1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7#include <linux/mman.h>
8#include <linux/kvm_host.h>
9#include <linux/io.h>
10#include <linux/hugetlb.h>
11#include <linux/sched/signal.h>
12#include <trace/events/kvm.h>
13#include <asm/pgalloc.h>
14#include <asm/cacheflush.h>
15#include <asm/kvm_arm.h>
16#include <asm/kvm_mmu.h>
17#include <asm/kvm_pgtable.h>
18#include <asm/kvm_ras.h>
19#include <asm/kvm_asm.h>
20#include <asm/kvm_emulate.h>
21#include <asm/virt.h>
22
23#include "trace.h"
24
25static struct kvm_pgtable *hyp_pgtable;
26static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28static unsigned long __ro_after_init hyp_idmap_start;
29static unsigned long __ro_after_init hyp_idmap_end;
30static phys_addr_t __ro_after_init hyp_idmap_vector;
31
32static unsigned long __ro_after_init io_map_base;
33
34static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
35 phys_addr_t size)
36{
37 phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38
39 return (boundary - 1 < end - 1) ? boundary : end;
40}
41
42static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
43{
44 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
45
46 return __stage2_range_addr_end(addr, end, size);
47}
48
49/*
50 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
51 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
52 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
53 * long will also starve other vCPUs. We have to also make sure that the page
54 * tables are not freed while we released the lock.
55 */
56static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
57 phys_addr_t end,
58 int (*fn)(struct kvm_pgtable *, u64, u64),
59 bool resched)
60{
61 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
62 int ret;
63 u64 next;
64
65 do {
66 struct kvm_pgtable *pgt = mmu->pgt;
67 if (!pgt)
68 return -EINVAL;
69
70 next = stage2_range_addr_end(addr, end);
71 ret = fn(pgt, addr, next - addr);
72 if (ret)
73 break;
74
75 if (resched && next != end)
76 cond_resched_rwlock_write(&kvm->mmu_lock);
77 } while (addr = next, addr != end);
78
79 return ret;
80}
81
82#define stage2_apply_range_resched(mmu, addr, end, fn) \
83 stage2_apply_range(mmu, addr, end, fn, true)
84
85/*
86 * Get the maximum number of page-tables pages needed to split a range
87 * of blocks into PAGE_SIZE PTEs. It assumes the range is already
88 * mapped at level 2, or at level 1 if allowed.
89 */
90static int kvm_mmu_split_nr_page_tables(u64 range)
91{
92 int n = 0;
93
94 if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
95 n += DIV_ROUND_UP(range, PUD_SIZE);
96 n += DIV_ROUND_UP(range, PMD_SIZE);
97 return n;
98}
99
100static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
101{
102 struct kvm_mmu_memory_cache *cache;
103 u64 chunk_size, min;
104
105 if (need_resched() || rwlock_needbreak(lock: &kvm->mmu_lock))
106 return true;
107
108 chunk_size = kvm->arch.mmu.split_page_chunk_size;
109 min = kvm_mmu_split_nr_page_tables(range: chunk_size);
110 cache = &kvm->arch.mmu.split_page_cache;
111 return kvm_mmu_memory_cache_nr_free_objects(mc: cache) < min;
112}
113
114static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
115 phys_addr_t end)
116{
117 struct kvm_mmu_memory_cache *cache;
118 struct kvm_pgtable *pgt;
119 int ret, cache_capacity;
120 u64 next, chunk_size;
121
122 lockdep_assert_held_write(&kvm->mmu_lock);
123
124 chunk_size = kvm->arch.mmu.split_page_chunk_size;
125 cache_capacity = kvm_mmu_split_nr_page_tables(range: chunk_size);
126
127 if (chunk_size == 0)
128 return 0;
129
130 cache = &kvm->arch.mmu.split_page_cache;
131
132 do {
133 if (need_split_memcache_topup_or_resched(kvm)) {
134 write_unlock(&kvm->mmu_lock);
135 cond_resched();
136 /* Eager page splitting is best-effort. */
137 ret = __kvm_mmu_topup_memory_cache(mc: cache,
138 capacity: cache_capacity,
139 min: cache_capacity);
140 write_lock(&kvm->mmu_lock);
141 if (ret)
142 break;
143 }
144
145 pgt = kvm->arch.mmu.pgt;
146 if (!pgt)
147 return -EINVAL;
148
149 next = __stage2_range_addr_end(addr, end, size: chunk_size);
150 ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
151 if (ret)
152 break;
153 } while (addr = next, addr != end);
154
155 return ret;
156}
157
158static bool memslot_is_logging(struct kvm_memory_slot *memslot)
159{
160 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
161}
162
163/**
164 * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
165 * @kvm: pointer to kvm structure.
166 *
167 * Interface to HYP function to flush all VM TLB entries
168 */
169int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
170{
171 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
172 return 0;
173}
174
175int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
176 gfn_t gfn, u64 nr_pages)
177{
178 kvm_tlb_flush_vmid_range(&kvm->arch.mmu,
179 gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
180 return 0;
181}
182
183static bool kvm_is_device_pfn(unsigned long pfn)
184{
185 return !pfn_is_map_memory(pfn);
186}
187
188static void *stage2_memcache_zalloc_page(void *arg)
189{
190 struct kvm_mmu_memory_cache *mc = arg;
191 void *virt;
192
193 /* Allocated with __GFP_ZERO, so no need to zero */
194 virt = kvm_mmu_memory_cache_alloc(mc);
195 if (virt)
196 kvm_account_pgtable_pages(virt, nr: 1);
197 return virt;
198}
199
200static void *kvm_host_zalloc_pages_exact(size_t size)
201{
202 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
203}
204
205static void *kvm_s2_zalloc_pages_exact(size_t size)
206{
207 void *virt = kvm_host_zalloc_pages_exact(size);
208
209 if (virt)
210 kvm_account_pgtable_pages(virt, nr: (size >> PAGE_SHIFT));
211 return virt;
212}
213
214static void kvm_s2_free_pages_exact(void *virt, size_t size)
215{
216 kvm_account_pgtable_pages(virt, nr: -(size >> PAGE_SHIFT));
217 free_pages_exact(virt, size);
218}
219
220static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
221
222static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
223{
224 struct page *page = container_of(head, struct page, rcu_head);
225 void *pgtable = page_to_virt(page);
226 s8 level = page_private(page);
227
228 kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level);
229}
230
231static void stage2_free_unlinked_table(void *addr, s8 level)
232{
233 struct page *page = virt_to_page(addr);
234
235 set_page_private(page, private: (unsigned long)level);
236 call_rcu(head: &page->rcu_head, func: stage2_free_unlinked_table_rcu_cb);
237}
238
239static void kvm_host_get_page(void *addr)
240{
241 get_page(virt_to_page(addr));
242}
243
244static void kvm_host_put_page(void *addr)
245{
246 put_page(virt_to_page(addr));
247}
248
249static void kvm_s2_put_page(void *addr)
250{
251 struct page *p = virt_to_page(addr);
252 /* Dropping last refcount, the page will be freed */
253 if (page_count(page: p) == 1)
254 kvm_account_pgtable_pages(virt: addr, nr: -1);
255 put_page(page: p);
256}
257
258static int kvm_host_page_count(void *addr)
259{
260 return page_count(virt_to_page(addr));
261}
262
263static phys_addr_t kvm_host_pa(void *addr)
264{
265 return __pa(addr);
266}
267
268static void *kvm_host_va(phys_addr_t phys)
269{
270 return __va(phys);
271}
272
273static void clean_dcache_guest_page(void *va, size_t size)
274{
275 __clean_dcache_guest_page(va, size);
276}
277
278static void invalidate_icache_guest_page(void *va, size_t size)
279{
280 __invalidate_icache_guest_page(va, size);
281}
282
283/*
284 * Unmapping vs dcache management:
285 *
286 * If a guest maps certain memory pages as uncached, all writes will
287 * bypass the data cache and go directly to RAM. However, the CPUs
288 * can still speculate reads (not writes) and fill cache lines with
289 * data.
290 *
291 * Those cache lines will be *clean* cache lines though, so a
292 * clean+invalidate operation is equivalent to an invalidate
293 * operation, because no cache lines are marked dirty.
294 *
295 * Those clean cache lines could be filled prior to an uncached write
296 * by the guest, and the cache coherent IO subsystem would therefore
297 * end up writing old data to disk.
298 *
299 * This is why right after unmapping a page/section and invalidating
300 * the corresponding TLBs, we flush to make sure the IO subsystem will
301 * never hit in the cache.
302 *
303 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
304 * we then fully enforce cacheability of RAM, no matter what the guest
305 * does.
306 */
307/**
308 * __unmap_stage2_range -- Clear stage2 page table entries to unmap a range
309 * @mmu: The KVM stage-2 MMU pointer
310 * @start: The intermediate physical base address of the range to unmap
311 * @size: The size of the area to unmap
312 * @may_block: Whether or not we are permitted to block
313 *
314 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
315 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
316 * destroying the VM), otherwise another faulting VCPU may come in and mess
317 * with things behind our backs.
318 */
319static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
320 bool may_block)
321{
322 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
323 phys_addr_t end = start + size;
324
325 lockdep_assert_held_write(&kvm->mmu_lock);
326 WARN_ON(size & ~PAGE_MASK);
327 WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
328 may_block));
329}
330
331static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
332{
333 __unmap_stage2_range(mmu, start, size, may_block: true);
334}
335
336static void stage2_flush_memslot(struct kvm *kvm,
337 struct kvm_memory_slot *memslot)
338{
339 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
340 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
341
342 stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush);
343}
344
345/**
346 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
347 * @kvm: The struct kvm pointer
348 *
349 * Go through the stage 2 page tables and invalidate any cache lines
350 * backing memory already mapped to the VM.
351 */
352static void stage2_flush_vm(struct kvm *kvm)
353{
354 struct kvm_memslots *slots;
355 struct kvm_memory_slot *memslot;
356 int idx, bkt;
357
358 idx = srcu_read_lock(ssp: &kvm->srcu);
359 write_lock(&kvm->mmu_lock);
360
361 slots = kvm_memslots(kvm);
362 kvm_for_each_memslot(memslot, bkt, slots)
363 stage2_flush_memslot(kvm, memslot);
364
365 write_unlock(&kvm->mmu_lock);
366 srcu_read_unlock(ssp: &kvm->srcu, idx);
367}
368
369/**
370 * free_hyp_pgds - free Hyp-mode page tables
371 */
372void __init free_hyp_pgds(void)
373{
374 mutex_lock(&kvm_hyp_pgd_mutex);
375 if (hyp_pgtable) {
376 kvm_pgtable_hyp_destroy(hyp_pgtable);
377 kfree(objp: hyp_pgtable);
378 hyp_pgtable = NULL;
379 }
380 mutex_unlock(lock: &kvm_hyp_pgd_mutex);
381}
382
383static bool kvm_host_owns_hyp_mappings(void)
384{
385 if (is_kernel_in_hyp_mode())
386 return false;
387
388 if (static_branch_likely(&kvm_protected_mode_initialized))
389 return false;
390
391 /*
392 * This can happen at boot time when __create_hyp_mappings() is called
393 * after the hyp protection has been enabled, but the static key has
394 * not been flipped yet.
395 */
396 if (!hyp_pgtable && is_protected_kvm_enabled())
397 return false;
398
399 WARN_ON(!hyp_pgtable);
400
401 return true;
402}
403
404int __create_hyp_mappings(unsigned long start, unsigned long size,
405 unsigned long phys, enum kvm_pgtable_prot prot)
406{
407 int err;
408
409 if (WARN_ON(!kvm_host_owns_hyp_mappings()))
410 return -EINVAL;
411
412 mutex_lock(&kvm_hyp_pgd_mutex);
413 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
414 mutex_unlock(lock: &kvm_hyp_pgd_mutex);
415
416 return err;
417}
418
419static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
420{
421 if (!is_vmalloc_addr(x: kaddr)) {
422 BUG_ON(!virt_addr_valid(kaddr));
423 return __pa(kaddr);
424 } else {
425 return page_to_phys(vmalloc_to_page(kaddr)) +
426 offset_in_page(kaddr);
427 }
428}
429
430struct hyp_shared_pfn {
431 u64 pfn;
432 int count;
433 struct rb_node node;
434};
435
436static DEFINE_MUTEX(hyp_shared_pfns_lock);
437static struct rb_root hyp_shared_pfns = RB_ROOT;
438
439static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
440 struct rb_node **parent)
441{
442 struct hyp_shared_pfn *this;
443
444 *node = &hyp_shared_pfns.rb_node;
445 *parent = NULL;
446 while (**node) {
447 this = container_of(**node, struct hyp_shared_pfn, node);
448 *parent = **node;
449 if (this->pfn < pfn)
450 *node = &((**node)->rb_left);
451 else if (this->pfn > pfn)
452 *node = &((**node)->rb_right);
453 else
454 return this;
455 }
456
457 return NULL;
458}
459
460static int share_pfn_hyp(u64 pfn)
461{
462 struct rb_node **node, *parent;
463 struct hyp_shared_pfn *this;
464 int ret = 0;
465
466 mutex_lock(&hyp_shared_pfns_lock);
467 this = find_shared_pfn(pfn, node: &node, parent: &parent);
468 if (this) {
469 this->count++;
470 goto unlock;
471 }
472
473 this = kzalloc(size: sizeof(*this), GFP_KERNEL);
474 if (!this) {
475 ret = -ENOMEM;
476 goto unlock;
477 }
478
479 this->pfn = pfn;
480 this->count = 1;
481 rb_link_node(node: &this->node, parent, rb_link: node);
482 rb_insert_color(&this->node, &hyp_shared_pfns);
483 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
484unlock:
485 mutex_unlock(lock: &hyp_shared_pfns_lock);
486
487 return ret;
488}
489
490static int unshare_pfn_hyp(u64 pfn)
491{
492 struct rb_node **node, *parent;
493 struct hyp_shared_pfn *this;
494 int ret = 0;
495
496 mutex_lock(&hyp_shared_pfns_lock);
497 this = find_shared_pfn(pfn, node: &node, parent: &parent);
498 if (WARN_ON(!this)) {
499 ret = -ENOENT;
500 goto unlock;
501 }
502
503 this->count--;
504 if (this->count)
505 goto unlock;
506
507 rb_erase(&this->node, &hyp_shared_pfns);
508 kfree(objp: this);
509 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
510unlock:
511 mutex_unlock(lock: &hyp_shared_pfns_lock);
512
513 return ret;
514}
515
516int kvm_share_hyp(void *from, void *to)
517{
518 phys_addr_t start, end, cur;
519 u64 pfn;
520 int ret;
521
522 if (is_kernel_in_hyp_mode())
523 return 0;
524
525 /*
526 * The share hcall maps things in the 'fixed-offset' region of the hyp
527 * VA space, so we can only share physically contiguous data-structures
528 * for now.
529 */
530 if (is_vmalloc_or_module_addr(x: from) || is_vmalloc_or_module_addr(x: to))
531 return -EINVAL;
532
533 if (kvm_host_owns_hyp_mappings())
534 return create_hyp_mappings(from, to, PAGE_HYP);
535
536 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
537 end = PAGE_ALIGN(__pa(to));
538 for (cur = start; cur < end; cur += PAGE_SIZE) {
539 pfn = __phys_to_pfn(cur);
540 ret = share_pfn_hyp(pfn);
541 if (ret)
542 return ret;
543 }
544
545 return 0;
546}
547
548void kvm_unshare_hyp(void *from, void *to)
549{
550 phys_addr_t start, end, cur;
551 u64 pfn;
552
553 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
554 return;
555
556 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
557 end = PAGE_ALIGN(__pa(to));
558 for (cur = start; cur < end; cur += PAGE_SIZE) {
559 pfn = __phys_to_pfn(cur);
560 WARN_ON(unshare_pfn_hyp(pfn));
561 }
562}
563
564/**
565 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
566 * @from: The virtual kernel start address of the range
567 * @to: The virtual kernel end address of the range (exclusive)
568 * @prot: The protection to be applied to this range
569 *
570 * The same virtual address as the kernel virtual address is also used
571 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
572 * physical pages.
573 */
574int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
575{
576 phys_addr_t phys_addr;
577 unsigned long virt_addr;
578 unsigned long start = kern_hyp_va((unsigned long)from);
579 unsigned long end = kern_hyp_va((unsigned long)to);
580
581 if (is_kernel_in_hyp_mode())
582 return 0;
583
584 if (!kvm_host_owns_hyp_mappings())
585 return -EPERM;
586
587 start = start & PAGE_MASK;
588 end = PAGE_ALIGN(end);
589
590 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
591 int err;
592
593 phys_addr = kvm_kaddr_to_phys(kaddr: from + virt_addr - start);
594 err = __create_hyp_mappings(start: virt_addr, PAGE_SIZE, phys: phys_addr,
595 prot: prot);
596 if (err)
597 return err;
598 }
599
600 return 0;
601}
602
603static int __hyp_alloc_private_va_range(unsigned long base)
604{
605 lockdep_assert_held(&kvm_hyp_pgd_mutex);
606
607 if (!PAGE_ALIGNED(base))
608 return -EINVAL;
609
610 /*
611 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
612 * allocating the new area, as it would indicate we've
613 * overflowed the idmap/IO address range.
614 */
615 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
616 return -ENOMEM;
617
618 io_map_base = base;
619
620 return 0;
621}
622
623/**
624 * hyp_alloc_private_va_range - Allocates a private VA range.
625 * @size: The size of the VA range to reserve.
626 * @haddr: The hypervisor virtual start address of the allocation.
627 *
628 * The private virtual address (VA) range is allocated below io_map_base
629 * and aligned based on the order of @size.
630 *
631 * Return: 0 on success or negative error code on failure.
632 */
633int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
634{
635 unsigned long base;
636 int ret = 0;
637
638 mutex_lock(&kvm_hyp_pgd_mutex);
639
640 /*
641 * This assumes that we have enough space below the idmap
642 * page to allocate our VAs. If not, the check in
643 * __hyp_alloc_private_va_range() will kick. A potential
644 * alternative would be to detect that overflow and switch
645 * to an allocation above the idmap.
646 *
647 * The allocated size is always a multiple of PAGE_SIZE.
648 */
649 size = PAGE_ALIGN(size);
650 base = io_map_base - size;
651 ret = __hyp_alloc_private_va_range(base);
652
653 mutex_unlock(lock: &kvm_hyp_pgd_mutex);
654
655 if (!ret)
656 *haddr = base;
657
658 return ret;
659}
660
661static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
662 unsigned long *haddr,
663 enum kvm_pgtable_prot prot)
664{
665 unsigned long addr;
666 int ret = 0;
667
668 if (!kvm_host_owns_hyp_mappings()) {
669 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
670 phys_addr, size, prot);
671 if (IS_ERR_VALUE(addr))
672 return addr;
673 *haddr = addr;
674
675 return 0;
676 }
677
678 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
679 ret = hyp_alloc_private_va_range(size, haddr: &addr);
680 if (ret)
681 return ret;
682
683 ret = __create_hyp_mappings(start: addr, size, phys: phys_addr, prot: prot);
684 if (ret)
685 return ret;
686
687 *haddr = addr + offset_in_page(phys_addr);
688 return ret;
689}
690
691int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
692{
693 unsigned long base;
694 size_t size;
695 int ret;
696
697 mutex_lock(&kvm_hyp_pgd_mutex);
698 /*
699 * Efficient stack verification using the PAGE_SHIFT bit implies
700 * an alignment of our allocation on the order of the size.
701 */
702 size = PAGE_SIZE * 2;
703 base = ALIGN_DOWN(io_map_base - size, size);
704
705 ret = __hyp_alloc_private_va_range(base);
706
707 mutex_unlock(lock: &kvm_hyp_pgd_mutex);
708
709 if (ret) {
710 kvm_err("Cannot allocate hyp stack guard page\n");
711 return ret;
712 }
713
714 /*
715 * Since the stack grows downwards, map the stack to the page
716 * at the higher address and leave the lower guard page
717 * unbacked.
718 *
719 * Any valid stack address now has the PAGE_SHIFT bit as 1
720 * and addresses corresponding to the guard page have the
721 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
722 */
723 ret = __create_hyp_mappings(start: base + PAGE_SIZE, PAGE_SIZE, phys: phys_addr,
724 prot: PAGE_HYP);
725 if (ret)
726 kvm_err("Cannot map hyp stack\n");
727
728 *haddr = base + size;
729
730 return ret;
731}
732
733/**
734 * create_hyp_io_mappings - Map IO into both kernel and HYP
735 * @phys_addr: The physical start address which gets mapped
736 * @size: Size of the region being mapped
737 * @kaddr: Kernel VA for this mapping
738 * @haddr: HYP VA for this mapping
739 */
740int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
741 void __iomem **kaddr,
742 void __iomem **haddr)
743{
744 unsigned long addr;
745 int ret;
746
747 if (is_protected_kvm_enabled())
748 return -EPERM;
749
750 *kaddr = ioremap(offset: phys_addr, size);
751 if (!*kaddr)
752 return -ENOMEM;
753
754 if (is_kernel_in_hyp_mode()) {
755 *haddr = *kaddr;
756 return 0;
757 }
758
759 ret = __create_hyp_private_mapping(phys_addr, size,
760 haddr: &addr, prot: PAGE_HYP_DEVICE);
761 if (ret) {
762 iounmap(addr: *kaddr);
763 *kaddr = NULL;
764 *haddr = NULL;
765 return ret;
766 }
767
768 *haddr = (void __iomem *)addr;
769 return 0;
770}
771
772/**
773 * create_hyp_exec_mappings - Map an executable range into HYP
774 * @phys_addr: The physical start address which gets mapped
775 * @size: Size of the region being mapped
776 * @haddr: HYP VA for this mapping
777 */
778int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
779 void **haddr)
780{
781 unsigned long addr;
782 int ret;
783
784 BUG_ON(is_kernel_in_hyp_mode());
785
786 ret = __create_hyp_private_mapping(phys_addr, size,
787 haddr: &addr, prot: PAGE_HYP_EXEC);
788 if (ret) {
789 *haddr = NULL;
790 return ret;
791 }
792
793 *haddr = (void *)addr;
794 return 0;
795}
796
797static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
798 /* We shouldn't need any other callback to walk the PT */
799 .phys_to_virt = kvm_host_va,
800};
801
802static int get_user_mapping_size(struct kvm *kvm, u64 addr)
803{
804 struct kvm_pgtable pgt = {
805 .pgd = (kvm_pteref_t)kvm->mm->pgd,
806 .ia_bits = vabits_actual,
807 .start_level = (KVM_PGTABLE_LAST_LEVEL -
808 ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1),
809 .mm_ops = &kvm_user_mm_ops,
810 };
811 unsigned long flags;
812 kvm_pte_t pte = 0; /* Keep GCC quiet... */
813 s8 level = S8_MAX;
814 int ret;
815
816 /*
817 * Disable IRQs so that we hazard against a concurrent
818 * teardown of the userspace page tables (which relies on
819 * IPI-ing threads).
820 */
821 local_irq_save(flags);
822 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
823 local_irq_restore(flags);
824
825 if (ret)
826 return ret;
827
828 /*
829 * Not seeing an error, but not updating level? Something went
830 * deeply wrong...
831 */
832 if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL))
833 return -EFAULT;
834 if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL))
835 return -EFAULT;
836
837 /* Oops, the userspace PTs are gone... Replay the fault */
838 if (!kvm_pte_valid(pte))
839 return -EAGAIN;
840
841 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
842}
843
844static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
845 .zalloc_page = stage2_memcache_zalloc_page,
846 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact,
847 .free_pages_exact = kvm_s2_free_pages_exact,
848 .free_unlinked_table = stage2_free_unlinked_table,
849 .get_page = kvm_host_get_page,
850 .put_page = kvm_s2_put_page,
851 .page_count = kvm_host_page_count,
852 .phys_to_virt = kvm_host_va,
853 .virt_to_phys = kvm_host_pa,
854 .dcache_clean_inval_poc = clean_dcache_guest_page,
855 .icache_inval_pou = invalidate_icache_guest_page,
856};
857
858/**
859 * kvm_init_stage2_mmu - Initialise a S2 MMU structure
860 * @kvm: The pointer to the KVM structure
861 * @mmu: The pointer to the s2 MMU structure
862 * @type: The machine type of the virtual machine
863 *
864 * Allocates only the stage-2 HW PGD level table(s).
865 * Note we don't need locking here as this is only called when the VM is
866 * created, which can only be done once.
867 */
868int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
869{
870 u32 kvm_ipa_limit = get_kvm_ipa_limit();
871 int cpu, err;
872 struct kvm_pgtable *pgt;
873 u64 mmfr0, mmfr1;
874 u32 phys_shift;
875
876 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
877 return -EINVAL;
878
879 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
880 if (is_protected_kvm_enabled()) {
881 phys_shift = kvm_ipa_limit;
882 } else if (phys_shift) {
883 if (phys_shift > kvm_ipa_limit ||
884 phys_shift < ARM64_MIN_PARANGE_BITS)
885 return -EINVAL;
886 } else {
887 phys_shift = KVM_PHYS_SHIFT;
888 if (phys_shift > kvm_ipa_limit) {
889 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
890 current->comm);
891 return -EINVAL;
892 }
893 }
894
895 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
896 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
897 mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
898
899 if (mmu->pgt != NULL) {
900 kvm_err("kvm_arch already initialized?\n");
901 return -EINVAL;
902 }
903
904 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
905 if (!pgt)
906 return -ENOMEM;
907
908 mmu->arch = &kvm->arch;
909 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
910 if (err)
911 goto out_free_pgtable;
912
913 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
914 if (!mmu->last_vcpu_ran) {
915 err = -ENOMEM;
916 goto out_destroy_pgtable;
917 }
918
919 for_each_possible_cpu(cpu)
920 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
921
922 /* The eager page splitting is disabled by default */
923 mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
924 mmu->split_page_cache.gfp_zero = __GFP_ZERO;
925
926 mmu->pgt = pgt;
927 mmu->pgd_phys = __pa(pgt->pgd);
928 return 0;
929
930out_destroy_pgtable:
931 kvm_pgtable_stage2_destroy(pgt);
932out_free_pgtable:
933 kfree(objp: pgt);
934 return err;
935}
936
937void kvm_uninit_stage2_mmu(struct kvm *kvm)
938{
939 kvm_free_stage2_pgd(&kvm->arch.mmu);
940 kvm_mmu_free_memory_cache(mc: &kvm->arch.mmu.split_page_cache);
941}
942
943static void stage2_unmap_memslot(struct kvm *kvm,
944 struct kvm_memory_slot *memslot)
945{
946 hva_t hva = memslot->userspace_addr;
947 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
948 phys_addr_t size = PAGE_SIZE * memslot->npages;
949 hva_t reg_end = hva + size;
950
951 /*
952 * A memory region could potentially cover multiple VMAs, and any holes
953 * between them, so iterate over all of them to find out if we should
954 * unmap any of them.
955 *
956 * +--------------------------------------------+
957 * +---------------+----------------+ +----------------+
958 * | : VMA 1 | VMA 2 | | VMA 3 : |
959 * +---------------+----------------+ +----------------+
960 * | memory region |
961 * +--------------------------------------------+
962 */
963 do {
964 struct vm_area_struct *vma;
965 hva_t vm_start, vm_end;
966
967 vma = find_vma_intersection(current->mm, start_addr: hva, end_addr: reg_end);
968 if (!vma)
969 break;
970
971 /*
972 * Take the intersection of this VMA with the memory region
973 */
974 vm_start = max(hva, vma->vm_start);
975 vm_end = min(reg_end, vma->vm_end);
976
977 if (!(vma->vm_flags & VM_PFNMAP)) {
978 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
979 unmap_stage2_range(mmu: &kvm->arch.mmu, start: gpa, size: vm_end - vm_start);
980 }
981 hva = vm_end;
982 } while (hva < reg_end);
983}
984
985/**
986 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
987 * @kvm: The struct kvm pointer
988 *
989 * Go through the memregions and unmap any regular RAM
990 * backing memory already mapped to the VM.
991 */
992void stage2_unmap_vm(struct kvm *kvm)
993{
994 struct kvm_memslots *slots;
995 struct kvm_memory_slot *memslot;
996 int idx, bkt;
997
998 idx = srcu_read_lock(ssp: &kvm->srcu);
999 mmap_read_lock(current->mm);
1000 write_lock(&kvm->mmu_lock);
1001
1002 slots = kvm_memslots(kvm);
1003 kvm_for_each_memslot(memslot, bkt, slots)
1004 stage2_unmap_memslot(kvm, memslot);
1005
1006 write_unlock(&kvm->mmu_lock);
1007 mmap_read_unlock(current->mm);
1008 srcu_read_unlock(ssp: &kvm->srcu, idx);
1009}
1010
1011void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1012{
1013 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1014 struct kvm_pgtable *pgt = NULL;
1015
1016 write_lock(&kvm->mmu_lock);
1017 pgt = mmu->pgt;
1018 if (pgt) {
1019 mmu->pgd_phys = 0;
1020 mmu->pgt = NULL;
1021 free_percpu(pdata: mmu->last_vcpu_ran);
1022 }
1023 write_unlock(&kvm->mmu_lock);
1024
1025 if (pgt) {
1026 kvm_pgtable_stage2_destroy(pgt);
1027 kfree(objp: pgt);
1028 }
1029}
1030
1031static void hyp_mc_free_fn(void *addr, void *unused)
1032{
1033 free_page((unsigned long)addr);
1034}
1035
1036static void *hyp_mc_alloc_fn(void *unused)
1037{
1038 return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1039}
1040
1041void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1042{
1043 if (is_protected_kvm_enabled())
1044 __free_hyp_memcache(mc, hyp_mc_free_fn,
1045 kvm_host_va, NULL);
1046}
1047
1048int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1049{
1050 if (!is_protected_kvm_enabled())
1051 return 0;
1052
1053 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1054 kvm_host_pa, NULL);
1055}
1056
1057/**
1058 * kvm_phys_addr_ioremap - map a device range to guest IPA
1059 *
1060 * @kvm: The KVM pointer
1061 * @guest_ipa: The IPA at which to insert the mapping
1062 * @pa: The physical address of the device
1063 * @size: The size of the mapping
1064 * @writable: Whether or not to create a writable mapping
1065 */
1066int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1067 phys_addr_t pa, unsigned long size, bool writable)
1068{
1069 phys_addr_t addr;
1070 int ret = 0;
1071 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1072 struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
1073 struct kvm_pgtable *pgt = mmu->pgt;
1074 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1075 KVM_PGTABLE_PROT_R |
1076 (writable ? KVM_PGTABLE_PROT_W : 0);
1077
1078 if (is_protected_kvm_enabled())
1079 return -EPERM;
1080
1081 size += offset_in_page(guest_ipa);
1082 guest_ipa &= PAGE_MASK;
1083
1084 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1085 ret = kvm_mmu_topup_memory_cache(mc: &cache,
1086 min: kvm_mmu_cache_min_pages(mmu));
1087 if (ret)
1088 break;
1089
1090 write_lock(&kvm->mmu_lock);
1091 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
1092 &cache, 0);
1093 write_unlock(&kvm->mmu_lock);
1094 if (ret)
1095 break;
1096
1097 pa += PAGE_SIZE;
1098 }
1099
1100 kvm_mmu_free_memory_cache(mc: &cache);
1101 return ret;
1102}
1103
1104/**
1105 * stage2_wp_range() - write protect stage2 memory region range
1106 * @mmu: The KVM stage-2 MMU pointer
1107 * @addr: Start address of range
1108 * @end: End address of range
1109 */
1110static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1111{
1112 stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
1113}
1114
1115/**
1116 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1117 * @kvm: The KVM pointer
1118 * @slot: The memory slot to write protect
1119 *
1120 * Called to start logging dirty pages after memory region
1121 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1122 * all present PUD, PMD and PTEs are write protected in the memory region.
1123 * Afterwards read of dirty page log can be called.
1124 *
1125 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1126 * serializing operations for VM memory regions.
1127 */
1128static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1129{
1130 struct kvm_memslots *slots = kvm_memslots(kvm);
1131 struct kvm_memory_slot *memslot = id_to_memslot(slots, id: slot);
1132 phys_addr_t start, end;
1133
1134 if (WARN_ON_ONCE(!memslot))
1135 return;
1136
1137 start = memslot->base_gfn << PAGE_SHIFT;
1138 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1139
1140 write_lock(&kvm->mmu_lock);
1141 stage2_wp_range(mmu: &kvm->arch.mmu, addr: start, end);
1142 write_unlock(&kvm->mmu_lock);
1143 kvm_flush_remote_tlbs_memslot(kvm, memslot);
1144}
1145
1146/**
1147 * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1148 * pages for memory slot
1149 * @kvm: The KVM pointer
1150 * @slot: The memory slot to split
1151 *
1152 * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1153 * serializing operations for VM memory regions.
1154 */
1155static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1156{
1157 struct kvm_memslots *slots;
1158 struct kvm_memory_slot *memslot;
1159 phys_addr_t start, end;
1160
1161 lockdep_assert_held(&kvm->slots_lock);
1162
1163 slots = kvm_memslots(kvm);
1164 memslot = id_to_memslot(slots, id: slot);
1165
1166 start = memslot->base_gfn << PAGE_SHIFT;
1167 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1168
1169 write_lock(&kvm->mmu_lock);
1170 kvm_mmu_split_huge_pages(kvm, addr: start, end);
1171 write_unlock(&kvm->mmu_lock);
1172}
1173
1174/*
1175 * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1176 * @kvm: The KVM pointer
1177 * @slot: The memory slot associated with mask
1178 * @gfn_offset: The gfn offset in memory slot
1179 * @mask: The mask of pages at offset 'gfn_offset' in this memory
1180 * slot to enable dirty logging on
1181 *
1182 * Writes protect selected pages to enable dirty logging, and then
1183 * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1184 */
1185void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1186 struct kvm_memory_slot *slot,
1187 gfn_t gfn_offset, unsigned long mask)
1188{
1189 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1190 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1191 phys_addr_t end = (base_gfn + __fls(word: mask) + 1) << PAGE_SHIFT;
1192
1193 lockdep_assert_held_write(&kvm->mmu_lock);
1194
1195 stage2_wp_range(mmu: &kvm->arch.mmu, addr: start, end);
1196
1197 /*
1198 * Eager-splitting is done when manual-protect is set. We
1199 * also check for initially-all-set because we can avoid
1200 * eager-splitting if initially-all-set is false.
1201 * Initially-all-set equal false implies that huge-pages were
1202 * already split when enabling dirty logging: no need to do it
1203 * again.
1204 */
1205 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1206 kvm_mmu_split_huge_pages(kvm, addr: start, end);
1207}
1208
1209static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1210{
1211 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1212}
1213
1214static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1215 unsigned long hva,
1216 unsigned long map_size)
1217{
1218 gpa_t gpa_start;
1219 hva_t uaddr_start, uaddr_end;
1220 size_t size;
1221
1222 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1223 if (map_size == PAGE_SIZE)
1224 return true;
1225
1226 size = memslot->npages * PAGE_SIZE;
1227
1228 gpa_start = memslot->base_gfn << PAGE_SHIFT;
1229
1230 uaddr_start = memslot->userspace_addr;
1231 uaddr_end = uaddr_start + size;
1232
1233 /*
1234 * Pages belonging to memslots that don't have the same alignment
1235 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1236 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1237 *
1238 * Consider a layout like the following:
1239 *
1240 * memslot->userspace_addr:
1241 * +-----+--------------------+--------------------+---+
1242 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
1243 * +-----+--------------------+--------------------+---+
1244 *
1245 * memslot->base_gfn << PAGE_SHIFT:
1246 * +---+--------------------+--------------------+-----+
1247 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
1248 * +---+--------------------+--------------------+-----+
1249 *
1250 * If we create those stage-2 blocks, we'll end up with this incorrect
1251 * mapping:
1252 * d -> f
1253 * e -> g
1254 * f -> h
1255 */
1256 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1257 return false;
1258
1259 /*
1260 * Next, let's make sure we're not trying to map anything not covered
1261 * by the memslot. This means we have to prohibit block size mappings
1262 * for the beginning and end of a non-block aligned and non-block sized
1263 * memory slot (illustrated by the head and tail parts of the
1264 * userspace view above containing pages 'abcde' and 'xyz',
1265 * respectively).
1266 *
1267 * Note that it doesn't matter if we do the check using the
1268 * userspace_addr or the base_gfn, as both are equally aligned (per
1269 * the check above) and equally sized.
1270 */
1271 return (hva & ~(map_size - 1)) >= uaddr_start &&
1272 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1273}
1274
1275/*
1276 * Check if the given hva is backed by a transparent huge page (THP) and
1277 * whether it can be mapped using block mapping in stage2. If so, adjust
1278 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1279 * supported. This will need to be updated to support other THP sizes.
1280 *
1281 * Returns the size of the mapping.
1282 */
1283static long
1284transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1285 unsigned long hva, kvm_pfn_t *pfnp,
1286 phys_addr_t *ipap)
1287{
1288 kvm_pfn_t pfn = *pfnp;
1289
1290 /*
1291 * Make sure the adjustment is done only for THP pages. Also make
1292 * sure that the HVA and IPA are sufficiently aligned and that the
1293 * block map is contained within the memslot.
1294 */
1295 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1296 int sz = get_user_mapping_size(kvm, addr: hva);
1297
1298 if (sz < 0)
1299 return sz;
1300
1301 if (sz < PMD_SIZE)
1302 return PAGE_SIZE;
1303
1304 *ipap &= PMD_MASK;
1305 pfn &= ~(PTRS_PER_PMD - 1);
1306 *pfnp = pfn;
1307
1308 return PMD_SIZE;
1309 }
1310
1311 /* Use page mapping if we cannot use block mapping. */
1312 return PAGE_SIZE;
1313}
1314
1315static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1316{
1317 unsigned long pa;
1318
1319 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1320 return huge_page_shift(h: hstate_vma(vma));
1321
1322 if (!(vma->vm_flags & VM_PFNMAP))
1323 return PAGE_SHIFT;
1324
1325 VM_BUG_ON(is_vm_hugetlb_page(vma));
1326
1327 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1328
1329#ifndef __PAGETABLE_PMD_FOLDED
1330 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1331 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1332 ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1333 return PUD_SHIFT;
1334#endif
1335
1336 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1337 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1338 ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1339 return PMD_SHIFT;
1340
1341 return PAGE_SHIFT;
1342}
1343
1344/*
1345 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1346 * able to see the page's tags and therefore they must be initialised first. If
1347 * PG_mte_tagged is set, tags have already been initialised.
1348 *
1349 * The race in the test/set of the PG_mte_tagged flag is handled by:
1350 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1351 * racing to santise the same page
1352 * - mmap_lock protects between a VM faulting a page in and the VMM performing
1353 * an mprotect() to add VM_MTE
1354 */
1355static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1356 unsigned long size)
1357{
1358 unsigned long i, nr_pages = size >> PAGE_SHIFT;
1359 struct page *page = pfn_to_page(pfn);
1360
1361 if (!kvm_has_mte(kvm))
1362 return;
1363
1364 for (i = 0; i < nr_pages; i++, page++) {
1365 if (try_page_mte_tagging(page)) {
1366 mte_clear_page_tags(page_address(page));
1367 set_page_mte_tagged(page);
1368 }
1369 }
1370}
1371
1372static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1373{
1374 return vma->vm_flags & VM_MTE_ALLOWED;
1375}
1376
1377static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1378 struct kvm_memory_slot *memslot, unsigned long hva,
1379 bool fault_is_perm)
1380{
1381 int ret = 0;
1382 bool write_fault, writable, force_pte = false;
1383 bool exec_fault, mte_allowed;
1384 bool device = false, vfio_allow_any_uc = false;
1385 unsigned long mmu_seq;
1386 struct kvm *kvm = vcpu->kvm;
1387 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1388 struct vm_area_struct *vma;
1389 short vma_shift;
1390 gfn_t gfn;
1391 kvm_pfn_t pfn;
1392 bool logging_active = memslot_is_logging(memslot);
1393 long vma_pagesize, fault_granule;
1394 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1395 struct kvm_pgtable *pgt;
1396
1397 if (fault_is_perm)
1398 fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu);
1399 write_fault = kvm_is_write_fault(vcpu);
1400 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1401 VM_BUG_ON(write_fault && exec_fault);
1402
1403 if (fault_is_perm && !write_fault && !exec_fault) {
1404 kvm_err("Unexpected L2 read permission error\n");
1405 return -EFAULT;
1406 }
1407
1408 /*
1409 * Permission faults just need to update the existing leaf entry,
1410 * and so normally don't require allocations from the memcache. The
1411 * only exception to this is when dirty logging is enabled at runtime
1412 * and a write fault needs to collapse a block entry into a table.
1413 */
1414 if (!fault_is_perm || (logging_active && write_fault)) {
1415 ret = kvm_mmu_topup_memory_cache(mc: memcache,
1416 min: kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu));
1417 if (ret)
1418 return ret;
1419 }
1420
1421 /*
1422 * Let's check if we will get back a huge page backed by hugetlbfs, or
1423 * get block mapping for device MMIO region.
1424 */
1425 mmap_read_lock(current->mm);
1426 vma = vma_lookup(current->mm, addr: hva);
1427 if (unlikely(!vma)) {
1428 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1429 mmap_read_unlock(current->mm);
1430 return -EFAULT;
1431 }
1432
1433 /*
1434 * logging_active is guaranteed to never be true for VM_PFNMAP
1435 * memslots.
1436 */
1437 if (logging_active) {
1438 force_pte = true;
1439 vma_shift = PAGE_SHIFT;
1440 } else {
1441 vma_shift = get_vma_page_shift(vma, hva);
1442 }
1443
1444 switch (vma_shift) {
1445#ifndef __PAGETABLE_PMD_FOLDED
1446 case PUD_SHIFT:
1447 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1448 break;
1449 fallthrough;
1450#endif
1451 case CONT_PMD_SHIFT:
1452 vma_shift = PMD_SHIFT;
1453 fallthrough;
1454 case PMD_SHIFT:
1455 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1456 break;
1457 fallthrough;
1458 case CONT_PTE_SHIFT:
1459 vma_shift = PAGE_SHIFT;
1460 force_pte = true;
1461 fallthrough;
1462 case PAGE_SHIFT:
1463 break;
1464 default:
1465 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1466 }
1467
1468 vma_pagesize = 1UL << vma_shift;
1469 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1470 fault_ipa &= ~(vma_pagesize - 1);
1471
1472 gfn = fault_ipa >> PAGE_SHIFT;
1473 mte_allowed = kvm_vma_mte_allowed(vma);
1474
1475 vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED;
1476
1477 /* Don't use the VMA after the unlock -- it may have vanished */
1478 vma = NULL;
1479
1480 /*
1481 * Read mmu_invalidate_seq so that KVM can detect if the results of
1482 * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
1483 * acquiring kvm->mmu_lock.
1484 *
1485 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1486 * with the smp_wmb() in kvm_mmu_invalidate_end().
1487 */
1488 mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1489 mmap_read_unlock(current->mm);
1490
1491 pfn = __gfn_to_pfn_memslot(slot: memslot, gfn, atomic: false, interruptible: false, NULL,
1492 write_fault, writable: &writable, NULL);
1493 if (pfn == KVM_PFN_ERR_HWPOISON) {
1494 kvm_send_hwpoison_signal(address: hva, lsb: vma_shift);
1495 return 0;
1496 }
1497 if (is_error_noslot_pfn(pfn))
1498 return -EFAULT;
1499
1500 if (kvm_is_device_pfn(pfn)) {
1501 /*
1502 * If the page was identified as device early by looking at
1503 * the VMA flags, vma_pagesize is already representing the
1504 * largest quantity we can map. If instead it was mapped
1505 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1506 * and must not be upgraded.
1507 *
1508 * In both cases, we don't let transparent_hugepage_adjust()
1509 * change things at the last minute.
1510 */
1511 device = true;
1512 } else if (logging_active && !write_fault) {
1513 /*
1514 * Only actually map the page as writable if this was a write
1515 * fault.
1516 */
1517 writable = false;
1518 }
1519
1520 if (exec_fault && device)
1521 return -ENOEXEC;
1522
1523 read_lock(&kvm->mmu_lock);
1524 pgt = vcpu->arch.hw_mmu->pgt;
1525 if (mmu_invalidate_retry(kvm, mmu_seq))
1526 goto out_unlock;
1527
1528 /*
1529 * If we are not forced to use page mapping, check if we are
1530 * backed by a THP and thus use block mapping if possible.
1531 */
1532 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1533 if (fault_is_perm && fault_granule > PAGE_SIZE)
1534 vma_pagesize = fault_granule;
1535 else
1536 vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1537 hva, pfnp: &pfn,
1538 ipap: &fault_ipa);
1539
1540 if (vma_pagesize < 0) {
1541 ret = vma_pagesize;
1542 goto out_unlock;
1543 }
1544 }
1545
1546 if (!fault_is_perm && !device && kvm_has_mte(kvm)) {
1547 /* Check the VMM hasn't introduced a new disallowed VMA */
1548 if (mte_allowed) {
1549 sanitise_mte_tags(kvm, pfn, size: vma_pagesize);
1550 } else {
1551 ret = -EFAULT;
1552 goto out_unlock;
1553 }
1554 }
1555
1556 if (writable)
1557 prot |= KVM_PGTABLE_PROT_W;
1558
1559 if (exec_fault)
1560 prot |= KVM_PGTABLE_PROT_X;
1561
1562 if (device) {
1563 if (vfio_allow_any_uc)
1564 prot |= KVM_PGTABLE_PROT_NORMAL_NC;
1565 else
1566 prot |= KVM_PGTABLE_PROT_DEVICE;
1567 } else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC)) {
1568 prot |= KVM_PGTABLE_PROT_X;
1569 }
1570
1571 /*
1572 * Under the premise of getting a FSC_PERM fault, we just need to relax
1573 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1574 * kvm_pgtable_stage2_map() should be called to change block size.
1575 */
1576 if (fault_is_perm && vma_pagesize == fault_granule)
1577 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1578 else
1579 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1580 __pfn_to_phys(pfn), prot,
1581 memcache,
1582 KVM_PGTABLE_WALK_HANDLE_FAULT |
1583 KVM_PGTABLE_WALK_SHARED);
1584
1585 /* Mark the page dirty only if the fault is handled successfully */
1586 if (writable && !ret) {
1587 kvm_set_pfn_dirty(pfn);
1588 mark_page_dirty_in_slot(kvm, memslot, gfn);
1589 }
1590
1591out_unlock:
1592 read_unlock(&kvm->mmu_lock);
1593 kvm_release_pfn_clean(pfn);
1594 return ret != -EAGAIN ? ret : 0;
1595}
1596
1597/* Resolve the access fault by making the page young again. */
1598static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1599{
1600 kvm_pte_t pte;
1601 struct kvm_s2_mmu *mmu;
1602
1603 trace_kvm_access_fault(ipa: fault_ipa);
1604
1605 read_lock(&vcpu->kvm->mmu_lock);
1606 mmu = vcpu->arch.hw_mmu;
1607 pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1608 read_unlock(&vcpu->kvm->mmu_lock);
1609
1610 if (kvm_pte_valid(pte))
1611 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
1612}
1613
1614/**
1615 * kvm_handle_guest_abort - handles all 2nd stage aborts
1616 * @vcpu: the VCPU pointer
1617 *
1618 * Any abort that gets to the host is almost guaranteed to be caused by a
1619 * missing second stage translation table entry, which can mean that either the
1620 * guest simply needs more memory and we must allocate an appropriate page or it
1621 * can mean that the guest tried to access I/O memory, which is emulated by user
1622 * space. The distinction is based on the IPA causing the fault and whether this
1623 * memory region has been registered as standard RAM by user space.
1624 */
1625int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1626{
1627 unsigned long esr;
1628 phys_addr_t fault_ipa;
1629 struct kvm_memory_slot *memslot;
1630 unsigned long hva;
1631 bool is_iabt, write_fault, writable;
1632 gfn_t gfn;
1633 int ret, idx;
1634
1635 esr = kvm_vcpu_get_esr(vcpu);
1636
1637 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1638 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1639
1640 if (esr_fsc_is_translation_fault(esr)) {
1641 /* Beyond sanitised PARange (which is the IPA limit) */
1642 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1643 kvm_inject_size_fault(vcpu);
1644 return 1;
1645 }
1646
1647 /* Falls between the IPA range and the PARange? */
1648 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1649 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1650
1651 if (is_iabt)
1652 kvm_inject_pabt(vcpu, fault_ipa);
1653 else
1654 kvm_inject_dabt(vcpu, fault_ipa);
1655 return 1;
1656 }
1657 }
1658
1659 /* Synchronous External Abort? */
1660 if (kvm_vcpu_abt_issea(vcpu)) {
1661 /*
1662 * For RAS the host kernel may handle this abort.
1663 * There is no need to pass the error into the guest.
1664 */
1665 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1666 kvm_inject_vabt(vcpu);
1667
1668 return 1;
1669 }
1670
1671 trace_kvm_guest_fault(vcpu_pc: *vcpu_pc(vcpu), hsr: kvm_vcpu_get_esr(vcpu),
1672 hxfar: kvm_vcpu_get_hfar(vcpu), ipa: fault_ipa);
1673
1674 /* Check the stage-2 fault is trans. fault or write fault */
1675 if (!esr_fsc_is_translation_fault(esr) &&
1676 !esr_fsc_is_permission_fault(esr) &&
1677 !esr_fsc_is_access_flag_fault(esr)) {
1678 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1679 kvm_vcpu_trap_get_class(vcpu),
1680 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1681 (unsigned long)kvm_vcpu_get_esr(vcpu));
1682 return -EFAULT;
1683 }
1684
1685 idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
1686
1687 gfn = fault_ipa >> PAGE_SHIFT;
1688 memslot = gfn_to_memslot(kvm: vcpu->kvm, gfn);
1689 hva = gfn_to_hva_memslot_prot(slot: memslot, gfn, writable: &writable);
1690 write_fault = kvm_is_write_fault(vcpu);
1691 if (kvm_is_error_hva(addr: hva) || (write_fault && !writable)) {
1692 /*
1693 * The guest has put either its instructions or its page-tables
1694 * somewhere it shouldn't have. Userspace won't be able to do
1695 * anything about this (there's no syndrome for a start), so
1696 * re-inject the abort back into the guest.
1697 */
1698 if (is_iabt) {
1699 ret = -ENOEXEC;
1700 goto out;
1701 }
1702
1703 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1704 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1705 ret = 1;
1706 goto out_unlock;
1707 }
1708
1709 /*
1710 * Check for a cache maintenance operation. Since we
1711 * ended-up here, we know it is outside of any memory
1712 * slot. But we can't find out if that is for a device,
1713 * or if the guest is just being stupid. The only thing
1714 * we know for sure is that this range cannot be cached.
1715 *
1716 * So let's assume that the guest is just being
1717 * cautious, and skip the instruction.
1718 */
1719 if (kvm_is_error_hva(addr: hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1720 kvm_incr_pc(vcpu);
1721 ret = 1;
1722 goto out_unlock;
1723 }
1724
1725 /*
1726 * The IPA is reported as [MAX:12], so we need to
1727 * complement it with the bottom 12 bits from the
1728 * faulting VA. This is always 12 bits, irrespective
1729 * of the page size.
1730 */
1731 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1732 ret = io_mem_abort(vcpu, fault_ipa);
1733 goto out_unlock;
1734 }
1735
1736 /* Userspace should not be able to register out-of-bounds IPAs */
1737 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
1738
1739 if (esr_fsc_is_access_flag_fault(esr)) {
1740 handle_access_fault(vcpu, fault_ipa);
1741 ret = 1;
1742 goto out_unlock;
1743 }
1744
1745 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva,
1746 fault_is_perm: esr_fsc_is_permission_fault(esr));
1747 if (ret == 0)
1748 ret = 1;
1749out:
1750 if (ret == -ENOEXEC) {
1751 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1752 ret = 1;
1753 }
1754out_unlock:
1755 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx);
1756 return ret;
1757}
1758
1759bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1760{
1761 if (!kvm->arch.mmu.pgt)
1762 return false;
1763
1764 __unmap_stage2_range(mmu: &kvm->arch.mmu, start: range->start << PAGE_SHIFT,
1765 size: (range->end - range->start) << PAGE_SHIFT,
1766 may_block: range->may_block);
1767
1768 return false;
1769}
1770
1771bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1772{
1773 kvm_pfn_t pfn = pte_pfn(pte: range->arg.pte);
1774
1775 if (!kvm->arch.mmu.pgt)
1776 return false;
1777
1778 WARN_ON(range->end - range->start != 1);
1779
1780 /*
1781 * If the page isn't tagged, defer to user_mem_abort() for sanitising
1782 * the MTE tags. The S2 pte should have been unmapped by
1783 * mmu_notifier_invalidate_range_end().
1784 */
1785 if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn)))
1786 return false;
1787
1788 /*
1789 * We've moved a page around, probably through CoW, so let's treat
1790 * it just like a translation fault and the map handler will clean
1791 * the cache to the PoC.
1792 *
1793 * The MMU notifiers will have unmapped a huge PMD before calling
1794 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1795 * therefore we never need to clear out a huge PMD through this
1796 * calling path and a memcache is not required.
1797 */
1798 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1799 PAGE_SIZE, __pfn_to_phys(pfn),
1800 KVM_PGTABLE_PROT_R, NULL, 0);
1801
1802 return false;
1803}
1804
1805bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1806{
1807 u64 size = (range->end - range->start) << PAGE_SHIFT;
1808
1809 if (!kvm->arch.mmu.pgt)
1810 return false;
1811
1812 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1813 range->start << PAGE_SHIFT,
1814 size, true);
1815}
1816
1817bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1818{
1819 u64 size = (range->end - range->start) << PAGE_SHIFT;
1820
1821 if (!kvm->arch.mmu.pgt)
1822 return false;
1823
1824 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1825 range->start << PAGE_SHIFT,
1826 size, false);
1827}
1828
1829phys_addr_t kvm_mmu_get_httbr(void)
1830{
1831 return __pa(hyp_pgtable->pgd);
1832}
1833
1834phys_addr_t kvm_get_idmap_vector(void)
1835{
1836 return hyp_idmap_vector;
1837}
1838
1839static int kvm_map_idmap_text(void)
1840{
1841 unsigned long size = hyp_idmap_end - hyp_idmap_start;
1842 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1843 PAGE_HYP_EXEC);
1844 if (err)
1845 kvm_err("Failed to idmap %lx-%lx\n",
1846 hyp_idmap_start, hyp_idmap_end);
1847
1848 return err;
1849}
1850
1851static void *kvm_hyp_zalloc_page(void *arg)
1852{
1853 return (void *)get_zeroed_page(GFP_KERNEL);
1854}
1855
1856static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1857 .zalloc_page = kvm_hyp_zalloc_page,
1858 .get_page = kvm_host_get_page,
1859 .put_page = kvm_host_put_page,
1860 .phys_to_virt = kvm_host_va,
1861 .virt_to_phys = kvm_host_pa,
1862};
1863
1864int __init kvm_mmu_init(u32 *hyp_va_bits)
1865{
1866 int err;
1867 u32 idmap_bits;
1868 u32 kernel_bits;
1869
1870 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1871 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1872 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1873 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1874 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1875
1876 /*
1877 * We rely on the linker script to ensure at build time that the HYP
1878 * init code does not cross a page boundary.
1879 */
1880 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1881
1882 /*
1883 * The ID map is always configured for 48 bits of translation, which
1884 * may be fewer than the number of VA bits used by the regular kernel
1885 * stage 1, when VA_BITS=52.
1886 *
1887 * At EL2, there is only one TTBR register, and we can't switch between
1888 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
1889 * line: we need to use the extended range with *both* our translation
1890 * tables.
1891 *
1892 * So use the maximum of the idmap VA bits and the regular kernel stage
1893 * 1 VA bits to assure that the hypervisor can both ID map its code page
1894 * and map any kernel memory.
1895 */
1896 idmap_bits = IDMAP_VA_BITS;
1897 kernel_bits = vabits_actual;
1898 *hyp_va_bits = max(idmap_bits, kernel_bits);
1899
1900 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1901 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1902 kvm_debug("HYP VA range: %lx:%lx\n",
1903 kern_hyp_va(PAGE_OFFSET),
1904 kern_hyp_va((unsigned long)high_memory - 1));
1905
1906 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1907 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
1908 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1909 /*
1910 * The idmap page is intersecting with the VA space,
1911 * it is not safe to continue further.
1912 */
1913 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1914 err = -EINVAL;
1915 goto out;
1916 }
1917
1918 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1919 if (!hyp_pgtable) {
1920 kvm_err("Hyp mode page-table not allocated\n");
1921 err = -ENOMEM;
1922 goto out;
1923 }
1924
1925 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1926 if (err)
1927 goto out_free_pgtable;
1928
1929 err = kvm_map_idmap_text();
1930 if (err)
1931 goto out_destroy_pgtable;
1932
1933 io_map_base = hyp_idmap_start;
1934 return 0;
1935
1936out_destroy_pgtable:
1937 kvm_pgtable_hyp_destroy(hyp_pgtable);
1938out_free_pgtable:
1939 kfree(objp: hyp_pgtable);
1940 hyp_pgtable = NULL;
1941out:
1942 return err;
1943}
1944
1945void kvm_arch_commit_memory_region(struct kvm *kvm,
1946 struct kvm_memory_slot *old,
1947 const struct kvm_memory_slot *new,
1948 enum kvm_mr_change change)
1949{
1950 bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
1951
1952 /*
1953 * At this point memslot has been committed and there is an
1954 * allocated dirty_bitmap[], dirty pages will be tracked while the
1955 * memory slot is write protected.
1956 */
1957 if (log_dirty_pages) {
1958
1959 if (change == KVM_MR_DELETE)
1960 return;
1961
1962 /*
1963 * Huge and normal pages are write-protected and split
1964 * on either of these two cases:
1965 *
1966 * 1. with initial-all-set: gradually with CLEAR ioctls,
1967 */
1968 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1969 return;
1970 /*
1971 * or
1972 * 2. without initial-all-set: all in one shot when
1973 * enabling dirty logging.
1974 */
1975 kvm_mmu_wp_memory_region(kvm, slot: new->id);
1976 kvm_mmu_split_memory_region(kvm, slot: new->id);
1977 } else {
1978 /*
1979 * Free any leftovers from the eager page splitting cache. Do
1980 * this when deleting, moving, disabling dirty logging, or
1981 * creating the memslot (a nop). Doing it for deletes makes
1982 * sure we don't leak memory, and there's no need to keep the
1983 * cache around for any of the other cases.
1984 */
1985 kvm_mmu_free_memory_cache(mc: &kvm->arch.mmu.split_page_cache);
1986 }
1987}
1988
1989int kvm_arch_prepare_memory_region(struct kvm *kvm,
1990 const struct kvm_memory_slot *old,
1991 struct kvm_memory_slot *new,
1992 enum kvm_mr_change change)
1993{
1994 hva_t hva, reg_end;
1995 int ret = 0;
1996
1997 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1998 change != KVM_MR_FLAGS_ONLY)
1999 return 0;
2000
2001 /*
2002 * Prevent userspace from creating a memory region outside of the IPA
2003 * space addressable by the KVM guest IPA space.
2004 */
2005 if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT))
2006 return -EFAULT;
2007
2008 hva = new->userspace_addr;
2009 reg_end = hva + (new->npages << PAGE_SHIFT);
2010
2011 mmap_read_lock(current->mm);
2012 /*
2013 * A memory region could potentially cover multiple VMAs, and any holes
2014 * between them, so iterate over all of them.
2015 *
2016 * +--------------------------------------------+
2017 * +---------------+----------------+ +----------------+
2018 * | : VMA 1 | VMA 2 | | VMA 3 : |
2019 * +---------------+----------------+ +----------------+
2020 * | memory region |
2021 * +--------------------------------------------+
2022 */
2023 do {
2024 struct vm_area_struct *vma;
2025
2026 vma = find_vma_intersection(current->mm, start_addr: hva, end_addr: reg_end);
2027 if (!vma)
2028 break;
2029
2030 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2031 ret = -EINVAL;
2032 break;
2033 }
2034
2035 if (vma->vm_flags & VM_PFNMAP) {
2036 /* IO region dirty page logging not allowed */
2037 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2038 ret = -EINVAL;
2039 break;
2040 }
2041 }
2042 hva = min(reg_end, vma->vm_end);
2043 } while (hva < reg_end);
2044
2045 mmap_read_unlock(current->mm);
2046 return ret;
2047}
2048
2049void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2050{
2051}
2052
2053void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2054{
2055}
2056
2057void kvm_arch_flush_shadow_all(struct kvm *kvm)
2058{
2059 kvm_uninit_stage2_mmu(kvm);
2060}
2061
2062void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2063 struct kvm_memory_slot *slot)
2064{
2065 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2066 phys_addr_t size = slot->npages << PAGE_SHIFT;
2067
2068 write_lock(&kvm->mmu_lock);
2069 unmap_stage2_range(mmu: &kvm->arch.mmu, start: gpa, size);
2070 write_unlock(&kvm->mmu_lock);
2071}
2072
2073/*
2074 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2075 *
2076 * Main problems:
2077 * - S/W ops are local to a CPU (not broadcast)
2078 * - We have line migration behind our back (speculation)
2079 * - System caches don't support S/W at all (damn!)
2080 *
2081 * In the face of the above, the best we can do is to try and convert
2082 * S/W ops to VA ops. Because the guest is not allowed to infer the
2083 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2084 * which is a rather good thing for us.
2085 *
2086 * Also, it is only used when turning caches on/off ("The expected
2087 * usage of the cache maintenance instructions that operate by set/way
2088 * is associated with the cache maintenance instructions associated
2089 * with the powerdown and powerup of caches, if this is required by
2090 * the implementation.").
2091 *
2092 * We use the following policy:
2093 *
2094 * - If we trap a S/W operation, we enable VM trapping to detect
2095 * caches being turned on/off, and do a full clean.
2096 *
2097 * - We flush the caches on both caches being turned on and off.
2098 *
2099 * - Once the caches are enabled, we stop trapping VM ops.
2100 */
2101void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2102{
2103 unsigned long hcr = *vcpu_hcr(vcpu);
2104
2105 /*
2106 * If this is the first time we do a S/W operation
2107 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2108 * VM trapping.
2109 *
2110 * Otherwise, rely on the VM trapping to wait for the MMU +
2111 * Caches to be turned off. At that point, we'll be able to
2112 * clean the caches again.
2113 */
2114 if (!(hcr & HCR_TVM)) {
2115 trace_kvm_set_way_flush(vcpu_pc: *vcpu_pc(vcpu),
2116 cache: vcpu_has_cache_enabled(vcpu));
2117 stage2_flush_vm(kvm: vcpu->kvm);
2118 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2119 }
2120}
2121
2122void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2123{
2124 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2125
2126 /*
2127 * If switching the MMU+caches on, need to invalidate the caches.
2128 * If switching it off, need to clean the caches.
2129 * Clean + invalidate does the trick always.
2130 */
2131 if (now_enabled != was_enabled)
2132 stage2_flush_vm(kvm: vcpu->kvm);
2133
2134 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2135 if (now_enabled)
2136 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2137
2138 trace_kvm_toggle_cache(vcpu_pc: *vcpu_pc(vcpu), was: was_enabled, now: now_enabled);
2139}
2140

source code of linux/arch/arm64/kvm/mmu.c