| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 4 | * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| 5 | * Copyright (C) 2011 Don Zickus Red Hat, Inc. |
| 6 | * |
| 7 | * Pentium III FXSR, SSE support |
| 8 | * Gareth Hughes <gareth@valinux.com>, May 2000 |
| 9 | */ |
| 10 | |
| 11 | /* |
| 12 | * Handle hardware traps and faults. |
| 13 | */ |
| 14 | #include <linux/spinlock.h> |
| 15 | #include <linux/kprobes.h> |
| 16 | #include <linux/kdebug.h> |
| 17 | #include <linux/sched/debug.h> |
| 18 | #include <linux/nmi.h> |
| 19 | #include <linux/debugfs.h> |
| 20 | #include <linux/delay.h> |
| 21 | #include <linux/hardirq.h> |
| 22 | #include <linux/ratelimit.h> |
| 23 | #include <linux/slab.h> |
| 24 | #include <linux/export.h> |
| 25 | #include <linux/atomic.h> |
| 26 | #include <linux/sched/clock.h> |
| 27 | |
| 28 | #include <asm/cpu_entry_area.h> |
| 29 | #include <asm/traps.h> |
| 30 | #include <asm/mach_traps.h> |
| 31 | #include <asm/nmi.h> |
| 32 | #include <asm/x86_init.h> |
| 33 | #include <asm/reboot.h> |
| 34 | #include <asm/cache.h> |
| 35 | #include <asm/nospec-branch.h> |
| 36 | #include <asm/microcode.h> |
| 37 | #include <asm/sev.h> |
| 38 | #include <asm/fred.h> |
| 39 | |
| 40 | #define CREATE_TRACE_POINTS |
| 41 | #include <trace/events/nmi.h> |
| 42 | |
| 43 | /* |
| 44 | * An emergency handler can be set in any context including NMI |
| 45 | */ |
| 46 | struct nmi_desc { |
| 47 | raw_spinlock_t lock; |
| 48 | nmi_handler_t emerg_handler; |
| 49 | struct list_head head; |
| 50 | }; |
| 51 | |
| 52 | #define NMI_DESC_INIT(type) { \ |
| 53 | .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[type].lock), \ |
| 54 | .head = LIST_HEAD_INIT(nmi_desc[type].head), \ |
| 55 | } |
| 56 | |
| 57 | static struct nmi_desc nmi_desc[NMI_MAX] = { |
| 58 | NMI_DESC_INIT(NMI_LOCAL), |
| 59 | NMI_DESC_INIT(NMI_UNKNOWN), |
| 60 | NMI_DESC_INIT(NMI_SERR), |
| 61 | NMI_DESC_INIT(NMI_IO_CHECK), |
| 62 | }; |
| 63 | |
| 64 | #define nmi_to_desc(type) (&nmi_desc[type]) |
| 65 | |
| 66 | struct nmi_stats { |
| 67 | unsigned int normal; |
| 68 | unsigned int unknown; |
| 69 | unsigned int external; |
| 70 | unsigned int swallow; |
| 71 | unsigned long recv_jiffies; |
| 72 | unsigned long idt_seq; |
| 73 | unsigned long idt_nmi_seq; |
| 74 | unsigned long idt_ignored; |
| 75 | atomic_long_t idt_calls; |
| 76 | unsigned long idt_seq_snap; |
| 77 | unsigned long idt_nmi_seq_snap; |
| 78 | unsigned long idt_ignored_snap; |
| 79 | long idt_calls_snap; |
| 80 | }; |
| 81 | |
| 82 | static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); |
| 83 | |
| 84 | static int ignore_nmis __read_mostly; |
| 85 | |
| 86 | int unknown_nmi_panic; |
| 87 | int panic_on_unrecovered_nmi; |
| 88 | int panic_on_io_nmi; |
| 89 | |
| 90 | /* |
| 91 | * Prevent NMI reason port (0x61) being accessed simultaneously, can |
| 92 | * only be used in NMI handler. |
| 93 | */ |
| 94 | static DEFINE_RAW_SPINLOCK(nmi_reason_lock); |
| 95 | |
| 96 | static int __init setup_unknown_nmi_panic(char *str) |
| 97 | { |
| 98 | unknown_nmi_panic = 1; |
| 99 | return 1; |
| 100 | } |
| 101 | __setup("unknown_nmi_panic" , setup_unknown_nmi_panic); |
| 102 | |
| 103 | static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; |
| 104 | |
| 105 | static int __init nmi_warning_debugfs(void) |
| 106 | { |
| 107 | debugfs_create_u64(name: "nmi_longest_ns" , mode: 0644, |
| 108 | parent: arch_debugfs_dir, value: &nmi_longest_ns); |
| 109 | return 0; |
| 110 | } |
| 111 | fs_initcall(nmi_warning_debugfs); |
| 112 | |
| 113 | static void nmi_check_duration(struct nmiaction *action, u64 duration) |
| 114 | { |
| 115 | int remainder_ns, decimal_msecs; |
| 116 | |
| 117 | if (duration < nmi_longest_ns || duration < action->max_duration) |
| 118 | return; |
| 119 | |
| 120 | action->max_duration = duration; |
| 121 | |
| 122 | /* Convert duration from nsec to msec */ |
| 123 | remainder_ns = do_div(duration, NSEC_PER_MSEC); |
| 124 | decimal_msecs = remainder_ns / NSEC_PER_USEC; |
| 125 | |
| 126 | pr_info_ratelimited("INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n" , |
| 127 | action->handler, duration, decimal_msecs); |
| 128 | } |
| 129 | |
| 130 | static int nmi_handle(unsigned int type, struct pt_regs *regs) |
| 131 | { |
| 132 | struct nmi_desc *desc = nmi_to_desc(type); |
| 133 | nmi_handler_t ehandler; |
| 134 | struct nmiaction *a; |
| 135 | int handled=0; |
| 136 | |
| 137 | /* |
| 138 | * Call the emergency handler, if set |
| 139 | * |
| 140 | * In the case of crash_nmi_callback() emergency handler, it will |
| 141 | * return in the case of the crashing CPU to enable it to complete |
| 142 | * other necessary crashing actions ASAP. Other handlers in the |
| 143 | * linked list won't need to be run. |
| 144 | */ |
| 145 | ehandler = desc->emerg_handler; |
| 146 | if (ehandler) |
| 147 | return ehandler(type, regs); |
| 148 | |
| 149 | rcu_read_lock(); |
| 150 | |
| 151 | /* |
| 152 | * NMIs are edge-triggered, which means if you have enough |
| 153 | * of them concurrently, you can lose some because only one |
| 154 | * can be latched at any given time. Walk the whole list |
| 155 | * to handle those situations. |
| 156 | */ |
| 157 | list_for_each_entry_rcu(a, &desc->head, list) { |
| 158 | int thishandled; |
| 159 | u64 delta; |
| 160 | |
| 161 | delta = sched_clock(); |
| 162 | thishandled = a->handler(type, regs); |
| 163 | handled += thishandled; |
| 164 | delta = sched_clock() - delta; |
| 165 | trace_nmi_handler(handler: a->handler, delta_ns: (int)delta, handled: thishandled); |
| 166 | |
| 167 | nmi_check_duration(action: a, duration: delta); |
| 168 | } |
| 169 | |
| 170 | rcu_read_unlock(); |
| 171 | |
| 172 | /* return total number of NMI events handled */ |
| 173 | return handled; |
| 174 | } |
| 175 | NOKPROBE_SYMBOL(nmi_handle); |
| 176 | |
| 177 | int __register_nmi_handler(unsigned int type, struct nmiaction *action) |
| 178 | { |
| 179 | struct nmi_desc *desc = nmi_to_desc(type); |
| 180 | unsigned long flags; |
| 181 | |
| 182 | if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list))) |
| 183 | return -EINVAL; |
| 184 | |
| 185 | raw_spin_lock_irqsave(&desc->lock, flags); |
| 186 | |
| 187 | /* |
| 188 | * Indicate if there are multiple registrations on the |
| 189 | * internal NMI handler call chains (SERR and IO_CHECK). |
| 190 | */ |
| 191 | WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); |
| 192 | WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); |
| 193 | |
| 194 | /* |
| 195 | * some handlers need to be executed first otherwise a fake |
| 196 | * event confuses some handlers (kdump uses this flag) |
| 197 | */ |
| 198 | if (action->flags & NMI_FLAG_FIRST) |
| 199 | list_add_rcu(new: &action->list, head: &desc->head); |
| 200 | else |
| 201 | list_add_tail_rcu(new: &action->list, head: &desc->head); |
| 202 | |
| 203 | raw_spin_unlock_irqrestore(&desc->lock, flags); |
| 204 | return 0; |
| 205 | } |
| 206 | EXPORT_SYMBOL(__register_nmi_handler); |
| 207 | |
| 208 | void unregister_nmi_handler(unsigned int type, const char *name) |
| 209 | { |
| 210 | struct nmi_desc *desc = nmi_to_desc(type); |
| 211 | struct nmiaction *n, *found = NULL; |
| 212 | unsigned long flags; |
| 213 | |
| 214 | raw_spin_lock_irqsave(&desc->lock, flags); |
| 215 | |
| 216 | list_for_each_entry_rcu(n, &desc->head, list) { |
| 217 | /* |
| 218 | * the name passed in to describe the nmi handler |
| 219 | * is used as the lookup key |
| 220 | */ |
| 221 | if (!strcmp(n->name, name)) { |
| 222 | WARN(in_nmi(), |
| 223 | "Trying to free NMI (%s) from NMI context!\n" , n->name); |
| 224 | list_del_rcu(entry: &n->list); |
| 225 | found = n; |
| 226 | break; |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | raw_spin_unlock_irqrestore(&desc->lock, flags); |
| 231 | if (found) { |
| 232 | synchronize_rcu(); |
| 233 | INIT_LIST_HEAD(list: &found->list); |
| 234 | } |
| 235 | } |
| 236 | EXPORT_SYMBOL_GPL(unregister_nmi_handler); |
| 237 | |
| 238 | /** |
| 239 | * set_emergency_nmi_handler - Set emergency handler |
| 240 | * @type: NMI type |
| 241 | * @handler: the emergency handler to be stored |
| 242 | * |
| 243 | * Set an emergency NMI handler which, if set, will preempt all the other |
| 244 | * handlers in the linked list. If a NULL handler is passed in, it will clear |
| 245 | * it. It is expected that concurrent calls to this function will not happen |
| 246 | * or the system is screwed beyond repair. |
| 247 | */ |
| 248 | void set_emergency_nmi_handler(unsigned int type, nmi_handler_t handler) |
| 249 | { |
| 250 | struct nmi_desc *desc = nmi_to_desc(type); |
| 251 | |
| 252 | if (WARN_ON_ONCE(desc->emerg_handler == handler)) |
| 253 | return; |
| 254 | desc->emerg_handler = handler; |
| 255 | |
| 256 | /* |
| 257 | * Ensure the emergency handler is visible to other CPUs before |
| 258 | * function return |
| 259 | */ |
| 260 | smp_wmb(); |
| 261 | } |
| 262 | |
| 263 | static void |
| 264 | pci_serr_error(unsigned char reason, struct pt_regs *regs) |
| 265 | { |
| 266 | /* check to see if anyone registered against these types of errors */ |
| 267 | if (nmi_handle(type: NMI_SERR, regs)) |
| 268 | return; |
| 269 | |
| 270 | pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n" , |
| 271 | reason, smp_processor_id()); |
| 272 | |
| 273 | if (panic_on_unrecovered_nmi) |
| 274 | nmi_panic(regs, msg: "NMI: Not continuing" ); |
| 275 | |
| 276 | pr_emerg("Dazed and confused, but trying to continue\n" ); |
| 277 | |
| 278 | /* Clear and disable the PCI SERR error line. */ |
| 279 | reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; |
| 280 | outb(value: reason, NMI_REASON_PORT); |
| 281 | } |
| 282 | NOKPROBE_SYMBOL(pci_serr_error); |
| 283 | |
| 284 | static void |
| 285 | io_check_error(unsigned char reason, struct pt_regs *regs) |
| 286 | { |
| 287 | unsigned long i; |
| 288 | |
| 289 | /* check to see if anyone registered against these types of errors */ |
| 290 | if (nmi_handle(type: NMI_IO_CHECK, regs)) |
| 291 | return; |
| 292 | |
| 293 | pr_emerg( |
| 294 | "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n" , |
| 295 | reason, smp_processor_id()); |
| 296 | show_regs(regs); |
| 297 | |
| 298 | if (panic_on_io_nmi) { |
| 299 | nmi_panic(regs, msg: "NMI IOCK error: Not continuing" ); |
| 300 | |
| 301 | /* |
| 302 | * If we end up here, it means we have received an NMI while |
| 303 | * processing panic(). Simply return without delaying and |
| 304 | * re-enabling NMIs. |
| 305 | */ |
| 306 | return; |
| 307 | } |
| 308 | |
| 309 | /* Re-enable the IOCK line, wait for a few seconds */ |
| 310 | reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; |
| 311 | outb(value: reason, NMI_REASON_PORT); |
| 312 | |
| 313 | i = 20000; |
| 314 | while (--i) { |
| 315 | touch_nmi_watchdog(); |
| 316 | udelay(usec: 100); |
| 317 | } |
| 318 | |
| 319 | reason &= ~NMI_REASON_CLEAR_IOCHK; |
| 320 | outb(value: reason, NMI_REASON_PORT); |
| 321 | } |
| 322 | NOKPROBE_SYMBOL(io_check_error); |
| 323 | |
| 324 | static void |
| 325 | unknown_nmi_error(unsigned char reason, struct pt_regs *regs) |
| 326 | { |
| 327 | int handled; |
| 328 | |
| 329 | /* |
| 330 | * As a last resort, let the "unknown" handlers make a |
| 331 | * best-effort attempt to figure out if they can claim |
| 332 | * responsibility for this Unknown NMI. |
| 333 | */ |
| 334 | handled = nmi_handle(type: NMI_UNKNOWN, regs); |
| 335 | if (handled) { |
| 336 | __this_cpu_add(nmi_stats.unknown, handled); |
| 337 | return; |
| 338 | } |
| 339 | |
| 340 | __this_cpu_add(nmi_stats.unknown, 1); |
| 341 | |
| 342 | pr_emerg_ratelimited("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n" , |
| 343 | reason, smp_processor_id()); |
| 344 | |
| 345 | if (unknown_nmi_panic || panic_on_unrecovered_nmi) |
| 346 | nmi_panic(regs, msg: "NMI: Not continuing" ); |
| 347 | |
| 348 | pr_emerg_ratelimited("Dazed and confused, but trying to continue\n" ); |
| 349 | } |
| 350 | NOKPROBE_SYMBOL(unknown_nmi_error); |
| 351 | |
| 352 | static DEFINE_PER_CPU(bool, swallow_nmi); |
| 353 | static DEFINE_PER_CPU(unsigned long, last_nmi_rip); |
| 354 | |
| 355 | static noinstr void default_do_nmi(struct pt_regs *regs) |
| 356 | { |
| 357 | unsigned char reason = 0; |
| 358 | int handled; |
| 359 | bool b2b = false; |
| 360 | |
| 361 | /* |
| 362 | * Back-to-back NMIs are detected by comparing the RIP of the |
| 363 | * current NMI with that of the previous NMI. If it is the same, |
| 364 | * it is assumed that the CPU did not have a chance to jump back |
| 365 | * into a non-NMI context and execute code in between the two |
| 366 | * NMIs. |
| 367 | * |
| 368 | * They are interesting because even if there are more than two, |
| 369 | * only a maximum of two can be detected (anything over two is |
| 370 | * dropped due to NMI being edge-triggered). If this is the |
| 371 | * second half of the back-to-back NMI, assume we dropped things |
| 372 | * and process more handlers. Otherwise, reset the 'swallow' NMI |
| 373 | * behavior. |
| 374 | */ |
| 375 | if (regs->ip == __this_cpu_read(last_nmi_rip)) |
| 376 | b2b = true; |
| 377 | else |
| 378 | __this_cpu_write(swallow_nmi, false); |
| 379 | |
| 380 | __this_cpu_write(last_nmi_rip, regs->ip); |
| 381 | |
| 382 | instrumentation_begin(); |
| 383 | |
| 384 | if (microcode_nmi_handler_enabled() && microcode_nmi_handler()) |
| 385 | goto out; |
| 386 | |
| 387 | /* |
| 388 | * CPU-specific NMI must be processed before non-CPU-specific |
| 389 | * NMI, otherwise we may lose it, because the CPU-specific |
| 390 | * NMI can not be detected/processed on other CPUs. |
| 391 | */ |
| 392 | handled = nmi_handle(type: NMI_LOCAL, regs); |
| 393 | __this_cpu_add(nmi_stats.normal, handled); |
| 394 | if (handled) { |
| 395 | /* |
| 396 | * There are cases when a NMI handler handles multiple |
| 397 | * events in the current NMI. One of these events may |
| 398 | * be queued for in the next NMI. Because the event is |
| 399 | * already handled, the next NMI will result in an unknown |
| 400 | * NMI. Instead lets flag this for a potential NMI to |
| 401 | * swallow. |
| 402 | */ |
| 403 | if (handled > 1) |
| 404 | __this_cpu_write(swallow_nmi, true); |
| 405 | goto out; |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * Non-CPU-specific NMI: NMI sources can be processed on any CPU. |
| 410 | * |
| 411 | * Another CPU may be processing panic routines while holding |
| 412 | * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping, |
| 413 | * and if so, call its callback directly. If there is no CPU preparing |
| 414 | * crash dump, we simply loop here. |
| 415 | */ |
| 416 | while (!raw_spin_trylock(&nmi_reason_lock)) { |
| 417 | run_crash_ipi_callback(regs); |
| 418 | cpu_relax(); |
| 419 | } |
| 420 | |
| 421 | reason = x86_platform.get_nmi_reason(); |
| 422 | |
| 423 | if (reason & NMI_REASON_MASK) { |
| 424 | if (reason & NMI_REASON_SERR) |
| 425 | pci_serr_error(reason, regs); |
| 426 | else if (reason & NMI_REASON_IOCHK) |
| 427 | io_check_error(reason, regs); |
| 428 | |
| 429 | /* |
| 430 | * Reassert NMI in case it became active |
| 431 | * meanwhile as it's edge-triggered: |
| 432 | */ |
| 433 | if (IS_ENABLED(CONFIG_X86_32)) |
| 434 | reassert_nmi(); |
| 435 | |
| 436 | __this_cpu_add(nmi_stats.external, 1); |
| 437 | raw_spin_unlock(&nmi_reason_lock); |
| 438 | goto out; |
| 439 | } |
| 440 | raw_spin_unlock(&nmi_reason_lock); |
| 441 | |
| 442 | /* |
| 443 | * Only one NMI can be latched at a time. To handle |
| 444 | * this we may process multiple nmi handlers at once to |
| 445 | * cover the case where an NMI is dropped. The downside |
| 446 | * to this approach is we may process an NMI prematurely, |
| 447 | * while its real NMI is sitting latched. This will cause |
| 448 | * an unknown NMI on the next run of the NMI processing. |
| 449 | * |
| 450 | * We tried to flag that condition above, by setting the |
| 451 | * swallow_nmi flag when we process more than one event. |
| 452 | * This condition is also only present on the second half |
| 453 | * of a back-to-back NMI, so we flag that condition too. |
| 454 | * |
| 455 | * If both are true, we assume we already processed this |
| 456 | * NMI previously and we swallow it. Otherwise we reset |
| 457 | * the logic. |
| 458 | * |
| 459 | * There are scenarios where we may accidentally swallow |
| 460 | * a 'real' unknown NMI. For example, while processing |
| 461 | * a perf NMI another perf NMI comes in along with a |
| 462 | * 'real' unknown NMI. These two NMIs get combined into |
| 463 | * one (as described above). When the next NMI gets |
| 464 | * processed, it will be flagged by perf as handled, but |
| 465 | * no one will know that there was a 'real' unknown NMI sent |
| 466 | * also. As a result it gets swallowed. Or if the first |
| 467 | * perf NMI returns two events handled then the second |
| 468 | * NMI will get eaten by the logic below, again losing a |
| 469 | * 'real' unknown NMI. But this is the best we can do |
| 470 | * for now. |
| 471 | */ |
| 472 | if (b2b && __this_cpu_read(swallow_nmi)) |
| 473 | __this_cpu_add(nmi_stats.swallow, 1); |
| 474 | else |
| 475 | unknown_nmi_error(reason, regs); |
| 476 | |
| 477 | out: |
| 478 | instrumentation_end(); |
| 479 | } |
| 480 | |
| 481 | /* |
| 482 | * NMIs can page fault or hit breakpoints which will cause it to lose |
| 483 | * its NMI context with the CPU when the breakpoint or page fault does an IRET. |
| 484 | * |
| 485 | * As a result, NMIs can nest if NMIs get unmasked due an IRET during |
| 486 | * NMI processing. On x86_64, the asm glue protects us from nested NMIs |
| 487 | * if the outer NMI came from kernel mode, but we can still nest if the |
| 488 | * outer NMI came from user mode. |
| 489 | * |
| 490 | * To handle these nested NMIs, we have three states: |
| 491 | * |
| 492 | * 1) not running |
| 493 | * 2) executing |
| 494 | * 3) latched |
| 495 | * |
| 496 | * When no NMI is in progress, it is in the "not running" state. |
| 497 | * When an NMI comes in, it goes into the "executing" state. |
| 498 | * Normally, if another NMI is triggered, it does not interrupt |
| 499 | * the running NMI and the HW will simply latch it so that when |
| 500 | * the first NMI finishes, it will restart the second NMI. |
| 501 | * (Note, the latch is binary, thus multiple NMIs triggering, |
| 502 | * when one is running, are ignored. Only one NMI is restarted.) |
| 503 | * |
| 504 | * If an NMI executes an iret, another NMI can preempt it. We do not |
| 505 | * want to allow this new NMI to run, but we want to execute it when the |
| 506 | * first one finishes. We set the state to "latched", and the exit of |
| 507 | * the first NMI will perform a dec_return, if the result is zero |
| 508 | * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the |
| 509 | * dec_return would have set the state to NMI_EXECUTING (what we want it |
| 510 | * to be when we are running). In this case, we simply jump back to |
| 511 | * rerun the NMI handler again, and restart the 'latched' NMI. |
| 512 | * |
| 513 | * No trap (breakpoint or page fault) should be hit before nmi_restart, |
| 514 | * thus there is no race between the first check of state for NOT_RUNNING |
| 515 | * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs |
| 516 | * at this point. |
| 517 | * |
| 518 | * In case the NMI takes a page fault, we need to save off the CR2 |
| 519 | * because the NMI could have preempted another page fault and corrupt |
| 520 | * the CR2 that is about to be read. As nested NMIs must be restarted |
| 521 | * and they can not take breakpoints or page faults, the update of the |
| 522 | * CR2 must be done before converting the nmi state back to NOT_RUNNING. |
| 523 | * Otherwise, there would be a race of another nested NMI coming in |
| 524 | * after setting state to NOT_RUNNING but before updating the nmi_cr2. |
| 525 | */ |
| 526 | enum nmi_states { |
| 527 | NMI_NOT_RUNNING = 0, |
| 528 | NMI_EXECUTING, |
| 529 | NMI_LATCHED, |
| 530 | }; |
| 531 | static DEFINE_PER_CPU(enum nmi_states, nmi_state); |
| 532 | static DEFINE_PER_CPU(unsigned long, nmi_cr2); |
| 533 | static DEFINE_PER_CPU(unsigned long, nmi_dr7); |
| 534 | |
| 535 | DEFINE_IDTENTRY_RAW(exc_nmi) |
| 536 | { |
| 537 | irqentry_state_t irq_state; |
| 538 | struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats); |
| 539 | |
| 540 | /* |
| 541 | * Re-enable NMIs right here when running as an SEV-ES guest. This might |
| 542 | * cause nested NMIs, but those can be handled safely. |
| 543 | */ |
| 544 | sev_es_nmi_complete(); |
| 545 | if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) |
| 546 | raw_atomic_long_inc(v: &nsp->idt_calls); |
| 547 | |
| 548 | if (arch_cpu_is_offline(smp_processor_id())) { |
| 549 | if (microcode_nmi_handler_enabled()) |
| 550 | microcode_offline_nmi_handler(); |
| 551 | return; |
| 552 | } |
| 553 | |
| 554 | if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { |
| 555 | this_cpu_write(nmi_state, NMI_LATCHED); |
| 556 | return; |
| 557 | } |
| 558 | this_cpu_write(nmi_state, NMI_EXECUTING); |
| 559 | this_cpu_write(nmi_cr2, read_cr2()); |
| 560 | |
| 561 | nmi_restart: |
| 562 | if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { |
| 563 | WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1); |
| 564 | WARN_ON_ONCE(!(nsp->idt_seq & 0x1)); |
| 565 | WRITE_ONCE(nsp->recv_jiffies, jiffies); |
| 566 | } |
| 567 | |
| 568 | /* |
| 569 | * Needs to happen before DR7 is accessed, because the hypervisor can |
| 570 | * intercept DR7 reads/writes, turning those into #VC exceptions. |
| 571 | */ |
| 572 | sev_es_ist_enter(regs); |
| 573 | |
| 574 | this_cpu_write(nmi_dr7, local_db_save()); |
| 575 | |
| 576 | irq_state = irqentry_nmi_enter(regs); |
| 577 | |
| 578 | inc_irq_stat(__nmi_count); |
| 579 | |
| 580 | if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) { |
| 581 | WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1); |
| 582 | } else if (!ignore_nmis) { |
| 583 | if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { |
| 584 | WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1); |
| 585 | WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1)); |
| 586 | } |
| 587 | default_do_nmi(regs); |
| 588 | if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { |
| 589 | WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1); |
| 590 | WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1); |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | irqentry_nmi_exit(regs, irq_state); |
| 595 | |
| 596 | local_db_restore(this_cpu_read(nmi_dr7)); |
| 597 | |
| 598 | sev_es_ist_exit(); |
| 599 | |
| 600 | if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) |
| 601 | write_cr2(this_cpu_read(nmi_cr2)); |
| 602 | if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { |
| 603 | WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1); |
| 604 | WARN_ON_ONCE(nsp->idt_seq & 0x1); |
| 605 | WRITE_ONCE(nsp->recv_jiffies, jiffies); |
| 606 | } |
| 607 | if (this_cpu_dec_return(nmi_state)) |
| 608 | goto nmi_restart; |
| 609 | } |
| 610 | |
| 611 | #if IS_ENABLED(CONFIG_KVM_INTEL) |
| 612 | DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx) |
| 613 | { |
| 614 | exc_nmi(regs); |
| 615 | } |
| 616 | #if IS_MODULE(CONFIG_KVM_INTEL) |
| 617 | EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx); |
| 618 | #endif |
| 619 | #endif |
| 620 | |
| 621 | #ifdef CONFIG_NMI_CHECK_CPU |
| 622 | |
| 623 | static char *nmi_check_stall_msg[] = { |
| 624 | /* */ |
| 625 | /* +--------- nmi_seq & 0x1: CPU is currently in NMI handler. */ |
| 626 | /* | +------ cpu_is_offline(cpu) */ |
| 627 | /* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls): */ |
| 628 | /* | | | NMI handler has been invoked. */ |
| 629 | /* | | | */ |
| 630 | /* V V V */ |
| 631 | /* 0 0 0 */ "NMIs are not reaching exc_nmi() handler" , |
| 632 | /* 0 0 1 */ "exc_nmi() handler is ignoring NMIs" , |
| 633 | /* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler" , |
| 634 | /* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs" , |
| 635 | /* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler" , |
| 636 | /* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs" , |
| 637 | /* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler" , |
| 638 | /* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs" , |
| 639 | }; |
| 640 | |
| 641 | void nmi_backtrace_stall_snap(const struct cpumask *btp) |
| 642 | { |
| 643 | int cpu; |
| 644 | struct nmi_stats *nsp; |
| 645 | |
| 646 | for_each_cpu(cpu, btp) { |
| 647 | nsp = per_cpu_ptr(&nmi_stats, cpu); |
| 648 | nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq); |
| 649 | nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq); |
| 650 | nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored); |
| 651 | nsp->idt_calls_snap = atomic_long_read(v: &nsp->idt_calls); |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | void nmi_backtrace_stall_check(const struct cpumask *btp) |
| 656 | { |
| 657 | int cpu; |
| 658 | int idx; |
| 659 | unsigned long nmi_seq; |
| 660 | unsigned long j = jiffies; |
| 661 | char *modp; |
| 662 | char *msgp; |
| 663 | char *msghp; |
| 664 | struct nmi_stats *nsp; |
| 665 | |
| 666 | for_each_cpu(cpu, btp) { |
| 667 | nsp = per_cpu_ptr(&nmi_stats, cpu); |
| 668 | modp = "" ; |
| 669 | msghp = "" ; |
| 670 | nmi_seq = READ_ONCE(nsp->idt_nmi_seq); |
| 671 | if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) { |
| 672 | msgp = "CPU entered NMI handler function, but has not exited" ; |
| 673 | } else if (nsp->idt_nmi_seq_snap == nmi_seq || |
| 674 | nsp->idt_nmi_seq_snap + 1 == nmi_seq) { |
| 675 | idx = ((nmi_seq & 0x1) << 2) | |
| 676 | (cpu_is_offline(cpu) << 1) | |
| 677 | (nsp->idt_calls_snap != atomic_long_read(v: &nsp->idt_calls)); |
| 678 | msgp = nmi_check_stall_msg[idx]; |
| 679 | if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1)) |
| 680 | modp = ", but OK because ignore_nmis was set" ; |
| 681 | if (nsp->idt_nmi_seq_snap + 1 == nmi_seq) |
| 682 | msghp = " (CPU exited one NMI handler function)" ; |
| 683 | else if (nmi_seq & 0x1) |
| 684 | msghp = " (CPU currently in NMI handler function)" ; |
| 685 | else |
| 686 | msghp = " (CPU was never in an NMI handler function)" ; |
| 687 | } else { |
| 688 | msgp = "CPU is handling NMIs" ; |
| 689 | } |
| 690 | pr_alert("%s: CPU %d: %s%s%s\n" , __func__, cpu, msgp, modp, msghp); |
| 691 | pr_alert("%s: last activity: %lu jiffies ago.\n" , |
| 692 | __func__, j - READ_ONCE(nsp->recv_jiffies)); |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | #endif |
| 697 | |
| 698 | #ifdef CONFIG_X86_FRED |
| 699 | /* |
| 700 | * With FRED, CR2/DR6 is pushed to #PF/#DB stack frame during FRED |
| 701 | * event delivery, i.e., there is no problem of transient states. |
| 702 | * And NMI unblocking only happens when the stack frame indicates |
| 703 | * that so should happen. |
| 704 | * |
| 705 | * Thus, the NMI entry stub for FRED is really straightforward and |
| 706 | * as simple as most exception handlers. As such, #DB is allowed |
| 707 | * during NMI handling. |
| 708 | */ |
| 709 | DEFINE_FREDENTRY_NMI(exc_nmi) |
| 710 | { |
| 711 | irqentry_state_t irq_state; |
| 712 | |
| 713 | if (arch_cpu_is_offline(smp_processor_id())) { |
| 714 | if (microcode_nmi_handler_enabled()) |
| 715 | microcode_offline_nmi_handler(); |
| 716 | return; |
| 717 | } |
| 718 | |
| 719 | /* |
| 720 | * Save CR2 for eventual restore to cover the case where the NMI |
| 721 | * hits the VMENTER/VMEXIT region where guest CR2 is life. This |
| 722 | * prevents guest state corruption in case that the NMI handler |
| 723 | * takes a page fault. |
| 724 | */ |
| 725 | this_cpu_write(nmi_cr2, read_cr2()); |
| 726 | |
| 727 | irq_state = irqentry_nmi_enter(regs); |
| 728 | |
| 729 | inc_irq_stat(__nmi_count); |
| 730 | default_do_nmi(regs); |
| 731 | |
| 732 | irqentry_nmi_exit(regs, irq_state); |
| 733 | |
| 734 | if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) |
| 735 | write_cr2(this_cpu_read(nmi_cr2)); |
| 736 | } |
| 737 | #endif |
| 738 | |
| 739 | void stop_nmi(void) |
| 740 | { |
| 741 | ignore_nmis++; |
| 742 | } |
| 743 | |
| 744 | void restart_nmi(void) |
| 745 | { |
| 746 | ignore_nmis--; |
| 747 | } |
| 748 | |
| 749 | /* reset the back-to-back NMI logic */ |
| 750 | void local_touch_nmi(void) |
| 751 | { |
| 752 | __this_cpu_write(last_nmi_rip, 0); |
| 753 | } |
| 754 | |