1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
3
4#include <linux/etherdevice.h>
5#include <net/ip6_checksum.h>
6#include <net/page_pool/helpers.h>
7#include <net/inet_ecn.h>
8#include <linux/iopoll.h>
9#include <linux/sctp.h>
10#include <linux/pci.h>
11#include <net/tcp.h>
12#include <net/ip.h>
13
14#include "wx_type.h"
15#include "wx_lib.h"
16#include "wx_hw.h"
17
18/* Lookup table mapping the HW PTYPE to the bit field for decoding */
19static struct wx_dec_ptype wx_ptype_lookup[256] = {
20 /* L2: mac */
21 [0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
22 [0x12] = WX_PTT(L2, NONE, NONE, NONE, TS, PAY2),
23 [0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
24 [0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
25 [0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
26 [0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
27 [0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
28
29 /* L2: ethertype filter */
30 [0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
31
32 /* L3: ip non-tunnel */
33 [0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
34 [0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
35 [0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP, PAY4),
36 [0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP, PAY4),
37 [0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
38 [0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
39 [0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
40 [0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP, PAY3),
41 [0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP, PAY4),
42 [0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
43
44 /* L2: fcoe */
45 [0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
46 [0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
47
48 /* IPv4 --> IPv4/IPv6 */
49 [0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
50 [0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
51 [0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP, PAY4),
52 [0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP, PAY4),
53 [0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
54 [0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
55 [0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
56 [0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP, PAY4),
57 [0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP, PAY4),
58 [0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
59
60 /* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
61 [0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
62 [0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
63 [0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
64 [0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP, PAY4),
65 [0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP, PAY4),
66 [0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
67 [0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
68 [0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
69 [0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP, PAY4),
70 [0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP, PAY4),
71 [0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
72
73 /* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
74 [0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
75 [0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
76 [0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
77 [0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP, PAY4),
78 [0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP, PAY4),
79 [0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
80 [0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
81 [0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
82 [0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP, PAY4),
83 [0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP, PAY4),
84 [0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
85
86 /* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
87 [0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
88 [0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
89 [0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
90 [0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP, PAY4),
91 [0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP, PAY4),
92 [0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
93 [0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
94 [0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
95 [0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP, PAY4),
96 [0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP, PAY4),
97 [0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
98
99 /* IPv6 --> IPv4/IPv6 */
100 [0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
101 [0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
102 [0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP, PAY4),
103 [0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP, PAY4),
104 [0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
105 [0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
106 [0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
107 [0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP, PAY4),
108 [0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP, PAY4),
109 [0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
110
111 /* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
112 [0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
113 [0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
114 [0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
115 [0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP, PAY4),
116 [0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP, PAY4),
117 [0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
118 [0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
119 [0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
120 [0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP, PAY4),
121 [0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP, PAY4),
122 [0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
123
124 /* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
125 [0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
126 [0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
127 [0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
128 [0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP, PAY4),
129 [0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP, PAY4),
130 [0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
131 [0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
132 [0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
133 [0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP, PAY4),
134 [0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP, PAY4),
135 [0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
136
137 /* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
138 [0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
139 [0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
140 [0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
141 [0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP, PAY4),
142 [0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP, PAY4),
143 [0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
144 [0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
145 [0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
146 [0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP, PAY4),
147 [0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP, PAY4),
148 [0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
149};
150
151static struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
152{
153 return wx_ptype_lookup[ptype];
154}
155
156/* wx_test_staterr - tests bits in Rx descriptor status and error fields */
157static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
158 const u32 stat_err_bits)
159{
160 return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
161}
162
163static void wx_dma_sync_frag(struct wx_ring *rx_ring,
164 struct wx_rx_buffer *rx_buffer)
165{
166 struct sk_buff *skb = rx_buffer->skb;
167 skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
168
169 dma_sync_single_range_for_cpu(dev: rx_ring->dev,
170 WX_CB(skb)->dma,
171 offset: skb_frag_off(frag),
172 size: skb_frag_size(frag),
173 dir: DMA_FROM_DEVICE);
174
175 /* If the page was released, just unmap it. */
176 if (unlikely(WX_CB(skb)->page_released))
177 page_pool_put_full_page(pool: rx_ring->page_pool, page: rx_buffer->page, allow_direct: false);
178}
179
180static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
181 union wx_rx_desc *rx_desc,
182 struct sk_buff **skb,
183 int *rx_buffer_pgcnt)
184{
185 struct wx_rx_buffer *rx_buffer;
186 unsigned int size;
187
188 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
189 size = le16_to_cpu(rx_desc->wb.upper.length);
190
191#if (PAGE_SIZE < 8192)
192 *rx_buffer_pgcnt = page_count(page: rx_buffer->page);
193#else
194 *rx_buffer_pgcnt = 0;
195#endif
196
197 prefetchw(x: rx_buffer->page);
198 *skb = rx_buffer->skb;
199
200 /* Delay unmapping of the first packet. It carries the header
201 * information, HW may still access the header after the writeback.
202 * Only unmap it when EOP is reached
203 */
204 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
205 if (!*skb)
206 goto skip_sync;
207 } else {
208 if (*skb)
209 wx_dma_sync_frag(rx_ring, rx_buffer);
210 }
211
212 /* we are reusing so sync this buffer for CPU use */
213 dma_sync_single_range_for_cpu(dev: rx_ring->dev,
214 addr: rx_buffer->dma,
215 offset: rx_buffer->page_offset,
216 size,
217 dir: DMA_FROM_DEVICE);
218skip_sync:
219 return rx_buffer;
220}
221
222static void wx_put_rx_buffer(struct wx_ring *rx_ring,
223 struct wx_rx_buffer *rx_buffer,
224 struct sk_buff *skb,
225 int rx_buffer_pgcnt)
226{
227 if (!IS_ERR(ptr: skb) && WX_CB(skb)->dma == rx_buffer->dma)
228 /* the page has been released from the ring */
229 WX_CB(skb)->page_released = true;
230
231 /* clear contents of rx_buffer */
232 rx_buffer->page = NULL;
233 rx_buffer->skb = NULL;
234}
235
236static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
237 struct wx_rx_buffer *rx_buffer,
238 union wx_rx_desc *rx_desc)
239{
240 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
241#if (PAGE_SIZE < 8192)
242 unsigned int truesize = WX_RX_BUFSZ;
243#else
244 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
245#endif
246 struct sk_buff *skb = rx_buffer->skb;
247
248 if (!skb) {
249 void *page_addr = page_address(rx_buffer->page) +
250 rx_buffer->page_offset;
251
252 /* prefetch first cache line of first page */
253 prefetch(page_addr);
254#if L1_CACHE_BYTES < 128
255 prefetch(page_addr + L1_CACHE_BYTES);
256#endif
257
258 /* allocate a skb to store the frags */
259 skb = napi_alloc_skb(napi: &rx_ring->q_vector->napi, WX_RXBUFFER_256);
260 if (unlikely(!skb))
261 return NULL;
262
263 /* we will be copying header into skb->data in
264 * pskb_may_pull so it is in our interest to prefetch
265 * it now to avoid a possible cache miss
266 */
267 prefetchw(x: skb->data);
268
269 if (size <= WX_RXBUFFER_256) {
270 memcpy(__skb_put(skb, size), page_addr,
271 ALIGN(size, sizeof(long)));
272 page_pool_put_full_page(pool: rx_ring->page_pool, page: rx_buffer->page, allow_direct: true);
273 return skb;
274 }
275
276 skb_mark_for_recycle(skb);
277
278 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
279 WX_CB(skb)->dma = rx_buffer->dma;
280
281 skb_add_rx_frag(skb, i: 0, page: rx_buffer->page,
282 off: rx_buffer->page_offset,
283 size, truesize);
284 goto out;
285
286 } else {
287 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page: rx_buffer->page,
288 off: rx_buffer->page_offset, size, truesize);
289 }
290
291out:
292#if (PAGE_SIZE < 8192)
293 /* flip page offset to other buffer */
294 rx_buffer->page_offset ^= truesize;
295#else
296 /* move offset up to the next cache line */
297 rx_buffer->page_offset += truesize;
298#endif
299
300 return skb;
301}
302
303static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
304 struct wx_rx_buffer *bi)
305{
306 struct page *page = bi->page;
307 dma_addr_t dma;
308
309 /* since we are recycling buffers we should seldom need to alloc */
310 if (likely(page))
311 return true;
312
313 page = page_pool_dev_alloc_pages(pool: rx_ring->page_pool);
314 WARN_ON(!page);
315 dma = page_pool_get_dma_addr(page);
316
317 bi->page_dma = dma;
318 bi->page = page;
319 bi->page_offset = 0;
320
321 return true;
322}
323
324/**
325 * wx_alloc_rx_buffers - Replace used receive buffers
326 * @rx_ring: ring to place buffers on
327 * @cleaned_count: number of buffers to replace
328 **/
329void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
330{
331 u16 i = rx_ring->next_to_use;
332 union wx_rx_desc *rx_desc;
333 struct wx_rx_buffer *bi;
334
335 /* nothing to do */
336 if (!cleaned_count)
337 return;
338
339 rx_desc = WX_RX_DESC(rx_ring, i);
340 bi = &rx_ring->rx_buffer_info[i];
341 i -= rx_ring->count;
342
343 do {
344 if (!wx_alloc_mapped_page(rx_ring, bi))
345 break;
346
347 /* sync the buffer for use by the device */
348 dma_sync_single_range_for_device(dev: rx_ring->dev, addr: bi->dma,
349 offset: bi->page_offset,
350 WX_RX_BUFSZ,
351 dir: DMA_FROM_DEVICE);
352
353 rx_desc->read.pkt_addr =
354 cpu_to_le64(bi->page_dma + bi->page_offset);
355
356 rx_desc++;
357 bi++;
358 i++;
359 if (unlikely(!i)) {
360 rx_desc = WX_RX_DESC(rx_ring, 0);
361 bi = rx_ring->rx_buffer_info;
362 i -= rx_ring->count;
363 }
364
365 /* clear the status bits for the next_to_use descriptor */
366 rx_desc->wb.upper.status_error = 0;
367
368 cleaned_count--;
369 } while (cleaned_count);
370
371 i += rx_ring->count;
372
373 if (rx_ring->next_to_use != i) {
374 rx_ring->next_to_use = i;
375 /* update next to alloc since we have filled the ring */
376 rx_ring->next_to_alloc = i;
377
378 /* Force memory writes to complete before letting h/w
379 * know there are new descriptors to fetch. (Only
380 * applicable for weak-ordered memory model archs,
381 * such as IA-64).
382 */
383 wmb();
384 writel(val: i, addr: rx_ring->tail);
385 }
386}
387
388u16 wx_desc_unused(struct wx_ring *ring)
389{
390 u16 ntc = ring->next_to_clean;
391 u16 ntu = ring->next_to_use;
392
393 return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
394}
395
396/**
397 * wx_is_non_eop - process handling of non-EOP buffers
398 * @rx_ring: Rx ring being processed
399 * @rx_desc: Rx descriptor for current buffer
400 * @skb: Current socket buffer containing buffer in progress
401 *
402 * This function updates next to clean. If the buffer is an EOP buffer
403 * this function exits returning false, otherwise it will place the
404 * sk_buff in the next buffer to be chained and return true indicating
405 * that this is in fact a non-EOP buffer.
406 **/
407static bool wx_is_non_eop(struct wx_ring *rx_ring,
408 union wx_rx_desc *rx_desc,
409 struct sk_buff *skb)
410{
411 u32 ntc = rx_ring->next_to_clean + 1;
412
413 /* fetch, update, and store next to clean */
414 ntc = (ntc < rx_ring->count) ? ntc : 0;
415 rx_ring->next_to_clean = ntc;
416
417 prefetch(WX_RX_DESC(rx_ring, ntc));
418
419 /* if we are the last buffer then there is nothing else to do */
420 if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
421 return false;
422
423 rx_ring->rx_buffer_info[ntc].skb = skb;
424 rx_ring->rx_stats.non_eop_descs++;
425
426 return true;
427}
428
429static void wx_pull_tail(struct sk_buff *skb)
430{
431 skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
432 unsigned int pull_len;
433 unsigned char *va;
434
435 /* it is valid to use page_address instead of kmap since we are
436 * working with pages allocated out of the lomem pool per
437 * alloc_page(GFP_ATOMIC)
438 */
439 va = skb_frag_address(frag);
440
441 /* we need the header to contain the greater of either ETH_HLEN or
442 * 60 bytes if the skb->len is less than 60 for skb_pad.
443 */
444 pull_len = eth_get_headlen(dev: skb->dev, data: va, WX_RXBUFFER_256);
445
446 /* align pull length to size of long to optimize memcpy performance */
447 skb_copy_to_linear_data(skb, from: va, ALIGN(pull_len, sizeof(long)));
448
449 /* update all of the pointers */
450 skb_frag_size_sub(frag, delta: pull_len);
451 skb_frag_off_add(frag, delta: pull_len);
452 skb->data_len -= pull_len;
453 skb->tail += pull_len;
454}
455
456/**
457 * wx_cleanup_headers - Correct corrupted or empty headers
458 * @rx_ring: rx descriptor ring packet is being transacted on
459 * @rx_desc: pointer to the EOP Rx descriptor
460 * @skb: pointer to current skb being fixed
461 *
462 * Check for corrupted packet headers caused by senders on the local L2
463 * embedded NIC switch not setting up their Tx Descriptors right. These
464 * should be very rare.
465 *
466 * Also address the case where we are pulling data in on pages only
467 * and as such no data is present in the skb header.
468 *
469 * In addition if skb is not at least 60 bytes we need to pad it so that
470 * it is large enough to qualify as a valid Ethernet frame.
471 *
472 * Returns true if an error was encountered and skb was freed.
473 **/
474static bool wx_cleanup_headers(struct wx_ring *rx_ring,
475 union wx_rx_desc *rx_desc,
476 struct sk_buff *skb)
477{
478 struct net_device *netdev = rx_ring->netdev;
479
480 /* verify that the packet does not have any known errors */
481 if (!netdev ||
482 unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
483 !(netdev->features & NETIF_F_RXALL))) {
484 dev_kfree_skb_any(skb);
485 return true;
486 }
487
488 /* place header in linear portion of buffer */
489 if (!skb_headlen(skb))
490 wx_pull_tail(skb);
491
492 /* if eth_skb_pad returns an error the skb was freed */
493 if (eth_skb_pad(skb))
494 return true;
495
496 return false;
497}
498
499static void wx_rx_hash(struct wx_ring *ring,
500 union wx_rx_desc *rx_desc,
501 struct sk_buff *skb)
502{
503 u16 rss_type;
504
505 if (!(ring->netdev->features & NETIF_F_RXHASH))
506 return;
507
508 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
509 WX_RXD_RSSTYPE_MASK;
510
511 if (!rss_type)
512 return;
513
514 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
515 type: (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
516 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
517}
518
519/**
520 * wx_rx_checksum - indicate in skb if hw indicated a good cksum
521 * @ring: structure containing ring specific data
522 * @rx_desc: current Rx descriptor being processed
523 * @skb: skb currently being received and modified
524 **/
525static void wx_rx_checksum(struct wx_ring *ring,
526 union wx_rx_desc *rx_desc,
527 struct sk_buff *skb)
528{
529 struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
530
531 skb_checksum_none_assert(skb);
532 /* Rx csum disabled */
533 if (!(ring->netdev->features & NETIF_F_RXCSUM))
534 return;
535
536 /* if IPv4 header checksum error */
537 if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
538 wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
539 (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
540 wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
541 ring->rx_stats.csum_err++;
542 return;
543 }
544
545 /* L4 checksum offload flag must set for the below code to work */
546 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
547 return;
548
549 /* Hardware can't guarantee csum if IPv6 Dest Header found */
550 if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc))
551 return;
552
553 /* if L4 checksum error */
554 if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
555 ring->rx_stats.csum_err++;
556 return;
557 }
558
559 /* It must be a TCP or UDP or SCTP packet with a valid checksum */
560 skb->ip_summed = CHECKSUM_UNNECESSARY;
561
562 /* If there is an outer header present that might contain a checksum
563 * we need to bump the checksum level by 1 to reflect the fact that
564 * we are indicating we validated the inner checksum.
565 */
566 if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
567 __skb_incr_checksum_unnecessary(skb);
568 ring->rx_stats.csum_good_cnt++;
569}
570
571static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
572 struct sk_buff *skb)
573{
574 u16 ethertype;
575 u8 idx = 0;
576
577 if ((ring->netdev->features &
578 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
579 wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
580 idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
581 0x1c0) >> 6;
582 ethertype = ring->q_vector->wx->tpid[idx];
583 __vlan_hwaccel_put_tag(skb, htons(ethertype),
584 le16_to_cpu(rx_desc->wb.upper.vlan));
585 }
586}
587
588/**
589 * wx_process_skb_fields - Populate skb header fields from Rx descriptor
590 * @rx_ring: rx descriptor ring packet is being transacted on
591 * @rx_desc: pointer to the EOP Rx descriptor
592 * @skb: pointer to current skb being populated
593 *
594 * This function checks the ring, descriptor, and packet information in
595 * order to populate the hash, checksum, protocol, and
596 * other fields within the skb.
597 **/
598static void wx_process_skb_fields(struct wx_ring *rx_ring,
599 union wx_rx_desc *rx_desc,
600 struct sk_buff *skb)
601{
602 wx_rx_hash(ring: rx_ring, rx_desc, skb);
603 wx_rx_checksum(ring: rx_ring, rx_desc, skb);
604 wx_rx_vlan(ring: rx_ring, rx_desc, skb);
605 skb_record_rx_queue(skb, rx_queue: rx_ring->queue_index);
606 skb->protocol = eth_type_trans(skb, dev: rx_ring->netdev);
607}
608
609/**
610 * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
611 * @q_vector: structure containing interrupt and ring information
612 * @rx_ring: rx descriptor ring to transact packets on
613 * @budget: Total limit on number of packets to process
614 *
615 * This function provides a "bounce buffer" approach to Rx interrupt
616 * processing. The advantage to this is that on systems that have
617 * expensive overhead for IOMMU access this provides a means of avoiding
618 * it by maintaining the mapping of the page to the system.
619 *
620 * Returns amount of work completed.
621 **/
622static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
623 struct wx_ring *rx_ring,
624 int budget)
625{
626 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
627 u16 cleaned_count = wx_desc_unused(ring: rx_ring);
628
629 do {
630 struct wx_rx_buffer *rx_buffer;
631 union wx_rx_desc *rx_desc;
632 struct sk_buff *skb;
633 int rx_buffer_pgcnt;
634
635 /* return some buffers to hardware, one at a time is too slow */
636 if (cleaned_count >= WX_RX_BUFFER_WRITE) {
637 wx_alloc_rx_buffers(rx_ring, cleaned_count);
638 cleaned_count = 0;
639 }
640
641 rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
642 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
643 break;
644
645 /* This memory barrier is needed to keep us from reading
646 * any other fields out of the rx_desc until we know the
647 * descriptor has been written back
648 */
649 dma_rmb();
650
651 rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, skb: &skb, rx_buffer_pgcnt: &rx_buffer_pgcnt);
652
653 /* retrieve a buffer from the ring */
654 skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
655
656 /* exit if we failed to retrieve a buffer */
657 if (!skb) {
658 rx_ring->rx_stats.alloc_rx_buff_failed++;
659 break;
660 }
661
662 wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
663 cleaned_count++;
664
665 /* place incomplete frames back on ring for completion */
666 if (wx_is_non_eop(rx_ring, rx_desc, skb))
667 continue;
668
669 /* verify the packet layout is correct */
670 if (wx_cleanup_headers(rx_ring, rx_desc, skb))
671 continue;
672
673 /* probably a little skewed due to removing CRC */
674 total_rx_bytes += skb->len;
675
676 /* populate checksum, timestamp, VLAN, and protocol */
677 wx_process_skb_fields(rx_ring, rx_desc, skb);
678 napi_gro_receive(napi: &q_vector->napi, skb);
679
680 /* update budget accounting */
681 total_rx_packets++;
682 } while (likely(total_rx_packets < budget));
683
684 u64_stats_update_begin(syncp: &rx_ring->syncp);
685 rx_ring->stats.packets += total_rx_packets;
686 rx_ring->stats.bytes += total_rx_bytes;
687 u64_stats_update_end(syncp: &rx_ring->syncp);
688 q_vector->rx.total_packets += total_rx_packets;
689 q_vector->rx.total_bytes += total_rx_bytes;
690
691 return total_rx_packets;
692}
693
694static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
695{
696 return netdev_get_tx_queue(dev: ring->netdev, index: ring->queue_index);
697}
698
699/**
700 * wx_clean_tx_irq - Reclaim resources after transmit completes
701 * @q_vector: structure containing interrupt and ring information
702 * @tx_ring: tx ring to clean
703 * @napi_budget: Used to determine if we are in netpoll
704 **/
705static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
706 struct wx_ring *tx_ring, int napi_budget)
707{
708 unsigned int budget = q_vector->wx->tx_work_limit;
709 unsigned int total_bytes = 0, total_packets = 0;
710 unsigned int i = tx_ring->next_to_clean;
711 struct wx_tx_buffer *tx_buffer;
712 union wx_tx_desc *tx_desc;
713
714 if (!netif_carrier_ok(dev: tx_ring->netdev))
715 return true;
716
717 tx_buffer = &tx_ring->tx_buffer_info[i];
718 tx_desc = WX_TX_DESC(tx_ring, i);
719 i -= tx_ring->count;
720
721 do {
722 union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
723
724 /* if next_to_watch is not set then there is no work pending */
725 if (!eop_desc)
726 break;
727
728 /* prevent any other reads prior to eop_desc */
729 smp_rmb();
730
731 /* if DD is not set pending work has not been completed */
732 if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
733 break;
734
735 /* clear next_to_watch to prevent false hangs */
736 tx_buffer->next_to_watch = NULL;
737
738 /* update the statistics for this packet */
739 total_bytes += tx_buffer->bytecount;
740 total_packets += tx_buffer->gso_segs;
741
742 /* free the skb */
743 napi_consume_skb(skb: tx_buffer->skb, budget: napi_budget);
744
745 /* unmap skb header data */
746 dma_unmap_single(tx_ring->dev,
747 dma_unmap_addr(tx_buffer, dma),
748 dma_unmap_len(tx_buffer, len),
749 DMA_TO_DEVICE);
750
751 /* clear tx_buffer data */
752 dma_unmap_len_set(tx_buffer, len, 0);
753
754 /* unmap remaining buffers */
755 while (tx_desc != eop_desc) {
756 tx_buffer++;
757 tx_desc++;
758 i++;
759 if (unlikely(!i)) {
760 i -= tx_ring->count;
761 tx_buffer = tx_ring->tx_buffer_info;
762 tx_desc = WX_TX_DESC(tx_ring, 0);
763 }
764
765 /* unmap any remaining paged data */
766 if (dma_unmap_len(tx_buffer, len)) {
767 dma_unmap_page(tx_ring->dev,
768 dma_unmap_addr(tx_buffer, dma),
769 dma_unmap_len(tx_buffer, len),
770 DMA_TO_DEVICE);
771 dma_unmap_len_set(tx_buffer, len, 0);
772 }
773 }
774
775 /* move us one more past the eop_desc for start of next pkt */
776 tx_buffer++;
777 tx_desc++;
778 i++;
779 if (unlikely(!i)) {
780 i -= tx_ring->count;
781 tx_buffer = tx_ring->tx_buffer_info;
782 tx_desc = WX_TX_DESC(tx_ring, 0);
783 }
784
785 /* issue prefetch for next Tx descriptor */
786 prefetch(tx_desc);
787
788 /* update budget accounting */
789 budget--;
790 } while (likely(budget));
791
792 i += tx_ring->count;
793 tx_ring->next_to_clean = i;
794 u64_stats_update_begin(syncp: &tx_ring->syncp);
795 tx_ring->stats.bytes += total_bytes;
796 tx_ring->stats.packets += total_packets;
797 u64_stats_update_end(syncp: &tx_ring->syncp);
798 q_vector->tx.total_bytes += total_bytes;
799 q_vector->tx.total_packets += total_packets;
800
801 netdev_tx_completed_queue(dev_queue: wx_txring_txq(ring: tx_ring),
802 pkts: total_packets, bytes: total_bytes);
803
804#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
805 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
806 (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
807 /* Make sure that anybody stopping the queue after this
808 * sees the new next_to_clean.
809 */
810 smp_mb();
811
812 if (__netif_subqueue_stopped(dev: tx_ring->netdev,
813 queue_index: tx_ring->queue_index) &&
814 netif_running(dev: tx_ring->netdev)) {
815 netif_wake_subqueue(dev: tx_ring->netdev,
816 queue_index: tx_ring->queue_index);
817 ++tx_ring->tx_stats.restart_queue;
818 }
819 }
820
821 return !!budget;
822}
823
824/**
825 * wx_poll - NAPI polling RX/TX cleanup routine
826 * @napi: napi struct with our devices info in it
827 * @budget: amount of work driver is allowed to do this pass, in packets
828 *
829 * This function will clean all queues associated with a q_vector.
830 **/
831static int wx_poll(struct napi_struct *napi, int budget)
832{
833 struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
834 int per_ring_budget, work_done = 0;
835 struct wx *wx = q_vector->wx;
836 bool clean_complete = true;
837 struct wx_ring *ring;
838
839 wx_for_each_ring(ring, q_vector->tx) {
840 if (!wx_clean_tx_irq(q_vector, tx_ring: ring, napi_budget: budget))
841 clean_complete = false;
842 }
843
844 /* Exit if we are called by netpoll */
845 if (budget <= 0)
846 return budget;
847
848 /* attempt to distribute budget to each queue fairly, but don't allow
849 * the budget to go below 1 because we'll exit polling
850 */
851 if (q_vector->rx.count > 1)
852 per_ring_budget = max(budget / q_vector->rx.count, 1);
853 else
854 per_ring_budget = budget;
855
856 wx_for_each_ring(ring, q_vector->rx) {
857 int cleaned = wx_clean_rx_irq(q_vector, rx_ring: ring, budget: per_ring_budget);
858
859 work_done += cleaned;
860 if (cleaned >= per_ring_budget)
861 clean_complete = false;
862 }
863
864 /* If all work not completed, return budget and keep polling */
865 if (!clean_complete)
866 return budget;
867
868 /* all work done, exit the polling mode */
869 if (likely(napi_complete_done(napi, work_done))) {
870 if (netif_running(dev: wx->netdev))
871 wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
872 }
873
874 return min(work_done, budget - 1);
875}
876
877static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
878{
879 if (likely(wx_desc_unused(tx_ring) >= size))
880 return 0;
881
882 netif_stop_subqueue(dev: tx_ring->netdev, queue_index: tx_ring->queue_index);
883
884 /* For the next check */
885 smp_mb();
886
887 /* We need to check again in a case another CPU has just
888 * made room available.
889 */
890 if (likely(wx_desc_unused(tx_ring) < size))
891 return -EBUSY;
892
893 /* A reprieve! - use start_queue because it doesn't call schedule */
894 netif_start_subqueue(dev: tx_ring->netdev, queue_index: tx_ring->queue_index);
895 ++tx_ring->tx_stats.restart_queue;
896
897 return 0;
898}
899
900static u32 wx_tx_cmd_type(u32 tx_flags)
901{
902 /* set type for advanced descriptor with frame checksum insertion */
903 u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
904
905 /* set HW vlan bit if vlan is present */
906 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
907 /* set segmentation enable bits for TSO/FSO */
908 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
909 /* set timestamp bit if present */
910 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
911 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
912
913 return cmd_type;
914}
915
916static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
917 u32 tx_flags, unsigned int paylen)
918{
919 u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
920
921 /* enable L4 checksum for TSO and TX checksum offload */
922 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
923 /* enable IPv4 checksum for TSO */
924 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
925 /* enable outer IPv4 checksum for TSO */
926 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
927 WX_TXD_EIPCS);
928 /* Check Context must be set if Tx switch is enabled, which it
929 * always is for case where virtual functions are running
930 */
931 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
932 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
933 WX_TXD_IPSEC);
934 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
935}
936
937static void wx_tx_map(struct wx_ring *tx_ring,
938 struct wx_tx_buffer *first,
939 const u8 hdr_len)
940{
941 struct sk_buff *skb = first->skb;
942 struct wx_tx_buffer *tx_buffer;
943 u32 tx_flags = first->tx_flags;
944 u16 i = tx_ring->next_to_use;
945 unsigned int data_len, size;
946 union wx_tx_desc *tx_desc;
947 skb_frag_t *frag;
948 dma_addr_t dma;
949 u32 cmd_type;
950
951 cmd_type = wx_tx_cmd_type(tx_flags);
952 tx_desc = WX_TX_DESC(tx_ring, i);
953 wx_tx_olinfo_status(tx_desc, tx_flags, paylen: skb->len - hdr_len);
954
955 size = skb_headlen(skb);
956 data_len = skb->data_len;
957 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
958
959 tx_buffer = first;
960
961 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
962 if (dma_mapping_error(dev: tx_ring->dev, dma_addr: dma))
963 goto dma_error;
964
965 /* record length, and DMA address */
966 dma_unmap_len_set(tx_buffer, len, size);
967 dma_unmap_addr_set(tx_buffer, dma, dma);
968
969 tx_desc->read.buffer_addr = cpu_to_le64(dma);
970
971 while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
972 tx_desc->read.cmd_type_len =
973 cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
974
975 i++;
976 tx_desc++;
977 if (i == tx_ring->count) {
978 tx_desc = WX_TX_DESC(tx_ring, 0);
979 i = 0;
980 }
981 tx_desc->read.olinfo_status = 0;
982
983 dma += WX_MAX_DATA_PER_TXD;
984 size -= WX_MAX_DATA_PER_TXD;
985
986 tx_desc->read.buffer_addr = cpu_to_le64(dma);
987 }
988
989 if (likely(!data_len))
990 break;
991
992 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
993
994 i++;
995 tx_desc++;
996 if (i == tx_ring->count) {
997 tx_desc = WX_TX_DESC(tx_ring, 0);
998 i = 0;
999 }
1000 tx_desc->read.olinfo_status = 0;
1001
1002 size = skb_frag_size(frag);
1003
1004 data_len -= size;
1005
1006 dma = skb_frag_dma_map(dev: tx_ring->dev, frag, offset: 0, size,
1007 dir: DMA_TO_DEVICE);
1008
1009 tx_buffer = &tx_ring->tx_buffer_info[i];
1010 }
1011
1012 /* write last descriptor with RS and EOP bits */
1013 cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
1014 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1015
1016 netdev_tx_sent_queue(dev_queue: wx_txring_txq(ring: tx_ring), bytes: first->bytecount);
1017
1018 skb_tx_timestamp(skb);
1019
1020 /* Force memory writes to complete before letting h/w know there
1021 * are new descriptors to fetch. (Only applicable for weak-ordered
1022 * memory model archs, such as IA-64).
1023 *
1024 * We also need this memory barrier to make certain all of the
1025 * status bits have been updated before next_to_watch is written.
1026 */
1027 wmb();
1028
1029 /* set next_to_watch value indicating a packet is present */
1030 first->next_to_watch = tx_desc;
1031
1032 i++;
1033 if (i == tx_ring->count)
1034 i = 0;
1035
1036 tx_ring->next_to_use = i;
1037
1038 wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
1039
1040 if (netif_xmit_stopped(dev_queue: wx_txring_txq(ring: tx_ring)) || !netdev_xmit_more())
1041 writel(val: i, addr: tx_ring->tail);
1042
1043 return;
1044dma_error:
1045 dev_err(tx_ring->dev, "TX DMA map failed\n");
1046
1047 /* clear dma mappings for failed tx_buffer_info map */
1048 for (;;) {
1049 tx_buffer = &tx_ring->tx_buffer_info[i];
1050 if (dma_unmap_len(tx_buffer, len))
1051 dma_unmap_page(tx_ring->dev,
1052 dma_unmap_addr(tx_buffer, dma),
1053 dma_unmap_len(tx_buffer, len),
1054 DMA_TO_DEVICE);
1055 dma_unmap_len_set(tx_buffer, len, 0);
1056 if (tx_buffer == first)
1057 break;
1058 if (i == 0)
1059 i += tx_ring->count;
1060 i--;
1061 }
1062
1063 dev_kfree_skb_any(skb: first->skb);
1064 first->skb = NULL;
1065
1066 tx_ring->next_to_use = i;
1067}
1068
1069static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
1070 u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
1071{
1072 struct wx_tx_context_desc *context_desc;
1073 u16 i = tx_ring->next_to_use;
1074
1075 context_desc = WX_TX_CTXTDESC(tx_ring, i);
1076 i++;
1077 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1078
1079 /* set bits to identify this as an advanced context descriptor */
1080 type_tucmd |= WX_TXD_DTYP_CTXT;
1081 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1082 context_desc->seqnum_seed = cpu_to_le32(fcoe_sof_eof);
1083 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1084 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1085}
1086
1087static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr)
1088{
1089 struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset);
1090
1091 *nexthdr = hdr->nexthdr;
1092 offset += sizeof(struct ipv6hdr);
1093 while (ipv6_ext_hdr(nexthdr: *nexthdr)) {
1094 struct ipv6_opt_hdr _hdr, *hp;
1095
1096 if (*nexthdr == NEXTHDR_NONE)
1097 return;
1098 hp = skb_header_pointer(skb, offset, len: sizeof(_hdr), buffer: &_hdr);
1099 if (!hp)
1100 return;
1101 if (*nexthdr == NEXTHDR_FRAGMENT)
1102 break;
1103 *nexthdr = hp->nexthdr;
1104 }
1105}
1106
1107union network_header {
1108 struct iphdr *ipv4;
1109 struct ipv6hdr *ipv6;
1110 void *raw;
1111};
1112
1113static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
1114{
1115 u8 tun_prot = 0, l4_prot = 0, ptype = 0;
1116 struct sk_buff *skb = first->skb;
1117
1118 if (skb->encapsulation) {
1119 union network_header hdr;
1120
1121 switch (first->protocol) {
1122 case htons(ETH_P_IP):
1123 tun_prot = ip_hdr(skb)->protocol;
1124 ptype = WX_PTYPE_TUN_IPV4;
1125 break;
1126 case htons(ETH_P_IPV6):
1127 wx_get_ipv6_proto(skb, offset: skb_network_offset(skb), nexthdr: &tun_prot);
1128 ptype = WX_PTYPE_TUN_IPV6;
1129 break;
1130 default:
1131 return ptype;
1132 }
1133
1134 if (tun_prot == IPPROTO_IPIP) {
1135 hdr.raw = (void *)inner_ip_hdr(skb);
1136 ptype |= WX_PTYPE_PKT_IPIP;
1137 } else if (tun_prot == IPPROTO_UDP) {
1138 hdr.raw = (void *)inner_ip_hdr(skb);
1139 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1140 skb->inner_protocol != htons(ETH_P_TEB)) {
1141 ptype |= WX_PTYPE_PKT_IG;
1142 } else {
1143 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1144 == htons(ETH_P_8021Q))
1145 ptype |= WX_PTYPE_PKT_IGMV;
1146 else
1147 ptype |= WX_PTYPE_PKT_IGM;
1148 }
1149
1150 } else if (tun_prot == IPPROTO_GRE) {
1151 hdr.raw = (void *)inner_ip_hdr(skb);
1152 if (skb->inner_protocol == htons(ETH_P_IP) ||
1153 skb->inner_protocol == htons(ETH_P_IPV6)) {
1154 ptype |= WX_PTYPE_PKT_IG;
1155 } else {
1156 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1157 == htons(ETH_P_8021Q))
1158 ptype |= WX_PTYPE_PKT_IGMV;
1159 else
1160 ptype |= WX_PTYPE_PKT_IGM;
1161 }
1162 } else {
1163 return ptype;
1164 }
1165
1166 switch (hdr.ipv4->version) {
1167 case IPVERSION:
1168 l4_prot = hdr.ipv4->protocol;
1169 break;
1170 case 6:
1171 wx_get_ipv6_proto(skb, offset: skb_inner_network_offset(skb), nexthdr: &l4_prot);
1172 ptype |= WX_PTYPE_PKT_IPV6;
1173 break;
1174 default:
1175 return ptype;
1176 }
1177 } else {
1178 switch (first->protocol) {
1179 case htons(ETH_P_IP):
1180 l4_prot = ip_hdr(skb)->protocol;
1181 ptype = WX_PTYPE_PKT_IP;
1182 break;
1183 case htons(ETH_P_IPV6):
1184 wx_get_ipv6_proto(skb, offset: skb_network_offset(skb), nexthdr: &l4_prot);
1185 ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
1186 break;
1187 default:
1188 return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
1189 }
1190 }
1191 switch (l4_prot) {
1192 case IPPROTO_TCP:
1193 ptype |= WX_PTYPE_TYP_TCP;
1194 break;
1195 case IPPROTO_UDP:
1196 ptype |= WX_PTYPE_TYP_UDP;
1197 break;
1198 case IPPROTO_SCTP:
1199 ptype |= WX_PTYPE_TYP_SCTP;
1200 break;
1201 default:
1202 ptype |= WX_PTYPE_TYP_IP;
1203 break;
1204 }
1205
1206 return ptype;
1207}
1208
1209static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1210 u8 *hdr_len, u8 ptype)
1211{
1212 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1213 struct net_device *netdev = tx_ring->netdev;
1214 u32 l4len, tunhdr_eiplen_tunlen = 0;
1215 struct sk_buff *skb = first->skb;
1216 bool enc = skb->encapsulation;
1217 struct ipv6hdr *ipv6h;
1218 struct tcphdr *tcph;
1219 struct iphdr *iph;
1220 u8 tun_prot = 0;
1221 int err;
1222
1223 if (skb->ip_summed != CHECKSUM_PARTIAL)
1224 return 0;
1225
1226 if (!skb_is_gso(skb))
1227 return 0;
1228
1229 err = skb_cow_head(skb, headroom: 0);
1230 if (err < 0)
1231 return err;
1232
1233 /* indicates the inner headers in the skbuff are valid. */
1234 iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
1235 if (iph->version == 4) {
1236 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1237 iph->tot_len = 0;
1238 iph->check = 0;
1239 tcph->check = ~csum_tcpudp_magic(saddr: iph->saddr,
1240 daddr: iph->daddr, len: 0,
1241 IPPROTO_TCP, sum: 0);
1242 first->tx_flags |= WX_TX_FLAGS_TSO |
1243 WX_TX_FLAGS_CSUM |
1244 WX_TX_FLAGS_IPV4 |
1245 WX_TX_FLAGS_CC;
1246 } else if (iph->version == 6 && skb_is_gso_v6(skb)) {
1247 ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1248 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1249 ipv6h->payload_len = 0;
1250 tcph->check = ~csum_ipv6_magic(saddr: &ipv6h->saddr,
1251 daddr: &ipv6h->daddr, len: 0,
1252 IPPROTO_TCP, sum: 0);
1253 first->tx_flags |= WX_TX_FLAGS_TSO |
1254 WX_TX_FLAGS_CSUM |
1255 WX_TX_FLAGS_CC;
1256 }
1257
1258 /* compute header lengths */
1259 l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1260 *hdr_len = enc ? skb_inner_transport_offset(skb) :
1261 skb_transport_offset(skb);
1262 *hdr_len += l4len;
1263
1264 /* update gso size and bytecount with header size */
1265 first->gso_segs = skb_shinfo(skb)->gso_segs;
1266 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1267
1268 /* mss_l4len_id: use 0 as index for TSO */
1269 mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
1270 mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
1271
1272 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
1273 if (enc) {
1274 switch (first->protocol) {
1275 case htons(ETH_P_IP):
1276 tun_prot = ip_hdr(skb)->protocol;
1277 first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
1278 break;
1279 case htons(ETH_P_IPV6):
1280 tun_prot = ipv6_hdr(skb)->nexthdr;
1281 break;
1282 default:
1283 break;
1284 }
1285 switch (tun_prot) {
1286 case IPPROTO_UDP:
1287 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1288 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1289 WX_TXD_OUTER_IPLEN_SHIFT) |
1290 (((skb_inner_mac_header(skb) -
1291 skb_transport_header(skb)) >> 1) <<
1292 WX_TXD_TUNNEL_LEN_SHIFT);
1293 break;
1294 case IPPROTO_GRE:
1295 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1296 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1297 WX_TXD_OUTER_IPLEN_SHIFT) |
1298 (((skb_inner_mac_header(skb) -
1299 skb_transport_header(skb)) >> 1) <<
1300 WX_TXD_TUNNEL_LEN_SHIFT);
1301 break;
1302 case IPPROTO_IPIP:
1303 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1304 (char *)ip_hdr(skb)) >> 2) <<
1305 WX_TXD_OUTER_IPLEN_SHIFT;
1306 break;
1307 default:
1308 break;
1309 }
1310 vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
1311 } else {
1312 vlan_macip_lens = skb_network_header_len(skb) >> 1;
1313 }
1314
1315 vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
1316 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1317
1318 type_tucmd = ptype << 24;
1319 if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1320 netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1321 type_tucmd |= WX_SET_FLAG(first->tx_flags,
1322 WX_TX_FLAGS_HW_VLAN,
1323 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1324 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, fcoe_sof_eof: tunhdr_eiplen_tunlen,
1325 type_tucmd, mss_l4len_idx);
1326
1327 return 1;
1328}
1329
1330static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1331 u8 ptype)
1332{
1333 u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
1334 struct net_device *netdev = tx_ring->netdev;
1335 u32 mss_l4len_idx = 0, type_tucmd;
1336 struct sk_buff *skb = first->skb;
1337 u8 tun_prot = 0;
1338
1339 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1340 if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
1341 !(first->tx_flags & WX_TX_FLAGS_CC))
1342 return;
1343 vlan_macip_lens = skb_network_offset(skb) <<
1344 WX_TXD_MACLEN_SHIFT;
1345 } else {
1346 u8 l4_prot = 0;
1347 union {
1348 struct iphdr *ipv4;
1349 struct ipv6hdr *ipv6;
1350 u8 *raw;
1351 } network_hdr;
1352 union {
1353 struct tcphdr *tcphdr;
1354 u8 *raw;
1355 } transport_hdr;
1356
1357 if (skb->encapsulation) {
1358 network_hdr.raw = skb_inner_network_header(skb);
1359 transport_hdr.raw = skb_inner_transport_header(skb);
1360 vlan_macip_lens = skb_network_offset(skb) <<
1361 WX_TXD_MACLEN_SHIFT;
1362 switch (first->protocol) {
1363 case htons(ETH_P_IP):
1364 tun_prot = ip_hdr(skb)->protocol;
1365 break;
1366 case htons(ETH_P_IPV6):
1367 tun_prot = ipv6_hdr(skb)->nexthdr;
1368 break;
1369 default:
1370 return;
1371 }
1372 switch (tun_prot) {
1373 case IPPROTO_UDP:
1374 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1375 tunhdr_eiplen_tunlen |=
1376 ((skb_network_header_len(skb) >> 2) <<
1377 WX_TXD_OUTER_IPLEN_SHIFT) |
1378 (((skb_inner_mac_header(skb) -
1379 skb_transport_header(skb)) >> 1) <<
1380 WX_TXD_TUNNEL_LEN_SHIFT);
1381 break;
1382 case IPPROTO_GRE:
1383 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1384 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1385 WX_TXD_OUTER_IPLEN_SHIFT) |
1386 (((skb_inner_mac_header(skb) -
1387 skb_transport_header(skb)) >> 1) <<
1388 WX_TXD_TUNNEL_LEN_SHIFT);
1389 break;
1390 case IPPROTO_IPIP:
1391 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1392 (char *)ip_hdr(skb)) >> 2) <<
1393 WX_TXD_OUTER_IPLEN_SHIFT;
1394 break;
1395 default:
1396 break;
1397 }
1398
1399 } else {
1400 network_hdr.raw = skb_network_header(skb);
1401 transport_hdr.raw = skb_transport_header(skb);
1402 vlan_macip_lens = skb_network_offset(skb) <<
1403 WX_TXD_MACLEN_SHIFT;
1404 }
1405
1406 switch (network_hdr.ipv4->version) {
1407 case IPVERSION:
1408 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1409 l4_prot = network_hdr.ipv4->protocol;
1410 break;
1411 case 6:
1412 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1413 l4_prot = network_hdr.ipv6->nexthdr;
1414 break;
1415 default:
1416 break;
1417 }
1418
1419 switch (l4_prot) {
1420 case IPPROTO_TCP:
1421 mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
1422 WX_TXD_L4LEN_SHIFT;
1423 break;
1424 case IPPROTO_SCTP:
1425 mss_l4len_idx = sizeof(struct sctphdr) <<
1426 WX_TXD_L4LEN_SHIFT;
1427 break;
1428 case IPPROTO_UDP:
1429 mss_l4len_idx = sizeof(struct udphdr) <<
1430 WX_TXD_L4LEN_SHIFT;
1431 break;
1432 default:
1433 break;
1434 }
1435
1436 /* update TX checksum flag */
1437 first->tx_flags |= WX_TX_FLAGS_CSUM;
1438 }
1439 first->tx_flags |= WX_TX_FLAGS_CC;
1440 /* vlan_macip_lens: MACLEN, VLAN tag */
1441 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1442
1443 type_tucmd = ptype << 24;
1444 if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1445 netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1446 type_tucmd |= WX_SET_FLAG(first->tx_flags,
1447 WX_TX_FLAGS_HW_VLAN,
1448 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1449 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, fcoe_sof_eof: tunhdr_eiplen_tunlen,
1450 type_tucmd, mss_l4len_idx);
1451}
1452
1453static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
1454 struct wx_ring *tx_ring)
1455{
1456 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1457 struct wx_tx_buffer *first;
1458 u8 hdr_len = 0, ptype;
1459 unsigned short f;
1460 u32 tx_flags = 0;
1461 int tso;
1462
1463 /* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
1464 * + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
1465 * + 2 desc gap to keep tail from touching head,
1466 * + 1 desc for context descriptor,
1467 * otherwise try next time
1468 */
1469 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1470 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
1471 frags[f]));
1472
1473 if (wx_maybe_stop_tx(tx_ring, size: count + 3)) {
1474 tx_ring->tx_stats.tx_busy++;
1475 return NETDEV_TX_BUSY;
1476 }
1477
1478 /* record the location of the first descriptor for this packet */
1479 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1480 first->skb = skb;
1481 first->bytecount = skb->len;
1482 first->gso_segs = 1;
1483
1484 /* if we have a HW VLAN tag being added default to the HW one */
1485 if (skb_vlan_tag_present(skb)) {
1486 tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
1487 tx_flags |= WX_TX_FLAGS_HW_VLAN;
1488 }
1489
1490 /* record initial flags and protocol */
1491 first->tx_flags = tx_flags;
1492 first->protocol = vlan_get_protocol(skb);
1493
1494 ptype = wx_encode_tx_desc_ptype(first);
1495
1496 tso = wx_tso(tx_ring, first, hdr_len: &hdr_len, ptype);
1497 if (tso < 0)
1498 goto out_drop;
1499 else if (!tso)
1500 wx_tx_csum(tx_ring, first, ptype);
1501 wx_tx_map(tx_ring, first, hdr_len);
1502
1503 return NETDEV_TX_OK;
1504out_drop:
1505 dev_kfree_skb_any(skb: first->skb);
1506 first->skb = NULL;
1507
1508 return NETDEV_TX_OK;
1509}
1510
1511netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
1512 struct net_device *netdev)
1513{
1514 unsigned int r_idx = skb->queue_mapping;
1515 struct wx *wx = netdev_priv(dev: netdev);
1516 struct wx_ring *tx_ring;
1517
1518 if (!netif_carrier_ok(dev: netdev)) {
1519 dev_kfree_skb_any(skb);
1520 return NETDEV_TX_OK;
1521 }
1522
1523 /* The minimum packet size for olinfo paylen is 17 so pad the skb
1524 * in order to meet this minimum size requirement.
1525 */
1526 if (skb_put_padto(skb, len: 17))
1527 return NETDEV_TX_OK;
1528
1529 if (r_idx >= wx->num_tx_queues)
1530 r_idx = r_idx % wx->num_tx_queues;
1531 tx_ring = wx->tx_ring[r_idx];
1532
1533 return wx_xmit_frame_ring(skb, tx_ring);
1534}
1535EXPORT_SYMBOL(wx_xmit_frame);
1536
1537void wx_napi_enable_all(struct wx *wx)
1538{
1539 struct wx_q_vector *q_vector;
1540 int q_idx;
1541
1542 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1543 q_vector = wx->q_vector[q_idx];
1544 napi_enable(n: &q_vector->napi);
1545 }
1546}
1547EXPORT_SYMBOL(wx_napi_enable_all);
1548
1549void wx_napi_disable_all(struct wx *wx)
1550{
1551 struct wx_q_vector *q_vector;
1552 int q_idx;
1553
1554 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1555 q_vector = wx->q_vector[q_idx];
1556 napi_disable(n: &q_vector->napi);
1557 }
1558}
1559EXPORT_SYMBOL(wx_napi_disable_all);
1560
1561/**
1562 * wx_set_rss_queues: Allocate queues for RSS
1563 * @wx: board private structure to initialize
1564 *
1565 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1566 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1567 *
1568 **/
1569static void wx_set_rss_queues(struct wx *wx)
1570{
1571 struct wx_ring_feature *f;
1572
1573 /* set mask for 16 queue limit of RSS */
1574 f = &wx->ring_feature[RING_F_RSS];
1575 f->indices = f->limit;
1576
1577 wx->num_rx_queues = f->limit;
1578 wx->num_tx_queues = f->limit;
1579}
1580
1581static void wx_set_num_queues(struct wx *wx)
1582{
1583 /* Start with base case */
1584 wx->num_rx_queues = 1;
1585 wx->num_tx_queues = 1;
1586 wx->queues_per_pool = 1;
1587
1588 wx_set_rss_queues(wx);
1589}
1590
1591/**
1592 * wx_acquire_msix_vectors - acquire MSI-X vectors
1593 * @wx: board private structure
1594 *
1595 * Attempts to acquire a suitable range of MSI-X vector interrupts. Will
1596 * return a negative error code if unable to acquire MSI-X vectors for any
1597 * reason.
1598 */
1599static int wx_acquire_msix_vectors(struct wx *wx)
1600{
1601 struct irq_affinity affd = {0, };
1602 int nvecs, i;
1603
1604 /* We start by asking for one vector per queue pair */
1605 nvecs = max(wx->num_rx_queues, wx->num_tx_queues);
1606 nvecs = min_t(int, nvecs, num_online_cpus());
1607 nvecs = min_t(int, nvecs, wx->mac.max_msix_vectors);
1608
1609 wx->msix_q_entries = kcalloc(n: nvecs, size: sizeof(struct msix_entry),
1610 GFP_KERNEL);
1611 if (!wx->msix_q_entries)
1612 return -ENOMEM;
1613
1614 /* One for non-queue interrupts */
1615 nvecs += 1;
1616
1617 wx->msix_entry = kcalloc(n: 1, size: sizeof(struct msix_entry),
1618 GFP_KERNEL);
1619 if (!wx->msix_entry) {
1620 kfree(objp: wx->msix_q_entries);
1621 wx->msix_q_entries = NULL;
1622 return -ENOMEM;
1623 }
1624
1625 nvecs = pci_alloc_irq_vectors_affinity(dev: wx->pdev, min_vecs: nvecs,
1626 max_vecs: nvecs,
1627 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
1628 affd: &affd);
1629 if (nvecs < 0) {
1630 wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
1631 kfree(objp: wx->msix_q_entries);
1632 wx->msix_q_entries = NULL;
1633 kfree(objp: wx->msix_entry);
1634 wx->msix_entry = NULL;
1635 return nvecs;
1636 }
1637
1638 wx->msix_entry->entry = 0;
1639 wx->msix_entry->vector = pci_irq_vector(dev: wx->pdev, nr: 0);
1640 nvecs -= 1;
1641 for (i = 0; i < nvecs; i++) {
1642 wx->msix_q_entries[i].entry = i;
1643 wx->msix_q_entries[i].vector = pci_irq_vector(dev: wx->pdev, nr: i + 1);
1644 }
1645
1646 wx->num_q_vectors = nvecs;
1647
1648 return 0;
1649}
1650
1651/**
1652 * wx_set_interrupt_capability - set MSI-X or MSI if supported
1653 * @wx: board private structure to initialize
1654 *
1655 * Attempt to configure the interrupts using the best available
1656 * capabilities of the hardware and the kernel.
1657 **/
1658static int wx_set_interrupt_capability(struct wx *wx)
1659{
1660 struct pci_dev *pdev = wx->pdev;
1661 int nvecs, ret;
1662
1663 /* We will try to get MSI-X interrupts first */
1664 ret = wx_acquire_msix_vectors(wx);
1665 if (ret == 0 || (ret == -ENOMEM))
1666 return ret;
1667
1668 /* Disable RSS */
1669 dev_warn(&wx->pdev->dev, "Disabling RSS support\n");
1670 wx->ring_feature[RING_F_RSS].limit = 1;
1671
1672 wx_set_num_queues(wx);
1673
1674 /* minmum one for queue, one for misc*/
1675 nvecs = 1;
1676 nvecs = pci_alloc_irq_vectors(dev: pdev, min_vecs: nvecs,
1677 max_vecs: nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY);
1678 if (nvecs == 1) {
1679 if (pdev->msi_enabled)
1680 wx_err(wx, "Fallback to MSI.\n");
1681 else
1682 wx_err(wx, "Fallback to LEGACY.\n");
1683 } else {
1684 wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs);
1685 return nvecs;
1686 }
1687
1688 pdev->irq = pci_irq_vector(dev: pdev, nr: 0);
1689
1690 return 0;
1691}
1692
1693/**
1694 * wx_cache_ring_rss - Descriptor ring to register mapping for RSS
1695 * @wx: board private structure to initialize
1696 *
1697 * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
1698 *
1699 **/
1700static void wx_cache_ring_rss(struct wx *wx)
1701{
1702 u16 i;
1703
1704 for (i = 0; i < wx->num_rx_queues; i++)
1705 wx->rx_ring[i]->reg_idx = i;
1706
1707 for (i = 0; i < wx->num_tx_queues; i++)
1708 wx->tx_ring[i]->reg_idx = i;
1709}
1710
1711static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
1712{
1713 ring->next = head->ring;
1714 head->ring = ring;
1715 head->count++;
1716}
1717
1718/**
1719 * wx_alloc_q_vector - Allocate memory for a single interrupt vector
1720 * @wx: board private structure to initialize
1721 * @v_count: q_vectors allocated on wx, used for ring interleaving
1722 * @v_idx: index of vector in wx struct
1723 * @txr_count: total number of Tx rings to allocate
1724 * @txr_idx: index of first Tx ring to allocate
1725 * @rxr_count: total number of Rx rings to allocate
1726 * @rxr_idx: index of first Rx ring to allocate
1727 *
1728 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1729 **/
1730static int wx_alloc_q_vector(struct wx *wx,
1731 unsigned int v_count, unsigned int v_idx,
1732 unsigned int txr_count, unsigned int txr_idx,
1733 unsigned int rxr_count, unsigned int rxr_idx)
1734{
1735 struct wx_q_vector *q_vector;
1736 int ring_count, default_itr;
1737 struct wx_ring *ring;
1738
1739 /* note this will allocate space for the ring structure as well! */
1740 ring_count = txr_count + rxr_count;
1741
1742 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
1743 GFP_KERNEL);
1744 if (!q_vector)
1745 return -ENOMEM;
1746
1747 /* initialize NAPI */
1748 netif_napi_add(dev: wx->netdev, napi: &q_vector->napi,
1749 poll: wx_poll);
1750
1751 /* tie q_vector and wx together */
1752 wx->q_vector[v_idx] = q_vector;
1753 q_vector->wx = wx;
1754 q_vector->v_idx = v_idx;
1755 if (cpu_online(cpu: v_idx))
1756 q_vector->numa_node = cpu_to_node(cpu: v_idx);
1757
1758 /* initialize pointer to rings */
1759 ring = q_vector->ring;
1760
1761 if (wx->mac.type == wx_mac_sp)
1762 default_itr = WX_12K_ITR;
1763 else
1764 default_itr = WX_7K_ITR;
1765 /* initialize ITR */
1766 if (txr_count && !rxr_count)
1767 /* tx only vector */
1768 q_vector->itr = wx->tx_itr_setting ?
1769 default_itr : wx->tx_itr_setting;
1770 else
1771 /* rx or rx/tx vector */
1772 q_vector->itr = wx->rx_itr_setting ?
1773 default_itr : wx->rx_itr_setting;
1774
1775 while (txr_count) {
1776 /* assign generic ring traits */
1777 ring->dev = &wx->pdev->dev;
1778 ring->netdev = wx->netdev;
1779
1780 /* configure backlink on ring */
1781 ring->q_vector = q_vector;
1782
1783 /* update q_vector Tx values */
1784 wx_add_ring(ring, head: &q_vector->tx);
1785
1786 /* apply Tx specific ring traits */
1787 ring->count = wx->tx_ring_count;
1788
1789 ring->queue_index = txr_idx;
1790
1791 /* assign ring to wx */
1792 wx->tx_ring[txr_idx] = ring;
1793
1794 /* update count and index */
1795 txr_count--;
1796 txr_idx += v_count;
1797
1798 /* push pointer to next ring */
1799 ring++;
1800 }
1801
1802 while (rxr_count) {
1803 /* assign generic ring traits */
1804 ring->dev = &wx->pdev->dev;
1805 ring->netdev = wx->netdev;
1806
1807 /* configure backlink on ring */
1808 ring->q_vector = q_vector;
1809
1810 /* update q_vector Rx values */
1811 wx_add_ring(ring, head: &q_vector->rx);
1812
1813 /* apply Rx specific ring traits */
1814 ring->count = wx->rx_ring_count;
1815 ring->queue_index = rxr_idx;
1816
1817 /* assign ring to wx */
1818 wx->rx_ring[rxr_idx] = ring;
1819
1820 /* update count and index */
1821 rxr_count--;
1822 rxr_idx += v_count;
1823
1824 /* push pointer to next ring */
1825 ring++;
1826 }
1827
1828 return 0;
1829}
1830
1831/**
1832 * wx_free_q_vector - Free memory allocated for specific interrupt vector
1833 * @wx: board private structure to initialize
1834 * @v_idx: Index of vector to be freed
1835 *
1836 * This function frees the memory allocated to the q_vector. In addition if
1837 * NAPI is enabled it will delete any references to the NAPI struct prior
1838 * to freeing the q_vector.
1839 **/
1840static void wx_free_q_vector(struct wx *wx, int v_idx)
1841{
1842 struct wx_q_vector *q_vector = wx->q_vector[v_idx];
1843 struct wx_ring *ring;
1844
1845 wx_for_each_ring(ring, q_vector->tx)
1846 wx->tx_ring[ring->queue_index] = NULL;
1847
1848 wx_for_each_ring(ring, q_vector->rx)
1849 wx->rx_ring[ring->queue_index] = NULL;
1850
1851 wx->q_vector[v_idx] = NULL;
1852 netif_napi_del(napi: &q_vector->napi);
1853 kfree_rcu(q_vector, rcu);
1854}
1855
1856/**
1857 * wx_alloc_q_vectors - Allocate memory for interrupt vectors
1858 * @wx: board private structure to initialize
1859 *
1860 * We allocate one q_vector per queue interrupt. If allocation fails we
1861 * return -ENOMEM.
1862 **/
1863static int wx_alloc_q_vectors(struct wx *wx)
1864{
1865 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1866 unsigned int rxr_remaining = wx->num_rx_queues;
1867 unsigned int txr_remaining = wx->num_tx_queues;
1868 unsigned int q_vectors = wx->num_q_vectors;
1869 int rqpv, tqpv;
1870 int err;
1871
1872 for (; v_idx < q_vectors; v_idx++) {
1873 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1874 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1875 err = wx_alloc_q_vector(wx, v_count: q_vectors, v_idx,
1876 txr_count: tqpv, txr_idx,
1877 rxr_count: rqpv, rxr_idx);
1878
1879 if (err)
1880 goto err_out;
1881
1882 /* update counts and index */
1883 rxr_remaining -= rqpv;
1884 txr_remaining -= tqpv;
1885 rxr_idx++;
1886 txr_idx++;
1887 }
1888
1889 return 0;
1890
1891err_out:
1892 wx->num_tx_queues = 0;
1893 wx->num_rx_queues = 0;
1894 wx->num_q_vectors = 0;
1895
1896 while (v_idx--)
1897 wx_free_q_vector(wx, v_idx);
1898
1899 return -ENOMEM;
1900}
1901
1902/**
1903 * wx_free_q_vectors - Free memory allocated for interrupt vectors
1904 * @wx: board private structure to initialize
1905 *
1906 * This function frees the memory allocated to the q_vectors. In addition if
1907 * NAPI is enabled it will delete any references to the NAPI struct prior
1908 * to freeing the q_vector.
1909 **/
1910static void wx_free_q_vectors(struct wx *wx)
1911{
1912 int v_idx = wx->num_q_vectors;
1913
1914 wx->num_tx_queues = 0;
1915 wx->num_rx_queues = 0;
1916 wx->num_q_vectors = 0;
1917
1918 while (v_idx--)
1919 wx_free_q_vector(wx, v_idx);
1920}
1921
1922void wx_reset_interrupt_capability(struct wx *wx)
1923{
1924 struct pci_dev *pdev = wx->pdev;
1925
1926 if (!pdev->msi_enabled && !pdev->msix_enabled)
1927 return;
1928
1929 if (pdev->msix_enabled) {
1930 kfree(objp: wx->msix_q_entries);
1931 wx->msix_q_entries = NULL;
1932 kfree(objp: wx->msix_entry);
1933 wx->msix_entry = NULL;
1934 }
1935 pci_free_irq_vectors(dev: wx->pdev);
1936}
1937EXPORT_SYMBOL(wx_reset_interrupt_capability);
1938
1939/**
1940 * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
1941 * @wx: board private structure to clear interrupt scheme on
1942 *
1943 * We go through and clear interrupt specific resources and reset the structure
1944 * to pre-load conditions
1945 **/
1946void wx_clear_interrupt_scheme(struct wx *wx)
1947{
1948 wx_free_q_vectors(wx);
1949 wx_reset_interrupt_capability(wx);
1950}
1951EXPORT_SYMBOL(wx_clear_interrupt_scheme);
1952
1953int wx_init_interrupt_scheme(struct wx *wx)
1954{
1955 int ret;
1956
1957 /* Number of supported queues */
1958 wx_set_num_queues(wx);
1959
1960 /* Set interrupt mode */
1961 ret = wx_set_interrupt_capability(wx);
1962 if (ret) {
1963 wx_err(wx, "Allocate irq vectors for failed.\n");
1964 return ret;
1965 }
1966
1967 /* Allocate memory for queues */
1968 ret = wx_alloc_q_vectors(wx);
1969 if (ret) {
1970 wx_err(wx, "Unable to allocate memory for queue vectors.\n");
1971 wx_reset_interrupt_capability(wx);
1972 return ret;
1973 }
1974
1975 wx_cache_ring_rss(wx);
1976
1977 return 0;
1978}
1979EXPORT_SYMBOL(wx_init_interrupt_scheme);
1980
1981irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
1982{
1983 struct wx_q_vector *q_vector = data;
1984
1985 /* EIAM disabled interrupts (on this vector) for us */
1986 if (q_vector->rx.ring || q_vector->tx.ring)
1987 napi_schedule_irqoff(n: &q_vector->napi);
1988
1989 return IRQ_HANDLED;
1990}
1991EXPORT_SYMBOL(wx_msix_clean_rings);
1992
1993void wx_free_irq(struct wx *wx)
1994{
1995 struct pci_dev *pdev = wx->pdev;
1996 int vector;
1997
1998 if (!(pdev->msix_enabled)) {
1999 free_irq(pdev->irq, wx);
2000 return;
2001 }
2002
2003 for (vector = 0; vector < wx->num_q_vectors; vector++) {
2004 struct wx_q_vector *q_vector = wx->q_vector[vector];
2005 struct msix_entry *entry = &wx->msix_q_entries[vector];
2006
2007 /* free only the irqs that were actually requested */
2008 if (!q_vector->rx.ring && !q_vector->tx.ring)
2009 continue;
2010
2011 free_irq(entry->vector, q_vector);
2012 }
2013
2014 if (wx->mac.type == wx_mac_em)
2015 free_irq(wx->msix_entry->vector, wx);
2016}
2017EXPORT_SYMBOL(wx_free_irq);
2018
2019/**
2020 * wx_setup_isb_resources - allocate interrupt status resources
2021 * @wx: board private structure
2022 *
2023 * Return 0 on success, negative on failure
2024 **/
2025int wx_setup_isb_resources(struct wx *wx)
2026{
2027 struct pci_dev *pdev = wx->pdev;
2028
2029 wx->isb_mem = dma_alloc_coherent(dev: &pdev->dev,
2030 size: sizeof(u32) * 4,
2031 dma_handle: &wx->isb_dma,
2032 GFP_KERNEL);
2033 if (!wx->isb_mem) {
2034 wx_err(wx, "Alloc isb_mem failed\n");
2035 return -ENOMEM;
2036 }
2037
2038 return 0;
2039}
2040EXPORT_SYMBOL(wx_setup_isb_resources);
2041
2042/**
2043 * wx_free_isb_resources - allocate all queues Rx resources
2044 * @wx: board private structure
2045 *
2046 * Return 0 on success, negative on failure
2047 **/
2048void wx_free_isb_resources(struct wx *wx)
2049{
2050 struct pci_dev *pdev = wx->pdev;
2051
2052 dma_free_coherent(dev: &pdev->dev, size: sizeof(u32) * 4,
2053 cpu_addr: wx->isb_mem, dma_handle: wx->isb_dma);
2054 wx->isb_mem = NULL;
2055}
2056EXPORT_SYMBOL(wx_free_isb_resources);
2057
2058u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
2059{
2060 u32 cur_tag = 0;
2061
2062 cur_tag = wx->isb_mem[WX_ISB_HEADER];
2063 wx->isb_tag[idx] = cur_tag;
2064
2065 return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
2066}
2067EXPORT_SYMBOL(wx_misc_isb);
2068
2069/**
2070 * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
2071 * @wx: pointer to wx struct
2072 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
2073 * @queue: queue to map the corresponding interrupt to
2074 * @msix_vector: the vector to map to the corresponding queue
2075 *
2076 **/
2077static void wx_set_ivar(struct wx *wx, s8 direction,
2078 u16 queue, u16 msix_vector)
2079{
2080 u32 ivar, index;
2081
2082 if (direction == -1) {
2083 /* other causes */
2084 msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2085 index = 0;
2086 ivar = rd32(wx, WX_PX_MISC_IVAR);
2087 ivar &= ~(0xFF << index);
2088 ivar |= (msix_vector << index);
2089 wr32(wx, WX_PX_MISC_IVAR, ivar);
2090 } else {
2091 /* tx or rx causes */
2092 msix_vector += 1; /* offset for queue vectors */
2093 msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2094 index = ((16 * (queue & 1)) + (8 * direction));
2095 ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
2096 ivar &= ~(0xFF << index);
2097 ivar |= (msix_vector << index);
2098 wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
2099 }
2100}
2101
2102/**
2103 * wx_write_eitr - write EITR register in hardware specific way
2104 * @q_vector: structure containing interrupt and ring information
2105 *
2106 * This function is made to be called by ethtool and by the driver
2107 * when it needs to update EITR registers at runtime. Hardware
2108 * specific quirks/differences are taken care of here.
2109 */
2110void wx_write_eitr(struct wx_q_vector *q_vector)
2111{
2112 struct wx *wx = q_vector->wx;
2113 int v_idx = q_vector->v_idx;
2114 u32 itr_reg;
2115
2116 if (wx->mac.type == wx_mac_sp)
2117 itr_reg = q_vector->itr & WX_SP_MAX_EITR;
2118 else
2119 itr_reg = q_vector->itr & WX_EM_MAX_EITR;
2120
2121 itr_reg |= WX_PX_ITR_CNT_WDIS;
2122
2123 wr32(wx, WX_PX_ITR(v_idx + 1), itr_reg);
2124}
2125
2126/**
2127 * wx_configure_vectors - Configure vectors for hardware
2128 * @wx: board private structure
2129 *
2130 * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY
2131 * interrupts.
2132 **/
2133void wx_configure_vectors(struct wx *wx)
2134{
2135 struct pci_dev *pdev = wx->pdev;
2136 u32 eitrsel = 0;
2137 u16 v_idx;
2138
2139 if (pdev->msix_enabled) {
2140 /* Populate MSIX to EITR Select */
2141 wr32(wx, WX_PX_ITRSEL, eitrsel);
2142 /* use EIAM to auto-mask when MSI-X interrupt is asserted
2143 * this saves a register write for every interrupt
2144 */
2145 wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
2146 } else {
2147 /* legacy interrupts, use EIAM to auto-mask when reading EICR,
2148 * specifically only auto mask tx and rx interrupts.
2149 */
2150 wr32(wx, WX_PX_GPIE, 0);
2151 }
2152
2153 /* Populate the IVAR table and set the ITR values to the
2154 * corresponding register.
2155 */
2156 for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
2157 struct wx_q_vector *q_vector = wx->q_vector[v_idx];
2158 struct wx_ring *ring;
2159
2160 wx_for_each_ring(ring, q_vector->rx)
2161 wx_set_ivar(wx, direction: 0, queue: ring->reg_idx, msix_vector: v_idx);
2162
2163 wx_for_each_ring(ring, q_vector->tx)
2164 wx_set_ivar(wx, direction: 1, queue: ring->reg_idx, msix_vector: v_idx);
2165
2166 wx_write_eitr(q_vector);
2167 }
2168
2169 wx_set_ivar(wx, direction: -1, queue: 0, msix_vector: 0);
2170 if (pdev->msix_enabled)
2171 wr32(wx, WX_PX_ITR(0), 1950);
2172}
2173EXPORT_SYMBOL(wx_configure_vectors);
2174
2175/**
2176 * wx_clean_rx_ring - Free Rx Buffers per Queue
2177 * @rx_ring: ring to free buffers from
2178 **/
2179static void wx_clean_rx_ring(struct wx_ring *rx_ring)
2180{
2181 struct wx_rx_buffer *rx_buffer;
2182 u16 i = rx_ring->next_to_clean;
2183
2184 rx_buffer = &rx_ring->rx_buffer_info[i];
2185
2186 /* Free all the Rx ring sk_buffs */
2187 while (i != rx_ring->next_to_alloc) {
2188 if (rx_buffer->skb) {
2189 struct sk_buff *skb = rx_buffer->skb;
2190
2191 if (WX_CB(skb)->page_released)
2192 page_pool_put_full_page(pool: rx_ring->page_pool, page: rx_buffer->page, allow_direct: false);
2193
2194 dev_kfree_skb(skb);
2195 }
2196
2197 /* Invalidate cache lines that may have been written to by
2198 * device so that we avoid corrupting memory.
2199 */
2200 dma_sync_single_range_for_cpu(dev: rx_ring->dev,
2201 addr: rx_buffer->dma,
2202 offset: rx_buffer->page_offset,
2203 WX_RX_BUFSZ,
2204 dir: DMA_FROM_DEVICE);
2205
2206 /* free resources associated with mapping */
2207 page_pool_put_full_page(pool: rx_ring->page_pool, page: rx_buffer->page, allow_direct: false);
2208
2209 i++;
2210 rx_buffer++;
2211 if (i == rx_ring->count) {
2212 i = 0;
2213 rx_buffer = rx_ring->rx_buffer_info;
2214 }
2215 }
2216
2217 rx_ring->next_to_alloc = 0;
2218 rx_ring->next_to_clean = 0;
2219 rx_ring->next_to_use = 0;
2220}
2221
2222/**
2223 * wx_clean_all_rx_rings - Free Rx Buffers for all queues
2224 * @wx: board private structure
2225 **/
2226void wx_clean_all_rx_rings(struct wx *wx)
2227{
2228 int i;
2229
2230 for (i = 0; i < wx->num_rx_queues; i++)
2231 wx_clean_rx_ring(rx_ring: wx->rx_ring[i]);
2232}
2233EXPORT_SYMBOL(wx_clean_all_rx_rings);
2234
2235/**
2236 * wx_free_rx_resources - Free Rx Resources
2237 * @rx_ring: ring to clean the resources from
2238 *
2239 * Free all receive software resources
2240 **/
2241static void wx_free_rx_resources(struct wx_ring *rx_ring)
2242{
2243 wx_clean_rx_ring(rx_ring);
2244 kvfree(addr: rx_ring->rx_buffer_info);
2245 rx_ring->rx_buffer_info = NULL;
2246
2247 /* if not set, then don't free */
2248 if (!rx_ring->desc)
2249 return;
2250
2251 dma_free_coherent(dev: rx_ring->dev, size: rx_ring->size,
2252 cpu_addr: rx_ring->desc, dma_handle: rx_ring->dma);
2253
2254 rx_ring->desc = NULL;
2255
2256 if (rx_ring->page_pool) {
2257 page_pool_destroy(pool: rx_ring->page_pool);
2258 rx_ring->page_pool = NULL;
2259 }
2260}
2261
2262/**
2263 * wx_free_all_rx_resources - Free Rx Resources for All Queues
2264 * @wx: pointer to hardware structure
2265 *
2266 * Free all receive software resources
2267 **/
2268static void wx_free_all_rx_resources(struct wx *wx)
2269{
2270 int i;
2271
2272 for (i = 0; i < wx->num_rx_queues; i++)
2273 wx_free_rx_resources(rx_ring: wx->rx_ring[i]);
2274}
2275
2276/**
2277 * wx_clean_tx_ring - Free Tx Buffers
2278 * @tx_ring: ring to be cleaned
2279 **/
2280static void wx_clean_tx_ring(struct wx_ring *tx_ring)
2281{
2282 struct wx_tx_buffer *tx_buffer;
2283 u16 i = tx_ring->next_to_clean;
2284
2285 tx_buffer = &tx_ring->tx_buffer_info[i];
2286
2287 while (i != tx_ring->next_to_use) {
2288 union wx_tx_desc *eop_desc, *tx_desc;
2289
2290 /* Free all the Tx ring sk_buffs */
2291 dev_kfree_skb_any(skb: tx_buffer->skb);
2292
2293 /* unmap skb header data */
2294 dma_unmap_single(tx_ring->dev,
2295 dma_unmap_addr(tx_buffer, dma),
2296 dma_unmap_len(tx_buffer, len),
2297 DMA_TO_DEVICE);
2298
2299 /* check for eop_desc to determine the end of the packet */
2300 eop_desc = tx_buffer->next_to_watch;
2301 tx_desc = WX_TX_DESC(tx_ring, i);
2302
2303 /* unmap remaining buffers */
2304 while (tx_desc != eop_desc) {
2305 tx_buffer++;
2306 tx_desc++;
2307 i++;
2308 if (unlikely(i == tx_ring->count)) {
2309 i = 0;
2310 tx_buffer = tx_ring->tx_buffer_info;
2311 tx_desc = WX_TX_DESC(tx_ring, 0);
2312 }
2313
2314 /* unmap any remaining paged data */
2315 if (dma_unmap_len(tx_buffer, len))
2316 dma_unmap_page(tx_ring->dev,
2317 dma_unmap_addr(tx_buffer, dma),
2318 dma_unmap_len(tx_buffer, len),
2319 DMA_TO_DEVICE);
2320 }
2321
2322 /* move us one more past the eop_desc for start of next pkt */
2323 tx_buffer++;
2324 i++;
2325 if (unlikely(i == tx_ring->count)) {
2326 i = 0;
2327 tx_buffer = tx_ring->tx_buffer_info;
2328 }
2329 }
2330
2331 netdev_tx_reset_queue(q: wx_txring_txq(ring: tx_ring));
2332
2333 /* reset next_to_use and next_to_clean */
2334 tx_ring->next_to_use = 0;
2335 tx_ring->next_to_clean = 0;
2336}
2337
2338/**
2339 * wx_clean_all_tx_rings - Free Tx Buffers for all queues
2340 * @wx: board private structure
2341 **/
2342void wx_clean_all_tx_rings(struct wx *wx)
2343{
2344 int i;
2345
2346 for (i = 0; i < wx->num_tx_queues; i++)
2347 wx_clean_tx_ring(tx_ring: wx->tx_ring[i]);
2348}
2349EXPORT_SYMBOL(wx_clean_all_tx_rings);
2350
2351/**
2352 * wx_free_tx_resources - Free Tx Resources per Queue
2353 * @tx_ring: Tx descriptor ring for a specific queue
2354 *
2355 * Free all transmit software resources
2356 **/
2357static void wx_free_tx_resources(struct wx_ring *tx_ring)
2358{
2359 wx_clean_tx_ring(tx_ring);
2360 kvfree(addr: tx_ring->tx_buffer_info);
2361 tx_ring->tx_buffer_info = NULL;
2362
2363 /* if not set, then don't free */
2364 if (!tx_ring->desc)
2365 return;
2366
2367 dma_free_coherent(dev: tx_ring->dev, size: tx_ring->size,
2368 cpu_addr: tx_ring->desc, dma_handle: tx_ring->dma);
2369 tx_ring->desc = NULL;
2370}
2371
2372/**
2373 * wx_free_all_tx_resources - Free Tx Resources for All Queues
2374 * @wx: pointer to hardware structure
2375 *
2376 * Free all transmit software resources
2377 **/
2378static void wx_free_all_tx_resources(struct wx *wx)
2379{
2380 int i;
2381
2382 for (i = 0; i < wx->num_tx_queues; i++)
2383 wx_free_tx_resources(tx_ring: wx->tx_ring[i]);
2384}
2385
2386void wx_free_resources(struct wx *wx)
2387{
2388 wx_free_isb_resources(wx);
2389 wx_free_all_rx_resources(wx);
2390 wx_free_all_tx_resources(wx);
2391}
2392EXPORT_SYMBOL(wx_free_resources);
2393
2394static int wx_alloc_page_pool(struct wx_ring *rx_ring)
2395{
2396 int ret = 0;
2397
2398 struct page_pool_params pp_params = {
2399 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
2400 .order = 0,
2401 .pool_size = rx_ring->size,
2402 .nid = dev_to_node(dev: rx_ring->dev),
2403 .dev = rx_ring->dev,
2404 .dma_dir = DMA_FROM_DEVICE,
2405 .offset = 0,
2406 .max_len = PAGE_SIZE,
2407 };
2408
2409 rx_ring->page_pool = page_pool_create(params: &pp_params);
2410 if (IS_ERR(ptr: rx_ring->page_pool)) {
2411 ret = PTR_ERR(ptr: rx_ring->page_pool);
2412 rx_ring->page_pool = NULL;
2413 }
2414
2415 return ret;
2416}
2417
2418/**
2419 * wx_setup_rx_resources - allocate Rx resources (Descriptors)
2420 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2421 *
2422 * Returns 0 on success, negative on failure
2423 **/
2424static int wx_setup_rx_resources(struct wx_ring *rx_ring)
2425{
2426 struct device *dev = rx_ring->dev;
2427 int orig_node = dev_to_node(dev);
2428 int numa_node = NUMA_NO_NODE;
2429 int size, ret;
2430
2431 size = sizeof(struct wx_rx_buffer) * rx_ring->count;
2432
2433 if (rx_ring->q_vector)
2434 numa_node = rx_ring->q_vector->numa_node;
2435
2436 rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, node: numa_node);
2437 if (!rx_ring->rx_buffer_info)
2438 rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
2439 if (!rx_ring->rx_buffer_info)
2440 goto err;
2441
2442 /* Round up to nearest 4K */
2443 rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
2444 rx_ring->size = ALIGN(rx_ring->size, 4096);
2445
2446 set_dev_node(dev, node: numa_node);
2447 rx_ring->desc = dma_alloc_coherent(dev, size: rx_ring->size,
2448 dma_handle: &rx_ring->dma, GFP_KERNEL);
2449 if (!rx_ring->desc) {
2450 set_dev_node(dev, node: orig_node);
2451 rx_ring->desc = dma_alloc_coherent(dev, size: rx_ring->size,
2452 dma_handle: &rx_ring->dma, GFP_KERNEL);
2453 }
2454
2455 if (!rx_ring->desc)
2456 goto err;
2457
2458 rx_ring->next_to_clean = 0;
2459 rx_ring->next_to_use = 0;
2460
2461 ret = wx_alloc_page_pool(rx_ring);
2462 if (ret < 0) {
2463 dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
2464 goto err_desc;
2465 }
2466
2467 return 0;
2468
2469err_desc:
2470 dma_free_coherent(dev, size: rx_ring->size, cpu_addr: rx_ring->desc, dma_handle: rx_ring->dma);
2471err:
2472 kvfree(addr: rx_ring->rx_buffer_info);
2473 rx_ring->rx_buffer_info = NULL;
2474 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2475 return -ENOMEM;
2476}
2477
2478/**
2479 * wx_setup_all_rx_resources - allocate all queues Rx resources
2480 * @wx: pointer to hardware structure
2481 *
2482 * If this function returns with an error, then it's possible one or
2483 * more of the rings is populated (while the rest are not). It is the
2484 * callers duty to clean those orphaned rings.
2485 *
2486 * Return 0 on success, negative on failure
2487 **/
2488static int wx_setup_all_rx_resources(struct wx *wx)
2489{
2490 int i, err = 0;
2491
2492 for (i = 0; i < wx->num_rx_queues; i++) {
2493 err = wx_setup_rx_resources(rx_ring: wx->rx_ring[i]);
2494 if (!err)
2495 continue;
2496
2497 wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
2498 goto err_setup_rx;
2499 }
2500
2501 return 0;
2502err_setup_rx:
2503 /* rewind the index freeing the rings as we go */
2504 while (i--)
2505 wx_free_rx_resources(rx_ring: wx->rx_ring[i]);
2506 return err;
2507}
2508
2509/**
2510 * wx_setup_tx_resources - allocate Tx resources (Descriptors)
2511 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2512 *
2513 * Return 0 on success, negative on failure
2514 **/
2515static int wx_setup_tx_resources(struct wx_ring *tx_ring)
2516{
2517 struct device *dev = tx_ring->dev;
2518 int orig_node = dev_to_node(dev);
2519 int numa_node = NUMA_NO_NODE;
2520 int size;
2521
2522 size = sizeof(struct wx_tx_buffer) * tx_ring->count;
2523
2524 if (tx_ring->q_vector)
2525 numa_node = tx_ring->q_vector->numa_node;
2526
2527 tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, node: numa_node);
2528 if (!tx_ring->tx_buffer_info)
2529 tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
2530 if (!tx_ring->tx_buffer_info)
2531 goto err;
2532
2533 /* round up to nearest 4K */
2534 tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
2535 tx_ring->size = ALIGN(tx_ring->size, 4096);
2536
2537 set_dev_node(dev, node: numa_node);
2538 tx_ring->desc = dma_alloc_coherent(dev, size: tx_ring->size,
2539 dma_handle: &tx_ring->dma, GFP_KERNEL);
2540 if (!tx_ring->desc) {
2541 set_dev_node(dev, node: orig_node);
2542 tx_ring->desc = dma_alloc_coherent(dev, size: tx_ring->size,
2543 dma_handle: &tx_ring->dma, GFP_KERNEL);
2544 }
2545
2546 if (!tx_ring->desc)
2547 goto err;
2548
2549 tx_ring->next_to_use = 0;
2550 tx_ring->next_to_clean = 0;
2551
2552 return 0;
2553
2554err:
2555 kvfree(addr: tx_ring->tx_buffer_info);
2556 tx_ring->tx_buffer_info = NULL;
2557 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2558 return -ENOMEM;
2559}
2560
2561/**
2562 * wx_setup_all_tx_resources - allocate all queues Tx resources
2563 * @wx: pointer to private structure
2564 *
2565 * If this function returns with an error, then it's possible one or
2566 * more of the rings is populated (while the rest are not). It is the
2567 * callers duty to clean those orphaned rings.
2568 *
2569 * Return 0 on success, negative on failure
2570 **/
2571static int wx_setup_all_tx_resources(struct wx *wx)
2572{
2573 int i, err = 0;
2574
2575 for (i = 0; i < wx->num_tx_queues; i++) {
2576 err = wx_setup_tx_resources(tx_ring: wx->tx_ring[i]);
2577 if (!err)
2578 continue;
2579
2580 wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
2581 goto err_setup_tx;
2582 }
2583
2584 return 0;
2585err_setup_tx:
2586 /* rewind the index freeing the rings as we go */
2587 while (i--)
2588 wx_free_tx_resources(tx_ring: wx->tx_ring[i]);
2589 return err;
2590}
2591
2592int wx_setup_resources(struct wx *wx)
2593{
2594 int err;
2595
2596 /* allocate transmit descriptors */
2597 err = wx_setup_all_tx_resources(wx);
2598 if (err)
2599 return err;
2600
2601 /* allocate receive descriptors */
2602 err = wx_setup_all_rx_resources(wx);
2603 if (err)
2604 goto err_free_tx;
2605
2606 err = wx_setup_isb_resources(wx);
2607 if (err)
2608 goto err_free_rx;
2609
2610 return 0;
2611
2612err_free_rx:
2613 wx_free_all_rx_resources(wx);
2614err_free_tx:
2615 wx_free_all_tx_resources(wx);
2616
2617 return err;
2618}
2619EXPORT_SYMBOL(wx_setup_resources);
2620
2621/**
2622 * wx_get_stats64 - Get System Network Statistics
2623 * @netdev: network interface device structure
2624 * @stats: storage space for 64bit statistics
2625 */
2626void wx_get_stats64(struct net_device *netdev,
2627 struct rtnl_link_stats64 *stats)
2628{
2629 struct wx *wx = netdev_priv(dev: netdev);
2630 struct wx_hw_stats *hwstats;
2631 int i;
2632
2633 wx_update_stats(wx);
2634
2635 rcu_read_lock();
2636 for (i = 0; i < wx->num_rx_queues; i++) {
2637 struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
2638 u64 bytes, packets;
2639 unsigned int start;
2640
2641 if (ring) {
2642 do {
2643 start = u64_stats_fetch_begin(syncp: &ring->syncp);
2644 packets = ring->stats.packets;
2645 bytes = ring->stats.bytes;
2646 } while (u64_stats_fetch_retry(syncp: &ring->syncp, start));
2647 stats->rx_packets += packets;
2648 stats->rx_bytes += bytes;
2649 }
2650 }
2651
2652 for (i = 0; i < wx->num_tx_queues; i++) {
2653 struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
2654 u64 bytes, packets;
2655 unsigned int start;
2656
2657 if (ring) {
2658 do {
2659 start = u64_stats_fetch_begin(syncp: &ring->syncp);
2660 packets = ring->stats.packets;
2661 bytes = ring->stats.bytes;
2662 } while (u64_stats_fetch_retry(syncp: &ring->syncp,
2663 start));
2664 stats->tx_packets += packets;
2665 stats->tx_bytes += bytes;
2666 }
2667 }
2668
2669 rcu_read_unlock();
2670
2671 hwstats = &wx->stats;
2672 stats->rx_errors = hwstats->crcerrs + hwstats->rlec;
2673 stats->multicast = hwstats->qmprc;
2674 stats->rx_length_errors = hwstats->rlec;
2675 stats->rx_crc_errors = hwstats->crcerrs;
2676}
2677EXPORT_SYMBOL(wx_get_stats64);
2678
2679int wx_set_features(struct net_device *netdev, netdev_features_t features)
2680{
2681 netdev_features_t changed = netdev->features ^ features;
2682 struct wx *wx = netdev_priv(dev: netdev);
2683
2684 if (features & NETIF_F_RXHASH) {
2685 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN,
2686 WX_RDB_RA_CTL_RSS_EN);
2687 wx->rss_enabled = true;
2688 } else {
2689 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, field: 0);
2690 wx->rss_enabled = false;
2691 }
2692
2693 if (changed &
2694 (NETIF_F_HW_VLAN_CTAG_RX |
2695 NETIF_F_HW_VLAN_STAG_RX))
2696 wx_set_rx_mode(netdev);
2697
2698 return 1;
2699}
2700EXPORT_SYMBOL(wx_set_features);
2701
2702void wx_set_ring(struct wx *wx, u32 new_tx_count,
2703 u32 new_rx_count, struct wx_ring *temp_ring)
2704{
2705 int i, err = 0;
2706
2707 /* Setup new Tx resources and free the old Tx resources in that order.
2708 * We can then assign the new resources to the rings via a memcpy.
2709 * The advantage to this approach is that we are guaranteed to still
2710 * have resources even in the case of an allocation failure.
2711 */
2712 if (new_tx_count != wx->tx_ring_count) {
2713 for (i = 0; i < wx->num_tx_queues; i++) {
2714 memcpy(&temp_ring[i], wx->tx_ring[i],
2715 sizeof(struct wx_ring));
2716
2717 temp_ring[i].count = new_tx_count;
2718 err = wx_setup_tx_resources(tx_ring: &temp_ring[i]);
2719 if (err) {
2720 wx_err(wx, "setup new tx resources failed, keep using the old config\n");
2721 while (i) {
2722 i--;
2723 wx_free_tx_resources(tx_ring: &temp_ring[i]);
2724 }
2725 return;
2726 }
2727 }
2728
2729 for (i = 0; i < wx->num_tx_queues; i++) {
2730 wx_free_tx_resources(tx_ring: wx->tx_ring[i]);
2731
2732 memcpy(wx->tx_ring[i], &temp_ring[i],
2733 sizeof(struct wx_ring));
2734 }
2735
2736 wx->tx_ring_count = new_tx_count;
2737 }
2738
2739 /* Repeat the process for the Rx rings if needed */
2740 if (new_rx_count != wx->rx_ring_count) {
2741 for (i = 0; i < wx->num_rx_queues; i++) {
2742 memcpy(&temp_ring[i], wx->rx_ring[i],
2743 sizeof(struct wx_ring));
2744
2745 temp_ring[i].count = new_rx_count;
2746 err = wx_setup_rx_resources(rx_ring: &temp_ring[i]);
2747 if (err) {
2748 wx_err(wx, "setup new rx resources failed, keep using the old config\n");
2749 while (i) {
2750 i--;
2751 wx_free_rx_resources(rx_ring: &temp_ring[i]);
2752 }
2753 return;
2754 }
2755 }
2756
2757 for (i = 0; i < wx->num_rx_queues; i++) {
2758 wx_free_rx_resources(rx_ring: wx->rx_ring[i]);
2759 memcpy(wx->rx_ring[i], &temp_ring[i],
2760 sizeof(struct wx_ring));
2761 }
2762
2763 wx->rx_ring_count = new_rx_count;
2764 }
2765}
2766EXPORT_SYMBOL(wx_set_ring);
2767
2768MODULE_DESCRIPTION("Common library for Wangxun(R) Ethernet drivers.");
2769MODULE_LICENSE("GPL");
2770

source code of linux/drivers/net/ethernet/wangxun/libwx/wx_lib.c