1/*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46#include <linux/kernel.h>
47#include <linux/module.h>
48#include <linux/errno.h>
49#include <linux/init.h>
50#include <linux/slab.h>
51#include <linux/types.h>
52#include <linux/pci.h>
53#include <linux/kdev_t.h>
54#include <linux/blkdev.h>
55#include <linux/delay.h>
56#include <linux/interrupt.h>
57#include <linux/dma-mapping.h>
58#include <linux/io.h>
59#include <linux/time.h>
60#include <linux/ktime.h>
61#include <linux/kthread.h>
62#include <asm/page.h> /* To get host page size per arch */
63
64
65#include "mpt3sas_base.h"
66
67static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
68
69
70#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71
72 /* maximum controller queue depth */
73#define MAX_HBA_QUEUE_DEPTH 30000
74#define MAX_CHAIN_DEPTH 100000
75static int max_queue_depth = -1;
76module_param(max_queue_depth, int, 0444);
77MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78
79static int max_sgl_entries = -1;
80module_param(max_sgl_entries, int, 0444);
81MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82
83static int msix_disable = -1;
84module_param(msix_disable, int, 0444);
85MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86
87static int smp_affinity_enable = 1;
88module_param(smp_affinity_enable, int, 0444);
89MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
90
91static int max_msix_vectors = -1;
92module_param(max_msix_vectors, int, 0444);
93MODULE_PARM_DESC(max_msix_vectors,
94 " max msix vectors");
95
96static int irqpoll_weight = -1;
97module_param(irqpoll_weight, int, 0444);
98MODULE_PARM_DESC(irqpoll_weight,
99 "irq poll weight (default= one fourth of HBA queue depth)");
100
101static int mpt3sas_fwfault_debug;
102MODULE_PARM_DESC(mpt3sas_fwfault_debug,
103 " enable detection of firmware fault and halt firmware - (default=0)");
104
105static int perf_mode = -1;
106module_param(perf_mode, int, 0444);
107MODULE_PARM_DESC(perf_mode,
108 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
109 "0 - balanced: high iops mode is enabled &\n\t\t"
110 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
111 "1 - iops: high iops mode is disabled &\n\t\t"
112 "interrupt coalescing is enabled on all queues,\n\t\t"
113 "2 - latency: high iops mode is disabled &\n\t\t"
114 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
115 "\t\tdefault - default perf_mode is 'balanced'"
116 );
117
118static int poll_queues;
119module_param(poll_queues, int, 0444);
120MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
121 "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
122 "when poll_queues are enabled then &\n\t\t"
123 "perf_mode is set to latency mode. &\n\t\t"
124 );
125
126enum mpt3sas_perf_mode {
127 MPT_PERF_MODE_DEFAULT = -1,
128 MPT_PERF_MODE_BALANCED = 0,
129 MPT_PERF_MODE_IOPS = 1,
130 MPT_PERF_MODE_LATENCY = 2,
131};
132
133static int
134_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
135 u32 ioc_state, int timeout);
136static int
137_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
138static void
139_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
140
141static u32
142_base_readl_ext_retry(const void __iomem *addr);
143
144/**
145 * mpt3sas_base_check_cmd_timeout - Function
146 * to check timeout and command termination due
147 * to Host reset.
148 *
149 * @ioc: per adapter object.
150 * @status: Status of issued command.
151 * @mpi_request:mf request pointer.
152 * @sz: size of buffer.
153 *
154 * Return: 1/0 Reset to be done or Not
155 */
156u8
157mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
158 u8 status, void *mpi_request, int sz)
159{
160 u8 issue_reset = 0;
161
162 if (!(status & MPT3_CMD_RESET))
163 issue_reset = 1;
164
165 ioc_err(ioc, "Command %s\n",
166 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
167 _debug_dump_mf(mpi_request, sz);
168
169 return issue_reset;
170}
171
172/**
173 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
174 * @val: ?
175 * @kp: ?
176 *
177 * Return: ?
178 */
179static int
180_scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
181{
182 int ret = param_set_int(val, kp);
183 struct MPT3SAS_ADAPTER *ioc;
184
185 if (ret)
186 return ret;
187
188 /* global ioc spinlock to protect controller list on list operations */
189 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
190 spin_lock(lock: &gioc_lock);
191 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
192 ioc->fwfault_debug = mpt3sas_fwfault_debug;
193 spin_unlock(lock: &gioc_lock);
194 return 0;
195}
196module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
197 param_get_int, &mpt3sas_fwfault_debug, 0644);
198
199/**
200 * _base_readl_aero - retry readl for max three times.
201 * @addr: MPT Fusion system interface register address
202 *
203 * Retry the readl() for max three times if it gets zero value
204 * while reading the system interface register.
205 */
206static inline u32
207_base_readl_aero(const void __iomem *addr)
208{
209 u32 i = 0, ret_val;
210
211 do {
212 ret_val = readl(addr);
213 i++;
214 } while (ret_val == 0 && i < 3);
215
216 return ret_val;
217}
218
219static u32
220_base_readl_ext_retry(const void __iomem *addr)
221{
222 u32 i, ret_val;
223
224 for (i = 0 ; i < 30 ; i++) {
225 ret_val = readl(addr);
226 if (ret_val != 0)
227 break;
228 }
229
230 return ret_val;
231}
232
233static inline u32
234_base_readl(const void __iomem *addr)
235{
236 return readl(addr);
237}
238
239/**
240 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
241 * in BAR0 space.
242 *
243 * @ioc: per adapter object
244 * @reply: reply message frame(lower 32bit addr)
245 * @index: System request message index.
246 */
247static void
248_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
249 u32 index)
250{
251 /*
252 * 256 is offset within sys register.
253 * 256 offset MPI frame starts. Max MPI frame supported is 32.
254 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
255 */
256 u16 cmd_credit = ioc->facts.RequestCredit + 1;
257 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
258 MPI_FRAME_START_OFFSET +
259 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
260
261 writel(val: reply, addr: reply_free_iomem);
262}
263
264/**
265 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
266 * to system/BAR0 region.
267 *
268 * @dst_iomem: Pointer to the destination location in BAR0 space.
269 * @src: Pointer to the Source data.
270 * @size: Size of data to be copied.
271 */
272static void
273_base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
274{
275 int i;
276 u32 *src_virt_mem = (u32 *)src;
277
278 for (i = 0; i < size/4; i++)
279 writel(val: (u32)src_virt_mem[i],
280 addr: (void __iomem *)dst_iomem + (i * 4));
281}
282
283/**
284 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
285 *
286 * @dst_iomem: Pointer to the destination location in BAR0 space.
287 * @src: Pointer to the Source data.
288 * @size: Size of data to be copied.
289 */
290static void
291_base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
292{
293 int i;
294 u32 *src_virt_mem = (u32 *)(src);
295
296 for (i = 0; i < size/4; i++)
297 writel(val: (u32)src_virt_mem[i],
298 addr: (void __iomem *)dst_iomem + (i * 4));
299}
300
301/**
302 * _base_get_chain - Calculates and Returns virtual chain address
303 * for the provided smid in BAR0 space.
304 *
305 * @ioc: per adapter object
306 * @smid: system request message index
307 * @sge_chain_count: Scatter gather chain count.
308 *
309 * Return: the chain address.
310 */
311static inline void __iomem*
312_base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
313 u8 sge_chain_count)
314{
315 void __iomem *base_chain, *chain_virt;
316 u16 cmd_credit = ioc->facts.RequestCredit + 1;
317
318 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
319 (cmd_credit * ioc->request_sz) +
320 REPLY_FREE_POOL_SIZE;
321 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
322 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
323 return chain_virt;
324}
325
326/**
327 * _base_get_chain_phys - Calculates and Returns physical address
328 * in BAR0 for scatter gather chains, for
329 * the provided smid.
330 *
331 * @ioc: per adapter object
332 * @smid: system request message index
333 * @sge_chain_count: Scatter gather chain count.
334 *
335 * Return: Physical chain address.
336 */
337static inline phys_addr_t
338_base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
339 u8 sge_chain_count)
340{
341 phys_addr_t base_chain_phys, chain_phys;
342 u16 cmd_credit = ioc->facts.RequestCredit + 1;
343
344 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
345 (cmd_credit * ioc->request_sz) +
346 REPLY_FREE_POOL_SIZE;
347 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
348 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
349 return chain_phys;
350}
351
352/**
353 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
354 * buffer address for the provided smid.
355 * (Each smid can have 64K starts from 17024)
356 *
357 * @ioc: per adapter object
358 * @smid: system request message index
359 *
360 * Return: Pointer to buffer location in BAR0.
361 */
362
363static void __iomem *
364_base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
365{
366 u16 cmd_credit = ioc->facts.RequestCredit + 1;
367 // Added extra 1 to reach end of chain.
368 void __iomem *chain_end = _base_get_chain(ioc,
369 smid: cmd_credit + 1,
370 sge_chain_count: ioc->facts.MaxChainDepth);
371 return chain_end + (smid * 64 * 1024);
372}
373
374/**
375 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
376 * Host buffer Physical address for the provided smid.
377 * (Each smid can have 64K starts from 17024)
378 *
379 * @ioc: per adapter object
380 * @smid: system request message index
381 *
382 * Return: Pointer to buffer location in BAR0.
383 */
384static phys_addr_t
385_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
386{
387 u16 cmd_credit = ioc->facts.RequestCredit + 1;
388 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
389 smid: cmd_credit + 1,
390 sge_chain_count: ioc->facts.MaxChainDepth);
391 return chain_end_phys + (smid * 64 * 1024);
392}
393
394/**
395 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
396 * lookup list and Provides chain_buffer
397 * address for the matching dma address.
398 * (Each smid can have 64K starts from 17024)
399 *
400 * @ioc: per adapter object
401 * @chain_buffer_dma: Chain buffer dma address.
402 *
403 * Return: Pointer to chain buffer. Or Null on Failure.
404 */
405static void *
406_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
407 dma_addr_t chain_buffer_dma)
408{
409 u16 index, j;
410 struct chain_tracker *ct;
411
412 for (index = 0; index < ioc->scsiio_depth; index++) {
413 for (j = 0; j < ioc->chains_needed_per_io; j++) {
414 ct = &ioc->chain_lookup[index].chains_per_smid[j];
415 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
416 return ct->chain_buffer;
417 }
418 }
419 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
420 return NULL;
421}
422
423/**
424 * _clone_sg_entries - MPI EP's scsiio and config requests
425 * are handled here. Base function for
426 * double buffering, before submitting
427 * the requests.
428 *
429 * @ioc: per adapter object.
430 * @mpi_request: mf request pointer.
431 * @smid: system request message index.
432 */
433static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
434 void *mpi_request, u16 smid)
435{
436 Mpi2SGESimple32_t *sgel, *sgel_next;
437 u32 sgl_flags, sge_chain_count = 0;
438 bool is_write = false;
439 u16 i = 0;
440 void __iomem *buffer_iomem;
441 phys_addr_t buffer_iomem_phys;
442 void __iomem *buff_ptr;
443 phys_addr_t buff_ptr_phys;
444 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
445 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
446 phys_addr_t dst_addr_phys;
447 MPI2RequestHeader_t *request_hdr;
448 struct scsi_cmnd *scmd;
449 struct scatterlist *sg_scmd = NULL;
450 int is_scsiio_req = 0;
451
452 request_hdr = (MPI2RequestHeader_t *) mpi_request;
453
454 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
455 Mpi25SCSIIORequest_t *scsiio_request =
456 (Mpi25SCSIIORequest_t *)mpi_request;
457 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
458 is_scsiio_req = 1;
459 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
460 Mpi2ConfigRequest_t *config_req =
461 (Mpi2ConfigRequest_t *)mpi_request;
462 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
463 } else
464 return;
465
466 /* From smid we can get scsi_cmd, once we have sg_scmd,
467 * we just need to get sg_virt and sg_next to get virtual
468 * address associated with sgel->Address.
469 */
470
471 if (is_scsiio_req) {
472 /* Get scsi_cmd using smid */
473 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
474 if (scmd == NULL) {
475 ioc_err(ioc, "scmd is NULL\n");
476 return;
477 }
478
479 /* Get sg_scmd from scmd provided */
480 sg_scmd = scsi_sglist(cmd: scmd);
481 }
482
483 /*
484 * 0 - 255 System register
485 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
486 * 4352 - 4864 Reply_free pool (512 byte is reserved
487 * considering maxCredit 32. Reply need extra
488 * room, for mCPU case kept four times of
489 * maxCredit).
490 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
491 * 128 byte size = 12288)
492 * 17152 - x Host buffer mapped with smid.
493 * (Each smid can have 64K Max IO.)
494 * BAR0+Last 1K MSIX Addr and Data
495 * Total size in use 2113664 bytes of 4MB BAR0
496 */
497
498 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
499 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
500
501 buff_ptr = buffer_iomem;
502 buff_ptr_phys = buffer_iomem_phys;
503 WARN_ON(buff_ptr_phys > U32_MAX);
504
505 if (le32_to_cpu(sgel->FlagsLength) &
506 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
507 is_write = true;
508
509 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
510
511 sgl_flags =
512 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
513
514 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
515 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
516 /*
517 * Helper function which on passing
518 * chain_buffer_dma returns chain_buffer. Get
519 * the virtual address for sgel->Address
520 */
521 sgel_next =
522 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
523 le32_to_cpu(sgel->Address));
524 if (sgel_next == NULL)
525 return;
526 /*
527 * This is coping 128 byte chain
528 * frame (not a host buffer)
529 */
530 dst_chain_addr[sge_chain_count] =
531 _base_get_chain(ioc,
532 smid, sge_chain_count);
533 src_chain_addr[sge_chain_count] =
534 (void *) sgel_next;
535 dst_addr_phys = _base_get_chain_phys(ioc,
536 smid, sge_chain_count);
537 WARN_ON(dst_addr_phys > U32_MAX);
538 sgel->Address =
539 cpu_to_le32(lower_32_bits(dst_addr_phys));
540 sgel = sgel_next;
541 sge_chain_count++;
542 break;
543 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
544 if (is_write) {
545 if (is_scsiio_req) {
546 _base_clone_to_sys_mem(dst_iomem: buff_ptr,
547 src: sg_virt(sg: sg_scmd),
548 size: (le32_to_cpu(sgel->FlagsLength) &
549 0x00ffffff));
550 /*
551 * FIXME: this relies on a a zero
552 * PCI mem_offset.
553 */
554 sgel->Address =
555 cpu_to_le32((u32)buff_ptr_phys);
556 } else {
557 _base_clone_to_sys_mem(dst_iomem: buff_ptr,
558 src: ioc->config_vaddr,
559 size: (le32_to_cpu(sgel->FlagsLength) &
560 0x00ffffff));
561 sgel->Address =
562 cpu_to_le32((u32)buff_ptr_phys);
563 }
564 }
565 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
566 0x00ffffff);
567 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
568 0x00ffffff);
569 if ((le32_to_cpu(sgel->FlagsLength) &
570 (MPI2_SGE_FLAGS_END_OF_BUFFER
571 << MPI2_SGE_FLAGS_SHIFT)))
572 goto eob_clone_chain;
573 else {
574 /*
575 * Every single element in MPT will have
576 * associated sg_next. Better to sanity that
577 * sg_next is not NULL, but it will be a bug
578 * if it is null.
579 */
580 if (is_scsiio_req) {
581 sg_scmd = sg_next(sg_scmd);
582 if (sg_scmd)
583 sgel++;
584 else
585 goto eob_clone_chain;
586 }
587 }
588 break;
589 }
590 }
591
592eob_clone_chain:
593 for (i = 0; i < sge_chain_count; i++) {
594 if (is_scsiio_req)
595 _base_clone_to_sys_mem(dst_iomem: dst_chain_addr[i],
596 src: src_chain_addr[i], size: ioc->request_sz);
597 }
598}
599
600/**
601 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
602 * @arg: input argument, used to derive ioc
603 *
604 * Return:
605 * 0 if controller is removed from pci subsystem.
606 * -1 for other case.
607 */
608static int mpt3sas_remove_dead_ioc_func(void *arg)
609{
610 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
611 struct pci_dev *pdev;
612
613 if (!ioc)
614 return -1;
615
616 pdev = ioc->pdev;
617 if (!pdev)
618 return -1;
619 pci_stop_and_remove_bus_device_locked(dev: pdev);
620 return 0;
621}
622
623/**
624 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
625 * @ioc: Per Adapter Object
626 *
627 * Return: nothing.
628 */
629static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
630{
631 Mpi26IoUnitControlRequest_t *mpi_request;
632 Mpi26IoUnitControlReply_t *mpi_reply;
633 u16 smid;
634 ktime_t current_time;
635 u64 TimeStamp = 0;
636 u8 issue_reset = 0;
637
638 mutex_lock(&ioc->scsih_cmds.mutex);
639 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
640 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
641 goto out;
642 }
643 ioc->scsih_cmds.status = MPT3_CMD_PENDING;
644 smid = mpt3sas_base_get_smid(ioc, cb_idx: ioc->scsih_cb_idx);
645 if (!smid) {
646 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
647 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
648 goto out;
649 }
650 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
651 ioc->scsih_cmds.smid = smid;
652 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
653 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
654 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
655 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
656 current_time = ktime_get_real();
657 TimeStamp = ktime_to_ms(kt: current_time);
658 mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
659 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
660 init_completion(x: &ioc->scsih_cmds.done);
661 ioc->put_smid_default(ioc, smid);
662 dinitprintk(ioc, ioc_info(ioc,
663 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
664 TimeStamp));
665 wait_for_completion_timeout(x: &ioc->scsih_cmds.done,
666 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
667 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
668 mpt3sas_check_cmd_timeout(ioc,
669 ioc->scsih_cmds.status, mpi_request,
670 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
671 goto issue_host_reset;
672 }
673 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
674 mpi_reply = ioc->scsih_cmds.reply;
675 dinitprintk(ioc, ioc_info(ioc,
676 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
677 le16_to_cpu(mpi_reply->IOCStatus),
678 le32_to_cpu(mpi_reply->IOCLogInfo)));
679 }
680issue_host_reset:
681 if (issue_reset)
682 mpt3sas_base_hard_reset_handler(ioc, type: FORCE_BIG_HAMMER);
683 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
684out:
685 mutex_unlock(lock: &ioc->scsih_cmds.mutex);
686}
687
688/**
689 * _base_fault_reset_work - workq handling ioc fault conditions
690 * @work: input argument, used to derive ioc
691 *
692 * Context: sleep.
693 */
694static void
695_base_fault_reset_work(struct work_struct *work)
696{
697 struct MPT3SAS_ADAPTER *ioc =
698 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
699 unsigned long flags;
700 u32 doorbell;
701 int rc;
702 struct task_struct *p;
703
704
705 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
706 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
707 ioc->pci_error_recovery)
708 goto rearm_timer;
709 spin_unlock_irqrestore(lock: &ioc->ioc_reset_in_progress_lock, flags);
710
711 doorbell = mpt3sas_base_get_iocstate(ioc, cooked: 0);
712 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
713 ioc_err(ioc, "SAS host is non-operational !!!!\n");
714
715 /* It may be possible that EEH recovery can resolve some of
716 * pci bus failure issues rather removing the dead ioc function
717 * by considering controller is in a non-operational state. So
718 * here priority is given to the EEH recovery. If it doesn't
719 * not resolve this issue, mpt3sas driver will consider this
720 * controller to non-operational state and remove the dead ioc
721 * function.
722 */
723 if (ioc->non_operational_loop++ < 5) {
724 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
725 flags);
726 goto rearm_timer;
727 }
728
729 /*
730 * Call _scsih_flush_pending_cmds callback so that we flush all
731 * pending commands back to OS. This call is required to avoid
732 * deadlock at block layer. Dead IOC will fail to do diag reset,
733 * and this call is safe since dead ioc will never return any
734 * command back from HW.
735 */
736 mpt3sas_base_pause_mq_polling(ioc);
737 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
738 /*
739 * Set remove_host flag early since kernel thread will
740 * take some time to execute.
741 */
742 ioc->remove_host = 1;
743 /*Remove the Dead Host */
744 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
745 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
746 if (IS_ERR(ptr: p))
747 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
748 __func__);
749 else
750 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
751 __func__);
752 return; /* don't rearm timer */
753 }
754
755 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
756 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
757 ioc->manu_pg11.CoreDumpTOSec :
758 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
759
760 timeout /= (FAULT_POLLING_INTERVAL/1000);
761
762 if (ioc->ioc_coredump_loop == 0) {
763 mpt3sas_print_coredump_info(ioc,
764 doorbell & MPI2_DOORBELL_DATA_MASK);
765 /* do not accept any IOs and disable the interrupts */
766 spin_lock_irqsave(
767 &ioc->ioc_reset_in_progress_lock, flags);
768 ioc->shost_recovery = 1;
769 spin_unlock_irqrestore(
770 lock: &ioc->ioc_reset_in_progress_lock, flags);
771 mpt3sas_base_mask_interrupts(ioc);
772 mpt3sas_base_pause_mq_polling(ioc);
773 _base_clear_outstanding_commands(ioc);
774 }
775
776 ioc_info(ioc, "%s: CoreDump loop %d.",
777 __func__, ioc->ioc_coredump_loop);
778
779 /* Wait until CoreDump completes or times out */
780 if (ioc->ioc_coredump_loop++ < timeout) {
781 spin_lock_irqsave(
782 &ioc->ioc_reset_in_progress_lock, flags);
783 goto rearm_timer;
784 }
785 }
786
787 if (ioc->ioc_coredump_loop) {
788 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
789 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
790 __func__, ioc->ioc_coredump_loop);
791 else
792 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
793 __func__, ioc->ioc_coredump_loop);
794 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
795 }
796 ioc->non_operational_loop = 0;
797 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
798 rc = mpt3sas_base_hard_reset_handler(ioc, type: FORCE_BIG_HAMMER);
799 ioc_warn(ioc, "%s: hard reset: %s\n",
800 __func__, rc == 0 ? "success" : "failed");
801 doorbell = mpt3sas_base_get_iocstate(ioc, cooked: 0);
802 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
803 mpt3sas_print_fault_code(ioc, doorbell &
804 MPI2_DOORBELL_DATA_MASK);
805 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
806 MPI2_IOC_STATE_COREDUMP)
807 mpt3sas_print_coredump_info(ioc, doorbell &
808 MPI2_DOORBELL_DATA_MASK);
809 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
810 MPI2_IOC_STATE_OPERATIONAL)
811 return; /* don't rearm timer */
812 }
813 ioc->ioc_coredump_loop = 0;
814 if (ioc->time_sync_interval &&
815 ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
816 ioc->timestamp_update_count = 0;
817 _base_sync_drv_fw_timestamp(ioc);
818 }
819 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
820 rearm_timer:
821 if (ioc->fault_reset_work_q)
822 queue_delayed_work(wq: ioc->fault_reset_work_q,
823 dwork: &ioc->fault_reset_work,
824 delay: msecs_to_jiffies(FAULT_POLLING_INTERVAL));
825 spin_unlock_irqrestore(lock: &ioc->ioc_reset_in_progress_lock, flags);
826}
827
828/**
829 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
830 * @ioc: per adapter object
831 *
832 * Context: sleep.
833 */
834void
835mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
836{
837 unsigned long flags;
838
839 if (ioc->fault_reset_work_q)
840 return;
841
842 ioc->timestamp_update_count = 0;
843 /* initialize fault polling */
844
845 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
846 snprintf(buf: ioc->fault_reset_work_q_name,
847 size: sizeof(ioc->fault_reset_work_q_name), fmt: "poll_%s%d_status",
848 ioc->driver_name, ioc->id);
849 ioc->fault_reset_work_q =
850 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
851 if (!ioc->fault_reset_work_q) {
852 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
853 return;
854 }
855 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
856 if (ioc->fault_reset_work_q)
857 queue_delayed_work(wq: ioc->fault_reset_work_q,
858 dwork: &ioc->fault_reset_work,
859 delay: msecs_to_jiffies(FAULT_POLLING_INTERVAL));
860 spin_unlock_irqrestore(lock: &ioc->ioc_reset_in_progress_lock, flags);
861}
862
863/**
864 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
865 * @ioc: per adapter object
866 *
867 * Context: sleep.
868 */
869void
870mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
871{
872 unsigned long flags;
873 struct workqueue_struct *wq;
874
875 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
876 wq = ioc->fault_reset_work_q;
877 ioc->fault_reset_work_q = NULL;
878 spin_unlock_irqrestore(lock: &ioc->ioc_reset_in_progress_lock, flags);
879 if (wq) {
880 if (!cancel_delayed_work_sync(dwork: &ioc->fault_reset_work))
881 flush_workqueue(wq);
882 destroy_workqueue(wq);
883 }
884}
885
886/**
887 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
888 * @ioc: per adapter object
889 * @fault_code: fault code
890 */
891void
892mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
893{
894 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
895}
896
897/**
898 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
899 * @ioc: per adapter object
900 * @fault_code: fault code
901 *
902 * Return: nothing.
903 */
904void
905mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
906{
907 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
908}
909
910/**
911 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
912 * completes or times out
913 * @ioc: per adapter object
914 * @caller: caller function name
915 *
916 * Return: 0 for success, non-zero for failure.
917 */
918int
919mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
920 const char *caller)
921{
922 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
923 ioc->manu_pg11.CoreDumpTOSec :
924 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
925
926 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
927 timeout);
928
929 if (ioc_state)
930 ioc_err(ioc,
931 "%s: CoreDump timed out. (ioc_state=0x%x)\n",
932 caller, ioc_state);
933 else
934 ioc_info(ioc,
935 "%s: CoreDump completed. (ioc_state=0x%x)\n",
936 caller, ioc_state);
937
938 return ioc_state;
939}
940
941/**
942 * mpt3sas_halt_firmware - halt's mpt controller firmware
943 * @ioc: per adapter object
944 *
945 * For debugging timeout related issues. Writing 0xCOFFEE00
946 * to the doorbell register will halt controller firmware. With
947 * the purpose to stop both driver and firmware, the enduser can
948 * obtain a ring buffer from controller UART.
949 */
950void
951mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
952{
953 u32 doorbell;
954
955 if (!ioc->fwfault_debug)
956 return;
957
958 dump_stack();
959
960 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
961 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
962 mpt3sas_print_fault_code(ioc, doorbell &
963 MPI2_DOORBELL_DATA_MASK);
964 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
965 MPI2_IOC_STATE_COREDUMP) {
966 mpt3sas_print_coredump_info(ioc, doorbell &
967 MPI2_DOORBELL_DATA_MASK);
968 } else {
969 writel(val: 0xC0FFEE00, addr: &ioc->chip->Doorbell);
970 ioc_err(ioc, "Firmware is halted due to command timeout\n");
971 }
972
973 if (ioc->fwfault_debug == 2)
974 for (;;)
975 ;
976 else
977 panic(fmt: "panic in %s\n", __func__);
978}
979
980/**
981 * _base_sas_ioc_info - verbose translation of the ioc status
982 * @ioc: per adapter object
983 * @mpi_reply: reply mf payload returned from firmware
984 * @request_hdr: request mf
985 */
986static void
987_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
988 MPI2RequestHeader_t *request_hdr)
989{
990 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
991 MPI2_IOCSTATUS_MASK;
992 char *desc = NULL;
993 u16 frame_sz;
994 char *func_str = NULL;
995
996 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
997 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
998 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
999 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
1000 return;
1001
1002 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
1003 return;
1004 /*
1005 * Older Firmware version doesn't support driver trigger pages.
1006 * So, skip displaying 'config invalid type' type
1007 * of error message.
1008 */
1009 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
1010 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
1011
1012 if ((rqst->ExtPageType ==
1013 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
1014 !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
1015 return;
1016 }
1017 }
1018
1019 switch (ioc_status) {
1020
1021/****************************************************************************
1022* Common IOCStatus values for all replies
1023****************************************************************************/
1024
1025 case MPI2_IOCSTATUS_INVALID_FUNCTION:
1026 desc = "invalid function";
1027 break;
1028 case MPI2_IOCSTATUS_BUSY:
1029 desc = "busy";
1030 break;
1031 case MPI2_IOCSTATUS_INVALID_SGL:
1032 desc = "invalid sgl";
1033 break;
1034 case MPI2_IOCSTATUS_INTERNAL_ERROR:
1035 desc = "internal error";
1036 break;
1037 case MPI2_IOCSTATUS_INVALID_VPID:
1038 desc = "invalid vpid";
1039 break;
1040 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1041 desc = "insufficient resources";
1042 break;
1043 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1044 desc = "insufficient power";
1045 break;
1046 case MPI2_IOCSTATUS_INVALID_FIELD:
1047 desc = "invalid field";
1048 break;
1049 case MPI2_IOCSTATUS_INVALID_STATE:
1050 desc = "invalid state";
1051 break;
1052 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1053 desc = "op state not supported";
1054 break;
1055
1056/****************************************************************************
1057* Config IOCStatus values
1058****************************************************************************/
1059
1060 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1061 desc = "config invalid action";
1062 break;
1063 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1064 desc = "config invalid type";
1065 break;
1066 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1067 desc = "config invalid page";
1068 break;
1069 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1070 desc = "config invalid data";
1071 break;
1072 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1073 desc = "config no defaults";
1074 break;
1075 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1076 desc = "config can't commit";
1077 break;
1078
1079/****************************************************************************
1080* SCSI IO Reply
1081****************************************************************************/
1082
1083 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1084 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1085 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1086 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1087 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1088 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1089 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1090 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1091 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1092 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1093 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1094 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1095 break;
1096
1097/****************************************************************************
1098* For use by SCSI Initiator and SCSI Target end-to-end data protection
1099****************************************************************************/
1100
1101 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1102 desc = "eedp guard error";
1103 break;
1104 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1105 desc = "eedp ref tag error";
1106 break;
1107 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1108 desc = "eedp app tag error";
1109 break;
1110
1111/****************************************************************************
1112* SCSI Target values
1113****************************************************************************/
1114
1115 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1116 desc = "target invalid io index";
1117 break;
1118 case MPI2_IOCSTATUS_TARGET_ABORTED:
1119 desc = "target aborted";
1120 break;
1121 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1122 desc = "target no conn retryable";
1123 break;
1124 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1125 desc = "target no connection";
1126 break;
1127 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1128 desc = "target xfer count mismatch";
1129 break;
1130 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1131 desc = "target data offset error";
1132 break;
1133 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1134 desc = "target too much write data";
1135 break;
1136 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1137 desc = "target iu too short";
1138 break;
1139 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1140 desc = "target ack nak timeout";
1141 break;
1142 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1143 desc = "target nak received";
1144 break;
1145
1146/****************************************************************************
1147* Serial Attached SCSI values
1148****************************************************************************/
1149
1150 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1151 desc = "smp request failed";
1152 break;
1153 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1154 desc = "smp data overrun";
1155 break;
1156
1157/****************************************************************************
1158* Diagnostic Buffer Post / Diagnostic Release values
1159****************************************************************************/
1160
1161 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1162 desc = "diagnostic released";
1163 break;
1164 default:
1165 break;
1166 }
1167
1168 if (!desc)
1169 return;
1170
1171 switch (request_hdr->Function) {
1172 case MPI2_FUNCTION_CONFIG:
1173 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1174 func_str = "config_page";
1175 break;
1176 case MPI2_FUNCTION_SCSI_TASK_MGMT:
1177 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1178 func_str = "task_mgmt";
1179 break;
1180 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1181 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1182 func_str = "sas_iounit_ctl";
1183 break;
1184 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1185 frame_sz = sizeof(Mpi2SepRequest_t);
1186 func_str = "enclosure";
1187 break;
1188 case MPI2_FUNCTION_IOC_INIT:
1189 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1190 func_str = "ioc_init";
1191 break;
1192 case MPI2_FUNCTION_PORT_ENABLE:
1193 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1194 func_str = "port_enable";
1195 break;
1196 case MPI2_FUNCTION_SMP_PASSTHROUGH:
1197 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1198 func_str = "smp_passthru";
1199 break;
1200 case MPI2_FUNCTION_NVME_ENCAPSULATED:
1201 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1202 ioc->sge_size;
1203 func_str = "nvme_encapsulated";
1204 break;
1205 default:
1206 frame_sz = 32;
1207 func_str = "unknown";
1208 break;
1209 }
1210
1211 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1212 desc, ioc_status, request_hdr, func_str);
1213
1214 _debug_dump_mf(mpi_request: request_hdr, sz: frame_sz/4);
1215}
1216
1217/**
1218 * _base_display_event_data - verbose translation of firmware asyn events
1219 * @ioc: per adapter object
1220 * @mpi_reply: reply mf payload returned from firmware
1221 */
1222static void
1223_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1224 Mpi2EventNotificationReply_t *mpi_reply)
1225{
1226 char *desc = NULL;
1227 u16 event;
1228
1229 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1230 return;
1231
1232 event = le16_to_cpu(mpi_reply->Event);
1233
1234 switch (event) {
1235 case MPI2_EVENT_LOG_DATA:
1236 desc = "Log Data";
1237 break;
1238 case MPI2_EVENT_STATE_CHANGE:
1239 desc = "Status Change";
1240 break;
1241 case MPI2_EVENT_HARD_RESET_RECEIVED:
1242 desc = "Hard Reset Received";
1243 break;
1244 case MPI2_EVENT_EVENT_CHANGE:
1245 desc = "Event Change";
1246 break;
1247 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1248 desc = "Device Status Change";
1249 break;
1250 case MPI2_EVENT_IR_OPERATION_STATUS:
1251 if (!ioc->hide_ir_msg)
1252 desc = "IR Operation Status";
1253 break;
1254 case MPI2_EVENT_SAS_DISCOVERY:
1255 {
1256 Mpi2EventDataSasDiscovery_t *event_data =
1257 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1258 ioc_info(ioc, "Discovery: (%s)",
1259 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1260 "start" : "stop");
1261 if (event_data->DiscoveryStatus)
1262 pr_cont(" discovery_status(0x%08x)",
1263 le32_to_cpu(event_data->DiscoveryStatus));
1264 pr_cont("\n");
1265 return;
1266 }
1267 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1268 desc = "SAS Broadcast Primitive";
1269 break;
1270 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1271 desc = "SAS Init Device Status Change";
1272 break;
1273 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1274 desc = "SAS Init Table Overflow";
1275 break;
1276 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1277 desc = "SAS Topology Change List";
1278 break;
1279 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1280 desc = "SAS Enclosure Device Status Change";
1281 break;
1282 case MPI2_EVENT_IR_VOLUME:
1283 if (!ioc->hide_ir_msg)
1284 desc = "IR Volume";
1285 break;
1286 case MPI2_EVENT_IR_PHYSICAL_DISK:
1287 if (!ioc->hide_ir_msg)
1288 desc = "IR Physical Disk";
1289 break;
1290 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1291 if (!ioc->hide_ir_msg)
1292 desc = "IR Configuration Change List";
1293 break;
1294 case MPI2_EVENT_LOG_ENTRY_ADDED:
1295 if (!ioc->hide_ir_msg)
1296 desc = "Log Entry Added";
1297 break;
1298 case MPI2_EVENT_TEMP_THRESHOLD:
1299 desc = "Temperature Threshold";
1300 break;
1301 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1302 desc = "Cable Event";
1303 break;
1304 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1305 desc = "SAS Device Discovery Error";
1306 break;
1307 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1308 desc = "PCIE Device Status Change";
1309 break;
1310 case MPI2_EVENT_PCIE_ENUMERATION:
1311 {
1312 Mpi26EventDataPCIeEnumeration_t *event_data =
1313 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1314 ioc_info(ioc, "PCIE Enumeration: (%s)",
1315 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1316 "start" : "stop");
1317 if (event_data->EnumerationStatus)
1318 pr_cont("enumeration_status(0x%08x)",
1319 le32_to_cpu(event_data->EnumerationStatus));
1320 pr_cont("\n");
1321 return;
1322 }
1323 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1324 desc = "PCIE Topology Change List";
1325 break;
1326 }
1327
1328 if (!desc)
1329 return;
1330
1331 ioc_info(ioc, "%s\n", desc);
1332}
1333
1334/**
1335 * _base_sas_log_info - verbose translation of firmware log info
1336 * @ioc: per adapter object
1337 * @log_info: log info
1338 */
1339static void
1340_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info)
1341{
1342 union loginfo_type {
1343 u32 loginfo;
1344 struct {
1345 u32 subcode:16;
1346 u32 code:8;
1347 u32 originator:4;
1348 u32 bus_type:4;
1349 } dw;
1350 };
1351 union loginfo_type sas_loginfo;
1352 char *originator_str = NULL;
1353
1354 sas_loginfo.loginfo = log_info;
1355 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1356 return;
1357
1358 /* each nexus loss loginfo */
1359 if (log_info == 0x31170000)
1360 return;
1361
1362 /* eat the loginfos associated with task aborts */
1363 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1364 0x31140000 || log_info == 0x31130000))
1365 return;
1366
1367 switch (sas_loginfo.dw.originator) {
1368 case 0:
1369 originator_str = "IOP";
1370 break;
1371 case 1:
1372 originator_str = "PL";
1373 break;
1374 case 2:
1375 if (!ioc->hide_ir_msg)
1376 originator_str = "IR";
1377 else
1378 originator_str = "WarpDrive";
1379 break;
1380 }
1381
1382 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1383 log_info,
1384 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1385}
1386
1387/**
1388 * _base_display_reply_info - handle reply descriptors depending on IOC Status
1389 * @ioc: per adapter object
1390 * @smid: system request message index
1391 * @msix_index: MSIX table index supplied by the OS
1392 * @reply: reply message frame (lower 32bit addr)
1393 */
1394static void
1395_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1396 u32 reply)
1397{
1398 MPI2DefaultReply_t *mpi_reply;
1399 u16 ioc_status;
1400 u32 loginfo = 0;
1401
1402 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, phys_addr: reply);
1403 if (unlikely(!mpi_reply)) {
1404 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1405 __FILE__, __LINE__, __func__);
1406 return;
1407 }
1408 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1409
1410 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1411 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1412 _base_sas_ioc_info(ioc, mpi_reply,
1413 request_hdr: mpt3sas_base_get_msg_frame(ioc, smid));
1414 }
1415
1416 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1417 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1418 _base_sas_log_info(ioc, log_info: loginfo);
1419 }
1420
1421 if (ioc_status || loginfo) {
1422 ioc_status &= MPI2_IOCSTATUS_MASK;
1423 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1424 }
1425}
1426
1427/**
1428 * mpt3sas_base_done - base internal command completion routine
1429 * @ioc: per adapter object
1430 * @smid: system request message index
1431 * @msix_index: MSIX table index supplied by the OS
1432 * @reply: reply message frame(lower 32bit addr)
1433 *
1434 * Return:
1435 * 1 meaning mf should be freed from _base_interrupt
1436 * 0 means the mf is freed from this function.
1437 */
1438u8
1439mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1440 u32 reply)
1441{
1442 MPI2DefaultReply_t *mpi_reply;
1443
1444 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, phys_addr: reply);
1445 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1446 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1447
1448 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1449 return 1;
1450
1451 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1452 if (mpi_reply) {
1453 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1454 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1455 }
1456 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1457
1458 complete(&ioc->base_cmds.done);
1459 return 1;
1460}
1461
1462/**
1463 * _base_async_event - main callback handler for firmware asyn events
1464 * @ioc: per adapter object
1465 * @msix_index: MSIX table index supplied by the OS
1466 * @reply: reply message frame(lower 32bit addr)
1467 *
1468 * Return:
1469 * 1 meaning mf should be freed from _base_interrupt
1470 * 0 means the mf is freed from this function.
1471 */
1472static u8
1473_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1474{
1475 Mpi2EventNotificationReply_t *mpi_reply;
1476 Mpi2EventAckRequest_t *ack_request;
1477 u16 smid;
1478 struct _event_ack_list *delayed_event_ack;
1479
1480 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, phys_addr: reply);
1481 if (!mpi_reply)
1482 return 1;
1483 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1484 return 1;
1485
1486 _base_display_event_data(ioc, mpi_reply);
1487
1488 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1489 goto out;
1490 smid = mpt3sas_base_get_smid(ioc, cb_idx: ioc->base_cb_idx);
1491 if (!smid) {
1492 delayed_event_ack = kzalloc(size: sizeof(*delayed_event_ack),
1493 GFP_ATOMIC);
1494 if (!delayed_event_ack)
1495 goto out;
1496 INIT_LIST_HEAD(list: &delayed_event_ack->list);
1497 delayed_event_ack->Event = mpi_reply->Event;
1498 delayed_event_ack->EventContext = mpi_reply->EventContext;
1499 list_add_tail(new: &delayed_event_ack->list,
1500 head: &ioc->delayed_event_ack_list);
1501 dewtprintk(ioc,
1502 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1503 le16_to_cpu(mpi_reply->Event)));
1504 goto out;
1505 }
1506
1507 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1508 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1509 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1510 ack_request->Event = mpi_reply->Event;
1511 ack_request->EventContext = mpi_reply->EventContext;
1512 ack_request->VF_ID = 0; /* TODO */
1513 ack_request->VP_ID = 0;
1514 ioc->put_smid_default(ioc, smid);
1515
1516 out:
1517
1518 /* scsih callback handler */
1519 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1520
1521 /* ctl callback handler */
1522 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1523
1524 return 1;
1525}
1526
1527static struct scsiio_tracker *
1528_get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1529{
1530 struct scsi_cmnd *cmd;
1531
1532 if (WARN_ON(!smid) ||
1533 WARN_ON(smid >= ioc->hi_priority_smid))
1534 return NULL;
1535
1536 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1537 if (cmd)
1538 return scsi_cmd_priv(cmd);
1539
1540 return NULL;
1541}
1542
1543/**
1544 * _base_get_cb_idx - obtain the callback index
1545 * @ioc: per adapter object
1546 * @smid: system request message index
1547 *
1548 * Return: callback index.
1549 */
1550static u8
1551_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1552{
1553 int i;
1554 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1555 u8 cb_idx = 0xFF;
1556
1557 if (smid < ioc->hi_priority_smid) {
1558 struct scsiio_tracker *st;
1559
1560 if (smid < ctl_smid) {
1561 st = _get_st_from_smid(ioc, smid);
1562 if (st)
1563 cb_idx = st->cb_idx;
1564 } else if (smid == ctl_smid)
1565 cb_idx = ioc->ctl_cb_idx;
1566 } else if (smid < ioc->internal_smid) {
1567 i = smid - ioc->hi_priority_smid;
1568 cb_idx = ioc->hpr_lookup[i].cb_idx;
1569 } else if (smid <= ioc->hba_queue_depth) {
1570 i = smid - ioc->internal_smid;
1571 cb_idx = ioc->internal_lookup[i].cb_idx;
1572 }
1573 return cb_idx;
1574}
1575
1576/**
1577 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1578 * when driver is flushing out the IOs.
1579 * @ioc: per adapter object
1580 *
1581 * Pause polling on the mq poll (io uring) queues when driver is flushing
1582 * out the IOs. Otherwise we may see the race condition of completing the same
1583 * IO from two paths.
1584 *
1585 * Returns nothing.
1586 */
1587void
1588mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1589{
1590 int iopoll_q_count =
1591 ioc->reply_queue_count - ioc->iopoll_q_start_index;
1592 int qid;
1593
1594 for (qid = 0; qid < iopoll_q_count; qid++)
1595 atomic_set(v: &ioc->io_uring_poll_queues[qid].pause, i: 1);
1596
1597 /*
1598 * wait for current poll to complete.
1599 */
1600 for (qid = 0; qid < iopoll_q_count; qid++) {
1601 while (atomic_read(v: &ioc->io_uring_poll_queues[qid].busy)) {
1602 cpu_relax();
1603 udelay(500);
1604 }
1605 }
1606}
1607
1608/**
1609 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1610 * @ioc: per adapter object
1611 *
1612 * Returns nothing.
1613 */
1614void
1615mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1616{
1617 int iopoll_q_count =
1618 ioc->reply_queue_count - ioc->iopoll_q_start_index;
1619 int qid;
1620
1621 for (qid = 0; qid < iopoll_q_count; qid++)
1622 atomic_set(v: &ioc->io_uring_poll_queues[qid].pause, i: 0);
1623}
1624
1625/**
1626 * mpt3sas_base_mask_interrupts - disable interrupts
1627 * @ioc: per adapter object
1628 *
1629 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1630 */
1631void
1632mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1633{
1634 u32 him_register;
1635
1636 ioc->mask_interrupts = 1;
1637 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1638 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1639 writel(val: him_register, addr: &ioc->chip->HostInterruptMask);
1640 ioc->base_readl(&ioc->chip->HostInterruptMask);
1641}
1642
1643/**
1644 * mpt3sas_base_unmask_interrupts - enable interrupts
1645 * @ioc: per adapter object
1646 *
1647 * Enabling only Reply Interrupts
1648 */
1649void
1650mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1651{
1652 u32 him_register;
1653
1654 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1655 him_register &= ~MPI2_HIM_RIM;
1656 writel(val: him_register, addr: &ioc->chip->HostInterruptMask);
1657 ioc->mask_interrupts = 0;
1658}
1659
1660union reply_descriptor {
1661 u64 word;
1662 struct {
1663 u32 low;
1664 u32 high;
1665 } u;
1666};
1667
1668static u32 base_mod64(u64 dividend, u32 divisor)
1669{
1670 u32 remainder;
1671
1672 if (!divisor)
1673 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1674 remainder = do_div(dividend, divisor);
1675 return remainder;
1676}
1677
1678/**
1679 * _base_process_reply_queue - Process reply descriptors from reply
1680 * descriptor post queue.
1681 * @reply_q: per IRQ's reply queue object.
1682 *
1683 * Return: number of reply descriptors processed from reply
1684 * descriptor queue.
1685 */
1686static int
1687_base_process_reply_queue(struct adapter_reply_queue *reply_q)
1688{
1689 union reply_descriptor rd;
1690 u64 completed_cmds;
1691 u8 request_descript_type;
1692 u16 smid;
1693 u8 cb_idx;
1694 u32 reply;
1695 u8 msix_index = reply_q->msix_index;
1696 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1697 Mpi2ReplyDescriptorsUnion_t *rpf;
1698 u8 rc;
1699
1700 completed_cmds = 0;
1701 if (!atomic_add_unless(v: &reply_q->busy, a: 1, u: 1))
1702 return completed_cmds;
1703
1704 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1705 request_descript_type = rpf->Default.ReplyFlags
1706 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1707 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1708 atomic_dec(v: &reply_q->busy);
1709 return completed_cmds;
1710 }
1711
1712 cb_idx = 0xFF;
1713 do {
1714 rd.word = le64_to_cpu(rpf->Words);
1715 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1716 goto out;
1717 reply = 0;
1718 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1719 if (request_descript_type ==
1720 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1721 request_descript_type ==
1722 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1723 request_descript_type ==
1724 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1725 cb_idx = _base_get_cb_idx(ioc, smid);
1726 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727 (likely(mpt_callbacks[cb_idx] != NULL))) {
1728 rc = mpt_callbacks[cb_idx](ioc, smid,
1729 msix_index, 0);
1730 if (rc)
1731 mpt3sas_base_free_smid(ioc, smid);
1732 }
1733 } else if (request_descript_type ==
1734 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1735 reply = le32_to_cpu(
1736 rpf->AddressReply.ReplyFrameAddress);
1737 if (reply > ioc->reply_dma_max_address ||
1738 reply < ioc->reply_dma_min_address)
1739 reply = 0;
1740 if (smid) {
1741 cb_idx = _base_get_cb_idx(ioc, smid);
1742 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1743 (likely(mpt_callbacks[cb_idx] != NULL))) {
1744 rc = mpt_callbacks[cb_idx](ioc, smid,
1745 msix_index, reply);
1746 if (reply)
1747 _base_display_reply_info(ioc,
1748 smid, msix_index, reply);
1749 if (rc)
1750 mpt3sas_base_free_smid(ioc,
1751 smid);
1752 }
1753 } else {
1754 _base_async_event(ioc, msix_index, reply);
1755 }
1756
1757 /* reply free queue handling */
1758 if (reply) {
1759 ioc->reply_free_host_index =
1760 (ioc->reply_free_host_index ==
1761 (ioc->reply_free_queue_depth - 1)) ?
1762 0 : ioc->reply_free_host_index + 1;
1763 ioc->reply_free[ioc->reply_free_host_index] =
1764 cpu_to_le32(reply);
1765 if (ioc->is_mcpu_endpoint)
1766 _base_clone_reply_to_sys_mem(ioc,
1767 reply,
1768 index: ioc->reply_free_host_index);
1769 writel(val: ioc->reply_free_host_index,
1770 addr: &ioc->chip->ReplyFreeHostIndex);
1771 }
1772 }
1773
1774 rpf->Words = cpu_to_le64(ULLONG_MAX);
1775 reply_q->reply_post_host_index =
1776 (reply_q->reply_post_host_index ==
1777 (ioc->reply_post_queue_depth - 1)) ? 0 :
1778 reply_q->reply_post_host_index + 1;
1779 request_descript_type =
1780 reply_q->reply_post_free[reply_q->reply_post_host_index].
1781 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1782 completed_cmds++;
1783 /* Update the reply post host index after continuously
1784 * processing the threshold number of Reply Descriptors.
1785 * So that FW can find enough entries to post the Reply
1786 * Descriptors in the reply descriptor post queue.
1787 */
1788 if (completed_cmds >= ioc->thresh_hold) {
1789 if (ioc->combined_reply_queue) {
1790 writel(val: reply_q->reply_post_host_index |
1791 ((msix_index & 7) <<
1792 MPI2_RPHI_MSIX_INDEX_SHIFT),
1793 addr: ioc->replyPostRegisterIndex[msix_index/8]);
1794 } else {
1795 writel(val: reply_q->reply_post_host_index |
1796 (msix_index <<
1797 MPI2_RPHI_MSIX_INDEX_SHIFT),
1798 addr: &ioc->chip->ReplyPostHostIndex);
1799 }
1800 if (!reply_q->is_iouring_poll_q &&
1801 !reply_q->irq_poll_scheduled) {
1802 reply_q->irq_poll_scheduled = true;
1803 irq_poll_sched(&reply_q->irqpoll);
1804 }
1805 atomic_dec(v: &reply_q->busy);
1806 return completed_cmds;
1807 }
1808 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1809 goto out;
1810 if (!reply_q->reply_post_host_index)
1811 rpf = reply_q->reply_post_free;
1812 else
1813 rpf++;
1814 } while (1);
1815
1816 out:
1817
1818 if (!completed_cmds) {
1819 atomic_dec(v: &reply_q->busy);
1820 return completed_cmds;
1821 }
1822
1823 if (ioc->is_warpdrive) {
1824 writel(val: reply_q->reply_post_host_index,
1825 addr: ioc->reply_post_host_index[msix_index]);
1826 atomic_dec(v: &reply_q->busy);
1827 return completed_cmds;
1828 }
1829
1830 /* Update Reply Post Host Index.
1831 * For those HBA's which support combined reply queue feature
1832 * 1. Get the correct Supplemental Reply Post Host Index Register.
1833 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1834 * Index Register address bank i.e replyPostRegisterIndex[],
1835 * 2. Then update this register with new reply host index value
1836 * in ReplyPostIndex field and the MSIxIndex field with
1837 * msix_index value reduced to a value between 0 and 7,
1838 * using a modulo 8 operation. Since each Supplemental Reply Post
1839 * Host Index Register supports 8 MSI-X vectors.
1840 *
1841 * For other HBA's just update the Reply Post Host Index register with
1842 * new reply host index value in ReplyPostIndex Field and msix_index
1843 * value in MSIxIndex field.
1844 */
1845 if (ioc->combined_reply_queue)
1846 writel(val: reply_q->reply_post_host_index | ((msix_index & 7) <<
1847 MPI2_RPHI_MSIX_INDEX_SHIFT),
1848 addr: ioc->replyPostRegisterIndex[msix_index/8]);
1849 else
1850 writel(val: reply_q->reply_post_host_index | (msix_index <<
1851 MPI2_RPHI_MSIX_INDEX_SHIFT),
1852 addr: &ioc->chip->ReplyPostHostIndex);
1853 atomic_dec(v: &reply_q->busy);
1854 return completed_cmds;
1855}
1856
1857/**
1858 * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1859 * @shost: Scsi_Host object
1860 * @queue_num: hw ctx queue number
1861 *
1862 * Return number of entries that has been processed from poll queue.
1863 */
1864int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1865{
1866 struct MPT3SAS_ADAPTER *ioc =
1867 (struct MPT3SAS_ADAPTER *)shost->hostdata;
1868 struct adapter_reply_queue *reply_q;
1869 int num_entries = 0;
1870 int qid = queue_num - ioc->iopoll_q_start_index;
1871
1872 if (atomic_read(v: &ioc->io_uring_poll_queues[qid].pause) ||
1873 !atomic_add_unless(v: &ioc->io_uring_poll_queues[qid].busy, a: 1, u: 1))
1874 return 0;
1875
1876 reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1877
1878 num_entries = _base_process_reply_queue(reply_q);
1879 atomic_dec(v: &ioc->io_uring_poll_queues[qid].busy);
1880
1881 return num_entries;
1882}
1883
1884/**
1885 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1886 * @irq: irq number (not used)
1887 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1888 *
1889 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1890 */
1891static irqreturn_t
1892_base_interrupt(int irq, void *bus_id)
1893{
1894 struct adapter_reply_queue *reply_q = bus_id;
1895 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1896
1897 if (ioc->mask_interrupts)
1898 return IRQ_NONE;
1899 if (reply_q->irq_poll_scheduled)
1900 return IRQ_HANDLED;
1901 return ((_base_process_reply_queue(reply_q) > 0) ?
1902 IRQ_HANDLED : IRQ_NONE);
1903}
1904
1905/**
1906 * _base_irqpoll - IRQ poll callback handler
1907 * @irqpoll: irq_poll object
1908 * @budget: irq poll weight
1909 *
1910 * Return: number of reply descriptors processed
1911 */
1912static int
1913_base_irqpoll(struct irq_poll *irqpoll, int budget)
1914{
1915 struct adapter_reply_queue *reply_q;
1916 int num_entries = 0;
1917
1918 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1919 irqpoll);
1920 if (reply_q->irq_line_enable) {
1921 disable_irq_nosync(irq: reply_q->os_irq);
1922 reply_q->irq_line_enable = false;
1923 }
1924 num_entries = _base_process_reply_queue(reply_q);
1925 if (num_entries < budget) {
1926 irq_poll_complete(irqpoll);
1927 reply_q->irq_poll_scheduled = false;
1928 reply_q->irq_line_enable = true;
1929 enable_irq(irq: reply_q->os_irq);
1930 /*
1931 * Go for one more round of processing the
1932 * reply descriptor post queue in case the HBA
1933 * Firmware has posted some reply descriptors
1934 * while reenabling the IRQ.
1935 */
1936 _base_process_reply_queue(reply_q);
1937 }
1938
1939 return num_entries;
1940}
1941
1942/**
1943 * _base_init_irqpolls - initliaze IRQ polls
1944 * @ioc: per adapter object
1945 *
1946 * Return: nothing
1947 */
1948static void
1949_base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1950{
1951 struct adapter_reply_queue *reply_q, *next;
1952
1953 if (list_empty(head: &ioc->reply_queue_list))
1954 return;
1955
1956 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1957 if (reply_q->is_iouring_poll_q)
1958 continue;
1959 irq_poll_init(&reply_q->irqpoll,
1960 ioc->hba_queue_depth/4, _base_irqpoll);
1961 reply_q->irq_poll_scheduled = false;
1962 reply_q->irq_line_enable = true;
1963 reply_q->os_irq = pci_irq_vector(dev: ioc->pdev,
1964 nr: reply_q->msix_index);
1965 }
1966}
1967
1968/**
1969 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1970 * @ioc: per adapter object
1971 *
1972 * Return: Whether or not MSI/X is enabled.
1973 */
1974static inline int
1975_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1976{
1977 return (ioc->facts.IOCCapabilities &
1978 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1979}
1980
1981/**
1982 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1983 * @ioc: per adapter object
1984 * @poll: poll over reply descriptor pools incase interrupt for
1985 * timed-out SCSI command got delayed
1986 * Context: non-ISR context
1987 *
1988 * Called when a Task Management request has completed.
1989 */
1990void
1991mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1992{
1993 struct adapter_reply_queue *reply_q;
1994
1995 /* If MSIX capability is turned off
1996 * then multi-queues are not enabled
1997 */
1998 if (!_base_is_controller_msix_enabled(ioc))
1999 return;
2000
2001 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2002 if (ioc->shost_recovery || ioc->remove_host ||
2003 ioc->pci_error_recovery)
2004 return;
2005 /* TMs are on msix_index == 0 */
2006 if (reply_q->msix_index == 0)
2007 continue;
2008
2009 if (reply_q->is_iouring_poll_q) {
2010 _base_process_reply_queue(reply_q);
2011 continue;
2012 }
2013
2014 synchronize_irq(irq: pci_irq_vector(dev: ioc->pdev, nr: reply_q->msix_index));
2015 if (reply_q->irq_poll_scheduled) {
2016 /* Calling irq_poll_disable will wait for any pending
2017 * callbacks to have completed.
2018 */
2019 irq_poll_disable(&reply_q->irqpoll);
2020 irq_poll_enable(&reply_q->irqpoll);
2021 /* check how the scheduled poll has ended,
2022 * clean up only if necessary
2023 */
2024 if (reply_q->irq_poll_scheduled) {
2025 reply_q->irq_poll_scheduled = false;
2026 reply_q->irq_line_enable = true;
2027 enable_irq(irq: reply_q->os_irq);
2028 }
2029 }
2030
2031 if (poll)
2032 _base_process_reply_queue(reply_q);
2033 }
2034}
2035
2036/**
2037 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2038 * @cb_idx: callback index
2039 */
2040void
2041mpt3sas_base_release_callback_handler(u8 cb_idx)
2042{
2043 mpt_callbacks[cb_idx] = NULL;
2044}
2045
2046/**
2047 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2048 * @cb_func: callback function
2049 *
2050 * Return: Index of @cb_func.
2051 */
2052u8
2053mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2054{
2055 u8 cb_idx;
2056
2057 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2058 if (mpt_callbacks[cb_idx] == NULL)
2059 break;
2060
2061 mpt_callbacks[cb_idx] = cb_func;
2062 return cb_idx;
2063}
2064
2065/**
2066 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2067 */
2068void
2069mpt3sas_base_initialize_callback_handler(void)
2070{
2071 u8 cb_idx;
2072
2073 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2074 mpt3sas_base_release_callback_handler(cb_idx);
2075}
2076
2077
2078/**
2079 * _base_build_zero_len_sge - build zero length sg entry
2080 * @ioc: per adapter object
2081 * @paddr: virtual address for SGE
2082 *
2083 * Create a zero length scatter gather entry to insure the IOCs hardware has
2084 * something to use if the target device goes brain dead and tries
2085 * to send data even when none is asked for.
2086 */
2087static void
2088_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2089{
2090 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2091 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2092 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2093 MPI2_SGE_FLAGS_SHIFT);
2094 ioc->base_add_sg_single(paddr, flags_length, -1);
2095}
2096
2097/**
2098 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2099 * @paddr: virtual address for SGE
2100 * @flags_length: SGE flags and data transfer length
2101 * @dma_addr: Physical address
2102 */
2103static void
2104_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2105{
2106 Mpi2SGESimple32_t *sgel = paddr;
2107
2108 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2109 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2110 sgel->FlagsLength = cpu_to_le32(flags_length);
2111 sgel->Address = cpu_to_le32(dma_addr);
2112}
2113
2114
2115/**
2116 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2117 * @paddr: virtual address for SGE
2118 * @flags_length: SGE flags and data transfer length
2119 * @dma_addr: Physical address
2120 */
2121static void
2122_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2123{
2124 Mpi2SGESimple64_t *sgel = paddr;
2125
2126 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2127 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2128 sgel->FlagsLength = cpu_to_le32(flags_length);
2129 sgel->Address = cpu_to_le64(dma_addr);
2130}
2131
2132/**
2133 * _base_get_chain_buffer_tracker - obtain chain tracker
2134 * @ioc: per adapter object
2135 * @scmd: SCSI commands of the IO request
2136 *
2137 * Return: chain tracker from chain_lookup table using key as
2138 * smid and smid's chain_offset.
2139 */
2140static struct chain_tracker *
2141_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2142 struct scsi_cmnd *scmd)
2143{
2144 struct chain_tracker *chain_req;
2145 struct scsiio_tracker *st = scsi_cmd_priv(cmd: scmd);
2146 u16 smid = st->smid;
2147 u8 chain_offset =
2148 atomic_read(v: &ioc->chain_lookup[smid - 1].chain_offset);
2149
2150 if (chain_offset == ioc->chains_needed_per_io)
2151 return NULL;
2152
2153 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2154 atomic_inc(v: &ioc->chain_lookup[smid - 1].chain_offset);
2155 return chain_req;
2156}
2157
2158
2159/**
2160 * _base_build_sg - build generic sg
2161 * @ioc: per adapter object
2162 * @psge: virtual address for SGE
2163 * @data_out_dma: physical address for WRITES
2164 * @data_out_sz: data xfer size for WRITES
2165 * @data_in_dma: physical address for READS
2166 * @data_in_sz: data xfer size for READS
2167 */
2168static void
2169_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2170 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2171 size_t data_in_sz)
2172{
2173 u32 sgl_flags;
2174
2175 if (!data_out_sz && !data_in_sz) {
2176 _base_build_zero_len_sge(ioc, paddr: psge);
2177 return;
2178 }
2179
2180 if (data_out_sz && data_in_sz) {
2181 /* WRITE sgel first */
2182 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2183 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2184 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2185 ioc->base_add_sg_single(psge, sgl_flags |
2186 data_out_sz, data_out_dma);
2187
2188 /* incr sgel */
2189 psge += ioc->sge_size;
2190
2191 /* READ sgel last */
2192 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2193 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2194 MPI2_SGE_FLAGS_END_OF_LIST);
2195 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2196 ioc->base_add_sg_single(psge, sgl_flags |
2197 data_in_sz, data_in_dma);
2198 } else if (data_out_sz) /* WRITE */ {
2199 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2200 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2201 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2202 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2203 ioc->base_add_sg_single(psge, sgl_flags |
2204 data_out_sz, data_out_dma);
2205 } else if (data_in_sz) /* READ */ {
2206 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2207 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2208 MPI2_SGE_FLAGS_END_OF_LIST);
2209 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2210 ioc->base_add_sg_single(psge, sgl_flags |
2211 data_in_sz, data_in_dma);
2212 }
2213}
2214
2215/* IEEE format sgls */
2216
2217/**
2218 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2219 * a native SGL (NVMe PRP).
2220 * @ioc: per adapter object
2221 * @smid: system request message index for getting asscociated SGL
2222 * @nvme_encap_request: the NVMe request msg frame pointer
2223 * @data_out_dma: physical address for WRITES
2224 * @data_out_sz: data xfer size for WRITES
2225 * @data_in_dma: physical address for READS
2226 * @data_in_sz: data xfer size for READS
2227 *
2228 * The native SGL is built starting in the first PRP
2229 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
2230 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
2231 * used to describe a larger data buffer. If the data buffer is too large to
2232 * describe using the two PRP entriess inside the NVMe message, then PRP1
2233 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2234 * list located elsewhere in memory to describe the remaining data memory
2235 * segments. The PRP list will be contiguous.
2236 *
2237 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2238 * consists of a list of PRP entries to describe a number of noncontigous
2239 * physical memory segments as a single memory buffer, just as a SGL does. Note
2240 * however, that this function is only used by the IOCTL call, so the memory
2241 * given will be guaranteed to be contiguous. There is no need to translate
2242 * non-contiguous SGL into a PRP in this case. All PRPs will describe
2243 * contiguous space that is one page size each.
2244 *
2245 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2246 * a PRP list pointer or a PRP element, depending upon the command. PRP2
2247 * contains the second PRP element if the memory being described fits within 2
2248 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2249 *
2250 * A PRP list pointer contains the address of a PRP list, structured as a linear
2251 * array of PRP entries. Each PRP entry in this list describes a segment of
2252 * physical memory.
2253 *
2254 * Each 64-bit PRP entry comprises an address and an offset field. The address
2255 * always points at the beginning of a 4KB physical memory page, and the offset
2256 * describes where within that 4KB page the memory segment begins. Only the
2257 * first element in a PRP list may contain a non-zero offset, implying that all
2258 * memory segments following the first begin at the start of a 4KB page.
2259 *
2260 * Each PRP element normally describes 4KB of physical memory, with exceptions
2261 * for the first and last elements in the list. If the memory being described
2262 * by the list begins at a non-zero offset within the first 4KB page, then the
2263 * first PRP element will contain a non-zero offset indicating where the region
2264 * begins within the 4KB page. The last memory segment may end before the end
2265 * of the 4KB segment, depending upon the overall size of the memory being
2266 * described by the PRP list.
2267 *
2268 * Since PRP entries lack any indication of size, the overall data buffer length
2269 * is used to determine where the end of the data memory buffer is located, and
2270 * how many PRP entries are required to describe it.
2271 */
2272static void
2273_base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2274 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2275 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2276 size_t data_in_sz)
2277{
2278 int prp_size = NVME_PRP_SIZE;
2279 __le64 *prp_entry, *prp1_entry, *prp2_entry;
2280 __le64 *prp_page;
2281 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
2282 u32 offset, entry_len;
2283 u32 page_mask_result, page_mask;
2284 size_t length;
2285 struct mpt3sas_nvme_cmd *nvme_cmd =
2286 (void *)nvme_encap_request->NVMe_Command;
2287
2288 /*
2289 * Not all commands require a data transfer. If no data, just return
2290 * without constructing any PRP.
2291 */
2292 if (!data_in_sz && !data_out_sz)
2293 return;
2294 prp1_entry = &nvme_cmd->prp1;
2295 prp2_entry = &nvme_cmd->prp2;
2296 prp_entry = prp1_entry;
2297 /*
2298 * For the PRP entries, use the specially allocated buffer of
2299 * contiguous memory.
2300 */
2301 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2302 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2303
2304 /*
2305 * Check if we are within 1 entry of a page boundary we don't
2306 * want our first entry to be a PRP List entry.
2307 */
2308 page_mask = ioc->page_size - 1;
2309 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2310 if (!page_mask_result) {
2311 /* Bump up to next page boundary. */
2312 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2313 prp_page_dma = prp_page_dma + prp_size;
2314 }
2315
2316 /*
2317 * Set PRP physical pointer, which initially points to the current PRP
2318 * DMA memory page.
2319 */
2320 prp_entry_dma = prp_page_dma;
2321
2322 /* Get physical address and length of the data buffer. */
2323 if (data_in_sz) {
2324 dma_addr = data_in_dma;
2325 length = data_in_sz;
2326 } else {
2327 dma_addr = data_out_dma;
2328 length = data_out_sz;
2329 }
2330
2331 /* Loop while the length is not zero. */
2332 while (length) {
2333 /*
2334 * Check if we need to put a list pointer here if we are at
2335 * page boundary - prp_size (8 bytes).
2336 */
2337 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2338 if (!page_mask_result) {
2339 /*
2340 * This is the last entry in a PRP List, so we need to
2341 * put a PRP list pointer here. What this does is:
2342 * - bump the current memory pointer to the next
2343 * address, which will be the next full page.
2344 * - set the PRP Entry to point to that page. This
2345 * is now the PRP List pointer.
2346 * - bump the PRP Entry pointer the start of the
2347 * next page. Since all of this PRP memory is
2348 * contiguous, no need to get a new page - it's
2349 * just the next address.
2350 */
2351 prp_entry_dma++;
2352 *prp_entry = cpu_to_le64(prp_entry_dma);
2353 prp_entry++;
2354 }
2355
2356 /* Need to handle if entry will be part of a page. */
2357 offset = dma_addr & page_mask;
2358 entry_len = ioc->page_size - offset;
2359
2360 if (prp_entry == prp1_entry) {
2361 /*
2362 * Must fill in the first PRP pointer (PRP1) before
2363 * moving on.
2364 */
2365 *prp1_entry = cpu_to_le64(dma_addr);
2366
2367 /*
2368 * Now point to the second PRP entry within the
2369 * command (PRP2).
2370 */
2371 prp_entry = prp2_entry;
2372 } else if (prp_entry == prp2_entry) {
2373 /*
2374 * Should the PRP2 entry be a PRP List pointer or just
2375 * a regular PRP pointer? If there is more than one
2376 * more page of data, must use a PRP List pointer.
2377 */
2378 if (length > ioc->page_size) {
2379 /*
2380 * PRP2 will contain a PRP List pointer because
2381 * more PRP's are needed with this command. The
2382 * list will start at the beginning of the
2383 * contiguous buffer.
2384 */
2385 *prp2_entry = cpu_to_le64(prp_entry_dma);
2386
2387 /*
2388 * The next PRP Entry will be the start of the
2389 * first PRP List.
2390 */
2391 prp_entry = prp_page;
2392 } else {
2393 /*
2394 * After this, the PRP Entries are complete.
2395 * This command uses 2 PRP's and no PRP list.
2396 */
2397 *prp2_entry = cpu_to_le64(dma_addr);
2398 }
2399 } else {
2400 /*
2401 * Put entry in list and bump the addresses.
2402 *
2403 * After PRP1 and PRP2 are filled in, this will fill in
2404 * all remaining PRP entries in a PRP List, one per
2405 * each time through the loop.
2406 */
2407 *prp_entry = cpu_to_le64(dma_addr);
2408 prp_entry++;
2409 prp_entry_dma++;
2410 }
2411
2412 /*
2413 * Bump the phys address of the command's data buffer by the
2414 * entry_len.
2415 */
2416 dma_addr += entry_len;
2417
2418 /* Decrement length accounting for last partial page. */
2419 if (entry_len > length)
2420 length = 0;
2421 else
2422 length -= entry_len;
2423 }
2424}
2425
2426/**
2427 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2428 * SGLs specific to NVMe drives only
2429 *
2430 * @ioc: per adapter object
2431 * @scmd: SCSI command from the mid-layer
2432 * @mpi_request: mpi request
2433 * @smid: msg Index
2434 * @sge_count: scatter gather element count.
2435 *
2436 * Return: true: PRPs are built
2437 * false: IEEE SGLs needs to be built
2438 */
2439static void
2440base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2441 struct scsi_cmnd *scmd,
2442 Mpi25SCSIIORequest_t *mpi_request,
2443 u16 smid, int sge_count)
2444{
2445 int sge_len, num_prp_in_chain = 0;
2446 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2447 __le64 *curr_buff;
2448 dma_addr_t msg_dma, sge_addr, offset;
2449 u32 page_mask, page_mask_result;
2450 struct scatterlist *sg_scmd;
2451 u32 first_prp_len;
2452 int data_len = scsi_bufflen(cmd: scmd);
2453 u32 nvme_pg_size;
2454
2455 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2456 /*
2457 * Nvme has a very convoluted prp format. One prp is required
2458 * for each page or partial page. Driver need to split up OS sg_list
2459 * entries if it is longer than one page or cross a page
2460 * boundary. Driver also have to insert a PRP list pointer entry as
2461 * the last entry in each physical page of the PRP list.
2462 *
2463 * NOTE: The first PRP "entry" is actually placed in the first
2464 * SGL entry in the main message as IEEE 64 format. The 2nd
2465 * entry in the main message is the chain element, and the rest
2466 * of the PRP entries are built in the contiguous pcie buffer.
2467 */
2468 page_mask = nvme_pg_size - 1;
2469
2470 /*
2471 * Native SGL is needed.
2472 * Put a chain element in main message frame that points to the first
2473 * chain buffer.
2474 *
2475 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2476 * a native SGL.
2477 */
2478
2479 /* Set main message chain element pointer */
2480 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2481 /*
2482 * For NVMe the chain element needs to be the 2nd SG entry in the main
2483 * message.
2484 */
2485 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2486 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2487
2488 /*
2489 * For the PRP entries, use the specially allocated buffer of
2490 * contiguous memory. Normal chain buffers can't be used
2491 * because each chain buffer would need to be the size of an OS
2492 * page (4k).
2493 */
2494 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2495 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2496
2497 main_chain_element->Address = cpu_to_le64(msg_dma);
2498 main_chain_element->NextChainOffset = 0;
2499 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2500 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2501 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2502
2503 /* Build first prp, sge need not to be page aligned*/
2504 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2505 sg_scmd = scsi_sglist(cmd: scmd);
2506 sge_addr = sg_dma_address(sg_scmd);
2507 sge_len = sg_dma_len(sg_scmd);
2508
2509 offset = sge_addr & page_mask;
2510 first_prp_len = nvme_pg_size - offset;
2511
2512 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2513 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2514
2515 data_len -= first_prp_len;
2516
2517 if (sge_len > first_prp_len) {
2518 sge_addr += first_prp_len;
2519 sge_len -= first_prp_len;
2520 } else if (data_len && (sge_len == first_prp_len)) {
2521 sg_scmd = sg_next(sg_scmd);
2522 sge_addr = sg_dma_address(sg_scmd);
2523 sge_len = sg_dma_len(sg_scmd);
2524 }
2525
2526 for (;;) {
2527 offset = sge_addr & page_mask;
2528
2529 /* Put PRP pointer due to page boundary*/
2530 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2531 if (unlikely(!page_mask_result)) {
2532 scmd_printk(KERN_NOTICE,
2533 scmd, "page boundary curr_buff: 0x%p\n",
2534 curr_buff);
2535 msg_dma += 8;
2536 *curr_buff = cpu_to_le64(msg_dma);
2537 curr_buff++;
2538 num_prp_in_chain++;
2539 }
2540
2541 *curr_buff = cpu_to_le64(sge_addr);
2542 curr_buff++;
2543 msg_dma += 8;
2544 num_prp_in_chain++;
2545
2546 sge_addr += nvme_pg_size;
2547 sge_len -= nvme_pg_size;
2548 data_len -= nvme_pg_size;
2549
2550 if (data_len <= 0)
2551 break;
2552
2553 if (sge_len > 0)
2554 continue;
2555
2556 sg_scmd = sg_next(sg_scmd);
2557 sge_addr = sg_dma_address(sg_scmd);
2558 sge_len = sg_dma_len(sg_scmd);
2559 }
2560
2561 main_chain_element->Length =
2562 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2563 return;
2564}
2565
2566static bool
2567base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2568 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2569{
2570 u32 data_length = 0;
2571 bool build_prp = true;
2572
2573 data_length = scsi_bufflen(cmd: scmd);
2574 if (pcie_device &&
2575 (mpt3sas_scsih_is_pcie_scsi_device(device_info: pcie_device->device_info))) {
2576 build_prp = false;
2577 return build_prp;
2578 }
2579
2580 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2581 * we built IEEE SGL
2582 */
2583 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2584 build_prp = false;
2585
2586 return build_prp;
2587}
2588
2589/**
2590 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2591 * determine if the driver needs to build a native SGL. If so, that native
2592 * SGL is built in the special contiguous buffers allocated especially for
2593 * PCIe SGL creation. If the driver will not build a native SGL, return
2594 * TRUE and a normal IEEE SGL will be built. Currently this routine
2595 * supports NVMe.
2596 * @ioc: per adapter object
2597 * @mpi_request: mf request pointer
2598 * @smid: system request message index
2599 * @scmd: scsi command
2600 * @pcie_device: points to the PCIe device's info
2601 *
2602 * Return: 0 if native SGL was built, 1 if no SGL was built
2603 */
2604static int
2605_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2606 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2607 struct _pcie_device *pcie_device)
2608{
2609 int sges_left;
2610
2611 /* Get the SG list pointer and info. */
2612 sges_left = scsi_dma_map(cmd: scmd);
2613 if (sges_left < 0)
2614 return 1;
2615
2616 /* Check if we need to build a native SG list. */
2617 if (!base_is_prp_possible(ioc, pcie_device,
2618 scmd, sge_count: sges_left)) {
2619 /* We built a native SG list, just return. */
2620 goto out;
2621 }
2622
2623 /*
2624 * Build native NVMe PRP.
2625 */
2626 base_make_prp_nvme(ioc, scmd, mpi_request,
2627 smid, sge_count: sges_left);
2628
2629 return 0;
2630out:
2631 scsi_dma_unmap(cmd: scmd);
2632 return 1;
2633}
2634
2635/**
2636 * _base_add_sg_single_ieee - add sg element for IEEE format
2637 * @paddr: virtual address for SGE
2638 * @flags: SGE flags
2639 * @chain_offset: number of 128 byte elements from start of segment
2640 * @length: data transfer length
2641 * @dma_addr: Physical address
2642 */
2643static void
2644_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2645 dma_addr_t dma_addr)
2646{
2647 Mpi25IeeeSgeChain64_t *sgel = paddr;
2648
2649 sgel->Flags = flags;
2650 sgel->NextChainOffset = chain_offset;
2651 sgel->Length = cpu_to_le32(length);
2652 sgel->Address = cpu_to_le64(dma_addr);
2653}
2654
2655/**
2656 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2657 * @ioc: per adapter object
2658 * @paddr: virtual address for SGE
2659 *
2660 * Create a zero length scatter gather entry to insure the IOCs hardware has
2661 * something to use if the target device goes brain dead and tries
2662 * to send data even when none is asked for.
2663 */
2664static void
2665_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2666{
2667 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2668 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2669 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2670
2671 _base_add_sg_single_ieee(paddr, flags: sgl_flags, chain_offset: 0, length: 0, dma_addr: -1);
2672}
2673
2674/**
2675 * _base_build_sg_scmd - main sg creation routine
2676 * pcie_device is unused here!
2677 * @ioc: per adapter object
2678 * @scmd: scsi command
2679 * @smid: system request message index
2680 * @unused: unused pcie_device pointer
2681 * Context: none.
2682 *
2683 * The main routine that builds scatter gather table from a given
2684 * scsi request sent via the .queuecommand main handler.
2685 *
2686 * Return: 0 success, anything else error
2687 */
2688static int
2689_base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2690 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2691{
2692 Mpi2SCSIIORequest_t *mpi_request;
2693 dma_addr_t chain_dma;
2694 struct scatterlist *sg_scmd;
2695 void *sg_local, *chain;
2696 u32 chain_offset;
2697 u32 chain_length;
2698 u32 chain_flags;
2699 int sges_left;
2700 u32 sges_in_segment;
2701 u32 sgl_flags;
2702 u32 sgl_flags_last_element;
2703 u32 sgl_flags_end_buffer;
2704 struct chain_tracker *chain_req;
2705
2706 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2707
2708 /* init scatter gather flags */
2709 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2710 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2711 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2712 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2713 << MPI2_SGE_FLAGS_SHIFT;
2714 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2715 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2716 << MPI2_SGE_FLAGS_SHIFT;
2717 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2718
2719 sg_scmd = scsi_sglist(cmd: scmd);
2720 sges_left = scsi_dma_map(cmd: scmd);
2721 if (sges_left < 0)
2722 return -ENOMEM;
2723
2724 sg_local = &mpi_request->SGL;
2725 sges_in_segment = ioc->max_sges_in_main_message;
2726 if (sges_left <= sges_in_segment)
2727 goto fill_in_last_segment;
2728
2729 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2730 (sges_in_segment * ioc->sge_size))/4;
2731
2732 /* fill in main message segment when there is a chain following */
2733 while (sges_in_segment) {
2734 if (sges_in_segment == 1)
2735 ioc->base_add_sg_single(sg_local,
2736 sgl_flags_last_element | sg_dma_len(sg_scmd),
2737 sg_dma_address(sg_scmd));
2738 else
2739 ioc->base_add_sg_single(sg_local, sgl_flags |
2740 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2741 sg_scmd = sg_next(sg_scmd);
2742 sg_local += ioc->sge_size;
2743 sges_left--;
2744 sges_in_segment--;
2745 }
2746
2747 /* initializing the chain flags and pointers */
2748 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2749 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2750 if (!chain_req)
2751 return -1;
2752 chain = chain_req->chain_buffer;
2753 chain_dma = chain_req->chain_buffer_dma;
2754 do {
2755 sges_in_segment = (sges_left <=
2756 ioc->max_sges_in_chain_message) ? sges_left :
2757 ioc->max_sges_in_chain_message;
2758 chain_offset = (sges_left == sges_in_segment) ?
2759 0 : (sges_in_segment * ioc->sge_size)/4;
2760 chain_length = sges_in_segment * ioc->sge_size;
2761 if (chain_offset) {
2762 chain_offset = chain_offset <<
2763 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2764 chain_length += ioc->sge_size;
2765 }
2766 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2767 chain_length, chain_dma);
2768 sg_local = chain;
2769 if (!chain_offset)
2770 goto fill_in_last_segment;
2771
2772 /* fill in chain segments */
2773 while (sges_in_segment) {
2774 if (sges_in_segment == 1)
2775 ioc->base_add_sg_single(sg_local,
2776 sgl_flags_last_element |
2777 sg_dma_len(sg_scmd),
2778 sg_dma_address(sg_scmd));
2779 else
2780 ioc->base_add_sg_single(sg_local, sgl_flags |
2781 sg_dma_len(sg_scmd),
2782 sg_dma_address(sg_scmd));
2783 sg_scmd = sg_next(sg_scmd);
2784 sg_local += ioc->sge_size;
2785 sges_left--;
2786 sges_in_segment--;
2787 }
2788
2789 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2790 if (!chain_req)
2791 return -1;
2792 chain = chain_req->chain_buffer;
2793 chain_dma = chain_req->chain_buffer_dma;
2794 } while (1);
2795
2796
2797 fill_in_last_segment:
2798
2799 /* fill the last segment */
2800 while (sges_left) {
2801 if (sges_left == 1)
2802 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2803 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2804 else
2805 ioc->base_add_sg_single(sg_local, sgl_flags |
2806 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2807 sg_scmd = sg_next(sg_scmd);
2808 sg_local += ioc->sge_size;
2809 sges_left--;
2810 }
2811
2812 return 0;
2813}
2814
2815/**
2816 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2817 * @ioc: per adapter object
2818 * @scmd: scsi command
2819 * @smid: system request message index
2820 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2821 * constructed on need.
2822 * Context: none.
2823 *
2824 * The main routine that builds scatter gather table from a given
2825 * scsi request sent via the .queuecommand main handler.
2826 *
2827 * Return: 0 success, anything else error
2828 */
2829static int
2830_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2831 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2832{
2833 Mpi25SCSIIORequest_t *mpi_request;
2834 dma_addr_t chain_dma;
2835 struct scatterlist *sg_scmd;
2836 void *sg_local, *chain;
2837 u32 chain_offset;
2838 u32 chain_length;
2839 int sges_left;
2840 u32 sges_in_segment;
2841 u8 simple_sgl_flags;
2842 u8 simple_sgl_flags_last;
2843 u8 chain_sgl_flags;
2844 struct chain_tracker *chain_req;
2845
2846 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2847
2848 /* init scatter gather flags */
2849 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2850 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2851 simple_sgl_flags_last = simple_sgl_flags |
2852 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2853 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2854 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2855
2856 /* Check if we need to build a native SG list. */
2857 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2858 smid, scmd, pcie_device) == 0)) {
2859 /* We built a native SG list, just return. */
2860 return 0;
2861 }
2862
2863 sg_scmd = scsi_sglist(cmd: scmd);
2864 sges_left = scsi_dma_map(cmd: scmd);
2865 if (sges_left < 0)
2866 return -ENOMEM;
2867
2868 sg_local = &mpi_request->SGL;
2869 sges_in_segment = (ioc->request_sz -
2870 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2871 if (sges_left <= sges_in_segment)
2872 goto fill_in_last_segment;
2873
2874 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2875 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2876
2877 /* fill in main message segment when there is a chain following */
2878 while (sges_in_segment > 1) {
2879 _base_add_sg_single_ieee(paddr: sg_local, flags: simple_sgl_flags, chain_offset: 0,
2880 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2881 sg_scmd = sg_next(sg_scmd);
2882 sg_local += ioc->sge_size_ieee;
2883 sges_left--;
2884 sges_in_segment--;
2885 }
2886
2887 /* initializing the pointers */
2888 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2889 if (!chain_req)
2890 return -1;
2891 chain = chain_req->chain_buffer;
2892 chain_dma = chain_req->chain_buffer_dma;
2893 do {
2894 sges_in_segment = (sges_left <=
2895 ioc->max_sges_in_chain_message) ? sges_left :
2896 ioc->max_sges_in_chain_message;
2897 chain_offset = (sges_left == sges_in_segment) ?
2898 0 : sges_in_segment;
2899 chain_length = sges_in_segment * ioc->sge_size_ieee;
2900 if (chain_offset)
2901 chain_length += ioc->sge_size_ieee;
2902 _base_add_sg_single_ieee(paddr: sg_local, flags: chain_sgl_flags,
2903 chain_offset, length: chain_length, dma_addr: chain_dma);
2904
2905 sg_local = chain;
2906 if (!chain_offset)
2907 goto fill_in_last_segment;
2908
2909 /* fill in chain segments */
2910 while (sges_in_segment) {
2911 _base_add_sg_single_ieee(paddr: sg_local, flags: simple_sgl_flags, chain_offset: 0,
2912 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2913 sg_scmd = sg_next(sg_scmd);
2914 sg_local += ioc->sge_size_ieee;
2915 sges_left--;
2916 sges_in_segment--;
2917 }
2918
2919 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2920 if (!chain_req)
2921 return -1;
2922 chain = chain_req->chain_buffer;
2923 chain_dma = chain_req->chain_buffer_dma;
2924 } while (1);
2925
2926
2927 fill_in_last_segment:
2928
2929 /* fill the last segment */
2930 while (sges_left > 0) {
2931 if (sges_left == 1)
2932 _base_add_sg_single_ieee(paddr: sg_local,
2933 flags: simple_sgl_flags_last, chain_offset: 0, sg_dma_len(sg_scmd),
2934 sg_dma_address(sg_scmd));
2935 else
2936 _base_add_sg_single_ieee(paddr: sg_local, flags: simple_sgl_flags, chain_offset: 0,
2937 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2938 sg_scmd = sg_next(sg_scmd);
2939 sg_local += ioc->sge_size_ieee;
2940 sges_left--;
2941 }
2942
2943 return 0;
2944}
2945
2946/**
2947 * _base_build_sg_ieee - build generic sg for IEEE format
2948 * @ioc: per adapter object
2949 * @psge: virtual address for SGE
2950 * @data_out_dma: physical address for WRITES
2951 * @data_out_sz: data xfer size for WRITES
2952 * @data_in_dma: physical address for READS
2953 * @data_in_sz: data xfer size for READS
2954 */
2955static void
2956_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2957 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2958 size_t data_in_sz)
2959{
2960 u8 sgl_flags;
2961
2962 if (!data_out_sz && !data_in_sz) {
2963 _base_build_zero_len_sge_ieee(ioc, paddr: psge);
2964 return;
2965 }
2966
2967 if (data_out_sz && data_in_sz) {
2968 /* WRITE sgel first */
2969 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2970 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2971 _base_add_sg_single_ieee(paddr: psge, flags: sgl_flags, chain_offset: 0, length: data_out_sz,
2972 dma_addr: data_out_dma);
2973
2974 /* incr sgel */
2975 psge += ioc->sge_size_ieee;
2976
2977 /* READ sgel last */
2978 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2979 _base_add_sg_single_ieee(paddr: psge, flags: sgl_flags, chain_offset: 0, length: data_in_sz,
2980 dma_addr: data_in_dma);
2981 } else if (data_out_sz) /* WRITE */ {
2982 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2983 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2984 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2985 _base_add_sg_single_ieee(paddr: psge, flags: sgl_flags, chain_offset: 0, length: data_out_sz,
2986 dma_addr: data_out_dma);
2987 } else if (data_in_sz) /* READ */ {
2988 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2989 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2990 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2991 _base_add_sg_single_ieee(paddr: psge, flags: sgl_flags, chain_offset: 0, length: data_in_sz,
2992 dma_addr: data_in_dma);
2993 }
2994}
2995
2996#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2997
2998/**
2999 * _base_config_dma_addressing - set dma addressing
3000 * @ioc: per adapter object
3001 * @pdev: PCI device struct
3002 *
3003 * Return: 0 for success, non-zero for failure.
3004 */
3005static int
3006_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3007{
3008 struct sysinfo s;
3009 u64 coherent_dma_mask, dma_mask;
3010
3011 if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) {
3012 ioc->dma_mask = 32;
3013 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
3014 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3015 } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
3016 ioc->dma_mask = 63;
3017 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
3018 } else {
3019 ioc->dma_mask = 64;
3020 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
3021 }
3022
3023 if (ioc->use_32bit_dma)
3024 coherent_dma_mask = DMA_BIT_MASK(32);
3025
3026 if (dma_set_mask(dev: &pdev->dev, mask: dma_mask) ||
3027 dma_set_coherent_mask(dev: &pdev->dev, mask: coherent_dma_mask))
3028 return -ENODEV;
3029
3030 if (ioc->dma_mask > 32) {
3031 ioc->base_add_sg_single = &_base_add_sg_single_64;
3032 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3033 } else {
3034 ioc->base_add_sg_single = &_base_add_sg_single_32;
3035 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3036 }
3037
3038 si_meminfo(val: &s);
3039 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3040 ioc->dma_mask, convert_to_kb(s.totalram));
3041
3042 return 0;
3043}
3044
3045/**
3046 * _base_check_enable_msix - checks MSIX capabable.
3047 * @ioc: per adapter object
3048 *
3049 * Check to see if card is capable of MSIX, and set number
3050 * of available msix vectors
3051 */
3052static int
3053_base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3054{
3055 int base;
3056 u16 message_control;
3057
3058 /* Check whether controller SAS2008 B0 controller,
3059 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3060 */
3061 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3062 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3063 return -EINVAL;
3064 }
3065
3066 base = pci_find_capability(dev: ioc->pdev, PCI_CAP_ID_MSIX);
3067 if (!base) {
3068 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3069 return -EINVAL;
3070 }
3071
3072 /* get msix vector count */
3073 /* NUMA_IO not supported for older controllers */
3074 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3075 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3076 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3077 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3078 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3079 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3080 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3081 ioc->msix_vector_count = 1;
3082 else {
3083 pci_read_config_word(dev: ioc->pdev, where: base + 2, val: &message_control);
3084 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3085 }
3086 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3087 ioc->msix_vector_count));
3088 return 0;
3089}
3090
3091/**
3092 * mpt3sas_base_free_irq - free irq
3093 * @ioc: per adapter object
3094 *
3095 * Freeing respective reply_queue from the list.
3096 */
3097void
3098mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3099{
3100 unsigned int irq;
3101 struct adapter_reply_queue *reply_q, *next;
3102
3103 if (list_empty(head: &ioc->reply_queue_list))
3104 return;
3105
3106 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3107 list_del(entry: &reply_q->list);
3108 if (reply_q->is_iouring_poll_q) {
3109 kfree(objp: reply_q);
3110 continue;
3111 }
3112
3113 if (ioc->smp_affinity_enable) {
3114 irq = pci_irq_vector(dev: ioc->pdev, nr: reply_q->msix_index);
3115 irq_update_affinity_hint(irq, NULL);
3116 }
3117 free_irq(pci_irq_vector(dev: ioc->pdev, nr: reply_q->msix_index),
3118 reply_q);
3119 kfree(objp: reply_q);
3120 }
3121}
3122
3123/**
3124 * _base_request_irq - request irq
3125 * @ioc: per adapter object
3126 * @index: msix index into vector table
3127 *
3128 * Inserting respective reply_queue into the list.
3129 */
3130static int
3131_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3132{
3133 struct pci_dev *pdev = ioc->pdev;
3134 struct adapter_reply_queue *reply_q;
3135 int r, qid;
3136
3137 reply_q = kzalloc(size: sizeof(struct adapter_reply_queue), GFP_KERNEL);
3138 if (!reply_q) {
3139 ioc_err(ioc, "unable to allocate memory %zu!\n",
3140 sizeof(struct adapter_reply_queue));
3141 return -ENOMEM;
3142 }
3143 reply_q->ioc = ioc;
3144 reply_q->msix_index = index;
3145
3146 atomic_set(v: &reply_q->busy, i: 0);
3147
3148 if (index >= ioc->iopoll_q_start_index) {
3149 qid = index - ioc->iopoll_q_start_index;
3150 snprintf(buf: reply_q->name, MPT_NAME_LENGTH, fmt: "%s%d-mq-poll%d",
3151 ioc->driver_name, ioc->id, qid);
3152 reply_q->is_iouring_poll_q = 1;
3153 ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3154 goto out;
3155 }
3156
3157
3158 if (ioc->msix_enable)
3159 snprintf(buf: reply_q->name, MPT_NAME_LENGTH, fmt: "%s%d-msix%d",
3160 ioc->driver_name, ioc->id, index);
3161 else
3162 snprintf(buf: reply_q->name, MPT_NAME_LENGTH, fmt: "%s%d",
3163 ioc->driver_name, ioc->id);
3164 r = request_irq(irq: pci_irq_vector(dev: pdev, nr: index), handler: _base_interrupt,
3165 IRQF_SHARED, name: reply_q->name, dev: reply_q);
3166 if (r) {
3167 pr_err("%s: unable to allocate interrupt %d!\n",
3168 reply_q->name, pci_irq_vector(pdev, index));
3169 kfree(objp: reply_q);
3170 return -EBUSY;
3171 }
3172out:
3173 INIT_LIST_HEAD(list: &reply_q->list);
3174 list_add_tail(new: &reply_q->list, head: &ioc->reply_queue_list);
3175 return 0;
3176}
3177
3178/**
3179 * _base_assign_reply_queues - assigning msix index for each cpu
3180 * @ioc: per adapter object
3181 *
3182 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3183 */
3184static void
3185_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3186{
3187 unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3188 struct adapter_reply_queue *reply_q;
3189 int iopoll_q_count = ioc->reply_queue_count -
3190 ioc->iopoll_q_start_index;
3191 const struct cpumask *mask;
3192
3193 if (!_base_is_controller_msix_enabled(ioc))
3194 return;
3195
3196 if (ioc->msix_load_balance)
3197 return;
3198
3199 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3200
3201 nr_cpus = num_online_cpus();
3202 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3203 ioc->facts.MaxMSIxVectors);
3204 if (!nr_msix)
3205 return;
3206
3207 if (ioc->smp_affinity_enable) {
3208
3209 /*
3210 * set irq affinity to local numa node for those irqs
3211 * corresponding to high iops queues.
3212 */
3213 if (ioc->high_iops_queues) {
3214 mask = cpumask_of_node(node: dev_to_node(dev: &ioc->pdev->dev));
3215 for (index = 0; index < ioc->high_iops_queues;
3216 index++) {
3217 irq = pci_irq_vector(dev: ioc->pdev, nr: index);
3218 irq_set_affinity_and_hint(irq, m: mask);
3219 }
3220 }
3221
3222 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3223 const cpumask_t *mask;
3224
3225 if (reply_q->msix_index < ioc->high_iops_queues ||
3226 reply_q->msix_index >= ioc->iopoll_q_start_index)
3227 continue;
3228
3229 mask = pci_irq_get_affinity(pdev: ioc->pdev,
3230 vec: reply_q->msix_index);
3231 if (!mask) {
3232 ioc_warn(ioc, "no affinity for msi %x\n",
3233 reply_q->msix_index);
3234 goto fall_back;
3235 }
3236
3237 for_each_cpu_and(cpu, mask, cpu_online_mask) {
3238 if (cpu >= ioc->cpu_msix_table_sz)
3239 break;
3240 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3241 }
3242 }
3243 return;
3244 }
3245
3246fall_back:
3247 cpu = cpumask_first(cpu_online_mask);
3248 nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3249 index = 0;
3250
3251 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3252 unsigned int i, group = nr_cpus / nr_msix;
3253
3254 if (reply_q->msix_index < ioc->high_iops_queues ||
3255 reply_q->msix_index >= ioc->iopoll_q_start_index)
3256 continue;
3257
3258 if (cpu >= nr_cpus)
3259 break;
3260
3261 if (index < nr_cpus % nr_msix)
3262 group++;
3263
3264 for (i = 0 ; i < group ; i++) {
3265 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3266 cpu = cpumask_next(n: cpu, cpu_online_mask);
3267 }
3268 index++;
3269 }
3270}
3271
3272/**
3273 * _base_check_and_enable_high_iops_queues - enable high iops mode
3274 * @ioc: per adapter object
3275 * @hba_msix_vector_count: msix vectors supported by HBA
3276 *
3277 * Enable high iops queues only if
3278 * - HBA is a SEA/AERO controller and
3279 * - MSI-Xs vector supported by the HBA is 128 and
3280 * - total CPU count in the system >=16 and
3281 * - loaded driver with default max_msix_vectors module parameter and
3282 * - system booted in non kdump mode
3283 *
3284 * Return: nothing.
3285 */
3286static void
3287_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3288 int hba_msix_vector_count)
3289{
3290 u16 lnksta, speed;
3291
3292 /*
3293 * Disable high iops queues if io uring poll queues are enabled.
3294 */
3295 if (perf_mode == MPT_PERF_MODE_IOPS ||
3296 perf_mode == MPT_PERF_MODE_LATENCY ||
3297 ioc->io_uring_poll_queues) {
3298 ioc->high_iops_queues = 0;
3299 return;
3300 }
3301
3302 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3303
3304 pcie_capability_read_word(dev: ioc->pdev, PCI_EXP_LNKSTA, val: &lnksta);
3305 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3306
3307 if (speed < 0x4) {
3308 ioc->high_iops_queues = 0;
3309 return;
3310 }
3311 }
3312
3313 if (!reset_devices && ioc->is_aero_ioc &&
3314 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3315 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3316 max_msix_vectors == -1)
3317 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3318 else
3319 ioc->high_iops_queues = 0;
3320}
3321
3322/**
3323 * mpt3sas_base_disable_msix - disables msix
3324 * @ioc: per adapter object
3325 *
3326 */
3327void
3328mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3329{
3330 if (!ioc->msix_enable)
3331 return;
3332 pci_free_irq_vectors(dev: ioc->pdev);
3333 ioc->msix_enable = 0;
3334 kfree(objp: ioc->io_uring_poll_queues);
3335}
3336
3337/**
3338 * _base_alloc_irq_vectors - allocate msix vectors
3339 * @ioc: per adapter object
3340 *
3341 */
3342static int
3343_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3344{
3345 int i, irq_flags = PCI_IRQ_MSIX;
3346 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3347 struct irq_affinity *descp = &desc;
3348 /*
3349 * Don't allocate msix vectors for poll_queues.
3350 * msix_vectors is always within a range of FW supported reply queue.
3351 */
3352 int nr_msix_vectors = ioc->iopoll_q_start_index;
3353
3354
3355 if (ioc->smp_affinity_enable)
3356 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3357 else
3358 descp = NULL;
3359
3360 ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3361 ioc->reply_queue_count, nr_msix_vectors);
3362
3363 i = pci_alloc_irq_vectors_affinity(dev: ioc->pdev,
3364 min_vecs: ioc->high_iops_queues,
3365 max_vecs: nr_msix_vectors, flags: irq_flags, affd: descp);
3366
3367 return i;
3368}
3369
3370/**
3371 * _base_enable_msix - enables msix, failback to io_apic
3372 * @ioc: per adapter object
3373 *
3374 */
3375static int
3376_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3377{
3378 int r;
3379 int i, local_max_msix_vectors;
3380 u8 try_msix = 0;
3381 int iopoll_q_count = 0;
3382
3383 ioc->msix_load_balance = false;
3384
3385 if (msix_disable == -1 || msix_disable == 0)
3386 try_msix = 1;
3387
3388 if (!try_msix)
3389 goto try_ioapic;
3390
3391 if (_base_check_enable_msix(ioc) != 0)
3392 goto try_ioapic;
3393
3394 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3395 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3396 ioc->cpu_count, max_msix_vectors);
3397
3398 ioc->reply_queue_count =
3399 min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3400
3401 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3402 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3403 else
3404 local_max_msix_vectors = max_msix_vectors;
3405
3406 if (local_max_msix_vectors == 0)
3407 goto try_ioapic;
3408
3409 /*
3410 * Enable msix_load_balance only if combined reply queue mode is
3411 * disabled on SAS3 & above generation HBA devices.
3412 */
3413 if (!ioc->combined_reply_queue &&
3414 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3415 ioc_info(ioc,
3416 "combined ReplyQueue is off, Enabling msix load balance\n");
3417 ioc->msix_load_balance = true;
3418 }
3419
3420 /*
3421 * smp affinity setting is not need when msix load balance
3422 * is enabled.
3423 */
3424 if (ioc->msix_load_balance)
3425 ioc->smp_affinity_enable = 0;
3426
3427 if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3428 ioc->shost->host_tagset = 0;
3429
3430 /*
3431 * Enable io uring poll queues only if host_tagset is enabled.
3432 */
3433 if (ioc->shost->host_tagset)
3434 iopoll_q_count = poll_queues;
3435
3436 if (iopoll_q_count) {
3437 ioc->io_uring_poll_queues = kcalloc(n: iopoll_q_count,
3438 size: sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3439 if (!ioc->io_uring_poll_queues)
3440 iopoll_q_count = 0;
3441 }
3442
3443 if (ioc->is_aero_ioc)
3444 _base_check_and_enable_high_iops_queues(ioc,
3445 hba_msix_vector_count: ioc->msix_vector_count);
3446
3447 /*
3448 * Add high iops queues count to reply queue count if high iops queues
3449 * are enabled.
3450 */
3451 ioc->reply_queue_count = min_t(int,
3452 ioc->reply_queue_count + ioc->high_iops_queues,
3453 ioc->msix_vector_count);
3454
3455 /*
3456 * Adjust the reply queue count incase reply queue count
3457 * exceeds the user provided MSIx vectors count.
3458 */
3459 if (local_max_msix_vectors > 0)
3460 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3461 ioc->reply_queue_count);
3462 /*
3463 * Add io uring poll queues count to reply queues count
3464 * if io uring is enabled in driver.
3465 */
3466 if (iopoll_q_count) {
3467 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3468 iopoll_q_count = 0;
3469 ioc->reply_queue_count = min_t(int,
3470 ioc->reply_queue_count + iopoll_q_count,
3471 ioc->msix_vector_count);
3472 }
3473
3474 /*
3475 * Starting index of io uring poll queues in reply queue list.
3476 */
3477 ioc->iopoll_q_start_index =
3478 ioc->reply_queue_count - iopoll_q_count;
3479
3480 r = _base_alloc_irq_vectors(ioc);
3481 if (r < 0) {
3482 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3483 goto try_ioapic;
3484 }
3485
3486 /*
3487 * Adjust the reply queue count if the allocated
3488 * MSIx vectors is less then the requested number
3489 * of MSIx vectors.
3490 */
3491 if (r < ioc->iopoll_q_start_index) {
3492 ioc->reply_queue_count = r + iopoll_q_count;
3493 ioc->iopoll_q_start_index =
3494 ioc->reply_queue_count - iopoll_q_count;
3495 }
3496
3497 ioc->msix_enable = 1;
3498 for (i = 0; i < ioc->reply_queue_count; i++) {
3499 r = _base_request_irq(ioc, index: i);
3500 if (r) {
3501 mpt3sas_base_free_irq(ioc);
3502 mpt3sas_base_disable_msix(ioc);
3503 goto try_ioapic;
3504 }
3505 }
3506
3507 ioc_info(ioc, "High IOPs queues : %s\n",
3508 ioc->high_iops_queues ? "enabled" : "disabled");
3509
3510 return 0;
3511
3512/* failback to io_apic interrupt routing */
3513 try_ioapic:
3514 ioc->high_iops_queues = 0;
3515 ioc_info(ioc, "High IOPs queues : disabled\n");
3516 ioc->reply_queue_count = 1;
3517 ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3518 r = pci_alloc_irq_vectors(dev: ioc->pdev, min_vecs: 1, max_vecs: 1, PCI_IRQ_LEGACY);
3519 if (r < 0) {
3520 dfailprintk(ioc,
3521 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3522 r));
3523 } else
3524 r = _base_request_irq(ioc, index: 0);
3525
3526 return r;
3527}
3528
3529/**
3530 * mpt3sas_base_unmap_resources - free controller resources
3531 * @ioc: per adapter object
3532 */
3533static void
3534mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3535{
3536 struct pci_dev *pdev = ioc->pdev;
3537
3538 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3539
3540 mpt3sas_base_free_irq(ioc);
3541 mpt3sas_base_disable_msix(ioc);
3542
3543 kfree(objp: ioc->replyPostRegisterIndex);
3544 ioc->replyPostRegisterIndex = NULL;
3545
3546
3547 if (ioc->chip_phys) {
3548 iounmap(addr: ioc->chip);
3549 ioc->chip_phys = 0;
3550 }
3551
3552 if (pci_is_enabled(pdev)) {
3553 pci_release_selected_regions(ioc->pdev, ioc->bars);
3554 pci_disable_device(dev: pdev);
3555 }
3556}
3557
3558static int
3559_base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3560
3561/**
3562 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3563 * and if it is in fault state then issue diag reset.
3564 * @ioc: per adapter object
3565 *
3566 * Return: 0 for success, non-zero for failure.
3567 */
3568int
3569mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3570{
3571 u32 ioc_state;
3572 int rc = -EFAULT;
3573
3574 dinitprintk(ioc, pr_info("%s\n", __func__));
3575 if (ioc->pci_error_recovery)
3576 return 0;
3577 ioc_state = mpt3sas_base_get_iocstate(ioc, cooked: 0);
3578 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3579
3580 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3581 mpt3sas_print_fault_code(ioc, ioc_state &
3582 MPI2_DOORBELL_DATA_MASK);
3583 mpt3sas_base_mask_interrupts(ioc);
3584 rc = _base_diag_reset(ioc);
3585 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3586 MPI2_IOC_STATE_COREDUMP) {
3587 mpt3sas_print_coredump_info(ioc, ioc_state &
3588 MPI2_DOORBELL_DATA_MASK);
3589 mpt3sas_base_wait_for_coredump_completion(ioc, caller: __func__);
3590 mpt3sas_base_mask_interrupts(ioc);
3591 rc = _base_diag_reset(ioc);
3592 }
3593
3594 return rc;
3595}
3596
3597/**
3598 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3599 * @ioc: per adapter object
3600 *
3601 * Return: 0 for success, non-zero for failure.
3602 */
3603int
3604mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3605{
3606 struct pci_dev *pdev = ioc->pdev;
3607 u32 memap_sz;
3608 u32 pio_sz;
3609 int i, r = 0, rc;
3610 u64 pio_chip = 0;
3611 phys_addr_t chip_phys = 0;
3612 struct adapter_reply_queue *reply_q;
3613 int iopoll_q_count = 0;
3614
3615 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3616
3617 ioc->bars = pci_select_bars(dev: pdev, IORESOURCE_MEM);
3618 if (pci_enable_device_mem(dev: pdev)) {
3619 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3620 ioc->bars = 0;
3621 return -ENODEV;
3622 }
3623
3624
3625 if (pci_request_selected_regions(pdev, ioc->bars,
3626 ioc->driver_name)) {
3627 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3628 ioc->bars = 0;
3629 r = -ENODEV;
3630 goto out_fail;
3631 }
3632
3633 pci_set_master(dev: pdev);
3634
3635
3636 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3637 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3638 r = -ENODEV;
3639 goto out_fail;
3640 }
3641
3642 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3643 (!memap_sz || !pio_sz); i++) {
3644 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3645 if (pio_sz)
3646 continue;
3647 pio_chip = (u64)pci_resource_start(pdev, i);
3648 pio_sz = pci_resource_len(pdev, i);
3649 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3650 if (memap_sz)
3651 continue;
3652 ioc->chip_phys = pci_resource_start(pdev, i);
3653 chip_phys = ioc->chip_phys;
3654 memap_sz = pci_resource_len(pdev, i);
3655 ioc->chip = ioremap(offset: ioc->chip_phys, size: memap_sz);
3656 }
3657 }
3658
3659 if (ioc->chip == NULL) {
3660 ioc_err(ioc,
3661 "unable to map adapter memory! or resource not found\n");
3662 r = -EINVAL;
3663 goto out_fail;
3664 }
3665
3666 mpt3sas_base_mask_interrupts(ioc);
3667
3668 r = _base_get_ioc_facts(ioc);
3669 if (r) {
3670 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3671 if (rc || (_base_get_ioc_facts(ioc)))
3672 goto out_fail;
3673 }
3674
3675 if (!ioc->rdpq_array_enable_assigned) {
3676 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3677 ioc->rdpq_array_enable_assigned = 1;
3678 }
3679
3680 r = _base_enable_msix(ioc);
3681 if (r)
3682 goto out_fail;
3683
3684 iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3685 for (i = 0; i < iopoll_q_count; i++) {
3686 atomic_set(v: &ioc->io_uring_poll_queues[i].busy, i: 0);
3687 atomic_set(v: &ioc->io_uring_poll_queues[i].pause, i: 0);
3688 }
3689
3690 if (!ioc->is_driver_loading)
3691 _base_init_irqpolls(ioc);
3692 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3693 * revision HBAs and also only when reply queue count is greater than 8
3694 */
3695 if (ioc->combined_reply_queue) {
3696 /* Determine the Supplemental Reply Post Host Index Registers
3697 * Addresse. Supplemental Reply Post Host Index Registers
3698 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3699 * each register is at offset bytes of
3700 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3701 */
3702 ioc->replyPostRegisterIndex = kcalloc(
3703 n: ioc->combined_reply_index_count,
3704 size: sizeof(resource_size_t *), GFP_KERNEL);
3705 if (!ioc->replyPostRegisterIndex) {
3706 ioc_err(ioc,
3707 "allocation for replyPostRegisterIndex failed!\n");
3708 r = -ENOMEM;
3709 goto out_fail;
3710 }
3711
3712 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3713 ioc->replyPostRegisterIndex[i] =
3714 (resource_size_t __iomem *)
3715 ((u8 __force *)&ioc->chip->Doorbell +
3716 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3717 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3718 }
3719 }
3720
3721 if (ioc->is_warpdrive) {
3722 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3723 &ioc->chip->ReplyPostHostIndex;
3724
3725 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3726 ioc->reply_post_host_index[i] =
3727 (resource_size_t __iomem *)
3728 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3729 * 4)));
3730 }
3731
3732 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3733 if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3734 pr_info("%s: enabled: index: %d\n",
3735 reply_q->name, reply_q->msix_index);
3736 continue;
3737 }
3738
3739 pr_info("%s: %s enabled: IRQ %d\n",
3740 reply_q->name,
3741 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3742 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3743 }
3744
3745 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3746 &chip_phys, ioc->chip, memap_sz);
3747 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3748 (unsigned long long)pio_chip, pio_sz);
3749
3750 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3751 pci_save_state(dev: pdev);
3752 return 0;
3753
3754 out_fail:
3755 mpt3sas_base_unmap_resources(ioc);
3756 return r;
3757}
3758
3759/**
3760 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3761 * @ioc: per adapter object
3762 * @smid: system request message index(smid zero is invalid)
3763 *
3764 * Return: virt pointer to message frame.
3765 */
3766void *
3767mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3768{
3769 return (void *)(ioc->request + (smid * ioc->request_sz));
3770}
3771
3772/**
3773 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3774 * @ioc: per adapter object
3775 * @smid: system request message index
3776 *
3777 * Return: virt pointer to sense buffer.
3778 */
3779void *
3780mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3781{
3782 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3783}
3784
3785/**
3786 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3787 * @ioc: per adapter object
3788 * @smid: system request message index
3789 *
3790 * Return: phys pointer to the low 32bit address of the sense buffer.
3791 */
3792__le32
3793mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3794{
3795 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3796 SCSI_SENSE_BUFFERSIZE));
3797}
3798
3799/**
3800 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3801 * @ioc: per adapter object
3802 * @smid: system request message index
3803 *
3804 * Return: virt pointer to a PCIe SGL.
3805 */
3806void *
3807mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3808{
3809 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3810}
3811
3812/**
3813 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3814 * @ioc: per adapter object
3815 * @smid: system request message index
3816 *
3817 * Return: phys pointer to the address of the PCIe buffer.
3818 */
3819dma_addr_t
3820mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3821{
3822 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3823}
3824
3825/**
3826 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3827 * @ioc: per adapter object
3828 * @phys_addr: lower 32 physical addr of the reply
3829 *
3830 * Converts 32bit lower physical addr into a virt address.
3831 */
3832void *
3833mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3834{
3835 if (!phys_addr)
3836 return NULL;
3837 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3838}
3839
3840/**
3841 * _base_get_msix_index - get the msix index
3842 * @ioc: per adapter object
3843 * @scmd: scsi_cmnd object
3844 *
3845 * Return: msix index of general reply queues,
3846 * i.e. reply queue on which IO request's reply
3847 * should be posted by the HBA firmware.
3848 */
3849static inline u8
3850_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3851 struct scsi_cmnd *scmd)
3852{
3853 /* Enables reply_queue load balancing */
3854 if (ioc->msix_load_balance)
3855 return ioc->reply_queue_count ?
3856 base_mod64(dividend: atomic64_add_return(i: 1,
3857 v: &ioc->total_io_cnt), divisor: ioc->reply_queue_count) : 0;
3858
3859 if (scmd && ioc->shost->nr_hw_queues > 1) {
3860 u32 tag = blk_mq_unique_tag(rq: scsi_cmd_to_rq(scmd));
3861
3862 return blk_mq_unique_tag_to_hwq(unique_tag: tag) +
3863 ioc->high_iops_queues;
3864 }
3865
3866 return ioc->cpu_msix_table[raw_smp_processor_id()];
3867}
3868
3869/**
3870 * _base_get_high_iops_msix_index - get the msix index of
3871 * high iops queues
3872 * @ioc: per adapter object
3873 * @scmd: scsi_cmnd object
3874 *
3875 * Return: msix index of high iops reply queues.
3876 * i.e. high iops reply queue on which IO request's
3877 * reply should be posted by the HBA firmware.
3878 */
3879static inline u8
3880_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3881 struct scsi_cmnd *scmd)
3882{
3883 /**
3884 * Round robin the IO interrupts among the high iops
3885 * reply queues in terms of batch count 16 when outstanding
3886 * IOs on the target device is >=8.
3887 */
3888
3889 if (scsi_device_busy(sdev: scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3890 return base_mod64(dividend: (
3891 atomic64_add_return(i: 1, v: &ioc->high_iops_outstanding) /
3892 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3893 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3894
3895 return _base_get_msix_index(ioc, scmd);
3896}
3897
3898/**
3899 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3900 * @ioc: per adapter object
3901 * @cb_idx: callback index
3902 *
3903 * Return: smid (zero is invalid)
3904 */
3905u16
3906mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3907{
3908 unsigned long flags;
3909 struct request_tracker *request;
3910 u16 smid;
3911
3912 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3913 if (list_empty(head: &ioc->internal_free_list)) {
3914 spin_unlock_irqrestore(lock: &ioc->scsi_lookup_lock, flags);
3915 ioc_err(ioc, "%s: smid not available\n", __func__);
3916 return 0;
3917 }
3918
3919 request = list_entry(ioc->internal_free_list.next,
3920 struct request_tracker, tracker_list);
3921 request->cb_idx = cb_idx;
3922 smid = request->smid;
3923 list_del(entry: &request->tracker_list);
3924 spin_unlock_irqrestore(lock: &ioc->scsi_lookup_lock, flags);
3925 return smid;
3926}
3927
3928/**
3929 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3930 * @ioc: per adapter object
3931 * @cb_idx: callback index
3932 * @scmd: pointer to scsi command object
3933 *
3934 * Return: smid (zero is invalid)
3935 */
3936u16
3937mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3938 struct scsi_cmnd *scmd)
3939{
3940 struct scsiio_tracker *request = scsi_cmd_priv(cmd: scmd);
3941 u16 smid;
3942 u32 tag, unique_tag;
3943
3944 unique_tag = blk_mq_unique_tag(rq: scsi_cmd_to_rq(scmd));
3945 tag = blk_mq_unique_tag_to_tag(unique_tag);
3946
3947 /*
3948 * Store hw queue number corresponding to the tag.
3949 * This hw queue number is used later to determine
3950 * the unique_tag using the logic below. This unique_tag
3951 * is used to retrieve the scmd pointer corresponding
3952 * to tag using scsi_host_find_tag() API.
3953 *
3954 * tag = smid - 1;
3955 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3956 */
3957 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3958
3959 smid = tag + 1;
3960 request->cb_idx = cb_idx;
3961 request->smid = smid;
3962 request->scmd = scmd;
3963 INIT_LIST_HEAD(list: &request->chain_list);
3964 return smid;
3965}
3966
3967/**
3968 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3969 * @ioc: per adapter object
3970 * @cb_idx: callback index
3971 *
3972 * Return: smid (zero is invalid)
3973 */
3974u16
3975mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3976{
3977 unsigned long flags;
3978 struct request_tracker *request;
3979 u16 smid;
3980
3981 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3982 if (list_empty(head: &ioc->hpr_free_list)) {
3983 spin_unlock_irqrestore(lock: &ioc->scsi_lookup_lock, flags);
3984 return 0;
3985 }
3986
3987 request = list_entry(ioc->hpr_free_list.next,
3988 struct request_tracker, tracker_list);
3989 request->cb_idx = cb_idx;
3990 smid = request->smid;
3991 list_del(entry: &request->tracker_list);
3992 spin_unlock_irqrestore(lock: &ioc->scsi_lookup_lock, flags);
3993 return smid;
3994}
3995
3996static void
3997_base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3998{
3999 /*
4000 * See _wait_for_commands_to_complete() call with regards to this code.
4001 */
4002 if (ioc->shost_recovery && ioc->pending_io_count) {
4003 ioc->pending_io_count = scsi_host_busy(shost: ioc->shost);
4004 if (ioc->pending_io_count == 0)
4005 wake_up(&ioc->reset_wq);
4006 }
4007}
4008
4009void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4010 struct scsiio_tracker *st)
4011{
4012 if (WARN_ON(st->smid == 0))
4013 return;
4014 st->cb_idx = 0xFF;
4015 st->direct_io = 0;
4016 st->scmd = NULL;
4017 atomic_set(v: &ioc->chain_lookup[st->smid - 1].chain_offset, i: 0);
4018 st->smid = 0;
4019}
4020
4021/**
4022 * mpt3sas_base_free_smid - put smid back on free_list
4023 * @ioc: per adapter object
4024 * @smid: system request message index
4025 */
4026void
4027mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4028{
4029 unsigned long flags;
4030 int i;
4031
4032 if (smid < ioc->hi_priority_smid) {
4033 struct scsiio_tracker *st;
4034 void *request;
4035
4036 st = _get_st_from_smid(ioc, smid);
4037 if (!st) {
4038 _base_recovery_check(ioc);
4039 return;
4040 }
4041
4042 /* Clear MPI request frame */
4043 request = mpt3sas_base_get_msg_frame(ioc, smid);
4044 memset(request, 0, ioc->request_sz);
4045
4046 mpt3sas_base_clear_st(ioc, st);
4047 _base_recovery_check(ioc);
4048 ioc->io_queue_num[smid - 1] = 0;
4049 return;
4050 }
4051
4052 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4053 if (smid < ioc->internal_smid) {
4054 /* hi-priority */
4055 i = smid - ioc->hi_priority_smid;
4056 ioc->hpr_lookup[i].cb_idx = 0xFF;
4057 list_add(new: &ioc->hpr_lookup[i].tracker_list, head: &ioc->hpr_free_list);
4058 } else if (smid <= ioc->hba_queue_depth) {
4059 /* internal queue */
4060 i = smid - ioc->internal_smid;
4061 ioc->internal_lookup[i].cb_idx = 0xFF;
4062 list_add(new: &ioc->internal_lookup[i].tracker_list,
4063 head: &ioc->internal_free_list);
4064 }
4065 spin_unlock_irqrestore(lock: &ioc->scsi_lookup_lock, flags);
4066}
4067
4068/**
4069 * _base_mpi_ep_writeq - 32 bit write to MMIO
4070 * @b: data payload
4071 * @addr: address in MMIO space
4072 * @writeq_lock: spin lock
4073 *
4074 * This special handling for MPI EP to take care of 32 bit
4075 * environment where its not quarenteed to send the entire word
4076 * in one transfer.
4077 */
4078static inline void
4079_base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4080 spinlock_t *writeq_lock)
4081{
4082 unsigned long flags;
4083
4084 spin_lock_irqsave(writeq_lock, flags);
4085 __raw_writel(val: (u32)(b), addr);
4086 __raw_writel(val: (u32)(b >> 32), addr: (addr + 4));
4087 spin_unlock_irqrestore(lock: writeq_lock, flags);
4088}
4089
4090/**
4091 * _base_writeq - 64 bit write to MMIO
4092 * @b: data payload
4093 * @addr: address in MMIO space
4094 * @writeq_lock: spin lock
4095 *
4096 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4097 * care of 32 bit environment where its not quarenteed to send the entire word
4098 * in one transfer.
4099 */
4100#if defined(writeq) && defined(CONFIG_64BIT)
4101static inline void
4102_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4103{
4104 wmb();
4105 __raw_writeq(val: b, addr);
4106 barrier();
4107}
4108#else
4109static inline void
4110_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4111{
4112 _base_mpi_ep_writeq(b, addr, writeq_lock);
4113}
4114#endif
4115
4116/**
4117 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4118 * variable of scsi tracker
4119 * @ioc: per adapter object
4120 * @smid: system request message index
4121 *
4122 * Return: msix index.
4123 */
4124static u8
4125_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4126{
4127 struct scsiio_tracker *st = NULL;
4128
4129 if (smid < ioc->hi_priority_smid)
4130 st = _get_st_from_smid(ioc, smid);
4131
4132 if (st == NULL)
4133 return _base_get_msix_index(ioc, NULL);
4134
4135 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4136 return st->msix_io;
4137}
4138
4139/**
4140 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4141 * @ioc: per adapter object
4142 * @smid: system request message index
4143 * @handle: device handle
4144 */
4145static void
4146_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4147 u16 smid, u16 handle)
4148{
4149 Mpi2RequestDescriptorUnion_t descriptor;
4150 u64 *request = (u64 *)&descriptor;
4151 void *mpi_req_iomem;
4152 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4153
4154 _clone_sg_entries(ioc, mpi_request: (void *) mfp, smid);
4155 mpi_req_iomem = (void __force *)ioc->chip +
4156 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4157 _base_clone_mpi_to_sys_mem(dst_iomem: mpi_req_iomem, src: (void *)mfp,
4158 size: ioc->request_sz);
4159 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4160 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4161 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4162 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4163 descriptor.SCSIIO.LMID = 0;
4164 _base_mpi_ep_writeq(b: *request, addr: &ioc->chip->RequestDescriptorPostLow,
4165 writeq_lock: &ioc->scsi_lookup_lock);
4166}
4167
4168/**
4169 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4170 * @ioc: per adapter object
4171 * @smid: system request message index
4172 * @handle: device handle
4173 */
4174static void
4175_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4176{
4177 Mpi2RequestDescriptorUnion_t descriptor;
4178 u64 *request = (u64 *)&descriptor;
4179
4180
4181 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4182 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4183 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4184 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4185 descriptor.SCSIIO.LMID = 0;
4186 _base_writeq(b: *request, addr: &ioc->chip->RequestDescriptorPostLow,
4187 writeq_lock: &ioc->scsi_lookup_lock);
4188}
4189
4190/**
4191 * _base_put_smid_fast_path - send fast path request to firmware
4192 * @ioc: per adapter object
4193 * @smid: system request message index
4194 * @handle: device handle
4195 */
4196static void
4197_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4198 u16 handle)
4199{
4200 Mpi2RequestDescriptorUnion_t descriptor;
4201 u64 *request = (u64 *)&descriptor;
4202
4203 descriptor.SCSIIO.RequestFlags =
4204 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4205 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4206 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4207 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4208 descriptor.SCSIIO.LMID = 0;
4209 _base_writeq(b: *request, addr: &ioc->chip->RequestDescriptorPostLow,
4210 writeq_lock: &ioc->scsi_lookup_lock);
4211}
4212
4213/**
4214 * _base_put_smid_hi_priority - send Task Management request to firmware
4215 * @ioc: per adapter object
4216 * @smid: system request message index
4217 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4218 */
4219static void
4220_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4221 u16 msix_task)
4222{
4223 Mpi2RequestDescriptorUnion_t descriptor;
4224 void *mpi_req_iomem;
4225 u64 *request;
4226
4227 if (ioc->is_mcpu_endpoint) {
4228 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4229
4230 /* TBD 256 is offset within sys register. */
4231 mpi_req_iomem = (void __force *)ioc->chip
4232 + MPI_FRAME_START_OFFSET
4233 + (smid * ioc->request_sz);
4234 _base_clone_mpi_to_sys_mem(dst_iomem: mpi_req_iomem, src: (void *)mfp,
4235 size: ioc->request_sz);
4236 }
4237
4238 request = (u64 *)&descriptor;
4239
4240 descriptor.HighPriority.RequestFlags =
4241 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4242 descriptor.HighPriority.MSIxIndex = msix_task;
4243 descriptor.HighPriority.SMID = cpu_to_le16(smid);
4244 descriptor.HighPriority.LMID = 0;
4245 descriptor.HighPriority.Reserved1 = 0;
4246 if (ioc->is_mcpu_endpoint)
4247 _base_mpi_ep_writeq(b: *request,
4248 addr: &ioc->chip->RequestDescriptorPostLow,
4249 writeq_lock: &ioc->scsi_lookup_lock);
4250 else
4251 _base_writeq(b: *request, addr: &ioc->chip->RequestDescriptorPostLow,
4252 writeq_lock: &ioc->scsi_lookup_lock);
4253}
4254
4255/**
4256 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4257 * firmware
4258 * @ioc: per adapter object
4259 * @smid: system request message index
4260 */
4261void
4262mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4263{
4264 Mpi2RequestDescriptorUnion_t descriptor;
4265 u64 *request = (u64 *)&descriptor;
4266
4267 descriptor.Default.RequestFlags =
4268 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4269 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4270 descriptor.Default.SMID = cpu_to_le16(smid);
4271 descriptor.Default.LMID = 0;
4272 descriptor.Default.DescriptorTypeDependent = 0;
4273 _base_writeq(b: *request, addr: &ioc->chip->RequestDescriptorPostLow,
4274 writeq_lock: &ioc->scsi_lookup_lock);
4275}
4276
4277/**
4278 * _base_put_smid_default - Default, primarily used for config pages
4279 * @ioc: per adapter object
4280 * @smid: system request message index
4281 */
4282static void
4283_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4284{
4285 Mpi2RequestDescriptorUnion_t descriptor;
4286 void *mpi_req_iomem;
4287 u64 *request;
4288
4289 if (ioc->is_mcpu_endpoint) {
4290 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4291
4292 _clone_sg_entries(ioc, mpi_request: (void *) mfp, smid);
4293 /* TBD 256 is offset within sys register */
4294 mpi_req_iomem = (void __force *)ioc->chip +
4295 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4296 _base_clone_mpi_to_sys_mem(dst_iomem: mpi_req_iomem, src: (void *)mfp,
4297 size: ioc->request_sz);
4298 }
4299 request = (u64 *)&descriptor;
4300 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4301 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4302 descriptor.Default.SMID = cpu_to_le16(smid);
4303 descriptor.Default.LMID = 0;
4304 descriptor.Default.DescriptorTypeDependent = 0;
4305 if (ioc->is_mcpu_endpoint)
4306 _base_mpi_ep_writeq(b: *request,
4307 addr: &ioc->chip->RequestDescriptorPostLow,
4308 writeq_lock: &ioc->scsi_lookup_lock);
4309 else
4310 _base_writeq(b: *request, addr: &ioc->chip->RequestDescriptorPostLow,
4311 writeq_lock: &ioc->scsi_lookup_lock);
4312}
4313
4314/**
4315 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4316 * Atomic Request Descriptor
4317 * @ioc: per adapter object
4318 * @smid: system request message index
4319 * @handle: device handle, unused in this function, for function type match
4320 *
4321 * Return: nothing.
4322 */
4323static void
4324_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4325 u16 handle)
4326{
4327 Mpi26AtomicRequestDescriptor_t descriptor;
4328 u32 *request = (u32 *)&descriptor;
4329
4330 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4331 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4332 descriptor.SMID = cpu_to_le16(smid);
4333
4334 writel(cpu_to_le32(*request), addr: &ioc->chip->AtomicRequestDescriptorPost);
4335}
4336
4337/**
4338 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4339 * using Atomic Request Descriptor
4340 * @ioc: per adapter object
4341 * @smid: system request message index
4342 * @handle: device handle, unused in this function, for function type match
4343 * Return: nothing
4344 */
4345static void
4346_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4347 u16 handle)
4348{
4349 Mpi26AtomicRequestDescriptor_t descriptor;
4350 u32 *request = (u32 *)&descriptor;
4351
4352 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4353 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4354 descriptor.SMID = cpu_to_le16(smid);
4355
4356 writel(cpu_to_le32(*request), addr: &ioc->chip->AtomicRequestDescriptorPost);
4357}
4358
4359/**
4360 * _base_put_smid_hi_priority_atomic - send Task Management request to
4361 * firmware using Atomic Request Descriptor
4362 * @ioc: per adapter object
4363 * @smid: system request message index
4364 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4365 *
4366 * Return: nothing.
4367 */
4368static void
4369_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4370 u16 msix_task)
4371{
4372 Mpi26AtomicRequestDescriptor_t descriptor;
4373 u32 *request = (u32 *)&descriptor;
4374
4375 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4376 descriptor.MSIxIndex = msix_task;
4377 descriptor.SMID = cpu_to_le16(smid);
4378
4379 writel(cpu_to_le32(*request), addr: &ioc->chip->AtomicRequestDescriptorPost);
4380}
4381
4382/**
4383 * _base_put_smid_default_atomic - Default, primarily used for config pages
4384 * use Atomic Request Descriptor
4385 * @ioc: per adapter object
4386 * @smid: system request message index
4387 *
4388 * Return: nothing.
4389 */
4390static void
4391_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4392{
4393 Mpi26AtomicRequestDescriptor_t descriptor;
4394 u32 *request = (u32 *)&descriptor;
4395
4396 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4397 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4398 descriptor.SMID = cpu_to_le16(smid);
4399
4400 writel(cpu_to_le32(*request), addr: &ioc->chip->AtomicRequestDescriptorPost);
4401}
4402
4403/**
4404 * _base_display_OEMs_branding - Display branding string
4405 * @ioc: per adapter object
4406 */
4407static void
4408_base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4409{
4410 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4411 return;
4412
4413 switch (ioc->pdev->subsystem_vendor) {
4414 case PCI_VENDOR_ID_INTEL:
4415 switch (ioc->pdev->device) {
4416 case MPI2_MFGPAGE_DEVID_SAS2008:
4417 switch (ioc->pdev->subsystem_device) {
4418 case MPT2SAS_INTEL_RMS2LL080_SSDID:
4419 ioc_info(ioc, "%s\n",
4420 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4421 break;
4422 case MPT2SAS_INTEL_RMS2LL040_SSDID:
4423 ioc_info(ioc, "%s\n",
4424 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4425 break;
4426 case MPT2SAS_INTEL_SSD910_SSDID:
4427 ioc_info(ioc, "%s\n",
4428 MPT2SAS_INTEL_SSD910_BRANDING);
4429 break;
4430 default:
4431 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4432 ioc->pdev->subsystem_device);
4433 break;
4434 }
4435 break;
4436 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4437 switch (ioc->pdev->subsystem_device) {
4438 case MPT2SAS_INTEL_RS25GB008_SSDID:
4439 ioc_info(ioc, "%s\n",
4440 MPT2SAS_INTEL_RS25GB008_BRANDING);
4441 break;
4442 case MPT2SAS_INTEL_RMS25JB080_SSDID:
4443 ioc_info(ioc, "%s\n",
4444 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4445 break;
4446 case MPT2SAS_INTEL_RMS25JB040_SSDID:
4447 ioc_info(ioc, "%s\n",
4448 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4449 break;
4450 case MPT2SAS_INTEL_RMS25KB080_SSDID:
4451 ioc_info(ioc, "%s\n",
4452 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4453 break;
4454 case MPT2SAS_INTEL_RMS25KB040_SSDID:
4455 ioc_info(ioc, "%s\n",
4456 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4457 break;
4458 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4459 ioc_info(ioc, "%s\n",
4460 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4461 break;
4462 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4463 ioc_info(ioc, "%s\n",
4464 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4465 break;
4466 default:
4467 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4468 ioc->pdev->subsystem_device);
4469 break;
4470 }
4471 break;
4472 case MPI25_MFGPAGE_DEVID_SAS3008:
4473 switch (ioc->pdev->subsystem_device) {
4474 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4475 ioc_info(ioc, "%s\n",
4476 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4477 break;
4478
4479 case MPT3SAS_INTEL_RS3GC008_SSDID:
4480 ioc_info(ioc, "%s\n",
4481 MPT3SAS_INTEL_RS3GC008_BRANDING);
4482 break;
4483 case MPT3SAS_INTEL_RS3FC044_SSDID:
4484 ioc_info(ioc, "%s\n",
4485 MPT3SAS_INTEL_RS3FC044_BRANDING);
4486 break;
4487 case MPT3SAS_INTEL_RS3UC080_SSDID:
4488 ioc_info(ioc, "%s\n",
4489 MPT3SAS_INTEL_RS3UC080_BRANDING);
4490 break;
4491 default:
4492 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4493 ioc->pdev->subsystem_device);
4494 break;
4495 }
4496 break;
4497 default:
4498 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4499 ioc->pdev->subsystem_device);
4500 break;
4501 }
4502 break;
4503 case PCI_VENDOR_ID_DELL:
4504 switch (ioc->pdev->device) {
4505 case MPI2_MFGPAGE_DEVID_SAS2008:
4506 switch (ioc->pdev->subsystem_device) {
4507 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4508 ioc_info(ioc, "%s\n",
4509 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4510 break;
4511 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4512 ioc_info(ioc, "%s\n",
4513 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4514 break;
4515 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4516 ioc_info(ioc, "%s\n",
4517 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4518 break;
4519 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4520 ioc_info(ioc, "%s\n",
4521 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4522 break;
4523 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4524 ioc_info(ioc, "%s\n",
4525 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4526 break;
4527 case MPT2SAS_DELL_PERC_H200_SSDID:
4528 ioc_info(ioc, "%s\n",
4529 MPT2SAS_DELL_PERC_H200_BRANDING);
4530 break;
4531 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4532 ioc_info(ioc, "%s\n",
4533 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4534 break;
4535 default:
4536 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4537 ioc->pdev->subsystem_device);
4538 break;
4539 }
4540 break;
4541 case MPI25_MFGPAGE_DEVID_SAS3008:
4542 switch (ioc->pdev->subsystem_device) {
4543 case MPT3SAS_DELL_12G_HBA_SSDID:
4544 ioc_info(ioc, "%s\n",
4545 MPT3SAS_DELL_12G_HBA_BRANDING);
4546 break;
4547 default:
4548 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4549 ioc->pdev->subsystem_device);
4550 break;
4551 }
4552 break;
4553 default:
4554 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4555 ioc->pdev->subsystem_device);
4556 break;
4557 }
4558 break;
4559 case PCI_VENDOR_ID_CISCO:
4560 switch (ioc->pdev->device) {
4561 case MPI25_MFGPAGE_DEVID_SAS3008:
4562 switch (ioc->pdev->subsystem_device) {
4563 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4564 ioc_info(ioc, "%s\n",
4565 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4566 break;
4567 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4568 ioc_info(ioc, "%s\n",
4569 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4570 break;
4571 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4572 ioc_info(ioc, "%s\n",
4573 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4574 break;
4575 default:
4576 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4577 ioc->pdev->subsystem_device);
4578 break;
4579 }
4580 break;
4581 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4582 switch (ioc->pdev->subsystem_device) {
4583 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4584 ioc_info(ioc, "%s\n",
4585 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4586 break;
4587 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4588 ioc_info(ioc, "%s\n",
4589 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4590 break;
4591 default:
4592 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4593 ioc->pdev->subsystem_device);
4594 break;
4595 }
4596 break;
4597 default:
4598 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4599 ioc->pdev->subsystem_device);
4600 break;
4601 }
4602 break;
4603 case MPT2SAS_HP_3PAR_SSVID:
4604 switch (ioc->pdev->device) {
4605 case MPI2_MFGPAGE_DEVID_SAS2004:
4606 switch (ioc->pdev->subsystem_device) {
4607 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4608 ioc_info(ioc, "%s\n",
4609 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4610 break;
4611 default:
4612 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4613 ioc->pdev->subsystem_device);
4614 break;
4615 }
4616 break;
4617 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4618 switch (ioc->pdev->subsystem_device) {
4619 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4620 ioc_info(ioc, "%s\n",
4621 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4622 break;
4623 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4624 ioc_info(ioc, "%s\n",
4625 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4626 break;
4627 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4628 ioc_info(ioc, "%s\n",
4629 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4630 break;
4631 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4632 ioc_info(ioc, "%s\n",
4633 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4634 break;
4635 default:
4636 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4637 ioc->pdev->subsystem_device);
4638 break;
4639 }
4640 break;
4641 default:
4642 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4643 ioc->pdev->subsystem_device);
4644 break;
4645 }
4646 break;
4647 default:
4648 break;
4649 }
4650}
4651
4652/**
4653 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4654 * version from FW Image Header.
4655 * @ioc: per adapter object
4656 *
4657 * Return: 0 for success, non-zero for failure.
4658 */
4659 static int
4660_base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4661{
4662 Mpi2FWImageHeader_t *fw_img_hdr;
4663 Mpi26ComponentImageHeader_t *cmp_img_hdr;
4664 Mpi25FWUploadRequest_t *mpi_request;
4665 Mpi2FWUploadReply_t mpi_reply;
4666 int r = 0, issue_diag_reset = 0;
4667 u32 package_version = 0;
4668 void *fwpkg_data = NULL;
4669 dma_addr_t fwpkg_data_dma;
4670 u16 smid, ioc_status;
4671 size_t data_length;
4672
4673 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4674
4675 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4676 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4677 return -EAGAIN;
4678 }
4679
4680 data_length = sizeof(Mpi2FWImageHeader_t);
4681 fwpkg_data = dma_alloc_coherent(dev: &ioc->pdev->dev, size: data_length,
4682 dma_handle: &fwpkg_data_dma, GFP_KERNEL);
4683 if (!fwpkg_data) {
4684 ioc_err(ioc,
4685 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4686 __FILE__, __LINE__, __func__);
4687 return -ENOMEM;
4688 }
4689
4690 smid = mpt3sas_base_get_smid(ioc, cb_idx: ioc->base_cb_idx);
4691 if (!smid) {
4692 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4693 r = -EAGAIN;
4694 goto out;
4695 }
4696
4697 ioc->base_cmds.status = MPT3_CMD_PENDING;
4698 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4699 ioc->base_cmds.smid = smid;
4700 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4701 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4702 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4703 mpi_request->ImageSize = cpu_to_le32(data_length);
4704 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4705 data_length);
4706 init_completion(x: &ioc->base_cmds.done);
4707 ioc->put_smid_default(ioc, smid);
4708 /* Wait for 15 seconds */
4709 wait_for_completion_timeout(x: &ioc->base_cmds.done,
4710 FW_IMG_HDR_READ_TIMEOUT*HZ);
4711 ioc_info(ioc, "%s: complete\n", __func__);
4712 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4713 ioc_err(ioc, "%s: timeout\n", __func__);
4714 _debug_dump_mf(mpi_request,
4715 sz: sizeof(Mpi25FWUploadRequest_t)/4);
4716 issue_diag_reset = 1;
4717 } else {
4718 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4719 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4720 memcpy(&mpi_reply, ioc->base_cmds.reply,
4721 sizeof(Mpi2FWUploadReply_t));
4722 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4723 MPI2_IOCSTATUS_MASK;
4724 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4725 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4726 if (le32_to_cpu(fw_img_hdr->Signature) ==
4727 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4728 cmp_img_hdr =
4729 (Mpi26ComponentImageHeader_t *)
4730 (fwpkg_data);
4731 package_version =
4732 le32_to_cpu(
4733 cmp_img_hdr->ApplicationSpecific);
4734 } else
4735 package_version =
4736 le32_to_cpu(
4737 fw_img_hdr->PackageVersion.Word);
4738 if (package_version)
4739 ioc_info(ioc,
4740 "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4741 ((package_version) & 0xFF000000) >> 24,
4742 ((package_version) & 0x00FF0000) >> 16,
4743 ((package_version) & 0x0000FF00) >> 8,
4744 (package_version) & 0x000000FF);
4745 } else {
4746 _debug_dump_mf(mpi_request: &mpi_reply,
4747 sz: sizeof(Mpi2FWUploadReply_t)/4);
4748 }
4749 }
4750 }
4751 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4752out:
4753 if (fwpkg_data)
4754 dma_free_coherent(dev: &ioc->pdev->dev, size: data_length, cpu_addr: fwpkg_data,
4755 dma_handle: fwpkg_data_dma);
4756 if (issue_diag_reset) {
4757 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4758 return -EFAULT;
4759 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4760 return -EFAULT;
4761 r = -EAGAIN;
4762 }
4763 return r;
4764}
4765
4766/**
4767 * _base_display_ioc_capabilities - Display IOC's capabilities.
4768 * @ioc: per adapter object
4769 */
4770static void
4771_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4772{
4773 int i = 0;
4774 char desc[17] = {0};
4775 u32 iounit_pg1_flags;
4776
4777 strncpy(p: desc, q: ioc->manu_pg0.ChipName, size: 16);
4778 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x)\n",
4779 desc,
4780 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4781 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4782 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4783 ioc->facts.FWVersion.Word & 0x000000FF,
4784 ioc->pdev->revision);
4785
4786 _base_display_OEMs_branding(ioc);
4787
4788 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4789 pr_info("%sNVMe", i ? "," : "");
4790 i++;
4791 }
4792
4793 ioc_info(ioc, "Protocol=(");
4794
4795 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4796 pr_cont("Initiator");
4797 i++;
4798 }
4799
4800 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4801 pr_cont("%sTarget", i ? "," : "");
4802 i++;
4803 }
4804
4805 i = 0;
4806 pr_cont("), Capabilities=(");
4807
4808 if (!ioc->hide_ir_msg) {
4809 if (ioc->facts.IOCCapabilities &
4810 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4811 pr_cont("Raid");
4812 i++;
4813 }
4814 }
4815
4816 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4817 pr_cont("%sTLR", i ? "," : "");
4818 i++;
4819 }
4820
4821 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4822 pr_cont("%sMulticast", i ? "," : "");
4823 i++;
4824 }
4825
4826 if (ioc->facts.IOCCapabilities &
4827 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4828 pr_cont("%sBIDI Target", i ? "," : "");
4829 i++;
4830 }
4831
4832 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4833 pr_cont("%sEEDP", i ? "," : "");
4834 i++;
4835 }
4836
4837 if (ioc->facts.IOCCapabilities &
4838 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4839 pr_cont("%sSnapshot Buffer", i ? "," : "");
4840 i++;
4841 }
4842
4843 if (ioc->facts.IOCCapabilities &
4844 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4845 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4846 i++;
4847 }
4848
4849 if (ioc->facts.IOCCapabilities &
4850 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4851 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4852 i++;
4853 }
4854
4855 if (ioc->facts.IOCCapabilities &
4856 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4857 pr_cont("%sTask Set Full", i ? "," : "");
4858 i++;
4859 }
4860
4861 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4862 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4863 pr_cont("%sNCQ", i ? "," : "");
4864 i++;
4865 }
4866
4867 pr_cont(")\n");
4868}
4869
4870/**
4871 * mpt3sas_base_update_missing_delay - change the missing delay timers
4872 * @ioc: per adapter object
4873 * @device_missing_delay: amount of time till device is reported missing
4874 * @io_missing_delay: interval IO is returned when there is a missing device
4875 *
4876 * Passed on the command line, this function will modify the device missing
4877 * delay, as well as the io missing delay. This should be called at driver
4878 * load time.
4879 */
4880void
4881mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4882 u16 device_missing_delay, u8 io_missing_delay)
4883{
4884 u16 dmd, dmd_new, dmd_orignal;
4885 u8 io_missing_delay_original;
4886 u16 sz;
4887 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4888 Mpi2ConfigReply_t mpi_reply;
4889 u8 num_phys = 0;
4890 u16 ioc_status;
4891
4892 mpt3sas_config_get_number_hba_phys(ioc, num_phys: &num_phys);
4893 if (!num_phys)
4894 return;
4895
4896 sz = struct_size(sas_iounit_pg1, PhyData, num_phys);
4897 sas_iounit_pg1 = kzalloc(size: sz, GFP_KERNEL);
4898 if (!sas_iounit_pg1) {
4899 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4900 __FILE__, __LINE__, __func__);
4901 goto out;
4902 }
4903 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, mpi_reply: &mpi_reply,
4904 config_page: sas_iounit_pg1, sz))) {
4905 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4906 __FILE__, __LINE__, __func__);
4907 goto out;
4908 }
4909 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4910 MPI2_IOCSTATUS_MASK;
4911 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4912 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4913 __FILE__, __LINE__, __func__);
4914 goto out;
4915 }
4916
4917 /* device missing delay */
4918 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4919 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4920 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4921 else
4922 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4923 dmd_orignal = dmd;
4924 if (device_missing_delay > 0x7F) {
4925 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4926 device_missing_delay;
4927 dmd = dmd / 16;
4928 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4929 } else
4930 dmd = device_missing_delay;
4931 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4932
4933 /* io missing delay */
4934 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4935 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4936
4937 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, mpi_reply: &mpi_reply, config_page: sas_iounit_pg1,
4938 sz)) {
4939 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4940 dmd_new = (dmd &
4941 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4942 else
4943 dmd_new =
4944 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4945 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4946 dmd_orignal, dmd_new);
4947 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4948 io_missing_delay_original,
4949 io_missing_delay);
4950 ioc->device_missing_delay = dmd_new;
4951 ioc->io_missing_delay = io_missing_delay;
4952 }
4953
4954out:
4955 kfree(objp: sas_iounit_pg1);
4956}
4957
4958/**
4959 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4960 * according to performance mode.
4961 * @ioc : per adapter object
4962 *
4963 * Return: zero on success; otherwise return EAGAIN error code asking the
4964 * caller to retry.
4965 */
4966static int
4967_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4968{
4969 Mpi2IOCPage1_t ioc_pg1;
4970 Mpi2ConfigReply_t mpi_reply;
4971 int rc;
4972
4973 rc = mpt3sas_config_get_ioc_pg1(ioc, mpi_reply: &mpi_reply, config_page: &ioc->ioc_pg1_copy);
4974 if (rc)
4975 return rc;
4976 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4977
4978 switch (perf_mode) {
4979 case MPT_PERF_MODE_DEFAULT:
4980 case MPT_PERF_MODE_BALANCED:
4981 if (ioc->high_iops_queues) {
4982 ioc_info(ioc,
4983 "Enable interrupt coalescing only for first\t"
4984 "%d reply queues\n",
4985 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4986 /*
4987 * If 31st bit is zero then interrupt coalescing is
4988 * enabled for all reply descriptor post queues.
4989 * If 31st bit is set to one then user can
4990 * enable/disable interrupt coalescing on per reply
4991 * descriptor post queue group(8) basis. So to enable
4992 * interrupt coalescing only on first reply descriptor
4993 * post queue group 31st bit and zero th bit is enabled.
4994 */
4995 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4996 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4997 rc = mpt3sas_config_set_ioc_pg1(ioc, mpi_reply: &mpi_reply, config_page: &ioc_pg1);
4998 if (rc)
4999 return rc;
5000 ioc_info(ioc, "performance mode: balanced\n");
5001 return 0;
5002 }
5003 fallthrough;
5004 case MPT_PERF_MODE_LATENCY:
5005 /*
5006 * Enable interrupt coalescing on all reply queues
5007 * with timeout value 0xA
5008 */
5009 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5010 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5011 ioc_pg1.ProductSpecific = 0;
5012 rc = mpt3sas_config_set_ioc_pg1(ioc, mpi_reply: &mpi_reply, config_page: &ioc_pg1);
5013 if (rc)
5014 return rc;
5015 ioc_info(ioc, "performance mode: latency\n");
5016 break;
5017 case MPT_PERF_MODE_IOPS:
5018 /*
5019 * Enable interrupt coalescing on all reply queues.
5020 */
5021 ioc_info(ioc,
5022 "performance mode: iops with coalescing timeout: 0x%x\n",
5023 le32_to_cpu(ioc_pg1.CoalescingTimeout));
5024 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5025 ioc_pg1.ProductSpecific = 0;
5026 rc = mpt3sas_config_set_ioc_pg1(ioc, mpi_reply: &mpi_reply, config_page: &ioc_pg1);
5027 if (rc)
5028 return rc;
5029 break;
5030 }
5031 return 0;
5032}
5033
5034/**
5035 * _base_get_event_diag_triggers - get event diag trigger values from
5036 * persistent pages
5037 * @ioc : per adapter object
5038 *
5039 * Return: nothing.
5040 */
5041static int
5042_base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5043{
5044 Mpi26DriverTriggerPage2_t trigger_pg2;
5045 struct SL_WH_EVENT_TRIGGER_T *event_tg;
5046 MPI26_DRIVER_MPI_EVENT_TRIGGER_ENTRY *mpi_event_tg;
5047 Mpi2ConfigReply_t mpi_reply;
5048 int r = 0, i = 0;
5049 u16 count = 0;
5050 u16 ioc_status;
5051
5052 r = mpt3sas_config_get_driver_trigger_pg2(ioc, mpi_reply: &mpi_reply,
5053 config_page: &trigger_pg2);
5054 if (r)
5055 return r;
5056
5057 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5058 MPI2_IOCSTATUS_MASK;
5059 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5060 dinitprintk(ioc,
5061 ioc_err(ioc,
5062 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5063 __func__, ioc_status));
5064 return 0;
5065 }
5066
5067 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5068 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5069 count = min_t(u16, NUM_VALID_ENTRIES, count);
5070 ioc->diag_trigger_event.ValidEntries = count;
5071
5072 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5073 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5074 for (i = 0; i < count; i++) {
5075 event_tg->EventValue = le16_to_cpu(
5076 mpi_event_tg->MPIEventCode);
5077 event_tg->LogEntryQualifier = le16_to_cpu(
5078 mpi_event_tg->MPIEventCodeSpecific);
5079 event_tg++;
5080 mpi_event_tg++;
5081 }
5082 }
5083 return 0;
5084}
5085
5086/**
5087 * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5088 * persistent pages
5089 * @ioc : per adapter object
5090 *
5091 * Return: 0 on success; otherwise return failure status.
5092 */
5093static int
5094_base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5095{
5096 Mpi26DriverTriggerPage3_t trigger_pg3;
5097 struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5098 MPI26_DRIVER_SCSI_SENSE_TRIGGER_ENTRY *mpi_scsi_tg;
5099 Mpi2ConfigReply_t mpi_reply;
5100 int r = 0, i = 0;
5101 u16 count = 0;
5102 u16 ioc_status;
5103
5104 r = mpt3sas_config_get_driver_trigger_pg3(ioc, mpi_reply: &mpi_reply,
5105 config_page: &trigger_pg3);
5106 if (r)
5107 return r;
5108
5109 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5110 MPI2_IOCSTATUS_MASK;
5111 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5112 dinitprintk(ioc,
5113 ioc_err(ioc,
5114 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5115 __func__, ioc_status));
5116 return 0;
5117 }
5118
5119 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5120 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5121 count = min_t(u16, NUM_VALID_ENTRIES, count);
5122 ioc->diag_trigger_scsi.ValidEntries = count;
5123
5124 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5125 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5126 for (i = 0; i < count; i++) {
5127 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5128 scsi_tg->ASC = mpi_scsi_tg->ASC;
5129 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5130
5131 scsi_tg++;
5132 mpi_scsi_tg++;
5133 }
5134 }
5135 return 0;
5136}
5137
5138/**
5139 * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5140 * persistent pages
5141 * @ioc : per adapter object
5142 *
5143 * Return: 0 on success; otherwise return failure status.
5144 */
5145static int
5146_base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5147{
5148 Mpi26DriverTriggerPage4_t trigger_pg4;
5149 struct SL_WH_MPI_TRIGGER_T *status_tg;
5150 MPI26_DRIVER_IOCSTATUS_LOGINFO_TRIGGER_ENTRY *mpi_status_tg;
5151 Mpi2ConfigReply_t mpi_reply;
5152 int r = 0, i = 0;
5153 u16 count = 0;
5154 u16 ioc_status;
5155
5156 r = mpt3sas_config_get_driver_trigger_pg4(ioc, mpi_reply: &mpi_reply,
5157 config_page: &trigger_pg4);
5158 if (r)
5159 return r;
5160
5161 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5162 MPI2_IOCSTATUS_MASK;
5163 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5164 dinitprintk(ioc,
5165 ioc_err(ioc,
5166 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5167 __func__, ioc_status));
5168 return 0;
5169 }
5170
5171 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5172 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5173 count = min_t(u16, NUM_VALID_ENTRIES, count);
5174 ioc->diag_trigger_mpi.ValidEntries = count;
5175
5176 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5177 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5178
5179 for (i = 0; i < count; i++) {
5180 status_tg->IOCStatus = le16_to_cpu(
5181 mpi_status_tg->IOCStatus);
5182 status_tg->IocLogInfo = le32_to_cpu(
5183 mpi_status_tg->LogInfo);
5184
5185 status_tg++;
5186 mpi_status_tg++;
5187 }
5188 }
5189 return 0;
5190}
5191
5192/**
5193 * _base_get_master_diag_triggers - get master diag trigger values from
5194 * persistent pages
5195 * @ioc : per adapter object
5196 *
5197 * Return: nothing.
5198 */
5199static int
5200_base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5201{
5202 Mpi26DriverTriggerPage1_t trigger_pg1;
5203 Mpi2ConfigReply_t mpi_reply;
5204 int r;
5205 u16 ioc_status;
5206
5207 r = mpt3sas_config_get_driver_trigger_pg1(ioc, mpi_reply: &mpi_reply,
5208 config_page: &trigger_pg1);
5209 if (r)
5210 return r;
5211
5212 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5213 MPI2_IOCSTATUS_MASK;
5214 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5215 dinitprintk(ioc,
5216 ioc_err(ioc,
5217 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5218 __func__, ioc_status));
5219 return 0;
5220 }
5221
5222 if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5223 ioc->diag_trigger_master.MasterData |=
5224 le32_to_cpu(
5225 trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5226 return 0;
5227}
5228
5229/**
5230 * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5231 * driver trigger pages or not
5232 * @ioc : per adapter object
5233 * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5234 *
5235 * Return: trigger flags mask if HBA FW supports driver trigger pages;
5236 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5237 * return EAGAIN if diag reset occurred due to FW fault and asking the
5238 * caller to retry the command.
5239 *
5240 */
5241static int
5242_base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5243{
5244 Mpi26DriverTriggerPage0_t trigger_pg0;
5245 int r = 0;
5246 Mpi2ConfigReply_t mpi_reply;
5247 u16 ioc_status;
5248
5249 r = mpt3sas_config_get_driver_trigger_pg0(ioc, mpi_reply: &mpi_reply,
5250 config_page: &trigger_pg0);
5251 if (r)
5252 return r;
5253
5254 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5255 MPI2_IOCSTATUS_MASK;
5256 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5257 return -EFAULT;
5258
5259 *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5260 return 0;
5261}
5262
5263/**
5264 * _base_get_diag_triggers - Retrieve diag trigger values from
5265 * persistent pages.
5266 * @ioc : per adapter object
5267 *
5268 * Return: zero on success; otherwise return EAGAIN error codes
5269 * asking the caller to retry.
5270 */
5271static int
5272_base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5273{
5274 int trigger_flags;
5275 int r;
5276
5277 /*
5278 * Default setting of master trigger.
5279 */
5280 ioc->diag_trigger_master.MasterData =
5281 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5282
5283 r = _base_check_for_trigger_pages_support(ioc, trigger_flags: &trigger_flags);
5284 if (r) {
5285 if (r == -EAGAIN)
5286 return r;
5287 /*
5288 * Don't go for error handling when FW doesn't support
5289 * driver trigger pages.
5290 */
5291 return 0;
5292 }
5293
5294 ioc->supports_trigger_pages = 1;
5295
5296 /*
5297 * Retrieve master diag trigger values from driver trigger pg1
5298 * if master trigger bit enabled in TriggerFlags.
5299 */
5300 if ((u16)trigger_flags &
5301 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5302 r = _base_get_master_diag_triggers(ioc);
5303 if (r)
5304 return r;
5305 }
5306
5307 /*
5308 * Retrieve event diag trigger values from driver trigger pg2
5309 * if event trigger bit enabled in TriggerFlags.
5310 */
5311 if ((u16)trigger_flags &
5312 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5313 r = _base_get_event_diag_triggers(ioc);
5314 if (r)
5315 return r;
5316 }
5317
5318 /*
5319 * Retrieve scsi diag trigger values from driver trigger pg3
5320 * if scsi trigger bit enabled in TriggerFlags.
5321 */
5322 if ((u16)trigger_flags &
5323 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5324 r = _base_get_scsi_diag_triggers(ioc);
5325 if (r)
5326 return r;
5327 }
5328 /*
5329 * Retrieve mpi error diag trigger values from driver trigger pg4
5330 * if loginfo trigger bit enabled in TriggerFlags.
5331 */
5332 if ((u16)trigger_flags &
5333 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5334 r = _base_get_mpi_diag_triggers(ioc);
5335 if (r)
5336 return r;
5337 }
5338 return 0;
5339}
5340
5341/**
5342 * _base_update_diag_trigger_pages - Update the driver trigger pages after
5343 * online FW update, in case updated FW supports driver
5344 * trigger pages.
5345 * @ioc : per adapter object
5346 *
5347 * Return: nothing.
5348 */
5349static void
5350_base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5351{
5352
5353 if (ioc->diag_trigger_master.MasterData)
5354 mpt3sas_config_update_driver_trigger_pg1(ioc,
5355 master_tg: &ioc->diag_trigger_master, set: 1);
5356
5357 if (ioc->diag_trigger_event.ValidEntries)
5358 mpt3sas_config_update_driver_trigger_pg2(ioc,
5359 event_tg: &ioc->diag_trigger_event, set: 1);
5360
5361 if (ioc->diag_trigger_scsi.ValidEntries)
5362 mpt3sas_config_update_driver_trigger_pg3(ioc,
5363 scsi_tg: &ioc->diag_trigger_scsi, set: 1);
5364
5365 if (ioc->diag_trigger_mpi.ValidEntries)
5366 mpt3sas_config_update_driver_trigger_pg4(ioc,
5367 mpi_tg: &ioc->diag_trigger_mpi, set: 1);
5368}
5369
5370/**
5371 * _base_assign_fw_reported_qd - Get FW reported QD for SAS/SATA devices.
5372 * - On failure set default QD values.
5373 * @ioc : per adapter object
5374 *
5375 * Returns 0 for success, non-zero for failure.
5376 *
5377 */
5378static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5379{
5380 Mpi2ConfigReply_t mpi_reply;
5381 Mpi2SasIOUnitPage1_t sas_iounit_pg1;
5382 Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5383 u16 depth;
5384 int rc = 0;
5385
5386 ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5387 ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5388 ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5389 ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5390 if (!ioc->is_gen35_ioc)
5391 goto out;
5392 /* sas iounit page 1 */
5393 rc = mpt3sas_config_get_sas_iounit_pg1(ioc, mpi_reply: &mpi_reply,
5394 config_page: &sas_iounit_pg1, sz: sizeof(Mpi2SasIOUnitPage1_t));
5395 if (rc) {
5396 pr_err("%s: failure at %s:%d/%s()!\n",
5397 ioc->name, __FILE__, __LINE__, __func__);
5398 goto out;
5399 }
5400
5401 depth = le16_to_cpu(sas_iounit_pg1.SASWideMaxQueueDepth);
5402 ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5403
5404 depth = le16_to_cpu(sas_iounit_pg1.SASNarrowMaxQueueDepth);
5405 ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5406
5407 depth = sas_iounit_pg1.SATAMaxQDepth;
5408 ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5409
5410 /* pcie iounit page 1 */
5411 rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, mpi_reply: &mpi_reply,
5412 config_page: &pcie_iounit_pg1, sz: sizeof(Mpi26PCIeIOUnitPage1_t));
5413 if (rc) {
5414 pr_err("%s: failure at %s:%d/%s()!\n",
5415 ioc->name, __FILE__, __LINE__, __func__);
5416 goto out;
5417 }
5418 ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5419 (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5420 MPT3SAS_NVME_QUEUE_DEPTH;
5421out:
5422 dinitprintk(ioc, pr_err(
5423 "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5424 ioc->max_wideport_qd, ioc->max_narrowport_qd,
5425 ioc->max_sata_qd, ioc->max_nvme_qd));
5426 return rc;
5427}
5428
5429/**
5430 * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1
5431 *
5432 * @ioc : per adapter object
5433 * @n : ptr to the ATTO nvram structure
5434 * Return: 0 for success, non-zero for failure.
5435 */
5436static int
5437mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc,
5438 struct ATTO_SAS_NVRAM *n)
5439{
5440 int r = -EINVAL;
5441 union ATTO_SAS_ADDRESS *s1;
5442 u32 len;
5443 u8 *pb;
5444 u8 ckSum;
5445
5446 /* validate nvram checksum */
5447 pb = (u8 *) n;
5448 ckSum = ATTO_SASNVR_CKSUM_SEED;
5449 len = sizeof(struct ATTO_SAS_NVRAM);
5450
5451 while (len--)
5452 ckSum = ckSum + pb[len];
5453
5454 if (ckSum) {
5455 ioc_err(ioc, "Invalid ATTO NVRAM checksum\n");
5456 return r;
5457 }
5458
5459 s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr;
5460
5461 if (n->Signature[0] != 'E'
5462 || n->Signature[1] != 'S'
5463 || n->Signature[2] != 'A'
5464 || n->Signature[3] != 'S')
5465 ioc_err(ioc, "Invalid ATTO NVRAM signature\n");
5466 else if (n->Version > ATTO_SASNVR_VERSION)
5467 ioc_info(ioc, "Invalid ATTO NVRAM version");
5468 else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1))
5469 || s1->b[0] != 0x50
5470 || s1->b[1] != 0x01
5471 || s1->b[2] != 0x08
5472 || (s1->b[3] & 0xF0) != 0x60
5473 || ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) {
5474 ioc_err(ioc, "Invalid ATTO SAS address\n");
5475 } else
5476 r = 0;
5477 return r;
5478}
5479
5480/**
5481 * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1
5482 *
5483 * @ioc : per adapter object
5484 * @sas_addr : return sas address
5485 * Return: 0 for success, non-zero for failure.
5486 */
5487static int
5488mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr)
5489{
5490 Mpi2ManufacturingPage1_t mfg_pg1;
5491 Mpi2ConfigReply_t mpi_reply;
5492 struct ATTO_SAS_NVRAM *nvram;
5493 int r;
5494 __be64 addr;
5495
5496 r = mpt3sas_config_get_manufacturing_pg1(ioc, mpi_reply: &mpi_reply, config_page: &mfg_pg1);
5497 if (r) {
5498 ioc_err(ioc, "Failed to read manufacturing page 1\n");
5499 return r;
5500 }
5501
5502 /* validate nvram */
5503 nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD;
5504 r = mpt3sas_atto_validate_nvram(ioc, n: nvram);
5505 if (r)
5506 return r;
5507
5508 addr = *((__be64 *) nvram->SasAddr);
5509 sas_addr->q = cpu_to_le64(be64_to_cpu(addr));
5510 return r;
5511}
5512
5513/**
5514 * mpt3sas_atto_init - perform initializaion for ATTO branded
5515 * adapter.
5516 * @ioc : per adapter object
5517 *5
5518 * Return: 0 for success, non-zero for failure.
5519 */
5520static int
5521mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc)
5522{
5523 int sz = 0;
5524 Mpi2BiosPage4_t *bios_pg4 = NULL;
5525 Mpi2ConfigReply_t mpi_reply;
5526 int r;
5527 int ix;
5528 union ATTO_SAS_ADDRESS sas_addr;
5529 union ATTO_SAS_ADDRESS temp;
5530 union ATTO_SAS_ADDRESS bias;
5531
5532 r = mpt3sas_atto_get_sas_addr(ioc, sas_addr: &sas_addr);
5533 if (r)
5534 return r;
5535
5536 /* get header first to get size */
5537 r = mpt3sas_config_get_bios_pg4(ioc, mpi_reply: &mpi_reply, NULL, sz_config_page: 0);
5538 if (r) {
5539 ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n");
5540 return r;
5541 }
5542
5543 sz = mpi_reply.Header.PageLength * sizeof(u32);
5544 bios_pg4 = kzalloc(size: sz, GFP_KERNEL);
5545 if (!bios_pg4) {
5546 ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n");
5547 return -ENOMEM;
5548 }
5549
5550 /* read bios page 4 */
5551 r = mpt3sas_config_get_bios_pg4(ioc, mpi_reply: &mpi_reply, config_page: bios_pg4, sz_config_page: sz);
5552 if (r) {
5553 ioc_err(ioc, "Failed to read ATTO bios page 4\n");
5554 goto out;
5555 }
5556
5557 /* Update bios page 4 with the ATTO WWID */
5558 bias.q = sas_addr.q;
5559 bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS;
5560
5561 for (ix = 0; ix < bios_pg4->NumPhys; ix++) {
5562 temp.q = sas_addr.q;
5563 temp.b[7] += ix;
5564 bios_pg4->Phy[ix].ReassignmentWWID = temp.q;
5565 bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q;
5566 }
5567 r = mpt3sas_config_set_bios_pg4(ioc, mpi_reply: &mpi_reply, config_page: bios_pg4, sz_config_page: sz);
5568
5569out:
5570 kfree(objp: bios_pg4);
5571 return r;
5572}
5573
5574/**
5575 * _base_static_config_pages - static start of day config pages
5576 * @ioc: per adapter object
5577 */
5578static int
5579_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5580{
5581 Mpi2IOUnitPage8_t iounit_pg8;
5582 Mpi2ConfigReply_t mpi_reply;
5583 u32 iounit_pg1_flags;
5584 int tg_flags = 0;
5585 int rc;
5586 ioc->nvme_abort_timeout = 30;
5587
5588 rc = mpt3sas_config_get_manufacturing_pg0(ioc, mpi_reply: &mpi_reply,
5589 config_page: &ioc->manu_pg0);
5590 if (rc)
5591 return rc;
5592 if (ioc->ir_firmware) {
5593 rc = mpt3sas_config_get_manufacturing_pg10(ioc, mpi_reply: &mpi_reply,
5594 config_page: &ioc->manu_pg10);
5595 if (rc)
5596 return rc;
5597 }
5598
5599 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) {
5600 rc = mpt3sas_atto_init(ioc);
5601 if (rc)
5602 return rc;
5603 }
5604
5605 /*
5606 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5607 * flag unset in NVDATA.
5608 */
5609 rc = mpt3sas_config_get_manufacturing_pg11(ioc, mpi_reply: &mpi_reply,
5610 config_page: &ioc->manu_pg11);
5611 if (rc)
5612 return rc;
5613 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5614 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5615 ioc->name);
5616 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5617 ioc->manu_pg11.EEDPTagMode |= 0x1;
5618 mpt3sas_config_set_manufacturing_pg11(ioc, mpi_reply: &mpi_reply,
5619 config_page: &ioc->manu_pg11);
5620 }
5621 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5622 ioc->tm_custom_handling = 1;
5623 else {
5624 ioc->tm_custom_handling = 0;
5625 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5626 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5627 else if (ioc->manu_pg11.NVMeAbortTO >
5628 NVME_TASK_ABORT_MAX_TIMEOUT)
5629 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5630 else
5631 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5632 }
5633 ioc->time_sync_interval =
5634 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5635 if (ioc->time_sync_interval) {
5636 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5637 ioc->time_sync_interval =
5638 ioc->time_sync_interval * SECONDS_PER_HOUR;
5639 else
5640 ioc->time_sync_interval =
5641 ioc->time_sync_interval * SECONDS_PER_MIN;
5642 dinitprintk(ioc, ioc_info(ioc,
5643 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5644 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5645 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5646 } else {
5647 if (ioc->is_gen35_ioc)
5648 ioc_warn(ioc,
5649 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5650 }
5651 rc = _base_assign_fw_reported_qd(ioc);
5652 if (rc)
5653 return rc;
5654
5655 /*
5656 * ATTO doesn't use bios page 2 and 3 for bios settings.
5657 */
5658 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO)
5659 ioc->bios_pg3.BiosVersion = 0;
5660 else {
5661 rc = mpt3sas_config_get_bios_pg2(ioc, mpi_reply: &mpi_reply, config_page: &ioc->bios_pg2);
5662 if (rc)
5663 return rc;
5664 rc = mpt3sas_config_get_bios_pg3(ioc, mpi_reply: &mpi_reply, config_page: &ioc->bios_pg3);
5665 if (rc)
5666 return rc;
5667 }
5668
5669 rc = mpt3sas_config_get_ioc_pg8(ioc, mpi_reply: &mpi_reply, config_page: &ioc->ioc_pg8);
5670 if (rc)
5671 return rc;
5672 rc = mpt3sas_config_get_iounit_pg0(ioc, mpi_reply: &mpi_reply, config_page: &ioc->iounit_pg0);
5673 if (rc)
5674 return rc;
5675 rc = mpt3sas_config_get_iounit_pg1(ioc, mpi_reply: &mpi_reply, config_page: &ioc->iounit_pg1);
5676 if (rc)
5677 return rc;
5678 rc = mpt3sas_config_get_iounit_pg8(ioc, mpi_reply: &mpi_reply, config_page: &iounit_pg8);
5679 if (rc)
5680 return rc;
5681 _base_display_ioc_capabilities(ioc);
5682
5683 /*
5684 * Enable task_set_full handling in iounit_pg1 when the
5685 * facts capabilities indicate that its supported.
5686 */
5687 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5688 if ((ioc->facts.IOCCapabilities &
5689 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5690 iounit_pg1_flags &=
5691 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5692 else
5693 iounit_pg1_flags |=
5694 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5695 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5696 rc = mpt3sas_config_set_iounit_pg1(ioc, mpi_reply: &mpi_reply, config_page: &ioc->iounit_pg1);
5697 if (rc)
5698 return rc;
5699
5700 if (iounit_pg8.NumSensors)
5701 ioc->temp_sensors_count = iounit_pg8.NumSensors;
5702 if (ioc->is_aero_ioc) {
5703 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5704 if (rc)
5705 return rc;
5706 }
5707 if (ioc->is_gen35_ioc) {
5708 if (ioc->is_driver_loading) {
5709 rc = _base_get_diag_triggers(ioc);
5710 if (rc)
5711 return rc;
5712 } else {
5713 /*
5714 * In case of online HBA FW update operation,
5715 * check whether updated FW supports the driver trigger
5716 * pages or not.
5717 * - If previous FW has not supported driver trigger
5718 * pages and newer FW supports them then update these
5719 * pages with current diag trigger values.
5720 * - If previous FW has supported driver trigger pages
5721 * and new FW doesn't support them then disable
5722 * support_trigger_pages flag.
5723 */
5724 _base_check_for_trigger_pages_support(ioc, trigger_flags: &tg_flags);
5725 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5726 _base_update_diag_trigger_pages(ioc);
5727 else if (ioc->supports_trigger_pages &&
5728 tg_flags == -EFAULT)
5729 ioc->supports_trigger_pages = 0;
5730 }
5731 }
5732 return 0;
5733}
5734
5735/**
5736 * mpt3sas_free_enclosure_list - release memory
5737 * @ioc: per adapter object
5738 *
5739 * Free memory allocated during enclosure add.
5740 */
5741void
5742mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5743{
5744 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5745
5746 /* Free enclosure list */
5747 list_for_each_entry_safe(enclosure_dev,
5748 enclosure_dev_next, &ioc->enclosure_list, list) {
5749 list_del(entry: &enclosure_dev->list);
5750 kfree(objp: enclosure_dev);
5751 }
5752}
5753
5754/**
5755 * _base_release_memory_pools - release memory
5756 * @ioc: per adapter object
5757 *
5758 * Free memory allocated from _base_allocate_memory_pools.
5759 */
5760static void
5761_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5762{
5763 int i = 0;
5764 int j = 0;
5765 int dma_alloc_count = 0;
5766 struct chain_tracker *ct;
5767 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5768
5769 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5770
5771 if (ioc->request) {
5772 dma_free_coherent(dev: &ioc->pdev->dev, size: ioc->request_dma_sz,
5773 cpu_addr: ioc->request, dma_handle: ioc->request_dma);
5774 dexitprintk(ioc,
5775 ioc_info(ioc, "request_pool(0x%p): free\n",
5776 ioc->request));
5777 ioc->request = NULL;
5778 }
5779
5780 if (ioc->sense) {
5781 dma_pool_free(pool: ioc->sense_dma_pool, vaddr: ioc->sense, addr: ioc->sense_dma);
5782 dma_pool_destroy(pool: ioc->sense_dma_pool);
5783 dexitprintk(ioc,
5784 ioc_info(ioc, "sense_pool(0x%p): free\n",
5785 ioc->sense));
5786 ioc->sense = NULL;
5787 }
5788
5789 if (ioc->reply) {
5790 dma_pool_free(pool: ioc->reply_dma_pool, vaddr: ioc->reply, addr: ioc->reply_dma);
5791 dma_pool_destroy(pool: ioc->reply_dma_pool);
5792 dexitprintk(ioc,
5793 ioc_info(ioc, "reply_pool(0x%p): free\n",
5794 ioc->reply));
5795 ioc->reply = NULL;
5796 }
5797
5798 if (ioc->reply_free) {
5799 dma_pool_free(pool: ioc->reply_free_dma_pool, vaddr: ioc->reply_free,
5800 addr: ioc->reply_free_dma);
5801 dma_pool_destroy(pool: ioc->reply_free_dma_pool);
5802 dexitprintk(ioc,
5803 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5804 ioc->reply_free));
5805 ioc->reply_free = NULL;
5806 }
5807
5808 if (ioc->reply_post) {
5809 dma_alloc_count = DIV_ROUND_UP(count,
5810 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5811 for (i = 0; i < count; i++) {
5812 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5813 && dma_alloc_count) {
5814 if (ioc->reply_post[i].reply_post_free) {
5815 dma_pool_free(
5816 pool: ioc->reply_post_free_dma_pool,
5817 vaddr: ioc->reply_post[i].reply_post_free,
5818 addr: ioc->reply_post[i].reply_post_free_dma);
5819 dexitprintk(ioc, ioc_info(ioc,
5820 "reply_post_free_pool(0x%p): free\n",
5821 ioc->reply_post[i].reply_post_free));
5822 ioc->reply_post[i].reply_post_free =
5823 NULL;
5824 }
5825 --dma_alloc_count;
5826 }
5827 }
5828 dma_pool_destroy(pool: ioc->reply_post_free_dma_pool);
5829 if (ioc->reply_post_free_array &&
5830 ioc->rdpq_array_enable) {
5831 dma_pool_free(pool: ioc->reply_post_free_array_dma_pool,
5832 vaddr: ioc->reply_post_free_array,
5833 addr: ioc->reply_post_free_array_dma);
5834 ioc->reply_post_free_array = NULL;
5835 }
5836 dma_pool_destroy(pool: ioc->reply_post_free_array_dma_pool);
5837 kfree(objp: ioc->reply_post);
5838 }
5839
5840 if (ioc->pcie_sgl_dma_pool) {
5841 for (i = 0; i < ioc->scsiio_depth; i++) {
5842 dma_pool_free(pool: ioc->pcie_sgl_dma_pool,
5843 vaddr: ioc->pcie_sg_lookup[i].pcie_sgl,
5844 addr: ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5845 ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5846 }
5847 dma_pool_destroy(pool: ioc->pcie_sgl_dma_pool);
5848 }
5849 kfree(objp: ioc->pcie_sg_lookup);
5850 ioc->pcie_sg_lookup = NULL;
5851
5852 if (ioc->config_page) {
5853 dexitprintk(ioc,
5854 ioc_info(ioc, "config_page(0x%p): free\n",
5855 ioc->config_page));
5856 dma_free_coherent(dev: &ioc->pdev->dev, size: ioc->config_page_sz,
5857 cpu_addr: ioc->config_page, dma_handle: ioc->config_page_dma);
5858 }
5859
5860 kfree(objp: ioc->hpr_lookup);
5861 ioc->hpr_lookup = NULL;
5862 kfree(objp: ioc->internal_lookup);
5863 ioc->internal_lookup = NULL;
5864 if (ioc->chain_lookup) {
5865 for (i = 0; i < ioc->scsiio_depth; i++) {
5866 for (j = ioc->chains_per_prp_buffer;
5867 j < ioc->chains_needed_per_io; j++) {
5868 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5869 if (ct && ct->chain_buffer)
5870 dma_pool_free(pool: ioc->chain_dma_pool,
5871 vaddr: ct->chain_buffer,
5872 addr: ct->chain_buffer_dma);
5873 }
5874 kfree(objp: ioc->chain_lookup[i].chains_per_smid);
5875 }
5876 dma_pool_destroy(pool: ioc->chain_dma_pool);
5877 kfree(objp: ioc->chain_lookup);
5878 ioc->chain_lookup = NULL;
5879 }
5880
5881 kfree(objp: ioc->io_queue_num);
5882 ioc->io_queue_num = NULL;
5883}
5884
5885/**
5886 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5887 * having same upper 32bits in their base memory address.
5888 * @start_address: Base address of a reply queue set
5889 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5890 *
5891 * Return: 1 if reply queues in a set have a same upper 32bits in their base
5892 * memory address, else 0.
5893 */
5894static int
5895mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5896{
5897 dma_addr_t end_address;
5898
5899 end_address = start_address + pool_sz - 1;
5900
5901 if (upper_32_bits(start_address) == upper_32_bits(end_address))
5902 return 1;
5903 else
5904 return 0;
5905}
5906
5907/**
5908 * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5909 * @ioc: Adapter object
5910 *
5911 * Return: 0 for success, non-zero for failure.
5912 **/
5913static inline int
5914_base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5915{
5916 int reduce_sz = 64;
5917
5918 if ((ioc->hba_queue_depth - reduce_sz) >
5919 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5920 ioc->hba_queue_depth -= reduce_sz;
5921 return 0;
5922 } else
5923 return -ENOMEM;
5924}
5925
5926/**
5927 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5928 * for pcie sgl pools.
5929 * @ioc: Adapter object
5930 * @sz: DMA Pool size
5931 *
5932 * Return: 0 for success, non-zero for failure.
5933 */
5934
5935static int
5936_base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5937{
5938 int i = 0, j = 0;
5939 struct chain_tracker *ct;
5940
5941 ioc->pcie_sgl_dma_pool =
5942 dma_pool_create(name: "PCIe SGL pool", dev: &ioc->pdev->dev, size: sz,
5943 align: ioc->page_size, allocation: 0);
5944 if (!ioc->pcie_sgl_dma_pool) {
5945 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5946 return -ENOMEM;
5947 }
5948
5949 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5950 ioc->chains_per_prp_buffer =
5951 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5952 for (i = 0; i < ioc->scsiio_depth; i++) {
5953 ioc->pcie_sg_lookup[i].pcie_sgl =
5954 dma_pool_alloc(pool: ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5955 handle: &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5956 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5957 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5958 return -EAGAIN;
5959 }
5960
5961 if (!mpt3sas_check_same_4gb_region(
5962 start_address: ioc->pcie_sg_lookup[i].pcie_sgl_dma, pool_sz: sz)) {
5963 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5964 ioc->pcie_sg_lookup[i].pcie_sgl,
5965 (unsigned long long)
5966 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5967 ioc->use_32bit_dma = true;
5968 return -EAGAIN;
5969 }
5970
5971 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5972 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5973 ct->chain_buffer =
5974 ioc->pcie_sg_lookup[i].pcie_sgl +
5975 (j * ioc->chain_segment_sz);
5976 ct->chain_buffer_dma =
5977 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5978 (j * ioc->chain_segment_sz);
5979 }
5980 }
5981 dinitprintk(ioc, ioc_info(ioc,
5982 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5983 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5984 dinitprintk(ioc, ioc_info(ioc,
5985 "Number of chains can fit in a PRP page(%d)\n",
5986 ioc->chains_per_prp_buffer));
5987 return 0;
5988}
5989
5990/**
5991 * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5992 * for chain dma pool.
5993 * @ioc: Adapter object
5994 * @sz: DMA Pool size
5995 *
5996 * Return: 0 for success, non-zero for failure.
5997 */
5998static int
5999_base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6000{
6001 int i = 0, j = 0;
6002 struct chain_tracker *ctr;
6003
6004 ioc->chain_dma_pool = dma_pool_create(name: "chain pool", dev: &ioc->pdev->dev,
6005 size: ioc->chain_segment_sz, align: 16, allocation: 0);
6006 if (!ioc->chain_dma_pool)
6007 return -ENOMEM;
6008
6009 for (i = 0; i < ioc->scsiio_depth; i++) {
6010 for (j = ioc->chains_per_prp_buffer;
6011 j < ioc->chains_needed_per_io; j++) {
6012 ctr = &ioc->chain_lookup[i].chains_per_smid[j];
6013 ctr->chain_buffer = dma_pool_alloc(pool: ioc->chain_dma_pool,
6014 GFP_KERNEL, handle: &ctr->chain_buffer_dma);
6015 if (!ctr->chain_buffer)
6016 return -EAGAIN;
6017 if (!mpt3sas_check_same_4gb_region(
6018 start_address: ctr->chain_buffer_dma, pool_sz: ioc->chain_segment_sz)) {
6019 ioc_err(ioc,
6020 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
6021 ctr->chain_buffer,
6022 (unsigned long long)ctr->chain_buffer_dma);
6023 ioc->use_32bit_dma = true;
6024 return -EAGAIN;
6025 }
6026 }
6027 }
6028 dinitprintk(ioc, ioc_info(ioc,
6029 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
6030 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
6031 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
6032 ioc->chain_segment_sz))/1024));
6033 return 0;
6034}
6035
6036/**
6037 * _base_allocate_sense_dma_pool - Allocating DMA'able memory
6038 * for sense dma pool.
6039 * @ioc: Adapter object
6040 * @sz: DMA Pool size
6041 * Return: 0 for success, non-zero for failure.
6042 */
6043static int
6044_base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6045{
6046 ioc->sense_dma_pool =
6047 dma_pool_create(name: "sense pool", dev: &ioc->pdev->dev, size: sz, align: 4, allocation: 0);
6048 if (!ioc->sense_dma_pool)
6049 return -ENOMEM;
6050 ioc->sense = dma_pool_alloc(pool: ioc->sense_dma_pool,
6051 GFP_KERNEL, handle: &ioc->sense_dma);
6052 if (!ioc->sense)
6053 return -EAGAIN;
6054 if (!mpt3sas_check_same_4gb_region(start_address: ioc->sense_dma, pool_sz: sz)) {
6055 dinitprintk(ioc, pr_err(
6056 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
6057 ioc->sense, (unsigned long long) ioc->sense_dma));
6058 ioc->use_32bit_dma = true;
6059 return -EAGAIN;
6060 }
6061 ioc_info(ioc,
6062 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
6063 ioc->sense, (unsigned long long)ioc->sense_dma,
6064 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
6065 return 0;
6066}
6067
6068/**
6069 * _base_allocate_reply_pool - Allocating DMA'able memory
6070 * for reply pool.
6071 * @ioc: Adapter object
6072 * @sz: DMA Pool size
6073 * Return: 0 for success, non-zero for failure.
6074 */
6075static int
6076_base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6077{
6078 /* reply pool, 4 byte align */
6079 ioc->reply_dma_pool = dma_pool_create(name: "reply pool",
6080 dev: &ioc->pdev->dev, size: sz, align: 4, allocation: 0);
6081 if (!ioc->reply_dma_pool)
6082 return -ENOMEM;
6083 ioc->reply = dma_pool_alloc(pool: ioc->reply_dma_pool, GFP_KERNEL,
6084 handle: &ioc->reply_dma);
6085 if (!ioc->reply)
6086 return -EAGAIN;
6087 if (!mpt3sas_check_same_4gb_region(start_address: ioc->reply_dma, pool_sz: sz)) {
6088 dinitprintk(ioc, pr_err(
6089 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
6090 ioc->reply, (unsigned long long) ioc->reply_dma));
6091 ioc->use_32bit_dma = true;
6092 return -EAGAIN;
6093 }
6094 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
6095 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
6096 ioc_info(ioc,
6097 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
6098 ioc->reply, (unsigned long long)ioc->reply_dma,
6099 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
6100 return 0;
6101}
6102
6103/**
6104 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
6105 * for reply free dma pool.
6106 * @ioc: Adapter object
6107 * @sz: DMA Pool size
6108 * Return: 0 for success, non-zero for failure.
6109 */
6110static int
6111_base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6112{
6113 /* reply free queue, 16 byte align */
6114 ioc->reply_free_dma_pool = dma_pool_create(
6115 name: "reply_free pool", dev: &ioc->pdev->dev, size: sz, align: 16, allocation: 0);
6116 if (!ioc->reply_free_dma_pool)
6117 return -ENOMEM;
6118 ioc->reply_free = dma_pool_alloc(pool: ioc->reply_free_dma_pool,
6119 GFP_KERNEL, handle: &ioc->reply_free_dma);
6120 if (!ioc->reply_free)
6121 return -EAGAIN;
6122 if (!mpt3sas_check_same_4gb_region(start_address: ioc->reply_free_dma, pool_sz: sz)) {
6123 dinitprintk(ioc,
6124 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6125 ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
6126 ioc->use_32bit_dma = true;
6127 return -EAGAIN;
6128 }
6129 memset(ioc->reply_free, 0, sz);
6130 dinitprintk(ioc, ioc_info(ioc,
6131 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
6132 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
6133 dinitprintk(ioc, ioc_info(ioc,
6134 "reply_free_dma (0x%llx)\n",
6135 (unsigned long long)ioc->reply_free_dma));
6136 return 0;
6137}
6138
6139/**
6140 * _base_allocate_reply_post_free_array - Allocating DMA'able memory
6141 * for reply post free array.
6142 * @ioc: Adapter object
6143 * @reply_post_free_array_sz: DMA Pool size
6144 * Return: 0 for success, non-zero for failure.
6145 */
6146
6147static int
6148_base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
6149 u32 reply_post_free_array_sz)
6150{
6151 ioc->reply_post_free_array_dma_pool =
6152 dma_pool_create(name: "reply_post_free_array pool",
6153 dev: &ioc->pdev->dev, size: reply_post_free_array_sz, align: 16, allocation: 0);
6154 if (!ioc->reply_post_free_array_dma_pool)
6155 return -ENOMEM;
6156 ioc->reply_post_free_array =
6157 dma_pool_alloc(pool: ioc->reply_post_free_array_dma_pool,
6158 GFP_KERNEL, handle: &ioc->reply_post_free_array_dma);
6159 if (!ioc->reply_post_free_array)
6160 return -EAGAIN;
6161 if (!mpt3sas_check_same_4gb_region(start_address: ioc->reply_post_free_array_dma,
6162 pool_sz: reply_post_free_array_sz)) {
6163 dinitprintk(ioc, pr_err(
6164 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6165 ioc->reply_free,
6166 (unsigned long long) ioc->reply_free_dma));
6167 ioc->use_32bit_dma = true;
6168 return -EAGAIN;
6169 }
6170 return 0;
6171}
6172/**
6173 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6174 * for reply queues.
6175 * @ioc: per adapter object
6176 * @sz: DMA Pool size
6177 * Return: 0 for success, non-zero for failure.
6178 */
6179static int
6180base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6181{
6182 int i = 0;
6183 u32 dma_alloc_count = 0;
6184 int reply_post_free_sz = ioc->reply_post_queue_depth *
6185 sizeof(Mpi2DefaultReplyDescriptor_t);
6186 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6187
6188 ioc->reply_post = kcalloc(n: count, size: sizeof(struct reply_post_struct),
6189 GFP_KERNEL);
6190 if (!ioc->reply_post)
6191 return -ENOMEM;
6192 /*
6193 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6194 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6195 * be within 4GB boundary i.e reply queues in a set must have same
6196 * upper 32-bits in their memory address. so here driver is allocating
6197 * the DMA'able memory for reply queues according.
6198 * Driver uses limitation of
6199 * VENTURA_SERIES to manage INVADER_SERIES as well.
6200 */
6201 dma_alloc_count = DIV_ROUND_UP(count,
6202 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6203 ioc->reply_post_free_dma_pool =
6204 dma_pool_create(name: "reply_post_free pool",
6205 dev: &ioc->pdev->dev, size: sz, align: 16, allocation: 0);
6206 if (!ioc->reply_post_free_dma_pool)
6207 return -ENOMEM;
6208 for (i = 0; i < count; i++) {
6209 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6210 ioc->reply_post[i].reply_post_free =
6211 dma_pool_zalloc(pool: ioc->reply_post_free_dma_pool,
6212 GFP_KERNEL,
6213 handle: &ioc->reply_post[i].reply_post_free_dma);
6214 if (!ioc->reply_post[i].reply_post_free)
6215 return -ENOMEM;
6216 /*
6217 * Each set of RDPQ pool must satisfy 4gb boundary
6218 * restriction.
6219 * 1) Check if allocated resources for RDPQ pool are in
6220 * the same 4GB range.
6221 * 2) If #1 is true, continue with 64 bit DMA.
6222 * 3) If #1 is false, return 1. which means free all the
6223 * resources and set DMA mask to 32 and allocate.
6224 */
6225 if (!mpt3sas_check_same_4gb_region(
6226 start_address: ioc->reply_post[i].reply_post_free_dma, pool_sz: sz)) {
6227 dinitprintk(ioc,
6228 ioc_err(ioc, "bad Replypost free pool(0x%p)"
6229 "reply_post_free_dma = (0x%llx)\n",
6230 ioc->reply_post[i].reply_post_free,
6231 (unsigned long long)
6232 ioc->reply_post[i].reply_post_free_dma));
6233 return -EAGAIN;
6234 }
6235 dma_alloc_count--;
6236
6237 } else {
6238 ioc->reply_post[i].reply_post_free =
6239 (Mpi2ReplyDescriptorsUnion_t *)
6240 ((long)ioc->reply_post[i-1].reply_post_free
6241 + reply_post_free_sz);
6242 ioc->reply_post[i].reply_post_free_dma =
6243 (dma_addr_t)
6244 (ioc->reply_post[i-1].reply_post_free_dma +
6245 reply_post_free_sz);
6246 }
6247 }
6248 return 0;
6249}
6250
6251/**
6252 * _base_allocate_memory_pools - allocate start of day memory pools
6253 * @ioc: per adapter object
6254 *
6255 * Return: 0 success, anything else error.
6256 */
6257static int
6258_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6259{
6260 struct mpt3sas_facts *facts;
6261 u16 max_sge_elements;
6262 u16 chains_needed_per_io;
6263 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6264 u32 retry_sz;
6265 u32 rdpq_sz = 0, sense_sz = 0;
6266 u16 max_request_credit, nvme_blocks_needed;
6267 unsigned short sg_tablesize;
6268 u16 sge_size;
6269 int i;
6270 int ret = 0, rc = 0;
6271
6272 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6273
6274
6275 retry_sz = 0;
6276 facts = &ioc->facts;
6277
6278 /* command line tunables for max sgl entries */
6279 if (max_sgl_entries != -1)
6280 sg_tablesize = max_sgl_entries;
6281 else {
6282 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6283 sg_tablesize = MPT2SAS_SG_DEPTH;
6284 else
6285 sg_tablesize = MPT3SAS_SG_DEPTH;
6286 }
6287
6288 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6289 if (reset_devices)
6290 sg_tablesize = min_t(unsigned short, sg_tablesize,
6291 MPT_KDUMP_MIN_PHYS_SEGMENTS);
6292
6293 if (ioc->is_mcpu_endpoint)
6294 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6295 else {
6296 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6297 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6298 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6299 sg_tablesize = min_t(unsigned short, sg_tablesize,
6300 SG_MAX_SEGMENTS);
6301 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6302 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6303 }
6304 ioc->shost->sg_tablesize = sg_tablesize;
6305 }
6306
6307 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6308 (facts->RequestCredit / 4));
6309 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6310 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6311 INTERNAL_SCSIIO_CMDS_COUNT)) {
6312 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6313 facts->RequestCredit);
6314 return -ENOMEM;
6315 }
6316 ioc->internal_depth = 10;
6317 }
6318
6319 ioc->hi_priority_depth = ioc->internal_depth - (5);
6320 /* command line tunables for max controller queue depth */
6321 if (max_queue_depth != -1 && max_queue_depth != 0) {
6322 max_request_credit = min_t(u16, max_queue_depth +
6323 ioc->internal_depth, facts->RequestCredit);
6324 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6325 max_request_credit = MAX_HBA_QUEUE_DEPTH;
6326 } else if (reset_devices)
6327 max_request_credit = min_t(u16, facts->RequestCredit,
6328 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6329 else
6330 max_request_credit = min_t(u16, facts->RequestCredit,
6331 MAX_HBA_QUEUE_DEPTH);
6332
6333 /* Firmware maintains additional facts->HighPriorityCredit number of
6334 * credits for HiPriprity Request messages, so hba queue depth will be
6335 * sum of max_request_credit and high priority queue depth.
6336 */
6337 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6338
6339 /* request frame size */
6340 ioc->request_sz = facts->IOCRequestFrameSize * 4;
6341
6342 /* reply frame size */
6343 ioc->reply_sz = facts->ReplyFrameSize * 4;
6344
6345 /* chain segment size */
6346 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6347 if (facts->IOCMaxChainSegmentSize)
6348 ioc->chain_segment_sz =
6349 facts->IOCMaxChainSegmentSize *
6350 MAX_CHAIN_ELEMT_SZ;
6351 else
6352 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6353 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6354 MAX_CHAIN_ELEMT_SZ;
6355 } else
6356 ioc->chain_segment_sz = ioc->request_sz;
6357
6358 /* calculate the max scatter element size */
6359 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6360
6361 retry_allocation:
6362 total_sz = 0;
6363 /* calculate number of sg elements left over in the 1st frame */
6364 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6365 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6366 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6367
6368 /* now do the same for a chain buffer */
6369 max_sge_elements = ioc->chain_segment_sz - sge_size;
6370 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6371
6372 /*
6373 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6374 */
6375 chains_needed_per_io = ((ioc->shost->sg_tablesize -
6376 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6377 + 1;
6378 if (chains_needed_per_io > facts->MaxChainDepth) {
6379 chains_needed_per_io = facts->MaxChainDepth;
6380 ioc->shost->sg_tablesize = min_t(u16,
6381 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6382 * chains_needed_per_io), ioc->shost->sg_tablesize);
6383 }
6384 ioc->chains_needed_per_io = chains_needed_per_io;
6385
6386 /* reply free queue sizing - taking into account for 64 FW events */
6387 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6388
6389 /* mCPU manage single counters for simplicity */
6390 if (ioc->is_mcpu_endpoint)
6391 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6392 else {
6393 /* calculate reply descriptor post queue depth */
6394 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6395 ioc->reply_free_queue_depth + 1;
6396 /* align the reply post queue on the next 16 count boundary */
6397 if (ioc->reply_post_queue_depth % 16)
6398 ioc->reply_post_queue_depth += 16 -
6399 (ioc->reply_post_queue_depth % 16);
6400 }
6401
6402 if (ioc->reply_post_queue_depth >
6403 facts->MaxReplyDescriptorPostQueueDepth) {
6404 ioc->reply_post_queue_depth =
6405 facts->MaxReplyDescriptorPostQueueDepth -
6406 (facts->MaxReplyDescriptorPostQueueDepth % 16);
6407 ioc->hba_queue_depth =
6408 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6409 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6410 }
6411
6412 ioc_info(ioc,
6413 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6414 "sge_per_io(%d), chains_per_io(%d)\n",
6415 ioc->max_sges_in_main_message,
6416 ioc->max_sges_in_chain_message,
6417 ioc->shost->sg_tablesize,
6418 ioc->chains_needed_per_io);
6419
6420 /* reply post queue, 16 byte align */
6421 reply_post_free_sz = ioc->reply_post_queue_depth *
6422 sizeof(Mpi2DefaultReplyDescriptor_t);
6423 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6424 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6425 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6426 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6427 ret = base_alloc_rdpq_dma_pool(ioc, sz: rdpq_sz);
6428 if (ret == -EAGAIN) {
6429 /*
6430 * Free allocated bad RDPQ memory pools.
6431 * Change dma coherent mask to 32 bit and reallocate RDPQ
6432 */
6433 _base_release_memory_pools(ioc);
6434 ioc->use_32bit_dma = true;
6435 if (_base_config_dma_addressing(ioc, pdev: ioc->pdev) != 0) {
6436 ioc_err(ioc,
6437 "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6438 return -ENODEV;
6439 }
6440 if (base_alloc_rdpq_dma_pool(ioc, sz: rdpq_sz))
6441 return -ENOMEM;
6442 } else if (ret == -ENOMEM)
6443 return -ENOMEM;
6444 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6445 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6446 ioc->scsiio_depth = ioc->hba_queue_depth -
6447 ioc->hi_priority_depth - ioc->internal_depth;
6448
6449 /* set the scsi host can_queue depth
6450 * with some internal commands that could be outstanding
6451 */
6452 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6453 dinitprintk(ioc,
6454 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6455 ioc->shost->can_queue));
6456
6457 /* contiguous pool for request and chains, 16 byte align, one extra "
6458 * "frame for smid=0
6459 */
6460 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6461 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6462
6463 /* hi-priority queue */
6464 sz += (ioc->hi_priority_depth * ioc->request_sz);
6465
6466 /* internal queue */
6467 sz += (ioc->internal_depth * ioc->request_sz);
6468
6469 ioc->request_dma_sz = sz;
6470 ioc->request = dma_alloc_coherent(dev: &ioc->pdev->dev, size: sz,
6471 dma_handle: &ioc->request_dma, GFP_KERNEL);
6472 if (!ioc->request) {
6473 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6474 ioc->hba_queue_depth, ioc->chains_needed_per_io,
6475 ioc->request_sz, sz / 1024);
6476 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6477 goto out;
6478 retry_sz = 64;
6479 ioc->hba_queue_depth -= retry_sz;
6480 _base_release_memory_pools(ioc);
6481 goto retry_allocation;
6482 }
6483
6484 if (retry_sz)
6485 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6486 ioc->hba_queue_depth, ioc->chains_needed_per_io,
6487 ioc->request_sz, sz / 1024);
6488
6489 /* hi-priority queue */
6490 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6491 ioc->request_sz);
6492 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6493 ioc->request_sz);
6494
6495 /* internal queue */
6496 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6497 ioc->request_sz);
6498 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6499 ioc->request_sz);
6500
6501 ioc_info(ioc,
6502 "request pool(0x%p) - dma(0x%llx): "
6503 "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6504 ioc->request, (unsigned long long) ioc->request_dma,
6505 ioc->hba_queue_depth, ioc->request_sz,
6506 (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6507
6508 total_sz += sz;
6509
6510 dinitprintk(ioc,
6511 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6512 ioc->request, ioc->scsiio_depth));
6513
6514 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6515 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6516 ioc->chain_lookup = kzalloc(size: sz, GFP_KERNEL);
6517 if (!ioc->chain_lookup) {
6518 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6519 goto out;
6520 }
6521
6522 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6523 for (i = 0; i < ioc->scsiio_depth; i++) {
6524 ioc->chain_lookup[i].chains_per_smid = kzalloc(size: sz, GFP_KERNEL);
6525 if (!ioc->chain_lookup[i].chains_per_smid) {
6526 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6527 goto out;
6528 }
6529 }
6530
6531 /* initialize hi-priority queue smid's */
6532 ioc->hpr_lookup = kcalloc(n: ioc->hi_priority_depth,
6533 size: sizeof(struct request_tracker), GFP_KERNEL);
6534 if (!ioc->hpr_lookup) {
6535 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6536 goto out;
6537 }
6538 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6539 dinitprintk(ioc,
6540 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6541 ioc->hi_priority,
6542 ioc->hi_priority_depth, ioc->hi_priority_smid));
6543
6544 /* initialize internal queue smid's */
6545 ioc->internal_lookup = kcalloc(n: ioc->internal_depth,
6546 size: sizeof(struct request_tracker), GFP_KERNEL);
6547 if (!ioc->internal_lookup) {
6548 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6549 goto out;
6550 }
6551 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6552 dinitprintk(ioc,
6553 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6554 ioc->internal,
6555 ioc->internal_depth, ioc->internal_smid));
6556
6557 ioc->io_queue_num = kcalloc(n: ioc->scsiio_depth,
6558 size: sizeof(u16), GFP_KERNEL);
6559 if (!ioc->io_queue_num)
6560 goto out;
6561 /*
6562 * The number of NVMe page sized blocks needed is:
6563 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6564 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6565 * that is placed in the main message frame. 8 is the size of each PRP
6566 * entry or PRP list pointer entry. 8 is subtracted from page_size
6567 * because of the PRP list pointer entry at the end of a page, so this
6568 * is not counted as a PRP entry. The 1 added page is a round up.
6569 *
6570 * To avoid allocation failures due to the amount of memory that could
6571 * be required for NVMe PRP's, only each set of NVMe blocks will be
6572 * contiguous, so a new set is allocated for each possible I/O.
6573 */
6574
6575 ioc->chains_per_prp_buffer = 0;
6576 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6577 nvme_blocks_needed =
6578 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6579 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6580 nvme_blocks_needed++;
6581
6582 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6583 ioc->pcie_sg_lookup = kzalloc(size: sz, GFP_KERNEL);
6584 if (!ioc->pcie_sg_lookup) {
6585 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6586 goto out;
6587 }
6588 sz = nvme_blocks_needed * ioc->page_size;
6589 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6590 if (rc == -ENOMEM)
6591 return -ENOMEM;
6592 else if (rc == -EAGAIN)
6593 goto try_32bit_dma;
6594 total_sz += sz * ioc->scsiio_depth;
6595 }
6596
6597 rc = _base_allocate_chain_dma_pool(ioc, sz: ioc->chain_segment_sz);
6598 if (rc == -ENOMEM)
6599 return -ENOMEM;
6600 else if (rc == -EAGAIN)
6601 goto try_32bit_dma;
6602 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6603 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6604 dinitprintk(ioc,
6605 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6606 ioc->chain_depth, ioc->chain_segment_sz,
6607 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6608 /* sense buffers, 4 byte align */
6609 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6610 rc = _base_allocate_sense_dma_pool(ioc, sz: sense_sz);
6611 if (rc == -ENOMEM)
6612 return -ENOMEM;
6613 else if (rc == -EAGAIN)
6614 goto try_32bit_dma;
6615 total_sz += sense_sz;
6616 /* reply pool, 4 byte align */
6617 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6618 rc = _base_allocate_reply_pool(ioc, sz);
6619 if (rc == -ENOMEM)
6620 return -ENOMEM;
6621 else if (rc == -EAGAIN)
6622 goto try_32bit_dma;
6623 total_sz += sz;
6624
6625 /* reply free queue, 16 byte align */
6626 sz = ioc->reply_free_queue_depth * 4;
6627 rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6628 if (rc == -ENOMEM)
6629 return -ENOMEM;
6630 else if (rc == -EAGAIN)
6631 goto try_32bit_dma;
6632 dinitprintk(ioc,
6633 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6634 (unsigned long long)ioc->reply_free_dma));
6635 total_sz += sz;
6636 if (ioc->rdpq_array_enable) {
6637 reply_post_free_array_sz = ioc->reply_queue_count *
6638 sizeof(Mpi2IOCInitRDPQArrayEntry);
6639 rc = _base_allocate_reply_post_free_array(ioc,
6640 reply_post_free_array_sz);
6641 if (rc == -ENOMEM)
6642 return -ENOMEM;
6643 else if (rc == -EAGAIN)
6644 goto try_32bit_dma;
6645 }
6646 ioc->config_page_sz = 512;
6647 ioc->config_page = dma_alloc_coherent(dev: &ioc->pdev->dev,
6648 size: ioc->config_page_sz, dma_handle: &ioc->config_page_dma, GFP_KERNEL);
6649 if (!ioc->config_page) {
6650 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6651 goto out;
6652 }
6653
6654 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6655 ioc->config_page, (unsigned long long)ioc->config_page_dma,
6656 ioc->config_page_sz);
6657 total_sz += ioc->config_page_sz;
6658
6659 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6660 total_sz / 1024);
6661 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6662 ioc->shost->can_queue, facts->RequestCredit);
6663 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6664 ioc->shost->sg_tablesize);
6665 return 0;
6666
6667try_32bit_dma:
6668 _base_release_memory_pools(ioc);
6669 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6670 /* Change dma coherent mask to 32 bit and reallocate */
6671 if (_base_config_dma_addressing(ioc, pdev: ioc->pdev) != 0) {
6672 pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6673 pci_name(ioc->pdev));
6674 return -ENODEV;
6675 }
6676 } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6677 return -ENOMEM;
6678 goto retry_allocation;
6679
6680 out:
6681 return -ENOMEM;
6682}
6683
6684/**
6685 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6686 * @ioc: Pointer to MPT_ADAPTER structure
6687 * @cooked: Request raw or cooked IOC state
6688 *
6689 * Return: all IOC Doorbell register bits if cooked==0, else just the
6690 * Doorbell bits in MPI_IOC_STATE_MASK.
6691 */
6692u32
6693mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6694{
6695 u32 s, sc;
6696
6697 s = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6698 sc = s & MPI2_IOC_STATE_MASK;
6699 return cooked ? sc : s;
6700}
6701
6702/**
6703 * _base_wait_on_iocstate - waiting on a particular ioc state
6704 * @ioc: ?
6705 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6706 * @timeout: timeout in second
6707 *
6708 * Return: 0 for success, non-zero for failure.
6709 */
6710static int
6711_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6712{
6713 u32 count, cntdn;
6714 u32 current_state;
6715
6716 count = 0;
6717 cntdn = 1000 * timeout;
6718 do {
6719 current_state = mpt3sas_base_get_iocstate(ioc, cooked: 1);
6720 if (current_state == ioc_state)
6721 return 0;
6722 if (count && current_state == MPI2_IOC_STATE_FAULT)
6723 break;
6724 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6725 break;
6726
6727 usleep_range(min: 1000, max: 1500);
6728 count++;
6729 } while (--cntdn);
6730
6731 return current_state;
6732}
6733
6734/**
6735 * _base_dump_reg_set - This function will print hexdump of register set.
6736 * @ioc: per adapter object
6737 *
6738 * Return: nothing.
6739 */
6740static inline void
6741_base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6742{
6743 unsigned int i, sz = 256;
6744 u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6745
6746 ioc_info(ioc, "System Register set:\n");
6747 for (i = 0; i < (sz / sizeof(u32)); i++)
6748 pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6749}
6750
6751/**
6752 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6753 * a write to the doorbell)
6754 * @ioc: per adapter object
6755 * @timeout: timeout in seconds
6756 *
6757 * Return: 0 for success, non-zero for failure.
6758 *
6759 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6760 */
6761
6762static int
6763_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6764{
6765 u32 cntdn, count;
6766 u32 int_status;
6767
6768 count = 0;
6769 cntdn = 1000 * timeout;
6770 do {
6771 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6772 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6773 dhsprintk(ioc,
6774 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6775 __func__, count, timeout));
6776 return 0;
6777 }
6778
6779 usleep_range(min: 1000, max: 1500);
6780 count++;
6781 } while (--cntdn);
6782
6783 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6784 __func__, count, int_status);
6785 return -EFAULT;
6786}
6787
6788static int
6789_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6790{
6791 u32 cntdn, count;
6792 u32 int_status;
6793
6794 count = 0;
6795 cntdn = 2000 * timeout;
6796 do {
6797 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6798 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6799 dhsprintk(ioc,
6800 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6801 __func__, count, timeout));
6802 return 0;
6803 }
6804
6805 udelay(500);
6806 count++;
6807 } while (--cntdn);
6808
6809 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6810 __func__, count, int_status);
6811 return -EFAULT;
6812
6813}
6814
6815/**
6816 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6817 * @ioc: per adapter object
6818 * @timeout: timeout in second
6819 *
6820 * Return: 0 for success, non-zero for failure.
6821 *
6822 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6823 * doorbell.
6824 */
6825static int
6826_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6827{
6828 u32 cntdn, count;
6829 u32 int_status;
6830 u32 doorbell;
6831
6832 count = 0;
6833 cntdn = 1000 * timeout;
6834 do {
6835 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6836 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6837 dhsprintk(ioc,
6838 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6839 __func__, count, timeout));
6840 return 0;
6841 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6842 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6843 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6844 MPI2_IOC_STATE_FAULT) {
6845 mpt3sas_print_fault_code(ioc, doorbell);
6846 return -EFAULT;
6847 }
6848 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6849 MPI2_IOC_STATE_COREDUMP) {
6850 mpt3sas_print_coredump_info(ioc, doorbell);
6851 return -EFAULT;
6852 }
6853 } else if (int_status == 0xFFFFFFFF)
6854 goto out;
6855
6856 usleep_range(min: 1000, max: 1500);
6857 count++;
6858 } while (--cntdn);
6859
6860 out:
6861 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6862 __func__, count, int_status);
6863 return -EFAULT;
6864}
6865
6866/**
6867 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6868 * @ioc: per adapter object
6869 * @timeout: timeout in second
6870 *
6871 * Return: 0 for success, non-zero for failure.
6872 */
6873static int
6874_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6875{
6876 u32 cntdn, count;
6877 u32 doorbell_reg;
6878
6879 count = 0;
6880 cntdn = 1000 * timeout;
6881 do {
6882 doorbell_reg = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6883 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6884 dhsprintk(ioc,
6885 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6886 __func__, count, timeout));
6887 return 0;
6888 }
6889
6890 usleep_range(min: 1000, max: 1500);
6891 count++;
6892 } while (--cntdn);
6893
6894 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6895 __func__, count, doorbell_reg);
6896 return -EFAULT;
6897}
6898
6899/**
6900 * _base_send_ioc_reset - send doorbell reset
6901 * @ioc: per adapter object
6902 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6903 * @timeout: timeout in second
6904 *
6905 * Return: 0 for success, non-zero for failure.
6906 */
6907static int
6908_base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6909{
6910 u32 ioc_state;
6911 int r = 0;
6912 unsigned long flags;
6913
6914 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6915 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6916 return -EFAULT;
6917 }
6918
6919 if (!(ioc->facts.IOCCapabilities &
6920 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6921 return -EFAULT;
6922
6923 ioc_info(ioc, "sending message unit reset !!\n");
6924
6925 writel(val: reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6926 addr: &ioc->chip->Doorbell);
6927 if ((_base_wait_for_doorbell_ack(ioc, timeout: 15))) {
6928 r = -EFAULT;
6929 goto out;
6930 }
6931
6932 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6933 if (ioc_state) {
6934 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6935 __func__, ioc_state);
6936 r = -EFAULT;
6937 goto out;
6938 }
6939 out:
6940 if (r != 0) {
6941 ioc_state = mpt3sas_base_get_iocstate(ioc, cooked: 0);
6942 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6943 /*
6944 * Wait for IOC state CoreDump to clear only during
6945 * HBA initialization & release time.
6946 */
6947 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6948 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6949 ioc->fault_reset_work_q == NULL)) {
6950 spin_unlock_irqrestore(
6951 lock: &ioc->ioc_reset_in_progress_lock, flags);
6952 mpt3sas_print_coredump_info(ioc, ioc_state);
6953 mpt3sas_base_wait_for_coredump_completion(ioc,
6954 caller: __func__);
6955 spin_lock_irqsave(
6956 &ioc->ioc_reset_in_progress_lock, flags);
6957 }
6958 spin_unlock_irqrestore(lock: &ioc->ioc_reset_in_progress_lock, flags);
6959 }
6960 ioc_info(ioc, "message unit reset: %s\n",
6961 r == 0 ? "SUCCESS" : "FAILED");
6962 return r;
6963}
6964
6965/**
6966 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6967 * @ioc: per adapter object
6968 * @timeout: timeout in seconds
6969 *
6970 * Return: Waits up to timeout seconds for the IOC to
6971 * become operational. Returns 0 if IOC is present
6972 * and operational; otherwise returns %-EFAULT.
6973 */
6974
6975int
6976mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6977{
6978 int wait_state_count = 0;
6979 u32 ioc_state;
6980
6981 do {
6982 ioc_state = mpt3sas_base_get_iocstate(ioc, cooked: 1);
6983 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6984 break;
6985
6986 /*
6987 * Watchdog thread will be started after IOC Initialization, so
6988 * no need to wait here for IOC state to become operational
6989 * when IOC Initialization is on. Instead the driver will
6990 * return ETIME status, so that calling function can issue
6991 * diag reset operation and retry the command.
6992 */
6993 if (ioc->is_driver_loading)
6994 return -ETIME;
6995
6996 ssleep(seconds: 1);
6997 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6998 __func__, ++wait_state_count);
6999 } while (--timeout);
7000 if (!timeout) {
7001 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
7002 return -EFAULT;
7003 }
7004 if (wait_state_count)
7005 ioc_info(ioc, "ioc is operational\n");
7006 return 0;
7007}
7008
7009/**
7010 * _base_handshake_req_reply_wait - send request thru doorbell interface
7011 * @ioc: per adapter object
7012 * @request_bytes: request length
7013 * @request: pointer having request payload
7014 * @reply_bytes: reply length
7015 * @reply: pointer to reply payload
7016 * @timeout: timeout in second
7017 *
7018 * Return: 0 for success, non-zero for failure.
7019 */
7020static int
7021_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
7022 u32 *request, int reply_bytes, u16 *reply, int timeout)
7023{
7024 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
7025 int i;
7026 u8 failed;
7027 __le32 *mfp;
7028
7029 /* make sure doorbell is not in use */
7030 if ((ioc->base_readl_ext_retry(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
7031 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
7032 return -EFAULT;
7033 }
7034
7035 /* clear pending doorbell interrupts from previous state changes */
7036 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
7037 MPI2_HIS_IOC2SYS_DB_STATUS)
7038 writel(val: 0, addr: &ioc->chip->HostInterruptStatus);
7039
7040 /* send message to ioc */
7041 writel(val: ((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
7042 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
7043 addr: &ioc->chip->Doorbell);
7044
7045 if ((_base_spin_on_doorbell_int(ioc, timeout: 5))) {
7046 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7047 __LINE__);
7048 return -EFAULT;
7049 }
7050 writel(val: 0, addr: &ioc->chip->HostInterruptStatus);
7051
7052 if ((_base_wait_for_doorbell_ack(ioc, timeout: 5))) {
7053 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
7054 __LINE__);
7055 return -EFAULT;
7056 }
7057
7058 /* send message 32-bits at a time */
7059 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
7060 writel(cpu_to_le32(request[i]), addr: &ioc->chip->Doorbell);
7061 if ((_base_wait_for_doorbell_ack(ioc, timeout: 5)))
7062 failed = 1;
7063 }
7064
7065 if (failed) {
7066 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
7067 __LINE__);
7068 return -EFAULT;
7069 }
7070
7071 /* now wait for the reply */
7072 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
7073 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7074 __LINE__);
7075 return -EFAULT;
7076 }
7077
7078 /* read the first two 16-bits, it gives the total length of the reply */
7079 reply[0] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7080 & MPI2_DOORBELL_DATA_MASK);
7081 writel(val: 0, addr: &ioc->chip->HostInterruptStatus);
7082 if ((_base_wait_for_doorbell_int(ioc, timeout: 5))) {
7083 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7084 __LINE__);
7085 return -EFAULT;
7086 }
7087 reply[1] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7088 & MPI2_DOORBELL_DATA_MASK);
7089 writel(val: 0, addr: &ioc->chip->HostInterruptStatus);
7090
7091 for (i = 2; i < default_reply->MsgLength * 2; i++) {
7092 if ((_base_wait_for_doorbell_int(ioc, timeout: 5))) {
7093 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7094 __LINE__);
7095 return -EFAULT;
7096 }
7097 if (i >= reply_bytes/2) /* overflow case */
7098 ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
7099 else
7100 reply[i] = le16_to_cpu(
7101 ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7102 & MPI2_DOORBELL_DATA_MASK);
7103 writel(val: 0, addr: &ioc->chip->HostInterruptStatus);
7104 }
7105
7106 _base_wait_for_doorbell_int(ioc, timeout: 5);
7107 if (_base_wait_for_doorbell_not_used(ioc, timeout: 5) != 0) {
7108 dhsprintk(ioc,
7109 ioc_info(ioc, "doorbell is in use (line=%d)\n",
7110 __LINE__));
7111 }
7112 writel(val: 0, addr: &ioc->chip->HostInterruptStatus);
7113
7114 if (ioc->logging_level & MPT_DEBUG_INIT) {
7115 mfp = (__le32 *)reply;
7116 pr_info("\toffset:data\n");
7117 for (i = 0; i < reply_bytes/4; i++)
7118 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7119 le32_to_cpu(mfp[i]));
7120 }
7121 return 0;
7122}
7123
7124/**
7125 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
7126 * @ioc: per adapter object
7127 * @mpi_reply: the reply payload from FW
7128 * @mpi_request: the request payload sent to FW
7129 *
7130 * The SAS IO Unit Control Request message allows the host to perform low-level
7131 * operations, such as resets on the PHYs of the IO Unit, also allows the host
7132 * to obtain the IOC assigned device handles for a device if it has other
7133 * identifying information about the device, in addition allows the host to
7134 * remove IOC resources associated with the device.
7135 *
7136 * Return: 0 for success, non-zero for failure.
7137 */
7138int
7139mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
7140 Mpi2SasIoUnitControlReply_t *mpi_reply,
7141 Mpi2SasIoUnitControlRequest_t *mpi_request)
7142{
7143 u16 smid;
7144 u8 issue_reset = 0;
7145 int rc;
7146 void *request;
7147
7148 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7149
7150 mutex_lock(&ioc->base_cmds.mutex);
7151
7152 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7153 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7154 rc = -EAGAIN;
7155 goto out;
7156 }
7157
7158 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7159 if (rc)
7160 goto out;
7161
7162 smid = mpt3sas_base_get_smid(ioc, cb_idx: ioc->base_cb_idx);
7163 if (!smid) {
7164 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7165 rc = -EAGAIN;
7166 goto out;
7167 }
7168
7169 rc = 0;
7170 ioc->base_cmds.status = MPT3_CMD_PENDING;
7171 request = mpt3sas_base_get_msg_frame(ioc, smid);
7172 ioc->base_cmds.smid = smid;
7173 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7174 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7175 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7176 ioc->ioc_link_reset_in_progress = 1;
7177 init_completion(x: &ioc->base_cmds.done);
7178 ioc->put_smid_default(ioc, smid);
7179 wait_for_completion_timeout(x: &ioc->base_cmds.done,
7180 timeout: msecs_to_jiffies(m: 10000));
7181 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7182 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7183 ioc->ioc_link_reset_in_progress)
7184 ioc->ioc_link_reset_in_progress = 0;
7185 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7186 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7187 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7188 issue_reset);
7189 goto issue_host_reset;
7190 }
7191 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7192 memcpy(mpi_reply, ioc->base_cmds.reply,
7193 sizeof(Mpi2SasIoUnitControlReply_t));
7194 else
7195 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7196 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7197 goto out;
7198
7199 issue_host_reset:
7200 if (issue_reset)
7201 mpt3sas_base_hard_reset_handler(ioc, type: FORCE_BIG_HAMMER);
7202 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7203 rc = -EFAULT;
7204 out:
7205 mutex_unlock(lock: &ioc->base_cmds.mutex);
7206 return rc;
7207}
7208
7209/**
7210 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7211 * @ioc: per adapter object
7212 * @mpi_reply: the reply payload from FW
7213 * @mpi_request: the request payload sent to FW
7214 *
7215 * The SCSI Enclosure Processor request message causes the IOC to
7216 * communicate with SES devices to control LED status signals.
7217 *
7218 * Return: 0 for success, non-zero for failure.
7219 */
7220int
7221mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7222 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7223{
7224 u16 smid;
7225 u8 issue_reset = 0;
7226 int rc;
7227 void *request;
7228
7229 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7230
7231 mutex_lock(&ioc->base_cmds.mutex);
7232
7233 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7234 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7235 rc = -EAGAIN;
7236 goto out;
7237 }
7238
7239 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7240 if (rc)
7241 goto out;
7242
7243 smid = mpt3sas_base_get_smid(ioc, cb_idx: ioc->base_cb_idx);
7244 if (!smid) {
7245 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7246 rc = -EAGAIN;
7247 goto out;
7248 }
7249
7250 rc = 0;
7251 ioc->base_cmds.status = MPT3_CMD_PENDING;
7252 request = mpt3sas_base_get_msg_frame(ioc, smid);
7253 ioc->base_cmds.smid = smid;
7254 memset(request, 0, ioc->request_sz);
7255 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7256 init_completion(x: &ioc->base_cmds.done);
7257 ioc->put_smid_default(ioc, smid);
7258 wait_for_completion_timeout(x: &ioc->base_cmds.done,
7259 timeout: msecs_to_jiffies(m: 10000));
7260 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7261 mpt3sas_check_cmd_timeout(ioc,
7262 ioc->base_cmds.status, mpi_request,
7263 sizeof(Mpi2SepRequest_t)/4, issue_reset);
7264 goto issue_host_reset;
7265 }
7266 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7267 memcpy(mpi_reply, ioc->base_cmds.reply,
7268 sizeof(Mpi2SepReply_t));
7269 else
7270 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7271 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7272 goto out;
7273
7274 issue_host_reset:
7275 if (issue_reset)
7276 mpt3sas_base_hard_reset_handler(ioc, type: FORCE_BIG_HAMMER);
7277 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7278 rc = -EFAULT;
7279 out:
7280 mutex_unlock(lock: &ioc->base_cmds.mutex);
7281 return rc;
7282}
7283
7284/**
7285 * _base_get_port_facts - obtain port facts reply and save in ioc
7286 * @ioc: per adapter object
7287 * @port: ?
7288 *
7289 * Return: 0 for success, non-zero for failure.
7290 */
7291static int
7292_base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7293{
7294 Mpi2PortFactsRequest_t mpi_request;
7295 Mpi2PortFactsReply_t mpi_reply;
7296 struct mpt3sas_port_facts *pfacts;
7297 int mpi_reply_sz, mpi_request_sz, r;
7298
7299 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7300
7301 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7302 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7303 memset(&mpi_request, 0, mpi_request_sz);
7304 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7305 mpi_request.PortNumber = port;
7306 r = _base_handshake_req_reply_wait(ioc, request_bytes: mpi_request_sz,
7307 request: (u32 *)&mpi_request, reply_bytes: mpi_reply_sz, reply: (u16 *)&mpi_reply, timeout: 5);
7308
7309 if (r != 0) {
7310 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7311 return r;
7312 }
7313
7314 pfacts = &ioc->pfacts[port];
7315 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7316 pfacts->PortNumber = mpi_reply.PortNumber;
7317 pfacts->VP_ID = mpi_reply.VP_ID;
7318 pfacts->VF_ID = mpi_reply.VF_ID;
7319 pfacts->MaxPostedCmdBuffers =
7320 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7321
7322 return 0;
7323}
7324
7325/**
7326 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7327 * @ioc: per adapter object
7328 * @timeout:
7329 *
7330 * Return: 0 for success, non-zero for failure.
7331 */
7332static int
7333_base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7334{
7335 u32 ioc_state;
7336 int rc;
7337
7338 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7339
7340 if (ioc->pci_error_recovery) {
7341 dfailprintk(ioc,
7342 ioc_info(ioc, "%s: host in pci error recovery\n",
7343 __func__));
7344 return -EFAULT;
7345 }
7346
7347 ioc_state = mpt3sas_base_get_iocstate(ioc, cooked: 0);
7348 dhsprintk(ioc,
7349 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7350 __func__, ioc_state));
7351
7352 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7353 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7354 return 0;
7355
7356 if (ioc_state & MPI2_DOORBELL_USED) {
7357 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7358 goto issue_diag_reset;
7359 }
7360
7361 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7362 mpt3sas_print_fault_code(ioc, ioc_state &
7363 MPI2_DOORBELL_DATA_MASK);
7364 goto issue_diag_reset;
7365 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7366 MPI2_IOC_STATE_COREDUMP) {
7367 ioc_info(ioc,
7368 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7369 __func__, ioc_state);
7370 return -EFAULT;
7371 }
7372
7373 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7374 if (ioc_state) {
7375 dfailprintk(ioc,
7376 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7377 __func__, ioc_state));
7378 return -EFAULT;
7379 }
7380
7381 return 0;
7382
7383issue_diag_reset:
7384 rc = _base_diag_reset(ioc);
7385 return rc;
7386}
7387
7388/**
7389 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7390 * @ioc: per adapter object
7391 *
7392 * Return: 0 for success, non-zero for failure.
7393 */
7394static int
7395_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7396{
7397 Mpi2IOCFactsRequest_t mpi_request;
7398 Mpi2IOCFactsReply_t mpi_reply;
7399 struct mpt3sas_facts *facts;
7400 int mpi_reply_sz, mpi_request_sz, r;
7401
7402 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7403
7404 r = _base_wait_for_iocstate(ioc, timeout: 10);
7405 if (r) {
7406 dfailprintk(ioc,
7407 ioc_info(ioc, "%s: failed getting to correct state\n",
7408 __func__));
7409 return r;
7410 }
7411 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7412 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7413 memset(&mpi_request, 0, mpi_request_sz);
7414 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7415 r = _base_handshake_req_reply_wait(ioc, request_bytes: mpi_request_sz,
7416 request: (u32 *)&mpi_request, reply_bytes: mpi_reply_sz, reply: (u16 *)&mpi_reply, timeout: 5);
7417
7418 if (r != 0) {
7419 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7420 return r;
7421 }
7422
7423 facts = &ioc->facts;
7424 memset(facts, 0, sizeof(struct mpt3sas_facts));
7425 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7426 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7427 facts->VP_ID = mpi_reply.VP_ID;
7428 facts->VF_ID = mpi_reply.VF_ID;
7429 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7430 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7431 facts->WhoInit = mpi_reply.WhoInit;
7432 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7433 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7434 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7435 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7436 ioc->combined_reply_queue = 0;
7437 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7438 facts->MaxReplyDescriptorPostQueueDepth =
7439 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7440 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7441 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7442 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7443 ioc->ir_firmware = 1;
7444 if ((facts->IOCCapabilities &
7445 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7446 ioc->rdpq_array_capable = 1;
7447 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7448 && ioc->is_aero_ioc)
7449 ioc->atomic_desc_capable = 1;
7450 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7451 facts->IOCRequestFrameSize =
7452 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7453 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7454 facts->IOCMaxChainSegmentSize =
7455 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7456 }
7457 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7458 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7459 ioc->shost->max_id = -1;
7460 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7461 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7462 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7463 facts->HighPriorityCredit =
7464 le16_to_cpu(mpi_reply.HighPriorityCredit);
7465 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7466 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7467 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7468
7469 /*
7470 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7471 */
7472 ioc->page_size = 1 << facts->CurrentHostPageSize;
7473 if (ioc->page_size == 1) {
7474 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7475 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7476 }
7477 dinitprintk(ioc,
7478 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7479 facts->CurrentHostPageSize));
7480
7481 dinitprintk(ioc,
7482 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7483 facts->RequestCredit, facts->MaxChainDepth));
7484 dinitprintk(ioc,
7485 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7486 facts->IOCRequestFrameSize * 4,
7487 facts->ReplyFrameSize * 4));
7488 return 0;
7489}
7490
7491/**
7492 * _base_send_ioc_init - send ioc_init to firmware
7493 * @ioc: per adapter object
7494 *
7495 * Return: 0 for success, non-zero for failure.
7496 */
7497static int
7498_base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7499{
7500 Mpi2IOCInitRequest_t mpi_request;
7501 Mpi2IOCInitReply_t mpi_reply;
7502 int i, r = 0;
7503 ktime_t current_time;
7504 u16 ioc_status;
7505 u32 reply_post_free_array_sz = 0;
7506
7507 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7508
7509 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7510 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7511 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7512 mpi_request.VF_ID = 0; /* TODO */
7513 mpi_request.VP_ID = 0;
7514 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7515 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7516 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7517
7518 if (_base_is_controller_msix_enabled(ioc))
7519 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7520 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7521 mpi_request.ReplyDescriptorPostQueueDepth =
7522 cpu_to_le16(ioc->reply_post_queue_depth);
7523 mpi_request.ReplyFreeQueueDepth =
7524 cpu_to_le16(ioc->reply_free_queue_depth);
7525
7526 mpi_request.SenseBufferAddressHigh =
7527 cpu_to_le32((u64)ioc->sense_dma >> 32);
7528 mpi_request.SystemReplyAddressHigh =
7529 cpu_to_le32((u64)ioc->reply_dma >> 32);
7530 mpi_request.SystemRequestFrameBaseAddress =
7531 cpu_to_le64((u64)ioc->request_dma);
7532 mpi_request.ReplyFreeQueueAddress =
7533 cpu_to_le64((u64)ioc->reply_free_dma);
7534
7535 if (ioc->rdpq_array_enable) {
7536 reply_post_free_array_sz = ioc->reply_queue_count *
7537 sizeof(Mpi2IOCInitRDPQArrayEntry);
7538 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7539 for (i = 0; i < ioc->reply_queue_count; i++)
7540 ioc->reply_post_free_array[i].RDPQBaseAddress =
7541 cpu_to_le64(
7542 (u64)ioc->reply_post[i].reply_post_free_dma);
7543 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7544 mpi_request.ReplyDescriptorPostQueueAddress =
7545 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7546 } else {
7547 mpi_request.ReplyDescriptorPostQueueAddress =
7548 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7549 }
7550
7551 /*
7552 * Set the flag to enable CoreDump state feature in IOC firmware.
7553 */
7554 mpi_request.ConfigurationFlags |=
7555 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7556
7557 /* This time stamp specifies number of milliseconds
7558 * since epoch ~ midnight January 1, 1970.
7559 */
7560 current_time = ktime_get_real();
7561 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7562
7563 if (ioc->logging_level & MPT_DEBUG_INIT) {
7564 __le32 *mfp;
7565 int i;
7566
7567 mfp = (__le32 *)&mpi_request;
7568 ioc_info(ioc, "\toffset:data\n");
7569 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7570 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7571 le32_to_cpu(mfp[i]));
7572 }
7573
7574 r = _base_handshake_req_reply_wait(ioc,
7575 request_bytes: sizeof(Mpi2IOCInitRequest_t), request: (u32 *)&mpi_request,
7576 reply_bytes: sizeof(Mpi2IOCInitReply_t), reply: (u16 *)&mpi_reply, timeout: 30);
7577
7578 if (r != 0) {
7579 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7580 return r;
7581 }
7582
7583 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7584 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7585 mpi_reply.IOCLogInfo) {
7586 ioc_err(ioc, "%s: failed\n", __func__);
7587 r = -EIO;
7588 }
7589
7590 /* Reset TimeSync Counter*/
7591 ioc->timestamp_update_count = 0;
7592 return r;
7593}
7594
7595/**
7596 * mpt3sas_port_enable_done - command completion routine for port enable
7597 * @ioc: per adapter object
7598 * @smid: system request message index
7599 * @msix_index: MSIX table index supplied by the OS
7600 * @reply: reply message frame(lower 32bit addr)
7601 *
7602 * Return: 1 meaning mf should be freed from _base_interrupt
7603 * 0 means the mf is freed from this function.
7604 */
7605u8
7606mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7607 u32 reply)
7608{
7609 MPI2DefaultReply_t *mpi_reply;
7610 u16 ioc_status;
7611
7612 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7613 return 1;
7614
7615 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, phys_addr: reply);
7616 if (!mpi_reply)
7617 return 1;
7618
7619 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7620 return 1;
7621
7622 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7623 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7624 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7625 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7626 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7627 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7628 ioc->port_enable_failed = 1;
7629
7630 if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7631 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7632 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7633 mpt3sas_port_enable_complete(ioc);
7634 return 1;
7635 } else {
7636 ioc->start_scan_failed = ioc_status;
7637 ioc->start_scan = 0;
7638 return 1;
7639 }
7640 }
7641 complete(&ioc->port_enable_cmds.done);
7642 return 1;
7643}
7644
7645/**
7646 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7647 * @ioc: per adapter object
7648 *
7649 * Return: 0 for success, non-zero for failure.
7650 */
7651static int
7652_base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7653{
7654 Mpi2PortEnableRequest_t *mpi_request;
7655 Mpi2PortEnableReply_t *mpi_reply;
7656 int r = 0;
7657 u16 smid;
7658 u16 ioc_status;
7659
7660 ioc_info(ioc, "sending port enable !!\n");
7661
7662 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7663 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7664 return -EAGAIN;
7665 }
7666
7667 smid = mpt3sas_base_get_smid(ioc, cb_idx: ioc->port_enable_cb_idx);
7668 if (!smid) {
7669 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7670 return -EAGAIN;
7671 }
7672
7673 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7674 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7675 ioc->port_enable_cmds.smid = smid;
7676 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7677 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7678
7679 init_completion(x: &ioc->port_enable_cmds.done);
7680 ioc->put_smid_default(ioc, smid);
7681 wait_for_completion_timeout(x: &ioc->port_enable_cmds.done, timeout: 300*HZ);
7682 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7683 ioc_err(ioc, "%s: timeout\n", __func__);
7684 _debug_dump_mf(mpi_request,
7685 sz: sizeof(Mpi2PortEnableRequest_t)/4);
7686 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7687 r = -EFAULT;
7688 else
7689 r = -ETIME;
7690 goto out;
7691 }
7692
7693 mpi_reply = ioc->port_enable_cmds.reply;
7694 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7695 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7696 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7697 __func__, ioc_status);
7698 r = -EFAULT;
7699 goto out;
7700 }
7701
7702 out:
7703 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7704 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7705 return r;
7706}
7707
7708/**
7709 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7710 * @ioc: per adapter object
7711 *
7712 * Return: 0 for success, non-zero for failure.
7713 */
7714int
7715mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7716{
7717 Mpi2PortEnableRequest_t *mpi_request;
7718 u16 smid;
7719
7720 ioc_info(ioc, "sending port enable !!\n");
7721
7722 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7723 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7724 return -EAGAIN;
7725 }
7726
7727 smid = mpt3sas_base_get_smid(ioc, cb_idx: ioc->port_enable_cb_idx);
7728 if (!smid) {
7729 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7730 return -EAGAIN;
7731 }
7732 ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7733 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7734 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7735 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7736 ioc->port_enable_cmds.smid = smid;
7737 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7738 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7739
7740 ioc->put_smid_default(ioc, smid);
7741 return 0;
7742}
7743
7744/**
7745 * _base_determine_wait_on_discovery - desposition
7746 * @ioc: per adapter object
7747 *
7748 * Decide whether to wait on discovery to complete. Used to either
7749 * locate boot device, or report volumes ahead of physical devices.
7750 *
7751 * Return: 1 for wait, 0 for don't wait.
7752 */
7753static int
7754_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7755{
7756 /* We wait for discovery to complete if IR firmware is loaded.
7757 * The sas topology events arrive before PD events, so we need time to
7758 * turn on the bit in ioc->pd_handles to indicate PD
7759 * Also, it maybe required to report Volumes ahead of physical
7760 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7761 */
7762 if (ioc->ir_firmware)
7763 return 1;
7764
7765 /* if no Bios, then we don't need to wait */
7766 if (!ioc->bios_pg3.BiosVersion)
7767 return 0;
7768
7769 /* Bios is present, then we drop down here.
7770 *
7771 * If there any entries in the Bios Page 2, then we wait
7772 * for discovery to complete.
7773 */
7774
7775 /* Current Boot Device */
7776 if ((ioc->bios_pg2.CurrentBootDeviceForm &
7777 MPI2_BIOSPAGE2_FORM_MASK) ==
7778 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7779 /* Request Boot Device */
7780 (ioc->bios_pg2.ReqBootDeviceForm &
7781 MPI2_BIOSPAGE2_FORM_MASK) ==
7782 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7783 /* Alternate Request Boot Device */
7784 (ioc->bios_pg2.ReqAltBootDeviceForm &
7785 MPI2_BIOSPAGE2_FORM_MASK) ==
7786 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7787 return 0;
7788
7789 return 1;
7790}
7791
7792/**
7793 * _base_unmask_events - turn on notification for this event
7794 * @ioc: per adapter object
7795 * @event: firmware event
7796 *
7797 * The mask is stored in ioc->event_masks.
7798 */
7799static void
7800_base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7801{
7802 u32 desired_event;
7803
7804 if (event >= 128)
7805 return;
7806
7807 desired_event = (1 << (event % 32));
7808
7809 if (event < 32)
7810 ioc->event_masks[0] &= ~desired_event;
7811 else if (event < 64)
7812 ioc->event_masks[1] &= ~desired_event;
7813 else if (event < 96)
7814 ioc->event_masks[2] &= ~desired_event;
7815 else if (event < 128)
7816 ioc->event_masks[3] &= ~desired_event;
7817}
7818
7819/**
7820 * _base_event_notification - send event notification
7821 * @ioc: per adapter object
7822 *
7823 * Return: 0 for success, non-zero for failure.
7824 */
7825static int
7826_base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7827{
7828 Mpi2EventNotificationRequest_t *mpi_request;
7829 u16 smid;
7830 int r = 0;
7831 int i, issue_diag_reset = 0;
7832
7833 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7834
7835 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7836 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7837 return -EAGAIN;
7838 }
7839
7840 smid = mpt3sas_base_get_smid(ioc, cb_idx: ioc->base_cb_idx);
7841 if (!smid) {
7842 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7843 return -EAGAIN;
7844 }
7845 ioc->base_cmds.status = MPT3_CMD_PENDING;
7846 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7847 ioc->base_cmds.smid = smid;
7848 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7849 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7850 mpi_request->VF_ID = 0; /* TODO */
7851 mpi_request->VP_ID = 0;
7852 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7853 mpi_request->EventMasks[i] =
7854 cpu_to_le32(ioc->event_masks[i]);
7855 init_completion(x: &ioc->base_cmds.done);
7856 ioc->put_smid_default(ioc, smid);
7857 wait_for_completion_timeout(x: &ioc->base_cmds.done, timeout: 30*HZ);
7858 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7859 ioc_err(ioc, "%s: timeout\n", __func__);
7860 _debug_dump_mf(mpi_request,
7861 sz: sizeof(Mpi2EventNotificationRequest_t)/4);
7862 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7863 r = -EFAULT;
7864 else
7865 issue_diag_reset = 1;
7866
7867 } else
7868 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7869 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7870
7871 if (issue_diag_reset) {
7872 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7873 return -EFAULT;
7874 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7875 return -EFAULT;
7876 r = -EAGAIN;
7877 }
7878 return r;
7879}
7880
7881/**
7882 * mpt3sas_base_validate_event_type - validating event types
7883 * @ioc: per adapter object
7884 * @event_type: firmware event
7885 *
7886 * This will turn on firmware event notification when application
7887 * ask for that event. We don't mask events that are already enabled.
7888 */
7889void
7890mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7891{
7892 int i, j;
7893 u32 event_mask, desired_event;
7894 u8 send_update_to_fw;
7895
7896 for (i = 0, send_update_to_fw = 0; i <
7897 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7898 event_mask = ~event_type[i];
7899 desired_event = 1;
7900 for (j = 0; j < 32; j++) {
7901 if (!(event_mask & desired_event) &&
7902 (ioc->event_masks[i] & desired_event)) {
7903 ioc->event_masks[i] &= ~desired_event;
7904 send_update_to_fw = 1;
7905 }
7906 desired_event = (desired_event << 1);
7907 }
7908 }
7909
7910 if (!send_update_to_fw)
7911 return;
7912
7913 mutex_lock(&ioc->base_cmds.mutex);
7914 _base_event_notification(ioc);
7915 mutex_unlock(lock: &ioc->base_cmds.mutex);
7916}
7917
7918/**
7919* mpt3sas_base_unlock_and_get_host_diagnostic- enable Host Diagnostic Register writes
7920* @ioc: per adapter object
7921* @host_diagnostic: host diagnostic register content
7922*
7923* Return: 0 for success, non-zero for failure.
7924*/
7925
7926int
7927mpt3sas_base_unlock_and_get_host_diagnostic(struct MPT3SAS_ADAPTER *ioc,
7928 u32 *host_diagnostic)
7929{
7930
7931 u32 count;
7932 *host_diagnostic = 0;
7933 count = 0;
7934
7935 do {
7936 /* Write magic sequence to WriteSequence register
7937 * Loop until in diagnostic mode
7938 */
7939 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7940 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, addr: &ioc->chip->WriteSequence);
7941 writel(MPI2_WRSEQ_1ST_KEY_VALUE, addr: &ioc->chip->WriteSequence);
7942 writel(MPI2_WRSEQ_2ND_KEY_VALUE, addr: &ioc->chip->WriteSequence);
7943 writel(MPI2_WRSEQ_3RD_KEY_VALUE, addr: &ioc->chip->WriteSequence);
7944 writel(MPI2_WRSEQ_4TH_KEY_VALUE, addr: &ioc->chip->WriteSequence);
7945 writel(MPI2_WRSEQ_5TH_KEY_VALUE, addr: &ioc->chip->WriteSequence);
7946 writel(MPI2_WRSEQ_6TH_KEY_VALUE, addr: &ioc->chip->WriteSequence);
7947
7948 /* wait 100 msec */
7949 msleep(msecs: 100);
7950
7951 if (count++ > 20) {
7952 ioc_info(ioc,
7953 "Stop writing magic sequence after 20 retries\n");
7954 _base_dump_reg_set(ioc);
7955 return -EFAULT;
7956 }
7957
7958 *host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
7959 drsprintk(ioc,
7960 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7961 count, *host_diagnostic));
7962
7963 } while ((*host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7964 return 0;
7965}
7966
7967/**
7968 * mpt3sas_base_lock_host_diagnostic: Disable Host Diagnostic Register writes
7969 * @ioc: per adapter object
7970 */
7971
7972void
7973mpt3sas_base_lock_host_diagnostic(struct MPT3SAS_ADAPTER *ioc)
7974{
7975 drsprintk(ioc, ioc_info(ioc, "disable writes to the diagnostic register\n"));
7976 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, addr: &ioc->chip->WriteSequence);
7977}
7978
7979/**
7980 * _base_diag_reset - the "big hammer" start of day reset
7981 * @ioc: per adapter object
7982 *
7983 * Return: 0 for success, non-zero for failure.
7984 */
7985static int
7986_base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7987{
7988 u32 host_diagnostic;
7989 u32 ioc_state;
7990 u32 count;
7991 u32 hcb_size;
7992
7993 ioc_info(ioc, "sending diag reset !!\n");
7994
7995 pci_cfg_access_lock(dev: ioc->pdev);
7996
7997 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7998
7999 mutex_lock(&ioc->hostdiag_unlock_mutex);
8000 if (mpt3sas_base_unlock_and_get_host_diagnostic(ioc, host_diagnostic: &host_diagnostic))
8001 goto out;
8002
8003 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
8004 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
8005 writel(val: host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
8006 addr: &ioc->chip->HostDiagnostic);
8007
8008 /* This delay allows the chip PCIe hardware time to finish reset tasks */
8009 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
8010
8011 /* Approximately 300 second max wait */
8012 for (count = 0; count < (300000000 /
8013 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
8014
8015 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
8016
8017 if (host_diagnostic == 0xFFFFFFFF) {
8018 ioc_info(ioc,
8019 "Invalid host diagnostic register value\n");
8020 _base_dump_reg_set(ioc);
8021 goto out;
8022 }
8023 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
8024 break;
8025
8026 /* Wait to pass the second read delay window */
8027 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC/1000);
8028 }
8029
8030 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
8031
8032 drsprintk(ioc,
8033 ioc_info(ioc, "restart the adapter assuming the\n"
8034 "HCB Address points to good F/W\n"));
8035 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
8036 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
8037 writel(val: host_diagnostic, addr: &ioc->chip->HostDiagnostic);
8038
8039 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
8040 writel(val: hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
8041 addr: &ioc->chip->HCBSize);
8042 }
8043
8044 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
8045 writel(val: host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
8046 addr: &ioc->chip->HostDiagnostic);
8047
8048 mpt3sas_base_lock_host_diagnostic(ioc);
8049 mutex_unlock(lock: &ioc->hostdiag_unlock_mutex);
8050
8051 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
8052 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout: 20);
8053 if (ioc_state) {
8054 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8055 __func__, ioc_state);
8056 _base_dump_reg_set(ioc);
8057 goto out;
8058 }
8059
8060 pci_cfg_access_unlock(dev: ioc->pdev);
8061 ioc_info(ioc, "diag reset: SUCCESS\n");
8062 return 0;
8063
8064 out:
8065 pci_cfg_access_unlock(dev: ioc->pdev);
8066 ioc_err(ioc, "diag reset: FAILED\n");
8067 mutex_unlock(lock: &ioc->hostdiag_unlock_mutex);
8068 return -EFAULT;
8069}
8070
8071/**
8072 * mpt3sas_base_make_ioc_ready - put controller in READY state
8073 * @ioc: per adapter object
8074 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8075 *
8076 * Return: 0 for success, non-zero for failure.
8077 */
8078int
8079mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
8080{
8081 u32 ioc_state;
8082 int rc;
8083 int count;
8084
8085 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8086
8087 if (ioc->pci_error_recovery)
8088 return 0;
8089
8090 ioc_state = mpt3sas_base_get_iocstate(ioc, cooked: 0);
8091 dhsprintk(ioc,
8092 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
8093 __func__, ioc_state));
8094
8095 /* if in RESET state, it should move to READY state shortly */
8096 count = 0;
8097 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
8098 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
8099 MPI2_IOC_STATE_READY) {
8100 if (count++ == 10) {
8101 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8102 __func__, ioc_state);
8103 return -EFAULT;
8104 }
8105 ssleep(seconds: 1);
8106 ioc_state = mpt3sas_base_get_iocstate(ioc, cooked: 0);
8107 }
8108 }
8109
8110 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
8111 return 0;
8112
8113 if (ioc_state & MPI2_DOORBELL_USED) {
8114 ioc_info(ioc, "unexpected doorbell active!\n");
8115 goto issue_diag_reset;
8116 }
8117
8118 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
8119 mpt3sas_print_fault_code(ioc, ioc_state &
8120 MPI2_DOORBELL_DATA_MASK);
8121 goto issue_diag_reset;
8122 }
8123
8124 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
8125 /*
8126 * if host reset is invoked while watch dog thread is waiting
8127 * for IOC state to be changed to Fault state then driver has
8128 * to wait here for CoreDump state to clear otherwise reset
8129 * will be issued to the FW and FW move the IOC state to
8130 * reset state without copying the FW logs to coredump region.
8131 */
8132 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
8133 mpt3sas_print_coredump_info(ioc, ioc_state &
8134 MPI2_DOORBELL_DATA_MASK);
8135 mpt3sas_base_wait_for_coredump_completion(ioc,
8136 caller: __func__);
8137 }
8138 goto issue_diag_reset;
8139 }
8140
8141 if (type == FORCE_BIG_HAMMER)
8142 goto issue_diag_reset;
8143
8144 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
8145 if (!(_base_send_ioc_reset(ioc,
8146 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, timeout: 15))) {
8147 return 0;
8148 }
8149
8150 issue_diag_reset:
8151 rc = _base_diag_reset(ioc);
8152 return rc;
8153}
8154
8155/**
8156 * _base_make_ioc_operational - put controller in OPERATIONAL state
8157 * @ioc: per adapter object
8158 *
8159 * Return: 0 for success, non-zero for failure.
8160 */
8161static int
8162_base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
8163{
8164 int r, i, index, rc;
8165 unsigned long flags;
8166 u32 reply_address;
8167 u16 smid;
8168 struct _tr_list *delayed_tr, *delayed_tr_next;
8169 struct _sc_list *delayed_sc, *delayed_sc_next;
8170 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
8171 u8 hide_flag;
8172 struct adapter_reply_queue *reply_q;
8173 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
8174
8175 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8176
8177 /* clean the delayed target reset list */
8178 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8179 &ioc->delayed_tr_list, list) {
8180 list_del(entry: &delayed_tr->list);
8181 kfree(objp: delayed_tr);
8182 }
8183
8184
8185 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8186 &ioc->delayed_tr_volume_list, list) {
8187 list_del(entry: &delayed_tr->list);
8188 kfree(objp: delayed_tr);
8189 }
8190
8191 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8192 &ioc->delayed_sc_list, list) {
8193 list_del(entry: &delayed_sc->list);
8194 kfree(objp: delayed_sc);
8195 }
8196
8197 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8198 &ioc->delayed_event_ack_list, list) {
8199 list_del(entry: &delayed_event_ack->list);
8200 kfree(objp: delayed_event_ack);
8201 }
8202
8203 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8204
8205 /* hi-priority queue */
8206 INIT_LIST_HEAD(list: &ioc->hpr_free_list);
8207 smid = ioc->hi_priority_smid;
8208 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8209 ioc->hpr_lookup[i].cb_idx = 0xFF;
8210 ioc->hpr_lookup[i].smid = smid;
8211 list_add_tail(new: &ioc->hpr_lookup[i].tracker_list,
8212 head: &ioc->hpr_free_list);
8213 }
8214
8215 /* internal queue */
8216 INIT_LIST_HEAD(list: &ioc->internal_free_list);
8217 smid = ioc->internal_smid;
8218 for (i = 0; i < ioc->internal_depth; i++, smid++) {
8219 ioc->internal_lookup[i].cb_idx = 0xFF;
8220 ioc->internal_lookup[i].smid = smid;
8221 list_add_tail(new: &ioc->internal_lookup[i].tracker_list,
8222 head: &ioc->internal_free_list);
8223 }
8224
8225 spin_unlock_irqrestore(lock: &ioc->scsi_lookup_lock, flags);
8226
8227 /* initialize Reply Free Queue */
8228 for (i = 0, reply_address = (u32)ioc->reply_dma ;
8229 i < ioc->reply_free_queue_depth ; i++, reply_address +=
8230 ioc->reply_sz) {
8231 ioc->reply_free[i] = cpu_to_le32(reply_address);
8232 if (ioc->is_mcpu_endpoint)
8233 _base_clone_reply_to_sys_mem(ioc,
8234 reply: reply_address, index: i);
8235 }
8236
8237 /* initialize reply queues */
8238 if (ioc->is_driver_loading)
8239 _base_assign_reply_queues(ioc);
8240
8241 /* initialize Reply Post Free Queue */
8242 index = 0;
8243 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8244 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8245 /*
8246 * If RDPQ is enabled, switch to the next allocation.
8247 * Otherwise advance within the contiguous region.
8248 */
8249 if (ioc->rdpq_array_enable) {
8250 reply_q->reply_post_free =
8251 ioc->reply_post[index++].reply_post_free;
8252 } else {
8253 reply_q->reply_post_free = reply_post_free_contig;
8254 reply_post_free_contig += ioc->reply_post_queue_depth;
8255 }
8256
8257 reply_q->reply_post_host_index = 0;
8258 for (i = 0; i < ioc->reply_post_queue_depth; i++)
8259 reply_q->reply_post_free[i].Words =
8260 cpu_to_le64(ULLONG_MAX);
8261 if (!_base_is_controller_msix_enabled(ioc))
8262 goto skip_init_reply_post_free_queue;
8263 }
8264 skip_init_reply_post_free_queue:
8265
8266 r = _base_send_ioc_init(ioc);
8267 if (r) {
8268 /*
8269 * No need to check IOC state for fault state & issue
8270 * diag reset during host reset. This check is need
8271 * only during driver load time.
8272 */
8273 if (!ioc->is_driver_loading)
8274 return r;
8275
8276 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8277 if (rc || (_base_send_ioc_init(ioc)))
8278 return r;
8279 }
8280
8281 /* initialize reply free host index */
8282 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8283 writel(val: ioc->reply_free_host_index, addr: &ioc->chip->ReplyFreeHostIndex);
8284
8285 /* initialize reply post host index */
8286 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8287 if (ioc->combined_reply_queue)
8288 writel(val: (reply_q->msix_index & 7)<<
8289 MPI2_RPHI_MSIX_INDEX_SHIFT,
8290 addr: ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8291 else
8292 writel(val: reply_q->msix_index <<
8293 MPI2_RPHI_MSIX_INDEX_SHIFT,
8294 addr: &ioc->chip->ReplyPostHostIndex);
8295
8296 if (!_base_is_controller_msix_enabled(ioc))
8297 goto skip_init_reply_post_host_index;
8298 }
8299
8300 skip_init_reply_post_host_index:
8301
8302 mpt3sas_base_unmask_interrupts(ioc);
8303
8304 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8305 r = _base_display_fwpkg_version(ioc);
8306 if (r)
8307 return r;
8308 }
8309
8310 r = _base_static_config_pages(ioc);
8311 if (r)
8312 return r;
8313
8314 r = _base_event_notification(ioc);
8315 if (r)
8316 return r;
8317
8318 if (!ioc->shost_recovery) {
8319
8320 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8321 == 0x80) {
8322 hide_flag = (u8) (
8323 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8324 MFG_PAGE10_HIDE_SSDS_MASK);
8325 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8326 ioc->mfg_pg10_hide_flag = hide_flag;
8327 }
8328
8329 ioc->wait_for_discovery_to_complete =
8330 _base_determine_wait_on_discovery(ioc);
8331
8332 return r; /* scan_start and scan_finished support */
8333 }
8334
8335 r = _base_send_port_enable(ioc);
8336 if (r)
8337 return r;
8338
8339 return r;
8340}
8341
8342/**
8343 * mpt3sas_base_free_resources - free resources controller resources
8344 * @ioc: per adapter object
8345 */
8346void
8347mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8348{
8349 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8350
8351 /* synchronizing freeing resource with pci_access_mutex lock */
8352 mutex_lock(&ioc->pci_access_mutex);
8353 if (ioc->chip_phys && ioc->chip) {
8354 mpt3sas_base_mask_interrupts(ioc);
8355 ioc->shost_recovery = 1;
8356 mpt3sas_base_make_ioc_ready(ioc, type: SOFT_RESET);
8357 ioc->shost_recovery = 0;
8358 }
8359
8360 mpt3sas_base_unmap_resources(ioc);
8361 mutex_unlock(lock: &ioc->pci_access_mutex);
8362 return;
8363}
8364
8365/**
8366 * mpt3sas_base_attach - attach controller instance
8367 * @ioc: per adapter object
8368 *
8369 * Return: 0 for success, non-zero for failure.
8370 */
8371int
8372mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8373{
8374 int r, i, rc;
8375 int cpu_id, last_cpu_id = 0;
8376
8377 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8378
8379 /* setup cpu_msix_table */
8380 ioc->cpu_count = num_online_cpus();
8381 for_each_online_cpu(cpu_id)
8382 last_cpu_id = cpu_id;
8383 ioc->cpu_msix_table_sz = last_cpu_id + 1;
8384 ioc->cpu_msix_table = kzalloc(size: ioc->cpu_msix_table_sz, GFP_KERNEL);
8385 ioc->reply_queue_count = 1;
8386 if (!ioc->cpu_msix_table) {
8387 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8388 r = -ENOMEM;
8389 goto out_free_resources;
8390 }
8391
8392 if (ioc->is_warpdrive) {
8393 ioc->reply_post_host_index = kcalloc(n: ioc->cpu_msix_table_sz,
8394 size: sizeof(resource_size_t *), GFP_KERNEL);
8395 if (!ioc->reply_post_host_index) {
8396 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8397 r = -ENOMEM;
8398 goto out_free_resources;
8399 }
8400 }
8401
8402 ioc->smp_affinity_enable = smp_affinity_enable;
8403
8404 ioc->rdpq_array_enable_assigned = 0;
8405 ioc->use_32bit_dma = false;
8406 ioc->dma_mask = 64;
8407 if (ioc->is_aero_ioc) {
8408 ioc->base_readl = &_base_readl_aero;
8409 ioc->base_readl_ext_retry = &_base_readl_ext_retry;
8410 } else {
8411 ioc->base_readl = &_base_readl;
8412 ioc->base_readl_ext_retry = &_base_readl;
8413 }
8414 r = mpt3sas_base_map_resources(ioc);
8415 if (r)
8416 goto out_free_resources;
8417
8418 pci_set_drvdata(pdev: ioc->pdev, data: ioc->shost);
8419 r = _base_get_ioc_facts(ioc);
8420 if (r) {
8421 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8422 if (rc || (_base_get_ioc_facts(ioc)))
8423 goto out_free_resources;
8424 }
8425
8426 switch (ioc->hba_mpi_version_belonged) {
8427 case MPI2_VERSION:
8428 ioc->build_sg_scmd = &_base_build_sg_scmd;
8429 ioc->build_sg = &_base_build_sg;
8430 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8431 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8432 break;
8433 case MPI25_VERSION:
8434 case MPI26_VERSION:
8435 /*
8436 * In SAS3.0,
8437 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8438 * Target Status - all require the IEEE formatted scatter gather
8439 * elements.
8440 */
8441 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8442 ioc->build_sg = &_base_build_sg_ieee;
8443 ioc->build_nvme_prp = &_base_build_nvme_prp;
8444 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8445 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8446 if (ioc->high_iops_queues)
8447 ioc->get_msix_index_for_smlio =
8448 &_base_get_high_iops_msix_index;
8449 else
8450 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8451 break;
8452 }
8453 if (ioc->atomic_desc_capable) {
8454 ioc->put_smid_default = &_base_put_smid_default_atomic;
8455 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8456 ioc->put_smid_fast_path =
8457 &_base_put_smid_fast_path_atomic;
8458 ioc->put_smid_hi_priority =
8459 &_base_put_smid_hi_priority_atomic;
8460 } else {
8461 ioc->put_smid_default = &_base_put_smid_default;
8462 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8463 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8464 if (ioc->is_mcpu_endpoint)
8465 ioc->put_smid_scsi_io =
8466 &_base_put_smid_mpi_ep_scsi_io;
8467 else
8468 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8469 }
8470 /*
8471 * These function pointers for other requests that don't
8472 * the require IEEE scatter gather elements.
8473 *
8474 * For example Configuration Pages and SAS IOUNIT Control don't.
8475 */
8476 ioc->build_sg_mpi = &_base_build_sg;
8477 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8478
8479 r = mpt3sas_base_make_ioc_ready(ioc, type: SOFT_RESET);
8480 if (r)
8481 goto out_free_resources;
8482
8483 ioc->pfacts = kcalloc(n: ioc->facts.NumberOfPorts,
8484 size: sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8485 if (!ioc->pfacts) {
8486 r = -ENOMEM;
8487 goto out_free_resources;
8488 }
8489
8490 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8491 r = _base_get_port_facts(ioc, port: i);
8492 if (r) {
8493 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8494 if (rc || (_base_get_port_facts(ioc, port: i)))
8495 goto out_free_resources;
8496 }
8497 }
8498
8499 r = _base_allocate_memory_pools(ioc);
8500 if (r)
8501 goto out_free_resources;
8502
8503 if (irqpoll_weight > 0)
8504 ioc->thresh_hold = irqpoll_weight;
8505 else
8506 ioc->thresh_hold = ioc->hba_queue_depth/4;
8507
8508 _base_init_irqpolls(ioc);
8509 init_waitqueue_head(&ioc->reset_wq);
8510
8511 /* allocate memory pd handle bitmask list */
8512 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8513 if (ioc->facts.MaxDevHandle % 8)
8514 ioc->pd_handles_sz++;
8515 ioc->pd_handles = kzalloc(size: ioc->pd_handles_sz,
8516 GFP_KERNEL);
8517 if (!ioc->pd_handles) {
8518 r = -ENOMEM;
8519 goto out_free_resources;
8520 }
8521 ioc->blocking_handles = kzalloc(size: ioc->pd_handles_sz,
8522 GFP_KERNEL);
8523 if (!ioc->blocking_handles) {
8524 r = -ENOMEM;
8525 goto out_free_resources;
8526 }
8527
8528 /* allocate memory for pending OS device add list */
8529 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8530 if (ioc->facts.MaxDevHandle % 8)
8531 ioc->pend_os_device_add_sz++;
8532 ioc->pend_os_device_add = kzalloc(size: ioc->pend_os_device_add_sz,
8533 GFP_KERNEL);
8534 if (!ioc->pend_os_device_add) {
8535 r = -ENOMEM;
8536 goto out_free_resources;
8537 }
8538
8539 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8540 ioc->device_remove_in_progress =
8541 kzalloc(size: ioc->device_remove_in_progress_sz, GFP_KERNEL);
8542 if (!ioc->device_remove_in_progress) {
8543 r = -ENOMEM;
8544 goto out_free_resources;
8545 }
8546
8547 ioc->fwfault_debug = mpt3sas_fwfault_debug;
8548
8549 /* base internal command bits */
8550 mutex_init(&ioc->base_cmds.mutex);
8551 ioc->base_cmds.reply = kzalloc(size: ioc->reply_sz, GFP_KERNEL);
8552 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8553
8554 /* port_enable command bits */
8555 ioc->port_enable_cmds.reply = kzalloc(size: ioc->reply_sz, GFP_KERNEL);
8556 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8557
8558 /* transport internal command bits */
8559 ioc->transport_cmds.reply = kzalloc(size: ioc->reply_sz, GFP_KERNEL);
8560 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8561 mutex_init(&ioc->transport_cmds.mutex);
8562
8563 /* scsih internal command bits */
8564 ioc->scsih_cmds.reply = kzalloc(size: ioc->reply_sz, GFP_KERNEL);
8565 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8566 mutex_init(&ioc->scsih_cmds.mutex);
8567
8568 /* task management internal command bits */
8569 ioc->tm_cmds.reply = kzalloc(size: ioc->reply_sz, GFP_KERNEL);
8570 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8571 mutex_init(&ioc->tm_cmds.mutex);
8572
8573 /* config page internal command bits */
8574 ioc->config_cmds.reply = kzalloc(size: ioc->reply_sz, GFP_KERNEL);
8575 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8576 mutex_init(&ioc->config_cmds.mutex);
8577
8578 /* ctl module internal command bits */
8579 ioc->ctl_cmds.reply = kzalloc(size: ioc->reply_sz, GFP_KERNEL);
8580 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8581 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8582 mutex_init(&ioc->ctl_cmds.mutex);
8583
8584 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8585 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8586 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8587 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8588 r = -ENOMEM;
8589 goto out_free_resources;
8590 }
8591
8592 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8593 ioc->event_masks[i] = -1;
8594
8595 /* here we enable the events we care about */
8596 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8597 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8598 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8599 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8600 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8601 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8602 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8603 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8604 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8605 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8606 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8607 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8608 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8609 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8610 if (ioc->is_gen35_ioc) {
8611 _base_unmask_events(ioc,
8612 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8613 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8614 _base_unmask_events(ioc,
8615 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8616 }
8617 }
8618 r = _base_make_ioc_operational(ioc);
8619 if (r == -EAGAIN) {
8620 r = _base_make_ioc_operational(ioc);
8621 if (r)
8622 goto out_free_resources;
8623 }
8624
8625 /*
8626 * Copy current copy of IOCFacts in prev_fw_facts
8627 * and it will be used during online firmware upgrade.
8628 */
8629 memcpy(&ioc->prev_fw_facts, &ioc->facts,
8630 sizeof(struct mpt3sas_facts));
8631
8632 ioc->non_operational_loop = 0;
8633 ioc->ioc_coredump_loop = 0;
8634 ioc->got_task_abort_from_ioctl = 0;
8635 return 0;
8636
8637 out_free_resources:
8638
8639 ioc->remove_host = 1;
8640
8641 mpt3sas_base_free_resources(ioc);
8642 _base_release_memory_pools(ioc);
8643 pci_set_drvdata(pdev: ioc->pdev, NULL);
8644 kfree(objp: ioc->cpu_msix_table);
8645 if (ioc->is_warpdrive)
8646 kfree(objp: ioc->reply_post_host_index);
8647 kfree(objp: ioc->pd_handles);
8648 kfree(objp: ioc->blocking_handles);
8649 kfree(objp: ioc->device_remove_in_progress);
8650 kfree(objp: ioc->pend_os_device_add);
8651 kfree(objp: ioc->tm_cmds.reply);
8652 kfree(objp: ioc->transport_cmds.reply);
8653 kfree(objp: ioc->scsih_cmds.reply);
8654 kfree(objp: ioc->config_cmds.reply);
8655 kfree(objp: ioc->base_cmds.reply);
8656 kfree(objp: ioc->port_enable_cmds.reply);
8657 kfree(objp: ioc->ctl_cmds.reply);
8658 kfree(objp: ioc->ctl_cmds.sense);
8659 kfree(objp: ioc->pfacts);
8660 ioc->ctl_cmds.reply = NULL;
8661 ioc->base_cmds.reply = NULL;
8662 ioc->tm_cmds.reply = NULL;
8663 ioc->scsih_cmds.reply = NULL;
8664 ioc->transport_cmds.reply = NULL;
8665 ioc->config_cmds.reply = NULL;
8666 ioc->pfacts = NULL;
8667 return r;
8668}
8669
8670
8671/**
8672 * mpt3sas_base_detach - remove controller instance
8673 * @ioc: per adapter object
8674 */
8675void
8676mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8677{
8678 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8679
8680 mpt3sas_base_stop_watchdog(ioc);
8681 mpt3sas_base_free_resources(ioc);
8682 _base_release_memory_pools(ioc);
8683 mpt3sas_free_enclosure_list(ioc);
8684 pci_set_drvdata(pdev: ioc->pdev, NULL);
8685 kfree(objp: ioc->cpu_msix_table);
8686 if (ioc->is_warpdrive)
8687 kfree(objp: ioc->reply_post_host_index);
8688 kfree(objp: ioc->pd_handles);
8689 kfree(objp: ioc->blocking_handles);
8690 kfree(objp: ioc->device_remove_in_progress);
8691 kfree(objp: ioc->pend_os_device_add);
8692 kfree(objp: ioc->pfacts);
8693 kfree(objp: ioc->ctl_cmds.reply);
8694 kfree(objp: ioc->ctl_cmds.sense);
8695 kfree(objp: ioc->base_cmds.reply);
8696 kfree(objp: ioc->port_enable_cmds.reply);
8697 kfree(objp: ioc->tm_cmds.reply);
8698 kfree(objp: ioc->transport_cmds.reply);
8699 kfree(objp: ioc->scsih_cmds.reply);
8700 kfree(objp: ioc->config_cmds.reply);
8701}
8702
8703/**
8704 * _base_pre_reset_handler - pre reset handler
8705 * @ioc: per adapter object
8706 */
8707static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8708{
8709 mpt3sas_scsih_pre_reset_handler(ioc);
8710 mpt3sas_ctl_pre_reset_handler(ioc);
8711 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8712}
8713
8714/**
8715 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8716 * @ioc: per adapter object
8717 */
8718static void
8719_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8720{
8721 dtmprintk(ioc,
8722 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8723 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8724 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8725 mpt3sas_base_free_smid(ioc, smid: ioc->transport_cmds.smid);
8726 complete(&ioc->transport_cmds.done);
8727 }
8728 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8729 ioc->base_cmds.status |= MPT3_CMD_RESET;
8730 mpt3sas_base_free_smid(ioc, smid: ioc->base_cmds.smid);
8731 complete(&ioc->base_cmds.done);
8732 }
8733 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8734 ioc->port_enable_failed = 1;
8735 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8736 mpt3sas_base_free_smid(ioc, smid: ioc->port_enable_cmds.smid);
8737 if (ioc->is_driver_loading) {
8738 ioc->start_scan_failed =
8739 MPI2_IOCSTATUS_INTERNAL_ERROR;
8740 ioc->start_scan = 0;
8741 } else {
8742 complete(&ioc->port_enable_cmds.done);
8743 }
8744 }
8745 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8746 ioc->config_cmds.status |= MPT3_CMD_RESET;
8747 mpt3sas_base_free_smid(ioc, smid: ioc->config_cmds.smid);
8748 ioc->config_cmds.smid = USHRT_MAX;
8749 complete(&ioc->config_cmds.done);
8750 }
8751}
8752
8753/**
8754 * _base_clear_outstanding_commands - clear all outstanding commands
8755 * @ioc: per adapter object
8756 */
8757static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8758{
8759 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8760 mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8761 _base_clear_outstanding_mpt_commands(ioc);
8762}
8763
8764/**
8765 * _base_reset_done_handler - reset done handler
8766 * @ioc: per adapter object
8767 */
8768static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8769{
8770 mpt3sas_scsih_reset_done_handler(ioc);
8771 mpt3sas_ctl_reset_done_handler(ioc);
8772 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8773}
8774
8775/**
8776 * mpt3sas_wait_for_commands_to_complete - reset controller
8777 * @ioc: Pointer to MPT_ADAPTER structure
8778 *
8779 * This function is waiting 10s for all pending commands to complete
8780 * prior to putting controller in reset.
8781 */
8782void
8783mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8784{
8785 u32 ioc_state;
8786
8787 ioc->pending_io_count = 0;
8788
8789 ioc_state = mpt3sas_base_get_iocstate(ioc, cooked: 0);
8790 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8791 return;
8792
8793 /* pending command count */
8794 ioc->pending_io_count = scsi_host_busy(shost: ioc->shost);
8795
8796 if (!ioc->pending_io_count)
8797 return;
8798
8799 /* wait for pending commands to complete */
8800 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8801}
8802
8803/**
8804 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8805 * attributes during online firmware upgrade and update the corresponding
8806 * IOC variables accordingly.
8807 *
8808 * @ioc: Pointer to MPT_ADAPTER structure
8809 */
8810static int
8811_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8812{
8813 u16 pd_handles_sz;
8814 void *pd_handles = NULL, *blocking_handles = NULL;
8815 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8816 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8817
8818 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8819 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8820 if (ioc->facts.MaxDevHandle % 8)
8821 pd_handles_sz++;
8822
8823 pd_handles = krealloc(objp: ioc->pd_handles, new_size: pd_handles_sz,
8824 GFP_KERNEL);
8825 if (!pd_handles) {
8826 ioc_info(ioc,
8827 "Unable to allocate the memory for pd_handles of sz: %d\n",
8828 pd_handles_sz);
8829 return -ENOMEM;
8830 }
8831 memset(pd_handles + ioc->pd_handles_sz, 0,
8832 (pd_handles_sz - ioc->pd_handles_sz));
8833 ioc->pd_handles = pd_handles;
8834
8835 blocking_handles = krealloc(objp: ioc->blocking_handles,
8836 new_size: pd_handles_sz, GFP_KERNEL);
8837 if (!blocking_handles) {
8838 ioc_info(ioc,
8839 "Unable to allocate the memory for "
8840 "blocking_handles of sz: %d\n",
8841 pd_handles_sz);
8842 return -ENOMEM;
8843 }
8844 memset(blocking_handles + ioc->pd_handles_sz, 0,
8845 (pd_handles_sz - ioc->pd_handles_sz));
8846 ioc->blocking_handles = blocking_handles;
8847 ioc->pd_handles_sz = pd_handles_sz;
8848
8849 pend_os_device_add = krealloc(objp: ioc->pend_os_device_add,
8850 new_size: pd_handles_sz, GFP_KERNEL);
8851 if (!pend_os_device_add) {
8852 ioc_info(ioc,
8853 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8854 pd_handles_sz);
8855 return -ENOMEM;
8856 }
8857 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8858 (pd_handles_sz - ioc->pend_os_device_add_sz));
8859 ioc->pend_os_device_add = pend_os_device_add;
8860 ioc->pend_os_device_add_sz = pd_handles_sz;
8861
8862 device_remove_in_progress = krealloc(
8863 objp: ioc->device_remove_in_progress, new_size: pd_handles_sz, GFP_KERNEL);
8864 if (!device_remove_in_progress) {
8865 ioc_info(ioc,
8866 "Unable to allocate the memory for "
8867 "device_remove_in_progress of sz: %d\n "
8868 , pd_handles_sz);
8869 return -ENOMEM;
8870 }
8871 memset(device_remove_in_progress +
8872 ioc->device_remove_in_progress_sz, 0,
8873 (pd_handles_sz - ioc->device_remove_in_progress_sz));
8874 ioc->device_remove_in_progress = device_remove_in_progress;
8875 ioc->device_remove_in_progress_sz = pd_handles_sz;
8876 }
8877
8878 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8879 return 0;
8880}
8881
8882/**
8883 * mpt3sas_base_hard_reset_handler - reset controller
8884 * @ioc: Pointer to MPT_ADAPTER structure
8885 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8886 *
8887 * Return: 0 for success, non-zero for failure.
8888 */
8889int
8890mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8891 enum reset_type type)
8892{
8893 int r;
8894 unsigned long flags;
8895 u32 ioc_state;
8896 u8 is_fault = 0, is_trigger = 0;
8897
8898 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8899
8900 if (ioc->pci_error_recovery) {
8901 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8902 r = 0;
8903 goto out_unlocked;
8904 }
8905
8906 if (mpt3sas_fwfault_debug)
8907 mpt3sas_halt_firmware(ioc);
8908
8909 /* wait for an active reset in progress to complete */
8910 mutex_lock(&ioc->reset_in_progress_mutex);
8911
8912 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8913 ioc->shost_recovery = 1;
8914 spin_unlock_irqrestore(lock: &ioc->ioc_reset_in_progress_lock, flags);
8915
8916 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8917 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8918 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8919 MPT3_DIAG_BUFFER_IS_RELEASED))) {
8920 is_trigger = 1;
8921 ioc_state = mpt3sas_base_get_iocstate(ioc, cooked: 0);
8922 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8923 (ioc_state & MPI2_IOC_STATE_MASK) ==
8924 MPI2_IOC_STATE_COREDUMP) {
8925 is_fault = 1;
8926 ioc->htb_rel.trigger_info_dwords[1] =
8927 (ioc_state & MPI2_DOORBELL_DATA_MASK);
8928 }
8929 }
8930 _base_pre_reset_handler(ioc);
8931 mpt3sas_wait_for_commands_to_complete(ioc);
8932 mpt3sas_base_mask_interrupts(ioc);
8933 mpt3sas_base_pause_mq_polling(ioc);
8934 r = mpt3sas_base_make_ioc_ready(ioc, type);
8935 if (r)
8936 goto out;
8937 _base_clear_outstanding_commands(ioc);
8938
8939 /* If this hard reset is called while port enable is active, then
8940 * there is no reason to call make_ioc_operational
8941 */
8942 if (ioc->is_driver_loading && ioc->port_enable_failed) {
8943 ioc->remove_host = 1;
8944 r = -EFAULT;
8945 goto out;
8946 }
8947 r = _base_get_ioc_facts(ioc);
8948 if (r)
8949 goto out;
8950
8951 r = _base_check_ioc_facts_changes(ioc);
8952 if (r) {
8953 ioc_info(ioc,
8954 "Some of the parameters got changed in this new firmware"
8955 " image and it requires system reboot\n");
8956 goto out;
8957 }
8958 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8959 panic(fmt: "%s: Issue occurred with flashing controller firmware."
8960 "Please reboot the system and ensure that the correct"
8961 " firmware version is running\n", ioc->name);
8962
8963 r = _base_make_ioc_operational(ioc);
8964 if (!r)
8965 _base_reset_done_handler(ioc);
8966
8967 out:
8968 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8969
8970 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8971 ioc->shost_recovery = 0;
8972 spin_unlock_irqrestore(lock: &ioc->ioc_reset_in_progress_lock, flags);
8973 ioc->ioc_reset_count++;
8974 mutex_unlock(lock: &ioc->reset_in_progress_mutex);
8975 mpt3sas_base_resume_mq_polling(ioc);
8976
8977 out_unlocked:
8978 if ((r == 0) && is_trigger) {
8979 if (is_fault)
8980 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8981 else
8982 mpt3sas_trigger_master(ioc,
8983 MASTER_TRIGGER_ADAPTER_RESET);
8984 }
8985 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8986 return r;
8987}
8988

source code of linux/drivers/scsi/mpt3sas/mpt3sas_base.c