1// SPDX-License-Identifier: GPL-2.0
2/*
3 * System Control and Management Interface (SCMI) Message Protocol driver
4 *
5 * SCMI Message Protocol is used between the System Control Processor(SCP)
6 * and the Application Processors(AP). The Message Handling Unit(MHU)
7 * provides a mechanism for inter-processor communication between SCP's
8 * Cortex M3 and AP.
9 *
10 * SCP offers control and management of the core/cluster power states,
11 * various power domain DVFS including the core/cluster, certain system
12 * clocks configuration, thermal sensors and many others.
13 *
14 * Copyright (C) 2018-2021 ARM Ltd.
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/bitmap.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/export.h>
23#include <linux/idr.h>
24#include <linux/io.h>
25#include <linux/io-64-nonatomic-hi-lo.h>
26#include <linux/kernel.h>
27#include <linux/ktime.h>
28#include <linux/hashtable.h>
29#include <linux/list.h>
30#include <linux/module.h>
31#include <linux/of.h>
32#include <linux/platform_device.h>
33#include <linux/processor.h>
34#include <linux/refcount.h>
35#include <linux/slab.h>
36
37#include "common.h"
38#include "notify.h"
39
40#include "raw_mode.h"
41
42#define CREATE_TRACE_POINTS
43#include <trace/events/scmi.h>
44
45static DEFINE_IDA(scmi_id);
46
47static DEFINE_IDR(scmi_protocols);
48static DEFINE_SPINLOCK(protocol_lock);
49
50/* List of all SCMI devices active in system */
51static LIST_HEAD(scmi_list);
52/* Protection for the entire list */
53static DEFINE_MUTEX(scmi_list_mutex);
54/* Track the unique id for the transfers for debug & profiling purpose */
55static atomic_t transfer_last_id;
56
57static struct dentry *scmi_top_dentry;
58
59/**
60 * struct scmi_xfers_info - Structure to manage transfer information
61 *
62 * @xfer_alloc_table: Bitmap table for allocated messages.
63 * Index of this bitmap table is also used for message
64 * sequence identifier.
65 * @xfer_lock: Protection for message allocation
66 * @max_msg: Maximum number of messages that can be pending
67 * @free_xfers: A free list for available to use xfers. It is initialized with
68 * a number of xfers equal to the maximum allowed in-flight
69 * messages.
70 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
71 * currently in-flight messages.
72 */
73struct scmi_xfers_info {
74 unsigned long *xfer_alloc_table;
75 spinlock_t xfer_lock;
76 int max_msg;
77 struct hlist_head free_xfers;
78 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
79};
80
81/**
82 * struct scmi_protocol_instance - Describe an initialized protocol instance.
83 * @handle: Reference to the SCMI handle associated to this protocol instance.
84 * @proto: A reference to the protocol descriptor.
85 * @gid: A reference for per-protocol devres management.
86 * @users: A refcount to track effective users of this protocol.
87 * @priv: Reference for optional protocol private data.
88 * @version: Protocol version supported by the platform as detected at runtime.
89 * @negotiated_version: When the platform supports a newer protocol version,
90 * the agent will try to negotiate with the platform the
91 * usage of the newest version known to it, since
92 * backward compatibility is NOT automatically assured.
93 * This field is NON-zero when a successful negotiation
94 * has completed.
95 * @ph: An embedded protocol handle that will be passed down to protocol
96 * initialization code to identify this instance.
97 *
98 * Each protocol is initialized independently once for each SCMI platform in
99 * which is defined by DT and implemented by the SCMI server fw.
100 */
101struct scmi_protocol_instance {
102 const struct scmi_handle *handle;
103 const struct scmi_protocol *proto;
104 void *gid;
105 refcount_t users;
106 void *priv;
107 unsigned int version;
108 unsigned int negotiated_version;
109 struct scmi_protocol_handle ph;
110};
111
112#define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph)
113
114/**
115 * struct scmi_debug_info - Debug common info
116 * @top_dentry: A reference to the top debugfs dentry
117 * @name: Name of this SCMI instance
118 * @type: Type of this SCMI instance
119 * @is_atomic: Flag to state if the transport of this instance is atomic
120 */
121struct scmi_debug_info {
122 struct dentry *top_dentry;
123 const char *name;
124 const char *type;
125 bool is_atomic;
126};
127
128/**
129 * struct scmi_info - Structure representing a SCMI instance
130 *
131 * @id: A sequence number starting from zero identifying this instance
132 * @dev: Device pointer
133 * @desc: SoC description for this instance
134 * @version: SCMI revision information containing protocol version,
135 * implementation version and (sub-)vendor identification.
136 * @handle: Instance of SCMI handle to send to clients
137 * @tx_minfo: Universal Transmit Message management info
138 * @rx_minfo: Universal Receive Message management info
139 * @tx_idr: IDR object to map protocol id to Tx channel info pointer
140 * @rx_idr: IDR object to map protocol id to Rx channel info pointer
141 * @protocols: IDR for protocols' instance descriptors initialized for
142 * this SCMI instance: populated on protocol's first attempted
143 * usage.
144 * @protocols_mtx: A mutex to protect protocols instances initialization.
145 * @protocols_imp: List of protocols implemented, currently maximum of
146 * scmi_revision_info.num_protocols elements allocated by the
147 * base protocol
148 * @active_protocols: IDR storing device_nodes for protocols actually defined
149 * in the DT and confirmed as implemented by fw.
150 * @atomic_threshold: Optional system wide DT-configured threshold, expressed
151 * in microseconds, for atomic operations.
152 * Only SCMI synchronous commands reported by the platform
153 * to have an execution latency lesser-equal to the threshold
154 * should be considered for atomic mode operation: such
155 * decision is finally left up to the SCMI drivers.
156 * @notify_priv: Pointer to private data structure specific to notifications.
157 * @node: List head
158 * @users: Number of users of this instance
159 * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
160 * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
161 * bus
162 * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
163 * @dbg: A pointer to debugfs related data (if any)
164 * @raw: An opaque reference handle used by SCMI Raw mode.
165 */
166struct scmi_info {
167 int id;
168 struct device *dev;
169 const struct scmi_desc *desc;
170 struct scmi_revision_info version;
171 struct scmi_handle handle;
172 struct scmi_xfers_info tx_minfo;
173 struct scmi_xfers_info rx_minfo;
174 struct idr tx_idr;
175 struct idr rx_idr;
176 struct idr protocols;
177 /* Ensure mutual exclusive access to protocols instance array */
178 struct mutex protocols_mtx;
179 u8 *protocols_imp;
180 struct idr active_protocols;
181 unsigned int atomic_threshold;
182 void *notify_priv;
183 struct list_head node;
184 int users;
185 struct notifier_block bus_nb;
186 struct notifier_block dev_req_nb;
187 /* Serialize device creation process for this instance */
188 struct mutex devreq_mtx;
189 struct scmi_debug_info *dbg;
190 void *raw;
191};
192
193#define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle)
194#define bus_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, bus_nb)
195#define req_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, dev_req_nb)
196
197static const struct scmi_protocol *scmi_protocol_get(int protocol_id)
198{
199 const struct scmi_protocol *proto;
200
201 proto = idr_find(&scmi_protocols, id: protocol_id);
202 if (!proto || !try_module_get(module: proto->owner)) {
203 pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
204 return NULL;
205 }
206
207 pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
208
209 return proto;
210}
211
212static void scmi_protocol_put(int protocol_id)
213{
214 const struct scmi_protocol *proto;
215
216 proto = idr_find(&scmi_protocols, id: protocol_id);
217 if (proto)
218 module_put(module: proto->owner);
219}
220
221int scmi_protocol_register(const struct scmi_protocol *proto)
222{
223 int ret;
224
225 if (!proto) {
226 pr_err("invalid protocol\n");
227 return -EINVAL;
228 }
229
230 if (!proto->instance_init) {
231 pr_err("missing init for protocol 0x%x\n", proto->id);
232 return -EINVAL;
233 }
234
235 spin_lock(lock: &protocol_lock);
236 ret = idr_alloc(&scmi_protocols, ptr: (void *)proto,
237 start: proto->id, end: proto->id + 1, GFP_ATOMIC);
238 spin_unlock(lock: &protocol_lock);
239 if (ret != proto->id) {
240 pr_err("unable to allocate SCMI idr slot for 0x%x - err %d\n",
241 proto->id, ret);
242 return ret;
243 }
244
245 pr_debug("Registered SCMI Protocol 0x%x\n", proto->id);
246
247 return 0;
248}
249EXPORT_SYMBOL_GPL(scmi_protocol_register);
250
251void scmi_protocol_unregister(const struct scmi_protocol *proto)
252{
253 spin_lock(lock: &protocol_lock);
254 idr_remove(&scmi_protocols, id: proto->id);
255 spin_unlock(lock: &protocol_lock);
256
257 pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
258}
259EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
260
261/**
262 * scmi_create_protocol_devices - Create devices for all pending requests for
263 * this SCMI instance.
264 *
265 * @np: The device node describing the protocol
266 * @info: The SCMI instance descriptor
267 * @prot_id: The protocol ID
268 * @name: The optional name of the device to be created: if not provided this
269 * call will lead to the creation of all the devices currently requested
270 * for the specified protocol.
271 */
272static void scmi_create_protocol_devices(struct device_node *np,
273 struct scmi_info *info,
274 int prot_id, const char *name)
275{
276 struct scmi_device *sdev;
277
278 mutex_lock(&info->devreq_mtx);
279 sdev = scmi_device_create(np, parent: info->dev, protocol: prot_id, name);
280 if (name && !sdev)
281 dev_err(info->dev,
282 "failed to create device for protocol 0x%X (%s)\n",
283 prot_id, name);
284 mutex_unlock(lock: &info->devreq_mtx);
285}
286
287static void scmi_destroy_protocol_devices(struct scmi_info *info,
288 int prot_id, const char *name)
289{
290 mutex_lock(&info->devreq_mtx);
291 scmi_device_destroy(parent: info->dev, protocol: prot_id, name);
292 mutex_unlock(lock: &info->devreq_mtx);
293}
294
295void scmi_notification_instance_data_set(const struct scmi_handle *handle,
296 void *priv)
297{
298 struct scmi_info *info = handle_to_scmi_info(handle);
299
300 info->notify_priv = priv;
301 /* Ensure updated protocol private date are visible */
302 smp_wmb();
303}
304
305void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
306{
307 struct scmi_info *info = handle_to_scmi_info(handle);
308
309 /* Ensure protocols_private_data has been updated */
310 smp_rmb();
311 return info->notify_priv;
312}
313
314/**
315 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand
316 *
317 * @minfo: Pointer to Tx/Rx Message management info based on channel type
318 * @xfer: The xfer to act upon
319 *
320 * Pick the next unused monotonically increasing token and set it into
321 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
322 * reuse of freshly completed or timed-out xfers, thus mitigating the risk
323 * of incorrect association of a late and expired xfer with a live in-flight
324 * transaction, both happening to re-use the same token identifier.
325 *
326 * Since platform is NOT required to answer our request in-order we should
327 * account for a few rare but possible scenarios:
328 *
329 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
330 * using find_next_zero_bit() starting from candidate next_token bit
331 *
332 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
333 * are plenty of free tokens at start, so try a second pass using
334 * find_next_zero_bit() and starting from 0.
335 *
336 * X = used in-flight
337 *
338 * Normal
339 * ------
340 *
341 * |- xfer_id picked
342 * -----------+----------------------------------------------------------
343 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
344 * ----------------------------------------------------------------------
345 * ^
346 * |- next_token
347 *
348 * Out-of-order pending at start
349 * -----------------------------
350 *
351 * |- xfer_id picked, last_token fixed
352 * -----+----------------------------------------------------------------
353 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
354 * ----------------------------------------------------------------------
355 * ^
356 * |- next_token
357 *
358 *
359 * Out-of-order pending at end
360 * ---------------------------
361 *
362 * |- xfer_id picked, last_token fixed
363 * -----+----------------------------------------------------------------
364 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
365 * ----------------------------------------------------------------------
366 * ^
367 * |- next_token
368 *
369 * Context: Assumes to be called with @xfer_lock already acquired.
370 *
371 * Return: 0 on Success or error
372 */
373static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
374 struct scmi_xfer *xfer)
375{
376 unsigned long xfer_id, next_token;
377
378 /*
379 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
380 * using the pre-allocated transfer_id as a base.
381 * Note that the global transfer_id is shared across all message types
382 * so there could be holes in the allocated set of monotonic sequence
383 * numbers, but that is going to limit the effectiveness of the
384 * mitigation only in very rare limit conditions.
385 */
386 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
387
388 /* Pick the next available xfer_id >= next_token */
389 xfer_id = find_next_zero_bit(addr: minfo->xfer_alloc_table,
390 MSG_TOKEN_MAX, offset: next_token);
391 if (xfer_id == MSG_TOKEN_MAX) {
392 /*
393 * After heavily out-of-order responses, there are no free
394 * tokens ahead, but only at start of xfer_alloc_table so
395 * try again from the beginning.
396 */
397 xfer_id = find_next_zero_bit(addr: minfo->xfer_alloc_table,
398 MSG_TOKEN_MAX, offset: 0);
399 /*
400 * Something is wrong if we got here since there can be a
401 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
402 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
403 */
404 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
405 return -ENOMEM;
406 }
407
408 /* Update +/- last_token accordingly if we skipped some hole */
409 if (xfer_id != next_token)
410 atomic_add(i: (int)(xfer_id - next_token), v: &transfer_last_id);
411
412 xfer->hdr.seq = (u16)xfer_id;
413
414 return 0;
415}
416
417/**
418 * scmi_xfer_token_clear - Release the token
419 *
420 * @minfo: Pointer to Tx/Rx Message management info based on channel type
421 * @xfer: The xfer to act upon
422 */
423static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
424 struct scmi_xfer *xfer)
425{
426 clear_bit(nr: xfer->hdr.seq, addr: minfo->xfer_alloc_table);
427}
428
429/**
430 * scmi_xfer_inflight_register_unlocked - Register the xfer as in-flight
431 *
432 * @xfer: The xfer to register
433 * @minfo: Pointer to Tx/Rx Message management info based on channel type
434 *
435 * Note that this helper assumes that the xfer to be registered as in-flight
436 * had been built using an xfer sequence number which still corresponds to a
437 * free slot in the xfer_alloc_table.
438 *
439 * Context: Assumes to be called with @xfer_lock already acquired.
440 */
441static inline void
442scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
443 struct scmi_xfers_info *minfo)
444{
445 /* Set in-flight */
446 set_bit(nr: xfer->hdr.seq, addr: minfo->xfer_alloc_table);
447 hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
448 xfer->pending = true;
449}
450
451/**
452 * scmi_xfer_inflight_register - Try to register an xfer as in-flight
453 *
454 * @xfer: The xfer to register
455 * @minfo: Pointer to Tx/Rx Message management info based on channel type
456 *
457 * Note that this helper does NOT assume anything about the sequence number
458 * that was baked into the provided xfer, so it checks at first if it can
459 * be mapped to a free slot and fails with an error if another xfer with the
460 * same sequence number is currently still registered as in-flight.
461 *
462 * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
463 * could not rbe mapped to a free slot in the xfer_alloc_table.
464 */
465static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
466 struct scmi_xfers_info *minfo)
467{
468 int ret = 0;
469 unsigned long flags;
470
471 spin_lock_irqsave(&minfo->xfer_lock, flags);
472 if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
473 scmi_xfer_inflight_register_unlocked(xfer, minfo);
474 else
475 ret = -EBUSY;
476 spin_unlock_irqrestore(lock: &minfo->xfer_lock, flags);
477
478 return ret;
479}
480
481/**
482 * scmi_xfer_raw_inflight_register - An helper to register the given xfer as in
483 * flight on the TX channel, if possible.
484 *
485 * @handle: Pointer to SCMI entity handle
486 * @xfer: The xfer to register
487 *
488 * Return: 0 on Success, error otherwise
489 */
490int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
491 struct scmi_xfer *xfer)
492{
493 struct scmi_info *info = handle_to_scmi_info(handle);
494
495 return scmi_xfer_inflight_register(xfer, minfo: &info->tx_minfo);
496}
497
498/**
499 * scmi_xfer_pending_set - Pick a proper sequence number and mark the xfer
500 * as pending in-flight
501 *
502 * @xfer: The xfer to act upon
503 * @minfo: Pointer to Tx/Rx Message management info based on channel type
504 *
505 * Return: 0 on Success or error otherwise
506 */
507static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
508 struct scmi_xfers_info *minfo)
509{
510 int ret;
511 unsigned long flags;
512
513 spin_lock_irqsave(&minfo->xfer_lock, flags);
514 /* Set a new monotonic token as the xfer sequence number */
515 ret = scmi_xfer_token_set(minfo, xfer);
516 if (!ret)
517 scmi_xfer_inflight_register_unlocked(xfer, minfo);
518 spin_unlock_irqrestore(lock: &minfo->xfer_lock, flags);
519
520 return ret;
521}
522
523/**
524 * scmi_xfer_get() - Allocate one message
525 *
526 * @handle: Pointer to SCMI entity handle
527 * @minfo: Pointer to Tx/Rx Message management info based on channel type
528 *
529 * Helper function which is used by various message functions that are
530 * exposed to clients of this driver for allocating a message traffic event.
531 *
532 * Picks an xfer from the free list @free_xfers (if any available) and perform
533 * a basic initialization.
534 *
535 * Note that, at this point, still no sequence number is assigned to the
536 * allocated xfer, nor it is registered as a pending transaction.
537 *
538 * The successfully initialized xfer is refcounted.
539 *
540 * Context: Holds @xfer_lock while manipulating @free_xfers.
541 *
542 * Return: An initialized xfer if all went fine, else pointer error.
543 */
544static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
545 struct scmi_xfers_info *minfo)
546{
547 unsigned long flags;
548 struct scmi_xfer *xfer;
549
550 spin_lock_irqsave(&minfo->xfer_lock, flags);
551 if (hlist_empty(h: &minfo->free_xfers)) {
552 spin_unlock_irqrestore(lock: &minfo->xfer_lock, flags);
553 return ERR_PTR(error: -ENOMEM);
554 }
555
556 /* grab an xfer from the free_list */
557 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
558 hlist_del_init(n: &xfer->node);
559
560 /*
561 * Allocate transfer_id early so that can be used also as base for
562 * monotonic sequence number generation if needed.
563 */
564 xfer->transfer_id = atomic_inc_return(v: &transfer_last_id);
565
566 refcount_set(r: &xfer->users, n: 1);
567 atomic_set(v: &xfer->busy, SCMI_XFER_FREE);
568 spin_unlock_irqrestore(lock: &minfo->xfer_lock, flags);
569
570 return xfer;
571}
572
573/**
574 * scmi_xfer_raw_get - Helper to get a bare free xfer from the TX channel
575 *
576 * @handle: Pointer to SCMI entity handle
577 *
578 * Note that xfer is taken from the TX channel structures.
579 *
580 * Return: A valid xfer on Success, or an error-pointer otherwise
581 */
582struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
583{
584 struct scmi_xfer *xfer;
585 struct scmi_info *info = handle_to_scmi_info(handle);
586
587 xfer = scmi_xfer_get(handle, minfo: &info->tx_minfo);
588 if (!IS_ERR(ptr: xfer))
589 xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
590
591 return xfer;
592}
593
594/**
595 * scmi_xfer_raw_channel_get - Helper to get a reference to the proper channel
596 * to use for a specific protocol_id Raw transaction.
597 *
598 * @handle: Pointer to SCMI entity handle
599 * @protocol_id: Identifier of the protocol
600 *
601 * Note that in a regular SCMI stack, usually, a protocol has to be defined in
602 * the DT to have an associated channel and be usable; but in Raw mode any
603 * protocol in range is allowed, re-using the Base channel, so as to enable
604 * fuzzing on any protocol without the need of a fully compiled DT.
605 *
606 * Return: A reference to the channel to use, or an ERR_PTR
607 */
608struct scmi_chan_info *
609scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
610{
611 struct scmi_chan_info *cinfo;
612 struct scmi_info *info = handle_to_scmi_info(handle);
613
614 cinfo = idr_find(&info->tx_idr, id: protocol_id);
615 if (!cinfo) {
616 if (protocol_id == SCMI_PROTOCOL_BASE)
617 return ERR_PTR(error: -EINVAL);
618 /* Use Base channel for protocols not defined for DT */
619 cinfo = idr_find(&info->tx_idr, id: SCMI_PROTOCOL_BASE);
620 if (!cinfo)
621 return ERR_PTR(error: -EINVAL);
622 dev_warn_once(handle->dev,
623 "Using Base channel for protocol 0x%X\n",
624 protocol_id);
625 }
626
627 return cinfo;
628}
629
630/**
631 * __scmi_xfer_put() - Release a message
632 *
633 * @minfo: Pointer to Tx/Rx Message management info based on channel type
634 * @xfer: message that was reserved by scmi_xfer_get
635 *
636 * After refcount check, possibly release an xfer, clearing the token slot,
637 * removing xfer from @pending_xfers and putting it back into free_xfers.
638 *
639 * This holds a spinlock to maintain integrity of internal data structures.
640 */
641static void
642__scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
643{
644 unsigned long flags;
645
646 spin_lock_irqsave(&minfo->xfer_lock, flags);
647 if (refcount_dec_and_test(r: &xfer->users)) {
648 if (xfer->pending) {
649 scmi_xfer_token_clear(minfo, xfer);
650 hash_del(node: &xfer->node);
651 xfer->pending = false;
652 }
653 hlist_add_head(n: &xfer->node, h: &minfo->free_xfers);
654 }
655 spin_unlock_irqrestore(lock: &minfo->xfer_lock, flags);
656}
657
658/**
659 * scmi_xfer_raw_put - Release an xfer that was taken by @scmi_xfer_raw_get
660 *
661 * @handle: Pointer to SCMI entity handle
662 * @xfer: A reference to the xfer to put
663 *
664 * Note that as with other xfer_put() handlers the xfer is really effectively
665 * released only if there are no more users on the system.
666 */
667void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
668{
669 struct scmi_info *info = handle_to_scmi_info(handle);
670
671 xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW;
672 xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET;
673 return __scmi_xfer_put(minfo: &info->tx_minfo, xfer);
674}
675
676/**
677 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id
678 *
679 * @minfo: Pointer to Tx/Rx Message management info based on channel type
680 * @xfer_id: Token ID to lookup in @pending_xfers
681 *
682 * Refcounting is untouched.
683 *
684 * Context: Assumes to be called with @xfer_lock already acquired.
685 *
686 * Return: A valid xfer on Success or error otherwise
687 */
688static struct scmi_xfer *
689scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
690{
691 struct scmi_xfer *xfer = NULL;
692
693 if (test_bit(xfer_id, minfo->xfer_alloc_table))
694 xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
695
696 return xfer ?: ERR_PTR(error: -EINVAL);
697}
698
699/**
700 * scmi_msg_response_validate - Validate message type against state of related
701 * xfer
702 *
703 * @cinfo: A reference to the channel descriptor.
704 * @msg_type: Message type to check
705 * @xfer: A reference to the xfer to validate against @msg_type
706 *
707 * This function checks if @msg_type is congruent with the current state of
708 * a pending @xfer; if an asynchronous delayed response is received before the
709 * related synchronous response (Out-of-Order Delayed Response) the missing
710 * synchronous response is assumed to be OK and completed, carrying on with the
711 * Delayed Response: this is done to address the case in which the underlying
712 * SCMI transport can deliver such out-of-order responses.
713 *
714 * Context: Assumes to be called with xfer->lock already acquired.
715 *
716 * Return: 0 on Success, error otherwise
717 */
718static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
719 u8 msg_type,
720 struct scmi_xfer *xfer)
721{
722 /*
723 * Even if a response was indeed expected on this slot at this point,
724 * a buggy platform could wrongly reply feeding us an unexpected
725 * delayed response we're not prepared to handle: bail-out safely
726 * blaming firmware.
727 */
728 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
729 dev_err(cinfo->dev,
730 "Delayed Response for %d not expected! Buggy F/W ?\n",
731 xfer->hdr.seq);
732 return -EINVAL;
733 }
734
735 switch (xfer->state) {
736 case SCMI_XFER_SENT_OK:
737 if (msg_type == MSG_TYPE_DELAYED_RESP) {
738 /*
739 * Delayed Response expected but delivered earlier.
740 * Assume message RESPONSE was OK and skip state.
741 */
742 xfer->hdr.status = SCMI_SUCCESS;
743 xfer->state = SCMI_XFER_RESP_OK;
744 complete(&xfer->done);
745 dev_warn(cinfo->dev,
746 "Received valid OoO Delayed Response for %d\n",
747 xfer->hdr.seq);
748 }
749 break;
750 case SCMI_XFER_RESP_OK:
751 if (msg_type != MSG_TYPE_DELAYED_RESP)
752 return -EINVAL;
753 break;
754 case SCMI_XFER_DRESP_OK:
755 /* No further message expected once in SCMI_XFER_DRESP_OK */
756 return -EINVAL;
757 }
758
759 return 0;
760}
761
762/**
763 * scmi_xfer_state_update - Update xfer state
764 *
765 * @xfer: A reference to the xfer to update
766 * @msg_type: Type of message being processed.
767 *
768 * Note that this message is assumed to have been already successfully validated
769 * by @scmi_msg_response_validate(), so here we just update the state.
770 *
771 * Context: Assumes to be called on an xfer exclusively acquired using the
772 * busy flag.
773 */
774static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
775{
776 xfer->hdr.type = msg_type;
777
778 /* Unknown command types were already discarded earlier */
779 if (xfer->hdr.type == MSG_TYPE_COMMAND)
780 xfer->state = SCMI_XFER_RESP_OK;
781 else
782 xfer->state = SCMI_XFER_DRESP_OK;
783}
784
785static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
786{
787 int ret;
788
789 ret = atomic_cmpxchg(v: &xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
790
791 return ret == SCMI_XFER_FREE;
792}
793
794/**
795 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer
796 *
797 * @cinfo: A reference to the channel descriptor.
798 * @msg_hdr: A message header to use as lookup key
799 *
800 * When a valid xfer is found for the sequence number embedded in the provided
801 * msg_hdr, reference counting is properly updated and exclusive access to this
802 * xfer is granted till released with @scmi_xfer_command_release.
803 *
804 * Return: A valid @xfer on Success or error otherwise.
805 */
806static inline struct scmi_xfer *
807scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
808{
809 int ret;
810 unsigned long flags;
811 struct scmi_xfer *xfer;
812 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
813 struct scmi_xfers_info *minfo = &info->tx_minfo;
814 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
815 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
816
817 /* Are we even expecting this? */
818 spin_lock_irqsave(&minfo->xfer_lock, flags);
819 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
820 if (IS_ERR(ptr: xfer)) {
821 dev_err(cinfo->dev,
822 "Message for %d type %d is not expected!\n",
823 xfer_id, msg_type);
824 spin_unlock_irqrestore(lock: &minfo->xfer_lock, flags);
825 return xfer;
826 }
827 refcount_inc(r: &xfer->users);
828 spin_unlock_irqrestore(lock: &minfo->xfer_lock, flags);
829
830 spin_lock_irqsave(&xfer->lock, flags);
831 ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
832 /*
833 * If a pending xfer was found which was also in a congruent state with
834 * the received message, acquire exclusive access to it setting the busy
835 * flag.
836 * Spins only on the rare limit condition of concurrent reception of
837 * RESP and DRESP for the same xfer.
838 */
839 if (!ret) {
840 spin_until_cond(scmi_xfer_acquired(xfer));
841 scmi_xfer_state_update(xfer, msg_type);
842 }
843 spin_unlock_irqrestore(lock: &xfer->lock, flags);
844
845 if (ret) {
846 dev_err(cinfo->dev,
847 "Invalid message type:%d for %d - HDR:0x%X state:%d\n",
848 msg_type, xfer_id, msg_hdr, xfer->state);
849 /* On error the refcount incremented above has to be dropped */
850 __scmi_xfer_put(minfo, xfer);
851 xfer = ERR_PTR(error: -EINVAL);
852 }
853
854 return xfer;
855}
856
857static inline void scmi_xfer_command_release(struct scmi_info *info,
858 struct scmi_xfer *xfer)
859{
860 atomic_set(v: &xfer->busy, SCMI_XFER_FREE);
861 __scmi_xfer_put(minfo: &info->tx_minfo, xfer);
862}
863
864static inline void scmi_clear_channel(struct scmi_info *info,
865 struct scmi_chan_info *cinfo)
866{
867 if (info->desc->ops->clear_channel)
868 info->desc->ops->clear_channel(cinfo);
869}
870
871static void scmi_handle_notification(struct scmi_chan_info *cinfo,
872 u32 msg_hdr, void *priv)
873{
874 struct scmi_xfer *xfer;
875 struct device *dev = cinfo->dev;
876 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
877 struct scmi_xfers_info *minfo = &info->rx_minfo;
878 ktime_t ts;
879
880 ts = ktime_get_boottime();
881 xfer = scmi_xfer_get(handle: cinfo->handle, minfo);
882 if (IS_ERR(ptr: xfer)) {
883 dev_err(dev, "failed to get free message slot (%ld)\n",
884 PTR_ERR(xfer));
885 scmi_clear_channel(info, cinfo);
886 return;
887 }
888
889 unpack_scmi_header(msg_hdr, hdr: &xfer->hdr);
890 if (priv)
891 /* Ensure order between xfer->priv store and following ops */
892 smp_store_mb(xfer->priv, priv);
893 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
894 xfer);
895
896 trace_scmi_msg_dump(id: info->id, channel_id: cinfo->id, protocol_id: xfer->hdr.protocol_id,
897 msg_id: xfer->hdr.id, tag: "NOTI", seq: xfer->hdr.seq,
898 status: xfer->hdr.status, buf: xfer->rx.buf, len: xfer->rx.len);
899
900 scmi_notify(handle: cinfo->handle, proto_id: xfer->hdr.protocol_id,
901 evt_id: xfer->hdr.id, buf: xfer->rx.buf, len: xfer->rx.len, ts);
902
903 trace_scmi_rx_done(transfer_id: xfer->transfer_id, msg_id: xfer->hdr.id,
904 protocol_id: xfer->hdr.protocol_id, seq: xfer->hdr.seq,
905 MSG_TYPE_NOTIFICATION);
906
907 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
908 xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
909 scmi_raw_message_report(raw: info->raw, xfer, idx: SCMI_RAW_NOTIF_QUEUE,
910 chan_id: cinfo->id);
911 }
912
913 __scmi_xfer_put(minfo, xfer);
914
915 scmi_clear_channel(info, cinfo);
916}
917
918static void scmi_handle_response(struct scmi_chan_info *cinfo,
919 u32 msg_hdr, void *priv)
920{
921 struct scmi_xfer *xfer;
922 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
923
924 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
925 if (IS_ERR(ptr: xfer)) {
926 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
927 scmi_raw_error_report(raw: info->raw, cinfo, msg_hdr, priv);
928
929 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
930 scmi_clear_channel(info, cinfo);
931 return;
932 }
933
934 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
935 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
936 xfer->rx.len = info->desc->max_msg_size;
937
938 if (priv)
939 /* Ensure order between xfer->priv store and following ops */
940 smp_store_mb(xfer->priv, priv);
941 info->desc->ops->fetch_response(cinfo, xfer);
942
943 trace_scmi_msg_dump(id: info->id, channel_id: cinfo->id, protocol_id: xfer->hdr.protocol_id,
944 msg_id: xfer->hdr.id,
945 tag: xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
946 (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
947 (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
948 seq: xfer->hdr.seq, status: xfer->hdr.status,
949 buf: xfer->rx.buf, len: xfer->rx.len);
950
951 trace_scmi_rx_done(transfer_id: xfer->transfer_id, msg_id: xfer->hdr.id,
952 protocol_id: xfer->hdr.protocol_id, seq: xfer->hdr.seq,
953 msg_type: xfer->hdr.type);
954
955 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
956 scmi_clear_channel(info, cinfo);
957 complete(xfer->async_done);
958 } else {
959 complete(&xfer->done);
960 }
961
962 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
963 /*
964 * When in polling mode avoid to queue the Raw xfer on the IRQ
965 * RX path since it will be already queued at the end of the TX
966 * poll loop.
967 */
968 if (!xfer->hdr.poll_completion)
969 scmi_raw_message_report(raw: info->raw, xfer,
970 idx: SCMI_RAW_REPLY_QUEUE,
971 chan_id: cinfo->id);
972 }
973
974 scmi_xfer_command_release(info, xfer);
975}
976
977/**
978 * scmi_rx_callback() - callback for receiving messages
979 *
980 * @cinfo: SCMI channel info
981 * @msg_hdr: Message header
982 * @priv: Transport specific private data.
983 *
984 * Processes one received message to appropriate transfer information and
985 * signals completion of the transfer.
986 *
987 * NOTE: This function will be invoked in IRQ context, hence should be
988 * as optimal as possible.
989 */
990void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
991{
992 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
993
994 switch (msg_type) {
995 case MSG_TYPE_NOTIFICATION:
996 scmi_handle_notification(cinfo, msg_hdr, priv);
997 break;
998 case MSG_TYPE_COMMAND:
999 case MSG_TYPE_DELAYED_RESP:
1000 scmi_handle_response(cinfo, msg_hdr, priv);
1001 break;
1002 default:
1003 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
1004 break;
1005 }
1006}
1007
1008/**
1009 * xfer_put() - Release a transmit message
1010 *
1011 * @ph: Pointer to SCMI protocol handle
1012 * @xfer: message that was reserved by xfer_get_init
1013 */
1014static void xfer_put(const struct scmi_protocol_handle *ph,
1015 struct scmi_xfer *xfer)
1016{
1017 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1018 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1019
1020 __scmi_xfer_put(minfo: &info->tx_minfo, xfer);
1021}
1022
1023static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1024 struct scmi_xfer *xfer, ktime_t stop)
1025{
1026 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1027
1028 /*
1029 * Poll also on xfer->done so that polling can be forcibly terminated
1030 * in case of out-of-order receptions of delayed responses
1031 */
1032 return info->desc->ops->poll_done(cinfo, xfer) ||
1033 try_wait_for_completion(x: &xfer->done) ||
1034 ktime_after(cmp1: ktime_get(), cmp2: stop);
1035}
1036
1037static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1038 struct scmi_chan_info *cinfo,
1039 struct scmi_xfer *xfer, unsigned int timeout_ms)
1040{
1041 int ret = 0;
1042
1043 if (xfer->hdr.poll_completion) {
1044 /*
1045 * Real polling is needed only if transport has NOT declared
1046 * itself to support synchronous commands replies.
1047 */
1048 if (!desc->sync_cmds_completed_on_ret) {
1049 /*
1050 * Poll on xfer using transport provided .poll_done();
1051 * assumes no completion interrupt was available.
1052 */
1053 ktime_t stop = ktime_add_ms(kt: ktime_get(), msec: timeout_ms);
1054
1055 spin_until_cond(scmi_xfer_done_no_timeout(cinfo,
1056 xfer, stop));
1057 if (ktime_after(cmp1: ktime_get(), cmp2: stop)) {
1058 dev_err(dev,
1059 "timed out in resp(caller: %pS) - polling\n",
1060 (void *)_RET_IP_);
1061 ret = -ETIMEDOUT;
1062 }
1063 }
1064
1065 if (!ret) {
1066 unsigned long flags;
1067 struct scmi_info *info =
1068 handle_to_scmi_info(cinfo->handle);
1069
1070 /*
1071 * Do not fetch_response if an out-of-order delayed
1072 * response is being processed.
1073 */
1074 spin_lock_irqsave(&xfer->lock, flags);
1075 if (xfer->state == SCMI_XFER_SENT_OK) {
1076 desc->ops->fetch_response(cinfo, xfer);
1077 xfer->state = SCMI_XFER_RESP_OK;
1078 }
1079 spin_unlock_irqrestore(lock: &xfer->lock, flags);
1080
1081 /* Trace polled replies. */
1082 trace_scmi_msg_dump(id: info->id, channel_id: cinfo->id,
1083 protocol_id: xfer->hdr.protocol_id, msg_id: xfer->hdr.id,
1084 tag: !SCMI_XFER_IS_RAW(xfer) ?
1085 "RESP" : "resp",
1086 seq: xfer->hdr.seq, status: xfer->hdr.status,
1087 buf: xfer->rx.buf, len: xfer->rx.len);
1088
1089 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1090 struct scmi_info *info =
1091 handle_to_scmi_info(cinfo->handle);
1092
1093 scmi_raw_message_report(raw: info->raw, xfer,
1094 idx: SCMI_RAW_REPLY_QUEUE,
1095 chan_id: cinfo->id);
1096 }
1097 }
1098 } else {
1099 /* And we wait for the response. */
1100 if (!wait_for_completion_timeout(x: &xfer->done,
1101 timeout: msecs_to_jiffies(m: timeout_ms))) {
1102 dev_err(dev, "timed out in resp(caller: %pS)\n",
1103 (void *)_RET_IP_);
1104 ret = -ETIMEDOUT;
1105 }
1106 }
1107
1108 return ret;
1109}
1110
1111/**
1112 * scmi_wait_for_message_response - An helper to group all the possible ways of
1113 * waiting for a synchronous message response.
1114 *
1115 * @cinfo: SCMI channel info
1116 * @xfer: Reference to the transfer being waited for.
1117 *
1118 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1119 * configuration flags like xfer->hdr.poll_completion.
1120 *
1121 * Return: 0 on Success, error otherwise.
1122 */
1123static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1124 struct scmi_xfer *xfer)
1125{
1126 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1127 struct device *dev = info->dev;
1128
1129 trace_scmi_xfer_response_wait(transfer_id: xfer->transfer_id, msg_id: xfer->hdr.id,
1130 protocol_id: xfer->hdr.protocol_id, seq: xfer->hdr.seq,
1131 timeout: info->desc->max_rx_timeout_ms,
1132 poll: xfer->hdr.poll_completion);
1133
1134 return scmi_wait_for_reply(dev, desc: info->desc, cinfo, xfer,
1135 timeout_ms: info->desc->max_rx_timeout_ms);
1136}
1137
1138/**
1139 * scmi_xfer_raw_wait_for_message_response - An helper to wait for a message
1140 * reply to an xfer raw request on a specific channel for the required timeout.
1141 *
1142 * @cinfo: SCMI channel info
1143 * @xfer: Reference to the transfer being waited for.
1144 * @timeout_ms: The maximum timeout in milliseconds
1145 *
1146 * Return: 0 on Success, error otherwise.
1147 */
1148int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1149 struct scmi_xfer *xfer,
1150 unsigned int timeout_ms)
1151{
1152 int ret;
1153 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1154 struct device *dev = info->dev;
1155
1156 ret = scmi_wait_for_reply(dev, desc: info->desc, cinfo, xfer, timeout_ms);
1157 if (ret)
1158 dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1159 pack_scmi_header(&xfer->hdr));
1160
1161 return ret;
1162}
1163
1164/**
1165 * do_xfer() - Do one transfer
1166 *
1167 * @ph: Pointer to SCMI protocol handle
1168 * @xfer: Transfer to initiate and wait for response
1169 *
1170 * Return: -ETIMEDOUT in case of no response, if transmit error,
1171 * return corresponding error, else if all goes well,
1172 * return 0.
1173 */
1174static int do_xfer(const struct scmi_protocol_handle *ph,
1175 struct scmi_xfer *xfer)
1176{
1177 int ret;
1178 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1179 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1180 struct device *dev = info->dev;
1181 struct scmi_chan_info *cinfo;
1182
1183 /* Check for polling request on custom command xfers at first */
1184 if (xfer->hdr.poll_completion &&
1185 !is_transport_polling_capable(desc: info->desc)) {
1186 dev_warn_once(dev,
1187 "Polling mode is not supported by transport.\n");
1188 return -EINVAL;
1189 }
1190
1191 cinfo = idr_find(&info->tx_idr, id: pi->proto->id);
1192 if (unlikely(!cinfo))
1193 return -EINVAL;
1194
1195 /* True ONLY if also supported by transport. */
1196 if (is_polling_enabled(cinfo, desc: info->desc))
1197 xfer->hdr.poll_completion = true;
1198
1199 /*
1200 * Initialise protocol id now from protocol handle to avoid it being
1201 * overridden by mistake (or malice) by the protocol code mangling with
1202 * the scmi_xfer structure prior to this.
1203 */
1204 xfer->hdr.protocol_id = pi->proto->id;
1205 reinit_completion(x: &xfer->done);
1206
1207 trace_scmi_xfer_begin(transfer_id: xfer->transfer_id, msg_id: xfer->hdr.id,
1208 protocol_id: xfer->hdr.protocol_id, seq: xfer->hdr.seq,
1209 poll: xfer->hdr.poll_completion);
1210
1211 /* Clear any stale status */
1212 xfer->hdr.status = SCMI_SUCCESS;
1213 xfer->state = SCMI_XFER_SENT_OK;
1214 /*
1215 * Even though spinlocking is not needed here since no race is possible
1216 * on xfer->state due to the monotonically increasing tokens allocation,
1217 * we must anyway ensure xfer->state initialization is not re-ordered
1218 * after the .send_message() to be sure that on the RX path an early
1219 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1220 */
1221 smp_mb();
1222
1223 ret = info->desc->ops->send_message(cinfo, xfer);
1224 if (ret < 0) {
1225 dev_dbg(dev, "Failed to send message %d\n", ret);
1226 return ret;
1227 }
1228
1229 trace_scmi_msg_dump(id: info->id, channel_id: cinfo->id, protocol_id: xfer->hdr.protocol_id,
1230 msg_id: xfer->hdr.id, tag: "CMND", seq: xfer->hdr.seq,
1231 status: xfer->hdr.status, buf: xfer->tx.buf, len: xfer->tx.len);
1232
1233 ret = scmi_wait_for_message_response(cinfo, xfer);
1234 if (!ret && xfer->hdr.status)
1235 ret = scmi_to_linux_errno(errno: xfer->hdr.status);
1236
1237 if (info->desc->ops->mark_txdone)
1238 info->desc->ops->mark_txdone(cinfo, ret, xfer);
1239
1240 trace_scmi_xfer_end(transfer_id: xfer->transfer_id, msg_id: xfer->hdr.id,
1241 protocol_id: xfer->hdr.protocol_id, seq: xfer->hdr.seq, status: ret);
1242
1243 return ret;
1244}
1245
1246static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1247 struct scmi_xfer *xfer)
1248{
1249 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1250 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1251
1252 xfer->rx.len = info->desc->max_msg_size;
1253}
1254
1255/**
1256 * do_xfer_with_response() - Do one transfer and wait until the delayed
1257 * response is received
1258 *
1259 * @ph: Pointer to SCMI protocol handle
1260 * @xfer: Transfer to initiate and wait for response
1261 *
1262 * Using asynchronous commands in atomic/polling mode should be avoided since
1263 * it could cause long busy-waiting here, so ignore polling for the delayed
1264 * response and WARN if it was requested for this command transaction since
1265 * upper layers should refrain from issuing such kind of requests.
1266 *
1267 * The only other option would have been to refrain from using any asynchronous
1268 * command even if made available, when an atomic transport is detected, and
1269 * instead forcibly use the synchronous version (thing that can be easily
1270 * attained at the protocol layer), but this would also have led to longer
1271 * stalls of the channel for synchronous commands and possibly timeouts.
1272 * (in other words there is usually a good reason if a platform provides an
1273 * asynchronous version of a command and we should prefer to use it...just not
1274 * when using atomic/polling mode)
1275 *
1276 * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1277 * return corresponding error, else if all goes well, return 0.
1278 */
1279static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1280 struct scmi_xfer *xfer)
1281{
1282 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1283 DECLARE_COMPLETION_ONSTACK(async_response);
1284
1285 xfer->async_done = &async_response;
1286
1287 /*
1288 * Delayed responses should not be polled, so an async command should
1289 * not have been used when requiring an atomic/poll context; WARN and
1290 * perform instead a sleeping wait.
1291 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1292 */
1293 WARN_ON_ONCE(xfer->hdr.poll_completion);
1294
1295 ret = do_xfer(ph, xfer);
1296 if (!ret) {
1297 if (!wait_for_completion_timeout(x: xfer->async_done, timeout)) {
1298 dev_err(ph->dev,
1299 "timed out in delayed resp(caller: %pS)\n",
1300 (void *)_RET_IP_);
1301 ret = -ETIMEDOUT;
1302 } else if (xfer->hdr.status) {
1303 ret = scmi_to_linux_errno(errno: xfer->hdr.status);
1304 }
1305 }
1306
1307 xfer->async_done = NULL;
1308 return ret;
1309}
1310
1311/**
1312 * xfer_get_init() - Allocate and initialise one message for transmit
1313 *
1314 * @ph: Pointer to SCMI protocol handle
1315 * @msg_id: Message identifier
1316 * @tx_size: transmit message size
1317 * @rx_size: receive message size
1318 * @p: pointer to the allocated and initialised message
1319 *
1320 * This function allocates the message using @scmi_xfer_get and
1321 * initialise the header.
1322 *
1323 * Return: 0 if all went fine with @p pointing to message, else
1324 * corresponding error.
1325 */
1326static int xfer_get_init(const struct scmi_protocol_handle *ph,
1327 u8 msg_id, size_t tx_size, size_t rx_size,
1328 struct scmi_xfer **p)
1329{
1330 int ret;
1331 struct scmi_xfer *xfer;
1332 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1333 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1334 struct scmi_xfers_info *minfo = &info->tx_minfo;
1335 struct device *dev = info->dev;
1336
1337 /* Ensure we have sane transfer sizes */
1338 if (rx_size > info->desc->max_msg_size ||
1339 tx_size > info->desc->max_msg_size)
1340 return -ERANGE;
1341
1342 xfer = scmi_xfer_get(handle: pi->handle, minfo);
1343 if (IS_ERR(ptr: xfer)) {
1344 ret = PTR_ERR(ptr: xfer);
1345 dev_err(dev, "failed to get free message slot(%d)\n", ret);
1346 return ret;
1347 }
1348
1349 /* Pick a sequence number and register this xfer as in-flight */
1350 ret = scmi_xfer_pending_set(xfer, minfo);
1351 if (ret) {
1352 dev_err(pi->handle->dev,
1353 "Failed to get monotonic token %d\n", ret);
1354 __scmi_xfer_put(minfo, xfer);
1355 return ret;
1356 }
1357
1358 xfer->tx.len = tx_size;
1359 xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1360 xfer->hdr.type = MSG_TYPE_COMMAND;
1361 xfer->hdr.id = msg_id;
1362 xfer->hdr.poll_completion = false;
1363
1364 *p = xfer;
1365
1366 return 0;
1367}
1368
1369/**
1370 * version_get() - command to get the revision of the SCMI entity
1371 *
1372 * @ph: Pointer to SCMI protocol handle
1373 * @version: Holds returned version of protocol.
1374 *
1375 * Updates the SCMI information in the internal data structure.
1376 *
1377 * Return: 0 if all went fine, else return appropriate error.
1378 */
1379static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1380{
1381 int ret;
1382 __le32 *rev_info;
1383 struct scmi_xfer *t;
1384
1385 ret = xfer_get_init(ph, msg_id: PROTOCOL_VERSION, tx_size: 0, rx_size: sizeof(*version), p: &t);
1386 if (ret)
1387 return ret;
1388
1389 ret = do_xfer(ph, xfer: t);
1390 if (!ret) {
1391 rev_info = t->rx.buf;
1392 *version = le32_to_cpu(*rev_info);
1393 }
1394
1395 xfer_put(ph, xfer: t);
1396 return ret;
1397}
1398
1399/**
1400 * scmi_set_protocol_priv - Set protocol specific data at init time
1401 *
1402 * @ph: A reference to the protocol handle.
1403 * @priv: The private data to set.
1404 * @version: The detected protocol version for the core to register.
1405 *
1406 * Return: 0 on Success
1407 */
1408static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1409 void *priv, u32 version)
1410{
1411 struct scmi_protocol_instance *pi = ph_to_pi(ph);
1412
1413 pi->priv = priv;
1414 pi->version = version;
1415
1416 return 0;
1417}
1418
1419/**
1420 * scmi_get_protocol_priv - Set protocol specific data at init time
1421 *
1422 * @ph: A reference to the protocol handle.
1423 *
1424 * Return: Protocol private data if any was set.
1425 */
1426static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1427{
1428 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1429
1430 return pi->priv;
1431}
1432
1433static const struct scmi_xfer_ops xfer_ops = {
1434 .version_get = version_get,
1435 .xfer_get_init = xfer_get_init,
1436 .reset_rx_to_maxsz = reset_rx_to_maxsz,
1437 .do_xfer = do_xfer,
1438 .do_xfer_with_response = do_xfer_with_response,
1439 .xfer_put = xfer_put,
1440};
1441
1442struct scmi_msg_resp_domain_name_get {
1443 __le32 flags;
1444 u8 name[SCMI_MAX_STR_SIZE];
1445};
1446
1447/**
1448 * scmi_common_extended_name_get - Common helper to get extended resources name
1449 * @ph: A protocol handle reference.
1450 * @cmd_id: The specific command ID to use.
1451 * @res_id: The specific resource ID to use.
1452 * @flags: A pointer to specific flags to use, if any.
1453 * @name: A pointer to the preallocated area where the retrieved name will be
1454 * stored as a NULL terminated string.
1455 * @len: The len in bytes of the @name char array.
1456 *
1457 * Return: 0 on Succcess
1458 */
1459static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1460 u8 cmd_id, u32 res_id, u32 *flags,
1461 char *name, size_t len)
1462{
1463 int ret;
1464 size_t txlen;
1465 struct scmi_xfer *t;
1466 struct scmi_msg_resp_domain_name_get *resp;
1467
1468 txlen = !flags ? sizeof(res_id) : sizeof(res_id) + sizeof(*flags);
1469 ret = ph->xops->xfer_get_init(ph, cmd_id, txlen, sizeof(*resp), &t);
1470 if (ret)
1471 goto out;
1472
1473 put_unaligned_le32(val: res_id, p: t->tx.buf);
1474 if (flags)
1475 put_unaligned_le32(val: *flags, p: t->tx.buf + sizeof(res_id));
1476 resp = t->rx.buf;
1477
1478 ret = ph->xops->do_xfer(ph, t);
1479 if (!ret)
1480 strscpy(name, resp->name, len);
1481
1482 ph->xops->xfer_put(ph, t);
1483out:
1484 if (ret)
1485 dev_warn(ph->dev,
1486 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1487 res_id, ret, name);
1488 return ret;
1489}
1490
1491/**
1492 * struct scmi_iterator - Iterator descriptor
1493 * @msg: A reference to the message TX buffer; filled by @prepare_message with
1494 * a proper custom command payload for each multi-part command request.
1495 * @resp: A reference to the response RX buffer; used by @update_state and
1496 * @process_response to parse the multi-part replies.
1497 * @t: A reference to the underlying xfer initialized and used transparently by
1498 * the iterator internal routines.
1499 * @ph: A reference to the associated protocol handle to be used.
1500 * @ops: A reference to the custom provided iterator operations.
1501 * @state: The current iterator state; used and updated in turn by the iterators
1502 * internal routines and by the caller-provided @scmi_iterator_ops.
1503 * @priv: A reference to optional private data as provided by the caller and
1504 * passed back to the @@scmi_iterator_ops.
1505 */
1506struct scmi_iterator {
1507 void *msg;
1508 void *resp;
1509 struct scmi_xfer *t;
1510 const struct scmi_protocol_handle *ph;
1511 struct scmi_iterator_ops *ops;
1512 struct scmi_iterator_state state;
1513 void *priv;
1514};
1515
1516static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1517 struct scmi_iterator_ops *ops,
1518 unsigned int max_resources, u8 msg_id,
1519 size_t tx_size, void *priv)
1520{
1521 int ret;
1522 struct scmi_iterator *i;
1523
1524 i = devm_kzalloc(dev: ph->dev, size: sizeof(*i), GFP_KERNEL);
1525 if (!i)
1526 return ERR_PTR(error: -ENOMEM);
1527
1528 i->ph = ph;
1529 i->ops = ops;
1530 i->priv = priv;
1531
1532 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1533 if (ret) {
1534 devm_kfree(dev: ph->dev, p: i);
1535 return ERR_PTR(error: ret);
1536 }
1537
1538 i->state.max_resources = max_resources;
1539 i->msg = i->t->tx.buf;
1540 i->resp = i->t->rx.buf;
1541
1542 return i;
1543}
1544
1545static int scmi_iterator_run(void *iter)
1546{
1547 int ret = -EINVAL;
1548 struct scmi_iterator_ops *iops;
1549 const struct scmi_protocol_handle *ph;
1550 struct scmi_iterator_state *st;
1551 struct scmi_iterator *i = iter;
1552
1553 if (!i || !i->ops || !i->ph)
1554 return ret;
1555
1556 iops = i->ops;
1557 ph = i->ph;
1558 st = &i->state;
1559
1560 do {
1561 iops->prepare_message(i->msg, st->desc_index, i->priv);
1562 ret = ph->xops->do_xfer(ph, i->t);
1563 if (ret)
1564 break;
1565
1566 st->rx_len = i->t->rx.len;
1567 ret = iops->update_state(st, i->resp, i->priv);
1568 if (ret)
1569 break;
1570
1571 if (st->num_returned > st->max_resources - st->desc_index) {
1572 dev_err(ph->dev,
1573 "No. of resources can't exceed %d\n",
1574 st->max_resources);
1575 ret = -EINVAL;
1576 break;
1577 }
1578
1579 for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1580 st->loop_idx++) {
1581 ret = iops->process_response(ph, i->resp, st, i->priv);
1582 if (ret)
1583 goto out;
1584 }
1585
1586 st->desc_index += st->num_returned;
1587 ph->xops->reset_rx_to_maxsz(ph, i->t);
1588 /*
1589 * check for both returned and remaining to avoid infinite
1590 * loop due to buggy firmware
1591 */
1592 } while (st->num_returned && st->num_remaining);
1593
1594out:
1595 /* Finalize and destroy iterator */
1596 ph->xops->xfer_put(ph, i->t);
1597 devm_kfree(dev: ph->dev, p: i);
1598
1599 return ret;
1600}
1601
1602struct scmi_msg_get_fc_info {
1603 __le32 domain;
1604 __le32 message_id;
1605};
1606
1607struct scmi_msg_resp_desc_fc {
1608 __le32 attr;
1609#define SUPPORTS_DOORBELL(x) ((x) & BIT(0))
1610#define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x))
1611 __le32 rate_limit;
1612 __le32 chan_addr_low;
1613 __le32 chan_addr_high;
1614 __le32 chan_size;
1615 __le32 db_addr_low;
1616 __le32 db_addr_high;
1617 __le32 db_set_lmask;
1618 __le32 db_set_hmask;
1619 __le32 db_preserve_lmask;
1620 __le32 db_preserve_hmask;
1621};
1622
1623static void
1624scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1625 u8 describe_id, u32 message_id, u32 valid_size,
1626 u32 domain, void __iomem **p_addr,
1627 struct scmi_fc_db_info **p_db, u32 *rate_limit)
1628{
1629 int ret;
1630 u32 flags;
1631 u64 phys_addr;
1632 u8 size;
1633 void __iomem *addr;
1634 struct scmi_xfer *t;
1635 struct scmi_fc_db_info *db = NULL;
1636 struct scmi_msg_get_fc_info *info;
1637 struct scmi_msg_resp_desc_fc *resp;
1638 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1639
1640 if (!p_addr) {
1641 ret = -EINVAL;
1642 goto err_out;
1643 }
1644
1645 ret = ph->xops->xfer_get_init(ph, describe_id,
1646 sizeof(*info), sizeof(*resp), &t);
1647 if (ret)
1648 goto err_out;
1649
1650 info = t->tx.buf;
1651 info->domain = cpu_to_le32(domain);
1652 info->message_id = cpu_to_le32(message_id);
1653
1654 /*
1655 * Bail out on error leaving fc_info addresses zeroed; this includes
1656 * the case in which the requested domain/message_id does NOT support
1657 * fastchannels at all.
1658 */
1659 ret = ph->xops->do_xfer(ph, t);
1660 if (ret)
1661 goto err_xfer;
1662
1663 resp = t->rx.buf;
1664 flags = le32_to_cpu(resp->attr);
1665 size = le32_to_cpu(resp->chan_size);
1666 if (size != valid_size) {
1667 ret = -EINVAL;
1668 goto err_xfer;
1669 }
1670
1671 if (rate_limit)
1672 *rate_limit = le32_to_cpu(resp->rate_limit) & GENMASK(19, 0);
1673
1674 phys_addr = le32_to_cpu(resp->chan_addr_low);
1675 phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1676 addr = devm_ioremap(dev: ph->dev, offset: phys_addr, size);
1677 if (!addr) {
1678 ret = -EADDRNOTAVAIL;
1679 goto err_xfer;
1680 }
1681
1682 *p_addr = addr;
1683
1684 if (p_db && SUPPORTS_DOORBELL(flags)) {
1685 db = devm_kzalloc(dev: ph->dev, size: sizeof(*db), GFP_KERNEL);
1686 if (!db) {
1687 ret = -ENOMEM;
1688 goto err_db;
1689 }
1690
1691 size = 1 << DOORBELL_REG_WIDTH(flags);
1692 phys_addr = le32_to_cpu(resp->db_addr_low);
1693 phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1694 addr = devm_ioremap(dev: ph->dev, offset: phys_addr, size);
1695 if (!addr) {
1696 ret = -EADDRNOTAVAIL;
1697 goto err_db_mem;
1698 }
1699
1700 db->addr = addr;
1701 db->width = size;
1702 db->set = le32_to_cpu(resp->db_set_lmask);
1703 db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1704 db->mask = le32_to_cpu(resp->db_preserve_lmask);
1705 db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1706
1707 *p_db = db;
1708 }
1709
1710 ph->xops->xfer_put(ph, t);
1711
1712 dev_dbg(ph->dev,
1713 "Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
1714 pi->proto->id, message_id, domain);
1715
1716 return;
1717
1718err_db_mem:
1719 devm_kfree(dev: ph->dev, p: db);
1720
1721err_db:
1722 *p_addr = NULL;
1723
1724err_xfer:
1725 ph->xops->xfer_put(ph, t);
1726
1727err_out:
1728 dev_warn(ph->dev,
1729 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
1730 pi->proto->id, message_id, domain, ret);
1731}
1732
1733#define SCMI_PROTO_FC_RING_DB(w) \
1734do { \
1735 u##w val = 0; \
1736 \
1737 if (db->mask) \
1738 val = ioread##w(db->addr) & db->mask; \
1739 iowrite##w((u##w)db->set | val, db->addr); \
1740} while (0)
1741
1742static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
1743{
1744 if (!db || !db->addr)
1745 return;
1746
1747 if (db->width == 1)
1748 SCMI_PROTO_FC_RING_DB(8);
1749 else if (db->width == 2)
1750 SCMI_PROTO_FC_RING_DB(16);
1751 else if (db->width == 4)
1752 SCMI_PROTO_FC_RING_DB(32);
1753 else /* db->width == 8 */
1754#ifdef CONFIG_64BIT
1755 SCMI_PROTO_FC_RING_DB(64);
1756#else
1757 {
1758 u64 val = 0;
1759
1760 if (db->mask)
1761 val = ioread64_hi_lo(db->addr) & db->mask;
1762 iowrite64_hi_lo(db->set | val, db->addr);
1763 }
1764#endif
1765}
1766
1767/**
1768 * scmi_protocol_msg_check - Check protocol message attributes
1769 *
1770 * @ph: A reference to the protocol handle.
1771 * @message_id: The ID of the message to check.
1772 * @attributes: A parameter to optionally return the retrieved message
1773 * attributes, in case of Success.
1774 *
1775 * An helper to check protocol message attributes for a specific protocol
1776 * and message pair.
1777 *
1778 * Return: 0 on SUCCESS
1779 */
1780static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph,
1781 u32 message_id, u32 *attributes)
1782{
1783 int ret;
1784 struct scmi_xfer *t;
1785
1786 ret = xfer_get_init(ph, msg_id: PROTOCOL_MESSAGE_ATTRIBUTES,
1787 tx_size: sizeof(__le32), rx_size: 0, p: &t);
1788 if (ret)
1789 return ret;
1790
1791 put_unaligned_le32(val: message_id, p: t->tx.buf);
1792 ret = do_xfer(ph, xfer: t);
1793 if (!ret && attributes)
1794 *attributes = get_unaligned_le32(p: t->rx.buf);
1795 xfer_put(ph, xfer: t);
1796
1797 return ret;
1798}
1799
1800static const struct scmi_proto_helpers_ops helpers_ops = {
1801 .extended_name_get = scmi_common_extended_name_get,
1802 .iter_response_init = scmi_iterator_init,
1803 .iter_response_run = scmi_iterator_run,
1804 .protocol_msg_check = scmi_protocol_msg_check,
1805 .fastchannel_init = scmi_common_fastchannel_init,
1806 .fastchannel_db_ring = scmi_common_fastchannel_db_ring,
1807};
1808
1809/**
1810 * scmi_revision_area_get - Retrieve version memory area.
1811 *
1812 * @ph: A reference to the protocol handle.
1813 *
1814 * A helper to grab the version memory area reference during SCMI Base protocol
1815 * initialization.
1816 *
1817 * Return: A reference to the version memory area associated to the SCMI
1818 * instance underlying this protocol handle.
1819 */
1820struct scmi_revision_info *
1821scmi_revision_area_get(const struct scmi_protocol_handle *ph)
1822{
1823 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1824
1825 return pi->handle->version;
1826}
1827
1828/**
1829 * scmi_protocol_version_negotiate - Negotiate protocol version
1830 *
1831 * @ph: A reference to the protocol handle.
1832 *
1833 * An helper to negotiate a protocol version different from the latest
1834 * advertised as supported from the platform: on Success backward
1835 * compatibility is assured by the platform.
1836 *
1837 * Return: 0 on Success
1838 */
1839static int scmi_protocol_version_negotiate(struct scmi_protocol_handle *ph)
1840{
1841 int ret;
1842 struct scmi_xfer *t;
1843 struct scmi_protocol_instance *pi = ph_to_pi(ph);
1844
1845 /* At first check if NEGOTIATE_PROTOCOL_VERSION is supported ... */
1846 ret = scmi_protocol_msg_check(ph, message_id: NEGOTIATE_PROTOCOL_VERSION, NULL);
1847 if (ret)
1848 return ret;
1849
1850 /* ... then attempt protocol version negotiation */
1851 ret = xfer_get_init(ph, msg_id: NEGOTIATE_PROTOCOL_VERSION,
1852 tx_size: sizeof(__le32), rx_size: 0, p: &t);
1853 if (ret)
1854 return ret;
1855
1856 put_unaligned_le32(val: pi->proto->supported_version, p: t->tx.buf);
1857 ret = do_xfer(ph, xfer: t);
1858 if (!ret)
1859 pi->negotiated_version = pi->proto->supported_version;
1860
1861 xfer_put(ph, xfer: t);
1862
1863 return ret;
1864}
1865
1866/**
1867 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol
1868 * instance descriptor.
1869 * @info: The reference to the related SCMI instance.
1870 * @proto: The protocol descriptor.
1871 *
1872 * Allocate a new protocol instance descriptor, using the provided @proto
1873 * description, against the specified SCMI instance @info, and initialize it;
1874 * all resources management is handled via a dedicated per-protocol devres
1875 * group.
1876 *
1877 * Context: Assumes to be called with @protocols_mtx already acquired.
1878 * Return: A reference to a freshly allocated and initialized protocol instance
1879 * or ERR_PTR on failure. On failure the @proto reference is at first
1880 * put using @scmi_protocol_put() before releasing all the devres group.
1881 */
1882static struct scmi_protocol_instance *
1883scmi_alloc_init_protocol_instance(struct scmi_info *info,
1884 const struct scmi_protocol *proto)
1885{
1886 int ret = -ENOMEM;
1887 void *gid;
1888 struct scmi_protocol_instance *pi;
1889 const struct scmi_handle *handle = &info->handle;
1890
1891 /* Protocol specific devres group */
1892 gid = devres_open_group(dev: handle->dev, NULL, GFP_KERNEL);
1893 if (!gid) {
1894 scmi_protocol_put(protocol_id: proto->id);
1895 goto out;
1896 }
1897
1898 pi = devm_kzalloc(dev: handle->dev, size: sizeof(*pi), GFP_KERNEL);
1899 if (!pi)
1900 goto clean;
1901
1902 pi->gid = gid;
1903 pi->proto = proto;
1904 pi->handle = handle;
1905 pi->ph.dev = handle->dev;
1906 pi->ph.xops = &xfer_ops;
1907 pi->ph.hops = &helpers_ops;
1908 pi->ph.set_priv = scmi_set_protocol_priv;
1909 pi->ph.get_priv = scmi_get_protocol_priv;
1910 refcount_set(r: &pi->users, n: 1);
1911 /* proto->init is assured NON NULL by scmi_protocol_register */
1912 ret = pi->proto->instance_init(&pi->ph);
1913 if (ret)
1914 goto clean;
1915
1916 ret = idr_alloc(&info->protocols, ptr: pi, start: proto->id, end: proto->id + 1,
1917 GFP_KERNEL);
1918 if (ret != proto->id)
1919 goto clean;
1920
1921 /*
1922 * Warn but ignore events registration errors since we do not want
1923 * to skip whole protocols if their notifications are messed up.
1924 */
1925 if (pi->proto->events) {
1926 ret = scmi_register_protocol_events(handle, proto_id: pi->proto->id,
1927 ph: &pi->ph,
1928 ee: pi->proto->events);
1929 if (ret)
1930 dev_warn(handle->dev,
1931 "Protocol:%X - Events Registration Failed - err:%d\n",
1932 pi->proto->id, ret);
1933 }
1934
1935 devres_close_group(dev: handle->dev, id: pi->gid);
1936 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
1937
1938 if (pi->version > proto->supported_version) {
1939 ret = scmi_protocol_version_negotiate(ph: &pi->ph);
1940 if (!ret) {
1941 dev_info(handle->dev,
1942 "Protocol 0x%X successfully negotiated version 0x%X\n",
1943 proto->id, pi->negotiated_version);
1944 } else {
1945 dev_warn(handle->dev,
1946 "Detected UNSUPPORTED higher version 0x%X for protocol 0x%X.\n",
1947 pi->version, pi->proto->id);
1948 dev_warn(handle->dev,
1949 "Trying version 0x%X. Backward compatibility is NOT assured.\n",
1950 pi->proto->supported_version);
1951 }
1952 }
1953
1954 return pi;
1955
1956clean:
1957 /* Take care to put the protocol module's owner before releasing all */
1958 scmi_protocol_put(protocol_id: proto->id);
1959 devres_release_group(dev: handle->dev, id: gid);
1960out:
1961 return ERR_PTR(error: ret);
1962}
1963
1964/**
1965 * scmi_get_protocol_instance - Protocol initialization helper.
1966 * @handle: A reference to the SCMI platform instance.
1967 * @protocol_id: The protocol being requested.
1968 *
1969 * In case the required protocol has never been requested before for this
1970 * instance, allocate and initialize all the needed structures while handling
1971 * resource allocation with a dedicated per-protocol devres subgroup.
1972 *
1973 * Return: A reference to an initialized protocol instance or error on failure:
1974 * in particular returns -EPROBE_DEFER when the desired protocol could
1975 * NOT be found.
1976 */
1977static struct scmi_protocol_instance * __must_check
1978scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1979{
1980 struct scmi_protocol_instance *pi;
1981 struct scmi_info *info = handle_to_scmi_info(handle);
1982
1983 mutex_lock(&info->protocols_mtx);
1984 pi = idr_find(&info->protocols, id: protocol_id);
1985
1986 if (pi) {
1987 refcount_inc(r: &pi->users);
1988 } else {
1989 const struct scmi_protocol *proto;
1990
1991 /* Fails if protocol not registered on bus */
1992 proto = scmi_protocol_get(protocol_id);
1993 if (proto)
1994 pi = scmi_alloc_init_protocol_instance(info, proto);
1995 else
1996 pi = ERR_PTR(error: -EPROBE_DEFER);
1997 }
1998 mutex_unlock(lock: &info->protocols_mtx);
1999
2000 return pi;
2001}
2002
2003/**
2004 * scmi_protocol_acquire - Protocol acquire
2005 * @handle: A reference to the SCMI platform instance.
2006 * @protocol_id: The protocol being requested.
2007 *
2008 * Register a new user for the requested protocol on the specified SCMI
2009 * platform instance, possibly triggering its initialization on first user.
2010 *
2011 * Return: 0 if protocol was acquired successfully.
2012 */
2013int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
2014{
2015 return PTR_ERR_OR_ZERO(ptr: scmi_get_protocol_instance(handle, protocol_id));
2016}
2017
2018/**
2019 * scmi_protocol_release - Protocol de-initialization helper.
2020 * @handle: A reference to the SCMI platform instance.
2021 * @protocol_id: The protocol being requested.
2022 *
2023 * Remove one user for the specified protocol and triggers de-initialization
2024 * and resources de-allocation once the last user has gone.
2025 */
2026void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
2027{
2028 struct scmi_info *info = handle_to_scmi_info(handle);
2029 struct scmi_protocol_instance *pi;
2030
2031 mutex_lock(&info->protocols_mtx);
2032 pi = idr_find(&info->protocols, id: protocol_id);
2033 if (WARN_ON(!pi))
2034 goto out;
2035
2036 if (refcount_dec_and_test(r: &pi->users)) {
2037 void *gid = pi->gid;
2038
2039 if (pi->proto->events)
2040 scmi_deregister_protocol_events(handle, proto_id: protocol_id);
2041
2042 if (pi->proto->instance_deinit)
2043 pi->proto->instance_deinit(&pi->ph);
2044
2045 idr_remove(&info->protocols, id: protocol_id);
2046
2047 scmi_protocol_put(protocol_id);
2048
2049 devres_release_group(dev: handle->dev, id: gid);
2050 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
2051 protocol_id);
2052 }
2053
2054out:
2055 mutex_unlock(lock: &info->protocols_mtx);
2056}
2057
2058void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
2059 u8 *prot_imp)
2060{
2061 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2062 struct scmi_info *info = handle_to_scmi_info(pi->handle);
2063
2064 info->protocols_imp = prot_imp;
2065}
2066
2067static bool
2068scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
2069{
2070 int i;
2071 struct scmi_info *info = handle_to_scmi_info(handle);
2072 struct scmi_revision_info *rev = handle->version;
2073
2074 if (!info->protocols_imp)
2075 return false;
2076
2077 for (i = 0; i < rev->num_protocols; i++)
2078 if (info->protocols_imp[i] == prot_id)
2079 return true;
2080 return false;
2081}
2082
2083struct scmi_protocol_devres {
2084 const struct scmi_handle *handle;
2085 u8 protocol_id;
2086};
2087
2088static void scmi_devm_release_protocol(struct device *dev, void *res)
2089{
2090 struct scmi_protocol_devres *dres = res;
2091
2092 scmi_protocol_release(handle: dres->handle, protocol_id: dres->protocol_id);
2093}
2094
2095static struct scmi_protocol_instance __must_check *
2096scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
2097{
2098 struct scmi_protocol_instance *pi;
2099 struct scmi_protocol_devres *dres;
2100
2101 dres = devres_alloc(scmi_devm_release_protocol,
2102 sizeof(*dres), GFP_KERNEL);
2103 if (!dres)
2104 return ERR_PTR(error: -ENOMEM);
2105
2106 pi = scmi_get_protocol_instance(handle: sdev->handle, protocol_id);
2107 if (IS_ERR(ptr: pi)) {
2108 devres_free(res: dres);
2109 return pi;
2110 }
2111
2112 dres->handle = sdev->handle;
2113 dres->protocol_id = protocol_id;
2114 devres_add(dev: &sdev->dev, res: dres);
2115
2116 return pi;
2117}
2118
2119/**
2120 * scmi_devm_protocol_get - Devres managed get protocol operations and handle
2121 * @sdev: A reference to an scmi_device whose embedded struct device is to
2122 * be used for devres accounting.
2123 * @protocol_id: The protocol being requested.
2124 * @ph: A pointer reference used to pass back the associated protocol handle.
2125 *
2126 * Get hold of a protocol accounting for its usage, eventually triggering its
2127 * initialization, and returning the protocol specific operations and related
2128 * protocol handle which will be used as first argument in most of the
2129 * protocols operations methods.
2130 * Being a devres based managed method, protocol hold will be automatically
2131 * released, and possibly de-initialized on last user, once the SCMI driver
2132 * owning the scmi_device is unbound from it.
2133 *
2134 * Return: A reference to the requested protocol operations or error.
2135 * Must be checked for errors by caller.
2136 */
2137static const void __must_check *
2138scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2139 struct scmi_protocol_handle **ph)
2140{
2141 struct scmi_protocol_instance *pi;
2142
2143 if (!ph)
2144 return ERR_PTR(error: -EINVAL);
2145
2146 pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2147 if (IS_ERR(ptr: pi))
2148 return pi;
2149
2150 *ph = &pi->ph;
2151
2152 return pi->proto->ops;
2153}
2154
2155/**
2156 * scmi_devm_protocol_acquire - Devres managed helper to get hold of a protocol
2157 * @sdev: A reference to an scmi_device whose embedded struct device is to
2158 * be used for devres accounting.
2159 * @protocol_id: The protocol being requested.
2160 *
2161 * Get hold of a protocol accounting for its usage, possibly triggering its
2162 * initialization but without getting access to its protocol specific operations
2163 * and handle.
2164 *
2165 * Being a devres based managed method, protocol hold will be automatically
2166 * released, and possibly de-initialized on last user, once the SCMI driver
2167 * owning the scmi_device is unbound from it.
2168 *
2169 * Return: 0 on SUCCESS
2170 */
2171static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2172 u8 protocol_id)
2173{
2174 struct scmi_protocol_instance *pi;
2175
2176 pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2177 if (IS_ERR(ptr: pi))
2178 return PTR_ERR(ptr: pi);
2179
2180 return 0;
2181}
2182
2183static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2184{
2185 struct scmi_protocol_devres *dres = res;
2186
2187 if (WARN_ON(!dres || !data))
2188 return 0;
2189
2190 return dres->protocol_id == *((u8 *)data);
2191}
2192
2193/**
2194 * scmi_devm_protocol_put - Devres managed put protocol operations and handle
2195 * @sdev: A reference to an scmi_device whose embedded struct device is to
2196 * be used for devres accounting.
2197 * @protocol_id: The protocol being requested.
2198 *
2199 * Explicitly release a protocol hold previously obtained calling the above
2200 * @scmi_devm_protocol_get.
2201 */
2202static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2203{
2204 int ret;
2205
2206 ret = devres_release(dev: &sdev->dev, release: scmi_devm_release_protocol,
2207 match: scmi_devm_protocol_match, match_data: &protocol_id);
2208 WARN_ON(ret);
2209}
2210
2211/**
2212 * scmi_is_transport_atomic - Method to check if underlying transport for an
2213 * SCMI instance is configured as atomic.
2214 *
2215 * @handle: A reference to the SCMI platform instance.
2216 * @atomic_threshold: An optional return value for the system wide currently
2217 * configured threshold for atomic operations.
2218 *
2219 * Return: True if transport is configured as atomic
2220 */
2221static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2222 unsigned int *atomic_threshold)
2223{
2224 bool ret;
2225 struct scmi_info *info = handle_to_scmi_info(handle);
2226
2227 ret = info->desc->atomic_enabled &&
2228 is_transport_polling_capable(desc: info->desc);
2229 if (ret && atomic_threshold)
2230 *atomic_threshold = info->atomic_threshold;
2231
2232 return ret;
2233}
2234
2235/**
2236 * scmi_handle_get() - Get the SCMI handle for a device
2237 *
2238 * @dev: pointer to device for which we want SCMI handle
2239 *
2240 * NOTE: The function does not track individual clients of the framework
2241 * and is expected to be maintained by caller of SCMI protocol library.
2242 * scmi_handle_put must be balanced with successful scmi_handle_get
2243 *
2244 * Return: pointer to handle if successful, NULL on error
2245 */
2246static struct scmi_handle *scmi_handle_get(struct device *dev)
2247{
2248 struct list_head *p;
2249 struct scmi_info *info;
2250 struct scmi_handle *handle = NULL;
2251
2252 mutex_lock(&scmi_list_mutex);
2253 list_for_each(p, &scmi_list) {
2254 info = list_entry(p, struct scmi_info, node);
2255 if (dev->parent == info->dev) {
2256 info->users++;
2257 handle = &info->handle;
2258 break;
2259 }
2260 }
2261 mutex_unlock(lock: &scmi_list_mutex);
2262
2263 return handle;
2264}
2265
2266/**
2267 * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2268 *
2269 * @handle: handle acquired by scmi_handle_get
2270 *
2271 * NOTE: The function does not track individual clients of the framework
2272 * and is expected to be maintained by caller of SCMI protocol library.
2273 * scmi_handle_put must be balanced with successful scmi_handle_get
2274 *
2275 * Return: 0 is successfully released
2276 * if null was passed, it returns -EINVAL;
2277 */
2278static int scmi_handle_put(const struct scmi_handle *handle)
2279{
2280 struct scmi_info *info;
2281
2282 if (!handle)
2283 return -EINVAL;
2284
2285 info = handle_to_scmi_info(handle);
2286 mutex_lock(&scmi_list_mutex);
2287 if (!WARN_ON(!info->users))
2288 info->users--;
2289 mutex_unlock(lock: &scmi_list_mutex);
2290
2291 return 0;
2292}
2293
2294static void scmi_device_link_add(struct device *consumer,
2295 struct device *supplier)
2296{
2297 struct device_link *link;
2298
2299 link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2300
2301 WARN_ON(!link);
2302}
2303
2304static void scmi_set_handle(struct scmi_device *scmi_dev)
2305{
2306 scmi_dev->handle = scmi_handle_get(dev: &scmi_dev->dev);
2307 if (scmi_dev->handle)
2308 scmi_device_link_add(consumer: &scmi_dev->dev, supplier: scmi_dev->handle->dev);
2309}
2310
2311static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2312 struct scmi_xfers_info *info)
2313{
2314 int i;
2315 struct scmi_xfer *xfer;
2316 struct device *dev = sinfo->dev;
2317 const struct scmi_desc *desc = sinfo->desc;
2318
2319 /* Pre-allocated messages, no more than what hdr.seq can support */
2320 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2321 dev_err(dev,
2322 "Invalid maximum messages %d, not in range [1 - %lu]\n",
2323 info->max_msg, MSG_TOKEN_MAX);
2324 return -EINVAL;
2325 }
2326
2327 hash_init(info->pending_xfers);
2328
2329 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2330 info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2331 GFP_KERNEL);
2332 if (!info->xfer_alloc_table)
2333 return -ENOMEM;
2334
2335 /*
2336 * Preallocate a number of xfers equal to max inflight messages,
2337 * pre-initialize the buffer pointer to pre-allocated buffers and
2338 * attach all of them to the free list
2339 */
2340 INIT_HLIST_HEAD(&info->free_xfers);
2341 for (i = 0; i < info->max_msg; i++) {
2342 xfer = devm_kzalloc(dev, size: sizeof(*xfer), GFP_KERNEL);
2343 if (!xfer)
2344 return -ENOMEM;
2345
2346 xfer->rx.buf = devm_kcalloc(dev, n: sizeof(u8), size: desc->max_msg_size,
2347 GFP_KERNEL);
2348 if (!xfer->rx.buf)
2349 return -ENOMEM;
2350
2351 xfer->tx.buf = xfer->rx.buf;
2352 init_completion(x: &xfer->done);
2353 spin_lock_init(&xfer->lock);
2354
2355 /* Add initialized xfer to the free list */
2356 hlist_add_head(n: &xfer->node, h: &info->free_xfers);
2357 }
2358
2359 spin_lock_init(&info->xfer_lock);
2360
2361 return 0;
2362}
2363
2364static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2365{
2366 const struct scmi_desc *desc = sinfo->desc;
2367
2368 if (!desc->ops->get_max_msg) {
2369 sinfo->tx_minfo.max_msg = desc->max_msg;
2370 sinfo->rx_minfo.max_msg = desc->max_msg;
2371 } else {
2372 struct scmi_chan_info *base_cinfo;
2373
2374 base_cinfo = idr_find(&sinfo->tx_idr, id: SCMI_PROTOCOL_BASE);
2375 if (!base_cinfo)
2376 return -EINVAL;
2377 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2378
2379 /* RX channel is optional so can be skipped */
2380 base_cinfo = idr_find(&sinfo->rx_idr, id: SCMI_PROTOCOL_BASE);
2381 if (base_cinfo)
2382 sinfo->rx_minfo.max_msg =
2383 desc->ops->get_max_msg(base_cinfo);
2384 }
2385
2386 return 0;
2387}
2388
2389static int scmi_xfer_info_init(struct scmi_info *sinfo)
2390{
2391 int ret;
2392
2393 ret = scmi_channels_max_msg_configure(sinfo);
2394 if (ret)
2395 return ret;
2396
2397 ret = __scmi_xfer_info_init(sinfo, info: &sinfo->tx_minfo);
2398 if (!ret && !idr_is_empty(idr: &sinfo->rx_idr))
2399 ret = __scmi_xfer_info_init(sinfo, info: &sinfo->rx_minfo);
2400
2401 return ret;
2402}
2403
2404static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2405 int prot_id, bool tx)
2406{
2407 int ret, idx;
2408 char name[32];
2409 struct scmi_chan_info *cinfo;
2410 struct idr *idr;
2411 struct scmi_device *tdev = NULL;
2412
2413 /* Transmit channel is first entry i.e. index 0 */
2414 idx = tx ? 0 : 1;
2415 idr = tx ? &info->tx_idr : &info->rx_idr;
2416
2417 if (!info->desc->ops->chan_available(of_node, idx)) {
2418 cinfo = idr_find(idr, id: SCMI_PROTOCOL_BASE);
2419 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2420 return -EINVAL;
2421 goto idr_alloc;
2422 }
2423
2424 cinfo = devm_kzalloc(dev: info->dev, size: sizeof(*cinfo), GFP_KERNEL);
2425 if (!cinfo)
2426 return -ENOMEM;
2427
2428 cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2429
2430 /* Create a unique name for this transport device */
2431 snprintf(buf: name, size: 32, fmt: "__scmi_transport_device_%s_%02X",
2432 idx ? "rx" : "tx", prot_id);
2433 /* Create a uniquely named, dedicated transport device for this chan */
2434 tdev = scmi_device_create(np: of_node, parent: info->dev, protocol: prot_id, name);
2435 if (!tdev) {
2436 dev_err(info->dev,
2437 "failed to create transport device (%s)\n", name);
2438 devm_kfree(dev: info->dev, p: cinfo);
2439 return -EINVAL;
2440 }
2441 of_node_get(node: of_node);
2442
2443 cinfo->id = prot_id;
2444 cinfo->dev = &tdev->dev;
2445 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2446 if (ret) {
2447 of_node_put(node: of_node);
2448 scmi_device_destroy(parent: info->dev, protocol: prot_id, name);
2449 devm_kfree(dev: info->dev, p: cinfo);
2450 return ret;
2451 }
2452
2453 if (tx && is_polling_required(cinfo, desc: info->desc)) {
2454 if (is_transport_polling_capable(desc: info->desc))
2455 dev_info(&tdev->dev,
2456 "Enabled polling mode TX channel - prot_id:%d\n",
2457 prot_id);
2458 else
2459 dev_warn(&tdev->dev,
2460 "Polling mode NOT supported by transport.\n");
2461 }
2462
2463idr_alloc:
2464 ret = idr_alloc(idr, ptr: cinfo, start: prot_id, end: prot_id + 1, GFP_KERNEL);
2465 if (ret != prot_id) {
2466 dev_err(info->dev,
2467 "unable to allocate SCMI idr slot err %d\n", ret);
2468 /* Destroy channel and device only if created by this call. */
2469 if (tdev) {
2470 of_node_put(node: of_node);
2471 scmi_device_destroy(parent: info->dev, protocol: prot_id, name);
2472 devm_kfree(dev: info->dev, p: cinfo);
2473 }
2474 return ret;
2475 }
2476
2477 cinfo->handle = &info->handle;
2478 return 0;
2479}
2480
2481static inline int
2482scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2483 int prot_id)
2484{
2485 int ret = scmi_chan_setup(info, of_node, prot_id, tx: true);
2486
2487 if (!ret) {
2488 /* Rx is optional, report only memory errors */
2489 ret = scmi_chan_setup(info, of_node, prot_id, tx: false);
2490 if (ret && ret != -ENOMEM)
2491 ret = 0;
2492 }
2493
2494 return ret;
2495}
2496
2497/**
2498 * scmi_channels_setup - Helper to initialize all required channels
2499 *
2500 * @info: The SCMI instance descriptor.
2501 *
2502 * Initialize all the channels found described in the DT against the underlying
2503 * configured transport using custom defined dedicated devices instead of
2504 * borrowing devices from the SCMI drivers; this way channels are initialized
2505 * upfront during core SCMI stack probing and are no more coupled with SCMI
2506 * devices used by SCMI drivers.
2507 *
2508 * Note that, even though a pair of TX/RX channels is associated to each
2509 * protocol defined in the DT, a distinct freshly initialized channel is
2510 * created only if the DT node for the protocol at hand describes a dedicated
2511 * channel: in all the other cases the common BASE protocol channel is reused.
2512 *
2513 * Return: 0 on Success
2514 */
2515static int scmi_channels_setup(struct scmi_info *info)
2516{
2517 int ret;
2518 struct device_node *child, *top_np = info->dev->of_node;
2519
2520 /* Initialize a common generic channel at first */
2521 ret = scmi_txrx_setup(info, of_node: top_np, prot_id: SCMI_PROTOCOL_BASE);
2522 if (ret)
2523 return ret;
2524
2525 for_each_available_child_of_node(top_np, child) {
2526 u32 prot_id;
2527
2528 if (of_property_read_u32(np: child, propname: "reg", out_value: &prot_id))
2529 continue;
2530
2531 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2532 dev_err(info->dev,
2533 "Out of range protocol %d\n", prot_id);
2534
2535 ret = scmi_txrx_setup(info, of_node: child, prot_id);
2536 if (ret) {
2537 of_node_put(node: child);
2538 return ret;
2539 }
2540 }
2541
2542 return 0;
2543}
2544
2545static int scmi_chan_destroy(int id, void *p, void *idr)
2546{
2547 struct scmi_chan_info *cinfo = p;
2548
2549 if (cinfo->dev) {
2550 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2551 struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2552
2553 of_node_put(node: cinfo->dev->of_node);
2554 scmi_device_destroy(parent: info->dev, protocol: id, name: sdev->name);
2555 cinfo->dev = NULL;
2556 }
2557
2558 idr_remove(idr, id);
2559
2560 return 0;
2561}
2562
2563static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2564{
2565 /* At first free all channels at the transport layer ... */
2566 idr_for_each(idr, fn: info->desc->ops->chan_free, data: idr);
2567
2568 /* ...then destroy all underlying devices */
2569 idr_for_each(idr, fn: scmi_chan_destroy, data: idr);
2570
2571 idr_destroy(idr);
2572}
2573
2574static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2575{
2576 scmi_cleanup_channels(info, idr: &info->tx_idr);
2577
2578 scmi_cleanup_channels(info, idr: &info->rx_idr);
2579}
2580
2581static int scmi_bus_notifier(struct notifier_block *nb,
2582 unsigned long action, void *data)
2583{
2584 struct scmi_info *info = bus_nb_to_scmi_info(nb);
2585 struct scmi_device *sdev = to_scmi_dev(data);
2586
2587 /* Skip transport devices and devices of different SCMI instances */
2588 if (!strncmp(sdev->name, "__scmi_transport_device", 23) ||
2589 sdev->dev.parent != info->dev)
2590 return NOTIFY_DONE;
2591
2592 switch (action) {
2593 case BUS_NOTIFY_BIND_DRIVER:
2594 /* setup handle now as the transport is ready */
2595 scmi_set_handle(scmi_dev: sdev);
2596 break;
2597 case BUS_NOTIFY_UNBOUND_DRIVER:
2598 scmi_handle_put(handle: sdev->handle);
2599 sdev->handle = NULL;
2600 break;
2601 default:
2602 return NOTIFY_DONE;
2603 }
2604
2605 dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2606 sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2607 "about to be BOUND." : "UNBOUND.");
2608
2609 return NOTIFY_OK;
2610}
2611
2612static int scmi_device_request_notifier(struct notifier_block *nb,
2613 unsigned long action, void *data)
2614{
2615 struct device_node *np;
2616 struct scmi_device_id *id_table = data;
2617 struct scmi_info *info = req_nb_to_scmi_info(nb);
2618
2619 np = idr_find(&info->active_protocols, id: id_table->protocol_id);
2620 if (!np)
2621 return NOTIFY_DONE;
2622
2623 dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2624 action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2625 id_table->name, id_table->protocol_id);
2626
2627 switch (action) {
2628 case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2629 scmi_create_protocol_devices(np, info, prot_id: id_table->protocol_id,
2630 name: id_table->name);
2631 break;
2632 case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2633 scmi_destroy_protocol_devices(info, prot_id: id_table->protocol_id,
2634 name: id_table->name);
2635 break;
2636 default:
2637 return NOTIFY_DONE;
2638 }
2639
2640 return NOTIFY_OK;
2641}
2642
2643static void scmi_debugfs_common_cleanup(void *d)
2644{
2645 struct scmi_debug_info *dbg = d;
2646
2647 if (!dbg)
2648 return;
2649
2650 debugfs_remove_recursive(dentry: dbg->top_dentry);
2651 kfree(objp: dbg->name);
2652 kfree(objp: dbg->type);
2653}
2654
2655static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2656{
2657 char top_dir[16];
2658 struct dentry *trans, *top_dentry;
2659 struct scmi_debug_info *dbg;
2660 const char *c_ptr = NULL;
2661
2662 dbg = devm_kzalloc(dev: info->dev, size: sizeof(*dbg), GFP_KERNEL);
2663 if (!dbg)
2664 return NULL;
2665
2666 dbg->name = kstrdup(s: of_node_full_name(np: info->dev->of_node), GFP_KERNEL);
2667 if (!dbg->name) {
2668 devm_kfree(dev: info->dev, p: dbg);
2669 return NULL;
2670 }
2671
2672 of_property_read_string(np: info->dev->of_node, propname: "compatible", out_string: &c_ptr);
2673 dbg->type = kstrdup(s: c_ptr, GFP_KERNEL);
2674 if (!dbg->type) {
2675 kfree(objp: dbg->name);
2676 devm_kfree(dev: info->dev, p: dbg);
2677 return NULL;
2678 }
2679
2680 snprintf(buf: top_dir, size: 16, fmt: "%d", info->id);
2681 top_dentry = debugfs_create_dir(name: top_dir, parent: scmi_top_dentry);
2682 trans = debugfs_create_dir(name: "transport", parent: top_dentry);
2683
2684 dbg->is_atomic = info->desc->atomic_enabled &&
2685 is_transport_polling_capable(desc: info->desc);
2686
2687 debugfs_create_str(name: "instance_name", mode: 0400, parent: top_dentry,
2688 value: (char **)&dbg->name);
2689
2690 debugfs_create_u32(name: "atomic_threshold_us", mode: 0400, parent: top_dentry,
2691 value: &info->atomic_threshold);
2692
2693 debugfs_create_str(name: "type", mode: 0400, parent: trans, value: (char **)&dbg->type);
2694
2695 debugfs_create_bool(name: "is_atomic", mode: 0400, parent: trans, value: &dbg->is_atomic);
2696
2697 debugfs_create_u32(name: "max_rx_timeout_ms", mode: 0400, parent: trans,
2698 value: (u32 *)&info->desc->max_rx_timeout_ms);
2699
2700 debugfs_create_u32(name: "max_msg_size", mode: 0400, parent: trans,
2701 value: (u32 *)&info->desc->max_msg_size);
2702
2703 debugfs_create_u32(name: "tx_max_msg", mode: 0400, parent: trans,
2704 value: (u32 *)&info->tx_minfo.max_msg);
2705
2706 debugfs_create_u32(name: "rx_max_msg", mode: 0400, parent: trans,
2707 value: (u32 *)&info->rx_minfo.max_msg);
2708
2709 dbg->top_dentry = top_dentry;
2710
2711 if (devm_add_action_or_reset(info->dev,
2712 scmi_debugfs_common_cleanup, dbg)) {
2713 scmi_debugfs_common_cleanup(d: dbg);
2714 return NULL;
2715 }
2716
2717 return dbg;
2718}
2719
2720static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
2721{
2722 int id, num_chans = 0, ret = 0;
2723 struct scmi_chan_info *cinfo;
2724 u8 channels[SCMI_MAX_CHANNELS] = {};
2725 DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
2726
2727 if (!info->dbg)
2728 return -EINVAL;
2729
2730 /* Enumerate all channels to collect their ids */
2731 idr_for_each_entry(&info->tx_idr, cinfo, id) {
2732 /*
2733 * Cannot happen, but be defensive.
2734 * Zero as num_chans is ok, warn and carry on.
2735 */
2736 if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
2737 dev_warn(info->dev,
2738 "SCMI RAW - Error enumerating channels\n");
2739 break;
2740 }
2741
2742 if (!test_bit(cinfo->id, protos)) {
2743 channels[num_chans++] = cinfo->id;
2744 set_bit(nr: cinfo->id, addr: protos);
2745 }
2746 }
2747
2748 info->raw = scmi_raw_mode_init(handle: &info->handle, top_dentry: info->dbg->top_dentry,
2749 instance_id: info->id, channels, num_chans,
2750 desc: info->desc, tx_max_msg: info->tx_minfo.max_msg);
2751 if (IS_ERR(ptr: info->raw)) {
2752 dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
2753 ret = PTR_ERR(ptr: info->raw);
2754 info->raw = NULL;
2755 }
2756
2757 return ret;
2758}
2759
2760static int scmi_probe(struct platform_device *pdev)
2761{
2762 int ret;
2763 struct scmi_handle *handle;
2764 const struct scmi_desc *desc;
2765 struct scmi_info *info;
2766 bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
2767 struct device *dev = &pdev->dev;
2768 struct device_node *child, *np = dev->of_node;
2769
2770 desc = of_device_get_match_data(dev);
2771 if (!desc)
2772 return -EINVAL;
2773
2774 info = devm_kzalloc(dev, size: sizeof(*info), GFP_KERNEL);
2775 if (!info)
2776 return -ENOMEM;
2777
2778 info->id = ida_alloc_min(ida: &scmi_id, min: 0, GFP_KERNEL);
2779 if (info->id < 0)
2780 return info->id;
2781
2782 info->dev = dev;
2783 info->desc = desc;
2784 info->bus_nb.notifier_call = scmi_bus_notifier;
2785 info->dev_req_nb.notifier_call = scmi_device_request_notifier;
2786 INIT_LIST_HEAD(list: &info->node);
2787 idr_init(idr: &info->protocols);
2788 mutex_init(&info->protocols_mtx);
2789 idr_init(idr: &info->active_protocols);
2790 mutex_init(&info->devreq_mtx);
2791
2792 platform_set_drvdata(pdev, data: info);
2793 idr_init(idr: &info->tx_idr);
2794 idr_init(idr: &info->rx_idr);
2795
2796 handle = &info->handle;
2797 handle->dev = info->dev;
2798 handle->version = &info->version;
2799 handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
2800 handle->devm_protocol_get = scmi_devm_protocol_get;
2801 handle->devm_protocol_put = scmi_devm_protocol_put;
2802
2803 /* System wide atomic threshold for atomic ops .. if any */
2804 if (!of_property_read_u32(np, propname: "atomic-threshold-us",
2805 out_value: &info->atomic_threshold))
2806 dev_info(dev,
2807 "SCMI System wide atomic threshold set to %d us\n",
2808 info->atomic_threshold);
2809 handle->is_transport_atomic = scmi_is_transport_atomic;
2810
2811 if (desc->ops->link_supplier) {
2812 ret = desc->ops->link_supplier(dev);
2813 if (ret)
2814 goto clear_ida;
2815 }
2816
2817 /* Setup all channels described in the DT at first */
2818 ret = scmi_channels_setup(info);
2819 if (ret)
2820 goto clear_ida;
2821
2822 ret = bus_register_notifier(bus: &scmi_bus_type, nb: &info->bus_nb);
2823 if (ret)
2824 goto clear_txrx_setup;
2825
2826 ret = blocking_notifier_chain_register(nh: &scmi_requested_devices_nh,
2827 nb: &info->dev_req_nb);
2828 if (ret)
2829 goto clear_bus_notifier;
2830
2831 ret = scmi_xfer_info_init(sinfo: info);
2832 if (ret)
2833 goto clear_dev_req_notifier;
2834
2835 if (scmi_top_dentry) {
2836 info->dbg = scmi_debugfs_common_setup(info);
2837 if (!info->dbg)
2838 dev_warn(dev, "Failed to setup SCMI debugfs.\n");
2839
2840 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
2841 ret = scmi_debugfs_raw_mode_setup(info);
2842 if (!coex) {
2843 if (ret)
2844 goto clear_dev_req_notifier;
2845
2846 /* Bail out anyway when coex disabled. */
2847 return 0;
2848 }
2849
2850 /* Coex enabled, carry on in any case. */
2851 dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
2852 }
2853 }
2854
2855 if (scmi_notification_init(handle))
2856 dev_err(dev, "SCMI Notifications NOT available.\n");
2857
2858 if (info->desc->atomic_enabled &&
2859 !is_transport_polling_capable(desc: info->desc))
2860 dev_err(dev,
2861 "Transport is not polling capable. Atomic mode not supported.\n");
2862
2863 /*
2864 * Trigger SCMI Base protocol initialization.
2865 * It's mandatory and won't be ever released/deinit until the
2866 * SCMI stack is shutdown/unloaded as a whole.
2867 */
2868 ret = scmi_protocol_acquire(handle, protocol_id: SCMI_PROTOCOL_BASE);
2869 if (ret) {
2870 dev_err(dev, "unable to communicate with SCMI\n");
2871 if (coex)
2872 return 0;
2873 goto notification_exit;
2874 }
2875
2876 mutex_lock(&scmi_list_mutex);
2877 list_add_tail(new: &info->node, head: &scmi_list);
2878 mutex_unlock(lock: &scmi_list_mutex);
2879
2880 for_each_available_child_of_node(np, child) {
2881 u32 prot_id;
2882
2883 if (of_property_read_u32(np: child, propname: "reg", out_value: &prot_id))
2884 continue;
2885
2886 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2887 dev_err(dev, "Out of range protocol %d\n", prot_id);
2888
2889 if (!scmi_is_protocol_implemented(handle, prot_id)) {
2890 dev_err(dev, "SCMI protocol %d not implemented\n",
2891 prot_id);
2892 continue;
2893 }
2894
2895 /*
2896 * Save this valid DT protocol descriptor amongst
2897 * @active_protocols for this SCMI instance/
2898 */
2899 ret = idr_alloc(&info->active_protocols, ptr: child,
2900 start: prot_id, end: prot_id + 1, GFP_KERNEL);
2901 if (ret != prot_id) {
2902 dev_err(dev, "SCMI protocol %d already activated. Skip\n",
2903 prot_id);
2904 continue;
2905 }
2906
2907 of_node_get(node: child);
2908 scmi_create_protocol_devices(np: child, info, prot_id, NULL);
2909 }
2910
2911 return 0;
2912
2913notification_exit:
2914 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2915 scmi_raw_mode_cleanup(raw: info->raw);
2916 scmi_notification_exit(handle: &info->handle);
2917clear_dev_req_notifier:
2918 blocking_notifier_chain_unregister(nh: &scmi_requested_devices_nh,
2919 nb: &info->dev_req_nb);
2920clear_bus_notifier:
2921 bus_unregister_notifier(bus: &scmi_bus_type, nb: &info->bus_nb);
2922clear_txrx_setup:
2923 scmi_cleanup_txrx_channels(info);
2924clear_ida:
2925 ida_free(&scmi_id, id: info->id);
2926 return ret;
2927}
2928
2929static void scmi_remove(struct platform_device *pdev)
2930{
2931 int id;
2932 struct scmi_info *info = platform_get_drvdata(pdev);
2933 struct device_node *child;
2934
2935 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2936 scmi_raw_mode_cleanup(raw: info->raw);
2937
2938 mutex_lock(&scmi_list_mutex);
2939 if (info->users)
2940 dev_warn(&pdev->dev,
2941 "Still active SCMI users will be forcibly unbound.\n");
2942 list_del(entry: &info->node);
2943 mutex_unlock(lock: &scmi_list_mutex);
2944
2945 scmi_notification_exit(handle: &info->handle);
2946
2947 mutex_lock(&info->protocols_mtx);
2948 idr_destroy(&info->protocols);
2949 mutex_unlock(lock: &info->protocols_mtx);
2950
2951 idr_for_each_entry(&info->active_protocols, child, id)
2952 of_node_put(node: child);
2953 idr_destroy(&info->active_protocols);
2954
2955 blocking_notifier_chain_unregister(nh: &scmi_requested_devices_nh,
2956 nb: &info->dev_req_nb);
2957 bus_unregister_notifier(bus: &scmi_bus_type, nb: &info->bus_nb);
2958
2959 /* Safe to free channels since no more users */
2960 scmi_cleanup_txrx_channels(info);
2961
2962 ida_free(&scmi_id, id: info->id);
2963}
2964
2965static ssize_t protocol_version_show(struct device *dev,
2966 struct device_attribute *attr, char *buf)
2967{
2968 struct scmi_info *info = dev_get_drvdata(dev);
2969
2970 return sprintf(buf, fmt: "%u.%u\n", info->version.major_ver,
2971 info->version.minor_ver);
2972}
2973static DEVICE_ATTR_RO(protocol_version);
2974
2975static ssize_t firmware_version_show(struct device *dev,
2976 struct device_attribute *attr, char *buf)
2977{
2978 struct scmi_info *info = dev_get_drvdata(dev);
2979
2980 return sprintf(buf, fmt: "0x%x\n", info->version.impl_ver);
2981}
2982static DEVICE_ATTR_RO(firmware_version);
2983
2984static ssize_t vendor_id_show(struct device *dev,
2985 struct device_attribute *attr, char *buf)
2986{
2987 struct scmi_info *info = dev_get_drvdata(dev);
2988
2989 return sprintf(buf, fmt: "%s\n", info->version.vendor_id);
2990}
2991static DEVICE_ATTR_RO(vendor_id);
2992
2993static ssize_t sub_vendor_id_show(struct device *dev,
2994 struct device_attribute *attr, char *buf)
2995{
2996 struct scmi_info *info = dev_get_drvdata(dev);
2997
2998 return sprintf(buf, fmt: "%s\n", info->version.sub_vendor_id);
2999}
3000static DEVICE_ATTR_RO(sub_vendor_id);
3001
3002static struct attribute *versions_attrs[] = {
3003 &dev_attr_firmware_version.attr,
3004 &dev_attr_protocol_version.attr,
3005 &dev_attr_vendor_id.attr,
3006 &dev_attr_sub_vendor_id.attr,
3007 NULL,
3008};
3009ATTRIBUTE_GROUPS(versions);
3010
3011/* Each compatible listed below must have descriptor associated with it */
3012static const struct of_device_id scmi_of_match[] = {
3013#ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
3014 { .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
3015#endif
3016#ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE
3017 { .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc },
3018#endif
3019#ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
3020 { .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
3021 { .compatible = "arm,scmi-smc-param", .data = &scmi_smc_desc},
3022 { .compatible = "qcom,scmi-smc", .data = &scmi_smc_desc},
3023#endif
3024#ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
3025 { .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
3026#endif
3027 { /* Sentinel */ },
3028};
3029
3030MODULE_DEVICE_TABLE(of, scmi_of_match);
3031
3032static struct platform_driver scmi_driver = {
3033 .driver = {
3034 .name = "arm-scmi",
3035 .suppress_bind_attrs = true,
3036 .of_match_table = scmi_of_match,
3037 .dev_groups = versions_groups,
3038 },
3039 .probe = scmi_probe,
3040 .remove_new = scmi_remove,
3041};
3042
3043/**
3044 * __scmi_transports_setup - Common helper to call transport-specific
3045 * .init/.exit code if provided.
3046 *
3047 * @init: A flag to distinguish between init and exit.
3048 *
3049 * Note that, if provided, we invoke .init/.exit functions for all the
3050 * transports currently compiled in.
3051 *
3052 * Return: 0 on Success.
3053 */
3054static inline int __scmi_transports_setup(bool init)
3055{
3056 int ret = 0;
3057 const struct of_device_id *trans;
3058
3059 for (trans = scmi_of_match; trans->data; trans++) {
3060 const struct scmi_desc *tdesc = trans->data;
3061
3062 if ((init && !tdesc->transport_init) ||
3063 (!init && !tdesc->transport_exit))
3064 continue;
3065
3066 if (init)
3067 ret = tdesc->transport_init();
3068 else
3069 tdesc->transport_exit();
3070
3071 if (ret) {
3072 pr_err("SCMI transport %s FAILED initialization!\n",
3073 trans->compatible);
3074 break;
3075 }
3076 }
3077
3078 return ret;
3079}
3080
3081static int __init scmi_transports_init(void)
3082{
3083 return __scmi_transports_setup(init: true);
3084}
3085
3086static void __exit scmi_transports_exit(void)
3087{
3088 __scmi_transports_setup(init: false);
3089}
3090
3091static struct dentry *scmi_debugfs_init(void)
3092{
3093 struct dentry *d;
3094
3095 d = debugfs_create_dir(name: "scmi", NULL);
3096 if (IS_ERR(ptr: d)) {
3097 pr_err("Could NOT create SCMI top dentry.\n");
3098 return NULL;
3099 }
3100
3101 return d;
3102}
3103
3104static int __init scmi_driver_init(void)
3105{
3106 int ret;
3107
3108 /* Bail out if no SCMI transport was configured */
3109 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3110 return -EINVAL;
3111
3112 /* Initialize any compiled-in transport which provided an init/exit */
3113 ret = scmi_transports_init();
3114 if (ret)
3115 return ret;
3116
3117 if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3118 scmi_top_dentry = scmi_debugfs_init();
3119
3120 scmi_base_register();
3121
3122 scmi_clock_register();
3123 scmi_perf_register();
3124 scmi_power_register();
3125 scmi_reset_register();
3126 scmi_sensors_register();
3127 scmi_voltage_register();
3128 scmi_system_register();
3129 scmi_powercap_register();
3130
3131 return platform_driver_register(&scmi_driver);
3132}
3133module_init(scmi_driver_init);
3134
3135static void __exit scmi_driver_exit(void)
3136{
3137 scmi_base_unregister();
3138
3139 scmi_clock_unregister();
3140 scmi_perf_unregister();
3141 scmi_power_unregister();
3142 scmi_reset_unregister();
3143 scmi_sensors_unregister();
3144 scmi_voltage_unregister();
3145 scmi_system_unregister();
3146 scmi_powercap_unregister();
3147
3148 scmi_transports_exit();
3149
3150 platform_driver_unregister(&scmi_driver);
3151
3152 debugfs_remove_recursive(dentry: scmi_top_dentry);
3153}
3154module_exit(scmi_driver_exit);
3155
3156MODULE_ALIAS("platform:arm-scmi");
3157MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3158MODULE_DESCRIPTION("ARM SCMI protocol driver");
3159MODULE_LICENSE("GPL v2");
3160

source code of linux/drivers/firmware/arm_scmi/driver.c