1// SPDX-License-Identifier: GPL-2.0-only
2//
3// Driver for Cadence QSPI Controller
4//
5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9#include <linux/clk.h>
10#include <linux/completion.h>
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/err.h>
15#include <linux/errno.h>
16#include <linux/firmware/xlnx-zynqmp.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/iopoll.h>
20#include <linux/jiffies.h>
21#include <linux/kernel.h>
22#include <linux/log2.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/reset.h>
28#include <linux/sched.h>
29#include <linux/spi/spi.h>
30#include <linux/spi/spi-mem.h>
31#include <linux/timer.h>
32
33#define CQSPI_NAME "cadence-qspi"
34#define CQSPI_MAX_CHIPSELECT 4
35
36static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
37
38/* Quirks */
39#define CQSPI_NEEDS_WR_DELAY BIT(0)
40#define CQSPI_DISABLE_DAC_MODE BIT(1)
41#define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2)
42#define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3)
43#define CQSPI_SLOW_SRAM BIT(4)
44#define CQSPI_NEEDS_APB_AHB_HAZARD_WAR BIT(5)
45
46/* Capabilities */
47#define CQSPI_SUPPORTS_OCTAL BIT(0)
48
49#define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
50
51enum {
52 CLK_QSPI_APB = 0,
53 CLK_QSPI_AHB,
54 CLK_QSPI_NUM,
55};
56
57struct cqspi_st;
58
59struct cqspi_flash_pdata {
60 struct cqspi_st *cqspi;
61 u32 clk_rate;
62 u32 read_delay;
63 u32 tshsl_ns;
64 u32 tsd2d_ns;
65 u32 tchsh_ns;
66 u32 tslch_ns;
67 u8 cs;
68};
69
70struct cqspi_st {
71 struct platform_device *pdev;
72 struct spi_controller *host;
73 struct clk *clk;
74 struct clk *clks[CLK_QSPI_NUM];
75 unsigned int sclk;
76
77 void __iomem *iobase;
78 void __iomem *ahb_base;
79 resource_size_t ahb_size;
80 struct completion transfer_complete;
81
82 struct dma_chan *rx_chan;
83 struct completion rx_dma_complete;
84 dma_addr_t mmap_phys_base;
85
86 int current_cs;
87 unsigned long master_ref_clk_hz;
88 bool is_decoded_cs;
89 u32 fifo_depth;
90 u32 fifo_width;
91 u32 num_chipselect;
92 bool rclk_en;
93 u32 trigger_address;
94 u32 wr_delay;
95 bool use_direct_mode;
96 bool use_direct_mode_wr;
97 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
98 bool use_dma_read;
99 u32 pd_dev_id;
100 bool wr_completion;
101 bool slow_sram;
102 bool apb_ahb_hazard;
103
104 bool is_jh7110; /* Flag for StarFive JH7110 SoC */
105};
106
107struct cqspi_driver_platdata {
108 u32 hwcaps_mask;
109 u8 quirks;
110 int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
111 u_char *rxbuf, loff_t from_addr, size_t n_rx);
112 u32 (*get_dma_status)(struct cqspi_st *cqspi);
113 int (*jh7110_clk_init)(struct platform_device *pdev,
114 struct cqspi_st *cqspi);
115};
116
117/* Operation timeout value */
118#define CQSPI_TIMEOUT_MS 500
119#define CQSPI_READ_TIMEOUT_MS 10
120
121/* Runtime_pm autosuspend delay */
122#define CQSPI_AUTOSUSPEND_TIMEOUT 2000
123
124#define CQSPI_DUMMY_CLKS_PER_BYTE 8
125#define CQSPI_DUMMY_BYTES_MAX 4
126#define CQSPI_DUMMY_CLKS_MAX 31
127
128#define CQSPI_STIG_DATA_LEN_MAX 8
129
130/* Register map */
131#define CQSPI_REG_CONFIG 0x00
132#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
133#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
134#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
135#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
136#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
137#define CQSPI_REG_CONFIG_BAUD_LSB 19
138#define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
139#define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
140#define CQSPI_REG_CONFIG_IDLE_LSB 31
141#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
142#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
143
144#define CQSPI_REG_RD_INSTR 0x04
145#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
146#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
147#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
148#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
149#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
150#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
151#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
152#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
153#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
154#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
155
156#define CQSPI_REG_WR_INSTR 0x08
157#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
158#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
159#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
160
161#define CQSPI_REG_DELAY 0x0C
162#define CQSPI_REG_DELAY_TSLCH_LSB 0
163#define CQSPI_REG_DELAY_TCHSH_LSB 8
164#define CQSPI_REG_DELAY_TSD2D_LSB 16
165#define CQSPI_REG_DELAY_TSHSL_LSB 24
166#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
167#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
168#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
169#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
170
171#define CQSPI_REG_READCAPTURE 0x10
172#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
173#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
174#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
175
176#define CQSPI_REG_SIZE 0x14
177#define CQSPI_REG_SIZE_ADDRESS_LSB 0
178#define CQSPI_REG_SIZE_PAGE_LSB 4
179#define CQSPI_REG_SIZE_BLOCK_LSB 16
180#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
181#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
182#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
183
184#define CQSPI_REG_SRAMPARTITION 0x18
185#define CQSPI_REG_INDIRECTTRIGGER 0x1C
186
187#define CQSPI_REG_DMA 0x20
188#define CQSPI_REG_DMA_SINGLE_LSB 0
189#define CQSPI_REG_DMA_BURST_LSB 8
190#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
191#define CQSPI_REG_DMA_BURST_MASK 0xFF
192
193#define CQSPI_REG_REMAP 0x24
194#define CQSPI_REG_MODE_BIT 0x28
195
196#define CQSPI_REG_SDRAMLEVEL 0x2C
197#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
198#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
199#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
200#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
201
202#define CQSPI_REG_WR_COMPLETION_CTRL 0x38
203#define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
204
205#define CQSPI_REG_IRQSTATUS 0x40
206#define CQSPI_REG_IRQMASK 0x44
207
208#define CQSPI_REG_INDIRECTRD 0x60
209#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
210#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
211#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
212
213#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
214#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
215#define CQSPI_REG_INDIRECTRDBYTES 0x6C
216
217#define CQSPI_REG_CMDCTRL 0x90
218#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
219#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
220#define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
221#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
222#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
223#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
224#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
225#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
226#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
227#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
228#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
229#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
230#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
231#define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
232
233#define CQSPI_REG_INDIRECTWR 0x70
234#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
235#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
236#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
237
238#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
239#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
240#define CQSPI_REG_INDIRECTWRBYTES 0x7C
241
242#define CQSPI_REG_INDTRIG_ADDRRANGE 0x80
243
244#define CQSPI_REG_CMDADDRESS 0x94
245#define CQSPI_REG_CMDREADDATALOWER 0xA0
246#define CQSPI_REG_CMDREADDATAUPPER 0xA4
247#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
248#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
249
250#define CQSPI_REG_POLLING_STATUS 0xB0
251#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
252
253#define CQSPI_REG_OP_EXT_LOWER 0xE0
254#define CQSPI_REG_OP_EXT_READ_LSB 24
255#define CQSPI_REG_OP_EXT_WRITE_LSB 16
256#define CQSPI_REG_OP_EXT_STIG_LSB 0
257
258#define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000
259
260#define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800
261#define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804
262
263#define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C
264
265#define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814
266#define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818
267#define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C
268#define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1)
269
270#define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828
271
272#define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00
273#define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6
274
275/* Interrupt status bits */
276#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
277#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
278#define CQSPI_REG_IRQ_IND_COMP BIT(2)
279#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
280#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
281#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
282#define CQSPI_REG_IRQ_WATERMARK BIT(6)
283#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
284
285#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
286 CQSPI_REG_IRQ_IND_SRAM_FULL | \
287 CQSPI_REG_IRQ_IND_COMP)
288
289#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
290 CQSPI_REG_IRQ_WATERMARK | \
291 CQSPI_REG_IRQ_UNDERFLOW)
292
293#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
294#define CQSPI_DMA_UNALIGN 0x3
295
296#define CQSPI_REG_VERSAL_DMA_VAL 0x602
297
298static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
299{
300 u32 val;
301
302 return readl_relaxed_poll_timeout(reg, val,
303 (((clr ? ~val : val) & mask) == mask),
304 10, CQSPI_TIMEOUT_MS * 1000);
305}
306
307static bool cqspi_is_idle(struct cqspi_st *cqspi)
308{
309 u32 reg = readl(addr: cqspi->iobase + CQSPI_REG_CONFIG);
310
311 return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
312}
313
314static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
315{
316 u32 reg = readl(addr: cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
317
318 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
319 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
320}
321
322static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
323{
324 u32 dma_status;
325
326 dma_status = readl(addr: cqspi->iobase +
327 CQSPI_REG_VERSAL_DMA_DST_I_STS);
328 writel(val: dma_status, addr: cqspi->iobase +
329 CQSPI_REG_VERSAL_DMA_DST_I_STS);
330
331 return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
332}
333
334static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
335{
336 struct cqspi_st *cqspi = dev;
337 unsigned int irq_status;
338 struct device *device = &cqspi->pdev->dev;
339 const struct cqspi_driver_platdata *ddata;
340
341 ddata = of_device_get_match_data(dev: device);
342
343 /* Read interrupt status */
344 irq_status = readl(addr: cqspi->iobase + CQSPI_REG_IRQSTATUS);
345
346 /* Clear interrupt */
347 writel(val: irq_status, addr: cqspi->iobase + CQSPI_REG_IRQSTATUS);
348
349 if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
350 if (ddata->get_dma_status(cqspi)) {
351 complete(&cqspi->transfer_complete);
352 return IRQ_HANDLED;
353 }
354 }
355
356 else if (!cqspi->slow_sram)
357 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
358 else
359 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
360
361 if (irq_status)
362 complete(&cqspi->transfer_complete);
363
364 return IRQ_HANDLED;
365}
366
367static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
368{
369 u32 rdreg = 0;
370
371 rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
372 rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
373 rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
374
375 return rdreg;
376}
377
378static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
379{
380 unsigned int dummy_clk;
381
382 if (!op->dummy.nbytes)
383 return 0;
384
385 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
386 if (op->cmd.dtr)
387 dummy_clk /= 2;
388
389 return dummy_clk;
390}
391
392static int cqspi_wait_idle(struct cqspi_st *cqspi)
393{
394 const unsigned int poll_idle_retry = 3;
395 unsigned int count = 0;
396 unsigned long timeout;
397
398 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
399 while (1) {
400 /*
401 * Read few times in succession to ensure the controller
402 * is indeed idle, that is, the bit does not transition
403 * low again.
404 */
405 if (cqspi_is_idle(cqspi))
406 count++;
407 else
408 count = 0;
409
410 if (count >= poll_idle_retry)
411 return 0;
412
413 if (time_after(jiffies, timeout)) {
414 /* Timeout, in busy mode. */
415 dev_err(&cqspi->pdev->dev,
416 "QSPI is still busy after %dms timeout.\n",
417 CQSPI_TIMEOUT_MS);
418 return -ETIMEDOUT;
419 }
420
421 cpu_relax();
422 }
423}
424
425static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
426{
427 void __iomem *reg_base = cqspi->iobase;
428 int ret;
429
430 /* Write the CMDCTRL without start execution. */
431 writel(val: reg, addr: reg_base + CQSPI_REG_CMDCTRL);
432 /* Start execute */
433 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
434 writel(val: reg, addr: reg_base + CQSPI_REG_CMDCTRL);
435
436 /* Polling for completion. */
437 ret = cqspi_wait_for_bit(reg: reg_base + CQSPI_REG_CMDCTRL,
438 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, clr: 1);
439 if (ret) {
440 dev_err(&cqspi->pdev->dev,
441 "Flash command execution timed out.\n");
442 return ret;
443 }
444
445 /* Polling QSPI idle status. */
446 return cqspi_wait_idle(cqspi);
447}
448
449static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
450 const struct spi_mem_op *op,
451 unsigned int shift)
452{
453 struct cqspi_st *cqspi = f_pdata->cqspi;
454 void __iomem *reg_base = cqspi->iobase;
455 unsigned int reg;
456 u8 ext;
457
458 if (op->cmd.nbytes != 2)
459 return -EINVAL;
460
461 /* Opcode extension is the LSB. */
462 ext = op->cmd.opcode & 0xff;
463
464 reg = readl(addr: reg_base + CQSPI_REG_OP_EXT_LOWER);
465 reg &= ~(0xff << shift);
466 reg |= ext << shift;
467 writel(val: reg, addr: reg_base + CQSPI_REG_OP_EXT_LOWER);
468
469 return 0;
470}
471
472static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
473 const struct spi_mem_op *op, unsigned int shift)
474{
475 struct cqspi_st *cqspi = f_pdata->cqspi;
476 void __iomem *reg_base = cqspi->iobase;
477 unsigned int reg;
478 int ret;
479
480 reg = readl(addr: reg_base + CQSPI_REG_CONFIG);
481
482 /*
483 * We enable dual byte opcode here. The callers have to set up the
484 * extension opcode based on which type of operation it is.
485 */
486 if (op->cmd.dtr) {
487 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
488 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
489
490 /* Set up command opcode extension. */
491 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
492 if (ret)
493 return ret;
494 } else {
495 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
496 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
497 }
498
499 writel(val: reg, addr: reg_base + CQSPI_REG_CONFIG);
500
501 return cqspi_wait_idle(cqspi);
502}
503
504static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
505 const struct spi_mem_op *op)
506{
507 struct cqspi_st *cqspi = f_pdata->cqspi;
508 void __iomem *reg_base = cqspi->iobase;
509 u8 *rxbuf = op->data.buf.in;
510 u8 opcode;
511 size_t n_rx = op->data.nbytes;
512 unsigned int rdreg;
513 unsigned int reg;
514 unsigned int dummy_clk;
515 size_t read_len;
516 int status;
517
518 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
519 if (status)
520 return status;
521
522 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
523 dev_err(&cqspi->pdev->dev,
524 "Invalid input argument, len %zu rxbuf 0x%p\n",
525 n_rx, rxbuf);
526 return -EINVAL;
527 }
528
529 if (op->cmd.dtr)
530 opcode = op->cmd.opcode >> 8;
531 else
532 opcode = op->cmd.opcode;
533
534 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
535
536 rdreg = cqspi_calc_rdreg(op);
537 writel(val: rdreg, addr: reg_base + CQSPI_REG_RD_INSTR);
538
539 dummy_clk = cqspi_calc_dummy(op);
540 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
541 return -EOPNOTSUPP;
542
543 if (dummy_clk)
544 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
545 << CQSPI_REG_CMDCTRL_DUMMY_LSB;
546
547 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
548
549 /* 0 means 1 byte. */
550 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
551 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
552
553 /* setup ADDR BIT field */
554 if (op->addr.nbytes) {
555 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
556 reg |= ((op->addr.nbytes - 1) &
557 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
558 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
559
560 writel(val: op->addr.val, addr: reg_base + CQSPI_REG_CMDADDRESS);
561 }
562
563 status = cqspi_exec_flash_cmd(cqspi, reg);
564 if (status)
565 return status;
566
567 reg = readl(addr: reg_base + CQSPI_REG_CMDREADDATALOWER);
568
569 /* Put the read value into rx_buf */
570 read_len = (n_rx > 4) ? 4 : n_rx;
571 memcpy(rxbuf, &reg, read_len);
572 rxbuf += read_len;
573
574 if (n_rx > 4) {
575 reg = readl(addr: reg_base + CQSPI_REG_CMDREADDATAUPPER);
576
577 read_len = n_rx - read_len;
578 memcpy(rxbuf, &reg, read_len);
579 }
580
581 /* Reset CMD_CTRL Reg once command read completes */
582 writel(val: 0, addr: reg_base + CQSPI_REG_CMDCTRL);
583
584 return 0;
585}
586
587static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
588 const struct spi_mem_op *op)
589{
590 struct cqspi_st *cqspi = f_pdata->cqspi;
591 void __iomem *reg_base = cqspi->iobase;
592 u8 opcode;
593 const u8 *txbuf = op->data.buf.out;
594 size_t n_tx = op->data.nbytes;
595 unsigned int reg;
596 unsigned int data;
597 size_t write_len;
598 int ret;
599
600 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
601 if (ret)
602 return ret;
603
604 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
605 dev_err(&cqspi->pdev->dev,
606 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
607 n_tx, txbuf);
608 return -EINVAL;
609 }
610
611 reg = cqspi_calc_rdreg(op);
612 writel(val: reg, addr: reg_base + CQSPI_REG_RD_INSTR);
613
614 if (op->cmd.dtr)
615 opcode = op->cmd.opcode >> 8;
616 else
617 opcode = op->cmd.opcode;
618
619 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
620
621 if (op->addr.nbytes) {
622 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
623 reg |= ((op->addr.nbytes - 1) &
624 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
625 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
626
627 writel(val: op->addr.val, addr: reg_base + CQSPI_REG_CMDADDRESS);
628 }
629
630 if (n_tx) {
631 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
632 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
633 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
634 data = 0;
635 write_len = (n_tx > 4) ? 4 : n_tx;
636 memcpy(&data, txbuf, write_len);
637 txbuf += write_len;
638 writel(val: data, addr: reg_base + CQSPI_REG_CMDWRITEDATALOWER);
639
640 if (n_tx > 4) {
641 data = 0;
642 write_len = n_tx - 4;
643 memcpy(&data, txbuf, write_len);
644 writel(val: data, addr: reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
645 }
646 }
647
648 ret = cqspi_exec_flash_cmd(cqspi, reg);
649
650 /* Reset CMD_CTRL Reg once command write completes */
651 writel(val: 0, addr: reg_base + CQSPI_REG_CMDCTRL);
652
653 return ret;
654}
655
656static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
657 const struct spi_mem_op *op)
658{
659 struct cqspi_st *cqspi = f_pdata->cqspi;
660 void __iomem *reg_base = cqspi->iobase;
661 unsigned int dummy_clk = 0;
662 unsigned int reg;
663 int ret;
664 u8 opcode;
665
666 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
667 if (ret)
668 return ret;
669
670 if (op->cmd.dtr)
671 opcode = op->cmd.opcode >> 8;
672 else
673 opcode = op->cmd.opcode;
674
675 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
676 reg |= cqspi_calc_rdreg(op);
677
678 /* Setup dummy clock cycles */
679 dummy_clk = cqspi_calc_dummy(op);
680
681 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
682 return -EOPNOTSUPP;
683
684 if (dummy_clk)
685 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
686 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
687
688 writel(val: reg, addr: reg_base + CQSPI_REG_RD_INSTR);
689
690 /* Set address width */
691 reg = readl(addr: reg_base + CQSPI_REG_SIZE);
692 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
693 reg |= (op->addr.nbytes - 1);
694 writel(val: reg, addr: reg_base + CQSPI_REG_SIZE);
695 return 0;
696}
697
698static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
699 u8 *rxbuf, loff_t from_addr,
700 const size_t n_rx)
701{
702 struct cqspi_st *cqspi = f_pdata->cqspi;
703 struct device *dev = &cqspi->pdev->dev;
704 void __iomem *reg_base = cqspi->iobase;
705 void __iomem *ahb_base = cqspi->ahb_base;
706 unsigned int remaining = n_rx;
707 unsigned int mod_bytes = n_rx % 4;
708 unsigned int bytes_to_read = 0;
709 u8 *rxbuf_end = rxbuf + n_rx;
710 int ret = 0;
711
712 writel(val: from_addr, addr: reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
713 writel(val: remaining, addr: reg_base + CQSPI_REG_INDIRECTRDBYTES);
714
715 /* Clear all interrupts. */
716 writel(CQSPI_IRQ_STATUS_MASK, addr: reg_base + CQSPI_REG_IRQSTATUS);
717
718 /*
719 * On SoCFPGA platform reading the SRAM is slow due to
720 * hardware limitation and causing read interrupt storm to CPU,
721 * so enabling only watermark interrupt to disable all read
722 * interrupts later as we want to run "bytes to read" loop with
723 * all the read interrupts disabled for max performance.
724 */
725
726 if (!cqspi->slow_sram)
727 writel(CQSPI_IRQ_MASK_RD, addr: reg_base + CQSPI_REG_IRQMASK);
728 else
729 writel(CQSPI_REG_IRQ_WATERMARK, addr: reg_base + CQSPI_REG_IRQMASK);
730
731 reinit_completion(x: &cqspi->transfer_complete);
732 writel(CQSPI_REG_INDIRECTRD_START_MASK,
733 addr: reg_base + CQSPI_REG_INDIRECTRD);
734
735 while (remaining > 0) {
736 if (!wait_for_completion_timeout(x: &cqspi->transfer_complete,
737 timeout: msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
738 ret = -ETIMEDOUT;
739
740 /*
741 * Disable all read interrupts until
742 * we are out of "bytes to read"
743 */
744 if (cqspi->slow_sram)
745 writel(val: 0x0, addr: reg_base + CQSPI_REG_IRQMASK);
746
747 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
748
749 if (ret && bytes_to_read == 0) {
750 dev_err(dev, "Indirect read timeout, no bytes\n");
751 goto failrd;
752 }
753
754 while (bytes_to_read != 0) {
755 unsigned int word_remain = round_down(remaining, 4);
756
757 bytes_to_read *= cqspi->fifo_width;
758 bytes_to_read = bytes_to_read > remaining ?
759 remaining : bytes_to_read;
760 bytes_to_read = round_down(bytes_to_read, 4);
761 /* Read 4 byte word chunks then single bytes */
762 if (bytes_to_read) {
763 ioread32_rep(port: ahb_base, buf: rxbuf,
764 count: (bytes_to_read / 4));
765 } else if (!word_remain && mod_bytes) {
766 unsigned int temp = ioread32(ahb_base);
767
768 bytes_to_read = mod_bytes;
769 memcpy(rxbuf, &temp, min((unsigned int)
770 (rxbuf_end - rxbuf),
771 bytes_to_read));
772 }
773 rxbuf += bytes_to_read;
774 remaining -= bytes_to_read;
775 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
776 }
777
778 if (remaining > 0) {
779 reinit_completion(x: &cqspi->transfer_complete);
780 if (cqspi->slow_sram)
781 writel(CQSPI_REG_IRQ_WATERMARK, addr: reg_base + CQSPI_REG_IRQMASK);
782 }
783 }
784
785 /* Check indirect done status */
786 ret = cqspi_wait_for_bit(reg: reg_base + CQSPI_REG_INDIRECTRD,
787 CQSPI_REG_INDIRECTRD_DONE_MASK, clr: 0);
788 if (ret) {
789 dev_err(dev, "Indirect read completion error (%i)\n", ret);
790 goto failrd;
791 }
792
793 /* Disable interrupt */
794 writel(val: 0, addr: reg_base + CQSPI_REG_IRQMASK);
795
796 /* Clear indirect completion status */
797 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, addr: reg_base + CQSPI_REG_INDIRECTRD);
798
799 return 0;
800
801failrd:
802 /* Disable interrupt */
803 writel(val: 0, addr: reg_base + CQSPI_REG_IRQMASK);
804
805 /* Cancel the indirect read */
806 writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
807 addr: reg_base + CQSPI_REG_INDIRECTRD);
808 return ret;
809}
810
811static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
812{
813 void __iomem *reg_base = cqspi->iobase;
814 unsigned int reg;
815
816 reg = readl(addr: reg_base + CQSPI_REG_CONFIG);
817
818 if (enable)
819 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
820 else
821 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
822
823 writel(val: reg, addr: reg_base + CQSPI_REG_CONFIG);
824}
825
826static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
827 u_char *rxbuf, loff_t from_addr,
828 size_t n_rx)
829{
830 struct cqspi_st *cqspi = f_pdata->cqspi;
831 struct device *dev = &cqspi->pdev->dev;
832 void __iomem *reg_base = cqspi->iobase;
833 u32 reg, bytes_to_dma;
834 loff_t addr = from_addr;
835 void *buf = rxbuf;
836 dma_addr_t dma_addr;
837 u8 bytes_rem;
838 int ret = 0;
839
840 bytes_rem = n_rx % 4;
841 bytes_to_dma = (n_rx - bytes_rem);
842
843 if (!bytes_to_dma)
844 goto nondmard;
845
846 ret = zynqmp_pm_ospi_mux_select(dev_id: cqspi->pd_dev_id, select: PM_OSPI_MUX_SEL_DMA);
847 if (ret)
848 return ret;
849
850 cqspi_controller_enable(cqspi, enable: 0);
851
852 reg = readl(addr: cqspi->iobase + CQSPI_REG_CONFIG);
853 reg |= CQSPI_REG_CONFIG_DMA_MASK;
854 writel(val: reg, addr: cqspi->iobase + CQSPI_REG_CONFIG);
855
856 cqspi_controller_enable(cqspi, enable: 1);
857
858 dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
859 if (dma_mapping_error(dev, dma_addr)) {
860 dev_err(dev, "dma mapping failed\n");
861 return -ENOMEM;
862 }
863
864 writel(val: from_addr, addr: reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
865 writel(val: bytes_to_dma, addr: reg_base + CQSPI_REG_INDIRECTRDBYTES);
866 writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
867 addr: reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
868
869 /* Clear all interrupts. */
870 writel(CQSPI_IRQ_STATUS_MASK, addr: reg_base + CQSPI_REG_IRQSTATUS);
871
872 /* Enable DMA done interrupt */
873 writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
874 addr: reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
875
876 /* Default DMA periph configuration */
877 writel(CQSPI_REG_VERSAL_DMA_VAL, addr: reg_base + CQSPI_REG_DMA);
878
879 /* Configure DMA Dst address */
880 writel(lower_32_bits(dma_addr),
881 addr: reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
882 writel(upper_32_bits(dma_addr),
883 addr: reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
884
885 /* Configure DMA Src address */
886 writel(val: cqspi->trigger_address, addr: reg_base +
887 CQSPI_REG_VERSAL_DMA_SRC_ADDR);
888
889 /* Set DMA destination size */
890 writel(val: bytes_to_dma, addr: reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
891
892 /* Set DMA destination control */
893 writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
894 addr: reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
895
896 writel(CQSPI_REG_INDIRECTRD_START_MASK,
897 addr: reg_base + CQSPI_REG_INDIRECTRD);
898
899 reinit_completion(x: &cqspi->transfer_complete);
900
901 if (!wait_for_completion_timeout(x: &cqspi->transfer_complete,
902 timeout: msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
903 ret = -ETIMEDOUT;
904 goto failrd;
905 }
906
907 /* Disable DMA interrupt */
908 writel(val: 0x0, addr: cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
909
910 /* Clear indirect completion status */
911 writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
912 addr: cqspi->iobase + CQSPI_REG_INDIRECTRD);
913 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
914
915 cqspi_controller_enable(cqspi, enable: 0);
916
917 reg = readl(addr: cqspi->iobase + CQSPI_REG_CONFIG);
918 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
919 writel(val: reg, addr: cqspi->iobase + CQSPI_REG_CONFIG);
920
921 cqspi_controller_enable(cqspi, enable: 1);
922
923 ret = zynqmp_pm_ospi_mux_select(dev_id: cqspi->pd_dev_id,
924 select: PM_OSPI_MUX_SEL_LINEAR);
925 if (ret)
926 return ret;
927
928nondmard:
929 if (bytes_rem) {
930 addr += bytes_to_dma;
931 buf += bytes_to_dma;
932 ret = cqspi_indirect_read_execute(f_pdata, rxbuf: buf, from_addr: addr,
933 n_rx: bytes_rem);
934 if (ret)
935 return ret;
936 }
937
938 return 0;
939
940failrd:
941 /* Disable DMA interrupt */
942 writel(val: 0x0, addr: reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
943
944 /* Cancel the indirect read */
945 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
946 addr: reg_base + CQSPI_REG_INDIRECTRD);
947
948 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
949
950 reg = readl(addr: cqspi->iobase + CQSPI_REG_CONFIG);
951 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
952 writel(val: reg, addr: cqspi->iobase + CQSPI_REG_CONFIG);
953
954 zynqmp_pm_ospi_mux_select(dev_id: cqspi->pd_dev_id, select: PM_OSPI_MUX_SEL_LINEAR);
955
956 return ret;
957}
958
959static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
960 const struct spi_mem_op *op)
961{
962 unsigned int reg;
963 int ret;
964 struct cqspi_st *cqspi = f_pdata->cqspi;
965 void __iomem *reg_base = cqspi->iobase;
966 u8 opcode;
967
968 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
969 if (ret)
970 return ret;
971
972 if (op->cmd.dtr)
973 opcode = op->cmd.opcode >> 8;
974 else
975 opcode = op->cmd.opcode;
976
977 /* Set opcode. */
978 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
979 reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
980 reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
981 writel(val: reg, addr: reg_base + CQSPI_REG_WR_INSTR);
982 reg = cqspi_calc_rdreg(op);
983 writel(val: reg, addr: reg_base + CQSPI_REG_RD_INSTR);
984
985 /*
986 * SPI NAND flashes require the address of the status register to be
987 * passed in the Read SR command. Also, some SPI NOR flashes like the
988 * cypress Semper flash expect a 4-byte dummy address in the Read SR
989 * command in DTR mode.
990 *
991 * But this controller does not support address phase in the Read SR
992 * command when doing auto-HW polling. So, disable write completion
993 * polling on the controller's side. spinand and spi-nor will take
994 * care of polling the status register.
995 */
996 if (cqspi->wr_completion) {
997 reg = readl(addr: reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
998 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
999 writel(val: reg, addr: reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1000 /*
1001 * DAC mode require auto polling as flash needs to be polled
1002 * for write completion in case of bubble in SPI transaction
1003 * due to slow CPU/DMA master.
1004 */
1005 cqspi->use_direct_mode_wr = false;
1006 }
1007
1008 reg = readl(addr: reg_base + CQSPI_REG_SIZE);
1009 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1010 reg |= (op->addr.nbytes - 1);
1011 writel(val: reg, addr: reg_base + CQSPI_REG_SIZE);
1012 return 0;
1013}
1014
1015static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1016 loff_t to_addr, const u8 *txbuf,
1017 const size_t n_tx)
1018{
1019 struct cqspi_st *cqspi = f_pdata->cqspi;
1020 struct device *dev = &cqspi->pdev->dev;
1021 void __iomem *reg_base = cqspi->iobase;
1022 unsigned int remaining = n_tx;
1023 unsigned int write_bytes;
1024 int ret;
1025
1026 writel(val: to_addr, addr: reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1027 writel(val: remaining, addr: reg_base + CQSPI_REG_INDIRECTWRBYTES);
1028
1029 /* Clear all interrupts. */
1030 writel(CQSPI_IRQ_STATUS_MASK, addr: reg_base + CQSPI_REG_IRQSTATUS);
1031
1032 writel(CQSPI_IRQ_MASK_WR, addr: reg_base + CQSPI_REG_IRQMASK);
1033
1034 reinit_completion(x: &cqspi->transfer_complete);
1035 writel(CQSPI_REG_INDIRECTWR_START_MASK,
1036 addr: reg_base + CQSPI_REG_INDIRECTWR);
1037 /*
1038 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1039 * Controller programming sequence, couple of cycles of
1040 * QSPI_REF_CLK delay is required for the above bit to
1041 * be internally synchronized by the QSPI module. Provide 5
1042 * cycles of delay.
1043 */
1044 if (cqspi->wr_delay)
1045 ndelay(cqspi->wr_delay);
1046
1047 /*
1048 * If a hazard exists between the APB and AHB interfaces, perform a
1049 * dummy readback from the controller to ensure synchronization.
1050 */
1051 if (cqspi->apb_ahb_hazard)
1052 readl(addr: reg_base + CQSPI_REG_INDIRECTWR);
1053
1054 while (remaining > 0) {
1055 size_t write_words, mod_bytes;
1056
1057 write_bytes = remaining;
1058 write_words = write_bytes / 4;
1059 mod_bytes = write_bytes % 4;
1060 /* Write 4 bytes at a time then single bytes. */
1061 if (write_words) {
1062 iowrite32_rep(port: cqspi->ahb_base, buf: txbuf, count: write_words);
1063 txbuf += (write_words * 4);
1064 }
1065 if (mod_bytes) {
1066 unsigned int temp = 0xFFFFFFFF;
1067
1068 memcpy(&temp, txbuf, mod_bytes);
1069 iowrite32(temp, cqspi->ahb_base);
1070 txbuf += mod_bytes;
1071 }
1072
1073 if (!wait_for_completion_timeout(x: &cqspi->transfer_complete,
1074 timeout: msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1075 dev_err(dev, "Indirect write timeout\n");
1076 ret = -ETIMEDOUT;
1077 goto failwr;
1078 }
1079
1080 remaining -= write_bytes;
1081
1082 if (remaining > 0)
1083 reinit_completion(x: &cqspi->transfer_complete);
1084 }
1085
1086 /* Check indirect done status */
1087 ret = cqspi_wait_for_bit(reg: reg_base + CQSPI_REG_INDIRECTWR,
1088 CQSPI_REG_INDIRECTWR_DONE_MASK, clr: 0);
1089 if (ret) {
1090 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1091 goto failwr;
1092 }
1093
1094 /* Disable interrupt. */
1095 writel(val: 0, addr: reg_base + CQSPI_REG_IRQMASK);
1096
1097 /* Clear indirect completion status */
1098 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, addr: reg_base + CQSPI_REG_INDIRECTWR);
1099
1100 cqspi_wait_idle(cqspi);
1101
1102 return 0;
1103
1104failwr:
1105 /* Disable interrupt. */
1106 writel(val: 0, addr: reg_base + CQSPI_REG_IRQMASK);
1107
1108 /* Cancel the indirect write */
1109 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1110 addr: reg_base + CQSPI_REG_INDIRECTWR);
1111 return ret;
1112}
1113
1114static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1115{
1116 struct cqspi_st *cqspi = f_pdata->cqspi;
1117 void __iomem *reg_base = cqspi->iobase;
1118 unsigned int chip_select = f_pdata->cs;
1119 unsigned int reg;
1120
1121 reg = readl(addr: reg_base + CQSPI_REG_CONFIG);
1122 if (cqspi->is_decoded_cs) {
1123 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1124 } else {
1125 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1126
1127 /* Convert CS if without decoder.
1128 * CS0 to 4b'1110
1129 * CS1 to 4b'1101
1130 * CS2 to 4b'1011
1131 * CS3 to 4b'0111
1132 */
1133 chip_select = 0xF & ~(1 << chip_select);
1134 }
1135
1136 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1137 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1138 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1139 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1140 writel(val: reg, addr: reg_base + CQSPI_REG_CONFIG);
1141}
1142
1143static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1144 const unsigned int ns_val)
1145{
1146 unsigned int ticks;
1147
1148 ticks = ref_clk_hz / 1000; /* kHz */
1149 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1150
1151 return ticks;
1152}
1153
1154static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1155{
1156 struct cqspi_st *cqspi = f_pdata->cqspi;
1157 void __iomem *iobase = cqspi->iobase;
1158 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1159 unsigned int tshsl, tchsh, tslch, tsd2d;
1160 unsigned int reg;
1161 unsigned int tsclk;
1162
1163 /* calculate the number of ref ticks for one sclk tick */
1164 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1165
1166 tshsl = calculate_ticks_for_ns(ref_clk_hz, ns_val: f_pdata->tshsl_ns);
1167 /* this particular value must be at least one sclk */
1168 if (tshsl < tsclk)
1169 tshsl = tsclk;
1170
1171 tchsh = calculate_ticks_for_ns(ref_clk_hz, ns_val: f_pdata->tchsh_ns);
1172 tslch = calculate_ticks_for_ns(ref_clk_hz, ns_val: f_pdata->tslch_ns);
1173 tsd2d = calculate_ticks_for_ns(ref_clk_hz, ns_val: f_pdata->tsd2d_ns);
1174
1175 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1176 << CQSPI_REG_DELAY_TSHSL_LSB;
1177 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1178 << CQSPI_REG_DELAY_TCHSH_LSB;
1179 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1180 << CQSPI_REG_DELAY_TSLCH_LSB;
1181 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1182 << CQSPI_REG_DELAY_TSD2D_LSB;
1183 writel(val: reg, addr: iobase + CQSPI_REG_DELAY);
1184}
1185
1186static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1187{
1188 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1189 void __iomem *reg_base = cqspi->iobase;
1190 u32 reg, div;
1191
1192 /* Recalculate the baudrate divisor based on QSPI specification. */
1193 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1194
1195 /* Maximum baud divisor */
1196 if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1197 div = CQSPI_REG_CONFIG_BAUD_MASK;
1198 dev_warn(&cqspi->pdev->dev,
1199 "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1200 cqspi->sclk, ref_clk_hz/((div+1)*2));
1201 }
1202
1203 reg = readl(addr: reg_base + CQSPI_REG_CONFIG);
1204 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1205 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1206 writel(val: reg, addr: reg_base + CQSPI_REG_CONFIG);
1207}
1208
1209static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1210 const bool bypass,
1211 const unsigned int delay)
1212{
1213 void __iomem *reg_base = cqspi->iobase;
1214 unsigned int reg;
1215
1216 reg = readl(addr: reg_base + CQSPI_REG_READCAPTURE);
1217
1218 if (bypass)
1219 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1220 else
1221 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1222
1223 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1224 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1225
1226 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1227 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1228
1229 writel(val: reg, addr: reg_base + CQSPI_REG_READCAPTURE);
1230}
1231
1232static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1233 unsigned long sclk)
1234{
1235 struct cqspi_st *cqspi = f_pdata->cqspi;
1236 int switch_cs = (cqspi->current_cs != f_pdata->cs);
1237 int switch_ck = (cqspi->sclk != sclk);
1238
1239 if (switch_cs || switch_ck)
1240 cqspi_controller_enable(cqspi, enable: 0);
1241
1242 /* Switch chip select. */
1243 if (switch_cs) {
1244 cqspi->current_cs = f_pdata->cs;
1245 cqspi_chipselect(f_pdata);
1246 }
1247
1248 /* Setup baudrate divisor and delays */
1249 if (switch_ck) {
1250 cqspi->sclk = sclk;
1251 cqspi_config_baudrate_div(cqspi);
1252 cqspi_delay(f_pdata);
1253 cqspi_readdata_capture(cqspi, bypass: !cqspi->rclk_en,
1254 delay: f_pdata->read_delay);
1255 }
1256
1257 if (switch_cs || switch_ck)
1258 cqspi_controller_enable(cqspi, enable: 1);
1259}
1260
1261static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1262 const struct spi_mem_op *op)
1263{
1264 struct cqspi_st *cqspi = f_pdata->cqspi;
1265 loff_t to = op->addr.val;
1266 size_t len = op->data.nbytes;
1267 const u_char *buf = op->data.buf.out;
1268 int ret;
1269
1270 ret = cqspi_write_setup(f_pdata, op);
1271 if (ret)
1272 return ret;
1273
1274 /*
1275 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1276 * address (all 0s) with the read status register command in DTR mode.
1277 * But this controller does not support sending dummy address bytes to
1278 * the flash when it is polling the write completion register in DTR
1279 * mode. So, we can not use direct mode when in DTR mode for writing
1280 * data.
1281 */
1282 if (!op->cmd.dtr && cqspi->use_direct_mode &&
1283 cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1284 memcpy_toio(cqspi->ahb_base + to, buf, len);
1285 return cqspi_wait_idle(cqspi);
1286 }
1287
1288 return cqspi_indirect_write_execute(f_pdata, to_addr: to, txbuf: buf, n_tx: len);
1289}
1290
1291static void cqspi_rx_dma_callback(void *param)
1292{
1293 struct cqspi_st *cqspi = param;
1294
1295 complete(&cqspi->rx_dma_complete);
1296}
1297
1298static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1299 u_char *buf, loff_t from, size_t len)
1300{
1301 struct cqspi_st *cqspi = f_pdata->cqspi;
1302 struct device *dev = &cqspi->pdev->dev;
1303 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1304 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1305 int ret = 0;
1306 struct dma_async_tx_descriptor *tx;
1307 dma_cookie_t cookie;
1308 dma_addr_t dma_dst;
1309 struct device *ddev;
1310
1311 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1312 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1313 return 0;
1314 }
1315
1316 ddev = cqspi->rx_chan->device->dev;
1317 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1318 if (dma_mapping_error(dev: ddev, dma_addr: dma_dst)) {
1319 dev_err(dev, "dma mapping failed\n");
1320 return -ENOMEM;
1321 }
1322 tx = dmaengine_prep_dma_memcpy(chan: cqspi->rx_chan, dest: dma_dst, src: dma_src,
1323 len, flags);
1324 if (!tx) {
1325 dev_err(dev, "device_prep_dma_memcpy error\n");
1326 ret = -EIO;
1327 goto err_unmap;
1328 }
1329
1330 tx->callback = cqspi_rx_dma_callback;
1331 tx->callback_param = cqspi;
1332 cookie = tx->tx_submit(tx);
1333 reinit_completion(x: &cqspi->rx_dma_complete);
1334
1335 ret = dma_submit_error(cookie);
1336 if (ret) {
1337 dev_err(dev, "dma_submit_error %d\n", cookie);
1338 ret = -EIO;
1339 goto err_unmap;
1340 }
1341
1342 dma_async_issue_pending(chan: cqspi->rx_chan);
1343 if (!wait_for_completion_timeout(x: &cqspi->rx_dma_complete,
1344 timeout: msecs_to_jiffies(max_t(size_t, len, 500)))) {
1345 dmaengine_terminate_sync(chan: cqspi->rx_chan);
1346 dev_err(dev, "DMA wait_for_completion_timeout\n");
1347 ret = -ETIMEDOUT;
1348 goto err_unmap;
1349 }
1350
1351err_unmap:
1352 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1353
1354 return ret;
1355}
1356
1357static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1358 const struct spi_mem_op *op)
1359{
1360 struct cqspi_st *cqspi = f_pdata->cqspi;
1361 struct device *dev = &cqspi->pdev->dev;
1362 const struct cqspi_driver_platdata *ddata;
1363 loff_t from = op->addr.val;
1364 size_t len = op->data.nbytes;
1365 u_char *buf = op->data.buf.in;
1366 u64 dma_align = (u64)(uintptr_t)buf;
1367 int ret;
1368
1369 ddata = of_device_get_match_data(dev);
1370
1371 ret = cqspi_read_setup(f_pdata, op);
1372 if (ret)
1373 return ret;
1374
1375 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1376 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1377
1378 if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1379 virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1380 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1381
1382 return cqspi_indirect_read_execute(f_pdata, rxbuf: buf, from_addr: from, n_rx: len);
1383}
1384
1385static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1386{
1387 struct cqspi_st *cqspi = spi_controller_get_devdata(ctlr: mem->spi->controller);
1388 struct cqspi_flash_pdata *f_pdata;
1389
1390 f_pdata = &cqspi->f_pdata[spi_get_chipselect(spi: mem->spi, idx: 0)];
1391 cqspi_configure(f_pdata, sclk: mem->spi->max_speed_hz);
1392
1393 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1394 /*
1395 * Performing reads in DAC mode forces to read minimum 4 bytes
1396 * which is unsupported on some flash devices during register
1397 * reads, prefer STIG mode for such small reads.
1398 */
1399 if (!op->addr.nbytes ||
1400 op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1401 return cqspi_command_read(f_pdata, op);
1402
1403 return cqspi_read(f_pdata, op);
1404 }
1405
1406 if (!op->addr.nbytes || !op->data.buf.out)
1407 return cqspi_command_write(f_pdata, op);
1408
1409 return cqspi_write(f_pdata, op);
1410}
1411
1412static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1413{
1414 int ret;
1415 struct cqspi_st *cqspi = spi_controller_get_devdata(ctlr: mem->spi->controller);
1416 struct device *dev = &cqspi->pdev->dev;
1417
1418 ret = pm_runtime_resume_and_get(dev);
1419 if (ret) {
1420 dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1421 return ret;
1422 }
1423
1424 ret = cqspi_mem_process(mem, op);
1425
1426 pm_runtime_mark_last_busy(dev);
1427 pm_runtime_put_autosuspend(dev);
1428
1429 if (ret)
1430 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1431
1432 return ret;
1433}
1434
1435static bool cqspi_supports_mem_op(struct spi_mem *mem,
1436 const struct spi_mem_op *op)
1437{
1438 bool all_true, all_false;
1439
1440 /*
1441 * op->dummy.dtr is required for converting nbytes into ncycles.
1442 * Also, don't check the dtr field of the op phase having zero nbytes.
1443 */
1444 all_true = op->cmd.dtr &&
1445 (!op->addr.nbytes || op->addr.dtr) &&
1446 (!op->dummy.nbytes || op->dummy.dtr) &&
1447 (!op->data.nbytes || op->data.dtr);
1448
1449 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1450 !op->data.dtr;
1451
1452 if (all_true) {
1453 /* Right now we only support 8-8-8 DTR mode. */
1454 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1455 return false;
1456 if (op->addr.nbytes && op->addr.buswidth != 8)
1457 return false;
1458 if (op->data.nbytes && op->data.buswidth != 8)
1459 return false;
1460 } else if (!all_false) {
1461 /* Mixed DTR modes are not supported. */
1462 return false;
1463 }
1464
1465 return spi_mem_default_supports_op(mem, op);
1466}
1467
1468static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1469 struct cqspi_flash_pdata *f_pdata,
1470 struct device_node *np)
1471{
1472 if (of_property_read_u32(np, propname: "cdns,read-delay", out_value: &f_pdata->read_delay)) {
1473 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1474 return -ENXIO;
1475 }
1476
1477 if (of_property_read_u32(np, propname: "cdns,tshsl-ns", out_value: &f_pdata->tshsl_ns)) {
1478 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1479 return -ENXIO;
1480 }
1481
1482 if (of_property_read_u32(np, propname: "cdns,tsd2d-ns", out_value: &f_pdata->tsd2d_ns)) {
1483 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1484 return -ENXIO;
1485 }
1486
1487 if (of_property_read_u32(np, propname: "cdns,tchsh-ns", out_value: &f_pdata->tchsh_ns)) {
1488 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1489 return -ENXIO;
1490 }
1491
1492 if (of_property_read_u32(np, propname: "cdns,tslch-ns", out_value: &f_pdata->tslch_ns)) {
1493 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1494 return -ENXIO;
1495 }
1496
1497 if (of_property_read_u32(np, propname: "spi-max-frequency", out_value: &f_pdata->clk_rate)) {
1498 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1499 return -ENXIO;
1500 }
1501
1502 return 0;
1503}
1504
1505static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1506{
1507 struct device *dev = &cqspi->pdev->dev;
1508 struct device_node *np = dev->of_node;
1509 u32 id[2];
1510
1511 cqspi->is_decoded_cs = of_property_read_bool(np, propname: "cdns,is-decoded-cs");
1512
1513 if (of_property_read_u32(np, propname: "cdns,fifo-depth", out_value: &cqspi->fifo_depth)) {
1514 dev_err(dev, "couldn't determine fifo-depth\n");
1515 return -ENXIO;
1516 }
1517
1518 if (of_property_read_u32(np, propname: "cdns,fifo-width", out_value: &cqspi->fifo_width)) {
1519 dev_err(dev, "couldn't determine fifo-width\n");
1520 return -ENXIO;
1521 }
1522
1523 if (of_property_read_u32(np, propname: "cdns,trigger-address",
1524 out_value: &cqspi->trigger_address)) {
1525 dev_err(dev, "couldn't determine trigger-address\n");
1526 return -ENXIO;
1527 }
1528
1529 if (of_property_read_u32(np, propname: "num-cs", out_value: &cqspi->num_chipselect))
1530 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1531
1532 cqspi->rclk_en = of_property_read_bool(np, propname: "cdns,rclk-en");
1533
1534 if (!of_property_read_u32_array(np, propname: "power-domains", out_values: id,
1535 ARRAY_SIZE(id)))
1536 cqspi->pd_dev_id = id[1];
1537
1538 return 0;
1539}
1540
1541static void cqspi_controller_init(struct cqspi_st *cqspi)
1542{
1543 u32 reg;
1544
1545 cqspi_controller_enable(cqspi, enable: 0);
1546
1547 /* Configure the remap address register, no remap */
1548 writel(val: 0, addr: cqspi->iobase + CQSPI_REG_REMAP);
1549
1550 /* Disable all interrupts. */
1551 writel(val: 0, addr: cqspi->iobase + CQSPI_REG_IRQMASK);
1552
1553 /* Configure the SRAM split to 1:1 . */
1554 writel(val: cqspi->fifo_depth / 2, addr: cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1555
1556 /* Load indirect trigger address. */
1557 writel(val: cqspi->trigger_address,
1558 addr: cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1559
1560 /* Program read watermark -- 1/2 of the FIFO. */
1561 writel(val: cqspi->fifo_depth * cqspi->fifo_width / 2,
1562 addr: cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1563 /* Program write watermark -- 1/8 of the FIFO. */
1564 writel(val: cqspi->fifo_depth * cqspi->fifo_width / 8,
1565 addr: cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1566
1567 /* Disable direct access controller */
1568 if (!cqspi->use_direct_mode) {
1569 reg = readl(addr: cqspi->iobase + CQSPI_REG_CONFIG);
1570 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1571 writel(val: reg, addr: cqspi->iobase + CQSPI_REG_CONFIG);
1572 }
1573
1574 /* Enable DMA interface */
1575 if (cqspi->use_dma_read) {
1576 reg = readl(addr: cqspi->iobase + CQSPI_REG_CONFIG);
1577 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1578 writel(val: reg, addr: cqspi->iobase + CQSPI_REG_CONFIG);
1579 }
1580
1581 cqspi_controller_enable(cqspi, enable: 1);
1582}
1583
1584static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1585{
1586 dma_cap_mask_t mask;
1587
1588 dma_cap_zero(mask);
1589 dma_cap_set(DMA_MEMCPY, mask);
1590
1591 cqspi->rx_chan = dma_request_chan_by_mask(mask: &mask);
1592 if (IS_ERR(ptr: cqspi->rx_chan)) {
1593 int ret = PTR_ERR(ptr: cqspi->rx_chan);
1594
1595 cqspi->rx_chan = NULL;
1596 return dev_err_probe(dev: &cqspi->pdev->dev, err: ret, fmt: "No Rx DMA available\n");
1597 }
1598 init_completion(x: &cqspi->rx_dma_complete);
1599
1600 return 0;
1601}
1602
1603static const char *cqspi_get_name(struct spi_mem *mem)
1604{
1605 struct cqspi_st *cqspi = spi_controller_get_devdata(ctlr: mem->spi->controller);
1606 struct device *dev = &cqspi->pdev->dev;
1607
1608 return devm_kasprintf(dev, GFP_KERNEL, fmt: "%s.%d", dev_name(dev),
1609 spi_get_chipselect(spi: mem->spi, idx: 0));
1610}
1611
1612static const struct spi_controller_mem_ops cqspi_mem_ops = {
1613 .exec_op = cqspi_exec_mem_op,
1614 .get_name = cqspi_get_name,
1615 .supports_op = cqspi_supports_mem_op,
1616};
1617
1618static const struct spi_controller_mem_caps cqspi_mem_caps = {
1619 .dtr = true,
1620};
1621
1622static int cqspi_setup_flash(struct cqspi_st *cqspi)
1623{
1624 unsigned int max_cs = cqspi->num_chipselect - 1;
1625 struct platform_device *pdev = cqspi->pdev;
1626 struct device *dev = &pdev->dev;
1627 struct device_node *np = dev->of_node;
1628 struct cqspi_flash_pdata *f_pdata;
1629 unsigned int cs;
1630 int ret;
1631
1632 /* Get flash device data */
1633 for_each_available_child_of_node(dev->of_node, np) {
1634 ret = of_property_read_u32(np, propname: "reg", out_value: &cs);
1635 if (ret) {
1636 dev_err(dev, "Couldn't determine chip select.\n");
1637 of_node_put(node: np);
1638 return ret;
1639 }
1640
1641 if (cs >= cqspi->num_chipselect) {
1642 dev_err(dev, "Chip select %d out of range.\n", cs);
1643 of_node_put(node: np);
1644 return -EINVAL;
1645 } else if (cs < max_cs) {
1646 max_cs = cs;
1647 }
1648
1649 f_pdata = &cqspi->f_pdata[cs];
1650 f_pdata->cqspi = cqspi;
1651 f_pdata->cs = cs;
1652
1653 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1654 if (ret) {
1655 of_node_put(node: np);
1656 return ret;
1657 }
1658 }
1659
1660 cqspi->num_chipselect = max_cs + 1;
1661 return 0;
1662}
1663
1664static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1665{
1666 static struct clk_bulk_data qspiclk[] = {
1667 { .id = "apb" },
1668 { .id = "ahb" },
1669 };
1670
1671 int ret = 0;
1672
1673 ret = devm_clk_bulk_get(dev: &pdev->dev, ARRAY_SIZE(qspiclk), clks: qspiclk);
1674 if (ret) {
1675 dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1676 return ret;
1677 }
1678
1679 cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1680 cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1681
1682 ret = clk_prepare_enable(clk: cqspi->clks[CLK_QSPI_APB]);
1683 if (ret) {
1684 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1685 return ret;
1686 }
1687
1688 ret = clk_prepare_enable(clk: cqspi->clks[CLK_QSPI_AHB]);
1689 if (ret) {
1690 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1691 goto disable_apb_clk;
1692 }
1693
1694 cqspi->is_jh7110 = true;
1695
1696 return 0;
1697
1698disable_apb_clk:
1699 clk_disable_unprepare(clk: cqspi->clks[CLK_QSPI_APB]);
1700
1701 return ret;
1702}
1703
1704static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1705{
1706 clk_disable_unprepare(clk: cqspi->clks[CLK_QSPI_AHB]);
1707 clk_disable_unprepare(clk: cqspi->clks[CLK_QSPI_APB]);
1708}
1709static int cqspi_probe(struct platform_device *pdev)
1710{
1711 const struct cqspi_driver_platdata *ddata;
1712 struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1713 struct device *dev = &pdev->dev;
1714 struct spi_controller *host;
1715 struct resource *res_ahb;
1716 struct cqspi_st *cqspi;
1717 int ret;
1718 int irq;
1719
1720 host = devm_spi_alloc_host(dev: &pdev->dev, size: sizeof(*cqspi));
1721 if (!host)
1722 return -ENOMEM;
1723
1724 host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1725 host->mem_ops = &cqspi_mem_ops;
1726 host->mem_caps = &cqspi_mem_caps;
1727 host->dev.of_node = pdev->dev.of_node;
1728
1729 cqspi = spi_controller_get_devdata(ctlr: host);
1730
1731 cqspi->pdev = pdev;
1732 cqspi->host = host;
1733 cqspi->is_jh7110 = false;
1734 platform_set_drvdata(pdev, data: cqspi);
1735
1736 /* Obtain configuration from OF. */
1737 ret = cqspi_of_get_pdata(cqspi);
1738 if (ret) {
1739 dev_err(dev, "Cannot get mandatory OF data.\n");
1740 return -ENODEV;
1741 }
1742
1743 /* Obtain QSPI clock. */
1744 cqspi->clk = devm_clk_get(dev, NULL);
1745 if (IS_ERR(ptr: cqspi->clk)) {
1746 dev_err(dev, "Cannot claim QSPI clock.\n");
1747 ret = PTR_ERR(ptr: cqspi->clk);
1748 return ret;
1749 }
1750
1751 /* Obtain and remap controller address. */
1752 cqspi->iobase = devm_platform_ioremap_resource(pdev, index: 0);
1753 if (IS_ERR(ptr: cqspi->iobase)) {
1754 dev_err(dev, "Cannot remap controller address.\n");
1755 ret = PTR_ERR(ptr: cqspi->iobase);
1756 return ret;
1757 }
1758
1759 /* Obtain and remap AHB address. */
1760 cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, index: 1, res: &res_ahb);
1761 if (IS_ERR(ptr: cqspi->ahb_base)) {
1762 dev_err(dev, "Cannot remap AHB address.\n");
1763 ret = PTR_ERR(ptr: cqspi->ahb_base);
1764 return ret;
1765 }
1766 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1767 cqspi->ahb_size = resource_size(res: res_ahb);
1768
1769 init_completion(x: &cqspi->transfer_complete);
1770
1771 /* Obtain IRQ line. */
1772 irq = platform_get_irq(pdev, 0);
1773 if (irq < 0)
1774 return -ENXIO;
1775
1776 ret = pm_runtime_set_active(dev);
1777 if (ret)
1778 return ret;
1779
1780
1781 ret = clk_prepare_enable(clk: cqspi->clk);
1782 if (ret) {
1783 dev_err(dev, "Cannot enable QSPI clock.\n");
1784 goto probe_clk_failed;
1785 }
1786
1787 /* Obtain QSPI reset control */
1788 rstc = devm_reset_control_get_optional_exclusive(dev, id: "qspi");
1789 if (IS_ERR(ptr: rstc)) {
1790 ret = PTR_ERR(ptr: rstc);
1791 dev_err(dev, "Cannot get QSPI reset.\n");
1792 goto probe_reset_failed;
1793 }
1794
1795 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, id: "qspi-ocp");
1796 if (IS_ERR(ptr: rstc_ocp)) {
1797 ret = PTR_ERR(ptr: rstc_ocp);
1798 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1799 goto probe_reset_failed;
1800 }
1801
1802 if (of_device_is_compatible(device: pdev->dev.of_node, "starfive,jh7110-qspi")) {
1803 rstc_ref = devm_reset_control_get_optional_exclusive(dev, id: "rstc_ref");
1804 if (IS_ERR(ptr: rstc_ref)) {
1805 ret = PTR_ERR(ptr: rstc_ref);
1806 dev_err(dev, "Cannot get QSPI REF reset.\n");
1807 goto probe_reset_failed;
1808 }
1809 reset_control_assert(rstc: rstc_ref);
1810 reset_control_deassert(rstc: rstc_ref);
1811 }
1812
1813 reset_control_assert(rstc);
1814 reset_control_deassert(rstc);
1815
1816 reset_control_assert(rstc: rstc_ocp);
1817 reset_control_deassert(rstc: rstc_ocp);
1818
1819 cqspi->master_ref_clk_hz = clk_get_rate(clk: cqspi->clk);
1820 host->max_speed_hz = cqspi->master_ref_clk_hz;
1821
1822 /* write completion is supported by default */
1823 cqspi->wr_completion = true;
1824
1825 ddata = of_device_get_match_data(dev);
1826 if (ddata) {
1827 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1828 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1829 cqspi->master_ref_clk_hz);
1830 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1831 host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1832 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1833 cqspi->use_direct_mode = true;
1834 cqspi->use_direct_mode_wr = true;
1835 }
1836 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1837 cqspi->use_dma_read = true;
1838 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1839 cqspi->wr_completion = false;
1840 if (ddata->quirks & CQSPI_SLOW_SRAM)
1841 cqspi->slow_sram = true;
1842 if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1843 cqspi->apb_ahb_hazard = true;
1844
1845 if (ddata->jh7110_clk_init) {
1846 ret = cqspi_jh7110_clk_init(pdev, cqspi);
1847 if (ret)
1848 goto probe_reset_failed;
1849 }
1850
1851 if (of_device_is_compatible(device: pdev->dev.of_node,
1852 "xlnx,versal-ospi-1.0")) {
1853 ret = dma_set_mask(dev: &pdev->dev, DMA_BIT_MASK(64));
1854 if (ret)
1855 goto probe_reset_failed;
1856 }
1857 }
1858
1859 ret = devm_request_irq(dev, irq, handler: cqspi_irq_handler, irqflags: 0,
1860 devname: pdev->name, dev_id: cqspi);
1861 if (ret) {
1862 dev_err(dev, "Cannot request IRQ.\n");
1863 goto probe_reset_failed;
1864 }
1865
1866 cqspi_wait_idle(cqspi);
1867 cqspi_controller_init(cqspi);
1868 cqspi->current_cs = -1;
1869 cqspi->sclk = 0;
1870
1871 ret = cqspi_setup_flash(cqspi);
1872 if (ret) {
1873 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1874 goto probe_setup_failed;
1875 }
1876
1877 host->num_chipselect = cqspi->num_chipselect;
1878
1879 if (cqspi->use_direct_mode) {
1880 ret = cqspi_request_mmap_dma(cqspi);
1881 if (ret == -EPROBE_DEFER)
1882 goto probe_setup_failed;
1883 }
1884
1885 ret = devm_pm_runtime_enable(dev);
1886 if (ret) {
1887 if (cqspi->rx_chan)
1888 dma_release_channel(chan: cqspi->rx_chan);
1889 goto probe_setup_failed;
1890 }
1891
1892 pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1893 pm_runtime_use_autosuspend(dev);
1894 pm_runtime_get_noresume(dev);
1895
1896 ret = spi_register_controller(ctlr: host);
1897 if (ret) {
1898 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1899 goto probe_setup_failed;
1900 }
1901
1902 pm_runtime_mark_last_busy(dev);
1903 pm_runtime_put_autosuspend(dev);
1904
1905 return 0;
1906probe_setup_failed:
1907 cqspi_controller_enable(cqspi, enable: 0);
1908probe_reset_failed:
1909 if (cqspi->is_jh7110)
1910 cqspi_jh7110_disable_clk(pdev, cqspi);
1911 clk_disable_unprepare(clk: cqspi->clk);
1912probe_clk_failed:
1913 return ret;
1914}
1915
1916static void cqspi_remove(struct platform_device *pdev)
1917{
1918 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1919
1920 spi_unregister_controller(ctlr: cqspi->host);
1921 cqspi_controller_enable(cqspi, enable: 0);
1922
1923 if (cqspi->rx_chan)
1924 dma_release_channel(chan: cqspi->rx_chan);
1925
1926 clk_disable_unprepare(clk: cqspi->clk);
1927
1928 if (cqspi->is_jh7110)
1929 cqspi_jh7110_disable_clk(pdev, cqspi);
1930
1931 pm_runtime_put_sync(dev: &pdev->dev);
1932 pm_runtime_disable(dev: &pdev->dev);
1933}
1934
1935static int cqspi_runtime_suspend(struct device *dev)
1936{
1937 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1938
1939 cqspi_controller_enable(cqspi, enable: 0);
1940 clk_disable_unprepare(clk: cqspi->clk);
1941 return 0;
1942}
1943
1944static int cqspi_runtime_resume(struct device *dev)
1945{
1946 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1947
1948 clk_prepare_enable(clk: cqspi->clk);
1949 cqspi_wait_idle(cqspi);
1950 cqspi_controller_init(cqspi);
1951
1952 cqspi->current_cs = -1;
1953 cqspi->sclk = 0;
1954 return 0;
1955}
1956
1957static int cqspi_suspend(struct device *dev)
1958{
1959 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1960
1961 return spi_controller_suspend(ctlr: cqspi->host);
1962}
1963
1964static int cqspi_resume(struct device *dev)
1965{
1966 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1967
1968 return spi_controller_resume(ctlr: cqspi->host);
1969}
1970
1971static const struct dev_pm_ops cqspi_dev_pm_ops = {
1972 RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
1973 SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
1974};
1975
1976static const struct cqspi_driver_platdata cdns_qspi = {
1977 .quirks = CQSPI_DISABLE_DAC_MODE,
1978};
1979
1980static const struct cqspi_driver_platdata k2g_qspi = {
1981 .quirks = CQSPI_NEEDS_WR_DELAY,
1982};
1983
1984static const struct cqspi_driver_platdata am654_ospi = {
1985 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1986 .quirks = CQSPI_NEEDS_WR_DELAY,
1987};
1988
1989static const struct cqspi_driver_platdata intel_lgm_qspi = {
1990 .quirks = CQSPI_DISABLE_DAC_MODE,
1991};
1992
1993static const struct cqspi_driver_platdata socfpga_qspi = {
1994 .quirks = CQSPI_DISABLE_DAC_MODE
1995 | CQSPI_NO_SUPPORT_WR_COMPLETION
1996 | CQSPI_SLOW_SRAM,
1997};
1998
1999static const struct cqspi_driver_platdata versal_ospi = {
2000 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2001 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
2002 .indirect_read_dma = cqspi_versal_indirect_read_dma,
2003 .get_dma_status = cqspi_get_versal_dma_status,
2004};
2005
2006static const struct cqspi_driver_platdata jh7110_qspi = {
2007 .quirks = CQSPI_DISABLE_DAC_MODE,
2008 .jh7110_clk_init = cqspi_jh7110_clk_init,
2009};
2010
2011static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2012 .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2013};
2014
2015static const struct of_device_id cqspi_dt_ids[] = {
2016 {
2017 .compatible = "cdns,qspi-nor",
2018 .data = &cdns_qspi,
2019 },
2020 {
2021 .compatible = "ti,k2g-qspi",
2022 .data = &k2g_qspi,
2023 },
2024 {
2025 .compatible = "ti,am654-ospi",
2026 .data = &am654_ospi,
2027 },
2028 {
2029 .compatible = "intel,lgm-qspi",
2030 .data = &intel_lgm_qspi,
2031 },
2032 {
2033 .compatible = "xlnx,versal-ospi-1.0",
2034 .data = &versal_ospi,
2035 },
2036 {
2037 .compatible = "intel,socfpga-qspi",
2038 .data = &socfpga_qspi,
2039 },
2040 {
2041 .compatible = "starfive,jh7110-qspi",
2042 .data = &jh7110_qspi,
2043 },
2044 {
2045 .compatible = "amd,pensando-elba-qspi",
2046 .data = &pensando_cdns_qspi,
2047 },
2048 { /* end of table */ }
2049};
2050
2051MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2052
2053static struct platform_driver cqspi_platform_driver = {
2054 .probe = cqspi_probe,
2055 .remove_new = cqspi_remove,
2056 .driver = {
2057 .name = CQSPI_NAME,
2058 .pm = pm_ptr(&cqspi_dev_pm_ops),
2059 .of_match_table = cqspi_dt_ids,
2060 },
2061};
2062
2063module_platform_driver(cqspi_platform_driver);
2064
2065MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2066MODULE_LICENSE("GPL v2");
2067MODULE_ALIAS("platform:" CQSPI_NAME);
2068MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2069MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2070MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2071MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2072MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2073

source code of linux/drivers/spi/spi-cadence-quadspi.c