1// SPDX-License-Identifier: GPL-2.0-or-later
2// SPI init/core code
3//
4// Copyright (C) 2005 David Brownell
5// Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7#include <linux/acpi.h>
8#include <linux/cache.h>
9#include <linux/clk/clk-conf.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/dmaengine.h>
13#include <linux/dma-mapping.h>
14#include <linux/export.h>
15#include <linux/gpio/consumer.h>
16#include <linux/highmem.h>
17#include <linux/idr.h>
18#include <linux/init.h>
19#include <linux/ioport.h>
20#include <linux/kernel.h>
21#include <linux/kthread.h>
22#include <linux/mod_devicetable.h>
23#include <linux/mutex.h>
24#include <linux/of_device.h>
25#include <linux/of_irq.h>
26#include <linux/percpu.h>
27#include <linux/platform_data/x86/apple.h>
28#include <linux/pm_domain.h>
29#include <linux/pm_runtime.h>
30#include <linux/property.h>
31#include <linux/ptp_clock_kernel.h>
32#include <linux/sched/rt.h>
33#include <linux/slab.h>
34#include <linux/spi/spi.h>
35#include <linux/spi/spi-mem.h>
36#include <uapi/linux/sched/types.h>
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/spi.h>
40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43#include "internals.h"
44
45static DEFINE_IDR(spi_master_idr);
46
47static void spidev_release(struct device *dev)
48{
49 struct spi_device *spi = to_spi_device(dev);
50
51 spi_controller_put(ctlr: spi->controller);
52 kfree(objp: spi->driver_override);
53 free_percpu(pdata: spi->pcpu_statistics);
54 kfree(objp: spi);
55}
56
57static ssize_t
58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59{
60 const struct spi_device *spi = to_spi_device(dev);
61 int len;
62
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
66
67 return sysfs_emit(buf, fmt: "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68}
69static DEVICE_ATTR_RO(modalias);
70
71static ssize_t driver_override_store(struct device *dev,
72 struct device_attribute *a,
73 const char *buf, size_t count)
74{
75 struct spi_device *spi = to_spi_device(dev);
76 int ret;
77
78 ret = driver_set_override(dev, override: &spi->driver_override, s: buf, len: count);
79 if (ret)
80 return ret;
81
82 return count;
83}
84
85static ssize_t driver_override_show(struct device *dev,
86 struct device_attribute *a, char *buf)
87{
88 const struct spi_device *spi = to_spi_device(dev);
89 ssize_t len;
90
91 device_lock(dev);
92 len = sysfs_emit(buf, fmt: "%s\n", spi->driver_override ? : "");
93 device_unlock(dev);
94 return len;
95}
96static DEVICE_ATTR_RW(driver_override);
97
98static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99{
100 struct spi_statistics __percpu *pcpu_stats;
101
102 if (dev)
103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 else
105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107 if (pcpu_stats) {
108 int cpu;
109
110 for_each_possible_cpu(cpu) {
111 struct spi_statistics *stat;
112
113 stat = per_cpu_ptr(pcpu_stats, cpu);
114 u64_stats_init(syncp: &stat->syncp);
115 }
116 }
117 return pcpu_stats;
118}
119
120static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 char *buf, size_t offset)
122{
123 u64 val = 0;
124 int i;
125
126 for_each_possible_cpu(i) {
127 const struct spi_statistics *pcpu_stats;
128 u64_stats_t *field;
129 unsigned int start;
130 u64 inc;
131
132 pcpu_stats = per_cpu_ptr(stat, i);
133 field = (void *)pcpu_stats + offset;
134 do {
135 start = u64_stats_fetch_begin(syncp: &pcpu_stats->syncp);
136 inc = u64_stats_read(p: field);
137 } while (u64_stats_fetch_retry(syncp: &pcpu_stats->syncp, start));
138 val += inc;
139 }
140 return sysfs_emit(buf, fmt: "%llu\n", val);
141}
142
143#define SPI_STATISTICS_ATTRS(field, file) \
144static ssize_t spi_controller_##field##_show(struct device *dev, \
145 struct device_attribute *attr, \
146 char *buf) \
147{ \
148 struct spi_controller *ctlr = container_of(dev, \
149 struct spi_controller, dev); \
150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151} \
152static struct device_attribute dev_attr_spi_controller_##field = { \
153 .attr = { .name = file, .mode = 0444 }, \
154 .show = spi_controller_##field##_show, \
155}; \
156static ssize_t spi_device_##field##_show(struct device *dev, \
157 struct device_attribute *attr, \
158 char *buf) \
159{ \
160 struct spi_device *spi = to_spi_device(dev); \
161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162} \
163static struct device_attribute dev_attr_spi_device_##field = { \
164 .attr = { .name = file, .mode = 0444 }, \
165 .show = spi_device_##field##_show, \
166}
167
168#define SPI_STATISTICS_SHOW_NAME(name, file, field) \
169static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 char *buf) \
171{ \
172 return spi_emit_pcpu_stats(stat, buf, \
173 offsetof(struct spi_statistics, field)); \
174} \
175SPI_STATISTICS_ATTRS(name, file)
176
177#define SPI_STATISTICS_SHOW(field) \
178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
179 field)
180
181SPI_STATISTICS_SHOW(messages);
182SPI_STATISTICS_SHOW(transfers);
183SPI_STATISTICS_SHOW(errors);
184SPI_STATISTICS_SHOW(timedout);
185
186SPI_STATISTICS_SHOW(spi_sync);
187SPI_STATISTICS_SHOW(spi_sync_immediate);
188SPI_STATISTICS_SHOW(spi_async);
189
190SPI_STATISTICS_SHOW(bytes);
191SPI_STATISTICS_SHOW(bytes_rx);
192SPI_STATISTICS_SHOW(bytes_tx);
193
194#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
196 "transfer_bytes_histo_" number, \
197 transfer_bytes_histo[index])
198SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
199SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
200SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
201SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
202SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
203SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
204SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
205SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
206SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
207SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
208SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218static struct attribute *spi_dev_attrs[] = {
219 &dev_attr_modalias.attr,
220 &dev_attr_driver_override.attr,
221 NULL,
222};
223
224static const struct attribute_group spi_dev_group = {
225 .attrs = spi_dev_attrs,
226};
227
228static struct attribute *spi_device_statistics_attrs[] = {
229 &dev_attr_spi_device_messages.attr,
230 &dev_attr_spi_device_transfers.attr,
231 &dev_attr_spi_device_errors.attr,
232 &dev_attr_spi_device_timedout.attr,
233 &dev_attr_spi_device_spi_sync.attr,
234 &dev_attr_spi_device_spi_sync_immediate.attr,
235 &dev_attr_spi_device_spi_async.attr,
236 &dev_attr_spi_device_bytes.attr,
237 &dev_attr_spi_device_bytes_rx.attr,
238 &dev_attr_spi_device_bytes_tx.attr,
239 &dev_attr_spi_device_transfer_bytes_histo0.attr,
240 &dev_attr_spi_device_transfer_bytes_histo1.attr,
241 &dev_attr_spi_device_transfer_bytes_histo2.attr,
242 &dev_attr_spi_device_transfer_bytes_histo3.attr,
243 &dev_attr_spi_device_transfer_bytes_histo4.attr,
244 &dev_attr_spi_device_transfer_bytes_histo5.attr,
245 &dev_attr_spi_device_transfer_bytes_histo6.attr,
246 &dev_attr_spi_device_transfer_bytes_histo7.attr,
247 &dev_attr_spi_device_transfer_bytes_histo8.attr,
248 &dev_attr_spi_device_transfer_bytes_histo9.attr,
249 &dev_attr_spi_device_transfer_bytes_histo10.attr,
250 &dev_attr_spi_device_transfer_bytes_histo11.attr,
251 &dev_attr_spi_device_transfer_bytes_histo12.attr,
252 &dev_attr_spi_device_transfer_bytes_histo13.attr,
253 &dev_attr_spi_device_transfer_bytes_histo14.attr,
254 &dev_attr_spi_device_transfer_bytes_histo15.attr,
255 &dev_attr_spi_device_transfer_bytes_histo16.attr,
256 &dev_attr_spi_device_transfers_split_maxsize.attr,
257 NULL,
258};
259
260static const struct attribute_group spi_device_statistics_group = {
261 .name = "statistics",
262 .attrs = spi_device_statistics_attrs,
263};
264
265static const struct attribute_group *spi_dev_groups[] = {
266 &spi_dev_group,
267 &spi_device_statistics_group,
268 NULL,
269};
270
271static struct attribute *spi_controller_statistics_attrs[] = {
272 &dev_attr_spi_controller_messages.attr,
273 &dev_attr_spi_controller_transfers.attr,
274 &dev_attr_spi_controller_errors.attr,
275 &dev_attr_spi_controller_timedout.attr,
276 &dev_attr_spi_controller_spi_sync.attr,
277 &dev_attr_spi_controller_spi_sync_immediate.attr,
278 &dev_attr_spi_controller_spi_async.attr,
279 &dev_attr_spi_controller_bytes.attr,
280 &dev_attr_spi_controller_bytes_rx.attr,
281 &dev_attr_spi_controller_bytes_tx.attr,
282 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 &dev_attr_spi_controller_transfers_split_maxsize.attr,
300 NULL,
301};
302
303static const struct attribute_group spi_controller_statistics_group = {
304 .name = "statistics",
305 .attrs = spi_controller_statistics_attrs,
306};
307
308static const struct attribute_group *spi_master_groups[] = {
309 &spi_controller_statistics_group,
310 NULL,
311};
312
313static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 struct spi_transfer *xfer,
315 struct spi_controller *ctlr)
316{
317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 struct spi_statistics *stats;
319
320 if (l2len < 0)
321 l2len = 0;
322
323 get_cpu();
324 stats = this_cpu_ptr(pcpu_stats);
325 u64_stats_update_begin(syncp: &stats->syncp);
326
327 u64_stats_inc(p: &stats->transfers);
328 u64_stats_inc(p: &stats->transfer_bytes_histo[l2len]);
329
330 u64_stats_add(p: &stats->bytes, val: xfer->len);
331 if ((xfer->tx_buf) &&
332 (xfer->tx_buf != ctlr->dummy_tx))
333 u64_stats_add(p: &stats->bytes_tx, val: xfer->len);
334 if ((xfer->rx_buf) &&
335 (xfer->rx_buf != ctlr->dummy_rx))
336 u64_stats_add(p: &stats->bytes_rx, val: xfer->len);
337
338 u64_stats_update_end(syncp: &stats->syncp);
339 put_cpu();
340}
341
342/*
343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344 * and the sysfs version makes coldplug work too.
345 */
346static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347{
348 while (id->name[0]) {
349 if (!strcmp(name, id->name))
350 return id;
351 id++;
352 }
353 return NULL;
354}
355
356const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357{
358 const struct spi_driver *sdrv = to_spi_driver(drv: sdev->dev.driver);
359
360 return spi_match_id(id: sdrv->id_table, name: sdev->modalias);
361}
362EXPORT_SYMBOL_GPL(spi_get_device_id);
363
364const void *spi_get_device_match_data(const struct spi_device *sdev)
365{
366 const void *match;
367
368 match = device_get_match_data(dev: &sdev->dev);
369 if (match)
370 return match;
371
372 return (const void *)spi_get_device_id(sdev)->driver_data;
373}
374EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375
376static int spi_match_device(struct device *dev, struct device_driver *drv)
377{
378 const struct spi_device *spi = to_spi_device(dev);
379 const struct spi_driver *sdrv = to_spi_driver(drv);
380
381 /* Check override first, and if set, only use the named driver */
382 if (spi->driver_override)
383 return strcmp(spi->driver_override, drv->name) == 0;
384
385 /* Attempt an OF style match */
386 if (of_driver_match_device(dev, drv))
387 return 1;
388
389 /* Then try ACPI */
390 if (acpi_driver_match_device(dev, drv))
391 return 1;
392
393 if (sdrv->id_table)
394 return !!spi_match_id(id: sdrv->id_table, name: spi->modalias);
395
396 return strcmp(spi->modalias, drv->name) == 0;
397}
398
399static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400{
401 const struct spi_device *spi = to_spi_device(dev);
402 int rc;
403
404 rc = acpi_device_uevent_modalias(dev, env);
405 if (rc != -ENODEV)
406 return rc;
407
408 return add_uevent_var(env, format: "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409}
410
411static int spi_probe(struct device *dev)
412{
413 const struct spi_driver *sdrv = to_spi_driver(drv: dev->driver);
414 struct spi_device *spi = to_spi_device(dev);
415 int ret;
416
417 ret = of_clk_set_defaults(node: dev->of_node, clk_supplier: false);
418 if (ret)
419 return ret;
420
421 if (dev->of_node) {
422 spi->irq = of_irq_get(dev: dev->of_node, index: 0);
423 if (spi->irq == -EPROBE_DEFER)
424 return -EPROBE_DEFER;
425 if (spi->irq < 0)
426 spi->irq = 0;
427 }
428
429 ret = dev_pm_domain_attach(dev, power_on: true);
430 if (ret)
431 return ret;
432
433 if (sdrv->probe) {
434 ret = sdrv->probe(spi);
435 if (ret)
436 dev_pm_domain_detach(dev, power_off: true);
437 }
438
439 return ret;
440}
441
442static void spi_remove(struct device *dev)
443{
444 const struct spi_driver *sdrv = to_spi_driver(drv: dev->driver);
445
446 if (sdrv->remove)
447 sdrv->remove(to_spi_device(dev));
448
449 dev_pm_domain_detach(dev, power_off: true);
450}
451
452static void spi_shutdown(struct device *dev)
453{
454 if (dev->driver) {
455 const struct spi_driver *sdrv = to_spi_driver(drv: dev->driver);
456
457 if (sdrv->shutdown)
458 sdrv->shutdown(to_spi_device(dev));
459 }
460}
461
462const struct bus_type spi_bus_type = {
463 .name = "spi",
464 .dev_groups = spi_dev_groups,
465 .match = spi_match_device,
466 .uevent = spi_uevent,
467 .probe = spi_probe,
468 .remove = spi_remove,
469 .shutdown = spi_shutdown,
470};
471EXPORT_SYMBOL_GPL(spi_bus_type);
472
473/**
474 * __spi_register_driver - register a SPI driver
475 * @owner: owner module of the driver to register
476 * @sdrv: the driver to register
477 * Context: can sleep
478 *
479 * Return: zero on success, else a negative error code.
480 */
481int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482{
483 sdrv->driver.owner = owner;
484 sdrv->driver.bus = &spi_bus_type;
485
486 /*
487 * For Really Good Reasons we use spi: modaliases not of:
488 * modaliases for DT so module autoloading won't work if we
489 * don't have a spi_device_id as well as a compatible string.
490 */
491 if (sdrv->driver.of_match_table) {
492 const struct of_device_id *of_id;
493
494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495 of_id++) {
496 const char *of_name;
497
498 /* Strip off any vendor prefix */
499 of_name = strnchr(of_id->compatible,
500 sizeof(of_id->compatible), ',');
501 if (of_name)
502 of_name++;
503 else
504 of_name = of_id->compatible;
505
506 if (sdrv->id_table) {
507 const struct spi_device_id *spi_id;
508
509 spi_id = spi_match_id(id: sdrv->id_table, name: of_name);
510 if (spi_id)
511 continue;
512 } else {
513 if (strcmp(sdrv->driver.name, of_name) == 0)
514 continue;
515 }
516
517 pr_warn("SPI driver %s has no spi_device_id for %s\n",
518 sdrv->driver.name, of_id->compatible);
519 }
520 }
521
522 return driver_register(drv: &sdrv->driver);
523}
524EXPORT_SYMBOL_GPL(__spi_register_driver);
525
526/*-------------------------------------------------------------------------*/
527
528/*
529 * SPI devices should normally not be created by SPI device drivers; that
530 * would make them board-specific. Similarly with SPI controller drivers.
531 * Device registration normally goes into like arch/.../mach.../board-YYY.c
532 * with other readonly (flashable) information about mainboard devices.
533 */
534
535struct boardinfo {
536 struct list_head list;
537 struct spi_board_info board_info;
538};
539
540static LIST_HEAD(board_list);
541static LIST_HEAD(spi_controller_list);
542
543/*
544 * Used to protect add/del operation for board_info list and
545 * spi_controller list, and their matching process also used
546 * to protect object of type struct idr.
547 */
548static DEFINE_MUTEX(board_lock);
549
550/**
551 * spi_alloc_device - Allocate a new SPI device
552 * @ctlr: Controller to which device is connected
553 * Context: can sleep
554 *
555 * Allows a driver to allocate and initialize a spi_device without
556 * registering it immediately. This allows a driver to directly
557 * fill the spi_device with device parameters before calling
558 * spi_add_device() on it.
559 *
560 * Caller is responsible to call spi_add_device() on the returned
561 * spi_device structure to add it to the SPI controller. If the caller
562 * needs to discard the spi_device without adding it, then it should
563 * call spi_dev_put() on it.
564 *
565 * Return: a pointer to the new device, or NULL.
566 */
567struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568{
569 struct spi_device *spi;
570
571 if (!spi_controller_get(ctlr))
572 return NULL;
573
574 spi = kzalloc(size: sizeof(*spi), GFP_KERNEL);
575 if (!spi) {
576 spi_controller_put(ctlr);
577 return NULL;
578 }
579
580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581 if (!spi->pcpu_statistics) {
582 kfree(objp: spi);
583 spi_controller_put(ctlr);
584 return NULL;
585 }
586
587 spi->controller = ctlr;
588 spi->dev.parent = &ctlr->dev;
589 spi->dev.bus = &spi_bus_type;
590 spi->dev.release = spidev_release;
591 spi->mode = ctlr->buswidth_override_bits;
592
593 device_initialize(dev: &spi->dev);
594 return spi;
595}
596EXPORT_SYMBOL_GPL(spi_alloc_device);
597
598static void spi_dev_set_name(struct spi_device *spi)
599{
600 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601
602 if (adev) {
603 dev_set_name(dev: &spi->dev, name: "spi-%s", acpi_dev_name(adev));
604 return;
605 }
606
607 dev_set_name(dev: &spi->dev, name: "%s.%u", dev_name(dev: &spi->controller->dev),
608 spi_get_chipselect(spi, idx: 0));
609}
610
611/*
612 * Zero(0) is a valid physical CS value and can be located at any
613 * logical CS in the spi->chip_select[]. If all the physical CS
614 * are initialized to 0 then It would be difficult to differentiate
615 * between a valid physical CS 0 & an unused logical CS whose physical
616 * CS can be 0. As a solution to this issue initialize all the CS to -1.
617 * Now all the unused logical CS will have -1 physical CS value & can be
618 * ignored while performing physical CS validity checks.
619 */
620#define SPI_INVALID_CS ((s8)-1)
621
622static inline bool is_valid_cs(s8 chip_select)
623{
624 return chip_select != SPI_INVALID_CS;
625}
626
627static inline int spi_dev_check_cs(struct device *dev,
628 struct spi_device *spi, u8 idx,
629 struct spi_device *new_spi, u8 new_idx)
630{
631 u8 cs, cs_new;
632 u8 idx_new;
633
634 cs = spi_get_chipselect(spi, idx);
635 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
636 cs_new = spi_get_chipselect(spi: new_spi, idx: idx_new);
637 if (is_valid_cs(chip_select: cs) && is_valid_cs(chip_select: cs_new) && cs == cs_new) {
638 dev_err(dev, "chipselect %u already in use\n", cs_new);
639 return -EBUSY;
640 }
641 }
642 return 0;
643}
644
645static int spi_dev_check(struct device *dev, void *data)
646{
647 struct spi_device *spi = to_spi_device(dev);
648 struct spi_device *new_spi = data;
649 int status, idx;
650
651 if (spi->controller == new_spi->controller) {
652 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
653 status = spi_dev_check_cs(dev, spi, idx, new_spi, new_idx: 0);
654 if (status)
655 return status;
656 }
657 }
658 return 0;
659}
660
661static void spi_cleanup(struct spi_device *spi)
662{
663 if (spi->controller->cleanup)
664 spi->controller->cleanup(spi);
665}
666
667static int __spi_add_device(struct spi_device *spi)
668{
669 struct spi_controller *ctlr = spi->controller;
670 struct device *dev = ctlr->dev.parent;
671 int status, idx;
672 u8 cs;
673
674 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
675 /* Chipselects are numbered 0..max; validate. */
676 cs = spi_get_chipselect(spi, idx);
677 if (is_valid_cs(chip_select: cs) && cs >= ctlr->num_chipselect) {
678 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
679 ctlr->num_chipselect);
680 return -EINVAL;
681 }
682 }
683
684 /*
685 * Make sure that multiple logical CS doesn't map to the same physical CS.
686 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
687 */
688 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
689 status = spi_dev_check_cs(dev, spi, idx, new_spi: spi, new_idx: idx + 1);
690 if (status)
691 return status;
692 }
693
694 /* Set the bus ID string */
695 spi_dev_set_name(spi);
696
697 /*
698 * We need to make sure there's no other device with this
699 * chipselect **BEFORE** we call setup(), else we'll trash
700 * its configuration.
701 */
702 status = bus_for_each_dev(bus: &spi_bus_type, NULL, data: spi, fn: spi_dev_check);
703 if (status)
704 return status;
705
706 /* Controller may unregister concurrently */
707 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
708 !device_is_registered(dev: &ctlr->dev)) {
709 return -ENODEV;
710 }
711
712 if (ctlr->cs_gpiods) {
713 u8 cs;
714
715 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
716 cs = spi_get_chipselect(spi, idx);
717 if (is_valid_cs(chip_select: cs))
718 spi_set_csgpiod(spi, idx, csgpiod: ctlr->cs_gpiods[cs]);
719 }
720 }
721
722 /*
723 * Drivers may modify this initial i/o setup, but will
724 * normally rely on the device being setup. Devices
725 * using SPI_CS_HIGH can't coexist well otherwise...
726 */
727 status = spi_setup(spi);
728 if (status < 0) {
729 dev_err(dev, "can't setup %s, status %d\n",
730 dev_name(&spi->dev), status);
731 return status;
732 }
733
734 /* Device may be bound to an active driver when this returns */
735 status = device_add(dev: &spi->dev);
736 if (status < 0) {
737 dev_err(dev, "can't add %s, status %d\n",
738 dev_name(&spi->dev), status);
739 spi_cleanup(spi);
740 } else {
741 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
742 }
743
744 return status;
745}
746
747/**
748 * spi_add_device - Add spi_device allocated with spi_alloc_device
749 * @spi: spi_device to register
750 *
751 * Companion function to spi_alloc_device. Devices allocated with
752 * spi_alloc_device can be added onto the SPI bus with this function.
753 *
754 * Return: 0 on success; negative errno on failure
755 */
756int spi_add_device(struct spi_device *spi)
757{
758 struct spi_controller *ctlr = spi->controller;
759 int status;
760
761 /* Set the bus ID string */
762 spi_dev_set_name(spi);
763
764 mutex_lock(&ctlr->add_lock);
765 status = __spi_add_device(spi);
766 mutex_unlock(lock: &ctlr->add_lock);
767 return status;
768}
769EXPORT_SYMBOL_GPL(spi_add_device);
770
771static void spi_set_all_cs_unused(struct spi_device *spi)
772{
773 u8 idx;
774
775 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
776 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
777}
778
779/**
780 * spi_new_device - instantiate one new SPI device
781 * @ctlr: Controller to which device is connected
782 * @chip: Describes the SPI device
783 * Context: can sleep
784 *
785 * On typical mainboards, this is purely internal; and it's not needed
786 * after board init creates the hard-wired devices. Some development
787 * platforms may not be able to use spi_register_board_info though, and
788 * this is exported so that for example a USB or parport based adapter
789 * driver could add devices (which it would learn about out-of-band).
790 *
791 * Return: the new device, or NULL.
792 */
793struct spi_device *spi_new_device(struct spi_controller *ctlr,
794 struct spi_board_info *chip)
795{
796 struct spi_device *proxy;
797 int status;
798
799 /*
800 * NOTE: caller did any chip->bus_num checks necessary.
801 *
802 * Also, unless we change the return value convention to use
803 * error-or-pointer (not NULL-or-pointer), troubleshootability
804 * suggests syslogged diagnostics are best here (ugh).
805 */
806
807 proxy = spi_alloc_device(ctlr);
808 if (!proxy)
809 return NULL;
810
811 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
812
813 /* Use provided chip-select for proxy device */
814 spi_set_all_cs_unused(spi: proxy);
815 spi_set_chipselect(spi: proxy, idx: 0, chipselect: chip->chip_select);
816
817 proxy->max_speed_hz = chip->max_speed_hz;
818 proxy->mode = chip->mode;
819 proxy->irq = chip->irq;
820 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
821 proxy->dev.platform_data = (void *) chip->platform_data;
822 proxy->controller_data = chip->controller_data;
823 proxy->controller_state = NULL;
824 /*
825 * spi->chip_select[i] gives the corresponding physical CS for logical CS i
826 * logical CS number is represented by setting the ith bit in spi->cs_index_mask
827 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
828 * spi->chip_select[0] will give the physical CS.
829 * By default spi->chip_select[0] will hold the physical CS number so, set
830 * spi->cs_index_mask as 0x01.
831 */
832 proxy->cs_index_mask = 0x01;
833
834 if (chip->swnode) {
835 status = device_add_software_node(dev: &proxy->dev, node: chip->swnode);
836 if (status) {
837 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
838 chip->modalias, status);
839 goto err_dev_put;
840 }
841 }
842
843 status = spi_add_device(proxy);
844 if (status < 0)
845 goto err_dev_put;
846
847 return proxy;
848
849err_dev_put:
850 device_remove_software_node(dev: &proxy->dev);
851 spi_dev_put(spi: proxy);
852 return NULL;
853}
854EXPORT_SYMBOL_GPL(spi_new_device);
855
856/**
857 * spi_unregister_device - unregister a single SPI device
858 * @spi: spi_device to unregister
859 *
860 * Start making the passed SPI device vanish. Normally this would be handled
861 * by spi_unregister_controller().
862 */
863void spi_unregister_device(struct spi_device *spi)
864{
865 if (!spi)
866 return;
867
868 if (spi->dev.of_node) {
869 of_node_clear_flag(n: spi->dev.of_node, OF_POPULATED);
870 of_node_put(node: spi->dev.of_node);
871 }
872 if (ACPI_COMPANION(&spi->dev))
873 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
874 device_remove_software_node(dev: &spi->dev);
875 device_del(dev: &spi->dev);
876 spi_cleanup(spi);
877 put_device(dev: &spi->dev);
878}
879EXPORT_SYMBOL_GPL(spi_unregister_device);
880
881static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
882 struct spi_board_info *bi)
883{
884 struct spi_device *dev;
885
886 if (ctlr->bus_num != bi->bus_num)
887 return;
888
889 dev = spi_new_device(ctlr, bi);
890 if (!dev)
891 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
892 bi->modalias);
893}
894
895/**
896 * spi_register_board_info - register SPI devices for a given board
897 * @info: array of chip descriptors
898 * @n: how many descriptors are provided
899 * Context: can sleep
900 *
901 * Board-specific early init code calls this (probably during arch_initcall)
902 * with segments of the SPI device table. Any device nodes are created later,
903 * after the relevant parent SPI controller (bus_num) is defined. We keep
904 * this table of devices forever, so that reloading a controller driver will
905 * not make Linux forget about these hard-wired devices.
906 *
907 * Other code can also call this, e.g. a particular add-on board might provide
908 * SPI devices through its expansion connector, so code initializing that board
909 * would naturally declare its SPI devices.
910 *
911 * The board info passed can safely be __initdata ... but be careful of
912 * any embedded pointers (platform_data, etc), they're copied as-is.
913 *
914 * Return: zero on success, else a negative error code.
915 */
916int spi_register_board_info(struct spi_board_info const *info, unsigned n)
917{
918 struct boardinfo *bi;
919 int i;
920
921 if (!n)
922 return 0;
923
924 bi = kcalloc(n, size: sizeof(*bi), GFP_KERNEL);
925 if (!bi)
926 return -ENOMEM;
927
928 for (i = 0; i < n; i++, bi++, info++) {
929 struct spi_controller *ctlr;
930
931 memcpy(&bi->board_info, info, sizeof(*info));
932
933 mutex_lock(&board_lock);
934 list_add_tail(new: &bi->list, head: &board_list);
935 list_for_each_entry(ctlr, &spi_controller_list, list)
936 spi_match_controller_to_boardinfo(ctlr,
937 bi: &bi->board_info);
938 mutex_unlock(lock: &board_lock);
939 }
940
941 return 0;
942}
943
944/*-------------------------------------------------------------------------*/
945
946/* Core methods for SPI resource management */
947
948/**
949 * spi_res_alloc - allocate a spi resource that is life-cycle managed
950 * during the processing of a spi_message while using
951 * spi_transfer_one
952 * @spi: the SPI device for which we allocate memory
953 * @release: the release code to execute for this resource
954 * @size: size to alloc and return
955 * @gfp: GFP allocation flags
956 *
957 * Return: the pointer to the allocated data
958 *
959 * This may get enhanced in the future to allocate from a memory pool
960 * of the @spi_device or @spi_controller to avoid repeated allocations.
961 */
962static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
963 size_t size, gfp_t gfp)
964{
965 struct spi_res *sres;
966
967 sres = kzalloc(size: sizeof(*sres) + size, flags: gfp);
968 if (!sres)
969 return NULL;
970
971 INIT_LIST_HEAD(list: &sres->entry);
972 sres->release = release;
973
974 return sres->data;
975}
976
977/**
978 * spi_res_free - free an SPI resource
979 * @res: pointer to the custom data of a resource
980 */
981static void spi_res_free(void *res)
982{
983 struct spi_res *sres = container_of(res, struct spi_res, data);
984
985 if (!res)
986 return;
987
988 WARN_ON(!list_empty(&sres->entry));
989 kfree(objp: sres);
990}
991
992/**
993 * spi_res_add - add a spi_res to the spi_message
994 * @message: the SPI message
995 * @res: the spi_resource
996 */
997static void spi_res_add(struct spi_message *message, void *res)
998{
999 struct spi_res *sres = container_of(res, struct spi_res, data);
1000
1001 WARN_ON(!list_empty(&sres->entry));
1002 list_add_tail(new: &sres->entry, head: &message->resources);
1003}
1004
1005/**
1006 * spi_res_release - release all SPI resources for this message
1007 * @ctlr: the @spi_controller
1008 * @message: the @spi_message
1009 */
1010static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1011{
1012 struct spi_res *res, *tmp;
1013
1014 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1015 if (res->release)
1016 res->release(ctlr, message, res->data);
1017
1018 list_del(entry: &res->entry);
1019
1020 kfree(objp: res);
1021 }
1022}
1023
1024/*-------------------------------------------------------------------------*/
1025static inline bool spi_is_last_cs(struct spi_device *spi)
1026{
1027 u8 idx;
1028 bool last = false;
1029
1030 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1031 if (spi->cs_index_mask & BIT(idx)) {
1032 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1033 last = true;
1034 }
1035 }
1036 return last;
1037}
1038
1039
1040static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1041{
1042 bool activate = enable;
1043 u8 idx;
1044
1045 /*
1046 * Avoid calling into the driver (or doing delays) if the chip select
1047 * isn't actually changing from the last time this was called.
1048 */
1049 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1050 spi_is_last_cs(spi)) ||
1051 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1052 !spi_is_last_cs(spi))) &&
1053 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1054 return;
1055
1056 trace_spi_set_cs(spi, enable: activate);
1057
1058 spi->controller->last_cs_index_mask = spi->cs_index_mask;
1059 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1060 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, idx: 0) : SPI_INVALID_CS;
1061 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1062
1063 if (spi->mode & SPI_CS_HIGH)
1064 enable = !enable;
1065
1066 /*
1067 * Handle chip select delays for GPIO based CS or controllers without
1068 * programmable chip select timing.
1069 */
1070 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1071 spi_delay_exec(delay: &spi->cs_hold, NULL);
1072
1073 if (spi_is_csgpiod(spi)) {
1074 if (!(spi->mode & SPI_NO_CS)) {
1075 /*
1076 * Historically ACPI has no means of the GPIO polarity and
1077 * thus the SPISerialBus() resource defines it on the per-chip
1078 * basis. In order to avoid a chain of negations, the GPIO
1079 * polarity is considered being Active High. Even for the cases
1080 * when _DSD() is involved (in the updated versions of ACPI)
1081 * the GPIO CS polarity must be defined Active High to avoid
1082 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1083 * into account.
1084 */
1085 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1086 if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) {
1087 if (has_acpi_companion(dev: &spi->dev))
1088 gpiod_set_value_cansleep(desc: spi_get_csgpiod(spi, idx),
1089 value: !enable);
1090 else
1091 /* Polarity handled by GPIO library */
1092 gpiod_set_value_cansleep(desc: spi_get_csgpiod(spi, idx),
1093 value: activate);
1094
1095 if (activate)
1096 spi_delay_exec(delay: &spi->cs_setup, NULL);
1097 else
1098 spi_delay_exec(delay: &spi->cs_inactive, NULL);
1099 }
1100 }
1101 }
1102 /* Some SPI masters need both GPIO CS & slave_select */
1103 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1104 spi->controller->set_cs)
1105 spi->controller->set_cs(spi, !enable);
1106 } else if (spi->controller->set_cs) {
1107 spi->controller->set_cs(spi, !enable);
1108 }
1109
1110 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1111 if (activate)
1112 spi_delay_exec(delay: &spi->cs_setup, NULL);
1113 else
1114 spi_delay_exec(delay: &spi->cs_inactive, NULL);
1115 }
1116}
1117
1118#ifdef CONFIG_HAS_DMA
1119static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1120 struct sg_table *sgt, void *buf, size_t len,
1121 enum dma_data_direction dir, unsigned long attrs)
1122{
1123 const bool vmalloced_buf = is_vmalloc_addr(x: buf);
1124 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1125#ifdef CONFIG_HIGHMEM
1126 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1127 (unsigned long)buf < (PKMAP_BASE +
1128 (LAST_PKMAP * PAGE_SIZE)));
1129#else
1130 const bool kmap_buf = false;
1131#endif
1132 int desc_len;
1133 int sgs;
1134 struct page *vm_page;
1135 struct scatterlist *sg;
1136 void *sg_buf;
1137 size_t min;
1138 int i, ret;
1139
1140 if (vmalloced_buf || kmap_buf) {
1141 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1142 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1143 } else if (virt_addr_valid(buf)) {
1144 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1145 sgs = DIV_ROUND_UP(len, desc_len);
1146 } else {
1147 return -EINVAL;
1148 }
1149
1150 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1151 if (ret != 0)
1152 return ret;
1153
1154 sg = &sgt->sgl[0];
1155 for (i = 0; i < sgs; i++) {
1156
1157 if (vmalloced_buf || kmap_buf) {
1158 /*
1159 * Next scatterlist entry size is the minimum between
1160 * the desc_len and the remaining buffer length that
1161 * fits in a page.
1162 */
1163 min = min_t(size_t, desc_len,
1164 min_t(size_t, len,
1165 PAGE_SIZE - offset_in_page(buf)));
1166 if (vmalloced_buf)
1167 vm_page = vmalloc_to_page(addr: buf);
1168 else
1169 vm_page = kmap_to_page(addr: buf);
1170 if (!vm_page) {
1171 sg_free_table(sgt);
1172 return -ENOMEM;
1173 }
1174 sg_set_page(sg, page: vm_page,
1175 len: min, offset_in_page(buf));
1176 } else {
1177 min = min_t(size_t, len, desc_len);
1178 sg_buf = buf;
1179 sg_set_buf(sg, buf: sg_buf, buflen: min);
1180 }
1181
1182 buf += min;
1183 len -= min;
1184 sg = sg_next(sg);
1185 }
1186
1187 ret = dma_map_sgtable(dev, sgt, dir, attrs);
1188 if (ret < 0) {
1189 sg_free_table(sgt);
1190 return ret;
1191 }
1192
1193 return 0;
1194}
1195
1196int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1197 struct sg_table *sgt, void *buf, size_t len,
1198 enum dma_data_direction dir)
1199{
1200 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, attrs: 0);
1201}
1202
1203static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1204 struct device *dev, struct sg_table *sgt,
1205 enum dma_data_direction dir,
1206 unsigned long attrs)
1207{
1208 if (sgt->orig_nents) {
1209 dma_unmap_sgtable(dev, sgt, dir, attrs);
1210 sg_free_table(sgt);
1211 sgt->orig_nents = 0;
1212 sgt->nents = 0;
1213 }
1214}
1215
1216void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1217 struct sg_table *sgt, enum dma_data_direction dir)
1218{
1219 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, attrs: 0);
1220}
1221
1222static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1223{
1224 struct device *tx_dev, *rx_dev;
1225 struct spi_transfer *xfer;
1226 int ret;
1227
1228 if (!ctlr->can_dma)
1229 return 0;
1230
1231 if (ctlr->dma_tx)
1232 tx_dev = ctlr->dma_tx->device->dev;
1233 else if (ctlr->dma_map_dev)
1234 tx_dev = ctlr->dma_map_dev;
1235 else
1236 tx_dev = ctlr->dev.parent;
1237
1238 if (ctlr->dma_rx)
1239 rx_dev = ctlr->dma_rx->device->dev;
1240 else if (ctlr->dma_map_dev)
1241 rx_dev = ctlr->dma_map_dev;
1242 else
1243 rx_dev = ctlr->dev.parent;
1244
1245 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1246 /* The sync is done before each transfer. */
1247 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1248
1249 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1250 continue;
1251
1252 if (xfer->tx_buf != NULL) {
1253 ret = spi_map_buf_attrs(ctlr, dev: tx_dev, sgt: &xfer->tx_sg,
1254 buf: (void *)xfer->tx_buf,
1255 len: xfer->len, dir: DMA_TO_DEVICE,
1256 attrs);
1257 if (ret != 0)
1258 return ret;
1259 }
1260
1261 if (xfer->rx_buf != NULL) {
1262 ret = spi_map_buf_attrs(ctlr, dev: rx_dev, sgt: &xfer->rx_sg,
1263 buf: xfer->rx_buf, len: xfer->len,
1264 dir: DMA_FROM_DEVICE, attrs);
1265 if (ret != 0) {
1266 spi_unmap_buf_attrs(ctlr, dev: tx_dev,
1267 sgt: &xfer->tx_sg, dir: DMA_TO_DEVICE,
1268 attrs);
1269
1270 return ret;
1271 }
1272 }
1273 }
1274
1275 ctlr->cur_rx_dma_dev = rx_dev;
1276 ctlr->cur_tx_dma_dev = tx_dev;
1277 ctlr->cur_msg_mapped = true;
1278
1279 return 0;
1280}
1281
1282static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1283{
1284 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1285 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1286 struct spi_transfer *xfer;
1287
1288 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1289 return 0;
1290
1291 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1292 /* The sync has already been done after each transfer. */
1293 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1294
1295 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1296 continue;
1297
1298 spi_unmap_buf_attrs(ctlr, dev: rx_dev, sgt: &xfer->rx_sg,
1299 dir: DMA_FROM_DEVICE, attrs);
1300 spi_unmap_buf_attrs(ctlr, dev: tx_dev, sgt: &xfer->tx_sg,
1301 dir: DMA_TO_DEVICE, attrs);
1302 }
1303
1304 ctlr->cur_msg_mapped = false;
1305
1306 return 0;
1307}
1308
1309static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1310 struct spi_transfer *xfer)
1311{
1312 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1313 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1314
1315 if (!ctlr->cur_msg_mapped)
1316 return;
1317
1318 if (xfer->tx_sg.orig_nents)
1319 dma_sync_sgtable_for_device(dev: tx_dev, sgt: &xfer->tx_sg, dir: DMA_TO_DEVICE);
1320 if (xfer->rx_sg.orig_nents)
1321 dma_sync_sgtable_for_device(dev: rx_dev, sgt: &xfer->rx_sg, dir: DMA_FROM_DEVICE);
1322}
1323
1324static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1325 struct spi_transfer *xfer)
1326{
1327 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1328 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1329
1330 if (!ctlr->cur_msg_mapped)
1331 return;
1332
1333 if (xfer->rx_sg.orig_nents)
1334 dma_sync_sgtable_for_cpu(dev: rx_dev, sgt: &xfer->rx_sg, dir: DMA_FROM_DEVICE);
1335 if (xfer->tx_sg.orig_nents)
1336 dma_sync_sgtable_for_cpu(dev: tx_dev, sgt: &xfer->tx_sg, dir: DMA_TO_DEVICE);
1337}
1338#else /* !CONFIG_HAS_DMA */
1339static inline int __spi_map_msg(struct spi_controller *ctlr,
1340 struct spi_message *msg)
1341{
1342 return 0;
1343}
1344
1345static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1346 struct spi_message *msg)
1347{
1348 return 0;
1349}
1350
1351static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1352 struct spi_transfer *xfer)
1353{
1354}
1355
1356static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1357 struct spi_transfer *xfer)
1358{
1359}
1360#endif /* !CONFIG_HAS_DMA */
1361
1362static inline int spi_unmap_msg(struct spi_controller *ctlr,
1363 struct spi_message *msg)
1364{
1365 struct spi_transfer *xfer;
1366
1367 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1368 /*
1369 * Restore the original value of tx_buf or rx_buf if they are
1370 * NULL.
1371 */
1372 if (xfer->tx_buf == ctlr->dummy_tx)
1373 xfer->tx_buf = NULL;
1374 if (xfer->rx_buf == ctlr->dummy_rx)
1375 xfer->rx_buf = NULL;
1376 }
1377
1378 return __spi_unmap_msg(ctlr, msg);
1379}
1380
1381static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1382{
1383 struct spi_transfer *xfer;
1384 void *tmp;
1385 unsigned int max_tx, max_rx;
1386
1387 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1388 && !(msg->spi->mode & SPI_3WIRE)) {
1389 max_tx = 0;
1390 max_rx = 0;
1391
1392 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1393 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1394 !xfer->tx_buf)
1395 max_tx = max(xfer->len, max_tx);
1396 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1397 !xfer->rx_buf)
1398 max_rx = max(xfer->len, max_rx);
1399 }
1400
1401 if (max_tx) {
1402 tmp = krealloc(objp: ctlr->dummy_tx, new_size: max_tx,
1403 GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1404 if (!tmp)
1405 return -ENOMEM;
1406 ctlr->dummy_tx = tmp;
1407 }
1408
1409 if (max_rx) {
1410 tmp = krealloc(objp: ctlr->dummy_rx, new_size: max_rx,
1411 GFP_KERNEL | GFP_DMA);
1412 if (!tmp)
1413 return -ENOMEM;
1414 ctlr->dummy_rx = tmp;
1415 }
1416
1417 if (max_tx || max_rx) {
1418 list_for_each_entry(xfer, &msg->transfers,
1419 transfer_list) {
1420 if (!xfer->len)
1421 continue;
1422 if (!xfer->tx_buf)
1423 xfer->tx_buf = ctlr->dummy_tx;
1424 if (!xfer->rx_buf)
1425 xfer->rx_buf = ctlr->dummy_rx;
1426 }
1427 }
1428 }
1429
1430 return __spi_map_msg(ctlr, msg);
1431}
1432
1433static int spi_transfer_wait(struct spi_controller *ctlr,
1434 struct spi_message *msg,
1435 struct spi_transfer *xfer)
1436{
1437 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1438 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1439 u32 speed_hz = xfer->speed_hz;
1440 unsigned long long ms;
1441
1442 if (spi_controller_is_slave(ctlr)) {
1443 if (wait_for_completion_interruptible(x: &ctlr->xfer_completion)) {
1444 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1445 return -EINTR;
1446 }
1447 } else {
1448 if (!speed_hz)
1449 speed_hz = 100000;
1450
1451 /*
1452 * For each byte we wait for 8 cycles of the SPI clock.
1453 * Since speed is defined in Hz and we want milliseconds,
1454 * use respective multiplier, but before the division,
1455 * otherwise we may get 0 for short transfers.
1456 */
1457 ms = 8LL * MSEC_PER_SEC * xfer->len;
1458 do_div(ms, speed_hz);
1459
1460 /*
1461 * Increase it twice and add 200 ms tolerance, use
1462 * predefined maximum in case of overflow.
1463 */
1464 ms += ms + 200;
1465 if (ms > UINT_MAX)
1466 ms = UINT_MAX;
1467
1468 ms = wait_for_completion_timeout(x: &ctlr->xfer_completion,
1469 timeout: msecs_to_jiffies(m: ms));
1470
1471 if (ms == 0) {
1472 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1473 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1474 dev_err(&msg->spi->dev,
1475 "SPI transfer timed out\n");
1476 return -ETIMEDOUT;
1477 }
1478
1479 if (xfer->error & SPI_TRANS_FAIL_IO)
1480 return -EIO;
1481 }
1482
1483 return 0;
1484}
1485
1486static void _spi_transfer_delay_ns(u32 ns)
1487{
1488 if (!ns)
1489 return;
1490 if (ns <= NSEC_PER_USEC) {
1491 ndelay(ns);
1492 } else {
1493 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1494
1495 if (us <= 10)
1496 udelay(us);
1497 else
1498 usleep_range(min: us, max: us + DIV_ROUND_UP(us, 10));
1499 }
1500}
1501
1502int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1503{
1504 u32 delay = _delay->value;
1505 u32 unit = _delay->unit;
1506 u32 hz;
1507
1508 if (!delay)
1509 return 0;
1510
1511 switch (unit) {
1512 case SPI_DELAY_UNIT_USECS:
1513 delay *= NSEC_PER_USEC;
1514 break;
1515 case SPI_DELAY_UNIT_NSECS:
1516 /* Nothing to do here */
1517 break;
1518 case SPI_DELAY_UNIT_SCK:
1519 /* Clock cycles need to be obtained from spi_transfer */
1520 if (!xfer)
1521 return -EINVAL;
1522 /*
1523 * If there is unknown effective speed, approximate it
1524 * by underestimating with half of the requested Hz.
1525 */
1526 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1527 if (!hz)
1528 return -EINVAL;
1529
1530 /* Convert delay to nanoseconds */
1531 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1532 break;
1533 default:
1534 return -EINVAL;
1535 }
1536
1537 return delay;
1538}
1539EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1540
1541int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1542{
1543 int delay;
1544
1545 might_sleep();
1546
1547 if (!_delay)
1548 return -EINVAL;
1549
1550 delay = spi_delay_to_ns(_delay, xfer);
1551 if (delay < 0)
1552 return delay;
1553
1554 _spi_transfer_delay_ns(ns: delay);
1555
1556 return 0;
1557}
1558EXPORT_SYMBOL_GPL(spi_delay_exec);
1559
1560static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1561 struct spi_transfer *xfer)
1562{
1563 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1564 u32 delay = xfer->cs_change_delay.value;
1565 u32 unit = xfer->cs_change_delay.unit;
1566 int ret;
1567
1568 /* Return early on "fast" mode - for everything but USECS */
1569 if (!delay) {
1570 if (unit == SPI_DELAY_UNIT_USECS)
1571 _spi_transfer_delay_ns(ns: default_delay_ns);
1572 return;
1573 }
1574
1575 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1576 if (ret) {
1577 dev_err_once(&msg->spi->dev,
1578 "Use of unsupported delay unit %i, using default of %luus\n",
1579 unit, default_delay_ns / NSEC_PER_USEC);
1580 _spi_transfer_delay_ns(ns: default_delay_ns);
1581 }
1582}
1583
1584void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1585 struct spi_transfer *xfer)
1586{
1587 _spi_transfer_cs_change_delay(msg, xfer);
1588}
1589EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1590
1591/*
1592 * spi_transfer_one_message - Default implementation of transfer_one_message()
1593 *
1594 * This is a standard implementation of transfer_one_message() for
1595 * drivers which implement a transfer_one() operation. It provides
1596 * standard handling of delays and chip select management.
1597 */
1598static int spi_transfer_one_message(struct spi_controller *ctlr,
1599 struct spi_message *msg)
1600{
1601 struct spi_transfer *xfer;
1602 bool keep_cs = false;
1603 int ret = 0;
1604 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1605 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1606
1607 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1608 spi_set_cs(spi: msg->spi, enable: !xfer->cs_off, force: false);
1609
1610 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1611 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1612
1613 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1614 trace_spi_transfer_start(msg, xfer);
1615
1616 spi_statistics_add_transfer_stats(pcpu_stats: statm, xfer, ctlr);
1617 spi_statistics_add_transfer_stats(pcpu_stats: stats, xfer, ctlr);
1618
1619 if (!ctlr->ptp_sts_supported) {
1620 xfer->ptp_sts_word_pre = 0;
1621 ptp_read_system_prets(sts: xfer->ptp_sts);
1622 }
1623
1624 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1625 reinit_completion(x: &ctlr->xfer_completion);
1626
1627fallback_pio:
1628 spi_dma_sync_for_device(ctlr, xfer);
1629 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1630 if (ret < 0) {
1631 spi_dma_sync_for_cpu(ctlr, xfer);
1632
1633 if (ctlr->cur_msg_mapped &&
1634 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1635 __spi_unmap_msg(ctlr, msg);
1636 ctlr->fallback = true;
1637 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1638 goto fallback_pio;
1639 }
1640
1641 SPI_STATISTICS_INCREMENT_FIELD(statm,
1642 errors);
1643 SPI_STATISTICS_INCREMENT_FIELD(stats,
1644 errors);
1645 dev_err(&msg->spi->dev,
1646 "SPI transfer failed: %d\n", ret);
1647 goto out;
1648 }
1649
1650 if (ret > 0) {
1651 ret = spi_transfer_wait(ctlr, msg, xfer);
1652 if (ret < 0)
1653 msg->status = ret;
1654 }
1655
1656 spi_dma_sync_for_cpu(ctlr, xfer);
1657 } else {
1658 if (xfer->len)
1659 dev_err(&msg->spi->dev,
1660 "Bufferless transfer has length %u\n",
1661 xfer->len);
1662 }
1663
1664 if (!ctlr->ptp_sts_supported) {
1665 ptp_read_system_postts(sts: xfer->ptp_sts);
1666 xfer->ptp_sts_word_post = xfer->len;
1667 }
1668
1669 trace_spi_transfer_stop(msg, xfer);
1670
1671 if (msg->status != -EINPROGRESS)
1672 goto out;
1673
1674 spi_transfer_delay_exec(t: xfer);
1675
1676 if (xfer->cs_change) {
1677 if (list_is_last(list: &xfer->transfer_list,
1678 head: &msg->transfers)) {
1679 keep_cs = true;
1680 } else {
1681 if (!xfer->cs_off)
1682 spi_set_cs(spi: msg->spi, enable: false, force: false);
1683 _spi_transfer_cs_change_delay(msg, xfer);
1684 if (!list_next_entry(xfer, transfer_list)->cs_off)
1685 spi_set_cs(spi: msg->spi, enable: true, force: false);
1686 }
1687 } else if (!list_is_last(list: &xfer->transfer_list, head: &msg->transfers) &&
1688 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1689 spi_set_cs(spi: msg->spi, enable: xfer->cs_off, force: false);
1690 }
1691
1692 msg->actual_length += xfer->len;
1693 }
1694
1695out:
1696 if (ret != 0 || !keep_cs)
1697 spi_set_cs(spi: msg->spi, enable: false, force: false);
1698
1699 if (msg->status == -EINPROGRESS)
1700 msg->status = ret;
1701
1702 if (msg->status && ctlr->handle_err)
1703 ctlr->handle_err(ctlr, msg);
1704
1705 spi_finalize_current_message(ctlr);
1706
1707 return ret;
1708}
1709
1710/**
1711 * spi_finalize_current_transfer - report completion of a transfer
1712 * @ctlr: the controller reporting completion
1713 *
1714 * Called by SPI drivers using the core transfer_one_message()
1715 * implementation to notify it that the current interrupt driven
1716 * transfer has finished and the next one may be scheduled.
1717 */
1718void spi_finalize_current_transfer(struct spi_controller *ctlr)
1719{
1720 complete(&ctlr->xfer_completion);
1721}
1722EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1723
1724static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1725{
1726 if (ctlr->auto_runtime_pm) {
1727 pm_runtime_mark_last_busy(dev: ctlr->dev.parent);
1728 pm_runtime_put_autosuspend(dev: ctlr->dev.parent);
1729 }
1730}
1731
1732static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1733 struct spi_message *msg, bool was_busy)
1734{
1735 struct spi_transfer *xfer;
1736 int ret;
1737
1738 if (!was_busy && ctlr->auto_runtime_pm) {
1739 ret = pm_runtime_get_sync(dev: ctlr->dev.parent);
1740 if (ret < 0) {
1741 pm_runtime_put_noidle(dev: ctlr->dev.parent);
1742 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1743 ret);
1744
1745 msg->status = ret;
1746 spi_finalize_current_message(ctlr);
1747
1748 return ret;
1749 }
1750 }
1751
1752 if (!was_busy)
1753 trace_spi_controller_busy(controller: ctlr);
1754
1755 if (!was_busy && ctlr->prepare_transfer_hardware) {
1756 ret = ctlr->prepare_transfer_hardware(ctlr);
1757 if (ret) {
1758 dev_err(&ctlr->dev,
1759 "failed to prepare transfer hardware: %d\n",
1760 ret);
1761
1762 if (ctlr->auto_runtime_pm)
1763 pm_runtime_put(dev: ctlr->dev.parent);
1764
1765 msg->status = ret;
1766 spi_finalize_current_message(ctlr);
1767
1768 return ret;
1769 }
1770 }
1771
1772 trace_spi_message_start(msg);
1773
1774 if (ctlr->prepare_message) {
1775 ret = ctlr->prepare_message(ctlr, msg);
1776 if (ret) {
1777 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1778 ret);
1779 msg->status = ret;
1780 spi_finalize_current_message(ctlr);
1781 return ret;
1782 }
1783 msg->prepared = true;
1784 }
1785
1786 ret = spi_map_msg(ctlr, msg);
1787 if (ret) {
1788 msg->status = ret;
1789 spi_finalize_current_message(ctlr);
1790 return ret;
1791 }
1792
1793 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1794 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1795 xfer->ptp_sts_word_pre = 0;
1796 ptp_read_system_prets(sts: xfer->ptp_sts);
1797 }
1798 }
1799
1800 /*
1801 * Drivers implementation of transfer_one_message() must arrange for
1802 * spi_finalize_current_message() to get called. Most drivers will do
1803 * this in the calling context, but some don't. For those cases, a
1804 * completion is used to guarantee that this function does not return
1805 * until spi_finalize_current_message() is done accessing
1806 * ctlr->cur_msg.
1807 * Use of the following two flags enable to opportunistically skip the
1808 * use of the completion since its use involves expensive spin locks.
1809 * In case of a race with the context that calls
1810 * spi_finalize_current_message() the completion will always be used,
1811 * due to strict ordering of these flags using barriers.
1812 */
1813 WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1814 WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1815 reinit_completion(x: &ctlr->cur_msg_completion);
1816 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1817
1818 ret = ctlr->transfer_one_message(ctlr, msg);
1819 if (ret) {
1820 dev_err(&ctlr->dev,
1821 "failed to transfer one message from queue\n");
1822 return ret;
1823 }
1824
1825 WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1826 smp_mb(); /* See spi_finalize_current_message()... */
1827 if (READ_ONCE(ctlr->cur_msg_incomplete))
1828 wait_for_completion(&ctlr->cur_msg_completion);
1829
1830 return 0;
1831}
1832
1833/**
1834 * __spi_pump_messages - function which processes SPI message queue
1835 * @ctlr: controller to process queue for
1836 * @in_kthread: true if we are in the context of the message pump thread
1837 *
1838 * This function checks if there is any SPI message in the queue that
1839 * needs processing and if so call out to the driver to initialize hardware
1840 * and transfer each message.
1841 *
1842 * Note that it is called both from the kthread itself and also from
1843 * inside spi_sync(); the queue extraction handling at the top of the
1844 * function should deal with this safely.
1845 */
1846static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1847{
1848 struct spi_message *msg;
1849 bool was_busy = false;
1850 unsigned long flags;
1851 int ret;
1852
1853 /* Take the I/O mutex */
1854 mutex_lock(&ctlr->io_mutex);
1855
1856 /* Lock queue */
1857 spin_lock_irqsave(&ctlr->queue_lock, flags);
1858
1859 /* Make sure we are not already running a message */
1860 if (ctlr->cur_msg)
1861 goto out_unlock;
1862
1863 /* Check if the queue is idle */
1864 if (list_empty(head: &ctlr->queue) || !ctlr->running) {
1865 if (!ctlr->busy)
1866 goto out_unlock;
1867
1868 /* Defer any non-atomic teardown to the thread */
1869 if (!in_kthread) {
1870 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1871 !ctlr->unprepare_transfer_hardware) {
1872 spi_idle_runtime_pm(ctlr);
1873 ctlr->busy = false;
1874 ctlr->queue_empty = true;
1875 trace_spi_controller_idle(controller: ctlr);
1876 } else {
1877 kthread_queue_work(worker: ctlr->kworker,
1878 work: &ctlr->pump_messages);
1879 }
1880 goto out_unlock;
1881 }
1882
1883 ctlr->busy = false;
1884 spin_unlock_irqrestore(lock: &ctlr->queue_lock, flags);
1885
1886 kfree(objp: ctlr->dummy_rx);
1887 ctlr->dummy_rx = NULL;
1888 kfree(objp: ctlr->dummy_tx);
1889 ctlr->dummy_tx = NULL;
1890 if (ctlr->unprepare_transfer_hardware &&
1891 ctlr->unprepare_transfer_hardware(ctlr))
1892 dev_err(&ctlr->dev,
1893 "failed to unprepare transfer hardware\n");
1894 spi_idle_runtime_pm(ctlr);
1895 trace_spi_controller_idle(controller: ctlr);
1896
1897 spin_lock_irqsave(&ctlr->queue_lock, flags);
1898 ctlr->queue_empty = true;
1899 goto out_unlock;
1900 }
1901
1902 /* Extract head of queue */
1903 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1904 ctlr->cur_msg = msg;
1905
1906 list_del_init(entry: &msg->queue);
1907 if (ctlr->busy)
1908 was_busy = true;
1909 else
1910 ctlr->busy = true;
1911 spin_unlock_irqrestore(lock: &ctlr->queue_lock, flags);
1912
1913 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1914 kthread_queue_work(worker: ctlr->kworker, work: &ctlr->pump_messages);
1915
1916 ctlr->cur_msg = NULL;
1917 ctlr->fallback = false;
1918
1919 mutex_unlock(lock: &ctlr->io_mutex);
1920
1921 /* Prod the scheduler in case transfer_one() was busy waiting */
1922 if (!ret)
1923 cond_resched();
1924 return;
1925
1926out_unlock:
1927 spin_unlock_irqrestore(lock: &ctlr->queue_lock, flags);
1928 mutex_unlock(lock: &ctlr->io_mutex);
1929}
1930
1931/**
1932 * spi_pump_messages - kthread work function which processes spi message queue
1933 * @work: pointer to kthread work struct contained in the controller struct
1934 */
1935static void spi_pump_messages(struct kthread_work *work)
1936{
1937 struct spi_controller *ctlr =
1938 container_of(work, struct spi_controller, pump_messages);
1939
1940 __spi_pump_messages(ctlr, in_kthread: true);
1941}
1942
1943/**
1944 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1945 * @ctlr: Pointer to the spi_controller structure of the driver
1946 * @xfer: Pointer to the transfer being timestamped
1947 * @progress: How many words (not bytes) have been transferred so far
1948 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1949 * transfer, for less jitter in time measurement. Only compatible
1950 * with PIO drivers. If true, must follow up with
1951 * spi_take_timestamp_post or otherwise system will crash.
1952 * WARNING: for fully predictable results, the CPU frequency must
1953 * also be under control (governor).
1954 *
1955 * This is a helper for drivers to collect the beginning of the TX timestamp
1956 * for the requested byte from the SPI transfer. The frequency with which this
1957 * function must be called (once per word, once for the whole transfer, once
1958 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1959 * greater than or equal to the requested byte at the time of the call. The
1960 * timestamp is only taken once, at the first such call. It is assumed that
1961 * the driver advances its @tx buffer pointer monotonically.
1962 */
1963void spi_take_timestamp_pre(struct spi_controller *ctlr,
1964 struct spi_transfer *xfer,
1965 size_t progress, bool irqs_off)
1966{
1967 if (!xfer->ptp_sts)
1968 return;
1969
1970 if (xfer->timestamped)
1971 return;
1972
1973 if (progress > xfer->ptp_sts_word_pre)
1974 return;
1975
1976 /* Capture the resolution of the timestamp */
1977 xfer->ptp_sts_word_pre = progress;
1978
1979 if (irqs_off) {
1980 local_irq_save(ctlr->irq_flags);
1981 preempt_disable();
1982 }
1983
1984 ptp_read_system_prets(sts: xfer->ptp_sts);
1985}
1986EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1987
1988/**
1989 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1990 * @ctlr: Pointer to the spi_controller structure of the driver
1991 * @xfer: Pointer to the transfer being timestamped
1992 * @progress: How many words (not bytes) have been transferred so far
1993 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1994 *
1995 * This is a helper for drivers to collect the end of the TX timestamp for
1996 * the requested byte from the SPI transfer. Can be called with an arbitrary
1997 * frequency: only the first call where @tx exceeds or is equal to the
1998 * requested word will be timestamped.
1999 */
2000void spi_take_timestamp_post(struct spi_controller *ctlr,
2001 struct spi_transfer *xfer,
2002 size_t progress, bool irqs_off)
2003{
2004 if (!xfer->ptp_sts)
2005 return;
2006
2007 if (xfer->timestamped)
2008 return;
2009
2010 if (progress < xfer->ptp_sts_word_post)
2011 return;
2012
2013 ptp_read_system_postts(sts: xfer->ptp_sts);
2014
2015 if (irqs_off) {
2016 local_irq_restore(ctlr->irq_flags);
2017 preempt_enable();
2018 }
2019
2020 /* Capture the resolution of the timestamp */
2021 xfer->ptp_sts_word_post = progress;
2022
2023 xfer->timestamped = 1;
2024}
2025EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2026
2027/**
2028 * spi_set_thread_rt - set the controller to pump at realtime priority
2029 * @ctlr: controller to boost priority of
2030 *
2031 * This can be called because the controller requested realtime priority
2032 * (by setting the ->rt value before calling spi_register_controller()) or
2033 * because a device on the bus said that its transfers needed realtime
2034 * priority.
2035 *
2036 * NOTE: at the moment if any device on a bus says it needs realtime then
2037 * the thread will be at realtime priority for all transfers on that
2038 * controller. If this eventually becomes a problem we may see if we can
2039 * find a way to boost the priority only temporarily during relevant
2040 * transfers.
2041 */
2042static void spi_set_thread_rt(struct spi_controller *ctlr)
2043{
2044 dev_info(&ctlr->dev,
2045 "will run message pump with realtime priority\n");
2046 sched_set_fifo(p: ctlr->kworker->task);
2047}
2048
2049static int spi_init_queue(struct spi_controller *ctlr)
2050{
2051 ctlr->running = false;
2052 ctlr->busy = false;
2053 ctlr->queue_empty = true;
2054
2055 ctlr->kworker = kthread_create_worker(flags: 0, namefmt: dev_name(dev: &ctlr->dev));
2056 if (IS_ERR(ptr: ctlr->kworker)) {
2057 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2058 return PTR_ERR(ptr: ctlr->kworker);
2059 }
2060
2061 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2062
2063 /*
2064 * Controller config will indicate if this controller should run the
2065 * message pump with high (realtime) priority to reduce the transfer
2066 * latency on the bus by minimising the delay between a transfer
2067 * request and the scheduling of the message pump thread. Without this
2068 * setting the message pump thread will remain at default priority.
2069 */
2070 if (ctlr->rt)
2071 spi_set_thread_rt(ctlr);
2072
2073 return 0;
2074}
2075
2076/**
2077 * spi_get_next_queued_message() - called by driver to check for queued
2078 * messages
2079 * @ctlr: the controller to check for queued messages
2080 *
2081 * If there are more messages in the queue, the next message is returned from
2082 * this call.
2083 *
2084 * Return: the next message in the queue, else NULL if the queue is empty.
2085 */
2086struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2087{
2088 struct spi_message *next;
2089 unsigned long flags;
2090
2091 /* Get a pointer to the next message, if any */
2092 spin_lock_irqsave(&ctlr->queue_lock, flags);
2093 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2094 queue);
2095 spin_unlock_irqrestore(lock: &ctlr->queue_lock, flags);
2096
2097 return next;
2098}
2099EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2100
2101/*
2102 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2103 * and spi_maybe_unoptimize_message()
2104 * @msg: the message to unoptimize
2105 *
2106 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2107 * core should use spi_maybe_unoptimize_message() rather than calling this
2108 * function directly.
2109 *
2110 * It is not valid to call this on a message that is not currently optimized.
2111 */
2112static void __spi_unoptimize_message(struct spi_message *msg)
2113{
2114 struct spi_controller *ctlr = msg->spi->controller;
2115
2116 if (ctlr->unoptimize_message)
2117 ctlr->unoptimize_message(msg);
2118
2119 spi_res_release(ctlr, message: msg);
2120
2121 msg->optimized = false;
2122 msg->opt_state = NULL;
2123}
2124
2125/*
2126 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2127 * @msg: the message to unoptimize
2128 *
2129 * This function is used to unoptimize a message if and only if it was
2130 * optimized by the core (via spi_maybe_optimize_message()).
2131 */
2132static void spi_maybe_unoptimize_message(struct spi_message *msg)
2133{
2134 if (!msg->pre_optimized && msg->optimized)
2135 __spi_unoptimize_message(msg);
2136}
2137
2138/**
2139 * spi_finalize_current_message() - the current message is complete
2140 * @ctlr: the controller to return the message to
2141 *
2142 * Called by the driver to notify the core that the message in the front of the
2143 * queue is complete and can be removed from the queue.
2144 */
2145void spi_finalize_current_message(struct spi_controller *ctlr)
2146{
2147 struct spi_transfer *xfer;
2148 struct spi_message *mesg;
2149 int ret;
2150
2151 mesg = ctlr->cur_msg;
2152
2153 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2154 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2155 ptp_read_system_postts(sts: xfer->ptp_sts);
2156 xfer->ptp_sts_word_post = xfer->len;
2157 }
2158 }
2159
2160 if (unlikely(ctlr->ptp_sts_supported))
2161 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2162 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2163
2164 spi_unmap_msg(ctlr, msg: mesg);
2165
2166 if (mesg->prepared && ctlr->unprepare_message) {
2167 ret = ctlr->unprepare_message(ctlr, mesg);
2168 if (ret) {
2169 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2170 ret);
2171 }
2172 }
2173
2174 mesg->prepared = false;
2175
2176 spi_maybe_unoptimize_message(msg: mesg);
2177
2178 WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2179 smp_mb(); /* See __spi_pump_transfer_message()... */
2180 if (READ_ONCE(ctlr->cur_msg_need_completion))
2181 complete(&ctlr->cur_msg_completion);
2182
2183 trace_spi_message_done(msg: mesg);
2184
2185 mesg->state = NULL;
2186 if (mesg->complete)
2187 mesg->complete(mesg->context);
2188}
2189EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2190
2191static int spi_start_queue(struct spi_controller *ctlr)
2192{
2193 unsigned long flags;
2194
2195 spin_lock_irqsave(&ctlr->queue_lock, flags);
2196
2197 if (ctlr->running || ctlr->busy) {
2198 spin_unlock_irqrestore(lock: &ctlr->queue_lock, flags);
2199 return -EBUSY;
2200 }
2201
2202 ctlr->running = true;
2203 ctlr->cur_msg = NULL;
2204 spin_unlock_irqrestore(lock: &ctlr->queue_lock, flags);
2205
2206 kthread_queue_work(worker: ctlr->kworker, work: &ctlr->pump_messages);
2207
2208 return 0;
2209}
2210
2211static int spi_stop_queue(struct spi_controller *ctlr)
2212{
2213 unsigned long flags;
2214 unsigned limit = 500;
2215 int ret = 0;
2216
2217 spin_lock_irqsave(&ctlr->queue_lock, flags);
2218
2219 /*
2220 * This is a bit lame, but is optimized for the common execution path.
2221 * A wait_queue on the ctlr->busy could be used, but then the common
2222 * execution path (pump_messages) would be required to call wake_up or
2223 * friends on every SPI message. Do this instead.
2224 */
2225 while ((!list_empty(head: &ctlr->queue) || ctlr->busy) && limit--) {
2226 spin_unlock_irqrestore(lock: &ctlr->queue_lock, flags);
2227 usleep_range(min: 10000, max: 11000);
2228 spin_lock_irqsave(&ctlr->queue_lock, flags);
2229 }
2230
2231 if (!list_empty(head: &ctlr->queue) || ctlr->busy)
2232 ret = -EBUSY;
2233 else
2234 ctlr->running = false;
2235
2236 spin_unlock_irqrestore(lock: &ctlr->queue_lock, flags);
2237
2238 return ret;
2239}
2240
2241static int spi_destroy_queue(struct spi_controller *ctlr)
2242{
2243 int ret;
2244
2245 ret = spi_stop_queue(ctlr);
2246
2247 /*
2248 * kthread_flush_worker will block until all work is done.
2249 * If the reason that stop_queue timed out is that the work will never
2250 * finish, then it does no good to call flush/stop thread, so
2251 * return anyway.
2252 */
2253 if (ret) {
2254 dev_err(&ctlr->dev, "problem destroying queue\n");
2255 return ret;
2256 }
2257
2258 kthread_destroy_worker(worker: ctlr->kworker);
2259
2260 return 0;
2261}
2262
2263static int __spi_queued_transfer(struct spi_device *spi,
2264 struct spi_message *msg,
2265 bool need_pump)
2266{
2267 struct spi_controller *ctlr = spi->controller;
2268 unsigned long flags;
2269
2270 spin_lock_irqsave(&ctlr->queue_lock, flags);
2271
2272 if (!ctlr->running) {
2273 spin_unlock_irqrestore(lock: &ctlr->queue_lock, flags);
2274 return -ESHUTDOWN;
2275 }
2276 msg->actual_length = 0;
2277 msg->status = -EINPROGRESS;
2278
2279 list_add_tail(new: &msg->queue, head: &ctlr->queue);
2280 ctlr->queue_empty = false;
2281 if (!ctlr->busy && need_pump)
2282 kthread_queue_work(worker: ctlr->kworker, work: &ctlr->pump_messages);
2283
2284 spin_unlock_irqrestore(lock: &ctlr->queue_lock, flags);
2285 return 0;
2286}
2287
2288/**
2289 * spi_queued_transfer - transfer function for queued transfers
2290 * @spi: SPI device which is requesting transfer
2291 * @msg: SPI message which is to handled is queued to driver queue
2292 *
2293 * Return: zero on success, else a negative error code.
2294 */
2295static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2296{
2297 return __spi_queued_transfer(spi, msg, need_pump: true);
2298}
2299
2300static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2301{
2302 int ret;
2303
2304 ctlr->transfer = spi_queued_transfer;
2305 if (!ctlr->transfer_one_message)
2306 ctlr->transfer_one_message = spi_transfer_one_message;
2307
2308 /* Initialize and start queue */
2309 ret = spi_init_queue(ctlr);
2310 if (ret) {
2311 dev_err(&ctlr->dev, "problem initializing queue\n");
2312 goto err_init_queue;
2313 }
2314 ctlr->queued = true;
2315 ret = spi_start_queue(ctlr);
2316 if (ret) {
2317 dev_err(&ctlr->dev, "problem starting queue\n");
2318 goto err_start_queue;
2319 }
2320
2321 return 0;
2322
2323err_start_queue:
2324 spi_destroy_queue(ctlr);
2325err_init_queue:
2326 return ret;
2327}
2328
2329/**
2330 * spi_flush_queue - Send all pending messages in the queue from the callers'
2331 * context
2332 * @ctlr: controller to process queue for
2333 *
2334 * This should be used when one wants to ensure all pending messages have been
2335 * sent before doing something. Is used by the spi-mem code to make sure SPI
2336 * memory operations do not preempt regular SPI transfers that have been queued
2337 * before the spi-mem operation.
2338 */
2339void spi_flush_queue(struct spi_controller *ctlr)
2340{
2341 if (ctlr->transfer == spi_queued_transfer)
2342 __spi_pump_messages(ctlr, in_kthread: false);
2343}
2344
2345/*-------------------------------------------------------------------------*/
2346
2347#if defined(CONFIG_OF)
2348static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2349 struct spi_delay *delay, const char *prop)
2350{
2351 u32 value;
2352
2353 if (!of_property_read_u32(np: nc, propname: prop, out_value: &value)) {
2354 if (value > U16_MAX) {
2355 delay->value = DIV_ROUND_UP(value, 1000);
2356 delay->unit = SPI_DELAY_UNIT_USECS;
2357 } else {
2358 delay->value = value;
2359 delay->unit = SPI_DELAY_UNIT_NSECS;
2360 }
2361 }
2362}
2363
2364static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2365 struct device_node *nc)
2366{
2367 u32 value, cs[SPI_CS_CNT_MAX];
2368 int rc, idx;
2369
2370 /* Mode (clock phase/polarity/etc.) */
2371 if (of_property_read_bool(np: nc, propname: "spi-cpha"))
2372 spi->mode |= SPI_CPHA;
2373 if (of_property_read_bool(np: nc, propname: "spi-cpol"))
2374 spi->mode |= SPI_CPOL;
2375 if (of_property_read_bool(np: nc, propname: "spi-3wire"))
2376 spi->mode |= SPI_3WIRE;
2377 if (of_property_read_bool(np: nc, propname: "spi-lsb-first"))
2378 spi->mode |= SPI_LSB_FIRST;
2379 if (of_property_read_bool(np: nc, propname: "spi-cs-high"))
2380 spi->mode |= SPI_CS_HIGH;
2381
2382 /* Device DUAL/QUAD mode */
2383 if (!of_property_read_u32(np: nc, propname: "spi-tx-bus-width", out_value: &value)) {
2384 switch (value) {
2385 case 0:
2386 spi->mode |= SPI_NO_TX;
2387 break;
2388 case 1:
2389 break;
2390 case 2:
2391 spi->mode |= SPI_TX_DUAL;
2392 break;
2393 case 4:
2394 spi->mode |= SPI_TX_QUAD;
2395 break;
2396 case 8:
2397 spi->mode |= SPI_TX_OCTAL;
2398 break;
2399 default:
2400 dev_warn(&ctlr->dev,
2401 "spi-tx-bus-width %d not supported\n",
2402 value);
2403 break;
2404 }
2405 }
2406
2407 if (!of_property_read_u32(np: nc, propname: "spi-rx-bus-width", out_value: &value)) {
2408 switch (value) {
2409 case 0:
2410 spi->mode |= SPI_NO_RX;
2411 break;
2412 case 1:
2413 break;
2414 case 2:
2415 spi->mode |= SPI_RX_DUAL;
2416 break;
2417 case 4:
2418 spi->mode |= SPI_RX_QUAD;
2419 break;
2420 case 8:
2421 spi->mode |= SPI_RX_OCTAL;
2422 break;
2423 default:
2424 dev_warn(&ctlr->dev,
2425 "spi-rx-bus-width %d not supported\n",
2426 value);
2427 break;
2428 }
2429 }
2430
2431 if (spi_controller_is_slave(ctlr)) {
2432 if (!of_node_name_eq(np: nc, name: "slave")) {
2433 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2434 nc);
2435 return -EINVAL;
2436 }
2437 return 0;
2438 }
2439
2440 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2441 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2442 return -EINVAL;
2443 }
2444
2445 spi_set_all_cs_unused(spi);
2446
2447 /* Device address */
2448 rc = of_property_read_variable_u32_array(np: nc, propname: "reg", out_values: &cs[0], sz_min: 1,
2449 SPI_CS_CNT_MAX);
2450 if (rc < 0) {
2451 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2452 nc, rc);
2453 return rc;
2454 }
2455 if (rc > ctlr->num_chipselect) {
2456 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2457 nc, rc);
2458 return rc;
2459 }
2460 if ((of_property_read_bool(np: nc, propname: "parallel-memories")) &&
2461 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2462 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2463 return -EINVAL;
2464 }
2465 for (idx = 0; idx < rc; idx++)
2466 spi_set_chipselect(spi, idx, chipselect: cs[idx]);
2467
2468 /*
2469 * By default spi->chip_select[0] will hold the physical CS number,
2470 * so set bit 0 in spi->cs_index_mask.
2471 */
2472 spi->cs_index_mask = BIT(0);
2473
2474 /* Device speed */
2475 if (!of_property_read_u32(np: nc, propname: "spi-max-frequency", out_value: &value))
2476 spi->max_speed_hz = value;
2477
2478 /* Device CS delays */
2479 of_spi_parse_dt_cs_delay(nc, delay: &spi->cs_setup, prop: "spi-cs-setup-delay-ns");
2480 of_spi_parse_dt_cs_delay(nc, delay: &spi->cs_hold, prop: "spi-cs-hold-delay-ns");
2481 of_spi_parse_dt_cs_delay(nc, delay: &spi->cs_inactive, prop: "spi-cs-inactive-delay-ns");
2482
2483 return 0;
2484}
2485
2486static struct spi_device *
2487of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2488{
2489 struct spi_device *spi;
2490 int rc;
2491
2492 /* Alloc an spi_device */
2493 spi = spi_alloc_device(ctlr);
2494 if (!spi) {
2495 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2496 rc = -ENOMEM;
2497 goto err_out;
2498 }
2499
2500 /* Select device driver */
2501 rc = of_alias_from_compatible(node: nc, alias: spi->modalias,
2502 len: sizeof(spi->modalias));
2503 if (rc < 0) {
2504 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2505 goto err_out;
2506 }
2507
2508 rc = of_spi_parse_dt(ctlr, spi, nc);
2509 if (rc)
2510 goto err_out;
2511
2512 /* Store a pointer to the node in the device structure */
2513 of_node_get(node: nc);
2514
2515 device_set_node(dev: &spi->dev, of_fwnode_handle(nc));
2516
2517 /* Register the new device */
2518 rc = spi_add_device(spi);
2519 if (rc) {
2520 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2521 goto err_of_node_put;
2522 }
2523
2524 return spi;
2525
2526err_of_node_put:
2527 of_node_put(node: nc);
2528err_out:
2529 spi_dev_put(spi);
2530 return ERR_PTR(error: rc);
2531}
2532
2533/**
2534 * of_register_spi_devices() - Register child devices onto the SPI bus
2535 * @ctlr: Pointer to spi_controller device
2536 *
2537 * Registers an spi_device for each child node of controller node which
2538 * represents a valid SPI slave.
2539 */
2540static void of_register_spi_devices(struct spi_controller *ctlr)
2541{
2542 struct spi_device *spi;
2543 struct device_node *nc;
2544
2545 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2546 if (of_node_test_and_set_flag(n: nc, OF_POPULATED))
2547 continue;
2548 spi = of_register_spi_device(ctlr, nc);
2549 if (IS_ERR(ptr: spi)) {
2550 dev_warn(&ctlr->dev,
2551 "Failed to create SPI device for %pOF\n", nc);
2552 of_node_clear_flag(n: nc, OF_POPULATED);
2553 }
2554 }
2555}
2556#else
2557static void of_register_spi_devices(struct spi_controller *ctlr) { }
2558#endif
2559
2560/**
2561 * spi_new_ancillary_device() - Register ancillary SPI device
2562 * @spi: Pointer to the main SPI device registering the ancillary device
2563 * @chip_select: Chip Select of the ancillary device
2564 *
2565 * Register an ancillary SPI device; for example some chips have a chip-select
2566 * for normal device usage and another one for setup/firmware upload.
2567 *
2568 * This may only be called from main SPI device's probe routine.
2569 *
2570 * Return: 0 on success; negative errno on failure
2571 */
2572struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2573 u8 chip_select)
2574{
2575 struct spi_controller *ctlr = spi->controller;
2576 struct spi_device *ancillary;
2577 int rc = 0;
2578
2579 /* Alloc an spi_device */
2580 ancillary = spi_alloc_device(ctlr);
2581 if (!ancillary) {
2582 rc = -ENOMEM;
2583 goto err_out;
2584 }
2585
2586 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2587
2588 /* Use provided chip-select for ancillary device */
2589 spi_set_all_cs_unused(spi: ancillary);
2590 spi_set_chipselect(spi: ancillary, idx: 0, chipselect: chip_select);
2591
2592 /* Take over SPI mode/speed from SPI main device */
2593 ancillary->max_speed_hz = spi->max_speed_hz;
2594 ancillary->mode = spi->mode;
2595 /*
2596 * By default spi->chip_select[0] will hold the physical CS number,
2597 * so set bit 0 in spi->cs_index_mask.
2598 */
2599 ancillary->cs_index_mask = BIT(0);
2600
2601 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2602
2603 /* Register the new device */
2604 rc = __spi_add_device(spi: ancillary);
2605 if (rc) {
2606 dev_err(&spi->dev, "failed to register ancillary device\n");
2607 goto err_out;
2608 }
2609
2610 return ancillary;
2611
2612err_out:
2613 spi_dev_put(spi: ancillary);
2614 return ERR_PTR(error: rc);
2615}
2616EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2617
2618#ifdef CONFIG_ACPI
2619struct acpi_spi_lookup {
2620 struct spi_controller *ctlr;
2621 u32 max_speed_hz;
2622 u32 mode;
2623 int irq;
2624 u8 bits_per_word;
2625 u8 chip_select;
2626 int n;
2627 int index;
2628};
2629
2630static int acpi_spi_count(struct acpi_resource *ares, void *data)
2631{
2632 struct acpi_resource_spi_serialbus *sb;
2633 int *count = data;
2634
2635 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2636 return 1;
2637
2638 sb = &ares->data.spi_serial_bus;
2639 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2640 return 1;
2641
2642 *count = *count + 1;
2643
2644 return 1;
2645}
2646
2647/**
2648 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2649 * @adev: ACPI device
2650 *
2651 * Return: the number of SpiSerialBus resources in the ACPI-device's
2652 * resource-list; or a negative error code.
2653 */
2654int acpi_spi_count_resources(struct acpi_device *adev)
2655{
2656 LIST_HEAD(r);
2657 int count = 0;
2658 int ret;
2659
2660 ret = acpi_dev_get_resources(adev, list: &r, preproc: acpi_spi_count, preproc_data: &count);
2661 if (ret < 0)
2662 return ret;
2663
2664 acpi_dev_free_resource_list(list: &r);
2665
2666 return count;
2667}
2668EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2669
2670static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2671 struct acpi_spi_lookup *lookup)
2672{
2673 const union acpi_object *obj;
2674
2675 if (!x86_apple_machine)
2676 return;
2677
2678 if (!acpi_dev_get_property(adev: dev, name: "spiSclkPeriod", ACPI_TYPE_BUFFER, obj: &obj)
2679 && obj->buffer.length >= 4)
2680 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2681
2682 if (!acpi_dev_get_property(adev: dev, name: "spiWordSize", ACPI_TYPE_BUFFER, obj: &obj)
2683 && obj->buffer.length == 8)
2684 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2685
2686 if (!acpi_dev_get_property(adev: dev, name: "spiBitOrder", ACPI_TYPE_BUFFER, obj: &obj)
2687 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2688 lookup->mode |= SPI_LSB_FIRST;
2689
2690 if (!acpi_dev_get_property(adev: dev, name: "spiSPO", ACPI_TYPE_BUFFER, obj: &obj)
2691 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2692 lookup->mode |= SPI_CPOL;
2693
2694 if (!acpi_dev_get_property(adev: dev, name: "spiSPH", ACPI_TYPE_BUFFER, obj: &obj)
2695 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2696 lookup->mode |= SPI_CPHA;
2697}
2698
2699static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2700{
2701 struct acpi_spi_lookup *lookup = data;
2702 struct spi_controller *ctlr = lookup->ctlr;
2703
2704 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2705 struct acpi_resource_spi_serialbus *sb;
2706 acpi_handle parent_handle;
2707 acpi_status status;
2708
2709 sb = &ares->data.spi_serial_bus;
2710 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2711
2712 if (lookup->index != -1 && lookup->n++ != lookup->index)
2713 return 1;
2714
2715 status = acpi_get_handle(NULL,
2716 pathname: sb->resource_source.string_ptr,
2717 ret_handle: &parent_handle);
2718
2719 if (ACPI_FAILURE(status))
2720 return -ENODEV;
2721
2722 if (ctlr) {
2723 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2724 return -ENODEV;
2725 } else {
2726 struct acpi_device *adev;
2727
2728 adev = acpi_fetch_acpi_dev(handle: parent_handle);
2729 if (!adev)
2730 return -ENODEV;
2731
2732 ctlr = acpi_spi_find_controller_by_adev(adev);
2733 if (!ctlr)
2734 return -EPROBE_DEFER;
2735
2736 lookup->ctlr = ctlr;
2737 }
2738
2739 /*
2740 * ACPI DeviceSelection numbering is handled by the
2741 * host controller driver in Windows and can vary
2742 * from driver to driver. In Linux we always expect
2743 * 0 .. max - 1 so we need to ask the driver to
2744 * translate between the two schemes.
2745 */
2746 if (ctlr->fw_translate_cs) {
2747 int cs = ctlr->fw_translate_cs(ctlr,
2748 sb->device_selection);
2749 if (cs < 0)
2750 return cs;
2751 lookup->chip_select = cs;
2752 } else {
2753 lookup->chip_select = sb->device_selection;
2754 }
2755
2756 lookup->max_speed_hz = sb->connection_speed;
2757 lookup->bits_per_word = sb->data_bit_length;
2758
2759 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2760 lookup->mode |= SPI_CPHA;
2761 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2762 lookup->mode |= SPI_CPOL;
2763 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2764 lookup->mode |= SPI_CS_HIGH;
2765 }
2766 } else if (lookup->irq < 0) {
2767 struct resource r;
2768
2769 if (acpi_dev_resource_interrupt(ares, index: 0, res: &r))
2770 lookup->irq = r.start;
2771 }
2772
2773 /* Always tell the ACPI core to skip this resource */
2774 return 1;
2775}
2776
2777/**
2778 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2779 * @ctlr: controller to which the spi device belongs
2780 * @adev: ACPI Device for the spi device
2781 * @index: Index of the spi resource inside the ACPI Node
2782 *
2783 * This should be used to allocate a new SPI device from and ACPI Device node.
2784 * The caller is responsible for calling spi_add_device to register the SPI device.
2785 *
2786 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2787 * using the resource.
2788 * If index is set to -1, index is not used.
2789 * Note: If index is -1, ctlr must be set.
2790 *
2791 * Return: a pointer to the new device, or ERR_PTR on error.
2792 */
2793struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2794 struct acpi_device *adev,
2795 int index)
2796{
2797 acpi_handle parent_handle = NULL;
2798 struct list_head resource_list;
2799 struct acpi_spi_lookup lookup = {};
2800 struct spi_device *spi;
2801 int ret;
2802
2803 if (!ctlr && index == -1)
2804 return ERR_PTR(error: -EINVAL);
2805
2806 lookup.ctlr = ctlr;
2807 lookup.irq = -1;
2808 lookup.index = index;
2809 lookup.n = 0;
2810
2811 INIT_LIST_HEAD(list: &resource_list);
2812 ret = acpi_dev_get_resources(adev, list: &resource_list,
2813 preproc: acpi_spi_add_resource, preproc_data: &lookup);
2814 acpi_dev_free_resource_list(list: &resource_list);
2815
2816 if (ret < 0)
2817 /* Found SPI in _CRS but it points to another controller */
2818 return ERR_PTR(error: ret);
2819
2820 if (!lookup.max_speed_hz &&
2821 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2822 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2823 /* Apple does not use _CRS but nested devices for SPI slaves */
2824 acpi_spi_parse_apple_properties(dev: adev, lookup: &lookup);
2825 }
2826
2827 if (!lookup.max_speed_hz)
2828 return ERR_PTR(error: -ENODEV);
2829
2830 spi = spi_alloc_device(lookup.ctlr);
2831 if (!spi) {
2832 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2833 dev_name(&adev->dev));
2834 return ERR_PTR(error: -ENOMEM);
2835 }
2836
2837 spi_set_all_cs_unused(spi);
2838 spi_set_chipselect(spi, idx: 0, chipselect: lookup.chip_select);
2839
2840 ACPI_COMPANION_SET(&spi->dev, adev);
2841 spi->max_speed_hz = lookup.max_speed_hz;
2842 spi->mode |= lookup.mode;
2843 spi->irq = lookup.irq;
2844 spi->bits_per_word = lookup.bits_per_word;
2845 /*
2846 * By default spi->chip_select[0] will hold the physical CS number,
2847 * so set bit 0 in spi->cs_index_mask.
2848 */
2849 spi->cs_index_mask = BIT(0);
2850
2851 return spi;
2852}
2853EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2854
2855static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2856 struct acpi_device *adev)
2857{
2858 struct spi_device *spi;
2859
2860 if (acpi_bus_get_status(device: adev) || !adev->status.present ||
2861 acpi_device_enumerated(adev))
2862 return AE_OK;
2863
2864 spi = acpi_spi_device_alloc(ctlr, adev, -1);
2865 if (IS_ERR(ptr: spi)) {
2866 if (PTR_ERR(ptr: spi) == -ENOMEM)
2867 return AE_NO_MEMORY;
2868 else
2869 return AE_OK;
2870 }
2871
2872 acpi_set_modalias(adev, default_id: acpi_device_hid(device: adev), modalias: spi->modalias,
2873 len: sizeof(spi->modalias));
2874
2875 if (spi->irq < 0)
2876 spi->irq = acpi_dev_gpio_irq_get(adev, index: 0);
2877
2878 acpi_device_set_enumerated(adev);
2879
2880 adev->power.flags.ignore_parent = true;
2881 if (spi_add_device(spi)) {
2882 adev->power.flags.ignore_parent = false;
2883 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2884 dev_name(&adev->dev));
2885 spi_dev_put(spi);
2886 }
2887
2888 return AE_OK;
2889}
2890
2891static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2892 void *data, void **return_value)
2893{
2894 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2895 struct spi_controller *ctlr = data;
2896
2897 if (!adev)
2898 return AE_OK;
2899
2900 return acpi_register_spi_device(ctlr, adev);
2901}
2902
2903#define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2904
2905static void acpi_register_spi_devices(struct spi_controller *ctlr)
2906{
2907 acpi_status status;
2908 acpi_handle handle;
2909
2910 handle = ACPI_HANDLE(ctlr->dev.parent);
2911 if (!handle)
2912 return;
2913
2914 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2915 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2916 descending_callback: acpi_spi_add_device, NULL, context: ctlr, NULL);
2917 if (ACPI_FAILURE(status))
2918 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2919}
2920#else
2921static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2922#endif /* CONFIG_ACPI */
2923
2924static void spi_controller_release(struct device *dev)
2925{
2926 struct spi_controller *ctlr;
2927
2928 ctlr = container_of(dev, struct spi_controller, dev);
2929 kfree(objp: ctlr);
2930}
2931
2932static struct class spi_master_class = {
2933 .name = "spi_master",
2934 .dev_release = spi_controller_release,
2935 .dev_groups = spi_master_groups,
2936};
2937
2938#ifdef CONFIG_SPI_SLAVE
2939/**
2940 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2941 * controller
2942 * @spi: device used for the current transfer
2943 */
2944int spi_slave_abort(struct spi_device *spi)
2945{
2946 struct spi_controller *ctlr = spi->controller;
2947
2948 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2949 return ctlr->slave_abort(ctlr);
2950
2951 return -ENOTSUPP;
2952}
2953EXPORT_SYMBOL_GPL(spi_slave_abort);
2954
2955int spi_target_abort(struct spi_device *spi)
2956{
2957 struct spi_controller *ctlr = spi->controller;
2958
2959 if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2960 return ctlr->target_abort(ctlr);
2961
2962 return -ENOTSUPP;
2963}
2964EXPORT_SYMBOL_GPL(spi_target_abort);
2965
2966static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2967 char *buf)
2968{
2969 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2970 dev);
2971 struct device *child;
2972
2973 child = device_find_any_child(parent: &ctlr->dev);
2974 return sysfs_emit(buf, fmt: "%s\n", child ? to_spi_device(dev: child)->modalias : NULL);
2975}
2976
2977static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2978 const char *buf, size_t count)
2979{
2980 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2981 dev);
2982 struct spi_device *spi;
2983 struct device *child;
2984 char name[32];
2985 int rc;
2986
2987 rc = sscanf(buf, "%31s", name);
2988 if (rc != 1 || !name[0])
2989 return -EINVAL;
2990
2991 child = device_find_any_child(parent: &ctlr->dev);
2992 if (child) {
2993 /* Remove registered slave */
2994 device_unregister(dev: child);
2995 put_device(dev: child);
2996 }
2997
2998 if (strcmp(name, "(null)")) {
2999 /* Register new slave */
3000 spi = spi_alloc_device(ctlr);
3001 if (!spi)
3002 return -ENOMEM;
3003
3004 strscpy(spi->modalias, name, sizeof(spi->modalias));
3005
3006 rc = spi_add_device(spi);
3007 if (rc) {
3008 spi_dev_put(spi);
3009 return rc;
3010 }
3011 }
3012
3013 return count;
3014}
3015
3016static DEVICE_ATTR_RW(slave);
3017
3018static struct attribute *spi_slave_attrs[] = {
3019 &dev_attr_slave.attr,
3020 NULL,
3021};
3022
3023static const struct attribute_group spi_slave_group = {
3024 .attrs = spi_slave_attrs,
3025};
3026
3027static const struct attribute_group *spi_slave_groups[] = {
3028 &spi_controller_statistics_group,
3029 &spi_slave_group,
3030 NULL,
3031};
3032
3033static struct class spi_slave_class = {
3034 .name = "spi_slave",
3035 .dev_release = spi_controller_release,
3036 .dev_groups = spi_slave_groups,
3037};
3038#else
3039extern struct class spi_slave_class; /* dummy */
3040#endif
3041
3042/**
3043 * __spi_alloc_controller - allocate an SPI master or slave controller
3044 * @dev: the controller, possibly using the platform_bus
3045 * @size: how much zeroed driver-private data to allocate; the pointer to this
3046 * memory is in the driver_data field of the returned device, accessible
3047 * with spi_controller_get_devdata(); the memory is cacheline aligned;
3048 * drivers granting DMA access to portions of their private data need to
3049 * round up @size using ALIGN(size, dma_get_cache_alignment()).
3050 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3051 * slave (true) controller
3052 * Context: can sleep
3053 *
3054 * This call is used only by SPI controller drivers, which are the
3055 * only ones directly touching chip registers. It's how they allocate
3056 * an spi_controller structure, prior to calling spi_register_controller().
3057 *
3058 * This must be called from context that can sleep.
3059 *
3060 * The caller is responsible for assigning the bus number and initializing the
3061 * controller's methods before calling spi_register_controller(); and (after
3062 * errors adding the device) calling spi_controller_put() to prevent a memory
3063 * leak.
3064 *
3065 * Return: the SPI controller structure on success, else NULL.
3066 */
3067struct spi_controller *__spi_alloc_controller(struct device *dev,
3068 unsigned int size, bool slave)
3069{
3070 struct spi_controller *ctlr;
3071 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3072
3073 if (!dev)
3074 return NULL;
3075
3076 ctlr = kzalloc(size: size + ctlr_size, GFP_KERNEL);
3077 if (!ctlr)
3078 return NULL;
3079
3080 device_initialize(dev: &ctlr->dev);
3081 INIT_LIST_HEAD(list: &ctlr->queue);
3082 spin_lock_init(&ctlr->queue_lock);
3083 spin_lock_init(&ctlr->bus_lock_spinlock);
3084 mutex_init(&ctlr->bus_lock_mutex);
3085 mutex_init(&ctlr->io_mutex);
3086 mutex_init(&ctlr->add_lock);
3087 ctlr->bus_num = -1;
3088 ctlr->num_chipselect = 1;
3089 ctlr->slave = slave;
3090 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3091 ctlr->dev.class = &spi_slave_class;
3092 else
3093 ctlr->dev.class = &spi_master_class;
3094 ctlr->dev.parent = dev;
3095 pm_suspend_ignore_children(dev: &ctlr->dev, enable: true);
3096 spi_controller_set_devdata(ctlr, data: (void *)ctlr + ctlr_size);
3097
3098 return ctlr;
3099}
3100EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3101
3102static void devm_spi_release_controller(struct device *dev, void *ctlr)
3103{
3104 spi_controller_put(ctlr: *(struct spi_controller **)ctlr);
3105}
3106
3107/**
3108 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3109 * @dev: physical device of SPI controller
3110 * @size: how much zeroed driver-private data to allocate
3111 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3112 * Context: can sleep
3113 *
3114 * Allocate an SPI controller and automatically release a reference on it
3115 * when @dev is unbound from its driver. Drivers are thus relieved from
3116 * having to call spi_controller_put().
3117 *
3118 * The arguments to this function are identical to __spi_alloc_controller().
3119 *
3120 * Return: the SPI controller structure on success, else NULL.
3121 */
3122struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3123 unsigned int size,
3124 bool slave)
3125{
3126 struct spi_controller **ptr, *ctlr;
3127
3128 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3129 GFP_KERNEL);
3130 if (!ptr)
3131 return NULL;
3132
3133 ctlr = __spi_alloc_controller(dev, size, slave);
3134 if (ctlr) {
3135 ctlr->devm_allocated = true;
3136 *ptr = ctlr;
3137 devres_add(dev, res: ptr);
3138 } else {
3139 devres_free(res: ptr);
3140 }
3141
3142 return ctlr;
3143}
3144EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3145
3146/**
3147 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3148 * @ctlr: The SPI master to grab GPIO descriptors for
3149 */
3150static int spi_get_gpio_descs(struct spi_controller *ctlr)
3151{
3152 int nb, i;
3153 struct gpio_desc **cs;
3154 struct device *dev = &ctlr->dev;
3155 unsigned long native_cs_mask = 0;
3156 unsigned int num_cs_gpios = 0;
3157
3158 nb = gpiod_count(dev, con_id: "cs");
3159 if (nb < 0) {
3160 /* No GPIOs at all is fine, else return the error */
3161 if (nb == -ENOENT)
3162 return 0;
3163 return nb;
3164 }
3165
3166 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3167
3168 cs = devm_kcalloc(dev, n: ctlr->num_chipselect, size: sizeof(*cs),
3169 GFP_KERNEL);
3170 if (!cs)
3171 return -ENOMEM;
3172 ctlr->cs_gpiods = cs;
3173
3174 for (i = 0; i < nb; i++) {
3175 /*
3176 * Most chipselects are active low, the inverted
3177 * semantics are handled by special quirks in gpiolib,
3178 * so initializing them GPIOD_OUT_LOW here means
3179 * "unasserted", in most cases this will drive the physical
3180 * line high.
3181 */
3182 cs[i] = devm_gpiod_get_index_optional(dev, con_id: "cs", index: i,
3183 flags: GPIOD_OUT_LOW);
3184 if (IS_ERR(ptr: cs[i]))
3185 return PTR_ERR(ptr: cs[i]);
3186
3187 if (cs[i]) {
3188 /*
3189 * If we find a CS GPIO, name it after the device and
3190 * chip select line.
3191 */
3192 char *gpioname;
3193
3194 gpioname = devm_kasprintf(dev, GFP_KERNEL, fmt: "%s CS%d",
3195 dev_name(dev), i);
3196 if (!gpioname)
3197 return -ENOMEM;
3198 gpiod_set_consumer_name(desc: cs[i], name: gpioname);
3199 num_cs_gpios++;
3200 continue;
3201 }
3202
3203 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3204 dev_err(dev, "Invalid native chip select %d\n", i);
3205 return -EINVAL;
3206 }
3207 native_cs_mask |= BIT(i);
3208 }
3209
3210 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3211
3212 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3213 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3214 dev_err(dev, "No unused native chip select available\n");
3215 return -EINVAL;
3216 }
3217
3218 return 0;
3219}
3220
3221static int spi_controller_check_ops(struct spi_controller *ctlr)
3222{
3223 /*
3224 * The controller may implement only the high-level SPI-memory like
3225 * operations if it does not support regular SPI transfers, and this is
3226 * valid use case.
3227 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3228 * one of the ->transfer_xxx() method be implemented.
3229 */
3230 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3231 if (!ctlr->transfer && !ctlr->transfer_one &&
3232 !ctlr->transfer_one_message) {
3233 return -EINVAL;
3234 }
3235 }
3236
3237 return 0;
3238}
3239
3240/* Allocate dynamic bus number using Linux idr */
3241static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3242{
3243 int id;
3244
3245 mutex_lock(&board_lock);
3246 id = idr_alloc(&spi_master_idr, ptr: ctlr, start, end, GFP_KERNEL);
3247 mutex_unlock(lock: &board_lock);
3248 if (WARN(id < 0, "couldn't get idr"))
3249 return id == -ENOSPC ? -EBUSY : id;
3250 ctlr->bus_num = id;
3251 return 0;
3252}
3253
3254/**
3255 * spi_register_controller - register SPI master or slave controller
3256 * @ctlr: initialized master, originally from spi_alloc_master() or
3257 * spi_alloc_slave()
3258 * Context: can sleep
3259 *
3260 * SPI controllers connect to their drivers using some non-SPI bus,
3261 * such as the platform bus. The final stage of probe() in that code
3262 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3263 *
3264 * SPI controllers use board specific (often SOC specific) bus numbers,
3265 * and board-specific addressing for SPI devices combines those numbers
3266 * with chip select numbers. Since SPI does not directly support dynamic
3267 * device identification, boards need configuration tables telling which
3268 * chip is at which address.
3269 *
3270 * This must be called from context that can sleep. It returns zero on
3271 * success, else a negative error code (dropping the controller's refcount).
3272 * After a successful return, the caller is responsible for calling
3273 * spi_unregister_controller().
3274 *
3275 * Return: zero on success, else a negative error code.
3276 */
3277int spi_register_controller(struct spi_controller *ctlr)
3278{
3279 struct device *dev = ctlr->dev.parent;
3280 struct boardinfo *bi;
3281 int first_dynamic;
3282 int status;
3283 int idx;
3284
3285 if (!dev)
3286 return -ENODEV;
3287
3288 /*
3289 * Make sure all necessary hooks are implemented before registering
3290 * the SPI controller.
3291 */
3292 status = spi_controller_check_ops(ctlr);
3293 if (status)
3294 return status;
3295
3296 if (ctlr->bus_num < 0)
3297 ctlr->bus_num = of_alias_get_id(np: ctlr->dev.of_node, stem: "spi");
3298 if (ctlr->bus_num >= 0) {
3299 /* Devices with a fixed bus num must check-in with the num */
3300 status = spi_controller_id_alloc(ctlr, start: ctlr->bus_num, end: ctlr->bus_num + 1);
3301 if (status)
3302 return status;
3303 }
3304 if (ctlr->bus_num < 0) {
3305 first_dynamic = of_alias_get_highest_id(stem: "spi");
3306 if (first_dynamic < 0)
3307 first_dynamic = 0;
3308 else
3309 first_dynamic++;
3310
3311 status = spi_controller_id_alloc(ctlr, start: first_dynamic, end: 0);
3312 if (status)
3313 return status;
3314 }
3315 ctlr->bus_lock_flag = 0;
3316 init_completion(x: &ctlr->xfer_completion);
3317 init_completion(x: &ctlr->cur_msg_completion);
3318 if (!ctlr->max_dma_len)
3319 ctlr->max_dma_len = INT_MAX;
3320
3321 /*
3322 * Register the device, then userspace will see it.
3323 * Registration fails if the bus ID is in use.
3324 */
3325 dev_set_name(dev: &ctlr->dev, name: "spi%u", ctlr->bus_num);
3326
3327 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3328 status = spi_get_gpio_descs(ctlr);
3329 if (status)
3330 goto free_bus_id;
3331 /*
3332 * A controller using GPIO descriptors always
3333 * supports SPI_CS_HIGH if need be.
3334 */
3335 ctlr->mode_bits |= SPI_CS_HIGH;
3336 }
3337
3338 /*
3339 * Even if it's just one always-selected device, there must
3340 * be at least one chipselect.
3341 */
3342 if (!ctlr->num_chipselect) {
3343 status = -EINVAL;
3344 goto free_bus_id;
3345 }
3346
3347 /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3348 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3349 ctlr->last_cs[idx] = SPI_INVALID_CS;
3350
3351 status = device_add(dev: &ctlr->dev);
3352 if (status < 0)
3353 goto free_bus_id;
3354 dev_dbg(dev, "registered %s %s\n",
3355 spi_controller_is_slave(ctlr) ? "slave" : "master",
3356 dev_name(&ctlr->dev));
3357
3358 /*
3359 * If we're using a queued driver, start the queue. Note that we don't
3360 * need the queueing logic if the driver is only supporting high-level
3361 * memory operations.
3362 */
3363 if (ctlr->transfer) {
3364 dev_info(dev, "controller is unqueued, this is deprecated\n");
3365 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3366 status = spi_controller_initialize_queue(ctlr);
3367 if (status) {
3368 device_del(dev: &ctlr->dev);
3369 goto free_bus_id;
3370 }
3371 }
3372 /* Add statistics */
3373 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3374 if (!ctlr->pcpu_statistics) {
3375 dev_err(dev, "Error allocating per-cpu statistics\n");
3376 status = -ENOMEM;
3377 goto destroy_queue;
3378 }
3379
3380 mutex_lock(&board_lock);
3381 list_add_tail(new: &ctlr->list, head: &spi_controller_list);
3382 list_for_each_entry(bi, &board_list, list)
3383 spi_match_controller_to_boardinfo(ctlr, bi: &bi->board_info);
3384 mutex_unlock(lock: &board_lock);
3385
3386 /* Register devices from the device tree and ACPI */
3387 of_register_spi_devices(ctlr);
3388 acpi_register_spi_devices(ctlr);
3389 return status;
3390
3391destroy_queue:
3392 spi_destroy_queue(ctlr);
3393free_bus_id:
3394 mutex_lock(&board_lock);
3395 idr_remove(&spi_master_idr, id: ctlr->bus_num);
3396 mutex_unlock(lock: &board_lock);
3397 return status;
3398}
3399EXPORT_SYMBOL_GPL(spi_register_controller);
3400
3401static void devm_spi_unregister(struct device *dev, void *res)
3402{
3403 spi_unregister_controller(ctlr: *(struct spi_controller **)res);
3404}
3405
3406/**
3407 * devm_spi_register_controller - register managed SPI master or slave
3408 * controller
3409 * @dev: device managing SPI controller
3410 * @ctlr: initialized controller, originally from spi_alloc_master() or
3411 * spi_alloc_slave()
3412 * Context: can sleep
3413 *
3414 * Register a SPI device as with spi_register_controller() which will
3415 * automatically be unregistered and freed.
3416 *
3417 * Return: zero on success, else a negative error code.
3418 */
3419int devm_spi_register_controller(struct device *dev,
3420 struct spi_controller *ctlr)
3421{
3422 struct spi_controller **ptr;
3423 int ret;
3424
3425 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3426 if (!ptr)
3427 return -ENOMEM;
3428
3429 ret = spi_register_controller(ctlr);
3430 if (!ret) {
3431 *ptr = ctlr;
3432 devres_add(dev, res: ptr);
3433 } else {
3434 devres_free(res: ptr);
3435 }
3436
3437 return ret;
3438}
3439EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3440
3441static int __unregister(struct device *dev, void *null)
3442{
3443 spi_unregister_device(to_spi_device(dev));
3444 return 0;
3445}
3446
3447/**
3448 * spi_unregister_controller - unregister SPI master or slave controller
3449 * @ctlr: the controller being unregistered
3450 * Context: can sleep
3451 *
3452 * This call is used only by SPI controller drivers, which are the
3453 * only ones directly touching chip registers.
3454 *
3455 * This must be called from context that can sleep.
3456 *
3457 * Note that this function also drops a reference to the controller.
3458 */
3459void spi_unregister_controller(struct spi_controller *ctlr)
3460{
3461 struct spi_controller *found;
3462 int id = ctlr->bus_num;
3463
3464 /* Prevent addition of new devices, unregister existing ones */
3465 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3466 mutex_lock(&ctlr->add_lock);
3467
3468 device_for_each_child(dev: &ctlr->dev, NULL, fn: __unregister);
3469
3470 /* First make sure that this controller was ever added */
3471 mutex_lock(&board_lock);
3472 found = idr_find(&spi_master_idr, id);
3473 mutex_unlock(lock: &board_lock);
3474 if (ctlr->queued) {
3475 if (spi_destroy_queue(ctlr))
3476 dev_err(&ctlr->dev, "queue remove failed\n");
3477 }
3478 mutex_lock(&board_lock);
3479 list_del(entry: &ctlr->list);
3480 mutex_unlock(lock: &board_lock);
3481
3482 device_del(dev: &ctlr->dev);
3483
3484 /* Free bus id */
3485 mutex_lock(&board_lock);
3486 if (found == ctlr)
3487 idr_remove(&spi_master_idr, id);
3488 mutex_unlock(lock: &board_lock);
3489
3490 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3491 mutex_unlock(lock: &ctlr->add_lock);
3492
3493 /*
3494 * Release the last reference on the controller if its driver
3495 * has not yet been converted to devm_spi_alloc_master/slave().
3496 */
3497 if (!ctlr->devm_allocated)
3498 put_device(dev: &ctlr->dev);
3499}
3500EXPORT_SYMBOL_GPL(spi_unregister_controller);
3501
3502static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3503{
3504 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3505}
3506
3507static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3508{
3509 mutex_lock(&ctlr->bus_lock_mutex);
3510 ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3511 mutex_unlock(lock: &ctlr->bus_lock_mutex);
3512}
3513
3514static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3515{
3516 mutex_lock(&ctlr->bus_lock_mutex);
3517 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3518 mutex_unlock(lock: &ctlr->bus_lock_mutex);
3519}
3520
3521int spi_controller_suspend(struct spi_controller *ctlr)
3522{
3523 int ret = 0;
3524
3525 /* Basically no-ops for non-queued controllers */
3526 if (ctlr->queued) {
3527 ret = spi_stop_queue(ctlr);
3528 if (ret)
3529 dev_err(&ctlr->dev, "queue stop failed\n");
3530 }
3531
3532 __spi_mark_suspended(ctlr);
3533 return ret;
3534}
3535EXPORT_SYMBOL_GPL(spi_controller_suspend);
3536
3537int spi_controller_resume(struct spi_controller *ctlr)
3538{
3539 int ret = 0;
3540
3541 __spi_mark_resumed(ctlr);
3542
3543 if (ctlr->queued) {
3544 ret = spi_start_queue(ctlr);
3545 if (ret)
3546 dev_err(&ctlr->dev, "queue restart failed\n");
3547 }
3548 return ret;
3549}
3550EXPORT_SYMBOL_GPL(spi_controller_resume);
3551
3552/*-------------------------------------------------------------------------*/
3553
3554/* Core methods for spi_message alterations */
3555
3556static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3557 struct spi_message *msg,
3558 void *res)
3559{
3560 struct spi_replaced_transfers *rxfer = res;
3561 size_t i;
3562
3563 /* Call extra callback if requested */
3564 if (rxfer->release)
3565 rxfer->release(ctlr, msg, res);
3566
3567 /* Insert replaced transfers back into the message */
3568 list_splice(list: &rxfer->replaced_transfers, head: rxfer->replaced_after);
3569
3570 /* Remove the formerly inserted entries */
3571 for (i = 0; i < rxfer->inserted; i++)
3572 list_del(entry: &rxfer->inserted_transfers[i].transfer_list);
3573}
3574
3575/**
3576 * spi_replace_transfers - replace transfers with several transfers
3577 * and register change with spi_message.resources
3578 * @msg: the spi_message we work upon
3579 * @xfer_first: the first spi_transfer we want to replace
3580 * @remove: number of transfers to remove
3581 * @insert: the number of transfers we want to insert instead
3582 * @release: extra release code necessary in some circumstances
3583 * @extradatasize: extra data to allocate (with alignment guarantees
3584 * of struct @spi_transfer)
3585 * @gfp: gfp flags
3586 *
3587 * Returns: pointer to @spi_replaced_transfers,
3588 * PTR_ERR(...) in case of errors.
3589 */
3590static struct spi_replaced_transfers *spi_replace_transfers(
3591 struct spi_message *msg,
3592 struct spi_transfer *xfer_first,
3593 size_t remove,
3594 size_t insert,
3595 spi_replaced_release_t release,
3596 size_t extradatasize,
3597 gfp_t gfp)
3598{
3599 struct spi_replaced_transfers *rxfer;
3600 struct spi_transfer *xfer;
3601 size_t i;
3602
3603 /* Allocate the structure using spi_res */
3604 rxfer = spi_res_alloc(spi: msg->spi, release: __spi_replace_transfers_release,
3605 struct_size(rxfer, inserted_transfers, insert)
3606 + extradatasize,
3607 gfp);
3608 if (!rxfer)
3609 return ERR_PTR(error: -ENOMEM);
3610
3611 /* The release code to invoke before running the generic release */
3612 rxfer->release = release;
3613
3614 /* Assign extradata */
3615 if (extradatasize)
3616 rxfer->extradata =
3617 &rxfer->inserted_transfers[insert];
3618
3619 /* Init the replaced_transfers list */
3620 INIT_LIST_HEAD(list: &rxfer->replaced_transfers);
3621
3622 /*
3623 * Assign the list_entry after which we should reinsert
3624 * the @replaced_transfers - it may be spi_message.messages!
3625 */
3626 rxfer->replaced_after = xfer_first->transfer_list.prev;
3627
3628 /* Remove the requested number of transfers */
3629 for (i = 0; i < remove; i++) {
3630 /*
3631 * If the entry after replaced_after it is msg->transfers
3632 * then we have been requested to remove more transfers
3633 * than are in the list.
3634 */
3635 if (rxfer->replaced_after->next == &msg->transfers) {
3636 dev_err(&msg->spi->dev,
3637 "requested to remove more spi_transfers than are available\n");
3638 /* Insert replaced transfers back into the message */
3639 list_splice(list: &rxfer->replaced_transfers,
3640 head: rxfer->replaced_after);
3641
3642 /* Free the spi_replace_transfer structure... */
3643 spi_res_free(res: rxfer);
3644
3645 /* ...and return with an error */
3646 return ERR_PTR(error: -EINVAL);
3647 }
3648
3649 /*
3650 * Remove the entry after replaced_after from list of
3651 * transfers and add it to list of replaced_transfers.
3652 */
3653 list_move_tail(list: rxfer->replaced_after->next,
3654 head: &rxfer->replaced_transfers);
3655 }
3656
3657 /*
3658 * Create copy of the given xfer with identical settings
3659 * based on the first transfer to get removed.
3660 */
3661 for (i = 0; i < insert; i++) {
3662 /* We need to run in reverse order */
3663 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3664
3665 /* Copy all spi_transfer data */
3666 memcpy(xfer, xfer_first, sizeof(*xfer));
3667
3668 /* Add to list */
3669 list_add(new: &xfer->transfer_list, head: rxfer->replaced_after);
3670
3671 /* Clear cs_change and delay for all but the last */
3672 if (i) {
3673 xfer->cs_change = false;
3674 xfer->delay.value = 0;
3675 }
3676 }
3677
3678 /* Set up inserted... */
3679 rxfer->inserted = insert;
3680
3681 /* ...and register it with spi_res/spi_message */
3682 spi_res_add(message: msg, res: rxfer);
3683
3684 return rxfer;
3685}
3686
3687static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3688 struct spi_message *msg,
3689 struct spi_transfer **xferp,
3690 size_t maxsize)
3691{
3692 struct spi_transfer *xfer = *xferp, *xfers;
3693 struct spi_replaced_transfers *srt;
3694 size_t offset;
3695 size_t count, i;
3696
3697 /* Calculate how many we have to replace */
3698 count = DIV_ROUND_UP(xfer->len, maxsize);
3699
3700 /* Create replacement */
3701 srt = spi_replace_transfers(msg, xfer_first: xfer, remove: 1, insert: count, NULL, extradatasize: 0, GFP_KERNEL);
3702 if (IS_ERR(ptr: srt))
3703 return PTR_ERR(ptr: srt);
3704 xfers = srt->inserted_transfers;
3705
3706 /*
3707 * Now handle each of those newly inserted spi_transfers.
3708 * Note that the replacements spi_transfers all are preset
3709 * to the same values as *xferp, so tx_buf, rx_buf and len
3710 * are all identical (as well as most others)
3711 * so we just have to fix up len and the pointers.
3712 *
3713 * This also includes support for the depreciated
3714 * spi_message.is_dma_mapped interface.
3715 */
3716
3717 /*
3718 * The first transfer just needs the length modified, so we
3719 * run it outside the loop.
3720 */
3721 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3722
3723 /* All the others need rx_buf/tx_buf also set */
3724 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3725 /* Update rx_buf, tx_buf and DMA */
3726 if (xfers[i].rx_buf)
3727 xfers[i].rx_buf += offset;
3728 if (xfers[i].rx_dma)
3729 xfers[i].rx_dma += offset;
3730 if (xfers[i].tx_buf)
3731 xfers[i].tx_buf += offset;
3732 if (xfers[i].tx_dma)
3733 xfers[i].tx_dma += offset;
3734
3735 /* Update length */
3736 xfers[i].len = min(maxsize, xfers[i].len - offset);
3737 }
3738
3739 /*
3740 * We set up xferp to the last entry we have inserted,
3741 * so that we skip those already split transfers.
3742 */
3743 *xferp = &xfers[count - 1];
3744
3745 /* Increment statistics counters */
3746 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3747 transfers_split_maxsize);
3748 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3749 transfers_split_maxsize);
3750
3751 return 0;
3752}
3753
3754/**
3755 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3756 * when an individual transfer exceeds a
3757 * certain size
3758 * @ctlr: the @spi_controller for this transfer
3759 * @msg: the @spi_message to transform
3760 * @maxsize: the maximum when to apply this
3761 *
3762 * This function allocates resources that are automatically freed during the
3763 * spi message unoptimize phase so this function should only be called from
3764 * optimize_message callbacks.
3765 *
3766 * Return: status of transformation
3767 */
3768int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3769 struct spi_message *msg,
3770 size_t maxsize)
3771{
3772 struct spi_transfer *xfer;
3773 int ret;
3774
3775 /*
3776 * Iterate over the transfer_list,
3777 * but note that xfer is advanced to the last transfer inserted
3778 * to avoid checking sizes again unnecessarily (also xfer does
3779 * potentially belong to a different list by the time the
3780 * replacement has happened).
3781 */
3782 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3783 if (xfer->len > maxsize) {
3784 ret = __spi_split_transfer_maxsize(ctlr, msg, xferp: &xfer,
3785 maxsize);
3786 if (ret)
3787 return ret;
3788 }
3789 }
3790
3791 return 0;
3792}
3793EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3794
3795
3796/**
3797 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3798 * when an individual transfer exceeds a
3799 * certain number of SPI words
3800 * @ctlr: the @spi_controller for this transfer
3801 * @msg: the @spi_message to transform
3802 * @maxwords: the number of words to limit each transfer to
3803 *
3804 * This function allocates resources that are automatically freed during the
3805 * spi message unoptimize phase so this function should only be called from
3806 * optimize_message callbacks.
3807 *
3808 * Return: status of transformation
3809 */
3810int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3811 struct spi_message *msg,
3812 size_t maxwords)
3813{
3814 struct spi_transfer *xfer;
3815
3816 /*
3817 * Iterate over the transfer_list,
3818 * but note that xfer is advanced to the last transfer inserted
3819 * to avoid checking sizes again unnecessarily (also xfer does
3820 * potentially belong to a different list by the time the
3821 * replacement has happened).
3822 */
3823 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3824 size_t maxsize;
3825 int ret;
3826
3827 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3828 if (xfer->len > maxsize) {
3829 ret = __spi_split_transfer_maxsize(ctlr, msg, xferp: &xfer,
3830 maxsize);
3831 if (ret)
3832 return ret;
3833 }
3834 }
3835
3836 return 0;
3837}
3838EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3839
3840/*-------------------------------------------------------------------------*/
3841
3842/*
3843 * Core methods for SPI controller protocol drivers. Some of the
3844 * other core methods are currently defined as inline functions.
3845 */
3846
3847static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3848 u8 bits_per_word)
3849{
3850 if (ctlr->bits_per_word_mask) {
3851 /* Only 32 bits fit in the mask */
3852 if (bits_per_word > 32)
3853 return -EINVAL;
3854 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3855 return -EINVAL;
3856 }
3857
3858 return 0;
3859}
3860
3861/**
3862 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3863 * @spi: the device that requires specific CS timing configuration
3864 *
3865 * Return: zero on success, else a negative error code.
3866 */
3867static int spi_set_cs_timing(struct spi_device *spi)
3868{
3869 struct device *parent = spi->controller->dev.parent;
3870 int status = 0;
3871
3872 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, idx: 0)) {
3873 if (spi->controller->auto_runtime_pm) {
3874 status = pm_runtime_get_sync(dev: parent);
3875 if (status < 0) {
3876 pm_runtime_put_noidle(dev: parent);
3877 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3878 status);
3879 return status;
3880 }
3881
3882 status = spi->controller->set_cs_timing(spi);
3883 pm_runtime_mark_last_busy(dev: parent);
3884 pm_runtime_put_autosuspend(dev: parent);
3885 } else {
3886 status = spi->controller->set_cs_timing(spi);
3887 }
3888 }
3889 return status;
3890}
3891
3892/**
3893 * spi_setup - setup SPI mode and clock rate
3894 * @spi: the device whose settings are being modified
3895 * Context: can sleep, and no requests are queued to the device
3896 *
3897 * SPI protocol drivers may need to update the transfer mode if the
3898 * device doesn't work with its default. They may likewise need
3899 * to update clock rates or word sizes from initial values. This function
3900 * changes those settings, and must be called from a context that can sleep.
3901 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3902 * effect the next time the device is selected and data is transferred to
3903 * or from it. When this function returns, the SPI device is deselected.
3904 *
3905 * Note that this call will fail if the protocol driver specifies an option
3906 * that the underlying controller or its driver does not support. For
3907 * example, not all hardware supports wire transfers using nine bit words,
3908 * LSB-first wire encoding, or active-high chipselects.
3909 *
3910 * Return: zero on success, else a negative error code.
3911 */
3912int spi_setup(struct spi_device *spi)
3913{
3914 unsigned bad_bits, ugly_bits;
3915 int status = 0;
3916
3917 /*
3918 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3919 * are set at the same time.
3920 */
3921 if ((hweight_long(w: spi->mode &
3922 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3923 (hweight_long(w: spi->mode &
3924 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3925 dev_err(&spi->dev,
3926 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3927 return -EINVAL;
3928 }
3929 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3930 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3931 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3932 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3933 return -EINVAL;
3934 /*
3935 * Help drivers fail *cleanly* when they need options
3936 * that aren't supported with their current controller.
3937 * SPI_CS_WORD has a fallback software implementation,
3938 * so it is ignored here.
3939 */
3940 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3941 SPI_NO_TX | SPI_NO_RX);
3942 ugly_bits = bad_bits &
3943 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3944 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3945 if (ugly_bits) {
3946 dev_warn(&spi->dev,
3947 "setup: ignoring unsupported mode bits %x\n",
3948 ugly_bits);
3949 spi->mode &= ~ugly_bits;
3950 bad_bits &= ~ugly_bits;
3951 }
3952 if (bad_bits) {
3953 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3954 bad_bits);
3955 return -EINVAL;
3956 }
3957
3958 if (!spi->bits_per_word) {
3959 spi->bits_per_word = 8;
3960 } else {
3961 /*
3962 * Some controllers may not support the default 8 bits-per-word
3963 * so only perform the check when this is explicitly provided.
3964 */
3965 status = __spi_validate_bits_per_word(ctlr: spi->controller,
3966 bits_per_word: spi->bits_per_word);
3967 if (status)
3968 return status;
3969 }
3970
3971 if (spi->controller->max_speed_hz &&
3972 (!spi->max_speed_hz ||
3973 spi->max_speed_hz > spi->controller->max_speed_hz))
3974 spi->max_speed_hz = spi->controller->max_speed_hz;
3975
3976 mutex_lock(&spi->controller->io_mutex);
3977
3978 if (spi->controller->setup) {
3979 status = spi->controller->setup(spi);
3980 if (status) {
3981 mutex_unlock(lock: &spi->controller->io_mutex);
3982 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3983 status);
3984 return status;
3985 }
3986 }
3987
3988 status = spi_set_cs_timing(spi);
3989 if (status) {
3990 mutex_unlock(lock: &spi->controller->io_mutex);
3991 return status;
3992 }
3993
3994 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3995 status = pm_runtime_resume_and_get(dev: spi->controller->dev.parent);
3996 if (status < 0) {
3997 mutex_unlock(lock: &spi->controller->io_mutex);
3998 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3999 status);
4000 return status;
4001 }
4002
4003 /*
4004 * We do not want to return positive value from pm_runtime_get,
4005 * there are many instances of devices calling spi_setup() and
4006 * checking for a non-zero return value instead of a negative
4007 * return value.
4008 */
4009 status = 0;
4010
4011 spi_set_cs(spi, enable: false, force: true);
4012 pm_runtime_mark_last_busy(dev: spi->controller->dev.parent);
4013 pm_runtime_put_autosuspend(dev: spi->controller->dev.parent);
4014 } else {
4015 spi_set_cs(spi, enable: false, force: true);
4016 }
4017
4018 mutex_unlock(lock: &spi->controller->io_mutex);
4019
4020 if (spi->rt && !spi->controller->rt) {
4021 spi->controller->rt = true;
4022 spi_set_thread_rt(ctlr: spi->controller);
4023 }
4024
4025 trace_spi_setup(spi, status);
4026
4027 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4028 spi->mode & SPI_MODE_X_MASK,
4029 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4030 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4031 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4032 (spi->mode & SPI_LOOP) ? "loopback, " : "",
4033 spi->bits_per_word, spi->max_speed_hz,
4034 status);
4035
4036 return status;
4037}
4038EXPORT_SYMBOL_GPL(spi_setup);
4039
4040static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4041 struct spi_device *spi)
4042{
4043 int delay1, delay2;
4044
4045 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4046 if (delay1 < 0)
4047 return delay1;
4048
4049 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4050 if (delay2 < 0)
4051 return delay2;
4052
4053 if (delay1 < delay2)
4054 memcpy(&xfer->word_delay, &spi->word_delay,
4055 sizeof(xfer->word_delay));
4056
4057 return 0;
4058}
4059
4060static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4061{
4062 struct spi_controller *ctlr = spi->controller;
4063 struct spi_transfer *xfer;
4064 int w_size;
4065
4066 if (list_empty(head: &message->transfers))
4067 return -EINVAL;
4068
4069 message->spi = spi;
4070
4071 /*
4072 * Half-duplex links include original MicroWire, and ones with
4073 * only one data pin like SPI_3WIRE (switches direction) or where
4074 * either MOSI or MISO is missing. They can also be caused by
4075 * software limitations.
4076 */
4077 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4078 (spi->mode & SPI_3WIRE)) {
4079 unsigned flags = ctlr->flags;
4080
4081 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4082 if (xfer->rx_buf && xfer->tx_buf)
4083 return -EINVAL;
4084 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4085 return -EINVAL;
4086 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4087 return -EINVAL;
4088 }
4089 }
4090
4091 /*
4092 * Set transfer bits_per_word and max speed as spi device default if
4093 * it is not set for this transfer.
4094 * Set transfer tx_nbits and rx_nbits as single transfer default
4095 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4096 * Ensure transfer word_delay is at least as long as that required by
4097 * device itself.
4098 */
4099 message->frame_length = 0;
4100 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4101 xfer->effective_speed_hz = 0;
4102 message->frame_length += xfer->len;
4103 if (!xfer->bits_per_word)
4104 xfer->bits_per_word = spi->bits_per_word;
4105
4106 if (!xfer->speed_hz)
4107 xfer->speed_hz = spi->max_speed_hz;
4108
4109 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4110 xfer->speed_hz = ctlr->max_speed_hz;
4111
4112 if (__spi_validate_bits_per_word(ctlr, bits_per_word: xfer->bits_per_word))
4113 return -EINVAL;
4114
4115 /*
4116 * SPI transfer length should be multiple of SPI word size
4117 * where SPI word size should be power-of-two multiple.
4118 */
4119 if (xfer->bits_per_word <= 8)
4120 w_size = 1;
4121 else if (xfer->bits_per_word <= 16)
4122 w_size = 2;
4123 else
4124 w_size = 4;
4125
4126 /* No partial transfers accepted */
4127 if (xfer->len % w_size)
4128 return -EINVAL;
4129
4130 if (xfer->speed_hz && ctlr->min_speed_hz &&
4131 xfer->speed_hz < ctlr->min_speed_hz)
4132 return -EINVAL;
4133
4134 if (xfer->tx_buf && !xfer->tx_nbits)
4135 xfer->tx_nbits = SPI_NBITS_SINGLE;
4136 if (xfer->rx_buf && !xfer->rx_nbits)
4137 xfer->rx_nbits = SPI_NBITS_SINGLE;
4138 /*
4139 * Check transfer tx/rx_nbits:
4140 * 1. check the value matches one of single, dual and quad
4141 * 2. check tx/rx_nbits match the mode in spi_device
4142 */
4143 if (xfer->tx_buf) {
4144 if (spi->mode & SPI_NO_TX)
4145 return -EINVAL;
4146 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4147 xfer->tx_nbits != SPI_NBITS_DUAL &&
4148 xfer->tx_nbits != SPI_NBITS_QUAD)
4149 return -EINVAL;
4150 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4151 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4152 return -EINVAL;
4153 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4154 !(spi->mode & SPI_TX_QUAD))
4155 return -EINVAL;
4156 }
4157 /* Check transfer rx_nbits */
4158 if (xfer->rx_buf) {
4159 if (spi->mode & SPI_NO_RX)
4160 return -EINVAL;
4161 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4162 xfer->rx_nbits != SPI_NBITS_DUAL &&
4163 xfer->rx_nbits != SPI_NBITS_QUAD)
4164 return -EINVAL;
4165 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4166 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4167 return -EINVAL;
4168 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4169 !(spi->mode & SPI_RX_QUAD))
4170 return -EINVAL;
4171 }
4172
4173 if (_spi_xfer_word_delay_update(xfer, spi))
4174 return -EINVAL;
4175 }
4176
4177 message->status = -EINPROGRESS;
4178
4179 return 0;
4180}
4181
4182/*
4183 * spi_split_transfers - generic handling of transfer splitting
4184 * @msg: the message to split
4185 *
4186 * Under certain conditions, a SPI controller may not support arbitrary
4187 * transfer sizes or other features required by a peripheral. This function
4188 * will split the transfers in the message into smaller transfers that are
4189 * supported by the controller.
4190 *
4191 * Controllers with special requirements not covered here can also split
4192 * transfers in the optimize_message() callback.
4193 *
4194 * Context: can sleep
4195 * Return: zero on success, else a negative error code
4196 */
4197static int spi_split_transfers(struct spi_message *msg)
4198{
4199 struct spi_controller *ctlr = msg->spi->controller;
4200 struct spi_transfer *xfer;
4201 int ret;
4202
4203 /*
4204 * If an SPI controller does not support toggling the CS line on each
4205 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4206 * for the CS line, we can emulate the CS-per-word hardware function by
4207 * splitting transfers into one-word transfers and ensuring that
4208 * cs_change is set for each transfer.
4209 */
4210 if ((msg->spi->mode & SPI_CS_WORD) &&
4211 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(spi: msg->spi))) {
4212 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4213 if (ret)
4214 return ret;
4215
4216 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4217 /* Don't change cs_change on the last entry in the list */
4218 if (list_is_last(list: &xfer->transfer_list, head: &msg->transfers))
4219 break;
4220
4221 xfer->cs_change = 1;
4222 }
4223 } else {
4224 ret = spi_split_transfers_maxsize(ctlr, msg,
4225 spi_max_transfer_size(spi: msg->spi));
4226 if (ret)
4227 return ret;
4228 }
4229
4230 return 0;
4231}
4232
4233/*
4234 * __spi_optimize_message - shared implementation for spi_optimize_message()
4235 * and spi_maybe_optimize_message()
4236 * @spi: the device that will be used for the message
4237 * @msg: the message to optimize
4238 *
4239 * Peripheral drivers will call spi_optimize_message() and the spi core will
4240 * call spi_maybe_optimize_message() instead of calling this directly.
4241 *
4242 * It is not valid to call this on a message that has already been optimized.
4243 *
4244 * Return: zero on success, else a negative error code
4245 */
4246static int __spi_optimize_message(struct spi_device *spi,
4247 struct spi_message *msg)
4248{
4249 struct spi_controller *ctlr = spi->controller;
4250 int ret;
4251
4252 ret = __spi_validate(spi, message: msg);
4253 if (ret)
4254 return ret;
4255
4256 ret = spi_split_transfers(msg);
4257 if (ret)
4258 return ret;
4259
4260 if (ctlr->optimize_message) {
4261 ret = ctlr->optimize_message(msg);
4262 if (ret) {
4263 spi_res_release(ctlr, message: msg);
4264 return ret;
4265 }
4266 }
4267
4268 msg->optimized = true;
4269
4270 return 0;
4271}
4272
4273/*
4274 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4275 * @spi: the device that will be used for the message
4276 * @msg: the message to optimize
4277 * Return: zero on success, else a negative error code
4278 */
4279static int spi_maybe_optimize_message(struct spi_device *spi,
4280 struct spi_message *msg)
4281{
4282 if (msg->pre_optimized)
4283 return 0;
4284
4285 return __spi_optimize_message(spi, msg);
4286}
4287
4288/**
4289 * spi_optimize_message - do any one-time validation and setup for a SPI message
4290 * @spi: the device that will be used for the message
4291 * @msg: the message to optimize
4292 *
4293 * Peripheral drivers that reuse the same message repeatedly may call this to
4294 * perform as much message prep as possible once, rather than repeating it each
4295 * time a message transfer is performed to improve throughput and reduce CPU
4296 * usage.
4297 *
4298 * Once a message has been optimized, it cannot be modified with the exception
4299 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4300 * only the data in the memory it points to).
4301 *
4302 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4303 * to avoid leaking resources.
4304 *
4305 * Context: can sleep
4306 * Return: zero on success, else a negative error code
4307 */
4308int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4309{
4310 int ret;
4311
4312 ret = __spi_optimize_message(spi, msg);
4313 if (ret)
4314 return ret;
4315
4316 /*
4317 * This flag indicates that the peripheral driver called spi_optimize_message()
4318 * and therefore we shouldn't unoptimize message automatically when finalizing
4319 * the message but rather wait until spi_unoptimize_message() is called
4320 * by the peripheral driver.
4321 */
4322 msg->pre_optimized = true;
4323
4324 return 0;
4325}
4326EXPORT_SYMBOL_GPL(spi_optimize_message);
4327
4328/**
4329 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4330 * @msg: the message to unoptimize
4331 *
4332 * Calls to this function must be balanced with calls to spi_optimize_message().
4333 *
4334 * Context: can sleep
4335 */
4336void spi_unoptimize_message(struct spi_message *msg)
4337{
4338 __spi_unoptimize_message(msg);
4339 msg->pre_optimized = false;
4340}
4341EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4342
4343static int __spi_async(struct spi_device *spi, struct spi_message *message)
4344{
4345 struct spi_controller *ctlr = spi->controller;
4346 struct spi_transfer *xfer;
4347
4348 /*
4349 * Some controllers do not support doing regular SPI transfers. Return
4350 * ENOTSUPP when this is the case.
4351 */
4352 if (!ctlr->transfer)
4353 return -ENOTSUPP;
4354
4355 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4356 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4357
4358 trace_spi_message_submit(msg: message);
4359
4360 if (!ctlr->ptp_sts_supported) {
4361 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4362 xfer->ptp_sts_word_pre = 0;
4363 ptp_read_system_prets(sts: xfer->ptp_sts);
4364 }
4365 }
4366
4367 return ctlr->transfer(spi, message);
4368}
4369
4370/**
4371 * spi_async - asynchronous SPI transfer
4372 * @spi: device with which data will be exchanged
4373 * @message: describes the data transfers, including completion callback
4374 * Context: any (IRQs may be blocked, etc)
4375 *
4376 * This call may be used in_irq and other contexts which can't sleep,
4377 * as well as from task contexts which can sleep.
4378 *
4379 * The completion callback is invoked in a context which can't sleep.
4380 * Before that invocation, the value of message->status is undefined.
4381 * When the callback is issued, message->status holds either zero (to
4382 * indicate complete success) or a negative error code. After that
4383 * callback returns, the driver which issued the transfer request may
4384 * deallocate the associated memory; it's no longer in use by any SPI
4385 * core or controller driver code.
4386 *
4387 * Note that although all messages to a spi_device are handled in
4388 * FIFO order, messages may go to different devices in other orders.
4389 * Some device might be higher priority, or have various "hard" access
4390 * time requirements, for example.
4391 *
4392 * On detection of any fault during the transfer, processing of
4393 * the entire message is aborted, and the device is deselected.
4394 * Until returning from the associated message completion callback,
4395 * no other spi_message queued to that device will be processed.
4396 * (This rule applies equally to all the synchronous transfer calls,
4397 * which are wrappers around this core asynchronous primitive.)
4398 *
4399 * Return: zero on success, else a negative error code.
4400 */
4401int spi_async(struct spi_device *spi, struct spi_message *message)
4402{
4403 struct spi_controller *ctlr = spi->controller;
4404 int ret;
4405 unsigned long flags;
4406
4407 ret = spi_maybe_optimize_message(spi, msg: message);
4408 if (ret)
4409 return ret;
4410
4411 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4412
4413 if (ctlr->bus_lock_flag)
4414 ret = -EBUSY;
4415 else
4416 ret = __spi_async(spi, message);
4417
4418 spin_unlock_irqrestore(lock: &ctlr->bus_lock_spinlock, flags);
4419
4420 spi_maybe_unoptimize_message(msg: message);
4421
4422 return ret;
4423}
4424EXPORT_SYMBOL_GPL(spi_async);
4425
4426static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4427{
4428 bool was_busy;
4429 int ret;
4430
4431 mutex_lock(&ctlr->io_mutex);
4432
4433 was_busy = ctlr->busy;
4434
4435 ctlr->cur_msg = msg;
4436 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4437 if (ret)
4438 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4439 ctlr->cur_msg = NULL;
4440 ctlr->fallback = false;
4441
4442 if (!was_busy) {
4443 kfree(objp: ctlr->dummy_rx);
4444 ctlr->dummy_rx = NULL;
4445 kfree(objp: ctlr->dummy_tx);
4446 ctlr->dummy_tx = NULL;
4447 if (ctlr->unprepare_transfer_hardware &&
4448 ctlr->unprepare_transfer_hardware(ctlr))
4449 dev_err(&ctlr->dev,
4450 "failed to unprepare transfer hardware\n");
4451 spi_idle_runtime_pm(ctlr);
4452 }
4453
4454 mutex_unlock(lock: &ctlr->io_mutex);
4455}
4456
4457/*-------------------------------------------------------------------------*/
4458
4459/*
4460 * Utility methods for SPI protocol drivers, layered on
4461 * top of the core. Some other utility methods are defined as
4462 * inline functions.
4463 */
4464
4465static void spi_complete(void *arg)
4466{
4467 complete(arg);
4468}
4469
4470static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4471{
4472 DECLARE_COMPLETION_ONSTACK(done);
4473 unsigned long flags;
4474 int status;
4475 struct spi_controller *ctlr = spi->controller;
4476
4477 if (__spi_check_suspended(ctlr)) {
4478 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4479 return -ESHUTDOWN;
4480 }
4481
4482 status = spi_maybe_optimize_message(spi, msg: message);
4483 if (status)
4484 return status;
4485
4486 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4487 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4488
4489 /*
4490 * Checking queue_empty here only guarantees async/sync message
4491 * ordering when coming from the same context. It does not need to
4492 * guard against reentrancy from a different context. The io_mutex
4493 * will catch those cases.
4494 */
4495 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4496 message->actual_length = 0;
4497 message->status = -EINPROGRESS;
4498
4499 trace_spi_message_submit(msg: message);
4500
4501 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4502 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4503
4504 __spi_transfer_message_noqueue(ctlr, msg: message);
4505
4506 return message->status;
4507 }
4508
4509 /*
4510 * There are messages in the async queue that could have originated
4511 * from the same context, so we need to preserve ordering.
4512 * Therefor we send the message to the async queue and wait until they
4513 * are completed.
4514 */
4515 message->complete = spi_complete;
4516 message->context = &done;
4517
4518 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4519 status = __spi_async(spi, message);
4520 spin_unlock_irqrestore(lock: &ctlr->bus_lock_spinlock, flags);
4521
4522 if (status == 0) {
4523 wait_for_completion(&done);
4524 status = message->status;
4525 }
4526 message->context = NULL;
4527
4528 return status;
4529}
4530
4531/**
4532 * spi_sync - blocking/synchronous SPI data transfers
4533 * @spi: device with which data will be exchanged
4534 * @message: describes the data transfers
4535 * Context: can sleep
4536 *
4537 * This call may only be used from a context that may sleep. The sleep
4538 * is non-interruptible, and has no timeout. Low-overhead controller
4539 * drivers may DMA directly into and out of the message buffers.
4540 *
4541 * Note that the SPI device's chip select is active during the message,
4542 * and then is normally disabled between messages. Drivers for some
4543 * frequently-used devices may want to minimize costs of selecting a chip,
4544 * by leaving it selected in anticipation that the next message will go
4545 * to the same chip. (That may increase power usage.)
4546 *
4547 * Also, the caller is guaranteeing that the memory associated with the
4548 * message will not be freed before this call returns.
4549 *
4550 * Return: zero on success, else a negative error code.
4551 */
4552int spi_sync(struct spi_device *spi, struct spi_message *message)
4553{
4554 int ret;
4555
4556 mutex_lock(&spi->controller->bus_lock_mutex);
4557 ret = __spi_sync(spi, message);
4558 mutex_unlock(lock: &spi->controller->bus_lock_mutex);
4559
4560 return ret;
4561}
4562EXPORT_SYMBOL_GPL(spi_sync);
4563
4564/**
4565 * spi_sync_locked - version of spi_sync with exclusive bus usage
4566 * @spi: device with which data will be exchanged
4567 * @message: describes the data transfers
4568 * Context: can sleep
4569 *
4570 * This call may only be used from a context that may sleep. The sleep
4571 * is non-interruptible, and has no timeout. Low-overhead controller
4572 * drivers may DMA directly into and out of the message buffers.
4573 *
4574 * This call should be used by drivers that require exclusive access to the
4575 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4576 * be released by a spi_bus_unlock call when the exclusive access is over.
4577 *
4578 * Return: zero on success, else a negative error code.
4579 */
4580int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4581{
4582 return __spi_sync(spi, message);
4583}
4584EXPORT_SYMBOL_GPL(spi_sync_locked);
4585
4586/**
4587 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4588 * @ctlr: SPI bus master that should be locked for exclusive bus access
4589 * Context: can sleep
4590 *
4591 * This call may only be used from a context that may sleep. The sleep
4592 * is non-interruptible, and has no timeout.
4593 *
4594 * This call should be used by drivers that require exclusive access to the
4595 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4596 * exclusive access is over. Data transfer must be done by spi_sync_locked
4597 * and spi_async_locked calls when the SPI bus lock is held.
4598 *
4599 * Return: always zero.
4600 */
4601int spi_bus_lock(struct spi_controller *ctlr)
4602{
4603 unsigned long flags;
4604
4605 mutex_lock(&ctlr->bus_lock_mutex);
4606
4607 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4608 ctlr->bus_lock_flag = 1;
4609 spin_unlock_irqrestore(lock: &ctlr->bus_lock_spinlock, flags);
4610
4611 /* Mutex remains locked until spi_bus_unlock() is called */
4612
4613 return 0;
4614}
4615EXPORT_SYMBOL_GPL(spi_bus_lock);
4616
4617/**
4618 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4619 * @ctlr: SPI bus master that was locked for exclusive bus access
4620 * Context: can sleep
4621 *
4622 * This call may only be used from a context that may sleep. The sleep
4623 * is non-interruptible, and has no timeout.
4624 *
4625 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4626 * call.
4627 *
4628 * Return: always zero.
4629 */
4630int spi_bus_unlock(struct spi_controller *ctlr)
4631{
4632 ctlr->bus_lock_flag = 0;
4633
4634 mutex_unlock(lock: &ctlr->bus_lock_mutex);
4635
4636 return 0;
4637}
4638EXPORT_SYMBOL_GPL(spi_bus_unlock);
4639
4640/* Portable code must never pass more than 32 bytes */
4641#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4642
4643static u8 *buf;
4644
4645/**
4646 * spi_write_then_read - SPI synchronous write followed by read
4647 * @spi: device with which data will be exchanged
4648 * @txbuf: data to be written (need not be DMA-safe)
4649 * @n_tx: size of txbuf, in bytes
4650 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4651 * @n_rx: size of rxbuf, in bytes
4652 * Context: can sleep
4653 *
4654 * This performs a half duplex MicroWire style transaction with the
4655 * device, sending txbuf and then reading rxbuf. The return value
4656 * is zero for success, else a negative errno status code.
4657 * This call may only be used from a context that may sleep.
4658 *
4659 * Parameters to this routine are always copied using a small buffer.
4660 * Performance-sensitive or bulk transfer code should instead use
4661 * spi_{async,sync}() calls with DMA-safe buffers.
4662 *
4663 * Return: zero on success, else a negative error code.
4664 */
4665int spi_write_then_read(struct spi_device *spi,
4666 const void *txbuf, unsigned n_tx,
4667 void *rxbuf, unsigned n_rx)
4668{
4669 static DEFINE_MUTEX(lock);
4670
4671 int status;
4672 struct spi_message message;
4673 struct spi_transfer x[2];
4674 u8 *local_buf;
4675
4676 /*
4677 * Use preallocated DMA-safe buffer if we can. We can't avoid
4678 * copying here, (as a pure convenience thing), but we can
4679 * keep heap costs out of the hot path unless someone else is
4680 * using the pre-allocated buffer or the transfer is too large.
4681 */
4682 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(lock: &lock)) {
4683 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4684 GFP_KERNEL | GFP_DMA);
4685 if (!local_buf)
4686 return -ENOMEM;
4687 } else {
4688 local_buf = buf;
4689 }
4690
4691 spi_message_init(m: &message);
4692 memset(x, 0, sizeof(x));
4693 if (n_tx) {
4694 x[0].len = n_tx;
4695 spi_message_add_tail(t: &x[0], m: &message);
4696 }
4697 if (n_rx) {
4698 x[1].len = n_rx;
4699 spi_message_add_tail(t: &x[1], m: &message);
4700 }
4701
4702 memcpy(local_buf, txbuf, n_tx);
4703 x[0].tx_buf = local_buf;
4704 x[1].rx_buf = local_buf + n_tx;
4705
4706 /* Do the I/O */
4707 status = spi_sync(spi, &message);
4708 if (status == 0)
4709 memcpy(rxbuf, x[1].rx_buf, n_rx);
4710
4711 if (x[0].tx_buf == buf)
4712 mutex_unlock(lock: &lock);
4713 else
4714 kfree(objp: local_buf);
4715
4716 return status;
4717}
4718EXPORT_SYMBOL_GPL(spi_write_then_read);
4719
4720/*-------------------------------------------------------------------------*/
4721
4722#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4723/* Must call put_device() when done with returned spi_device device */
4724static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4725{
4726 struct device *dev = bus_find_device_by_of_node(bus: &spi_bus_type, np: node);
4727
4728 return dev ? to_spi_device(dev) : NULL;
4729}
4730
4731/* The spi controllers are not using spi_bus, so we find it with another way */
4732static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4733{
4734 struct device *dev;
4735
4736 dev = class_find_device_by_of_node(class: &spi_master_class, np: node);
4737 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4738 dev = class_find_device_by_of_node(class: &spi_slave_class, np: node);
4739 if (!dev)
4740 return NULL;
4741
4742 /* Reference got in class_find_device */
4743 return container_of(dev, struct spi_controller, dev);
4744}
4745
4746static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4747 void *arg)
4748{
4749 struct of_reconfig_data *rd = arg;
4750 struct spi_controller *ctlr;
4751 struct spi_device *spi;
4752
4753 switch (of_reconfig_get_state_change(action, arg)) {
4754 case OF_RECONFIG_CHANGE_ADD:
4755 ctlr = of_find_spi_controller_by_node(node: rd->dn->parent);
4756 if (ctlr == NULL)
4757 return NOTIFY_OK; /* Not for us */
4758
4759 if (of_node_test_and_set_flag(n: rd->dn, OF_POPULATED)) {
4760 put_device(dev: &ctlr->dev);
4761 return NOTIFY_OK;
4762 }
4763
4764 /*
4765 * Clear the flag before adding the device so that fw_devlink
4766 * doesn't skip adding consumers to this device.
4767 */
4768 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4769 spi = of_register_spi_device(ctlr, nc: rd->dn);
4770 put_device(dev: &ctlr->dev);
4771
4772 if (IS_ERR(ptr: spi)) {
4773 pr_err("%s: failed to create for '%pOF'\n",
4774 __func__, rd->dn);
4775 of_node_clear_flag(n: rd->dn, OF_POPULATED);
4776 return notifier_from_errno(err: PTR_ERR(ptr: spi));
4777 }
4778 break;
4779
4780 case OF_RECONFIG_CHANGE_REMOVE:
4781 /* Already depopulated? */
4782 if (!of_node_check_flag(n: rd->dn, OF_POPULATED))
4783 return NOTIFY_OK;
4784
4785 /* Find our device by node */
4786 spi = of_find_spi_device_by_node(node: rd->dn);
4787 if (spi == NULL)
4788 return NOTIFY_OK; /* No? not meant for us */
4789
4790 /* Unregister takes one ref away */
4791 spi_unregister_device(spi);
4792
4793 /* And put the reference of the find */
4794 put_device(dev: &spi->dev);
4795 break;
4796 }
4797
4798 return NOTIFY_OK;
4799}
4800
4801static struct notifier_block spi_of_notifier = {
4802 .notifier_call = of_spi_notify,
4803};
4804#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4805extern struct notifier_block spi_of_notifier;
4806#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4807
4808#if IS_ENABLED(CONFIG_ACPI)
4809static int spi_acpi_controller_match(struct device *dev, const void *data)
4810{
4811 return ACPI_COMPANION(dev->parent) == data;
4812}
4813
4814struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4815{
4816 struct device *dev;
4817
4818 dev = class_find_device(class: &spi_master_class, NULL, data: adev,
4819 match: spi_acpi_controller_match);
4820 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4821 dev = class_find_device(class: &spi_slave_class, NULL, data: adev,
4822 match: spi_acpi_controller_match);
4823 if (!dev)
4824 return NULL;
4825
4826 return container_of(dev, struct spi_controller, dev);
4827}
4828EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4829
4830static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4831{
4832 struct device *dev;
4833
4834 dev = bus_find_device_by_acpi_dev(bus: &spi_bus_type, adev);
4835 return to_spi_device(dev);
4836}
4837
4838static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4839 void *arg)
4840{
4841 struct acpi_device *adev = arg;
4842 struct spi_controller *ctlr;
4843 struct spi_device *spi;
4844
4845 switch (value) {
4846 case ACPI_RECONFIG_DEVICE_ADD:
4847 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4848 if (!ctlr)
4849 break;
4850
4851 acpi_register_spi_device(ctlr, adev);
4852 put_device(dev: &ctlr->dev);
4853 break;
4854 case ACPI_RECONFIG_DEVICE_REMOVE:
4855 if (!acpi_device_enumerated(adev))
4856 break;
4857
4858 spi = acpi_spi_find_device_by_adev(adev);
4859 if (!spi)
4860 break;
4861
4862 spi_unregister_device(spi);
4863 put_device(dev: &spi->dev);
4864 break;
4865 }
4866
4867 return NOTIFY_OK;
4868}
4869
4870static struct notifier_block spi_acpi_notifier = {
4871 .notifier_call = acpi_spi_notify,
4872};
4873#else
4874extern struct notifier_block spi_acpi_notifier;
4875#endif
4876
4877static int __init spi_init(void)
4878{
4879 int status;
4880
4881 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4882 if (!buf) {
4883 status = -ENOMEM;
4884 goto err0;
4885 }
4886
4887 status = bus_register(bus: &spi_bus_type);
4888 if (status < 0)
4889 goto err1;
4890
4891 status = class_register(class: &spi_master_class);
4892 if (status < 0)
4893 goto err2;
4894
4895 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4896 status = class_register(class: &spi_slave_class);
4897 if (status < 0)
4898 goto err3;
4899 }
4900
4901 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4902 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4903 if (IS_ENABLED(CONFIG_ACPI))
4904 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4905
4906 return 0;
4907
4908err3:
4909 class_unregister(class: &spi_master_class);
4910err2:
4911 bus_unregister(bus: &spi_bus_type);
4912err1:
4913 kfree(objp: buf);
4914 buf = NULL;
4915err0:
4916 return status;
4917}
4918
4919/*
4920 * A board_info is normally registered in arch_initcall(),
4921 * but even essential drivers wait till later.
4922 *
4923 * REVISIT only boardinfo really needs static linking. The rest (device and
4924 * driver registration) _could_ be dynamically linked (modular) ... Costs
4925 * include needing to have boardinfo data structures be much more public.
4926 */
4927postcore_initcall(spi_init);
4928

source code of linux/drivers/spi/spi.c