| 1 | // SPDX-License-Identifier: GPL-2.0-only |
|---|---|
| 2 | /* |
| 3 | * Xilinx Axi Ethernet device driver |
| 4 | * |
| 5 | * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi |
| 6 | * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> |
| 7 | * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. |
| 8 | * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu> |
| 9 | * Copyright (c) 2010 - 2011 PetaLogix |
| 10 | * Copyright (c) 2019 - 2022 Calian Advanced Technologies |
| 11 | * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved. |
| 12 | * |
| 13 | * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6 |
| 14 | * and Spartan6. |
| 15 | * |
| 16 | * TODO: |
| 17 | * - Add Axi Fifo support. |
| 18 | * - Factor out Axi DMA code into separate driver. |
| 19 | * - Test and fix basic multicast filtering. |
| 20 | * - Add support for extended multicast filtering. |
| 21 | * - Test basic VLAN support. |
| 22 | * - Add support for extended VLAN support. |
| 23 | */ |
| 24 | |
| 25 | #include <linux/clk.h> |
| 26 | #include <linux/delay.h> |
| 27 | #include <linux/etherdevice.h> |
| 28 | #include <linux/module.h> |
| 29 | #include <linux/netdevice.h> |
| 30 | #include <linux/of.h> |
| 31 | #include <linux/of_mdio.h> |
| 32 | #include <linux/of_net.h> |
| 33 | #include <linux/of_irq.h> |
| 34 | #include <linux/of_address.h> |
| 35 | #include <linux/platform_device.h> |
| 36 | #include <linux/skbuff.h> |
| 37 | #include <linux/math64.h> |
| 38 | #include <linux/phy.h> |
| 39 | #include <linux/mii.h> |
| 40 | #include <linux/ethtool.h> |
| 41 | #include <linux/dmaengine.h> |
| 42 | #include <linux/dma-mapping.h> |
| 43 | #include <linux/dma/xilinx_dma.h> |
| 44 | #include <linux/circ_buf.h> |
| 45 | #include <net/netdev_queues.h> |
| 46 | |
| 47 | #include "xilinx_axienet.h" |
| 48 | |
| 49 | /* Descriptors defines for Tx and Rx DMA */ |
| 50 | #define TX_BD_NUM_DEFAULT 128 |
| 51 | #define RX_BD_NUM_DEFAULT 1024 |
| 52 | #define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1) |
| 53 | #define TX_BD_NUM_MAX 4096 |
| 54 | #define RX_BD_NUM_MAX 4096 |
| 55 | #define DMA_NUM_APP_WORDS 5 |
| 56 | #define LEN_APP 4 |
| 57 | #define RX_BUF_NUM_DEFAULT 128 |
| 58 | |
| 59 | /* Must be shorter than length of ethtool_drvinfo.driver field to fit */ |
| 60 | #define DRIVER_NAME "xaxienet" |
| 61 | #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver" |
| 62 | #define DRIVER_VERSION "1.00a" |
| 63 | |
| 64 | #define AXIENET_REGS_N 40 |
| 65 | |
| 66 | static void axienet_rx_submit_desc(struct net_device *ndev); |
| 67 | |
| 68 | /* Match table for of_platform binding */ |
| 69 | static const struct of_device_id axienet_of_match[] = { |
| 70 | { .compatible = "xlnx,axi-ethernet-1.00.a", }, |
| 71 | { .compatible = "xlnx,axi-ethernet-1.01.a", }, |
| 72 | { .compatible = "xlnx,axi-ethernet-2.01.a", }, |
| 73 | {}, |
| 74 | }; |
| 75 | |
| 76 | MODULE_DEVICE_TABLE(of, axienet_of_match); |
| 77 | |
| 78 | /* Option table for setting up Axi Ethernet hardware options */ |
| 79 | static struct axienet_option axienet_options[] = { |
| 80 | /* Turn on jumbo packet support for both Rx and Tx */ |
| 81 | { |
| 82 | .opt = XAE_OPTION_JUMBO, |
| 83 | .reg = XAE_TC_OFFSET, |
| 84 | .m_or = XAE_TC_JUM_MASK, |
| 85 | }, { |
| 86 | .opt = XAE_OPTION_JUMBO, |
| 87 | .reg = XAE_RCW1_OFFSET, |
| 88 | .m_or = XAE_RCW1_JUM_MASK, |
| 89 | }, { /* Turn on VLAN packet support for both Rx and Tx */ |
| 90 | .opt = XAE_OPTION_VLAN, |
| 91 | .reg = XAE_TC_OFFSET, |
| 92 | .m_or = XAE_TC_VLAN_MASK, |
| 93 | }, { |
| 94 | .opt = XAE_OPTION_VLAN, |
| 95 | .reg = XAE_RCW1_OFFSET, |
| 96 | .m_or = XAE_RCW1_VLAN_MASK, |
| 97 | }, { /* Turn on FCS stripping on receive packets */ |
| 98 | .opt = XAE_OPTION_FCS_STRIP, |
| 99 | .reg = XAE_RCW1_OFFSET, |
| 100 | .m_or = XAE_RCW1_FCS_MASK, |
| 101 | }, { /* Turn on FCS insertion on transmit packets */ |
| 102 | .opt = XAE_OPTION_FCS_INSERT, |
| 103 | .reg = XAE_TC_OFFSET, |
| 104 | .m_or = XAE_TC_FCS_MASK, |
| 105 | }, { /* Turn off length/type field checking on receive packets */ |
| 106 | .opt = XAE_OPTION_LENTYPE_ERR, |
| 107 | .reg = XAE_RCW1_OFFSET, |
| 108 | .m_or = XAE_RCW1_LT_DIS_MASK, |
| 109 | }, { /* Turn on Rx flow control */ |
| 110 | .opt = XAE_OPTION_FLOW_CONTROL, |
| 111 | .reg = XAE_FCC_OFFSET, |
| 112 | .m_or = XAE_FCC_FCRX_MASK, |
| 113 | }, { /* Turn on Tx flow control */ |
| 114 | .opt = XAE_OPTION_FLOW_CONTROL, |
| 115 | .reg = XAE_FCC_OFFSET, |
| 116 | .m_or = XAE_FCC_FCTX_MASK, |
| 117 | }, { /* Turn on promiscuous frame filtering */ |
| 118 | .opt = XAE_OPTION_PROMISC, |
| 119 | .reg = XAE_FMI_OFFSET, |
| 120 | .m_or = XAE_FMI_PM_MASK, |
| 121 | }, { /* Enable transmitter */ |
| 122 | .opt = XAE_OPTION_TXEN, |
| 123 | .reg = XAE_TC_OFFSET, |
| 124 | .m_or = XAE_TC_TX_MASK, |
| 125 | }, { /* Enable receiver */ |
| 126 | .opt = XAE_OPTION_RXEN, |
| 127 | .reg = XAE_RCW1_OFFSET, |
| 128 | .m_or = XAE_RCW1_RX_MASK, |
| 129 | }, |
| 130 | {} |
| 131 | }; |
| 132 | |
| 133 | static struct skbuf_dma_descriptor *axienet_get_rx_desc(struct axienet_local *lp, int i) |
| 134 | { |
| 135 | return lp->rx_skb_ring[i & (RX_BUF_NUM_DEFAULT - 1)]; |
| 136 | } |
| 137 | |
| 138 | static struct skbuf_dma_descriptor *axienet_get_tx_desc(struct axienet_local *lp, int i) |
| 139 | { |
| 140 | return lp->tx_skb_ring[i & (TX_BD_NUM_MAX - 1)]; |
| 141 | } |
| 142 | |
| 143 | /** |
| 144 | * axienet_dma_in32 - Memory mapped Axi DMA register read |
| 145 | * @lp: Pointer to axienet local structure |
| 146 | * @reg: Address offset from the base address of the Axi DMA core |
| 147 | * |
| 148 | * Return: The contents of the Axi DMA register |
| 149 | * |
| 150 | * This function returns the contents of the corresponding Axi DMA register. |
| 151 | */ |
| 152 | static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg) |
| 153 | { |
| 154 | return ioread32(lp->dma_regs + reg); |
| 155 | } |
| 156 | |
| 157 | static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr, |
| 158 | struct axidma_bd *desc) |
| 159 | { |
| 160 | desc->phys = lower_32_bits(addr); |
| 161 | if (lp->features & XAE_FEATURE_DMA_64BIT) |
| 162 | desc->phys_msb = upper_32_bits(addr); |
| 163 | } |
| 164 | |
| 165 | static dma_addr_t desc_get_phys_addr(struct axienet_local *lp, |
| 166 | struct axidma_bd *desc) |
| 167 | { |
| 168 | dma_addr_t ret = desc->phys; |
| 169 | |
| 170 | if (lp->features & XAE_FEATURE_DMA_64BIT) |
| 171 | ret |= ((dma_addr_t)desc->phys_msb << 16) << 16; |
| 172 | |
| 173 | return ret; |
| 174 | } |
| 175 | |
| 176 | /** |
| 177 | * axienet_dma_bd_release - Release buffer descriptor rings |
| 178 | * @ndev: Pointer to the net_device structure |
| 179 | * |
| 180 | * This function is used to release the descriptors allocated in |
| 181 | * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet |
| 182 | * driver stop api is called. |
| 183 | */ |
| 184 | static void axienet_dma_bd_release(struct net_device *ndev) |
| 185 | { |
| 186 | int i; |
| 187 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 188 | |
| 189 | /* If we end up here, tx_bd_v must have been DMA allocated. */ |
| 190 | dma_free_coherent(dev: lp->dev, |
| 191 | size: sizeof(*lp->tx_bd_v) * lp->tx_bd_num, |
| 192 | cpu_addr: lp->tx_bd_v, |
| 193 | dma_handle: lp->tx_bd_p); |
| 194 | |
| 195 | if (!lp->rx_bd_v) |
| 196 | return; |
| 197 | |
| 198 | for (i = 0; i < lp->rx_bd_num; i++) { |
| 199 | dma_addr_t phys; |
| 200 | |
| 201 | /* A NULL skb means this descriptor has not been initialised |
| 202 | * at all. |
| 203 | */ |
| 204 | if (!lp->rx_bd_v[i].skb) |
| 205 | break; |
| 206 | |
| 207 | dev_kfree_skb(lp->rx_bd_v[i].skb); |
| 208 | |
| 209 | /* For each descriptor, we programmed cntrl with the (non-zero) |
| 210 | * descriptor size, after it had been successfully allocated. |
| 211 | * So a non-zero value in there means we need to unmap it. |
| 212 | */ |
| 213 | if (lp->rx_bd_v[i].cntrl) { |
| 214 | phys = desc_get_phys_addr(lp, desc: &lp->rx_bd_v[i]); |
| 215 | dma_unmap_single(lp->dev, phys, |
| 216 | lp->max_frm_size, DMA_FROM_DEVICE); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | dma_free_coherent(dev: lp->dev, |
| 221 | size: sizeof(*lp->rx_bd_v) * lp->rx_bd_num, |
| 222 | cpu_addr: lp->rx_bd_v, |
| 223 | dma_handle: lp->rx_bd_p); |
| 224 | } |
| 225 | |
| 226 | static u64 axienet_dma_rate(struct axienet_local *lp) |
| 227 | { |
| 228 | if (lp->axi_clk) |
| 229 | return clk_get_rate(clk: lp->axi_clk); |
| 230 | return 125000000; /* arbitrary guess if no clock rate set */ |
| 231 | } |
| 232 | |
| 233 | /** |
| 234 | * axienet_calc_cr() - Calculate control register value |
| 235 | * @lp: Device private data |
| 236 | * @count: Number of completions before an interrupt |
| 237 | * @usec: Microseconds after the last completion before an interrupt |
| 238 | * |
| 239 | * Calculate a control register value based on the coalescing settings. The |
| 240 | * run/stop bit is not set. |
| 241 | */ |
| 242 | static u32 axienet_calc_cr(struct axienet_local *lp, u32 count, u32 usec) |
| 243 | { |
| 244 | u32 cr; |
| 245 | |
| 246 | cr = FIELD_PREP(XAXIDMA_COALESCE_MASK, count) | XAXIDMA_IRQ_IOC_MASK | |
| 247 | XAXIDMA_IRQ_ERROR_MASK; |
| 248 | /* Only set interrupt delay timer if not generating an interrupt on |
| 249 | * the first packet. Otherwise leave at 0 to disable delay interrupt. |
| 250 | */ |
| 251 | if (count > 1) { |
| 252 | u64 clk_rate = axienet_dma_rate(lp); |
| 253 | u32 timer; |
| 254 | |
| 255 | /* 1 Timeout Interval = 125 * (clock period of SG clock) */ |
| 256 | timer = DIV64_U64_ROUND_CLOSEST((u64)usec * clk_rate, |
| 257 | XAXIDMA_DELAY_SCALE); |
| 258 | |
| 259 | timer = min(timer, FIELD_MAX(XAXIDMA_DELAY_MASK)); |
| 260 | cr |= FIELD_PREP(XAXIDMA_DELAY_MASK, timer) | |
| 261 | XAXIDMA_IRQ_DELAY_MASK; |
| 262 | } |
| 263 | |
| 264 | return cr; |
| 265 | } |
| 266 | |
| 267 | /** |
| 268 | * axienet_coalesce_params() - Extract coalesce parameters from the CR |
| 269 | * @lp: Device private data |
| 270 | * @cr: The control register to parse |
| 271 | * @count: Number of packets before an interrupt |
| 272 | * @usec: Idle time (in usec) before an interrupt |
| 273 | */ |
| 274 | static void axienet_coalesce_params(struct axienet_local *lp, u32 cr, |
| 275 | u32 *count, u32 *usec) |
| 276 | { |
| 277 | u64 clk_rate = axienet_dma_rate(lp); |
| 278 | u64 timer = FIELD_GET(XAXIDMA_DELAY_MASK, cr); |
| 279 | |
| 280 | *count = FIELD_GET(XAXIDMA_COALESCE_MASK, cr); |
| 281 | *usec = DIV64_U64_ROUND_CLOSEST(timer * XAXIDMA_DELAY_SCALE, clk_rate); |
| 282 | } |
| 283 | |
| 284 | /** |
| 285 | * axienet_dma_start - Set up DMA registers and start DMA operation |
| 286 | * @lp: Pointer to the axienet_local structure |
| 287 | */ |
| 288 | static void axienet_dma_start(struct axienet_local *lp) |
| 289 | { |
| 290 | spin_lock_irq(lock: &lp->rx_cr_lock); |
| 291 | |
| 292 | /* Start updating the Rx channel control register */ |
| 293 | lp->rx_dma_cr &= ~XAXIDMA_CR_RUNSTOP_MASK; |
| 294 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, value: lp->rx_dma_cr); |
| 295 | |
| 296 | /* Populate the tail pointer and bring the Rx Axi DMA engine out of |
| 297 | * halted state. This will make the Rx side ready for reception. |
| 298 | */ |
| 299 | axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, addr: lp->rx_bd_p); |
| 300 | lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; |
| 301 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, value: lp->rx_dma_cr); |
| 302 | axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, addr: lp->rx_bd_p + |
| 303 | (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1))); |
| 304 | lp->rx_dma_started = true; |
| 305 | |
| 306 | spin_unlock_irq(lock: &lp->rx_cr_lock); |
| 307 | spin_lock_irq(lock: &lp->tx_cr_lock); |
| 308 | |
| 309 | /* Start updating the Tx channel control register */ |
| 310 | lp->tx_dma_cr &= ~XAXIDMA_CR_RUNSTOP_MASK; |
| 311 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, value: lp->tx_dma_cr); |
| 312 | |
| 313 | /* Write to the RS (Run-stop) bit in the Tx channel control register. |
| 314 | * Tx channel is now ready to run. But only after we write to the |
| 315 | * tail pointer register that the Tx channel will start transmitting. |
| 316 | */ |
| 317 | axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, addr: lp->tx_bd_p); |
| 318 | lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; |
| 319 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, value: lp->tx_dma_cr); |
| 320 | lp->tx_dma_started = true; |
| 321 | |
| 322 | spin_unlock_irq(lock: &lp->tx_cr_lock); |
| 323 | } |
| 324 | |
| 325 | /** |
| 326 | * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA |
| 327 | * @ndev: Pointer to the net_device structure |
| 328 | * |
| 329 | * Return: 0, on success -ENOMEM, on failure |
| 330 | * |
| 331 | * This function is called to initialize the Rx and Tx DMA descriptor |
| 332 | * rings. This initializes the descriptors with required default values |
| 333 | * and is called when Axi Ethernet driver reset is called. |
| 334 | */ |
| 335 | static int axienet_dma_bd_init(struct net_device *ndev) |
| 336 | { |
| 337 | int i; |
| 338 | struct sk_buff *skb; |
| 339 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 340 | |
| 341 | /* Reset the indexes which are used for accessing the BDs */ |
| 342 | lp->tx_bd_ci = 0; |
| 343 | lp->tx_bd_tail = 0; |
| 344 | lp->rx_bd_ci = 0; |
| 345 | |
| 346 | /* Allocate the Tx and Rx buffer descriptors. */ |
| 347 | lp->tx_bd_v = dma_alloc_coherent(dev: lp->dev, |
| 348 | size: sizeof(*lp->tx_bd_v) * lp->tx_bd_num, |
| 349 | dma_handle: &lp->tx_bd_p, GFP_KERNEL); |
| 350 | if (!lp->tx_bd_v) |
| 351 | return -ENOMEM; |
| 352 | |
| 353 | lp->rx_bd_v = dma_alloc_coherent(dev: lp->dev, |
| 354 | size: sizeof(*lp->rx_bd_v) * lp->rx_bd_num, |
| 355 | dma_handle: &lp->rx_bd_p, GFP_KERNEL); |
| 356 | if (!lp->rx_bd_v) |
| 357 | goto out; |
| 358 | |
| 359 | for (i = 0; i < lp->tx_bd_num; i++) { |
| 360 | dma_addr_t addr = lp->tx_bd_p + |
| 361 | sizeof(*lp->tx_bd_v) * |
| 362 | ((i + 1) % lp->tx_bd_num); |
| 363 | |
| 364 | lp->tx_bd_v[i].next = lower_32_bits(addr); |
| 365 | if (lp->features & XAE_FEATURE_DMA_64BIT) |
| 366 | lp->tx_bd_v[i].next_msb = upper_32_bits(addr); |
| 367 | } |
| 368 | |
| 369 | for (i = 0; i < lp->rx_bd_num; i++) { |
| 370 | dma_addr_t addr; |
| 371 | |
| 372 | addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * |
| 373 | ((i + 1) % lp->rx_bd_num); |
| 374 | lp->rx_bd_v[i].next = lower_32_bits(addr); |
| 375 | if (lp->features & XAE_FEATURE_DMA_64BIT) |
| 376 | lp->rx_bd_v[i].next_msb = upper_32_bits(addr); |
| 377 | |
| 378 | skb = netdev_alloc_skb_ip_align(dev: ndev, length: lp->max_frm_size); |
| 379 | if (!skb) |
| 380 | goto out; |
| 381 | |
| 382 | lp->rx_bd_v[i].skb = skb; |
| 383 | addr = dma_map_single(lp->dev, skb->data, |
| 384 | lp->max_frm_size, DMA_FROM_DEVICE); |
| 385 | if (dma_mapping_error(dev: lp->dev, dma_addr: addr)) { |
| 386 | netdev_err(dev: ndev, format: "DMA mapping error\n"); |
| 387 | goto out; |
| 388 | } |
| 389 | desc_set_phys_addr(lp, addr, desc: &lp->rx_bd_v[i]); |
| 390 | |
| 391 | lp->rx_bd_v[i].cntrl = lp->max_frm_size; |
| 392 | } |
| 393 | |
| 394 | axienet_dma_start(lp); |
| 395 | |
| 396 | return 0; |
| 397 | out: |
| 398 | axienet_dma_bd_release(ndev); |
| 399 | return -ENOMEM; |
| 400 | } |
| 401 | |
| 402 | /** |
| 403 | * axienet_set_mac_address - Write the MAC address |
| 404 | * @ndev: Pointer to the net_device structure |
| 405 | * @address: 6 byte Address to be written as MAC address |
| 406 | * |
| 407 | * This function is called to initialize the MAC address of the Axi Ethernet |
| 408 | * core. It writes to the UAW0 and UAW1 registers of the core. |
| 409 | */ |
| 410 | static void axienet_set_mac_address(struct net_device *ndev, |
| 411 | const void *address) |
| 412 | { |
| 413 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 414 | |
| 415 | if (address) |
| 416 | eth_hw_addr_set(dev: ndev, addr: address); |
| 417 | if (!is_valid_ether_addr(addr: ndev->dev_addr)) |
| 418 | eth_hw_addr_random(dev: ndev); |
| 419 | |
| 420 | /* Set up unicast MAC address filter set its mac address */ |
| 421 | axienet_iow(lp, XAE_UAW0_OFFSET, |
| 422 | value: (ndev->dev_addr[0]) | |
| 423 | (ndev->dev_addr[1] << 8) | |
| 424 | (ndev->dev_addr[2] << 16) | |
| 425 | (ndev->dev_addr[3] << 24)); |
| 426 | axienet_iow(lp, XAE_UAW1_OFFSET, |
| 427 | value: (((axienet_ior(lp, XAE_UAW1_OFFSET)) & |
| 428 | ~XAE_UAW1_UNICASTADDR_MASK) | |
| 429 | (ndev->dev_addr[4] | |
| 430 | (ndev->dev_addr[5] << 8)))); |
| 431 | } |
| 432 | |
| 433 | /** |
| 434 | * netdev_set_mac_address - Write the MAC address (from outside the driver) |
| 435 | * @ndev: Pointer to the net_device structure |
| 436 | * @p: 6 byte Address to be written as MAC address |
| 437 | * |
| 438 | * Return: 0 for all conditions. Presently, there is no failure case. |
| 439 | * |
| 440 | * This function is called to initialize the MAC address of the Axi Ethernet |
| 441 | * core. It calls the core specific axienet_set_mac_address. This is the |
| 442 | * function that goes into net_device_ops structure entry ndo_set_mac_address. |
| 443 | */ |
| 444 | static int netdev_set_mac_address(struct net_device *ndev, void *p) |
| 445 | { |
| 446 | struct sockaddr *addr = p; |
| 447 | |
| 448 | axienet_set_mac_address(ndev, address: addr->sa_data); |
| 449 | return 0; |
| 450 | } |
| 451 | |
| 452 | /** |
| 453 | * axienet_set_multicast_list - Prepare the multicast table |
| 454 | * @ndev: Pointer to the net_device structure |
| 455 | * |
| 456 | * This function is called to initialize the multicast table during |
| 457 | * initialization. The Axi Ethernet basic multicast support has a four-entry |
| 458 | * multicast table which is initialized here. Additionally this function |
| 459 | * goes into the net_device_ops structure entry ndo_set_multicast_list. This |
| 460 | * means whenever the multicast table entries need to be updated this |
| 461 | * function gets called. |
| 462 | */ |
| 463 | static void axienet_set_multicast_list(struct net_device *ndev) |
| 464 | { |
| 465 | int i = 0; |
| 466 | u32 reg, af0reg, af1reg; |
| 467 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 468 | |
| 469 | reg = axienet_ior(lp, XAE_FMI_OFFSET); |
| 470 | reg &= ~XAE_FMI_PM_MASK; |
| 471 | if (ndev->flags & IFF_PROMISC) |
| 472 | reg |= XAE_FMI_PM_MASK; |
| 473 | else |
| 474 | reg &= ~XAE_FMI_PM_MASK; |
| 475 | axienet_iow(lp, XAE_FMI_OFFSET, value: reg); |
| 476 | |
| 477 | if (ndev->flags & IFF_ALLMULTI || |
| 478 | netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) { |
| 479 | reg &= 0xFFFFFF00; |
| 480 | axienet_iow(lp, XAE_FMI_OFFSET, value: reg); |
| 481 | axienet_iow(lp, XAE_AF0_OFFSET, value: 1); /* Multicast bit */ |
| 482 | axienet_iow(lp, XAE_AF1_OFFSET, value: 0); |
| 483 | axienet_iow(lp, XAE_AM0_OFFSET, value: 1); /* ditto */ |
| 484 | axienet_iow(lp, XAE_AM1_OFFSET, value: 0); |
| 485 | axienet_iow(lp, XAE_FFE_OFFSET, value: 1); |
| 486 | i = 1; |
| 487 | } else if (!netdev_mc_empty(ndev)) { |
| 488 | struct netdev_hw_addr *ha; |
| 489 | |
| 490 | netdev_for_each_mc_addr(ha, ndev) { |
| 491 | if (i >= XAE_MULTICAST_CAM_TABLE_NUM) |
| 492 | break; |
| 493 | |
| 494 | af0reg = (ha->addr[0]); |
| 495 | af0reg |= (ha->addr[1] << 8); |
| 496 | af0reg |= (ha->addr[2] << 16); |
| 497 | af0reg |= (ha->addr[3] << 24); |
| 498 | |
| 499 | af1reg = (ha->addr[4]); |
| 500 | af1reg |= (ha->addr[5] << 8); |
| 501 | |
| 502 | reg &= 0xFFFFFF00; |
| 503 | reg |= i; |
| 504 | |
| 505 | axienet_iow(lp, XAE_FMI_OFFSET, value: reg); |
| 506 | axienet_iow(lp, XAE_AF0_OFFSET, value: af0reg); |
| 507 | axienet_iow(lp, XAE_AF1_OFFSET, value: af1reg); |
| 508 | axienet_iow(lp, XAE_AM0_OFFSET, value: 0xffffffff); |
| 509 | axienet_iow(lp, XAE_AM1_OFFSET, value: 0x0000ffff); |
| 510 | axienet_iow(lp, XAE_FFE_OFFSET, value: 1); |
| 511 | i++; |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) { |
| 516 | reg &= 0xFFFFFF00; |
| 517 | reg |= i; |
| 518 | axienet_iow(lp, XAE_FMI_OFFSET, value: reg); |
| 519 | axienet_iow(lp, XAE_FFE_OFFSET, value: 0); |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | /** |
| 524 | * axienet_setoptions - Set an Axi Ethernet option |
| 525 | * @ndev: Pointer to the net_device structure |
| 526 | * @options: Option to be enabled/disabled |
| 527 | * |
| 528 | * The Axi Ethernet core has multiple features which can be selectively turned |
| 529 | * on or off. The typical options could be jumbo frame option, basic VLAN |
| 530 | * option, promiscuous mode option etc. This function is used to set or clear |
| 531 | * these options in the Axi Ethernet hardware. This is done through |
| 532 | * axienet_option structure . |
| 533 | */ |
| 534 | static void axienet_setoptions(struct net_device *ndev, u32 options) |
| 535 | { |
| 536 | int reg; |
| 537 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 538 | struct axienet_option *tp = &axienet_options[0]; |
| 539 | |
| 540 | while (tp->opt) { |
| 541 | reg = ((axienet_ior(lp, offset: tp->reg)) & ~(tp->m_or)); |
| 542 | if (options & tp->opt) |
| 543 | reg |= tp->m_or; |
| 544 | axienet_iow(lp, offset: tp->reg, value: reg); |
| 545 | tp++; |
| 546 | } |
| 547 | |
| 548 | lp->options |= options; |
| 549 | } |
| 550 | |
| 551 | static u64 axienet_stat(struct axienet_local *lp, enum temac_stat stat) |
| 552 | { |
| 553 | u32 counter; |
| 554 | |
| 555 | if (lp->reset_in_progress) |
| 556 | return lp->hw_stat_base[stat]; |
| 557 | |
| 558 | counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); |
| 559 | return lp->hw_stat_base[stat] + (counter - lp->hw_last_counter[stat]); |
| 560 | } |
| 561 | |
| 562 | static void axienet_stats_update(struct axienet_local *lp, bool reset) |
| 563 | { |
| 564 | enum temac_stat stat; |
| 565 | |
| 566 | write_seqcount_begin(&lp->hw_stats_seqcount); |
| 567 | lp->reset_in_progress = reset; |
| 568 | for (stat = 0; stat < STAT_COUNT; stat++) { |
| 569 | u32 counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); |
| 570 | |
| 571 | lp->hw_stat_base[stat] += counter - lp->hw_last_counter[stat]; |
| 572 | lp->hw_last_counter[stat] = counter; |
| 573 | } |
| 574 | write_seqcount_end(&lp->hw_stats_seqcount); |
| 575 | } |
| 576 | |
| 577 | static void axienet_refresh_stats(struct work_struct *work) |
| 578 | { |
| 579 | struct axienet_local *lp = container_of(work, struct axienet_local, |
| 580 | stats_work.work); |
| 581 | |
| 582 | mutex_lock(&lp->stats_lock); |
| 583 | axienet_stats_update(lp, reset: false); |
| 584 | mutex_unlock(lock: &lp->stats_lock); |
| 585 | |
| 586 | /* Just less than 2^32 bytes at 2.5 GBit/s */ |
| 587 | schedule_delayed_work(dwork: &lp->stats_work, delay: 13 * HZ); |
| 588 | } |
| 589 | |
| 590 | static int __axienet_device_reset(struct axienet_local *lp) |
| 591 | { |
| 592 | u32 value; |
| 593 | int ret; |
| 594 | |
| 595 | /* Save statistics counters in case they will be reset */ |
| 596 | mutex_lock(&lp->stats_lock); |
| 597 | if (lp->features & XAE_FEATURE_STATS) |
| 598 | axienet_stats_update(lp, reset: true); |
| 599 | |
| 600 | /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset |
| 601 | * process of Axi DMA takes a while to complete as all pending |
| 602 | * commands/transfers will be flushed or completed during this |
| 603 | * reset process. |
| 604 | * Note that even though both TX and RX have their own reset register, |
| 605 | * they both reset the entire DMA core, so only one needs to be used. |
| 606 | */ |
| 607 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK); |
| 608 | ret = read_poll_timeout(axienet_dma_in32, value, |
| 609 | !(value & XAXIDMA_CR_RESET_MASK), |
| 610 | DELAY_OF_ONE_MILLISEC, 50000, false, lp, |
| 611 | XAXIDMA_TX_CR_OFFSET); |
| 612 | if (ret) { |
| 613 | dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__); |
| 614 | goto out; |
| 615 | } |
| 616 | |
| 617 | /* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */ |
| 618 | ret = read_poll_timeout(axienet_ior, value, |
| 619 | value & XAE_INT_PHYRSTCMPLT_MASK, |
| 620 | DELAY_OF_ONE_MILLISEC, 50000, false, lp, |
| 621 | XAE_IS_OFFSET); |
| 622 | if (ret) { |
| 623 | dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__); |
| 624 | goto out; |
| 625 | } |
| 626 | |
| 627 | /* Update statistics counters with new values */ |
| 628 | if (lp->features & XAE_FEATURE_STATS) { |
| 629 | enum temac_stat stat; |
| 630 | |
| 631 | write_seqcount_begin(&lp->hw_stats_seqcount); |
| 632 | lp->reset_in_progress = false; |
| 633 | for (stat = 0; stat < STAT_COUNT; stat++) { |
| 634 | u32 counter = |
| 635 | axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); |
| 636 | |
| 637 | lp->hw_stat_base[stat] += |
| 638 | lp->hw_last_counter[stat] - counter; |
| 639 | lp->hw_last_counter[stat] = counter; |
| 640 | } |
| 641 | write_seqcount_end(&lp->hw_stats_seqcount); |
| 642 | } |
| 643 | |
| 644 | out: |
| 645 | mutex_unlock(lock: &lp->stats_lock); |
| 646 | return ret; |
| 647 | } |
| 648 | |
| 649 | /** |
| 650 | * axienet_dma_stop - Stop DMA operation |
| 651 | * @lp: Pointer to the axienet_local structure |
| 652 | */ |
| 653 | static void axienet_dma_stop(struct axienet_local *lp) |
| 654 | { |
| 655 | int count; |
| 656 | u32 cr, sr; |
| 657 | |
| 658 | spin_lock_irq(lock: &lp->rx_cr_lock); |
| 659 | |
| 660 | cr = lp->rx_dma_cr & ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); |
| 661 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, value: cr); |
| 662 | lp->rx_dma_started = false; |
| 663 | |
| 664 | spin_unlock_irq(lock: &lp->rx_cr_lock); |
| 665 | synchronize_irq(irq: lp->rx_irq); |
| 666 | |
| 667 | spin_lock_irq(lock: &lp->tx_cr_lock); |
| 668 | |
| 669 | cr = lp->tx_dma_cr & ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); |
| 670 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, value: cr); |
| 671 | lp->tx_dma_started = false; |
| 672 | |
| 673 | spin_unlock_irq(lock: &lp->tx_cr_lock); |
| 674 | synchronize_irq(irq: lp->tx_irq); |
| 675 | |
| 676 | /* Give DMAs a chance to halt gracefully */ |
| 677 | sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); |
| 678 | for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { |
| 679 | msleep(msecs: 20); |
| 680 | sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); |
| 681 | } |
| 682 | |
| 683 | sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); |
| 684 | for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { |
| 685 | msleep(msecs: 20); |
| 686 | sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); |
| 687 | } |
| 688 | |
| 689 | /* Do a reset to ensure DMA is really stopped */ |
| 690 | axienet_lock_mii(lp); |
| 691 | __axienet_device_reset(lp); |
| 692 | axienet_unlock_mii(lp); |
| 693 | } |
| 694 | |
| 695 | /** |
| 696 | * axienet_device_reset - Reset and initialize the Axi Ethernet hardware. |
| 697 | * @ndev: Pointer to the net_device structure |
| 698 | * |
| 699 | * This function is called to reset and initialize the Axi Ethernet core. This |
| 700 | * is typically called during initialization. It does a reset of the Axi DMA |
| 701 | * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines |
| 702 | * are connected to Axi Ethernet reset lines, this in turn resets the Axi |
| 703 | * Ethernet core. No separate hardware reset is done for the Axi Ethernet |
| 704 | * core. |
| 705 | * Returns 0 on success or a negative error number otherwise. |
| 706 | */ |
| 707 | static int axienet_device_reset(struct net_device *ndev) |
| 708 | { |
| 709 | u32 axienet_status; |
| 710 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 711 | int ret; |
| 712 | |
| 713 | lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE; |
| 714 | lp->options |= XAE_OPTION_VLAN; |
| 715 | lp->options &= (~XAE_OPTION_JUMBO); |
| 716 | |
| 717 | if (ndev->mtu > XAE_MTU && ndev->mtu <= XAE_JUMBO_MTU) { |
| 718 | lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN + |
| 719 | XAE_TRL_SIZE; |
| 720 | |
| 721 | if (lp->max_frm_size <= lp->rxmem) |
| 722 | lp->options |= XAE_OPTION_JUMBO; |
| 723 | } |
| 724 | |
| 725 | if (!lp->use_dmaengine) { |
| 726 | ret = __axienet_device_reset(lp); |
| 727 | if (ret) |
| 728 | return ret; |
| 729 | |
| 730 | ret = axienet_dma_bd_init(ndev); |
| 731 | if (ret) { |
| 732 | netdev_err(dev: ndev, format: "%s: descriptor allocation failed\n", |
| 733 | __func__); |
| 734 | return ret; |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); |
| 739 | axienet_status &= ~XAE_RCW1_RX_MASK; |
| 740 | axienet_iow(lp, XAE_RCW1_OFFSET, value: axienet_status); |
| 741 | |
| 742 | axienet_status = axienet_ior(lp, XAE_IP_OFFSET); |
| 743 | if (axienet_status & XAE_INT_RXRJECT_MASK) |
| 744 | axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); |
| 745 | axienet_iow(lp, XAE_IE_OFFSET, value: lp->eth_irq > 0 ? |
| 746 | XAE_INT_RECV_ERROR_MASK : 0); |
| 747 | |
| 748 | axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); |
| 749 | |
| 750 | /* Sync default options with HW but leave receiver and |
| 751 | * transmitter disabled. |
| 752 | */ |
| 753 | axienet_setoptions(ndev, options: lp->options & |
| 754 | ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
| 755 | axienet_set_mac_address(ndev, NULL); |
| 756 | axienet_set_multicast_list(ndev); |
| 757 | axienet_setoptions(ndev, options: lp->options); |
| 758 | |
| 759 | netif_trans_update(dev: ndev); |
| 760 | |
| 761 | return 0; |
| 762 | } |
| 763 | |
| 764 | /** |
| 765 | * axienet_free_tx_chain - Clean up a series of linked TX descriptors. |
| 766 | * @lp: Pointer to the axienet_local structure |
| 767 | * @first_bd: Index of first descriptor to clean up |
| 768 | * @nr_bds: Max number of descriptors to clean up |
| 769 | * @force: Whether to clean descriptors even if not complete |
| 770 | * @sizep: Pointer to a u32 filled with the total sum of all bytes |
| 771 | * in all cleaned-up descriptors. Ignored if NULL. |
| 772 | * @budget: NAPI budget (use 0 when not called from NAPI poll) |
| 773 | * |
| 774 | * Would either be called after a successful transmit operation, or after |
| 775 | * there was an error when setting up the chain. |
| 776 | * Returns the number of packets handled. |
| 777 | */ |
| 778 | static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd, |
| 779 | int nr_bds, bool force, u32 *sizep, int budget) |
| 780 | { |
| 781 | struct axidma_bd *cur_p; |
| 782 | unsigned int status; |
| 783 | int i, packets = 0; |
| 784 | dma_addr_t phys; |
| 785 | |
| 786 | for (i = 0; i < nr_bds; i++) { |
| 787 | cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num]; |
| 788 | status = cur_p->status; |
| 789 | |
| 790 | /* If force is not specified, clean up only descriptors |
| 791 | * that have been completed by the MAC. |
| 792 | */ |
| 793 | if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK)) |
| 794 | break; |
| 795 | |
| 796 | /* Ensure we see complete descriptor update */ |
| 797 | dma_rmb(); |
| 798 | phys = desc_get_phys_addr(lp, desc: cur_p); |
| 799 | dma_unmap_single(lp->dev, phys, |
| 800 | (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK), |
| 801 | DMA_TO_DEVICE); |
| 802 | |
| 803 | if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK)) { |
| 804 | napi_consume_skb(skb: cur_p->skb, budget); |
| 805 | packets++; |
| 806 | } |
| 807 | |
| 808 | cur_p->app0 = 0; |
| 809 | cur_p->app1 = 0; |
| 810 | cur_p->app2 = 0; |
| 811 | cur_p->app4 = 0; |
| 812 | cur_p->skb = NULL; |
| 813 | /* ensure our transmit path and device don't prematurely see status cleared */ |
| 814 | wmb(); |
| 815 | cur_p->cntrl = 0; |
| 816 | cur_p->status = 0; |
| 817 | |
| 818 | if (sizep) |
| 819 | *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; |
| 820 | } |
| 821 | |
| 822 | if (!force) { |
| 823 | lp->tx_bd_ci += i; |
| 824 | if (lp->tx_bd_ci >= lp->tx_bd_num) |
| 825 | lp->tx_bd_ci %= lp->tx_bd_num; |
| 826 | } |
| 827 | |
| 828 | return packets; |
| 829 | } |
| 830 | |
| 831 | /** |
| 832 | * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy |
| 833 | * @lp: Pointer to the axienet_local structure |
| 834 | * @num_frag: The number of BDs to check for |
| 835 | * |
| 836 | * Return: 0, on success |
| 837 | * NETDEV_TX_BUSY, if any of the descriptors are not free |
| 838 | * |
| 839 | * This function is invoked before BDs are allocated and transmission starts. |
| 840 | * This function returns 0 if a BD or group of BDs can be allocated for |
| 841 | * transmission. If the BD or any of the BDs are not free the function |
| 842 | * returns a busy status. |
| 843 | */ |
| 844 | static inline int axienet_check_tx_bd_space(struct axienet_local *lp, |
| 845 | int num_frag) |
| 846 | { |
| 847 | struct axidma_bd *cur_p; |
| 848 | |
| 849 | /* Ensure we see all descriptor updates from device or TX polling */ |
| 850 | rmb(); |
| 851 | cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) % |
| 852 | lp->tx_bd_num]; |
| 853 | if (cur_p->cntrl) |
| 854 | return NETDEV_TX_BUSY; |
| 855 | return 0; |
| 856 | } |
| 857 | |
| 858 | /** |
| 859 | * axienet_dma_tx_cb - DMA engine callback for TX channel. |
| 860 | * @data: Pointer to the axienet_local structure. |
| 861 | * @result: error reporting through dmaengine_result. |
| 862 | * This function is called by dmaengine driver for TX channel to notify |
| 863 | * that the transmit is done. |
| 864 | */ |
| 865 | static void axienet_dma_tx_cb(void *data, const struct dmaengine_result *result) |
| 866 | { |
| 867 | struct skbuf_dma_descriptor *skbuf_dma; |
| 868 | struct axienet_local *lp = data; |
| 869 | struct netdev_queue *txq; |
| 870 | int len; |
| 871 | |
| 872 | skbuf_dma = axienet_get_tx_desc(lp, i: lp->tx_ring_tail++); |
| 873 | len = skbuf_dma->skb->len; |
| 874 | txq = skb_get_tx_queue(dev: lp->ndev, skb: skbuf_dma->skb); |
| 875 | u64_stats_update_begin(syncp: &lp->tx_stat_sync); |
| 876 | u64_stats_add(p: &lp->tx_bytes, val: len); |
| 877 | u64_stats_add(p: &lp->tx_packets, val: 1); |
| 878 | u64_stats_update_end(syncp: &lp->tx_stat_sync); |
| 879 | dma_unmap_sg(lp->dev, skbuf_dma->sgl, skbuf_dma->sg_len, DMA_TO_DEVICE); |
| 880 | dev_consume_skb_any(skb: skbuf_dma->skb); |
| 881 | netif_txq_completed_wake(txq, 1, len, |
| 882 | CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX), |
| 883 | 2); |
| 884 | } |
| 885 | |
| 886 | /** |
| 887 | * axienet_start_xmit_dmaengine - Starts the transmission. |
| 888 | * @skb: sk_buff pointer that contains data to be Txed. |
| 889 | * @ndev: Pointer to net_device structure. |
| 890 | * |
| 891 | * Return: NETDEV_TX_OK on success or any non space errors. |
| 892 | * NETDEV_TX_BUSY when free element in TX skb ring buffer |
| 893 | * is not available. |
| 894 | * |
| 895 | * This function is invoked to initiate transmission. The |
| 896 | * function sets the skbs, register dma callback API and submit |
| 897 | * the dma transaction. |
| 898 | * Additionally if checksum offloading is supported, |
| 899 | * it populates AXI Stream Control fields with appropriate values. |
| 900 | */ |
| 901 | static netdev_tx_t |
| 902 | axienet_start_xmit_dmaengine(struct sk_buff *skb, struct net_device *ndev) |
| 903 | { |
| 904 | struct dma_async_tx_descriptor *dma_tx_desc = NULL; |
| 905 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 906 | u32 app_metadata[DMA_NUM_APP_WORDS] = {0}; |
| 907 | struct skbuf_dma_descriptor *skbuf_dma; |
| 908 | struct dma_device *dma_dev; |
| 909 | struct netdev_queue *txq; |
| 910 | u32 csum_start_off; |
| 911 | u32 csum_index_off; |
| 912 | int sg_len; |
| 913 | int ret; |
| 914 | |
| 915 | dma_dev = lp->tx_chan->device; |
| 916 | sg_len = skb_shinfo(skb)->nr_frags + 1; |
| 917 | if (CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX) <= 1) { |
| 918 | netif_stop_queue(dev: ndev); |
| 919 | if (net_ratelimit()) |
| 920 | netdev_warn(dev: ndev, format: "TX ring unexpectedly full\n"); |
| 921 | return NETDEV_TX_BUSY; |
| 922 | } |
| 923 | |
| 924 | skbuf_dma = axienet_get_tx_desc(lp, i: lp->tx_ring_head); |
| 925 | if (!skbuf_dma) |
| 926 | goto xmit_error_drop_skb; |
| 927 | |
| 928 | lp->tx_ring_head++; |
| 929 | sg_init_table(skbuf_dma->sgl, sg_len); |
| 930 | ret = skb_to_sgvec(skb, sg: skbuf_dma->sgl, offset: 0, len: skb->len); |
| 931 | if (ret < 0) |
| 932 | goto xmit_error_drop_skb; |
| 933 | |
| 934 | ret = dma_map_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE); |
| 935 | if (!ret) |
| 936 | goto xmit_error_drop_skb; |
| 937 | |
| 938 | /* Fill up app fields for checksum */ |
| 939 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| 940 | if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { |
| 941 | /* Tx Full Checksum Offload Enabled */ |
| 942 | app_metadata[0] |= 2; |
| 943 | } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { |
| 944 | csum_start_off = skb_transport_offset(skb); |
| 945 | csum_index_off = csum_start_off + skb->csum_offset; |
| 946 | /* Tx Partial Checksum Offload Enabled */ |
| 947 | app_metadata[0] |= 1; |
| 948 | app_metadata[1] = (csum_start_off << 16) | csum_index_off; |
| 949 | } |
| 950 | } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { |
| 951 | app_metadata[0] |= 2; /* Tx Full Checksum Offload Enabled */ |
| 952 | } |
| 953 | |
| 954 | dma_tx_desc = dma_dev->device_prep_slave_sg(lp->tx_chan, skbuf_dma->sgl, |
| 955 | sg_len, DMA_MEM_TO_DEV, |
| 956 | DMA_PREP_INTERRUPT, (void *)app_metadata); |
| 957 | if (!dma_tx_desc) |
| 958 | goto xmit_error_unmap_sg; |
| 959 | |
| 960 | skbuf_dma->skb = skb; |
| 961 | skbuf_dma->sg_len = sg_len; |
| 962 | dma_tx_desc->callback_param = lp; |
| 963 | dma_tx_desc->callback_result = axienet_dma_tx_cb; |
| 964 | txq = skb_get_tx_queue(dev: lp->ndev, skb); |
| 965 | netdev_tx_sent_queue(dev_queue: txq, bytes: skb->len); |
| 966 | netif_txq_maybe_stop(txq, CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX), |
| 967 | 1, 2); |
| 968 | |
| 969 | dmaengine_submit(desc: dma_tx_desc); |
| 970 | dma_async_issue_pending(chan: lp->tx_chan); |
| 971 | return NETDEV_TX_OK; |
| 972 | |
| 973 | xmit_error_unmap_sg: |
| 974 | dma_unmap_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE); |
| 975 | xmit_error_drop_skb: |
| 976 | dev_kfree_skb_any(skb); |
| 977 | return NETDEV_TX_OK; |
| 978 | } |
| 979 | |
| 980 | /** |
| 981 | * axienet_tx_poll - Invoked once a transmit is completed by the |
| 982 | * Axi DMA Tx channel. |
| 983 | * @napi: Pointer to NAPI structure. |
| 984 | * @budget: Max number of TX packets to process. |
| 985 | * |
| 986 | * Return: Number of TX packets processed. |
| 987 | * |
| 988 | * This function is invoked from the NAPI processing to notify the completion |
| 989 | * of transmit operation. It clears fields in the corresponding Tx BDs and |
| 990 | * unmaps the corresponding buffer so that CPU can regain ownership of the |
| 991 | * buffer. It finally invokes "netif_wake_queue" to restart transmission if |
| 992 | * required. |
| 993 | */ |
| 994 | static int axienet_tx_poll(struct napi_struct *napi, int budget) |
| 995 | { |
| 996 | struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx); |
| 997 | struct net_device *ndev = lp->ndev; |
| 998 | u32 size = 0; |
| 999 | int packets; |
| 1000 | |
| 1001 | packets = axienet_free_tx_chain(lp, first_bd: lp->tx_bd_ci, nr_bds: lp->tx_bd_num, force: false, |
| 1002 | sizep: &size, budget); |
| 1003 | |
| 1004 | if (packets) { |
| 1005 | netdev_completed_queue(dev: ndev, pkts: packets, bytes: size); |
| 1006 | u64_stats_update_begin(syncp: &lp->tx_stat_sync); |
| 1007 | u64_stats_add(p: &lp->tx_packets, val: packets); |
| 1008 | u64_stats_add(p: &lp->tx_bytes, val: size); |
| 1009 | u64_stats_update_end(syncp: &lp->tx_stat_sync); |
| 1010 | |
| 1011 | /* Matches barrier in axienet_start_xmit */ |
| 1012 | smp_mb(); |
| 1013 | |
| 1014 | if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) |
| 1015 | netif_wake_queue(dev: ndev); |
| 1016 | } |
| 1017 | |
| 1018 | if (packets < budget && napi_complete_done(n: napi, work_done: packets)) { |
| 1019 | /* Re-enable TX completion interrupts. This should |
| 1020 | * cause an immediate interrupt if any TX packets are |
| 1021 | * already pending. |
| 1022 | */ |
| 1023 | spin_lock_irq(lock: &lp->tx_cr_lock); |
| 1024 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, value: lp->tx_dma_cr); |
| 1025 | spin_unlock_irq(lock: &lp->tx_cr_lock); |
| 1026 | } |
| 1027 | return packets; |
| 1028 | } |
| 1029 | |
| 1030 | /** |
| 1031 | * axienet_start_xmit - Starts the transmission. |
| 1032 | * @skb: sk_buff pointer that contains data to be Txed. |
| 1033 | * @ndev: Pointer to net_device structure. |
| 1034 | * |
| 1035 | * Return: NETDEV_TX_OK, on success |
| 1036 | * NETDEV_TX_BUSY, if any of the descriptors are not free |
| 1037 | * |
| 1038 | * This function is invoked from upper layers to initiate transmission. The |
| 1039 | * function uses the next available free BDs and populates their fields to |
| 1040 | * start the transmission. Additionally if checksum offloading is supported, |
| 1041 | * it populates AXI Stream Control fields with appropriate values. |
| 1042 | */ |
| 1043 | static netdev_tx_t |
| 1044 | axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) |
| 1045 | { |
| 1046 | u32 ii; |
| 1047 | u32 num_frag; |
| 1048 | u32 csum_start_off; |
| 1049 | u32 csum_index_off; |
| 1050 | skb_frag_t *frag; |
| 1051 | dma_addr_t tail_p, phys; |
| 1052 | u32 orig_tail_ptr, new_tail_ptr; |
| 1053 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 1054 | struct axidma_bd *cur_p; |
| 1055 | |
| 1056 | orig_tail_ptr = lp->tx_bd_tail; |
| 1057 | new_tail_ptr = orig_tail_ptr; |
| 1058 | |
| 1059 | num_frag = skb_shinfo(skb)->nr_frags; |
| 1060 | cur_p = &lp->tx_bd_v[orig_tail_ptr]; |
| 1061 | |
| 1062 | if (axienet_check_tx_bd_space(lp, num_frag: num_frag + 1)) { |
| 1063 | /* Should not happen as last start_xmit call should have |
| 1064 | * checked for sufficient space and queue should only be |
| 1065 | * woken when sufficient space is available. |
| 1066 | */ |
| 1067 | netif_stop_queue(dev: ndev); |
| 1068 | if (net_ratelimit()) |
| 1069 | netdev_warn(dev: ndev, format: "TX ring unexpectedly full\n"); |
| 1070 | return NETDEV_TX_BUSY; |
| 1071 | } |
| 1072 | |
| 1073 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| 1074 | if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { |
| 1075 | /* Tx Full Checksum Offload Enabled */ |
| 1076 | cur_p->app0 |= 2; |
| 1077 | } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { |
| 1078 | csum_start_off = skb_transport_offset(skb); |
| 1079 | csum_index_off = csum_start_off + skb->csum_offset; |
| 1080 | /* Tx Partial Checksum Offload Enabled */ |
| 1081 | cur_p->app0 |= 1; |
| 1082 | cur_p->app1 = (csum_start_off << 16) | csum_index_off; |
| 1083 | } |
| 1084 | } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { |
| 1085 | cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */ |
| 1086 | } |
| 1087 | |
| 1088 | phys = dma_map_single(lp->dev, skb->data, |
| 1089 | skb_headlen(skb), DMA_TO_DEVICE); |
| 1090 | if (unlikely(dma_mapping_error(lp->dev, phys))) { |
| 1091 | if (net_ratelimit()) |
| 1092 | netdev_err(dev: ndev, format: "TX DMA mapping error\n"); |
| 1093 | ndev->stats.tx_dropped++; |
| 1094 | dev_kfree_skb_any(skb); |
| 1095 | return NETDEV_TX_OK; |
| 1096 | } |
| 1097 | desc_set_phys_addr(lp, addr: phys, desc: cur_p); |
| 1098 | cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK; |
| 1099 | |
| 1100 | for (ii = 0; ii < num_frag; ii++) { |
| 1101 | if (++new_tail_ptr >= lp->tx_bd_num) |
| 1102 | new_tail_ptr = 0; |
| 1103 | cur_p = &lp->tx_bd_v[new_tail_ptr]; |
| 1104 | frag = &skb_shinfo(skb)->frags[ii]; |
| 1105 | phys = dma_map_single(lp->dev, |
| 1106 | skb_frag_address(frag), |
| 1107 | skb_frag_size(frag), |
| 1108 | DMA_TO_DEVICE); |
| 1109 | if (unlikely(dma_mapping_error(lp->dev, phys))) { |
| 1110 | if (net_ratelimit()) |
| 1111 | netdev_err(dev: ndev, format: "TX DMA mapping error\n"); |
| 1112 | ndev->stats.tx_dropped++; |
| 1113 | axienet_free_tx_chain(lp, first_bd: orig_tail_ptr, nr_bds: ii + 1, |
| 1114 | force: true, NULL, budget: 0); |
| 1115 | dev_kfree_skb_any(skb); |
| 1116 | return NETDEV_TX_OK; |
| 1117 | } |
| 1118 | desc_set_phys_addr(lp, addr: phys, desc: cur_p); |
| 1119 | cur_p->cntrl = skb_frag_size(frag); |
| 1120 | } |
| 1121 | |
| 1122 | cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK; |
| 1123 | cur_p->skb = skb; |
| 1124 | |
| 1125 | tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr; |
| 1126 | if (++new_tail_ptr >= lp->tx_bd_num) |
| 1127 | new_tail_ptr = 0; |
| 1128 | WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr); |
| 1129 | netdev_sent_queue(dev: ndev, bytes: skb->len); |
| 1130 | |
| 1131 | /* Start the transfer */ |
| 1132 | axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, addr: tail_p); |
| 1133 | |
| 1134 | /* Stop queue if next transmit may not have space */ |
| 1135 | if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) { |
| 1136 | netif_stop_queue(dev: ndev); |
| 1137 | |
| 1138 | /* Matches barrier in axienet_tx_poll */ |
| 1139 | smp_mb(); |
| 1140 | |
| 1141 | /* Space might have just been freed - check again */ |
| 1142 | if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) |
| 1143 | netif_wake_queue(dev: ndev); |
| 1144 | } |
| 1145 | |
| 1146 | return NETDEV_TX_OK; |
| 1147 | } |
| 1148 | |
| 1149 | /** |
| 1150 | * axienet_dma_rx_cb - DMA engine callback for RX channel. |
| 1151 | * @data: Pointer to the skbuf_dma_descriptor structure. |
| 1152 | * @result: error reporting through dmaengine_result. |
| 1153 | * This function is called by dmaengine driver for RX channel to notify |
| 1154 | * that the packet is received. |
| 1155 | */ |
| 1156 | static void axienet_dma_rx_cb(void *data, const struct dmaengine_result *result) |
| 1157 | { |
| 1158 | struct skbuf_dma_descriptor *skbuf_dma; |
| 1159 | size_t meta_len, meta_max_len, rx_len; |
| 1160 | struct axienet_local *lp = data; |
| 1161 | struct sk_buff *skb; |
| 1162 | u32 *app_metadata; |
| 1163 | |
| 1164 | skbuf_dma = axienet_get_rx_desc(lp, i: lp->rx_ring_tail++); |
| 1165 | skb = skbuf_dma->skb; |
| 1166 | app_metadata = dmaengine_desc_get_metadata_ptr(desc: skbuf_dma->desc, payload_len: &meta_len, |
| 1167 | max_len: &meta_max_len); |
| 1168 | dma_unmap_single(lp->dev, skbuf_dma->dma_address, lp->max_frm_size, |
| 1169 | DMA_FROM_DEVICE); |
| 1170 | /* TODO: Derive app word index programmatically */ |
| 1171 | rx_len = (app_metadata[LEN_APP] & 0xFFFF); |
| 1172 | skb_put(skb, len: rx_len); |
| 1173 | skb->protocol = eth_type_trans(skb, dev: lp->ndev); |
| 1174 | skb->ip_summed = CHECKSUM_NONE; |
| 1175 | |
| 1176 | __netif_rx(skb); |
| 1177 | u64_stats_update_begin(syncp: &lp->rx_stat_sync); |
| 1178 | u64_stats_add(p: &lp->rx_packets, val: 1); |
| 1179 | u64_stats_add(p: &lp->rx_bytes, val: rx_len); |
| 1180 | u64_stats_update_end(syncp: &lp->rx_stat_sync); |
| 1181 | axienet_rx_submit_desc(ndev: lp->ndev); |
| 1182 | dma_async_issue_pending(chan: lp->rx_chan); |
| 1183 | } |
| 1184 | |
| 1185 | /** |
| 1186 | * axienet_rx_poll - Triggered by RX ISR to complete the BD processing. |
| 1187 | * @napi: Pointer to NAPI structure. |
| 1188 | * @budget: Max number of RX packets to process. |
| 1189 | * |
| 1190 | * Return: Number of RX packets processed. |
| 1191 | */ |
| 1192 | static int axienet_rx_poll(struct napi_struct *napi, int budget) |
| 1193 | { |
| 1194 | u32 length; |
| 1195 | u32 csumstatus; |
| 1196 | u32 size = 0; |
| 1197 | int packets = 0; |
| 1198 | dma_addr_t tail_p = 0; |
| 1199 | struct axidma_bd *cur_p; |
| 1200 | struct sk_buff *skb, *new_skb; |
| 1201 | struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx); |
| 1202 | |
| 1203 | cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; |
| 1204 | |
| 1205 | while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) { |
| 1206 | dma_addr_t phys; |
| 1207 | |
| 1208 | /* Ensure we see complete descriptor update */ |
| 1209 | dma_rmb(); |
| 1210 | |
| 1211 | skb = cur_p->skb; |
| 1212 | cur_p->skb = NULL; |
| 1213 | |
| 1214 | /* skb could be NULL if a previous pass already received the |
| 1215 | * packet for this slot in the ring, but failed to refill it |
| 1216 | * with a newly allocated buffer. In this case, don't try to |
| 1217 | * receive it again. |
| 1218 | */ |
| 1219 | if (likely(skb)) { |
| 1220 | length = cur_p->app4 & 0x0000FFFF; |
| 1221 | |
| 1222 | phys = desc_get_phys_addr(lp, desc: cur_p); |
| 1223 | dma_unmap_single(lp->dev, phys, lp->max_frm_size, |
| 1224 | DMA_FROM_DEVICE); |
| 1225 | |
| 1226 | skb_put(skb, len: length); |
| 1227 | skb->protocol = eth_type_trans(skb, dev: lp->ndev); |
| 1228 | /*skb_checksum_none_assert(skb);*/ |
| 1229 | skb->ip_summed = CHECKSUM_NONE; |
| 1230 | |
| 1231 | /* if we're doing Rx csum offload, set it up */ |
| 1232 | if (lp->features & XAE_FEATURE_FULL_RX_CSUM) { |
| 1233 | csumstatus = (cur_p->app2 & |
| 1234 | XAE_FULL_CSUM_STATUS_MASK) >> 3; |
| 1235 | if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED || |
| 1236 | csumstatus == XAE_IP_UDP_CSUM_VALIDATED) { |
| 1237 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 1238 | } |
| 1239 | } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) { |
| 1240 | skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF); |
| 1241 | skb->ip_summed = CHECKSUM_COMPLETE; |
| 1242 | } |
| 1243 | |
| 1244 | napi_gro_receive(napi, skb); |
| 1245 | |
| 1246 | size += length; |
| 1247 | packets++; |
| 1248 | } |
| 1249 | |
| 1250 | new_skb = napi_alloc_skb(napi, length: lp->max_frm_size); |
| 1251 | if (!new_skb) |
| 1252 | break; |
| 1253 | |
| 1254 | phys = dma_map_single(lp->dev, new_skb->data, |
| 1255 | lp->max_frm_size, |
| 1256 | DMA_FROM_DEVICE); |
| 1257 | if (unlikely(dma_mapping_error(lp->dev, phys))) { |
| 1258 | if (net_ratelimit()) |
| 1259 | netdev_err(dev: lp->ndev, format: "RX DMA mapping error\n"); |
| 1260 | dev_kfree_skb(new_skb); |
| 1261 | break; |
| 1262 | } |
| 1263 | desc_set_phys_addr(lp, addr: phys, desc: cur_p); |
| 1264 | |
| 1265 | cur_p->cntrl = lp->max_frm_size; |
| 1266 | cur_p->status = 0; |
| 1267 | cur_p->skb = new_skb; |
| 1268 | |
| 1269 | /* Only update tail_p to mark this slot as usable after it has |
| 1270 | * been successfully refilled. |
| 1271 | */ |
| 1272 | tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci; |
| 1273 | |
| 1274 | if (++lp->rx_bd_ci >= lp->rx_bd_num) |
| 1275 | lp->rx_bd_ci = 0; |
| 1276 | cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; |
| 1277 | } |
| 1278 | |
| 1279 | u64_stats_update_begin(syncp: &lp->rx_stat_sync); |
| 1280 | u64_stats_add(p: &lp->rx_packets, val: packets); |
| 1281 | u64_stats_add(p: &lp->rx_bytes, val: size); |
| 1282 | u64_stats_update_end(syncp: &lp->rx_stat_sync); |
| 1283 | |
| 1284 | if (tail_p) |
| 1285 | axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, addr: tail_p); |
| 1286 | |
| 1287 | if (packets < budget && napi_complete_done(n: napi, work_done: packets)) { |
| 1288 | if (READ_ONCE(lp->rx_dim_enabled)) { |
| 1289 | struct dim_sample sample = { |
| 1290 | .time = ktime_get(), |
| 1291 | /* Safe because we are the only writer */ |
| 1292 | .pkt_ctr = u64_stats_read(p: &lp->rx_packets), |
| 1293 | .byte_ctr = u64_stats_read(p: &lp->rx_bytes), |
| 1294 | .event_ctr = READ_ONCE(lp->rx_irqs), |
| 1295 | }; |
| 1296 | |
| 1297 | net_dim(dim: &lp->rx_dim, end_sample: &sample); |
| 1298 | } |
| 1299 | |
| 1300 | /* Re-enable RX completion interrupts. This should |
| 1301 | * cause an immediate interrupt if any RX packets are |
| 1302 | * already pending. |
| 1303 | */ |
| 1304 | spin_lock_irq(lock: &lp->rx_cr_lock); |
| 1305 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, value: lp->rx_dma_cr); |
| 1306 | spin_unlock_irq(lock: &lp->rx_cr_lock); |
| 1307 | } |
| 1308 | return packets; |
| 1309 | } |
| 1310 | |
| 1311 | /** |
| 1312 | * axienet_tx_irq - Tx Done Isr. |
| 1313 | * @irq: irq number |
| 1314 | * @_ndev: net_device pointer |
| 1315 | * |
| 1316 | * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise. |
| 1317 | * |
| 1318 | * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the |
| 1319 | * TX BD processing. |
| 1320 | */ |
| 1321 | static irqreturn_t axienet_tx_irq(int irq, void *_ndev) |
| 1322 | { |
| 1323 | unsigned int status; |
| 1324 | struct net_device *ndev = _ndev; |
| 1325 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 1326 | |
| 1327 | status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); |
| 1328 | |
| 1329 | if (!(status & XAXIDMA_IRQ_ALL_MASK)) |
| 1330 | return IRQ_NONE; |
| 1331 | |
| 1332 | axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, value: status); |
| 1333 | |
| 1334 | if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { |
| 1335 | netdev_err(dev: ndev, format: "DMA Tx error 0x%x\n", status); |
| 1336 | netdev_err(dev: ndev, format: "Current BD is at: 0x%x%08x\n", |
| 1337 | (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb, |
| 1338 | (lp->tx_bd_v[lp->tx_bd_ci]).phys); |
| 1339 | schedule_work(work: &lp->dma_err_task); |
| 1340 | } else { |
| 1341 | /* Disable further TX completion interrupts and schedule |
| 1342 | * NAPI to handle the completions. |
| 1343 | */ |
| 1344 | if (napi_schedule_prep(n: &lp->napi_tx)) { |
| 1345 | u32 cr; |
| 1346 | |
| 1347 | spin_lock(lock: &lp->tx_cr_lock); |
| 1348 | cr = lp->tx_dma_cr; |
| 1349 | cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); |
| 1350 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, value: cr); |
| 1351 | spin_unlock(lock: &lp->tx_cr_lock); |
| 1352 | __napi_schedule(n: &lp->napi_tx); |
| 1353 | } |
| 1354 | } |
| 1355 | |
| 1356 | return IRQ_HANDLED; |
| 1357 | } |
| 1358 | |
| 1359 | /** |
| 1360 | * axienet_rx_irq - Rx Isr. |
| 1361 | * @irq: irq number |
| 1362 | * @_ndev: net_device pointer |
| 1363 | * |
| 1364 | * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise. |
| 1365 | * |
| 1366 | * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD |
| 1367 | * processing. |
| 1368 | */ |
| 1369 | static irqreturn_t axienet_rx_irq(int irq, void *_ndev) |
| 1370 | { |
| 1371 | unsigned int status; |
| 1372 | struct net_device *ndev = _ndev; |
| 1373 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 1374 | |
| 1375 | status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); |
| 1376 | |
| 1377 | if (!(status & XAXIDMA_IRQ_ALL_MASK)) |
| 1378 | return IRQ_NONE; |
| 1379 | |
| 1380 | axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, value: status); |
| 1381 | |
| 1382 | if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { |
| 1383 | netdev_err(dev: ndev, format: "DMA Rx error 0x%x\n", status); |
| 1384 | netdev_err(dev: ndev, format: "Current BD is at: 0x%x%08x\n", |
| 1385 | (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb, |
| 1386 | (lp->rx_bd_v[lp->rx_bd_ci]).phys); |
| 1387 | schedule_work(work: &lp->dma_err_task); |
| 1388 | } else { |
| 1389 | /* Disable further RX completion interrupts and schedule |
| 1390 | * NAPI receive. |
| 1391 | */ |
| 1392 | WRITE_ONCE(lp->rx_irqs, READ_ONCE(lp->rx_irqs) + 1); |
| 1393 | if (napi_schedule_prep(n: &lp->napi_rx)) { |
| 1394 | u32 cr; |
| 1395 | |
| 1396 | spin_lock(lock: &lp->rx_cr_lock); |
| 1397 | cr = lp->rx_dma_cr; |
| 1398 | cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); |
| 1399 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, value: cr); |
| 1400 | spin_unlock(lock: &lp->rx_cr_lock); |
| 1401 | |
| 1402 | __napi_schedule(n: &lp->napi_rx); |
| 1403 | } |
| 1404 | } |
| 1405 | |
| 1406 | return IRQ_HANDLED; |
| 1407 | } |
| 1408 | |
| 1409 | /** |
| 1410 | * axienet_eth_irq - Ethernet core Isr. |
| 1411 | * @irq: irq number |
| 1412 | * @_ndev: net_device pointer |
| 1413 | * |
| 1414 | * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise. |
| 1415 | * |
| 1416 | * Handle miscellaneous conditions indicated by Ethernet core IRQ. |
| 1417 | */ |
| 1418 | static irqreturn_t axienet_eth_irq(int irq, void *_ndev) |
| 1419 | { |
| 1420 | struct net_device *ndev = _ndev; |
| 1421 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 1422 | unsigned int pending; |
| 1423 | |
| 1424 | pending = axienet_ior(lp, XAE_IP_OFFSET); |
| 1425 | if (!pending) |
| 1426 | return IRQ_NONE; |
| 1427 | |
| 1428 | if (pending & XAE_INT_RXFIFOOVR_MASK) |
| 1429 | ndev->stats.rx_missed_errors++; |
| 1430 | |
| 1431 | if (pending & XAE_INT_RXRJECT_MASK) |
| 1432 | ndev->stats.rx_dropped++; |
| 1433 | |
| 1434 | axienet_iow(lp, XAE_IS_OFFSET, value: pending); |
| 1435 | return IRQ_HANDLED; |
| 1436 | } |
| 1437 | |
| 1438 | static void axienet_dma_err_handler(struct work_struct *work); |
| 1439 | |
| 1440 | /** |
| 1441 | * axienet_rx_submit_desc - Submit the rx descriptors to dmaengine. |
| 1442 | * allocate skbuff, map the scatterlist and obtain a descriptor |
| 1443 | * and then add the callback information and submit descriptor. |
| 1444 | * |
| 1445 | * @ndev: net_device pointer |
| 1446 | * |
| 1447 | */ |
| 1448 | static void axienet_rx_submit_desc(struct net_device *ndev) |
| 1449 | { |
| 1450 | struct dma_async_tx_descriptor *dma_rx_desc = NULL; |
| 1451 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 1452 | struct skbuf_dma_descriptor *skbuf_dma; |
| 1453 | struct sk_buff *skb; |
| 1454 | dma_addr_t addr; |
| 1455 | |
| 1456 | skbuf_dma = axienet_get_rx_desc(lp, i: lp->rx_ring_head); |
| 1457 | if (!skbuf_dma) |
| 1458 | return; |
| 1459 | |
| 1460 | lp->rx_ring_head++; |
| 1461 | skb = netdev_alloc_skb(dev: ndev, length: lp->max_frm_size); |
| 1462 | if (!skb) |
| 1463 | return; |
| 1464 | |
| 1465 | sg_init_table(skbuf_dma->sgl, 1); |
| 1466 | addr = dma_map_single(lp->dev, skb->data, lp->max_frm_size, DMA_FROM_DEVICE); |
| 1467 | if (unlikely(dma_mapping_error(lp->dev, addr))) { |
| 1468 | if (net_ratelimit()) |
| 1469 | netdev_err(dev: ndev, format: "DMA mapping error\n"); |
| 1470 | goto rx_submit_err_free_skb; |
| 1471 | } |
| 1472 | sg_dma_address(skbuf_dma->sgl) = addr; |
| 1473 | sg_dma_len(skbuf_dma->sgl) = lp->max_frm_size; |
| 1474 | dma_rx_desc = dmaengine_prep_slave_sg(chan: lp->rx_chan, sgl: skbuf_dma->sgl, |
| 1475 | sg_len: 1, dir: DMA_DEV_TO_MEM, |
| 1476 | flags: DMA_PREP_INTERRUPT); |
| 1477 | if (!dma_rx_desc) |
| 1478 | goto rx_submit_err_unmap_skb; |
| 1479 | |
| 1480 | skbuf_dma->skb = skb; |
| 1481 | skbuf_dma->dma_address = sg_dma_address(skbuf_dma->sgl); |
| 1482 | skbuf_dma->desc = dma_rx_desc; |
| 1483 | dma_rx_desc->callback_param = lp; |
| 1484 | dma_rx_desc->callback_result = axienet_dma_rx_cb; |
| 1485 | dmaengine_submit(desc: dma_rx_desc); |
| 1486 | |
| 1487 | return; |
| 1488 | |
| 1489 | rx_submit_err_unmap_skb: |
| 1490 | dma_unmap_single(lp->dev, addr, lp->max_frm_size, DMA_FROM_DEVICE); |
| 1491 | rx_submit_err_free_skb: |
| 1492 | dev_kfree_skb(skb); |
| 1493 | } |
| 1494 | |
| 1495 | /** |
| 1496 | * axienet_init_dmaengine - init the dmaengine code. |
| 1497 | * @ndev: Pointer to net_device structure |
| 1498 | * |
| 1499 | * Return: 0, on success. |
| 1500 | * non-zero error value on failure |
| 1501 | * |
| 1502 | * This is the dmaengine initialization code. |
| 1503 | */ |
| 1504 | static int axienet_init_dmaengine(struct net_device *ndev) |
| 1505 | { |
| 1506 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 1507 | struct skbuf_dma_descriptor *skbuf_dma; |
| 1508 | int i, ret; |
| 1509 | |
| 1510 | lp->tx_chan = dma_request_chan(dev: lp->dev, name: "tx_chan0"); |
| 1511 | if (IS_ERR(ptr: lp->tx_chan)) { |
| 1512 | dev_err(lp->dev, "No Ethernet DMA (TX) channel found\n"); |
| 1513 | return PTR_ERR(ptr: lp->tx_chan); |
| 1514 | } |
| 1515 | |
| 1516 | lp->rx_chan = dma_request_chan(dev: lp->dev, name: "rx_chan0"); |
| 1517 | if (IS_ERR(ptr: lp->rx_chan)) { |
| 1518 | ret = PTR_ERR(ptr: lp->rx_chan); |
| 1519 | dev_err(lp->dev, "No Ethernet DMA (RX) channel found\n"); |
| 1520 | goto err_dma_release_tx; |
| 1521 | } |
| 1522 | |
| 1523 | lp->tx_ring_tail = 0; |
| 1524 | lp->tx_ring_head = 0; |
| 1525 | lp->rx_ring_tail = 0; |
| 1526 | lp->rx_ring_head = 0; |
| 1527 | lp->tx_skb_ring = kcalloc(TX_BD_NUM_MAX, sizeof(*lp->tx_skb_ring), |
| 1528 | GFP_KERNEL); |
| 1529 | if (!lp->tx_skb_ring) { |
| 1530 | ret = -ENOMEM; |
| 1531 | goto err_dma_release_rx; |
| 1532 | } |
| 1533 | for (i = 0; i < TX_BD_NUM_MAX; i++) { |
| 1534 | skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL); |
| 1535 | if (!skbuf_dma) { |
| 1536 | ret = -ENOMEM; |
| 1537 | goto err_free_tx_skb_ring; |
| 1538 | } |
| 1539 | lp->tx_skb_ring[i] = skbuf_dma; |
| 1540 | } |
| 1541 | |
| 1542 | lp->rx_skb_ring = kcalloc(RX_BUF_NUM_DEFAULT, sizeof(*lp->rx_skb_ring), |
| 1543 | GFP_KERNEL); |
| 1544 | if (!lp->rx_skb_ring) { |
| 1545 | ret = -ENOMEM; |
| 1546 | goto err_free_tx_skb_ring; |
| 1547 | } |
| 1548 | for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) { |
| 1549 | skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL); |
| 1550 | if (!skbuf_dma) { |
| 1551 | ret = -ENOMEM; |
| 1552 | goto err_free_rx_skb_ring; |
| 1553 | } |
| 1554 | lp->rx_skb_ring[i] = skbuf_dma; |
| 1555 | } |
| 1556 | /* TODO: Instead of BD_NUM_DEFAULT use runtime support */ |
| 1557 | for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) |
| 1558 | axienet_rx_submit_desc(ndev); |
| 1559 | dma_async_issue_pending(chan: lp->rx_chan); |
| 1560 | |
| 1561 | return 0; |
| 1562 | |
| 1563 | err_free_rx_skb_ring: |
| 1564 | for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) |
| 1565 | kfree(objp: lp->rx_skb_ring[i]); |
| 1566 | kfree(objp: lp->rx_skb_ring); |
| 1567 | err_free_tx_skb_ring: |
| 1568 | for (i = 0; i < TX_BD_NUM_MAX; i++) |
| 1569 | kfree(objp: lp->tx_skb_ring[i]); |
| 1570 | kfree(objp: lp->tx_skb_ring); |
| 1571 | err_dma_release_rx: |
| 1572 | dma_release_channel(chan: lp->rx_chan); |
| 1573 | err_dma_release_tx: |
| 1574 | dma_release_channel(chan: lp->tx_chan); |
| 1575 | return ret; |
| 1576 | } |
| 1577 | |
| 1578 | /** |
| 1579 | * axienet_init_legacy_dma - init the dma legacy code. |
| 1580 | * @ndev: Pointer to net_device structure |
| 1581 | * |
| 1582 | * Return: 0, on success. |
| 1583 | * non-zero error value on failure |
| 1584 | * |
| 1585 | * This is the dma initialization code. It also allocates interrupt |
| 1586 | * service routines, enables the interrupt lines and ISR handling. |
| 1587 | * |
| 1588 | */ |
| 1589 | static int axienet_init_legacy_dma(struct net_device *ndev) |
| 1590 | { |
| 1591 | int ret; |
| 1592 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 1593 | |
| 1594 | /* Enable worker thread for Axi DMA error handling */ |
| 1595 | lp->stopping = false; |
| 1596 | INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler); |
| 1597 | |
| 1598 | napi_enable(n: &lp->napi_rx); |
| 1599 | napi_enable(n: &lp->napi_tx); |
| 1600 | |
| 1601 | /* Enable interrupts for Axi DMA Tx */ |
| 1602 | ret = request_irq(irq: lp->tx_irq, handler: axienet_tx_irq, IRQF_SHARED, |
| 1603 | name: ndev->name, dev: ndev); |
| 1604 | if (ret) |
| 1605 | goto err_tx_irq; |
| 1606 | /* Enable interrupts for Axi DMA Rx */ |
| 1607 | ret = request_irq(irq: lp->rx_irq, handler: axienet_rx_irq, IRQF_SHARED, |
| 1608 | name: ndev->name, dev: ndev); |
| 1609 | if (ret) |
| 1610 | goto err_rx_irq; |
| 1611 | /* Enable interrupts for Axi Ethernet core (if defined) */ |
| 1612 | if (lp->eth_irq > 0) { |
| 1613 | ret = request_irq(irq: lp->eth_irq, handler: axienet_eth_irq, IRQF_SHARED, |
| 1614 | name: ndev->name, dev: ndev); |
| 1615 | if (ret) |
| 1616 | goto err_eth_irq; |
| 1617 | } |
| 1618 | |
| 1619 | return 0; |
| 1620 | |
| 1621 | err_eth_irq: |
| 1622 | free_irq(lp->rx_irq, ndev); |
| 1623 | err_rx_irq: |
| 1624 | free_irq(lp->tx_irq, ndev); |
| 1625 | err_tx_irq: |
| 1626 | napi_disable(n: &lp->napi_tx); |
| 1627 | napi_disable(n: &lp->napi_rx); |
| 1628 | cancel_work_sync(work: &lp->dma_err_task); |
| 1629 | dev_err(lp->dev, "request_irq() failed\n"); |
| 1630 | return ret; |
| 1631 | } |
| 1632 | |
| 1633 | /** |
| 1634 | * axienet_open - Driver open routine. |
| 1635 | * @ndev: Pointer to net_device structure |
| 1636 | * |
| 1637 | * Return: 0, on success. |
| 1638 | * non-zero error value on failure |
| 1639 | * |
| 1640 | * This is the driver open routine. It calls phylink_start to start the |
| 1641 | * PHY device. |
| 1642 | * It also allocates interrupt service routines, enables the interrupt lines |
| 1643 | * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer |
| 1644 | * descriptors are initialized. |
| 1645 | */ |
| 1646 | static int axienet_open(struct net_device *ndev) |
| 1647 | { |
| 1648 | int ret; |
| 1649 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 1650 | |
| 1651 | /* When we do an Axi Ethernet reset, it resets the complete core |
| 1652 | * including the MDIO. MDIO must be disabled before resetting. |
| 1653 | * Hold MDIO bus lock to avoid MDIO accesses during the reset. |
| 1654 | */ |
| 1655 | axienet_lock_mii(lp); |
| 1656 | ret = axienet_device_reset(ndev); |
| 1657 | axienet_unlock_mii(lp); |
| 1658 | |
| 1659 | ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, flags: 0); |
| 1660 | if (ret) { |
| 1661 | dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret); |
| 1662 | return ret; |
| 1663 | } |
| 1664 | |
| 1665 | phylink_start(lp->phylink); |
| 1666 | |
| 1667 | /* Start the statistics refresh work */ |
| 1668 | schedule_delayed_work(dwork: &lp->stats_work, delay: 0); |
| 1669 | |
| 1670 | if (lp->use_dmaengine) { |
| 1671 | /* Enable interrupts for Axi Ethernet core (if defined) */ |
| 1672 | if (lp->eth_irq > 0) { |
| 1673 | ret = request_irq(irq: lp->eth_irq, handler: axienet_eth_irq, IRQF_SHARED, |
| 1674 | name: ndev->name, dev: ndev); |
| 1675 | if (ret) |
| 1676 | goto err_phy; |
| 1677 | } |
| 1678 | |
| 1679 | ret = axienet_init_dmaengine(ndev); |
| 1680 | if (ret < 0) |
| 1681 | goto err_free_eth_irq; |
| 1682 | } else { |
| 1683 | ret = axienet_init_legacy_dma(ndev); |
| 1684 | if (ret) |
| 1685 | goto err_phy; |
| 1686 | } |
| 1687 | |
| 1688 | return 0; |
| 1689 | |
| 1690 | err_free_eth_irq: |
| 1691 | if (lp->eth_irq > 0) |
| 1692 | free_irq(lp->eth_irq, ndev); |
| 1693 | err_phy: |
| 1694 | cancel_work_sync(work: &lp->rx_dim.work); |
| 1695 | cancel_delayed_work_sync(dwork: &lp->stats_work); |
| 1696 | phylink_stop(lp->phylink); |
| 1697 | phylink_disconnect_phy(lp->phylink); |
| 1698 | return ret; |
| 1699 | } |
| 1700 | |
| 1701 | /** |
| 1702 | * axienet_stop - Driver stop routine. |
| 1703 | * @ndev: Pointer to net_device structure |
| 1704 | * |
| 1705 | * Return: 0, on success. |
| 1706 | * |
| 1707 | * This is the driver stop routine. It calls phylink_disconnect to stop the PHY |
| 1708 | * device. It also removes the interrupt handlers and disables the interrupts. |
| 1709 | * The Axi DMA Tx/Rx BDs are released. |
| 1710 | */ |
| 1711 | static int axienet_stop(struct net_device *ndev) |
| 1712 | { |
| 1713 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 1714 | int i; |
| 1715 | |
| 1716 | if (!lp->use_dmaengine) { |
| 1717 | WRITE_ONCE(lp->stopping, true); |
| 1718 | flush_work(work: &lp->dma_err_task); |
| 1719 | |
| 1720 | napi_disable(n: &lp->napi_tx); |
| 1721 | napi_disable(n: &lp->napi_rx); |
| 1722 | } |
| 1723 | |
| 1724 | cancel_work_sync(work: &lp->rx_dim.work); |
| 1725 | cancel_delayed_work_sync(dwork: &lp->stats_work); |
| 1726 | |
| 1727 | phylink_stop(lp->phylink); |
| 1728 | phylink_disconnect_phy(lp->phylink); |
| 1729 | |
| 1730 | axienet_setoptions(ndev, options: lp->options & |
| 1731 | ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
| 1732 | |
| 1733 | if (!lp->use_dmaengine) { |
| 1734 | axienet_dma_stop(lp); |
| 1735 | cancel_work_sync(work: &lp->dma_err_task); |
| 1736 | free_irq(lp->tx_irq, ndev); |
| 1737 | free_irq(lp->rx_irq, ndev); |
| 1738 | axienet_dma_bd_release(ndev); |
| 1739 | } else { |
| 1740 | dmaengine_terminate_sync(chan: lp->tx_chan); |
| 1741 | dmaengine_synchronize(chan: lp->tx_chan); |
| 1742 | dmaengine_terminate_sync(chan: lp->rx_chan); |
| 1743 | dmaengine_synchronize(chan: lp->rx_chan); |
| 1744 | |
| 1745 | for (i = 0; i < TX_BD_NUM_MAX; i++) |
| 1746 | kfree(objp: lp->tx_skb_ring[i]); |
| 1747 | kfree(objp: lp->tx_skb_ring); |
| 1748 | for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) |
| 1749 | kfree(objp: lp->rx_skb_ring[i]); |
| 1750 | kfree(objp: lp->rx_skb_ring); |
| 1751 | |
| 1752 | dma_release_channel(chan: lp->rx_chan); |
| 1753 | dma_release_channel(chan: lp->tx_chan); |
| 1754 | } |
| 1755 | |
| 1756 | netdev_reset_queue(dev_queue: ndev); |
| 1757 | axienet_iow(lp, XAE_IE_OFFSET, value: 0); |
| 1758 | |
| 1759 | if (lp->eth_irq > 0) |
| 1760 | free_irq(lp->eth_irq, ndev); |
| 1761 | return 0; |
| 1762 | } |
| 1763 | |
| 1764 | /** |
| 1765 | * axienet_change_mtu - Driver change mtu routine. |
| 1766 | * @ndev: Pointer to net_device structure |
| 1767 | * @new_mtu: New mtu value to be applied |
| 1768 | * |
| 1769 | * Return: Always returns 0 (success). |
| 1770 | * |
| 1771 | * This is the change mtu driver routine. It checks if the Axi Ethernet |
| 1772 | * hardware supports jumbo frames before changing the mtu. This can be |
| 1773 | * called only when the device is not up. |
| 1774 | */ |
| 1775 | static int axienet_change_mtu(struct net_device *ndev, int new_mtu) |
| 1776 | { |
| 1777 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 1778 | |
| 1779 | if (netif_running(dev: ndev)) |
| 1780 | return -EBUSY; |
| 1781 | |
| 1782 | if ((new_mtu + VLAN_ETH_HLEN + |
| 1783 | XAE_TRL_SIZE) > lp->rxmem) |
| 1784 | return -EINVAL; |
| 1785 | |
| 1786 | WRITE_ONCE(ndev->mtu, new_mtu); |
| 1787 | |
| 1788 | return 0; |
| 1789 | } |
| 1790 | |
| 1791 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 1792 | /** |
| 1793 | * axienet_poll_controller - Axi Ethernet poll mechanism. |
| 1794 | * @ndev: Pointer to net_device structure |
| 1795 | * |
| 1796 | * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior |
| 1797 | * to polling the ISRs and are enabled back after the polling is done. |
| 1798 | */ |
| 1799 | static void axienet_poll_controller(struct net_device *ndev) |
| 1800 | { |
| 1801 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 1802 | |
| 1803 | disable_irq(irq: lp->tx_irq); |
| 1804 | disable_irq(irq: lp->rx_irq); |
| 1805 | axienet_rx_irq(irq: lp->tx_irq, ndev: ndev); |
| 1806 | axienet_tx_irq(irq: lp->rx_irq, ndev: ndev); |
| 1807 | enable_irq(irq: lp->tx_irq); |
| 1808 | enable_irq(irq: lp->rx_irq); |
| 1809 | } |
| 1810 | #endif |
| 1811 | |
| 1812 | static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| 1813 | { |
| 1814 | struct axienet_local *lp = netdev_priv(dev); |
| 1815 | |
| 1816 | if (!netif_running(dev)) |
| 1817 | return -EINVAL; |
| 1818 | |
| 1819 | return phylink_mii_ioctl(lp->phylink, rq, cmd); |
| 1820 | } |
| 1821 | |
| 1822 | static void |
| 1823 | axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) |
| 1824 | { |
| 1825 | struct axienet_local *lp = netdev_priv(dev); |
| 1826 | unsigned int start; |
| 1827 | |
| 1828 | netdev_stats_to_stats64(stats64: stats, netdev_stats: &dev->stats); |
| 1829 | |
| 1830 | do { |
| 1831 | start = u64_stats_fetch_begin(syncp: &lp->rx_stat_sync); |
| 1832 | stats->rx_packets = u64_stats_read(p: &lp->rx_packets); |
| 1833 | stats->rx_bytes = u64_stats_read(p: &lp->rx_bytes); |
| 1834 | } while (u64_stats_fetch_retry(syncp: &lp->rx_stat_sync, start)); |
| 1835 | |
| 1836 | do { |
| 1837 | start = u64_stats_fetch_begin(syncp: &lp->tx_stat_sync); |
| 1838 | stats->tx_packets = u64_stats_read(p: &lp->tx_packets); |
| 1839 | stats->tx_bytes = u64_stats_read(p: &lp->tx_bytes); |
| 1840 | } while (u64_stats_fetch_retry(syncp: &lp->tx_stat_sync, start)); |
| 1841 | |
| 1842 | if (!(lp->features & XAE_FEATURE_STATS)) |
| 1843 | return; |
| 1844 | |
| 1845 | do { |
| 1846 | start = read_seqcount_begin(&lp->hw_stats_seqcount); |
| 1847 | stats->rx_length_errors = |
| 1848 | axienet_stat(lp, stat: STAT_RX_LENGTH_ERRORS); |
| 1849 | stats->rx_crc_errors = axienet_stat(lp, stat: STAT_RX_FCS_ERRORS); |
| 1850 | stats->rx_frame_errors = |
| 1851 | axienet_stat(lp, stat: STAT_RX_ALIGNMENT_ERRORS); |
| 1852 | stats->rx_errors = axienet_stat(lp, stat: STAT_UNDERSIZE_FRAMES) + |
| 1853 | axienet_stat(lp, stat: STAT_FRAGMENT_FRAMES) + |
| 1854 | stats->rx_length_errors + |
| 1855 | stats->rx_crc_errors + |
| 1856 | stats->rx_frame_errors; |
| 1857 | stats->multicast = axienet_stat(lp, stat: STAT_RX_MULTICAST_FRAMES); |
| 1858 | |
| 1859 | stats->tx_aborted_errors = |
| 1860 | axienet_stat(lp, stat: STAT_TX_EXCESS_COLLISIONS); |
| 1861 | stats->tx_fifo_errors = |
| 1862 | axienet_stat(lp, stat: STAT_TX_UNDERRUN_ERRORS); |
| 1863 | stats->tx_window_errors = |
| 1864 | axienet_stat(lp, stat: STAT_TX_LATE_COLLISIONS); |
| 1865 | stats->tx_errors = axienet_stat(lp, stat: STAT_TX_EXCESS_DEFERRAL) + |
| 1866 | stats->tx_aborted_errors + |
| 1867 | stats->tx_fifo_errors + |
| 1868 | stats->tx_window_errors; |
| 1869 | } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); |
| 1870 | } |
| 1871 | |
| 1872 | static const struct net_device_ops axienet_netdev_ops = { |
| 1873 | .ndo_open = axienet_open, |
| 1874 | .ndo_stop = axienet_stop, |
| 1875 | .ndo_start_xmit = axienet_start_xmit, |
| 1876 | .ndo_get_stats64 = axienet_get_stats64, |
| 1877 | .ndo_change_mtu = axienet_change_mtu, |
| 1878 | .ndo_set_mac_address = netdev_set_mac_address, |
| 1879 | .ndo_validate_addr = eth_validate_addr, |
| 1880 | .ndo_eth_ioctl = axienet_ioctl, |
| 1881 | .ndo_set_rx_mode = axienet_set_multicast_list, |
| 1882 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 1883 | .ndo_poll_controller = axienet_poll_controller, |
| 1884 | #endif |
| 1885 | }; |
| 1886 | |
| 1887 | static const struct net_device_ops axienet_netdev_dmaengine_ops = { |
| 1888 | .ndo_open = axienet_open, |
| 1889 | .ndo_stop = axienet_stop, |
| 1890 | .ndo_start_xmit = axienet_start_xmit_dmaengine, |
| 1891 | .ndo_get_stats64 = axienet_get_stats64, |
| 1892 | .ndo_change_mtu = axienet_change_mtu, |
| 1893 | .ndo_set_mac_address = netdev_set_mac_address, |
| 1894 | .ndo_validate_addr = eth_validate_addr, |
| 1895 | .ndo_eth_ioctl = axienet_ioctl, |
| 1896 | .ndo_set_rx_mode = axienet_set_multicast_list, |
| 1897 | }; |
| 1898 | |
| 1899 | /** |
| 1900 | * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information. |
| 1901 | * @ndev: Pointer to net_device structure |
| 1902 | * @ed: Pointer to ethtool_drvinfo structure |
| 1903 | * |
| 1904 | * This implements ethtool command for getting the driver information. |
| 1905 | * Issue "ethtool -i ethX" under linux prompt to execute this function. |
| 1906 | */ |
| 1907 | static void axienet_ethtools_get_drvinfo(struct net_device *ndev, |
| 1908 | struct ethtool_drvinfo *ed) |
| 1909 | { |
| 1910 | strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver)); |
| 1911 | strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version)); |
| 1912 | } |
| 1913 | |
| 1914 | /** |
| 1915 | * axienet_ethtools_get_regs_len - Get the total regs length present in the |
| 1916 | * AxiEthernet core. |
| 1917 | * @ndev: Pointer to net_device structure |
| 1918 | * |
| 1919 | * This implements ethtool command for getting the total register length |
| 1920 | * information. |
| 1921 | * |
| 1922 | * Return: the total regs length |
| 1923 | */ |
| 1924 | static int axienet_ethtools_get_regs_len(struct net_device *ndev) |
| 1925 | { |
| 1926 | return sizeof(u32) * AXIENET_REGS_N; |
| 1927 | } |
| 1928 | |
| 1929 | /** |
| 1930 | * axienet_ethtools_get_regs - Dump the contents of all registers present |
| 1931 | * in AxiEthernet core. |
| 1932 | * @ndev: Pointer to net_device structure |
| 1933 | * @regs: Pointer to ethtool_regs structure |
| 1934 | * @ret: Void pointer used to return the contents of the registers. |
| 1935 | * |
| 1936 | * This implements ethtool command for getting the Axi Ethernet register dump. |
| 1937 | * Issue "ethtool -d ethX" to execute this function. |
| 1938 | */ |
| 1939 | static void axienet_ethtools_get_regs(struct net_device *ndev, |
| 1940 | struct ethtool_regs *regs, void *ret) |
| 1941 | { |
| 1942 | u32 *data = (u32 *)ret; |
| 1943 | size_t len = sizeof(u32) * AXIENET_REGS_N; |
| 1944 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 1945 | |
| 1946 | regs->version = 0; |
| 1947 | regs->len = len; |
| 1948 | |
| 1949 | memset(data, 0, len); |
| 1950 | data[0] = axienet_ior(lp, XAE_RAF_OFFSET); |
| 1951 | data[1] = axienet_ior(lp, XAE_TPF_OFFSET); |
| 1952 | data[2] = axienet_ior(lp, XAE_IFGP_OFFSET); |
| 1953 | data[3] = axienet_ior(lp, XAE_IS_OFFSET); |
| 1954 | data[4] = axienet_ior(lp, XAE_IP_OFFSET); |
| 1955 | data[5] = axienet_ior(lp, XAE_IE_OFFSET); |
| 1956 | data[6] = axienet_ior(lp, XAE_TTAG_OFFSET); |
| 1957 | data[7] = axienet_ior(lp, XAE_RTAG_OFFSET); |
| 1958 | data[8] = axienet_ior(lp, XAE_UAWL_OFFSET); |
| 1959 | data[9] = axienet_ior(lp, XAE_UAWU_OFFSET); |
| 1960 | data[10] = axienet_ior(lp, XAE_TPID0_OFFSET); |
| 1961 | data[11] = axienet_ior(lp, XAE_TPID1_OFFSET); |
| 1962 | data[12] = axienet_ior(lp, XAE_PPST_OFFSET); |
| 1963 | data[13] = axienet_ior(lp, XAE_RCW0_OFFSET); |
| 1964 | data[14] = axienet_ior(lp, XAE_RCW1_OFFSET); |
| 1965 | data[15] = axienet_ior(lp, XAE_TC_OFFSET); |
| 1966 | data[16] = axienet_ior(lp, XAE_FCC_OFFSET); |
| 1967 | data[17] = axienet_ior(lp, XAE_EMMC_OFFSET); |
| 1968 | data[18] = axienet_ior(lp, XAE_PHYC_OFFSET); |
| 1969 | data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET); |
| 1970 | data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET); |
| 1971 | data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET); |
| 1972 | data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET); |
| 1973 | data[27] = axienet_ior(lp, XAE_UAW0_OFFSET); |
| 1974 | data[28] = axienet_ior(lp, XAE_UAW1_OFFSET); |
| 1975 | data[29] = axienet_ior(lp, XAE_FMI_OFFSET); |
| 1976 | data[30] = axienet_ior(lp, XAE_AF0_OFFSET); |
| 1977 | data[31] = axienet_ior(lp, XAE_AF1_OFFSET); |
| 1978 | if (!lp->use_dmaengine) { |
| 1979 | data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
| 1980 | data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); |
| 1981 | data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET); |
| 1982 | data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET); |
| 1983 | data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
| 1984 | data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); |
| 1985 | data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET); |
| 1986 | data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET); |
| 1987 | } |
| 1988 | } |
| 1989 | |
| 1990 | static void |
| 1991 | axienet_ethtools_get_ringparam(struct net_device *ndev, |
| 1992 | struct ethtool_ringparam *ering, |
| 1993 | struct kernel_ethtool_ringparam *kernel_ering, |
| 1994 | struct netlink_ext_ack *extack) |
| 1995 | { |
| 1996 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 1997 | |
| 1998 | ering->rx_max_pending = RX_BD_NUM_MAX; |
| 1999 | ering->rx_mini_max_pending = 0; |
| 2000 | ering->rx_jumbo_max_pending = 0; |
| 2001 | ering->tx_max_pending = TX_BD_NUM_MAX; |
| 2002 | ering->rx_pending = lp->rx_bd_num; |
| 2003 | ering->rx_mini_pending = 0; |
| 2004 | ering->rx_jumbo_pending = 0; |
| 2005 | ering->tx_pending = lp->tx_bd_num; |
| 2006 | } |
| 2007 | |
| 2008 | static int |
| 2009 | axienet_ethtools_set_ringparam(struct net_device *ndev, |
| 2010 | struct ethtool_ringparam *ering, |
| 2011 | struct kernel_ethtool_ringparam *kernel_ering, |
| 2012 | struct netlink_ext_ack *extack) |
| 2013 | { |
| 2014 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 2015 | |
| 2016 | if (ering->rx_pending > RX_BD_NUM_MAX || |
| 2017 | ering->rx_mini_pending || |
| 2018 | ering->rx_jumbo_pending || |
| 2019 | ering->tx_pending < TX_BD_NUM_MIN || |
| 2020 | ering->tx_pending > TX_BD_NUM_MAX) |
| 2021 | return -EINVAL; |
| 2022 | |
| 2023 | if (netif_running(dev: ndev)) |
| 2024 | return -EBUSY; |
| 2025 | |
| 2026 | lp->rx_bd_num = ering->rx_pending; |
| 2027 | lp->tx_bd_num = ering->tx_pending; |
| 2028 | return 0; |
| 2029 | } |
| 2030 | |
| 2031 | /** |
| 2032 | * axienet_ethtools_get_pauseparam - Get the pause parameter setting for |
| 2033 | * Tx and Rx paths. |
| 2034 | * @ndev: Pointer to net_device structure |
| 2035 | * @epauseparm: Pointer to ethtool_pauseparam structure. |
| 2036 | * |
| 2037 | * This implements ethtool command for getting axi ethernet pause frame |
| 2038 | * setting. Issue "ethtool -a ethX" to execute this function. |
| 2039 | */ |
| 2040 | static void |
| 2041 | axienet_ethtools_get_pauseparam(struct net_device *ndev, |
| 2042 | struct ethtool_pauseparam *epauseparm) |
| 2043 | { |
| 2044 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 2045 | |
| 2046 | phylink_ethtool_get_pauseparam(lp->phylink, epauseparm); |
| 2047 | } |
| 2048 | |
| 2049 | /** |
| 2050 | * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control) |
| 2051 | * settings. |
| 2052 | * @ndev: Pointer to net_device structure |
| 2053 | * @epauseparm:Pointer to ethtool_pauseparam structure |
| 2054 | * |
| 2055 | * This implements ethtool command for enabling flow control on Rx and Tx |
| 2056 | * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this |
| 2057 | * function. |
| 2058 | * |
| 2059 | * Return: 0 on success, -EFAULT if device is running |
| 2060 | */ |
| 2061 | static int |
| 2062 | axienet_ethtools_set_pauseparam(struct net_device *ndev, |
| 2063 | struct ethtool_pauseparam *epauseparm) |
| 2064 | { |
| 2065 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 2066 | |
| 2067 | return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm); |
| 2068 | } |
| 2069 | |
| 2070 | /** |
| 2071 | * axienet_update_coalesce_rx() - Set RX CR |
| 2072 | * @lp: Device private data |
| 2073 | * @cr: Value to write to the RX CR |
| 2074 | * @mask: Bits to set from @cr |
| 2075 | */ |
| 2076 | static void axienet_update_coalesce_rx(struct axienet_local *lp, u32 cr, |
| 2077 | u32 mask) |
| 2078 | { |
| 2079 | spin_lock_irq(lock: &lp->rx_cr_lock); |
| 2080 | lp->rx_dma_cr &= ~mask; |
| 2081 | lp->rx_dma_cr |= cr; |
| 2082 | /* If DMA isn't started, then the settings will be applied the next |
| 2083 | * time dma_start() is called. |
| 2084 | */ |
| 2085 | if (lp->rx_dma_started) { |
| 2086 | u32 reg = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
| 2087 | |
| 2088 | /* Don't enable IRQs if they are disabled by NAPI */ |
| 2089 | if (reg & XAXIDMA_IRQ_ALL_MASK) |
| 2090 | cr = lp->rx_dma_cr; |
| 2091 | else |
| 2092 | cr = lp->rx_dma_cr & ~XAXIDMA_IRQ_ALL_MASK; |
| 2093 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, value: cr); |
| 2094 | } |
| 2095 | spin_unlock_irq(lock: &lp->rx_cr_lock); |
| 2096 | } |
| 2097 | |
| 2098 | /** |
| 2099 | * axienet_dim_coalesce_count_rx() - RX coalesce count for DIM |
| 2100 | * @lp: Device private data |
| 2101 | */ |
| 2102 | static u32 axienet_dim_coalesce_count_rx(struct axienet_local *lp) |
| 2103 | { |
| 2104 | return min(1 << (lp->rx_dim.profile_ix << 1), 255); |
| 2105 | } |
| 2106 | |
| 2107 | /** |
| 2108 | * axienet_rx_dim_work() - Adjust RX DIM settings |
| 2109 | * @work: The work struct |
| 2110 | */ |
| 2111 | static void axienet_rx_dim_work(struct work_struct *work) |
| 2112 | { |
| 2113 | struct axienet_local *lp = |
| 2114 | container_of(work, struct axienet_local, rx_dim.work); |
| 2115 | u32 cr = axienet_calc_cr(lp, count: axienet_dim_coalesce_count_rx(lp), usec: 0); |
| 2116 | u32 mask = XAXIDMA_COALESCE_MASK | XAXIDMA_IRQ_IOC_MASK | |
| 2117 | XAXIDMA_IRQ_ERROR_MASK; |
| 2118 | |
| 2119 | axienet_update_coalesce_rx(lp, cr, mask); |
| 2120 | lp->rx_dim.state = DIM_START_MEASURE; |
| 2121 | } |
| 2122 | |
| 2123 | /** |
| 2124 | * axienet_update_coalesce_tx() - Set TX CR |
| 2125 | * @lp: Device private data |
| 2126 | * @cr: Value to write to the TX CR |
| 2127 | * @mask: Bits to set from @cr |
| 2128 | */ |
| 2129 | static void axienet_update_coalesce_tx(struct axienet_local *lp, u32 cr, |
| 2130 | u32 mask) |
| 2131 | { |
| 2132 | spin_lock_irq(lock: &lp->tx_cr_lock); |
| 2133 | lp->tx_dma_cr &= ~mask; |
| 2134 | lp->tx_dma_cr |= cr; |
| 2135 | /* If DMA isn't started, then the settings will be applied the next |
| 2136 | * time dma_start() is called. |
| 2137 | */ |
| 2138 | if (lp->tx_dma_started) { |
| 2139 | u32 reg = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
| 2140 | |
| 2141 | /* Don't enable IRQs if they are disabled by NAPI */ |
| 2142 | if (reg & XAXIDMA_IRQ_ALL_MASK) |
| 2143 | cr = lp->tx_dma_cr; |
| 2144 | else |
| 2145 | cr = lp->tx_dma_cr & ~XAXIDMA_IRQ_ALL_MASK; |
| 2146 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, value: cr); |
| 2147 | } |
| 2148 | spin_unlock_irq(lock: &lp->tx_cr_lock); |
| 2149 | } |
| 2150 | |
| 2151 | /** |
| 2152 | * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count. |
| 2153 | * @ndev: Pointer to net_device structure |
| 2154 | * @ecoalesce: Pointer to ethtool_coalesce structure |
| 2155 | * @kernel_coal: ethtool CQE mode setting structure |
| 2156 | * @extack: extack for reporting error messages |
| 2157 | * |
| 2158 | * This implements ethtool command for getting the DMA interrupt coalescing |
| 2159 | * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to |
| 2160 | * execute this function. |
| 2161 | * |
| 2162 | * Return: 0 always |
| 2163 | */ |
| 2164 | static int |
| 2165 | axienet_ethtools_get_coalesce(struct net_device *ndev, |
| 2166 | struct ethtool_coalesce *ecoalesce, |
| 2167 | struct kernel_ethtool_coalesce *kernel_coal, |
| 2168 | struct netlink_ext_ack *extack) |
| 2169 | { |
| 2170 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 2171 | u32 cr; |
| 2172 | |
| 2173 | ecoalesce->use_adaptive_rx_coalesce = lp->rx_dim_enabled; |
| 2174 | |
| 2175 | spin_lock_irq(lock: &lp->rx_cr_lock); |
| 2176 | cr = lp->rx_dma_cr; |
| 2177 | spin_unlock_irq(lock: &lp->rx_cr_lock); |
| 2178 | axienet_coalesce_params(lp, cr, |
| 2179 | count: &ecoalesce->rx_max_coalesced_frames, |
| 2180 | usec: &ecoalesce->rx_coalesce_usecs); |
| 2181 | |
| 2182 | spin_lock_irq(lock: &lp->tx_cr_lock); |
| 2183 | cr = lp->tx_dma_cr; |
| 2184 | spin_unlock_irq(lock: &lp->tx_cr_lock); |
| 2185 | axienet_coalesce_params(lp, cr, |
| 2186 | count: &ecoalesce->tx_max_coalesced_frames, |
| 2187 | usec: &ecoalesce->tx_coalesce_usecs); |
| 2188 | return 0; |
| 2189 | } |
| 2190 | |
| 2191 | /** |
| 2192 | * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count. |
| 2193 | * @ndev: Pointer to net_device structure |
| 2194 | * @ecoalesce: Pointer to ethtool_coalesce structure |
| 2195 | * @kernel_coal: ethtool CQE mode setting structure |
| 2196 | * @extack: extack for reporting error messages |
| 2197 | * |
| 2198 | * This implements ethtool command for setting the DMA interrupt coalescing |
| 2199 | * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux |
| 2200 | * prompt to execute this function. |
| 2201 | * |
| 2202 | * Return: 0, on success, Non-zero error value on failure. |
| 2203 | */ |
| 2204 | static int |
| 2205 | axienet_ethtools_set_coalesce(struct net_device *ndev, |
| 2206 | struct ethtool_coalesce *ecoalesce, |
| 2207 | struct kernel_ethtool_coalesce *kernel_coal, |
| 2208 | struct netlink_ext_ack *extack) |
| 2209 | { |
| 2210 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 2211 | bool new_dim = ecoalesce->use_adaptive_rx_coalesce; |
| 2212 | bool old_dim = lp->rx_dim_enabled; |
| 2213 | u32 cr, mask = ~XAXIDMA_CR_RUNSTOP_MASK; |
| 2214 | |
| 2215 | if (ecoalesce->rx_max_coalesced_frames > 255 || |
| 2216 | ecoalesce->tx_max_coalesced_frames > 255) { |
| 2217 | NL_SET_ERR_MSG(extack, "frames must be less than 256"); |
| 2218 | return -EINVAL; |
| 2219 | } |
| 2220 | |
| 2221 | if (!ecoalesce->rx_max_coalesced_frames || |
| 2222 | !ecoalesce->tx_max_coalesced_frames) { |
| 2223 | NL_SET_ERR_MSG(extack, "frames must be non-zero"); |
| 2224 | return -EINVAL; |
| 2225 | } |
| 2226 | |
| 2227 | if (((ecoalesce->rx_max_coalesced_frames > 1 || new_dim) && |
| 2228 | !ecoalesce->rx_coalesce_usecs) || |
| 2229 | (ecoalesce->tx_max_coalesced_frames > 1 && |
| 2230 | !ecoalesce->tx_coalesce_usecs)) { |
| 2231 | NL_SET_ERR_MSG(extack, |
| 2232 | "usecs must be non-zero when frames is greater than one"); |
| 2233 | return -EINVAL; |
| 2234 | } |
| 2235 | |
| 2236 | if (new_dim && !old_dim) { |
| 2237 | cr = axienet_calc_cr(lp, count: axienet_dim_coalesce_count_rx(lp), |
| 2238 | usec: ecoalesce->rx_coalesce_usecs); |
| 2239 | } else if (!new_dim) { |
| 2240 | if (old_dim) { |
| 2241 | WRITE_ONCE(lp->rx_dim_enabled, false); |
| 2242 | napi_synchronize(n: &lp->napi_rx); |
| 2243 | flush_work(work: &lp->rx_dim.work); |
| 2244 | } |
| 2245 | |
| 2246 | cr = axienet_calc_cr(lp, count: ecoalesce->rx_max_coalesced_frames, |
| 2247 | usec: ecoalesce->rx_coalesce_usecs); |
| 2248 | } else { |
| 2249 | /* Dummy value for count just to calculate timer */ |
| 2250 | cr = axienet_calc_cr(lp, count: 2, usec: ecoalesce->rx_coalesce_usecs); |
| 2251 | mask = XAXIDMA_DELAY_MASK | XAXIDMA_IRQ_DELAY_MASK; |
| 2252 | } |
| 2253 | |
| 2254 | axienet_update_coalesce_rx(lp, cr, mask); |
| 2255 | if (new_dim && !old_dim) |
| 2256 | WRITE_ONCE(lp->rx_dim_enabled, true); |
| 2257 | |
| 2258 | cr = axienet_calc_cr(lp, count: ecoalesce->tx_max_coalesced_frames, |
| 2259 | usec: ecoalesce->tx_coalesce_usecs); |
| 2260 | axienet_update_coalesce_tx(lp, cr, mask: ~XAXIDMA_CR_RUNSTOP_MASK); |
| 2261 | return 0; |
| 2262 | } |
| 2263 | |
| 2264 | static int |
| 2265 | axienet_ethtools_get_link_ksettings(struct net_device *ndev, |
| 2266 | struct ethtool_link_ksettings *cmd) |
| 2267 | { |
| 2268 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 2269 | |
| 2270 | return phylink_ethtool_ksettings_get(lp->phylink, cmd); |
| 2271 | } |
| 2272 | |
| 2273 | static int |
| 2274 | axienet_ethtools_set_link_ksettings(struct net_device *ndev, |
| 2275 | const struct ethtool_link_ksettings *cmd) |
| 2276 | { |
| 2277 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 2278 | |
| 2279 | return phylink_ethtool_ksettings_set(lp->phylink, cmd); |
| 2280 | } |
| 2281 | |
| 2282 | static int axienet_ethtools_nway_reset(struct net_device *dev) |
| 2283 | { |
| 2284 | struct axienet_local *lp = netdev_priv(dev); |
| 2285 | |
| 2286 | return phylink_ethtool_nway_reset(lp->phylink); |
| 2287 | } |
| 2288 | |
| 2289 | static void axienet_ethtools_get_ethtool_stats(struct net_device *dev, |
| 2290 | struct ethtool_stats *stats, |
| 2291 | u64 *data) |
| 2292 | { |
| 2293 | struct axienet_local *lp = netdev_priv(dev); |
| 2294 | unsigned int start; |
| 2295 | |
| 2296 | do { |
| 2297 | start = read_seqcount_begin(&lp->hw_stats_seqcount); |
| 2298 | data[0] = axienet_stat(lp, stat: STAT_RX_BYTES); |
| 2299 | data[1] = axienet_stat(lp, stat: STAT_TX_BYTES); |
| 2300 | data[2] = axienet_stat(lp, stat: STAT_RX_VLAN_FRAMES); |
| 2301 | data[3] = axienet_stat(lp, stat: STAT_TX_VLAN_FRAMES); |
| 2302 | data[6] = axienet_stat(lp, stat: STAT_TX_PFC_FRAMES); |
| 2303 | data[7] = axienet_stat(lp, stat: STAT_RX_PFC_FRAMES); |
| 2304 | data[8] = axienet_stat(lp, stat: STAT_USER_DEFINED0); |
| 2305 | data[9] = axienet_stat(lp, stat: STAT_USER_DEFINED1); |
| 2306 | data[10] = axienet_stat(lp, stat: STAT_USER_DEFINED2); |
| 2307 | } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); |
| 2308 | } |
| 2309 | |
| 2310 | static const char axienet_ethtool_stats_strings[][ETH_GSTRING_LEN] = { |
| 2311 | "Received bytes", |
| 2312 | "Transmitted bytes", |
| 2313 | "RX Good VLAN Tagged Frames", |
| 2314 | "TX Good VLAN Tagged Frames", |
| 2315 | "TX Good PFC Frames", |
| 2316 | "RX Good PFC Frames", |
| 2317 | "User Defined Counter 0", |
| 2318 | "User Defined Counter 1", |
| 2319 | "User Defined Counter 2", |
| 2320 | }; |
| 2321 | |
| 2322 | static void axienet_ethtools_get_strings(struct net_device *dev, u32 stringset, u8 *data) |
| 2323 | { |
| 2324 | switch (stringset) { |
| 2325 | case ETH_SS_STATS: |
| 2326 | memcpy(data, axienet_ethtool_stats_strings, |
| 2327 | sizeof(axienet_ethtool_stats_strings)); |
| 2328 | break; |
| 2329 | } |
| 2330 | } |
| 2331 | |
| 2332 | static int axienet_ethtools_get_sset_count(struct net_device *dev, int sset) |
| 2333 | { |
| 2334 | struct axienet_local *lp = netdev_priv(dev); |
| 2335 | |
| 2336 | switch (sset) { |
| 2337 | case ETH_SS_STATS: |
| 2338 | if (lp->features & XAE_FEATURE_STATS) |
| 2339 | return ARRAY_SIZE(axienet_ethtool_stats_strings); |
| 2340 | fallthrough; |
| 2341 | default: |
| 2342 | return -EOPNOTSUPP; |
| 2343 | } |
| 2344 | } |
| 2345 | |
| 2346 | static void |
| 2347 | axienet_ethtools_get_pause_stats(struct net_device *dev, |
| 2348 | struct ethtool_pause_stats *pause_stats) |
| 2349 | { |
| 2350 | struct axienet_local *lp = netdev_priv(dev); |
| 2351 | unsigned int start; |
| 2352 | |
| 2353 | if (!(lp->features & XAE_FEATURE_STATS)) |
| 2354 | return; |
| 2355 | |
| 2356 | do { |
| 2357 | start = read_seqcount_begin(&lp->hw_stats_seqcount); |
| 2358 | pause_stats->tx_pause_frames = |
| 2359 | axienet_stat(lp, stat: STAT_TX_PAUSE_FRAMES); |
| 2360 | pause_stats->rx_pause_frames = |
| 2361 | axienet_stat(lp, stat: STAT_RX_PAUSE_FRAMES); |
| 2362 | } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); |
| 2363 | } |
| 2364 | |
| 2365 | static void |
| 2366 | axienet_ethtool_get_eth_mac_stats(struct net_device *dev, |
| 2367 | struct ethtool_eth_mac_stats *mac_stats) |
| 2368 | { |
| 2369 | struct axienet_local *lp = netdev_priv(dev); |
| 2370 | unsigned int start; |
| 2371 | |
| 2372 | if (!(lp->features & XAE_FEATURE_STATS)) |
| 2373 | return; |
| 2374 | |
| 2375 | do { |
| 2376 | start = read_seqcount_begin(&lp->hw_stats_seqcount); |
| 2377 | mac_stats->FramesTransmittedOK = |
| 2378 | axienet_stat(lp, stat: STAT_TX_GOOD_FRAMES); |
| 2379 | mac_stats->SingleCollisionFrames = |
| 2380 | axienet_stat(lp, stat: STAT_TX_SINGLE_COLLISION_FRAMES); |
| 2381 | mac_stats->MultipleCollisionFrames = |
| 2382 | axienet_stat(lp, stat: STAT_TX_MULTIPLE_COLLISION_FRAMES); |
| 2383 | mac_stats->FramesReceivedOK = |
| 2384 | axienet_stat(lp, stat: STAT_RX_GOOD_FRAMES); |
| 2385 | mac_stats->FrameCheckSequenceErrors = |
| 2386 | axienet_stat(lp, stat: STAT_RX_FCS_ERRORS); |
| 2387 | mac_stats->AlignmentErrors = |
| 2388 | axienet_stat(lp, stat: STAT_RX_ALIGNMENT_ERRORS); |
| 2389 | mac_stats->FramesWithDeferredXmissions = |
| 2390 | axienet_stat(lp, stat: STAT_TX_DEFERRED_FRAMES); |
| 2391 | mac_stats->LateCollisions = |
| 2392 | axienet_stat(lp, stat: STAT_TX_LATE_COLLISIONS); |
| 2393 | mac_stats->FramesAbortedDueToXSColls = |
| 2394 | axienet_stat(lp, stat: STAT_TX_EXCESS_COLLISIONS); |
| 2395 | mac_stats->MulticastFramesXmittedOK = |
| 2396 | axienet_stat(lp, stat: STAT_TX_MULTICAST_FRAMES); |
| 2397 | mac_stats->BroadcastFramesXmittedOK = |
| 2398 | axienet_stat(lp, stat: STAT_TX_BROADCAST_FRAMES); |
| 2399 | mac_stats->FramesWithExcessiveDeferral = |
| 2400 | axienet_stat(lp, stat: STAT_TX_EXCESS_DEFERRAL); |
| 2401 | mac_stats->MulticastFramesReceivedOK = |
| 2402 | axienet_stat(lp, stat: STAT_RX_MULTICAST_FRAMES); |
| 2403 | mac_stats->BroadcastFramesReceivedOK = |
| 2404 | axienet_stat(lp, stat: STAT_RX_BROADCAST_FRAMES); |
| 2405 | mac_stats->InRangeLengthErrors = |
| 2406 | axienet_stat(lp, stat: STAT_RX_LENGTH_ERRORS); |
| 2407 | } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); |
| 2408 | } |
| 2409 | |
| 2410 | static void |
| 2411 | axienet_ethtool_get_eth_ctrl_stats(struct net_device *dev, |
| 2412 | struct ethtool_eth_ctrl_stats *ctrl_stats) |
| 2413 | { |
| 2414 | struct axienet_local *lp = netdev_priv(dev); |
| 2415 | unsigned int start; |
| 2416 | |
| 2417 | if (!(lp->features & XAE_FEATURE_STATS)) |
| 2418 | return; |
| 2419 | |
| 2420 | do { |
| 2421 | start = read_seqcount_begin(&lp->hw_stats_seqcount); |
| 2422 | ctrl_stats->MACControlFramesTransmitted = |
| 2423 | axienet_stat(lp, stat: STAT_TX_CONTROL_FRAMES); |
| 2424 | ctrl_stats->MACControlFramesReceived = |
| 2425 | axienet_stat(lp, stat: STAT_RX_CONTROL_FRAMES); |
| 2426 | ctrl_stats->UnsupportedOpcodesReceived = |
| 2427 | axienet_stat(lp, stat: STAT_RX_CONTROL_OPCODE_ERRORS); |
| 2428 | } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); |
| 2429 | } |
| 2430 | |
| 2431 | static const struct ethtool_rmon_hist_range axienet_rmon_ranges[] = { |
| 2432 | { 64, 64 }, |
| 2433 | { 65, 127 }, |
| 2434 | { 128, 255 }, |
| 2435 | { 256, 511 }, |
| 2436 | { 512, 1023 }, |
| 2437 | { 1024, 1518 }, |
| 2438 | { 1519, 16384 }, |
| 2439 | { }, |
| 2440 | }; |
| 2441 | |
| 2442 | static void |
| 2443 | axienet_ethtool_get_rmon_stats(struct net_device *dev, |
| 2444 | struct ethtool_rmon_stats *rmon_stats, |
| 2445 | const struct ethtool_rmon_hist_range **ranges) |
| 2446 | { |
| 2447 | struct axienet_local *lp = netdev_priv(dev); |
| 2448 | unsigned int start; |
| 2449 | |
| 2450 | if (!(lp->features & XAE_FEATURE_STATS)) |
| 2451 | return; |
| 2452 | |
| 2453 | do { |
| 2454 | start = read_seqcount_begin(&lp->hw_stats_seqcount); |
| 2455 | rmon_stats->undersize_pkts = |
| 2456 | axienet_stat(lp, stat: STAT_UNDERSIZE_FRAMES); |
| 2457 | rmon_stats->oversize_pkts = |
| 2458 | axienet_stat(lp, stat: STAT_RX_OVERSIZE_FRAMES); |
| 2459 | rmon_stats->fragments = |
| 2460 | axienet_stat(lp, stat: STAT_FRAGMENT_FRAMES); |
| 2461 | |
| 2462 | rmon_stats->hist[0] = |
| 2463 | axienet_stat(lp, stat: STAT_RX_64_BYTE_FRAMES); |
| 2464 | rmon_stats->hist[1] = |
| 2465 | axienet_stat(lp, stat: STAT_RX_65_127_BYTE_FRAMES); |
| 2466 | rmon_stats->hist[2] = |
| 2467 | axienet_stat(lp, stat: STAT_RX_128_255_BYTE_FRAMES); |
| 2468 | rmon_stats->hist[3] = |
| 2469 | axienet_stat(lp, stat: STAT_RX_256_511_BYTE_FRAMES); |
| 2470 | rmon_stats->hist[4] = |
| 2471 | axienet_stat(lp, stat: STAT_RX_512_1023_BYTE_FRAMES); |
| 2472 | rmon_stats->hist[5] = |
| 2473 | axienet_stat(lp, stat: STAT_RX_1024_MAX_BYTE_FRAMES); |
| 2474 | rmon_stats->hist[6] = |
| 2475 | rmon_stats->oversize_pkts; |
| 2476 | |
| 2477 | rmon_stats->hist_tx[0] = |
| 2478 | axienet_stat(lp, stat: STAT_TX_64_BYTE_FRAMES); |
| 2479 | rmon_stats->hist_tx[1] = |
| 2480 | axienet_stat(lp, stat: STAT_TX_65_127_BYTE_FRAMES); |
| 2481 | rmon_stats->hist_tx[2] = |
| 2482 | axienet_stat(lp, stat: STAT_TX_128_255_BYTE_FRAMES); |
| 2483 | rmon_stats->hist_tx[3] = |
| 2484 | axienet_stat(lp, stat: STAT_TX_256_511_BYTE_FRAMES); |
| 2485 | rmon_stats->hist_tx[4] = |
| 2486 | axienet_stat(lp, stat: STAT_TX_512_1023_BYTE_FRAMES); |
| 2487 | rmon_stats->hist_tx[5] = |
| 2488 | axienet_stat(lp, stat: STAT_TX_1024_MAX_BYTE_FRAMES); |
| 2489 | rmon_stats->hist_tx[6] = |
| 2490 | axienet_stat(lp, stat: STAT_TX_OVERSIZE_FRAMES); |
| 2491 | } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); |
| 2492 | |
| 2493 | *ranges = axienet_rmon_ranges; |
| 2494 | } |
| 2495 | |
| 2496 | static const struct ethtool_ops axienet_ethtool_ops = { |
| 2497 | .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES | |
| 2498 | ETHTOOL_COALESCE_USECS | |
| 2499 | ETHTOOL_COALESCE_USE_ADAPTIVE_RX, |
| 2500 | .get_drvinfo = axienet_ethtools_get_drvinfo, |
| 2501 | .get_regs_len = axienet_ethtools_get_regs_len, |
| 2502 | .get_regs = axienet_ethtools_get_regs, |
| 2503 | .get_link = ethtool_op_get_link, |
| 2504 | .get_ringparam = axienet_ethtools_get_ringparam, |
| 2505 | .set_ringparam = axienet_ethtools_set_ringparam, |
| 2506 | .get_pauseparam = axienet_ethtools_get_pauseparam, |
| 2507 | .set_pauseparam = axienet_ethtools_set_pauseparam, |
| 2508 | .get_coalesce = axienet_ethtools_get_coalesce, |
| 2509 | .set_coalesce = axienet_ethtools_set_coalesce, |
| 2510 | .get_link_ksettings = axienet_ethtools_get_link_ksettings, |
| 2511 | .set_link_ksettings = axienet_ethtools_set_link_ksettings, |
| 2512 | .nway_reset = axienet_ethtools_nway_reset, |
| 2513 | .get_ethtool_stats = axienet_ethtools_get_ethtool_stats, |
| 2514 | .get_strings = axienet_ethtools_get_strings, |
| 2515 | .get_sset_count = axienet_ethtools_get_sset_count, |
| 2516 | .get_pause_stats = axienet_ethtools_get_pause_stats, |
| 2517 | .get_eth_mac_stats = axienet_ethtool_get_eth_mac_stats, |
| 2518 | .get_eth_ctrl_stats = axienet_ethtool_get_eth_ctrl_stats, |
| 2519 | .get_rmon_stats = axienet_ethtool_get_rmon_stats, |
| 2520 | }; |
| 2521 | |
| 2522 | static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs) |
| 2523 | { |
| 2524 | return container_of(pcs, struct axienet_local, pcs); |
| 2525 | } |
| 2526 | |
| 2527 | static void axienet_pcs_get_state(struct phylink_pcs *pcs, |
| 2528 | unsigned int neg_mode, |
| 2529 | struct phylink_link_state *state) |
| 2530 | { |
| 2531 | struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; |
| 2532 | |
| 2533 | phylink_mii_c22_pcs_get_state(pcs: pcs_phy, neg_mode, state); |
| 2534 | } |
| 2535 | |
| 2536 | static void axienet_pcs_an_restart(struct phylink_pcs *pcs) |
| 2537 | { |
| 2538 | struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; |
| 2539 | |
| 2540 | phylink_mii_c22_pcs_an_restart(pcs: pcs_phy); |
| 2541 | } |
| 2542 | |
| 2543 | static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, |
| 2544 | phy_interface_t interface, |
| 2545 | const unsigned long *advertising, |
| 2546 | bool permit_pause_to_mac) |
| 2547 | { |
| 2548 | struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; |
| 2549 | struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev; |
| 2550 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 2551 | int ret; |
| 2552 | |
| 2553 | if (lp->switch_x_sgmii) { |
| 2554 | ret = mdiodev_write(mdiodev: pcs_phy, XLNX_MII_STD_SELECT_REG, |
| 2555 | val: interface == PHY_INTERFACE_MODE_SGMII ? |
| 2556 | XLNX_MII_STD_SELECT_SGMII : 0); |
| 2557 | if (ret < 0) { |
| 2558 | netdev_warn(dev: ndev, |
| 2559 | format: "Failed to switch PHY interface: %d\n", |
| 2560 | ret); |
| 2561 | return ret; |
| 2562 | } |
| 2563 | } |
| 2564 | |
| 2565 | ret = phylink_mii_c22_pcs_config(pcs: pcs_phy, interface, advertising, |
| 2566 | neg_mode); |
| 2567 | if (ret < 0) |
| 2568 | netdev_warn(dev: ndev, format: "Failed to configure PCS: %d\n", ret); |
| 2569 | |
| 2570 | return ret; |
| 2571 | } |
| 2572 | |
| 2573 | static const struct phylink_pcs_ops axienet_pcs_ops = { |
| 2574 | .pcs_get_state = axienet_pcs_get_state, |
| 2575 | .pcs_config = axienet_pcs_config, |
| 2576 | .pcs_an_restart = axienet_pcs_an_restart, |
| 2577 | }; |
| 2578 | |
| 2579 | static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config, |
| 2580 | phy_interface_t interface) |
| 2581 | { |
| 2582 | struct net_device *ndev = to_net_dev(config->dev); |
| 2583 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 2584 | |
| 2585 | if (interface == PHY_INTERFACE_MODE_1000BASEX || |
| 2586 | interface == PHY_INTERFACE_MODE_SGMII) |
| 2587 | return &lp->pcs; |
| 2588 | |
| 2589 | return NULL; |
| 2590 | } |
| 2591 | |
| 2592 | static void axienet_mac_config(struct phylink_config *config, unsigned int mode, |
| 2593 | const struct phylink_link_state *state) |
| 2594 | { |
| 2595 | /* nothing meaningful to do */ |
| 2596 | } |
| 2597 | |
| 2598 | static void axienet_mac_link_down(struct phylink_config *config, |
| 2599 | unsigned int mode, |
| 2600 | phy_interface_t interface) |
| 2601 | { |
| 2602 | /* nothing meaningful to do */ |
| 2603 | } |
| 2604 | |
| 2605 | static void axienet_mac_link_up(struct phylink_config *config, |
| 2606 | struct phy_device *phy, |
| 2607 | unsigned int mode, phy_interface_t interface, |
| 2608 | int speed, int duplex, |
| 2609 | bool tx_pause, bool rx_pause) |
| 2610 | { |
| 2611 | struct net_device *ndev = to_net_dev(config->dev); |
| 2612 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 2613 | u32 emmc_reg, fcc_reg; |
| 2614 | |
| 2615 | emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET); |
| 2616 | emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK; |
| 2617 | |
| 2618 | switch (speed) { |
| 2619 | case SPEED_1000: |
| 2620 | emmc_reg |= XAE_EMMC_LINKSPD_1000; |
| 2621 | break; |
| 2622 | case SPEED_100: |
| 2623 | emmc_reg |= XAE_EMMC_LINKSPD_100; |
| 2624 | break; |
| 2625 | case SPEED_10: |
| 2626 | emmc_reg |= XAE_EMMC_LINKSPD_10; |
| 2627 | break; |
| 2628 | default: |
| 2629 | dev_err(&ndev->dev, |
| 2630 | "Speed other than 10, 100 or 1Gbps is not supported\n"); |
| 2631 | break; |
| 2632 | } |
| 2633 | |
| 2634 | axienet_iow(lp, XAE_EMMC_OFFSET, value: emmc_reg); |
| 2635 | |
| 2636 | fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET); |
| 2637 | if (tx_pause) |
| 2638 | fcc_reg |= XAE_FCC_FCTX_MASK; |
| 2639 | else |
| 2640 | fcc_reg &= ~XAE_FCC_FCTX_MASK; |
| 2641 | if (rx_pause) |
| 2642 | fcc_reg |= XAE_FCC_FCRX_MASK; |
| 2643 | else |
| 2644 | fcc_reg &= ~XAE_FCC_FCRX_MASK; |
| 2645 | axienet_iow(lp, XAE_FCC_OFFSET, value: fcc_reg); |
| 2646 | } |
| 2647 | |
| 2648 | static const struct phylink_mac_ops axienet_phylink_ops = { |
| 2649 | .mac_select_pcs = axienet_mac_select_pcs, |
| 2650 | .mac_config = axienet_mac_config, |
| 2651 | .mac_link_down = axienet_mac_link_down, |
| 2652 | .mac_link_up = axienet_mac_link_up, |
| 2653 | }; |
| 2654 | |
| 2655 | /** |
| 2656 | * axienet_dma_err_handler - Work queue task for Axi DMA Error |
| 2657 | * @work: pointer to work_struct |
| 2658 | * |
| 2659 | * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the |
| 2660 | * Tx/Rx BDs. |
| 2661 | */ |
| 2662 | static void axienet_dma_err_handler(struct work_struct *work) |
| 2663 | { |
| 2664 | u32 i; |
| 2665 | u32 axienet_status; |
| 2666 | struct axidma_bd *cur_p; |
| 2667 | struct axienet_local *lp = container_of(work, struct axienet_local, |
| 2668 | dma_err_task); |
| 2669 | struct net_device *ndev = lp->ndev; |
| 2670 | |
| 2671 | /* Don't bother if we are going to stop anyway */ |
| 2672 | if (READ_ONCE(lp->stopping)) |
| 2673 | return; |
| 2674 | |
| 2675 | napi_disable(n: &lp->napi_tx); |
| 2676 | napi_disable(n: &lp->napi_rx); |
| 2677 | |
| 2678 | axienet_setoptions(ndev, options: lp->options & |
| 2679 | ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
| 2680 | |
| 2681 | axienet_dma_stop(lp); |
| 2682 | netdev_reset_queue(dev_queue: ndev); |
| 2683 | |
| 2684 | for (i = 0; i < lp->tx_bd_num; i++) { |
| 2685 | cur_p = &lp->tx_bd_v[i]; |
| 2686 | if (cur_p->cntrl) { |
| 2687 | dma_addr_t addr = desc_get_phys_addr(lp, desc: cur_p); |
| 2688 | |
| 2689 | dma_unmap_single(lp->dev, addr, |
| 2690 | (cur_p->cntrl & |
| 2691 | XAXIDMA_BD_CTRL_LENGTH_MASK), |
| 2692 | DMA_TO_DEVICE); |
| 2693 | } |
| 2694 | if (cur_p->skb) |
| 2695 | dev_kfree_skb_irq(skb: cur_p->skb); |
| 2696 | cur_p->phys = 0; |
| 2697 | cur_p->phys_msb = 0; |
| 2698 | cur_p->cntrl = 0; |
| 2699 | cur_p->status = 0; |
| 2700 | cur_p->app0 = 0; |
| 2701 | cur_p->app1 = 0; |
| 2702 | cur_p->app2 = 0; |
| 2703 | cur_p->app3 = 0; |
| 2704 | cur_p->app4 = 0; |
| 2705 | cur_p->skb = NULL; |
| 2706 | } |
| 2707 | |
| 2708 | for (i = 0; i < lp->rx_bd_num; i++) { |
| 2709 | cur_p = &lp->rx_bd_v[i]; |
| 2710 | cur_p->status = 0; |
| 2711 | cur_p->app0 = 0; |
| 2712 | cur_p->app1 = 0; |
| 2713 | cur_p->app2 = 0; |
| 2714 | cur_p->app3 = 0; |
| 2715 | cur_p->app4 = 0; |
| 2716 | } |
| 2717 | |
| 2718 | lp->tx_bd_ci = 0; |
| 2719 | lp->tx_bd_tail = 0; |
| 2720 | lp->rx_bd_ci = 0; |
| 2721 | |
| 2722 | axienet_dma_start(lp); |
| 2723 | |
| 2724 | axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); |
| 2725 | axienet_status &= ~XAE_RCW1_RX_MASK; |
| 2726 | axienet_iow(lp, XAE_RCW1_OFFSET, value: axienet_status); |
| 2727 | |
| 2728 | axienet_status = axienet_ior(lp, XAE_IP_OFFSET); |
| 2729 | if (axienet_status & XAE_INT_RXRJECT_MASK) |
| 2730 | axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); |
| 2731 | axienet_iow(lp, XAE_IE_OFFSET, value: lp->eth_irq > 0 ? |
| 2732 | XAE_INT_RECV_ERROR_MASK : 0); |
| 2733 | axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); |
| 2734 | |
| 2735 | /* Sync default options with HW but leave receiver and |
| 2736 | * transmitter disabled. |
| 2737 | */ |
| 2738 | axienet_setoptions(ndev, options: lp->options & |
| 2739 | ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
| 2740 | axienet_set_mac_address(ndev, NULL); |
| 2741 | axienet_set_multicast_list(ndev); |
| 2742 | napi_enable(n: &lp->napi_rx); |
| 2743 | napi_enable(n: &lp->napi_tx); |
| 2744 | axienet_setoptions(ndev, options: lp->options); |
| 2745 | } |
| 2746 | |
| 2747 | /** |
| 2748 | * axienet_probe - Axi Ethernet probe function. |
| 2749 | * @pdev: Pointer to platform device structure. |
| 2750 | * |
| 2751 | * Return: 0, on success |
| 2752 | * Non-zero error value on failure. |
| 2753 | * |
| 2754 | * This is the probe routine for Axi Ethernet driver. This is called before |
| 2755 | * any other driver routines are invoked. It allocates and sets up the Ethernet |
| 2756 | * device. Parses through device tree and populates fields of |
| 2757 | * axienet_local. It registers the Ethernet device. |
| 2758 | */ |
| 2759 | static int axienet_probe(struct platform_device *pdev) |
| 2760 | { |
| 2761 | int ret; |
| 2762 | struct device_node *np; |
| 2763 | struct axienet_local *lp; |
| 2764 | struct net_device *ndev; |
| 2765 | struct resource *ethres; |
| 2766 | u8 mac_addr[ETH_ALEN]; |
| 2767 | int addr_width = 32; |
| 2768 | u32 value; |
| 2769 | |
| 2770 | ndev = alloc_etherdev(sizeof(*lp)); |
| 2771 | if (!ndev) |
| 2772 | return -ENOMEM; |
| 2773 | |
| 2774 | platform_set_drvdata(pdev, data: ndev); |
| 2775 | |
| 2776 | SET_NETDEV_DEV(ndev, &pdev->dev); |
| 2777 | ndev->features = NETIF_F_SG; |
| 2778 | ndev->ethtool_ops = &axienet_ethtool_ops; |
| 2779 | |
| 2780 | /* MTU range: 64 - 9000 */ |
| 2781 | ndev->min_mtu = 64; |
| 2782 | ndev->max_mtu = XAE_JUMBO_MTU; |
| 2783 | |
| 2784 | lp = netdev_priv(dev: ndev); |
| 2785 | lp->ndev = ndev; |
| 2786 | lp->dev = &pdev->dev; |
| 2787 | lp->options = XAE_OPTION_DEFAULTS; |
| 2788 | lp->rx_bd_num = RX_BD_NUM_DEFAULT; |
| 2789 | lp->tx_bd_num = TX_BD_NUM_DEFAULT; |
| 2790 | |
| 2791 | u64_stats_init(syncp: &lp->rx_stat_sync); |
| 2792 | u64_stats_init(syncp: &lp->tx_stat_sync); |
| 2793 | |
| 2794 | mutex_init(&lp->stats_lock); |
| 2795 | seqcount_mutex_init(&lp->hw_stats_seqcount, &lp->stats_lock); |
| 2796 | INIT_DEFERRABLE_WORK(&lp->stats_work, axienet_refresh_stats); |
| 2797 | |
| 2798 | lp->axi_clk = devm_clk_get_optional(dev: &pdev->dev, id: "s_axi_lite_clk"); |
| 2799 | if (!lp->axi_clk) { |
| 2800 | /* For backward compatibility, if named AXI clock is not present, |
| 2801 | * treat the first clock specified as the AXI clock. |
| 2802 | */ |
| 2803 | lp->axi_clk = devm_clk_get_optional(dev: &pdev->dev, NULL); |
| 2804 | } |
| 2805 | if (IS_ERR(ptr: lp->axi_clk)) { |
| 2806 | ret = PTR_ERR(ptr: lp->axi_clk); |
| 2807 | goto free_netdev; |
| 2808 | } |
| 2809 | ret = clk_prepare_enable(clk: lp->axi_clk); |
| 2810 | if (ret) { |
| 2811 | dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret); |
| 2812 | goto free_netdev; |
| 2813 | } |
| 2814 | |
| 2815 | lp->misc_clks[0].id = "axis_clk"; |
| 2816 | lp->misc_clks[1].id = "ref_clk"; |
| 2817 | lp->misc_clks[2].id = "mgt_clk"; |
| 2818 | |
| 2819 | ret = devm_clk_bulk_get_optional(dev: &pdev->dev, XAE_NUM_MISC_CLOCKS, clks: lp->misc_clks); |
| 2820 | if (ret) |
| 2821 | goto cleanup_clk; |
| 2822 | |
| 2823 | ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, clks: lp->misc_clks); |
| 2824 | if (ret) |
| 2825 | goto cleanup_clk; |
| 2826 | |
| 2827 | /* Map device registers */ |
| 2828 | lp->regs = devm_platform_get_and_ioremap_resource(pdev, index: 0, res: ðres); |
| 2829 | if (IS_ERR(ptr: lp->regs)) { |
| 2830 | ret = PTR_ERR(ptr: lp->regs); |
| 2831 | goto cleanup_clk; |
| 2832 | } |
| 2833 | lp->regs_start = ethres->start; |
| 2834 | |
| 2835 | /* Setup checksum offload, but default to off if not specified */ |
| 2836 | lp->features = 0; |
| 2837 | |
| 2838 | if (axienet_ior(lp, XAE_ABILITY_OFFSET) & XAE_ABILITY_STATS) |
| 2839 | lp->features |= XAE_FEATURE_STATS; |
| 2840 | |
| 2841 | ret = of_property_read_u32(np: pdev->dev.of_node, propname: "xlnx,txcsum", out_value: &value); |
| 2842 | if (!ret) { |
| 2843 | switch (value) { |
| 2844 | case 1: |
| 2845 | lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM; |
| 2846 | /* Can checksum any contiguous range */ |
| 2847 | ndev->features |= NETIF_F_HW_CSUM; |
| 2848 | break; |
| 2849 | case 2: |
| 2850 | lp->features |= XAE_FEATURE_FULL_TX_CSUM; |
| 2851 | /* Can checksum TCP/UDP over IPv4. */ |
| 2852 | ndev->features |= NETIF_F_IP_CSUM; |
| 2853 | break; |
| 2854 | } |
| 2855 | } |
| 2856 | ret = of_property_read_u32(np: pdev->dev.of_node, propname: "xlnx,rxcsum", out_value: &value); |
| 2857 | if (!ret) { |
| 2858 | switch (value) { |
| 2859 | case 1: |
| 2860 | lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM; |
| 2861 | ndev->features |= NETIF_F_RXCSUM; |
| 2862 | break; |
| 2863 | case 2: |
| 2864 | lp->features |= XAE_FEATURE_FULL_RX_CSUM; |
| 2865 | ndev->features |= NETIF_F_RXCSUM; |
| 2866 | break; |
| 2867 | } |
| 2868 | } |
| 2869 | /* For supporting jumbo frames, the Axi Ethernet hardware must have |
| 2870 | * a larger Rx/Tx Memory. Typically, the size must be large so that |
| 2871 | * we can enable jumbo option and start supporting jumbo frames. |
| 2872 | * Here we check for memory allocated for Rx/Tx in the hardware from |
| 2873 | * the device-tree and accordingly set flags. |
| 2874 | */ |
| 2875 | of_property_read_u32(np: pdev->dev.of_node, propname: "xlnx,rxmem", out_value: &lp->rxmem); |
| 2876 | |
| 2877 | lp->switch_x_sgmii = of_property_read_bool(np: pdev->dev.of_node, |
| 2878 | propname: "xlnx,switch-x-sgmii"); |
| 2879 | |
| 2880 | /* Start with the proprietary, and broken phy_type */ |
| 2881 | ret = of_property_read_u32(np: pdev->dev.of_node, propname: "xlnx,phy-type", out_value: &value); |
| 2882 | if (!ret) { |
| 2883 | netdev_warn(dev: ndev, format: "Please upgrade your device tree binary blob to use phy-mode"); |
| 2884 | switch (value) { |
| 2885 | case XAE_PHY_TYPE_MII: |
| 2886 | lp->phy_mode = PHY_INTERFACE_MODE_MII; |
| 2887 | break; |
| 2888 | case XAE_PHY_TYPE_GMII: |
| 2889 | lp->phy_mode = PHY_INTERFACE_MODE_GMII; |
| 2890 | break; |
| 2891 | case XAE_PHY_TYPE_RGMII_2_0: |
| 2892 | lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID; |
| 2893 | break; |
| 2894 | case XAE_PHY_TYPE_SGMII: |
| 2895 | lp->phy_mode = PHY_INTERFACE_MODE_SGMII; |
| 2896 | break; |
| 2897 | case XAE_PHY_TYPE_1000BASE_X: |
| 2898 | lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX; |
| 2899 | break; |
| 2900 | default: |
| 2901 | ret = -EINVAL; |
| 2902 | goto cleanup_clk; |
| 2903 | } |
| 2904 | } else { |
| 2905 | ret = of_get_phy_mode(np: pdev->dev.of_node, interface: &lp->phy_mode); |
| 2906 | if (ret) |
| 2907 | goto cleanup_clk; |
| 2908 | } |
| 2909 | if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII && |
| 2910 | lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) { |
| 2911 | dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n"); |
| 2912 | ret = -EINVAL; |
| 2913 | goto cleanup_clk; |
| 2914 | } |
| 2915 | |
| 2916 | if (!of_property_present(np: pdev->dev.of_node, propname: "dmas")) { |
| 2917 | /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ |
| 2918 | np = of_parse_phandle(np: pdev->dev.of_node, phandle_name: "axistream-connected", index: 0); |
| 2919 | |
| 2920 | if (np) { |
| 2921 | struct resource dmares; |
| 2922 | |
| 2923 | ret = of_address_to_resource(dev: np, index: 0, r: &dmares); |
| 2924 | if (ret) { |
| 2925 | dev_err(&pdev->dev, |
| 2926 | "unable to get DMA resource\n"); |
| 2927 | of_node_put(node: np); |
| 2928 | goto cleanup_clk; |
| 2929 | } |
| 2930 | lp->dma_regs = devm_ioremap_resource(dev: &pdev->dev, |
| 2931 | res: &dmares); |
| 2932 | lp->rx_irq = irq_of_parse_and_map(node: np, index: 1); |
| 2933 | lp->tx_irq = irq_of_parse_and_map(node: np, index: 0); |
| 2934 | of_node_put(node: np); |
| 2935 | lp->eth_irq = platform_get_irq_optional(pdev, 0); |
| 2936 | } else { |
| 2937 | /* Check for these resources directly on the Ethernet node. */ |
| 2938 | lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, index: 1, NULL); |
| 2939 | lp->rx_irq = platform_get_irq(pdev, 1); |
| 2940 | lp->tx_irq = platform_get_irq(pdev, 0); |
| 2941 | lp->eth_irq = platform_get_irq_optional(pdev, 2); |
| 2942 | } |
| 2943 | if (IS_ERR(ptr: lp->dma_regs)) { |
| 2944 | dev_err(&pdev->dev, "could not map DMA regs\n"); |
| 2945 | ret = PTR_ERR(ptr: lp->dma_regs); |
| 2946 | goto cleanup_clk; |
| 2947 | } |
| 2948 | if (lp->rx_irq <= 0 || lp->tx_irq <= 0) { |
| 2949 | dev_err(&pdev->dev, "could not determine irqs\n"); |
| 2950 | ret = -ENOMEM; |
| 2951 | goto cleanup_clk; |
| 2952 | } |
| 2953 | |
| 2954 | /* Reset core now that clocks are enabled, prior to accessing MDIO */ |
| 2955 | ret = __axienet_device_reset(lp); |
| 2956 | if (ret) |
| 2957 | goto cleanup_clk; |
| 2958 | |
| 2959 | /* Autodetect the need for 64-bit DMA pointers. |
| 2960 | * When the IP is configured for a bus width bigger than 32 bits, |
| 2961 | * writing the MSB registers is mandatory, even if they are all 0. |
| 2962 | * We can detect this case by writing all 1's to one such register |
| 2963 | * and see if that sticks: when the IP is configured for 32 bits |
| 2964 | * only, those registers are RES0. |
| 2965 | * Those MSB registers were introduced in IP v7.1, which we check first. |
| 2966 | */ |
| 2967 | if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) { |
| 2968 | void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4; |
| 2969 | |
| 2970 | iowrite32(0x0, desc); |
| 2971 | if (ioread32(desc) == 0) { /* sanity check */ |
| 2972 | iowrite32(0xffffffff, desc); |
| 2973 | if (ioread32(desc) > 0) { |
| 2974 | lp->features |= XAE_FEATURE_DMA_64BIT; |
| 2975 | addr_width = 64; |
| 2976 | dev_info(&pdev->dev, |
| 2977 | "autodetected 64-bit DMA range\n"); |
| 2978 | } |
| 2979 | iowrite32(0x0, desc); |
| 2980 | } |
| 2981 | } |
| 2982 | if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) { |
| 2983 | dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit architecture\n"); |
| 2984 | ret = -EINVAL; |
| 2985 | goto cleanup_clk; |
| 2986 | } |
| 2987 | |
| 2988 | ret = dma_set_mask_and_coherent(dev: &pdev->dev, DMA_BIT_MASK(addr_width)); |
| 2989 | if (ret) { |
| 2990 | dev_err(&pdev->dev, "No suitable DMA available\n"); |
| 2991 | goto cleanup_clk; |
| 2992 | } |
| 2993 | netif_napi_add(dev: ndev, napi: &lp->napi_rx, poll: axienet_rx_poll); |
| 2994 | netif_napi_add(dev: ndev, napi: &lp->napi_tx, poll: axienet_tx_poll); |
| 2995 | } else { |
| 2996 | struct xilinx_vdma_config cfg; |
| 2997 | struct dma_chan *tx_chan; |
| 2998 | |
| 2999 | lp->eth_irq = platform_get_irq_optional(pdev, 0); |
| 3000 | if (lp->eth_irq < 0 && lp->eth_irq != -ENXIO) { |
| 3001 | ret = lp->eth_irq; |
| 3002 | goto cleanup_clk; |
| 3003 | } |
| 3004 | tx_chan = dma_request_chan(dev: lp->dev, name: "tx_chan0"); |
| 3005 | if (IS_ERR(ptr: tx_chan)) { |
| 3006 | ret = PTR_ERR(ptr: tx_chan); |
| 3007 | dev_err_probe(dev: lp->dev, err: ret, fmt: "No Ethernet DMA (TX) channel found\n"); |
| 3008 | goto cleanup_clk; |
| 3009 | } |
| 3010 | |
| 3011 | cfg.reset = 1; |
| 3012 | /* As name says VDMA but it has support for DMA channel reset */ |
| 3013 | ret = xilinx_vdma_channel_set_config(dchan: tx_chan, cfg: &cfg); |
| 3014 | if (ret < 0) { |
| 3015 | dev_err(&pdev->dev, "Reset channel failed\n"); |
| 3016 | dma_release_channel(chan: tx_chan); |
| 3017 | goto cleanup_clk; |
| 3018 | } |
| 3019 | |
| 3020 | dma_release_channel(chan: tx_chan); |
| 3021 | lp->use_dmaengine = 1; |
| 3022 | } |
| 3023 | |
| 3024 | if (lp->use_dmaengine) |
| 3025 | ndev->netdev_ops = &axienet_netdev_dmaengine_ops; |
| 3026 | else |
| 3027 | ndev->netdev_ops = &axienet_netdev_ops; |
| 3028 | /* Check for Ethernet core IRQ (optional) */ |
| 3029 | if (lp->eth_irq <= 0) |
| 3030 | dev_info(&pdev->dev, "Ethernet core IRQ not defined\n"); |
| 3031 | |
| 3032 | /* Retrieve the MAC address */ |
| 3033 | ret = of_get_mac_address(np: pdev->dev.of_node, mac: mac_addr); |
| 3034 | if (!ret) { |
| 3035 | axienet_set_mac_address(ndev, address: mac_addr); |
| 3036 | } else { |
| 3037 | dev_warn(&pdev->dev, "could not find MAC address property: %d\n", |
| 3038 | ret); |
| 3039 | axienet_set_mac_address(ndev, NULL); |
| 3040 | } |
| 3041 | |
| 3042 | spin_lock_init(&lp->rx_cr_lock); |
| 3043 | spin_lock_init(&lp->tx_cr_lock); |
| 3044 | INIT_WORK(&lp->rx_dim.work, axienet_rx_dim_work); |
| 3045 | lp->rx_dim_enabled = true; |
| 3046 | lp->rx_dim.profile_ix = 1; |
| 3047 | lp->rx_dma_cr = axienet_calc_cr(lp, count: axienet_dim_coalesce_count_rx(lp), |
| 3048 | XAXIDMA_DFT_RX_USEC); |
| 3049 | lp->tx_dma_cr = axienet_calc_cr(lp, XAXIDMA_DFT_TX_THRESHOLD, |
| 3050 | XAXIDMA_DFT_TX_USEC); |
| 3051 | |
| 3052 | ret = axienet_mdio_setup(lp); |
| 3053 | if (ret) |
| 3054 | dev_warn(&pdev->dev, |
| 3055 | "error registering MDIO bus: %d\n", ret); |
| 3056 | |
| 3057 | if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII || |
| 3058 | lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) { |
| 3059 | np = of_parse_phandle(np: pdev->dev.of_node, phandle_name: "pcs-handle", index: 0); |
| 3060 | if (!np) { |
| 3061 | /* Deprecated: Always use "pcs-handle" for pcs_phy. |
| 3062 | * Falling back to "phy-handle" here is only for |
| 3063 | * backward compatibility with old device trees. |
| 3064 | */ |
| 3065 | np = of_parse_phandle(np: pdev->dev.of_node, phandle_name: "phy-handle", index: 0); |
| 3066 | } |
| 3067 | if (!np) { |
| 3068 | dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n"); |
| 3069 | ret = -EINVAL; |
| 3070 | goto cleanup_mdio; |
| 3071 | } |
| 3072 | lp->pcs_phy = of_mdio_find_device(np); |
| 3073 | if (!lp->pcs_phy) { |
| 3074 | ret = -EPROBE_DEFER; |
| 3075 | of_node_put(node: np); |
| 3076 | goto cleanup_mdio; |
| 3077 | } |
| 3078 | of_node_put(node: np); |
| 3079 | lp->pcs.ops = &axienet_pcs_ops; |
| 3080 | lp->pcs.poll = true; |
| 3081 | } |
| 3082 | |
| 3083 | lp->phylink_config.dev = &ndev->dev; |
| 3084 | lp->phylink_config.type = PHYLINK_NETDEV; |
| 3085 | lp->phylink_config.mac_managed_pm = true; |
| 3086 | lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE | |
| 3087 | MAC_10FD | MAC_100FD | MAC_1000FD; |
| 3088 | |
| 3089 | __set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces); |
| 3090 | if (lp->switch_x_sgmii) { |
| 3091 | __set_bit(PHY_INTERFACE_MODE_1000BASEX, |
| 3092 | lp->phylink_config.supported_interfaces); |
| 3093 | __set_bit(PHY_INTERFACE_MODE_SGMII, |
| 3094 | lp->phylink_config.supported_interfaces); |
| 3095 | } |
| 3096 | |
| 3097 | lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode, |
| 3098 | lp->phy_mode, |
| 3099 | &axienet_phylink_ops); |
| 3100 | if (IS_ERR(ptr: lp->phylink)) { |
| 3101 | ret = PTR_ERR(ptr: lp->phylink); |
| 3102 | dev_err(&pdev->dev, "phylink_create error (%i)\n", ret); |
| 3103 | goto cleanup_mdio; |
| 3104 | } |
| 3105 | |
| 3106 | ret = register_netdev(dev: lp->ndev); |
| 3107 | if (ret) { |
| 3108 | dev_err(lp->dev, "register_netdev() error (%i)\n", ret); |
| 3109 | goto cleanup_phylink; |
| 3110 | } |
| 3111 | |
| 3112 | return 0; |
| 3113 | |
| 3114 | cleanup_phylink: |
| 3115 | phylink_destroy(lp->phylink); |
| 3116 | |
| 3117 | cleanup_mdio: |
| 3118 | if (lp->pcs_phy) |
| 3119 | put_device(dev: &lp->pcs_phy->dev); |
| 3120 | if (lp->mii_bus) |
| 3121 | axienet_mdio_teardown(lp); |
| 3122 | cleanup_clk: |
| 3123 | clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, clks: lp->misc_clks); |
| 3124 | clk_disable_unprepare(clk: lp->axi_clk); |
| 3125 | |
| 3126 | free_netdev: |
| 3127 | free_netdev(dev: ndev); |
| 3128 | |
| 3129 | return ret; |
| 3130 | } |
| 3131 | |
| 3132 | static void axienet_remove(struct platform_device *pdev) |
| 3133 | { |
| 3134 | struct net_device *ndev = platform_get_drvdata(pdev); |
| 3135 | struct axienet_local *lp = netdev_priv(dev: ndev); |
| 3136 | |
| 3137 | unregister_netdev(dev: ndev); |
| 3138 | |
| 3139 | if (lp->phylink) |
| 3140 | phylink_destroy(lp->phylink); |
| 3141 | |
| 3142 | if (lp->pcs_phy) |
| 3143 | put_device(dev: &lp->pcs_phy->dev); |
| 3144 | |
| 3145 | axienet_mdio_teardown(lp); |
| 3146 | |
| 3147 | clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, clks: lp->misc_clks); |
| 3148 | clk_disable_unprepare(clk: lp->axi_clk); |
| 3149 | |
| 3150 | free_netdev(dev: ndev); |
| 3151 | } |
| 3152 | |
| 3153 | static void axienet_shutdown(struct platform_device *pdev) |
| 3154 | { |
| 3155 | struct net_device *ndev = platform_get_drvdata(pdev); |
| 3156 | |
| 3157 | rtnl_lock(); |
| 3158 | netif_device_detach(dev: ndev); |
| 3159 | |
| 3160 | if (netif_running(dev: ndev)) |
| 3161 | dev_close(dev: ndev); |
| 3162 | |
| 3163 | rtnl_unlock(); |
| 3164 | } |
| 3165 | |
| 3166 | static int axienet_suspend(struct device *dev) |
| 3167 | { |
| 3168 | struct net_device *ndev = dev_get_drvdata(dev); |
| 3169 | |
| 3170 | if (!netif_running(dev: ndev)) |
| 3171 | return 0; |
| 3172 | |
| 3173 | netif_device_detach(dev: ndev); |
| 3174 | |
| 3175 | rtnl_lock(); |
| 3176 | axienet_stop(ndev); |
| 3177 | rtnl_unlock(); |
| 3178 | |
| 3179 | return 0; |
| 3180 | } |
| 3181 | |
| 3182 | static int axienet_resume(struct device *dev) |
| 3183 | { |
| 3184 | struct net_device *ndev = dev_get_drvdata(dev); |
| 3185 | |
| 3186 | if (!netif_running(dev: ndev)) |
| 3187 | return 0; |
| 3188 | |
| 3189 | rtnl_lock(); |
| 3190 | axienet_open(ndev); |
| 3191 | rtnl_unlock(); |
| 3192 | |
| 3193 | netif_device_attach(dev: ndev); |
| 3194 | |
| 3195 | return 0; |
| 3196 | } |
| 3197 | |
| 3198 | static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops, |
| 3199 | axienet_suspend, axienet_resume); |
| 3200 | |
| 3201 | static struct platform_driver axienet_driver = { |
| 3202 | .probe = axienet_probe, |
| 3203 | .remove = axienet_remove, |
| 3204 | .shutdown = axienet_shutdown, |
| 3205 | .driver = { |
| 3206 | .name = "xilinx_axienet", |
| 3207 | .pm = &axienet_pm_ops, |
| 3208 | .of_match_table = axienet_of_match, |
| 3209 | }, |
| 3210 | }; |
| 3211 | |
| 3212 | module_platform_driver(axienet_driver); |
| 3213 | |
| 3214 | MODULE_DESCRIPTION("Xilinx Axi Ethernet driver"); |
| 3215 | MODULE_AUTHOR("Xilinx"); |
| 3216 | MODULE_LICENSE("GPL"); |
| 3217 |
Definitions
- axienet_of_match
- axienet_options
- axienet_get_rx_desc
- axienet_get_tx_desc
- axienet_dma_in32
- desc_set_phys_addr
- desc_get_phys_addr
- axienet_dma_bd_release
- axienet_dma_rate
- axienet_calc_cr
- axienet_coalesce_params
- axienet_dma_start
- axienet_dma_bd_init
- axienet_set_mac_address
- netdev_set_mac_address
- axienet_set_multicast_list
- axienet_setoptions
- axienet_stat
- axienet_stats_update
- axienet_refresh_stats
- __axienet_device_reset
- axienet_dma_stop
- axienet_device_reset
- axienet_free_tx_chain
- axienet_check_tx_bd_space
- axienet_dma_tx_cb
- axienet_start_xmit_dmaengine
- axienet_tx_poll
- axienet_start_xmit
- axienet_dma_rx_cb
- axienet_rx_poll
- axienet_tx_irq
- axienet_rx_irq
- axienet_eth_irq
- axienet_rx_submit_desc
- axienet_init_dmaengine
- axienet_init_legacy_dma
- axienet_open
- axienet_stop
- axienet_change_mtu
- axienet_poll_controller
- axienet_ioctl
- axienet_get_stats64
- axienet_netdev_ops
- axienet_netdev_dmaengine_ops
- axienet_ethtools_get_drvinfo
- axienet_ethtools_get_regs_len
- axienet_ethtools_get_regs
- axienet_ethtools_get_ringparam
- axienet_ethtools_set_ringparam
- axienet_ethtools_get_pauseparam
- axienet_ethtools_set_pauseparam
- axienet_update_coalesce_rx
- axienet_dim_coalesce_count_rx
- axienet_rx_dim_work
- axienet_update_coalesce_tx
- axienet_ethtools_get_coalesce
- axienet_ethtools_set_coalesce
- axienet_ethtools_get_link_ksettings
- axienet_ethtools_set_link_ksettings
- axienet_ethtools_nway_reset
- axienet_ethtools_get_ethtool_stats
- axienet_ethtool_stats_strings
- axienet_ethtools_get_strings
- axienet_ethtools_get_sset_count
- axienet_ethtools_get_pause_stats
- axienet_ethtool_get_eth_mac_stats
- axienet_ethtool_get_eth_ctrl_stats
- axienet_rmon_ranges
- axienet_ethtool_get_rmon_stats
- axienet_ethtool_ops
- pcs_to_axienet_local
- axienet_pcs_get_state
- axienet_pcs_an_restart
- axienet_pcs_config
- axienet_pcs_ops
- axienet_mac_select_pcs
- axienet_mac_config
- axienet_mac_link_down
- axienet_mac_link_up
- axienet_phylink_ops
- axienet_dma_err_handler
- axienet_probe
- axienet_remove
- axienet_shutdown
- axienet_suspend
- axienet_resume
- axienet_pm_ops
Improve your Profiling and Debugging skills
Find out more
