_mod statements domianted by top_bb
5307 to stmts vector. The 2nd loop will always add stmt to stmts vector, since
5308 gimple_bb (top_stmt) dominates gimple_bb (stmt), so the
5309 2nd loop ends up adding at-least single trunc_mod_expr stmt. */
5310
5311 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, top_op1)
5312 {
5313 if (is_gimple_assign (gs: use_stmt)
5314 && (gimple_assign_rhs_code (gs: use_stmt) == TRUNC_DIV_EXPR
5315 || gimple_assign_rhs_code (gs: use_stmt) == TRUNC_MOD_EXPR)
5316 && operand_equal_p (top_op1, gimple_assign_rhs1 (gs: use_stmt), flags: 0)
5317 && operand_equal_p (top_op2, gimple_assign_rhs2 (gs: use_stmt), flags: 0))
5318 {
5319 if (use_stmt == top_stmt
5320 || stmt_can_throw_internal (cfun, use_stmt)
5321 || !dominated_by_p (CDI_DOMINATORS, gimple_bb (g: use_stmt), top_bb))
5322 continue;
5323
5324 stmts.safe_push (obj: use_stmt);
5325 if (gimple_assign_rhs_code (gs: use_stmt) == TRUNC_DIV_EXPR)
5326 div_seen = true;
5327 }
5328 }
5329
5330 if (!div_seen)
5331 return false;
5332
5333 /* Part 3: Create libcall to internal fn DIVMOD:
5334 divmod_tmp = DIVMOD (op1, op2). */
5335
5336 gcall *call_stmt = gimple_build_call_internal (IFN_DIVMOD, 2, op1, op2);
5337 tree res = make_temp_ssa_name (type: build_complex_type (TREE_TYPE (op1)),
5338 stmt: call_stmt, name: "divmod_tmp");
5339 gimple_call_set_lhs (gs: call_stmt, lhs: res);
5340 /* We rejected throwing statements above. */
5341 gimple_call_set_nothrow (s: call_stmt, nothrow_p: true);
5342
5343 /* Insert the call before top_stmt. */
5344 gimple_stmt_iterator top_stmt_gsi = gsi_for_stmt (top_stmt);
5345 gsi_insert_before (&top_stmt_gsi, call_stmt, GSI_SAME_STMT);
5346
5347 widen_mul_stats.divmod_calls_inserted++;
5348
5349 /* Update all statements in stmts vector:
5350 lhs = op1 TRUNC_DIV_EXPR op2 -> lhs = REALPART_EXPR<divmod_tmp>
5351 lhs = op1 TRUNC_MOD_EXPR op2 -> lhs = IMAGPART_EXPR<divmod_tmp>. */
5352
5353 for (unsigned i = 0; stmts.iterate (ix: i, ptr: &use_stmt); ++i)
5354 {
5355 tree new_rhs;
5356
5357 switch (gimple_assign_rhs_code (gs: use_stmt))
5358 {
5359 case TRUNC_DIV_EXPR:
5360 new_rhs = fold_build1 (REALPART_EXPR, TREE_TYPE (op1), res);
5361 break;
5362
5363 case TRUNC_MOD_EXPR:
5364 new_rhs = fold_build1 (IMAGPART_EXPR, TREE_TYPE (op1), res);
5365 break;
5366
5367 default:
5368 gcc_unreachable ();
5369 }
5370
5371 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
5372 gimple_assign_set_rhs_from_tree (&gsi, new_rhs);
5373 update_stmt (s: use_stmt);
5374 }
5375
5376 return true;
5377}
5378
5379/* Process a single gimple assignment STMT, which has a RSHIFT_EXPR as
5380 its rhs, and try to convert it into a MULT_HIGHPART_EXPR. The return
5381 value is true iff we converted the statement. */
5382
5383static bool
5384convert_mult_to_highpart (gassign *stmt, gimple_stmt_iterator *gsi)
5385{
5386 tree lhs = gimple_assign_lhs (gs: stmt);
5387 tree stype = TREE_TYPE (lhs);
5388 tree sarg0 = gimple_assign_rhs1 (gs: stmt);
5389 tree sarg1 = gimple_assign_rhs2 (gs: stmt);
5390
5391 if (TREE_CODE (stype) != INTEGER_TYPE
5392 || TREE_CODE (sarg1) != INTEGER_CST
5393 || TREE_CODE (sarg0) != SSA_NAME
5394 || !tree_fits_uhwi_p (sarg1)
5395 || !has_single_use (var: sarg0))
5396 return false;
5397
5398 gassign *def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (sarg0));
5399 if (!def)
5400 return false;
5401
5402 enum tree_code mcode = gimple_assign_rhs_code (gs: def);
5403 if (mcode == NOP_EXPR)
5404 {
5405 tree tmp = gimple_assign_rhs1 (gs: def);
5406 if (TREE_CODE (tmp) != SSA_NAME || !has_single_use (var: tmp))
5407 return false;
5408 def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (tmp));
5409 if (!def)
5410 return false;
5411 mcode = gimple_assign_rhs_code (gs: def);
5412 }
5413
5414 if (mcode != WIDEN_MULT_EXPR
5415 || gimple_bb (g: def) != gimple_bb (g: stmt))
5416 return false;
5417 tree mtype = TREE_TYPE (gimple_assign_lhs (def));
5418 if (TREE_CODE (mtype) != INTEGER_TYPE
5419 || TYPE_PRECISION (mtype) != TYPE_PRECISION (stype))
5420 return false;
5421
5422 tree mop1 = gimple_assign_rhs1 (gs: def);
5423 tree mop2 = gimple_assign_rhs2 (gs: def);
5424 tree optype = TREE_TYPE (mop1);
5425 bool unsignedp = TYPE_UNSIGNED (optype);
5426 unsigned int prec = TYPE_PRECISION (optype);
5427
5428 if (unsignedp != TYPE_UNSIGNED (mtype)
5429 || TYPE_PRECISION (mtype) != 2 * prec)
5430 return false;
5431
5432 unsigned HOST_WIDE_INT bits = tree_to_uhwi (sarg1);
5433 if (bits < prec || bits >= 2 * prec)
5434 return false;
5435
5436 /* For the time being, require operands to have the same sign. */
5437 if (unsignedp != TYPE_UNSIGNED (TREE_TYPE (mop2)))
5438 return false;
5439
5440 machine_mode mode = TYPE_MODE (optype);
5441 optab tab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
5442 if (optab_handler (op: tab, mode) == CODE_FOR_nothing)
5443 return false;
5444
5445 location_t loc = gimple_location (g: stmt);
5446 tree highpart1 = build_and_insert_binop (gsi, loc, name: "highparttmp",
5447 code: MULT_HIGHPART_EXPR, arg0: mop1, arg1: mop2);
5448 tree highpart2 = highpart1;
5449 tree ntype = optype;
5450
5451 if (TYPE_UNSIGNED (stype) != TYPE_UNSIGNED (optype))
5452 {
5453 ntype = TYPE_UNSIGNED (stype) ? unsigned_type_for (optype)
5454 : signed_type_for (optype);
5455 highpart2 = build_and_insert_cast (gsi, loc, type: ntype, val: highpart1);
5456 }
5457 if (bits > prec)
5458 highpart2 = build_and_insert_binop (gsi, loc, name: "highparttmp",
5459 code: RSHIFT_EXPR, arg0: highpart2,
5460 arg1: build_int_cst (ntype, bits - prec));
5461
5462 gassign *new_stmt = gimple_build_assign (lhs, NOP_EXPR, highpart2);
5463 gsi_replace (gsi, new_stmt, true);
5464
5465 widen_mul_stats.highpart_mults_inserted++;
5466 return true;
5467}
5468
5469/* If target has spaceship<MODE>3 expander, pattern recognize
5470 <bb 2> [local count: 1073741824]:
5471 if (a_2(D) == b_3(D))
5472 goto <bb 6>; [34.00%]
5473 else
5474 goto <bb 3>; [66.00%]
5475
5476 <bb 3> [local count: 708669601]:
5477 if (a_2(D) < b_3(D))
5478 goto <bb 6>; [1.04%]
5479 else
5480 goto <bb 4>; [98.96%]
5481
5482 <bb 4> [local count: 701299439]:
5483 if (a_2(D) > b_3(D))
5484 goto <bb 5>; [48.89%]
5485 else
5486 goto <bb 6>; [51.11%]
5487
5488 <bb 5> [local count: 342865295]:
5489
5490 <bb 6> [local count: 1073741824]:
5491 and turn it into:
5492 <bb 2> [local count: 1073741824]:
5493 _1 = .SPACESHIP (a_2(D), b_3(D));
5494 if (_1 == 0)
5495 goto <bb 6>; [34.00%]
5496 else
5497 goto <bb 3>; [66.00%]
5498
5499 <bb 3> [local count: 708669601]:
5500 if (_1 == -1)
5501 goto <bb 6>; [1.04%]
5502 else
5503 goto <bb 4>; [98.96%]
5504
5505 <bb 4> [local count: 701299439]:
5506 if (_1 == 1)
5507 goto <bb 5>; [48.89%]
5508 else
5509 goto <bb 6>; [51.11%]
5510
5511 <bb 5> [local count: 342865295]:
5512
5513 <bb 6> [local count: 1073741824]:
5514 so that the backend can emit optimal comparison and
5515 conditional jump sequence. */
5516
5517static void
5518optimize_spaceship (gcond *stmt)
5519{
5520 enum tree_code code = gimple_cond_code (gs: stmt);
5521 if (code != EQ_EXPR && code != NE_EXPR)
5522 return;
5523 tree arg1 = gimple_cond_lhs (gs: stmt);
5524 tree arg2 = gimple_cond_rhs (gs: stmt);
5525 if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg1))
5526 || optab_handler (op: spaceship_optab,
5527 TYPE_MODE (TREE_TYPE (arg1))) == CODE_FOR_nothing
5528 || operand_equal_p (arg1, arg2, flags: 0))
5529 return;
5530
5531 basic_block bb0 = gimple_bb (g: stmt), bb1, bb2 = NULL;
5532 edge em1 = NULL, e1 = NULL, e2 = NULL;
5533 bb1 = EDGE_SUCC (bb0, 1)->dest;
5534 if (((EDGE_SUCC (bb0, 0)->flags & EDGE_TRUE_VALUE) != 0) ^ (code == EQ_EXPR))
5535 bb1 = EDGE_SUCC (bb0, 0)->dest;
5536
5537 gcond *g = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: bb1));
5538 if (g == NULL
5539 || !single_pred_p (bb: bb1)
5540 || (operand_equal_p (gimple_cond_lhs (gs: g), arg1, flags: 0)
5541 ? !operand_equal_p (gimple_cond_rhs (gs: g), arg2, flags: 0)
5542 : (!operand_equal_p (gimple_cond_lhs (gs: g), arg2, flags: 0)
5543 || !operand_equal_p (gimple_cond_rhs (gs: g), arg1, flags: 0)))
5544 || !cond_only_block_p (bb1))
5545 return;
5546
5547 enum tree_code ccode = (operand_equal_p (gimple_cond_lhs (gs: g), arg1, flags: 0)
5548 ? LT_EXPR : GT_EXPR);
5549 switch (gimple_cond_code (gs: g))
5550 {
5551 case LT_EXPR:
5552 case LE_EXPR:
5553 break;
5554 case GT_EXPR:
5555 case GE_EXPR:
5556 ccode = ccode == LT_EXPR ? GT_EXPR : LT_EXPR;
5557 break;
5558 default:
5559 return;
5560 }
5561
5562 for (int i = 0; i < 2; ++i)
5563 {
5564 /* With NaNs, </<=/>/>= are false, so we need to look for the
5565 third comparison on the false edge from whatever non-equality
5566 comparison the second comparison is. */
5567 if (HONOR_NANS (TREE_TYPE (arg1))
5568 && (EDGE_SUCC (bb1, i)->flags & EDGE_TRUE_VALUE) != 0)
5569 continue;
5570
5571 bb2 = EDGE_SUCC (bb1, i)->dest;
5572 g = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: bb2));
5573 if (g == NULL
5574 || !single_pred_p (bb: bb2)
5575 || (operand_equal_p (gimple_cond_lhs (gs: g), arg1, flags: 0)
5576 ? !operand_equal_p (gimple_cond_rhs (gs: g), arg2, flags: 0)
5577 : (!operand_equal_p (gimple_cond_lhs (gs: g), arg2, flags: 0)
5578 || !operand_equal_p (gimple_cond_rhs (gs: g), arg1, flags: 0)))
5579 || !cond_only_block_p (bb2)
5580 || EDGE_SUCC (bb2, 0)->dest == EDGE_SUCC (bb2, 1)->dest)
5581 continue;
5582
5583 enum tree_code ccode2
5584 = (operand_equal_p (gimple_cond_lhs (gs: g), arg1, flags: 0) ? LT_EXPR : GT_EXPR);
5585 switch (gimple_cond_code (gs: g))
5586 {
5587 case LT_EXPR:
5588 case LE_EXPR:
5589 break;
5590 case GT_EXPR:
5591 case GE_EXPR:
5592 ccode2 = ccode2 == LT_EXPR ? GT_EXPR : LT_EXPR;
5593 break;
5594 default:
5595 continue;
5596 }
5597 if (HONOR_NANS (TREE_TYPE (arg1)) && ccode == ccode2)
5598 continue;
5599
5600 if ((ccode == LT_EXPR)
5601 ^ ((EDGE_SUCC (bb1, i)->flags & EDGE_TRUE_VALUE) != 0))
5602 {
5603 em1 = EDGE_SUCC (bb1, 1 - i);
5604 e1 = EDGE_SUCC (bb2, 0);
5605 e2 = EDGE_SUCC (bb2, 1);
5606 if ((ccode2 == LT_EXPR) ^ ((e1->flags & EDGE_TRUE_VALUE) == 0))
5607 std::swap (a&: e1, b&: e2);
5608 }
5609 else
5610 {
5611 e1 = EDGE_SUCC (bb1, 1 - i);
5612 em1 = EDGE_SUCC (bb2, 0);
5613 e2 = EDGE_SUCC (bb2, 1);
5614 if ((ccode2 != LT_EXPR) ^ ((em1->flags & EDGE_TRUE_VALUE) == 0))
5615 std::swap (a&: em1, b&: e2);
5616 }
5617 break;
5618 }
5619
5620 if (em1 == NULL)
5621 {
5622 if ((ccode == LT_EXPR)
5623 ^ ((EDGE_SUCC (bb1, 0)->flags & EDGE_TRUE_VALUE) != 0))
5624 {
5625 em1 = EDGE_SUCC (bb1, 1);
5626 e1 = EDGE_SUCC (bb1, 0);
5627 e2 = (e1->flags & EDGE_TRUE_VALUE) ? em1 : e1;
5628 }
5629 else
5630 {
5631 em1 = EDGE_SUCC (bb1, 0);
5632 e1 = EDGE_SUCC (bb1, 1);
5633 e2 = (e1->flags & EDGE_TRUE_VALUE) ? em1 : e1;
5634 }
5635 }
5636
5637 gcall *gc = gimple_build_call_internal (IFN_SPACESHIP, 2, arg1, arg2);
5638 tree lhs = make_ssa_name (integer_type_node);
5639 gimple_call_set_lhs (gs: gc, lhs);
5640 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
5641 gsi_insert_before (&gsi, gc, GSI_SAME_STMT);
5642
5643 gimple_cond_set_lhs (gs: stmt, lhs);
5644 gimple_cond_set_rhs (gs: stmt, integer_zero_node);
5645 update_stmt (s: stmt);
5646
5647 gcond *cond = as_a <gcond *> (p: *gsi_last_bb (bb: bb1));
5648 gimple_cond_set_lhs (gs: cond, lhs);
5649 if (em1->src == bb1 && e2 != em1)
5650 {
5651 gimple_cond_set_rhs (gs: cond, integer_minus_one_node);
5652 gimple_cond_set_code (gs: cond, code: (em1->flags & EDGE_TRUE_VALUE)
5653 ? EQ_EXPR : NE_EXPR);
5654 }
5655 else
5656 {
5657 gcc_assert (e1->src == bb1 && e2 != e1);
5658 gimple_cond_set_rhs (gs: cond, integer_one_node);
5659 gimple_cond_set_code (gs: cond, code: (e1->flags & EDGE_TRUE_VALUE)
5660 ? EQ_EXPR : NE_EXPR);
5661 }
5662 update_stmt (s: cond);
5663
5664 if (e2 != e1 && e2 != em1)
5665 {
5666 cond = as_a <gcond *> (p: *gsi_last_bb (bb: bb2));
5667 gimple_cond_set_lhs (gs: cond, lhs);
5668 if (em1->src == bb2)
5669 gimple_cond_set_rhs (gs: cond, integer_minus_one_node);
5670 else
5671 {
5672 gcc_assert (e1->src == bb2);
5673 gimple_cond_set_rhs (gs: cond, integer_one_node);
5674 }
5675 gimple_cond_set_code (gs: cond,
5676 code: (e2->flags & EDGE_TRUE_VALUE) ? NE_EXPR : EQ_EXPR);
5677 update_stmt (s: cond);
5678 }
5679
5680 wide_int wm1 = wi::minus_one (TYPE_PRECISION (integer_type_node));
5681 wide_int w2 = wi::two (TYPE_PRECISION (integer_type_node));
5682 value_range vr (TREE_TYPE (lhs), wm1, w2);
5683 set_range_info (lhs, vr);
5684}
5685
5686
5687/* Find integer multiplications where the operands are extended from
5688 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
5689 or MULT_HIGHPART_EXPR where appropriate. */
5690
5691namespace {
5692
5693const pass_data pass_data_optimize_widening_mul =
5694{
5695 .type: GIMPLE_PASS, /* type */
5696 .name: "widening_mul", /* name */
5697 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
5698 .tv_id: TV_TREE_WIDEN_MUL, /* tv_id */
5699 PROP_ssa, /* properties_required */
5700 .properties_provided: 0, /* properties_provided */
5701 .properties_destroyed: 0, /* properties_destroyed */
5702 .todo_flags_start: 0, /* todo_flags_start */
5703 TODO_update_ssa, /* todo_flags_finish */
5704};
5705
5706class pass_optimize_widening_mul : public gimple_opt_pass
5707{
5708public:
5709 pass_optimize_widening_mul (gcc::context *ctxt)
5710 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
5711 {}
5712
5713 /* opt_pass methods: */
5714 bool gate (function *) final override
5715 {
5716 return flag_expensive_optimizations && optimize;
5717 }
5718
5719 unsigned int execute (function *) final override;
5720
5721}; // class pass_optimize_widening_mul
5722
5723/* Walker class to perform the transformation in reverse dominance order. */
5724
5725class math_opts_dom_walker : public dom_walker
5726{
5727public:
5728 /* Constructor, CFG_CHANGED is a pointer to a boolean flag that will be set
5729 if walking modidifes the CFG. */
5730
5731 math_opts_dom_walker (bool *cfg_changed_p)
5732 : dom_walker (CDI_DOMINATORS), m_last_result_set (),
5733 m_cfg_changed_p (cfg_changed_p) {}
5734
5735 /* The actual actions performed in the walk. */
5736
5737 void after_dom_children (basic_block) final override;
5738
5739 /* Set of results of chains of multiply and add statement combinations that
5740 were not transformed into FMAs because of active deferring. */
5741 hash_set<tree> m_last_result_set;
5742
5743 /* Pointer to a flag of the user that needs to be set if CFG has been
5744 modified. */
5745 bool *m_cfg_changed_p;
5746};
5747
5748void
5749math_opts_dom_walker::after_dom_children (basic_block bb)
5750{
5751 gimple_stmt_iterator gsi;
5752
5753 fma_deferring_state fma_state (param_avoid_fma_max_bits > 0);
5754
5755 for (gsi = gsi_after_labels (bb); !gsi_end_p (i: gsi);)
5756 {
5757 gimple *stmt = gsi_stmt (i: gsi);
5758 enum tree_code code;
5759
5760 if (is_gimple_assign (gs: stmt))
5761 {
5762 code = gimple_assign_rhs_code (gs: stmt);
5763 switch (code)
5764 {
5765 case MULT_EXPR:
5766 if (!convert_mult_to_widen (stmt, gsi: &gsi)
5767 && !convert_expand_mult_copysign (stmt, gsi: &gsi)
5768 && convert_mult_to_fma (mul_stmt: stmt,
5769 op1: gimple_assign_rhs1 (gs: stmt),
5770 op2: gimple_assign_rhs2 (gs: stmt),
5771 state: &fma_state))
5772 {
5773 gsi_remove (&gsi, true);
5774 release_defs (stmt);
5775 continue;
5776 }
5777 match_arith_overflow (gsi: &gsi, stmt, code, cfg_changed: m_cfg_changed_p);
5778 break;
5779
5780 case PLUS_EXPR:
5781 case MINUS_EXPR:
5782 if (!convert_plusminus_to_widen (gsi: &gsi, stmt, code))
5783 {
5784 match_arith_overflow (gsi: &gsi, stmt, code, cfg_changed: m_cfg_changed_p);
5785 if (gsi_stmt (i: gsi) == stmt)
5786 match_uaddc_usubc (gsi: &gsi, stmt, code);
5787 }
5788 break;
5789
5790 case BIT_NOT_EXPR:
5791 if (match_arith_overflow (gsi: &gsi, stmt, code, cfg_changed: m_cfg_changed_p))
5792 continue;
5793 break;
5794
5795 case TRUNC_MOD_EXPR:
5796 convert_to_divmod (stmt: as_a<gassign *> (p: stmt));
5797 break;
5798
5799 case RSHIFT_EXPR:
5800 convert_mult_to_highpart (stmt: as_a<gassign *> (p: stmt), gsi: &gsi);
5801 break;
5802
5803 case BIT_IOR_EXPR:
5804 case BIT_XOR_EXPR:
5805 match_uaddc_usubc (gsi: &gsi, stmt, code);
5806 break;
5807
5808 default:;
5809 }
5810 }
5811 else if (is_gimple_call (gs: stmt))
5812 {
5813 switch (gimple_call_combined_fn (stmt))
5814 {
5815 CASE_CFN_POW:
5816 if (gimple_call_lhs (gs: stmt)
5817 && TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
5818 && real_equal (&TREE_REAL_CST (gimple_call_arg (stmt, 1)),
5819 &dconst2)
5820 && convert_mult_to_fma (mul_stmt: stmt,
5821 op1: gimple_call_arg (gs: stmt, index: 0),
5822 op2: gimple_call_arg (gs: stmt, index: 0),
5823 state: &fma_state))
5824 {
5825 unlink_stmt_vdef (stmt);
5826 if (gsi_remove (&gsi, true)
5827 && gimple_purge_dead_eh_edges (bb))
5828 *m_cfg_changed_p = true;
5829 release_defs (stmt);
5830 continue;
5831 }
5832 break;
5833
5834 case CFN_COND_MUL:
5835 if (convert_mult_to_fma (mul_stmt: stmt,
5836 op1: gimple_call_arg (gs: stmt, index: 1),
5837 op2: gimple_call_arg (gs: stmt, index: 2),
5838 state: &fma_state,
5839 mul_cond: gimple_call_arg (gs: stmt, index: 0)))
5840
5841 {
5842 gsi_remove (&gsi, true);
5843 release_defs (stmt);
5844 continue;
5845 }
5846 break;
5847
5848 case CFN_COND_LEN_MUL:
5849 if (convert_mult_to_fma (mul_stmt: stmt,
5850 op1: gimple_call_arg (gs: stmt, index: 1),
5851 op2: gimple_call_arg (gs: stmt, index: 2),
5852 state: &fma_state,
5853 mul_cond: gimple_call_arg (gs: stmt, index: 0),
5854 mul_len: gimple_call_arg (gs: stmt, index: 4),
5855 mul_bias: gimple_call_arg (gs: stmt, index: 5)))
5856
5857 {
5858 gsi_remove (&gsi, true);
5859 release_defs (stmt);
5860 continue;
5861 }
5862 break;
5863
5864 case CFN_LAST:
5865 cancel_fma_deferring (state: &fma_state);
5866 break;
5867
5868 default:
5869 break;
5870 }
5871 }
5872 else if (gimple_code (g: stmt) == GIMPLE_COND)
5873 optimize_spaceship (stmt: as_a <gcond *> (p: stmt));
5874 gsi_next (i: &gsi);
5875 }
5876 if (fma_state.m_deferring_p
5877 && fma_state.m_initial_phi)
5878 {
5879 gcc_checking_assert (fma_state.m_last_result);
5880 if (!last_fma_candidate_feeds_initial_phi (state: &fma_state,
5881 last_result_set: &m_last_result_set))
5882 cancel_fma_deferring (state: &fma_state);
5883 else
5884 m_last_result_set.add (k: fma_state.m_last_result);
5885 }
5886}
5887
5888
5889unsigned int
5890pass_optimize_widening_mul::execute (function *fun)
5891{
5892 bool cfg_changed = false;
5893
5894 memset (s: &widen_mul_stats, c: 0, n: sizeof (widen_mul_stats));
5895 calculate_dominance_info (CDI_DOMINATORS);
5896 renumber_gimple_stmt_uids (cfun);
5897
5898 math_opts_dom_walker (&cfg_changed).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5899
5900 statistics_counter_event (fun, "widening multiplications inserted",
5901 widen_mul_stats.widen_mults_inserted);
5902 statistics_counter_event (fun, "widening maccs inserted",
5903 widen_mul_stats.maccs_inserted);
5904 statistics_counter_event (fun, "fused multiply-adds inserted",
5905 widen_mul_stats.fmas_inserted);
5906 statistics_counter_event (fun, "divmod calls inserted",
5907 widen_mul_stats.divmod_calls_inserted);
5908 statistics_counter_event (fun, "highpart multiplications inserted",
5909 widen_mul_stats.highpart_mults_inserted);
5910
5911 return cfg_changed ? TODO_cleanup_cfg : 0;
5912}
5913
5914} // anon namespace
5915
5916gimple_opt_pass *
5917make_pass_optimize_widening_mul (gcc::context *ctxt)
5918{
5919 return new pass_optimize_widening_mul (ctxt);
5920}
5921

source code of gcc/tree-ssa-math-opts.cc