| 1 | // SPDX-License-Identifier: GPL-2.0 | 
| 2 | /* | 
| 3 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
| 4 |  */ | 
| 5 |  | 
| 6 | #include <linux/fs.h> | 
| 7 | #include <linux/blkdev.h> | 
| 8 | #include <linux/radix-tree.h> | 
| 9 | #include <linux/writeback.h> | 
| 10 | #include <linux/workqueue.h> | 
| 11 | #include <linux/kthread.h> | 
| 12 | #include <linux/slab.h> | 
| 13 | #include <linux/migrate.h> | 
| 14 | #include <linux/ratelimit.h> | 
| 15 | #include <linux/uuid.h> | 
| 16 | #include <linux/semaphore.h> | 
| 17 | #include <linux/error-injection.h> | 
| 18 | #include <linux/crc32c.h> | 
| 19 | #include <linux/sched/mm.h> | 
| 20 | #include <linux/unaligned.h> | 
| 21 | #include <crypto/hash.h> | 
| 22 | #include "ctree.h" | 
| 23 | #include "disk-io.h" | 
| 24 | #include "transaction.h" | 
| 25 | #include "btrfs_inode.h" | 
| 26 | #include "bio.h" | 
| 27 | #include "print-tree.h" | 
| 28 | #include "locking.h" | 
| 29 | #include "tree-log.h" | 
| 30 | #include "free-space-cache.h" | 
| 31 | #include "free-space-tree.h" | 
| 32 | #include "dev-replace.h" | 
| 33 | #include "raid56.h" | 
| 34 | #include "sysfs.h" | 
| 35 | #include "qgroup.h" | 
| 36 | #include "compression.h" | 
| 37 | #include "tree-checker.h" | 
| 38 | #include "ref-verify.h" | 
| 39 | #include "block-group.h" | 
| 40 | #include "discard.h" | 
| 41 | #include "space-info.h" | 
| 42 | #include "zoned.h" | 
| 43 | #include "subpage.h" | 
| 44 | #include "fs.h" | 
| 45 | #include "accessors.h" | 
| 46 | #include "extent-tree.h" | 
| 47 | #include "root-tree.h" | 
| 48 | #include "defrag.h" | 
| 49 | #include "uuid-tree.h" | 
| 50 | #include "relocation.h" | 
| 51 | #include "scrub.h" | 
| 52 | #include "super.h" | 
| 53 |  | 
| 54 | #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\ | 
| 55 | 				 BTRFS_HEADER_FLAG_RELOC |\ | 
| 56 | 				 BTRFS_SUPER_FLAG_ERROR |\ | 
| 57 | 				 BTRFS_SUPER_FLAG_SEEDING |\ | 
| 58 | 				 BTRFS_SUPER_FLAG_METADUMP |\ | 
| 59 | 				 BTRFS_SUPER_FLAG_METADUMP_V2) | 
| 60 |  | 
| 61 | static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); | 
| 62 | static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); | 
| 63 |  | 
| 64 | static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) | 
| 65 | { | 
| 66 | 	if (fs_info->csum_shash) | 
| 67 | 		crypto_free_shash(tfm: fs_info->csum_shash); | 
| 68 | } | 
| 69 |  | 
| 70 | /* | 
| 71 |  * Compute the csum of a btree block and store the result to provided buffer. | 
| 72 |  */ | 
| 73 | static void csum_tree_block(struct extent_buffer *buf, u8 *result) | 
| 74 | { | 
| 75 | 	struct btrfs_fs_info *fs_info = buf->fs_info; | 
| 76 | 	int num_pages; | 
| 77 | 	u32 first_page_part; | 
| 78 | 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); | 
| 79 | 	char *kaddr; | 
| 80 | 	int i; | 
| 81 |  | 
| 82 | 	shash->tfm = fs_info->csum_shash; | 
| 83 | 	crypto_shash_init(desc: shash); | 
| 84 |  | 
| 85 | 	if (buf->addr) { | 
| 86 | 		/* Pages are contiguous, handle them as a big one. */ | 
| 87 | 		kaddr = buf->addr; | 
| 88 | 		first_page_part = fs_info->nodesize; | 
| 89 | 		num_pages = 1; | 
| 90 | 	} else { | 
| 91 | 		kaddr = folio_address(folio: buf->folios[0]); | 
| 92 | 		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); | 
| 93 | 		num_pages = num_extent_pages(eb: buf); | 
| 94 | 	} | 
| 95 |  | 
| 96 | 	crypto_shash_update(desc: shash, data: kaddr + BTRFS_CSUM_SIZE, | 
| 97 | 			    len: first_page_part - BTRFS_CSUM_SIZE); | 
| 98 |  | 
| 99 | 	/* | 
| 100 | 	 * Multiple single-page folios case would reach here. | 
| 101 | 	 * | 
| 102 | 	 * nodesize <= PAGE_SIZE and large folio all handled by above | 
| 103 | 	 * crypto_shash_update() already. | 
| 104 | 	 */ | 
| 105 | 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { | 
| 106 | 		kaddr = folio_address(folio: buf->folios[i]); | 
| 107 | 		crypto_shash_update(desc: shash, data: kaddr, PAGE_SIZE); | 
| 108 | 	} | 
| 109 | 	memset(result, 0, BTRFS_CSUM_SIZE); | 
| 110 | 	crypto_shash_final(desc: shash, out: result); | 
| 111 | } | 
| 112 |  | 
| 113 | /* | 
| 114 |  * we can't consider a given block up to date unless the transid of the | 
| 115 |  * block matches the transid in the parent node's pointer.  This is how we | 
| 116 |  * detect blocks that either didn't get written at all or got written | 
| 117 |  * in the wrong place. | 
| 118 |  */ | 
| 119 | int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) | 
| 120 | { | 
| 121 | 	if (!extent_buffer_uptodate(eb)) | 
| 122 | 		return 0; | 
| 123 |  | 
| 124 | 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid) | 
| 125 | 		return 1; | 
| 126 |  | 
| 127 | 	if (atomic) | 
| 128 | 		return -EAGAIN; | 
| 129 |  | 
| 130 | 	if (!extent_buffer_uptodate(eb) || | 
| 131 | 	    btrfs_header_generation(eb) != parent_transid) { | 
| 132 | 		btrfs_err_rl(eb->fs_info, | 
| 133 | "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu" , | 
| 134 | 			eb->start, eb->read_mirror, | 
| 135 | 			parent_transid, btrfs_header_generation(eb)); | 
| 136 | 		clear_extent_buffer_uptodate(eb); | 
| 137 | 		return 0; | 
| 138 | 	} | 
| 139 | 	return 1; | 
| 140 | } | 
| 141 |  | 
| 142 | static bool btrfs_supported_super_csum(u16 csum_type) | 
| 143 | { | 
| 144 | 	switch (csum_type) { | 
| 145 | 	case BTRFS_CSUM_TYPE_CRC32: | 
| 146 | 	case BTRFS_CSUM_TYPE_XXHASH: | 
| 147 | 	case BTRFS_CSUM_TYPE_SHA256: | 
| 148 | 	case BTRFS_CSUM_TYPE_BLAKE2: | 
| 149 | 		return true; | 
| 150 | 	default: | 
| 151 | 		return false; | 
| 152 | 	} | 
| 153 | } | 
| 154 |  | 
| 155 | /* | 
| 156 |  * Return 0 if the superblock checksum type matches the checksum value of that | 
| 157 |  * algorithm. Pass the raw disk superblock data. | 
| 158 |  */ | 
| 159 | int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, | 
| 160 | 			   const struct btrfs_super_block *disk_sb) | 
| 161 | { | 
| 162 | 	char result[BTRFS_CSUM_SIZE]; | 
| 163 | 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); | 
| 164 |  | 
| 165 | 	shash->tfm = fs_info->csum_shash; | 
| 166 |  | 
| 167 | 	/* | 
| 168 | 	 * The super_block structure does not span the whole | 
| 169 | 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is | 
| 170 | 	 * filled with zeros and is included in the checksum. | 
| 171 | 	 */ | 
| 172 | 	crypto_shash_digest(desc: shash, data: (const u8 *)disk_sb + BTRFS_CSUM_SIZE, | 
| 173 | 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, out: result); | 
| 174 |  | 
| 175 | 	if (memcmp(p: disk_sb->csum, q: result, size: fs_info->csum_size)) | 
| 176 | 		return 1; | 
| 177 |  | 
| 178 | 	return 0; | 
| 179 | } | 
| 180 |  | 
| 181 | static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, | 
| 182 | 				      int mirror_num) | 
| 183 | { | 
| 184 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
| 185 | 	int ret = 0; | 
| 186 |  | 
| 187 | 	if (sb_rdonly(sb: fs_info->sb)) | 
| 188 | 		return -EROFS; | 
| 189 |  | 
| 190 | 	for (int i = 0; i < num_extent_folios(eb); i++) { | 
| 191 | 		struct folio *folio = eb->folios[i]; | 
| 192 | 		u64 start = max_t(u64, eb->start, folio_pos(folio)); | 
| 193 | 		u64 end = min_t(u64, eb->start + eb->len, | 
| 194 | 				folio_pos(folio) + eb->folio_size); | 
| 195 | 		u32 len = end - start; | 
| 196 | 		phys_addr_t paddr = PFN_PHYS(folio_pfn(folio)) + | 
| 197 | 				    offset_in_folio(folio, start); | 
| 198 |  | 
| 199 | 		ret = btrfs_repair_io_failure(fs_info, ino: 0, start, length: len, logical: start, | 
| 200 | 					      paddr, mirror_num); | 
| 201 | 		if (ret) | 
| 202 | 			break; | 
| 203 | 	} | 
| 204 |  | 
| 205 | 	return ret; | 
| 206 | } | 
| 207 |  | 
| 208 | /* | 
| 209 |  * helper to read a given tree block, doing retries as required when | 
| 210 |  * the checksums don't match and we have alternate mirrors to try. | 
| 211 |  * | 
| 212 |  * @check:		expected tree parentness check, see the comments of the | 
| 213 |  *			structure for details. | 
| 214 |  */ | 
| 215 | int btrfs_read_extent_buffer(struct extent_buffer *eb, | 
| 216 | 			     const struct btrfs_tree_parent_check *check) | 
| 217 | { | 
| 218 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
| 219 | 	int failed = 0; | 
| 220 | 	int ret; | 
| 221 | 	int num_copies = 0; | 
| 222 | 	int mirror_num = 0; | 
| 223 | 	int failed_mirror = 0; | 
| 224 |  | 
| 225 | 	ASSERT(check); | 
| 226 |  | 
| 227 | 	while (1) { | 
| 228 | 		ret = read_extent_buffer_pages(eb, mirror_num, parent_check: check); | 
| 229 | 		if (!ret) | 
| 230 | 			break; | 
| 231 |  | 
| 232 | 		num_copies = btrfs_num_copies(fs_info, | 
| 233 | 					      logical: eb->start, len: eb->len); | 
| 234 | 		if (num_copies == 1) | 
| 235 | 			break; | 
| 236 |  | 
| 237 | 		if (!failed_mirror) { | 
| 238 | 			failed = 1; | 
| 239 | 			failed_mirror = eb->read_mirror; | 
| 240 | 		} | 
| 241 |  | 
| 242 | 		mirror_num++; | 
| 243 | 		if (mirror_num == failed_mirror) | 
| 244 | 			mirror_num++; | 
| 245 |  | 
| 246 | 		if (mirror_num > num_copies) | 
| 247 | 			break; | 
| 248 | 	} | 
| 249 |  | 
| 250 | 	if (failed && !ret && failed_mirror) | 
| 251 | 		btrfs_repair_eb_io_failure(eb, mirror_num: failed_mirror); | 
| 252 |  | 
| 253 | 	return ret; | 
| 254 | } | 
| 255 |  | 
| 256 | /* | 
| 257 |  * Checksum a dirty tree block before IO. | 
| 258 |  */ | 
| 259 | int btree_csum_one_bio(struct btrfs_bio *bbio) | 
| 260 | { | 
| 261 | 	struct extent_buffer *eb = bbio->private; | 
| 262 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
| 263 | 	u64 found_start = btrfs_header_bytenr(eb); | 
| 264 | 	u64 last_trans; | 
| 265 | 	u8 result[BTRFS_CSUM_SIZE]; | 
| 266 | 	int ret; | 
| 267 |  | 
| 268 | 	/* Btree blocks are always contiguous on disk. */ | 
| 269 | 	if (WARN_ON_ONCE(bbio->file_offset != eb->start)) | 
| 270 | 		return -EIO; | 
| 271 | 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) | 
| 272 | 		return -EIO; | 
| 273 |  | 
| 274 | 	/* | 
| 275 | 	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't | 
| 276 | 	 * checksum it but zero-out its content. This is done to preserve | 
| 277 | 	 * ordering of I/O without unnecessarily writing out data. | 
| 278 | 	 */ | 
| 279 | 	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { | 
| 280 | 		memzero_extent_buffer(eb, start: 0, len: eb->len); | 
| 281 | 		return 0; | 
| 282 | 	} | 
| 283 |  | 
| 284 | 	if (WARN_ON_ONCE(found_start != eb->start)) | 
| 285 | 		return -EIO; | 
| 286 | 	if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb))) | 
| 287 | 		return -EIO; | 
| 288 |  | 
| 289 | 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, | 
| 290 | 				    offsetof(struct btrfs_header, fsid), | 
| 291 | 				    BTRFS_FSID_SIZE) == 0); | 
| 292 | 	csum_tree_block(buf: eb, result); | 
| 293 |  | 
| 294 | 	if (btrfs_header_level(eb)) | 
| 295 | 		ret = btrfs_check_node(node: eb); | 
| 296 | 	else | 
| 297 | 		ret = btrfs_check_leaf(leaf: eb); | 
| 298 |  | 
| 299 | 	if (ret < 0) | 
| 300 | 		goto error; | 
| 301 |  | 
| 302 | 	/* | 
| 303 | 	 * Also check the generation, the eb reached here must be newer than | 
| 304 | 	 * last committed. Or something seriously wrong happened. | 
| 305 | 	 */ | 
| 306 | 	last_trans = btrfs_get_last_trans_committed(fs_info); | 
| 307 | 	if (unlikely(btrfs_header_generation(eb) <= last_trans)) { | 
| 308 | 		ret = -EUCLEAN; | 
| 309 | 		btrfs_err(fs_info, | 
| 310 | 			"block=%llu bad generation, have %llu expect > %llu" , | 
| 311 | 			  eb->start, btrfs_header_generation(eb), last_trans); | 
| 312 | 		goto error; | 
| 313 | 	} | 
| 314 | 	write_extent_buffer(eb, src: result, start: 0, len: fs_info->csum_size); | 
| 315 | 	return 0; | 
| 316 |  | 
| 317 | error: | 
| 318 | 	btrfs_print_tree(c: eb, follow: 0); | 
| 319 | 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected" , | 
| 320 | 		  eb->start); | 
| 321 | 	/* | 
| 322 | 	 * Be noisy if this is an extent buffer from a log tree. We don't abort | 
| 323 | 	 * a transaction in case there's a bad log tree extent buffer, we just | 
| 324 | 	 * fallback to a transaction commit. Still we want to know when there is | 
| 325 | 	 * a bad log tree extent buffer, as that may signal a bug somewhere. | 
| 326 | 	 */ | 
| 327 | 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || | 
| 328 | 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); | 
| 329 | 	return ret; | 
| 330 | } | 
| 331 |  | 
| 332 | static bool check_tree_block_fsid(struct extent_buffer *eb) | 
| 333 | { | 
| 334 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
| 335 | 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; | 
| 336 | 	u8 fsid[BTRFS_FSID_SIZE]; | 
| 337 |  | 
| 338 | 	read_extent_buffer(eb, dst: fsid, offsetof(struct btrfs_header, fsid), | 
| 339 | 			   BTRFS_FSID_SIZE); | 
| 340 |  | 
| 341 | 	/* | 
| 342 | 	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. | 
| 343 | 	 * This is then overwritten by metadata_uuid if it is present in the | 
| 344 | 	 * device_list_add(). The same true for a seed device as well. So use of | 
| 345 | 	 * fs_devices::metadata_uuid is appropriate here. | 
| 346 | 	 */ | 
| 347 | 	if (memcmp(p: fsid, q: fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) | 
| 348 | 		return false; | 
| 349 |  | 
| 350 | 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) | 
| 351 | 		if (!memcmp(p: fsid, q: seed_devs->fsid, BTRFS_FSID_SIZE)) | 
| 352 | 			return false; | 
| 353 |  | 
| 354 | 	return true; | 
| 355 | } | 
| 356 |  | 
| 357 | /* Do basic extent buffer checks at read time */ | 
| 358 | int btrfs_validate_extent_buffer(struct extent_buffer *eb, | 
| 359 | 				 const struct btrfs_tree_parent_check *check) | 
| 360 | { | 
| 361 | 	struct btrfs_fs_info *fs_info = eb->fs_info; | 
| 362 | 	u64 found_start; | 
| 363 | 	const u32 csum_size = fs_info->csum_size; | 
| 364 | 	u8 found_level; | 
| 365 | 	u8 result[BTRFS_CSUM_SIZE]; | 
| 366 | 	const u8 *; | 
| 367 | 	int ret = 0; | 
| 368 | 	const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); | 
| 369 |  | 
| 370 | 	ASSERT(check); | 
| 371 |  | 
| 372 | 	found_start = btrfs_header_bytenr(eb); | 
| 373 | 	if (found_start != eb->start) { | 
| 374 | 		btrfs_err_rl(fs_info, | 
| 375 | 			"bad tree block start, mirror %u want %llu have %llu" , | 
| 376 | 			     eb->read_mirror, eb->start, found_start); | 
| 377 | 		ret = -EIO; | 
| 378 | 		goto out; | 
| 379 | 	} | 
| 380 | 	if (check_tree_block_fsid(eb)) { | 
| 381 | 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u" , | 
| 382 | 			     eb->start, eb->read_mirror); | 
| 383 | 		ret = -EIO; | 
| 384 | 		goto out; | 
| 385 | 	} | 
| 386 | 	found_level = btrfs_header_level(eb); | 
| 387 | 	if (found_level >= BTRFS_MAX_LEVEL) { | 
| 388 | 		btrfs_err(fs_info, | 
| 389 | 			"bad tree block level, mirror %u level %d on logical %llu" , | 
| 390 | 			eb->read_mirror, btrfs_header_level(eb), eb->start); | 
| 391 | 		ret = -EIO; | 
| 392 | 		goto out; | 
| 393 | 	} | 
| 394 |  | 
| 395 | 	csum_tree_block(buf: eb, result); | 
| 396 | 	header_csum = folio_address(folio: eb->folios[0]) + | 
| 397 | 		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); | 
| 398 |  | 
| 399 | 	if (memcmp(p: result, q: header_csum, size: csum_size) != 0) { | 
| 400 | 		btrfs_warn_rl(fs_info, | 
| 401 | "checksum verify failed on logical %llu mirror %u wanted "  CSUM_FMT " found "  CSUM_FMT " level %d%s" , | 
| 402 | 			      eb->start, eb->read_mirror, | 
| 403 | 			      CSUM_FMT_VALUE(csum_size, header_csum), | 
| 404 | 			      CSUM_FMT_VALUE(csum_size, result), | 
| 405 | 			      btrfs_header_level(eb), | 
| 406 | 			      ignore_csum ? ", ignored"  : "" ); | 
| 407 | 		if (!ignore_csum) { | 
| 408 | 			ret = -EUCLEAN; | 
| 409 | 			goto out; | 
| 410 | 		} | 
| 411 | 	} | 
| 412 |  | 
| 413 | 	if (found_level != check->level) { | 
| 414 | 		btrfs_err(fs_info, | 
| 415 | 		"level verify failed on logical %llu mirror %u wanted %u found %u" , | 
| 416 | 			  eb->start, eb->read_mirror, check->level, found_level); | 
| 417 | 		ret = -EIO; | 
| 418 | 		goto out; | 
| 419 | 	} | 
| 420 | 	if (unlikely(check->transid && | 
| 421 | 		     btrfs_header_generation(eb) != check->transid)) { | 
| 422 | 		btrfs_err_rl(eb->fs_info, | 
| 423 | "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu" , | 
| 424 | 				eb->start, eb->read_mirror, check->transid, | 
| 425 | 				btrfs_header_generation(eb)); | 
| 426 | 		ret = -EIO; | 
| 427 | 		goto out; | 
| 428 | 	} | 
| 429 | 	if (check->has_first_key) { | 
| 430 | 		const struct btrfs_key *expect_key = &check->first_key; | 
| 431 | 		struct btrfs_key found_key; | 
| 432 |  | 
| 433 | 		if (found_level) | 
| 434 | 			btrfs_node_key_to_cpu(eb, cpu_key: &found_key, nr: 0); | 
| 435 | 		else | 
| 436 | 			btrfs_item_key_to_cpu(eb, cpu_key: &found_key, nr: 0); | 
| 437 | 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { | 
| 438 | 			btrfs_err(fs_info, | 
| 439 | "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)" , | 
| 440 | 				  eb->start, check->transid, | 
| 441 | 				  expect_key->objectid, | 
| 442 | 				  expect_key->type, expect_key->offset, | 
| 443 | 				  found_key.objectid, found_key.type, | 
| 444 | 				  found_key.offset); | 
| 445 | 			ret = -EUCLEAN; | 
| 446 | 			goto out; | 
| 447 | 		} | 
| 448 | 	} | 
| 449 | 	if (check->owner_root) { | 
| 450 | 		ret = btrfs_check_eb_owner(eb, root_owner: check->owner_root); | 
| 451 | 		if (ret < 0) | 
| 452 | 			goto out; | 
| 453 | 	} | 
| 454 |  | 
| 455 | 	/* If this is a leaf block and it is corrupt, just return -EIO. */ | 
| 456 | 	if (found_level == 0 && btrfs_check_leaf(leaf: eb)) | 
| 457 | 		ret = -EIO; | 
| 458 |  | 
| 459 | 	if (found_level > 0 && btrfs_check_node(node: eb)) | 
| 460 | 		ret = -EIO; | 
| 461 |  | 
| 462 | 	if (ret) | 
| 463 | 		btrfs_err(fs_info, | 
| 464 | 		"read time tree block corruption detected on logical %llu mirror %u" , | 
| 465 | 			  eb->start, eb->read_mirror); | 
| 466 | out: | 
| 467 | 	return ret; | 
| 468 | } | 
| 469 |  | 
| 470 | #ifdef CONFIG_MIGRATION | 
| 471 | static int btree_migrate_folio(struct address_space *mapping, | 
| 472 | 		struct folio *dst, struct folio *src, enum migrate_mode mode) | 
| 473 | { | 
| 474 | 	/* | 
| 475 | 	 * we can't safely write a btree page from here, | 
| 476 | 	 * we haven't done the locking hook | 
| 477 | 	 */ | 
| 478 | 	if (folio_test_dirty(folio: src)) | 
| 479 | 		return -EAGAIN; | 
| 480 | 	/* | 
| 481 | 	 * Buffers may be managed in a filesystem specific way. | 
| 482 | 	 * We must have no buffers or drop them. | 
| 483 | 	 */ | 
| 484 | 	if (folio_get_private(folio: src) && | 
| 485 | 	    !filemap_release_folio(folio: src, GFP_KERNEL)) | 
| 486 | 		return -EAGAIN; | 
| 487 | 	return migrate_folio(mapping, dst, src, mode); | 
| 488 | } | 
| 489 | #else | 
| 490 | #define btree_migrate_folio NULL | 
| 491 | #endif | 
| 492 |  | 
| 493 | static int btree_writepages(struct address_space *mapping, | 
| 494 | 			    struct writeback_control *wbc) | 
| 495 | { | 
| 496 | 	int ret; | 
| 497 |  | 
| 498 | 	if (wbc->sync_mode == WB_SYNC_NONE) { | 
| 499 | 		struct btrfs_fs_info *fs_info; | 
| 500 |  | 
| 501 | 		if (wbc->for_kupdate) | 
| 502 | 			return 0; | 
| 503 |  | 
| 504 | 		fs_info = inode_to_fs_info(mapping->host); | 
| 505 | 		/* this is a bit racy, but that's ok */ | 
| 506 | 		ret = __percpu_counter_compare(fbc: &fs_info->dirty_metadata_bytes, | 
| 507 | 					     BTRFS_DIRTY_METADATA_THRESH, | 
| 508 | 					     batch: fs_info->dirty_metadata_batch); | 
| 509 | 		if (ret < 0) | 
| 510 | 			return 0; | 
| 511 | 	} | 
| 512 | 	return btree_write_cache_pages(mapping, wbc); | 
| 513 | } | 
| 514 |  | 
| 515 | static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) | 
| 516 | { | 
| 517 | 	if (folio_test_writeback(folio) || folio_test_dirty(folio)) | 
| 518 | 		return false; | 
| 519 |  | 
| 520 | 	return try_release_extent_buffer(folio); | 
| 521 | } | 
| 522 |  | 
| 523 | static void btree_invalidate_folio(struct folio *folio, size_t offset, | 
| 524 | 				 size_t length) | 
| 525 | { | 
| 526 | 	struct extent_io_tree *tree; | 
| 527 |  | 
| 528 | 	tree = &folio_to_inode(folio)->io_tree; | 
| 529 | 	extent_invalidate_folio(tree, folio, offset); | 
| 530 | 	btree_release_folio(folio, GFP_NOFS); | 
| 531 | 	if (folio_get_private(folio)) { | 
| 532 | 		btrfs_warn(folio_to_fs_info(folio), | 
| 533 | 			   "folio private not zero on folio %llu" , | 
| 534 | 			   (unsigned long long)folio_pos(folio)); | 
| 535 | 		folio_detach_private(folio); | 
| 536 | 	} | 
| 537 | } | 
| 538 |  | 
| 539 | #ifdef DEBUG | 
| 540 | static bool btree_dirty_folio(struct address_space *mapping, | 
| 541 | 		struct folio *folio) | 
| 542 | { | 
| 543 | 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); | 
| 544 | 	struct btrfs_subpage_info *spi = fs_info->subpage_info; | 
| 545 | 	struct btrfs_subpage *subpage; | 
| 546 | 	struct extent_buffer *eb; | 
| 547 | 	int cur_bit = 0; | 
| 548 | 	u64 page_start = folio_pos(folio); | 
| 549 |  | 
| 550 | 	if (fs_info->sectorsize == PAGE_SIZE) { | 
| 551 | 		eb = folio_get_private(folio); | 
| 552 | 		BUG_ON(!eb); | 
| 553 | 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
| 554 | 		BUG_ON(!atomic_read(&eb->refs)); | 
| 555 | 		btrfs_assert_tree_write_locked(eb); | 
| 556 | 		return filemap_dirty_folio(mapping, folio); | 
| 557 | 	} | 
| 558 |  | 
| 559 | 	ASSERT(spi); | 
| 560 | 	subpage = folio_get_private(folio); | 
| 561 |  | 
| 562 | 	for (cur_bit = spi->dirty_offset; | 
| 563 | 	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; | 
| 564 | 	     cur_bit++) { | 
| 565 | 		unsigned long flags; | 
| 566 | 		u64 cur; | 
| 567 |  | 
| 568 | 		spin_lock_irqsave(&subpage->lock, flags); | 
| 569 | 		if (!test_bit(cur_bit, subpage->bitmaps)) { | 
| 570 | 			spin_unlock_irqrestore(&subpage->lock, flags); | 
| 571 | 			continue; | 
| 572 | 		} | 
| 573 | 		spin_unlock_irqrestore(&subpage->lock, flags); | 
| 574 | 		cur = page_start + cur_bit * fs_info->sectorsize; | 
| 575 |  | 
| 576 | 		eb = find_extent_buffer(fs_info, cur); | 
| 577 | 		ASSERT(eb); | 
| 578 | 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
| 579 | 		ASSERT(atomic_read(&eb->refs)); | 
| 580 | 		btrfs_assert_tree_write_locked(eb); | 
| 581 | 		free_extent_buffer(eb); | 
| 582 |  | 
| 583 | 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; | 
| 584 | 	} | 
| 585 | 	return filemap_dirty_folio(mapping, folio); | 
| 586 | } | 
| 587 | #else | 
| 588 | #define btree_dirty_folio filemap_dirty_folio | 
| 589 | #endif | 
| 590 |  | 
| 591 | static const struct address_space_operations btree_aops = { | 
| 592 | 	.writepages	= btree_writepages, | 
| 593 | 	.release_folio	= btree_release_folio, | 
| 594 | 	.invalidate_folio = btree_invalidate_folio, | 
| 595 | 	.migrate_folio	= btree_migrate_folio, | 
| 596 | 	.dirty_folio	= btree_dirty_folio, | 
| 597 | }; | 
| 598 |  | 
| 599 | struct extent_buffer *btrfs_find_create_tree_block( | 
| 600 | 						struct btrfs_fs_info *fs_info, | 
| 601 | 						u64 bytenr, u64 owner_root, | 
| 602 | 						int level) | 
| 603 | { | 
| 604 | 	if (btrfs_is_testing(fs_info)) | 
| 605 | 		return alloc_test_extent_buffer(fs_info, start: bytenr); | 
| 606 | 	return alloc_extent_buffer(fs_info, start: bytenr, owner_root, level); | 
| 607 | } | 
| 608 |  | 
| 609 | /* | 
| 610 |  * Read tree block at logical address @bytenr and do variant basic but critical | 
| 611 |  * verification. | 
| 612 |  * | 
| 613 |  * @check:		expected tree parentness check, see comments of the | 
| 614 |  *			structure for details. | 
| 615 |  */ | 
| 616 | struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, | 
| 617 | 				      struct btrfs_tree_parent_check *check) | 
| 618 | { | 
| 619 | 	struct extent_buffer *buf = NULL; | 
| 620 | 	int ret; | 
| 621 |  | 
| 622 | 	ASSERT(check); | 
| 623 |  | 
| 624 | 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root: check->owner_root, | 
| 625 | 					   level: check->level); | 
| 626 | 	if (IS_ERR(ptr: buf)) | 
| 627 | 		return buf; | 
| 628 |  | 
| 629 | 	ret = btrfs_read_extent_buffer(eb: buf, check); | 
| 630 | 	if (ret) { | 
| 631 | 		free_extent_buffer_stale(eb: buf); | 
| 632 | 		return ERR_PTR(error: ret); | 
| 633 | 	} | 
| 634 | 	return buf; | 
| 635 |  | 
| 636 | } | 
| 637 |  | 
| 638 | static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, | 
| 639 | 					   u64 objectid, gfp_t flags) | 
| 640 | { | 
| 641 | 	struct btrfs_root *root; | 
| 642 | 	bool dummy = btrfs_is_testing(fs_info); | 
| 643 |  | 
| 644 | 	root = kzalloc(sizeof(*root), flags); | 
| 645 | 	if (!root) | 
| 646 | 		return NULL; | 
| 647 |  | 
| 648 | 	memset(&root->root_key, 0, sizeof(root->root_key)); | 
| 649 | 	memset(&root->root_item, 0, sizeof(root->root_item)); | 
| 650 | 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); | 
| 651 | 	root->fs_info = fs_info; | 
| 652 | 	root->root_key.objectid = objectid; | 
| 653 | 	root->node = NULL; | 
| 654 | 	root->commit_root = NULL; | 
| 655 | 	root->state = 0; | 
| 656 | 	RB_CLEAR_NODE(&root->rb_node); | 
| 657 |  | 
| 658 | 	btrfs_set_root_last_trans(root, transid: 0); | 
| 659 | 	root->free_objectid = 0; | 
| 660 | 	root->nr_delalloc_inodes = 0; | 
| 661 | 	root->nr_ordered_extents = 0; | 
| 662 | 	xa_init(xa: &root->inodes); | 
| 663 | 	xa_init(xa: &root->delayed_nodes); | 
| 664 |  | 
| 665 | 	btrfs_init_root_block_rsv(root); | 
| 666 |  | 
| 667 | 	INIT_LIST_HEAD(list: &root->dirty_list); | 
| 668 | 	INIT_LIST_HEAD(list: &root->root_list); | 
| 669 | 	INIT_LIST_HEAD(list: &root->delalloc_inodes); | 
| 670 | 	INIT_LIST_HEAD(list: &root->delalloc_root); | 
| 671 | 	INIT_LIST_HEAD(list: &root->ordered_extents); | 
| 672 | 	INIT_LIST_HEAD(list: &root->ordered_root); | 
| 673 | 	INIT_LIST_HEAD(list: &root->reloc_dirty_list); | 
| 674 | 	spin_lock_init(&root->delalloc_lock); | 
| 675 | 	spin_lock_init(&root->ordered_extent_lock); | 
| 676 | 	spin_lock_init(&root->accounting_lock); | 
| 677 | 	spin_lock_init(&root->qgroup_meta_rsv_lock); | 
| 678 | 	mutex_init(&root->objectid_mutex); | 
| 679 | 	mutex_init(&root->log_mutex); | 
| 680 | 	mutex_init(&root->ordered_extent_mutex); | 
| 681 | 	mutex_init(&root->delalloc_mutex); | 
| 682 | 	init_waitqueue_head(&root->qgroup_flush_wait); | 
| 683 | 	init_waitqueue_head(&root->log_writer_wait); | 
| 684 | 	init_waitqueue_head(&root->log_commit_wait[0]); | 
| 685 | 	init_waitqueue_head(&root->log_commit_wait[1]); | 
| 686 | 	INIT_LIST_HEAD(list: &root->log_ctxs[0]); | 
| 687 | 	INIT_LIST_HEAD(list: &root->log_ctxs[1]); | 
| 688 | 	atomic_set(v: &root->log_commit[0], i: 0); | 
| 689 | 	atomic_set(v: &root->log_commit[1], i: 0); | 
| 690 | 	atomic_set(v: &root->log_writers, i: 0); | 
| 691 | 	atomic_set(v: &root->log_batch, i: 0); | 
| 692 | 	refcount_set(r: &root->refs, n: 1); | 
| 693 | 	atomic_set(v: &root->snapshot_force_cow, i: 0); | 
| 694 | 	atomic_set(v: &root->nr_swapfiles, i: 0); | 
| 695 | 	btrfs_set_root_log_transid(root, log_transid: 0); | 
| 696 | 	root->log_transid_committed = -1; | 
| 697 | 	btrfs_set_root_last_log_commit(root, commit_id: 0); | 
| 698 | 	root->anon_dev = 0; | 
| 699 | 	if (!dummy) { | 
| 700 | 		btrfs_extent_io_tree_init(fs_info, tree: &root->dirty_log_pages, | 
| 701 | 					  owner: IO_TREE_ROOT_DIRTY_LOG_PAGES); | 
| 702 | 		btrfs_extent_io_tree_init(fs_info, tree: &root->log_csum_range, | 
| 703 | 					  owner: IO_TREE_LOG_CSUM_RANGE); | 
| 704 | 	} | 
| 705 |  | 
| 706 | 	spin_lock_init(&root->root_item_lock); | 
| 707 | 	btrfs_qgroup_init_swapped_blocks(swapped_blocks: &root->swapped_blocks); | 
| 708 | #ifdef CONFIG_BTRFS_DEBUG | 
| 709 | 	INIT_LIST_HEAD(list: &root->leak_list); | 
| 710 | 	spin_lock(lock: &fs_info->fs_roots_radix_lock); | 
| 711 | 	list_add_tail(new: &root->leak_list, head: &fs_info->allocated_roots); | 
| 712 | 	spin_unlock(lock: &fs_info->fs_roots_radix_lock); | 
| 713 | #endif | 
| 714 |  | 
| 715 | 	return root; | 
| 716 | } | 
| 717 |  | 
| 718 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
| 719 | /* Should only be used by the testing infrastructure */ | 
| 720 | struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) | 
| 721 | { | 
| 722 | 	struct btrfs_root *root; | 
| 723 |  | 
| 724 | 	if (!fs_info) | 
| 725 | 		return ERR_PTR(error: -EINVAL); | 
| 726 |  | 
| 727 | 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); | 
| 728 | 	if (!root) | 
| 729 | 		return ERR_PTR(error: -ENOMEM); | 
| 730 |  | 
| 731 | 	/* We don't use the stripesize in selftest, set it as sectorsize */ | 
| 732 | 	root->alloc_bytenr = 0; | 
| 733 |  | 
| 734 | 	return root; | 
| 735 | } | 
| 736 | #endif | 
| 737 |  | 
| 738 | static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) | 
| 739 | { | 
| 740 | 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); | 
| 741 | 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); | 
| 742 |  | 
| 743 | 	return btrfs_comp_cpu_keys(k1: &a->root_key, k2: &b->root_key); | 
| 744 | } | 
| 745 |  | 
| 746 | static int global_root_key_cmp(const void *k, const struct rb_node *node) | 
| 747 | { | 
| 748 | 	const struct btrfs_key *key = k; | 
| 749 | 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); | 
| 750 |  | 
| 751 | 	return btrfs_comp_cpu_keys(k1: key, k2: &root->root_key); | 
| 752 | } | 
| 753 |  | 
| 754 | int btrfs_global_root_insert(struct btrfs_root *root) | 
| 755 | { | 
| 756 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
| 757 | 	struct rb_node *tmp; | 
| 758 | 	int ret = 0; | 
| 759 |  | 
| 760 | 	write_lock(&fs_info->global_root_lock); | 
| 761 | 	tmp = rb_find_add(node: &root->rb_node, tree: &fs_info->global_root_tree, cmp: global_root_cmp); | 
| 762 | 	write_unlock(&fs_info->global_root_lock); | 
| 763 |  | 
| 764 | 	if (tmp) { | 
| 765 | 		ret = -EEXIST; | 
| 766 | 		btrfs_warn(fs_info, "global root %llu %llu already exists" , | 
| 767 | 			   btrfs_root_id(root), root->root_key.offset); | 
| 768 | 	} | 
| 769 | 	return ret; | 
| 770 | } | 
| 771 |  | 
| 772 | void btrfs_global_root_delete(struct btrfs_root *root) | 
| 773 | { | 
| 774 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
| 775 |  | 
| 776 | 	write_lock(&fs_info->global_root_lock); | 
| 777 | 	rb_erase(&root->rb_node, &fs_info->global_root_tree); | 
| 778 | 	write_unlock(&fs_info->global_root_lock); | 
| 779 | } | 
| 780 |  | 
| 781 | struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, | 
| 782 | 				     struct btrfs_key *key) | 
| 783 | { | 
| 784 | 	struct rb_node *node; | 
| 785 | 	struct btrfs_root *root = NULL; | 
| 786 |  | 
| 787 | 	read_lock(&fs_info->global_root_lock); | 
| 788 | 	node = rb_find(key, tree: &fs_info->global_root_tree, cmp: global_root_key_cmp); | 
| 789 | 	if (node) | 
| 790 | 		root = container_of(node, struct btrfs_root, rb_node); | 
| 791 | 	read_unlock(&fs_info->global_root_lock); | 
| 792 |  | 
| 793 | 	return root; | 
| 794 | } | 
| 795 |  | 
| 796 | static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) | 
| 797 | { | 
| 798 | 	struct btrfs_block_group *block_group; | 
| 799 | 	u64 ret; | 
| 800 |  | 
| 801 | 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) | 
| 802 | 		return 0; | 
| 803 |  | 
| 804 | 	if (bytenr) | 
| 805 | 		block_group = btrfs_lookup_block_group(info: fs_info, bytenr); | 
| 806 | 	else | 
| 807 | 		block_group = btrfs_lookup_first_block_group(info: fs_info, bytenr); | 
| 808 | 	ASSERT(block_group); | 
| 809 | 	if (!block_group) | 
| 810 | 		return 0; | 
| 811 | 	ret = block_group->global_root_id; | 
| 812 | 	btrfs_put_block_group(cache: block_group); | 
| 813 |  | 
| 814 | 	return ret; | 
| 815 | } | 
| 816 |  | 
| 817 | struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) | 
| 818 | { | 
| 819 | 	struct btrfs_key key = { | 
| 820 | 		.objectid = BTRFS_CSUM_TREE_OBJECTID, | 
| 821 | 		.type = BTRFS_ROOT_ITEM_KEY, | 
| 822 | 		.offset = btrfs_global_root_id(fs_info, bytenr), | 
| 823 | 	}; | 
| 824 |  | 
| 825 | 	return btrfs_global_root(fs_info, key: &key); | 
| 826 | } | 
| 827 |  | 
| 828 | struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) | 
| 829 | { | 
| 830 | 	struct btrfs_key key = { | 
| 831 | 		.objectid = BTRFS_EXTENT_TREE_OBJECTID, | 
| 832 | 		.type = BTRFS_ROOT_ITEM_KEY, | 
| 833 | 		.offset = btrfs_global_root_id(fs_info, bytenr), | 
| 834 | 	}; | 
| 835 |  | 
| 836 | 	return btrfs_global_root(fs_info, key: &key); | 
| 837 | } | 
| 838 |  | 
| 839 | struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, | 
| 840 | 				     u64 objectid) | 
| 841 | { | 
| 842 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
| 843 | 	struct extent_buffer *leaf; | 
| 844 | 	struct btrfs_root *tree_root = fs_info->tree_root; | 
| 845 | 	struct btrfs_root *root; | 
| 846 | 	struct btrfs_key key; | 
| 847 | 	unsigned int nofs_flag; | 
| 848 | 	int ret = 0; | 
| 849 |  | 
| 850 | 	/* | 
| 851 | 	 * We're holding a transaction handle, so use a NOFS memory allocation | 
| 852 | 	 * context to avoid deadlock if reclaim happens. | 
| 853 | 	 */ | 
| 854 | 	nofs_flag = memalloc_nofs_save(); | 
| 855 | 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); | 
| 856 | 	memalloc_nofs_restore(flags: nofs_flag); | 
| 857 | 	if (!root) | 
| 858 | 		return ERR_PTR(error: -ENOMEM); | 
| 859 |  | 
| 860 | 	root->root_key.objectid = objectid; | 
| 861 | 	root->root_key.type = BTRFS_ROOT_ITEM_KEY; | 
| 862 | 	root->root_key.offset = 0; | 
| 863 |  | 
| 864 | 	leaf = btrfs_alloc_tree_block(trans, root, parent: 0, root_objectid: objectid, NULL, level: 0, hint: 0, empty_size: 0, | 
| 865 | 				      reloc_src_root: 0, nest: BTRFS_NESTING_NORMAL); | 
| 866 | 	if (IS_ERR(ptr: leaf)) { | 
| 867 | 		ret = PTR_ERR(ptr: leaf); | 
| 868 | 		leaf = NULL; | 
| 869 | 		goto fail; | 
| 870 | 	} | 
| 871 |  | 
| 872 | 	root->node = leaf; | 
| 873 | 	btrfs_mark_buffer_dirty(trans, buf: leaf); | 
| 874 |  | 
| 875 | 	root->commit_root = btrfs_root_node(root); | 
| 876 | 	set_bit(nr: BTRFS_ROOT_TRACK_DIRTY, addr: &root->state); | 
| 877 |  | 
| 878 | 	btrfs_set_root_flags(s: &root->root_item, val: 0); | 
| 879 | 	btrfs_set_root_limit(s: &root->root_item, val: 0); | 
| 880 | 	btrfs_set_root_bytenr(s: &root->root_item, val: leaf->start); | 
| 881 | 	btrfs_set_root_generation(s: &root->root_item, val: trans->transid); | 
| 882 | 	btrfs_set_root_level(s: &root->root_item, val: 0); | 
| 883 | 	btrfs_set_root_refs(s: &root->root_item, val: 1); | 
| 884 | 	btrfs_set_root_used(s: &root->root_item, val: leaf->len); | 
| 885 | 	btrfs_set_root_last_snapshot(s: &root->root_item, val: 0); | 
| 886 | 	btrfs_set_root_dirid(s: &root->root_item, val: 0); | 
| 887 | 	if (is_fstree(rootid: objectid)) | 
| 888 | 		generate_random_guid(guid: root->root_item.uuid); | 
| 889 | 	else | 
| 890 | 		export_guid(dst: root->root_item.uuid, src: &guid_null); | 
| 891 | 	btrfs_set_root_drop_level(s: &root->root_item, val: 0); | 
| 892 |  | 
| 893 | 	btrfs_tree_unlock(eb: leaf); | 
| 894 |  | 
| 895 | 	key.objectid = objectid; | 
| 896 | 	key.type = BTRFS_ROOT_ITEM_KEY; | 
| 897 | 	key.offset = 0; | 
| 898 | 	ret = btrfs_insert_root(trans, root: tree_root, key: &key, item: &root->root_item); | 
| 899 | 	if (ret) | 
| 900 | 		goto fail; | 
| 901 |  | 
| 902 | 	return root; | 
| 903 |  | 
| 904 | fail: | 
| 905 | 	btrfs_put_root(root); | 
| 906 |  | 
| 907 | 	return ERR_PTR(error: ret); | 
| 908 | } | 
| 909 |  | 
| 910 | static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info) | 
| 911 | { | 
| 912 | 	struct btrfs_root *root; | 
| 913 |  | 
| 914 | 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); | 
| 915 | 	if (!root) | 
| 916 | 		return ERR_PTR(error: -ENOMEM); | 
| 917 |  | 
| 918 | 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; | 
| 919 | 	root->root_key.type = BTRFS_ROOT_ITEM_KEY; | 
| 920 | 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; | 
| 921 |  | 
| 922 | 	return root; | 
| 923 | } | 
| 924 |  | 
| 925 | int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, | 
| 926 | 			      struct btrfs_root *root) | 
| 927 | { | 
| 928 | 	struct extent_buffer *leaf; | 
| 929 |  | 
| 930 | 	/* | 
| 931 | 	 * DON'T set SHAREABLE bit for log trees. | 
| 932 | 	 * | 
| 933 | 	 * Log trees are not exposed to user space thus can't be snapshotted, | 
| 934 | 	 * and they go away before a real commit is actually done. | 
| 935 | 	 * | 
| 936 | 	 * They do store pointers to file data extents, and those reference | 
| 937 | 	 * counts still get updated (along with back refs to the log tree). | 
| 938 | 	 */ | 
| 939 |  | 
| 940 | 	leaf = btrfs_alloc_tree_block(trans, root, parent: 0, BTRFS_TREE_LOG_OBJECTID, | 
| 941 | 			NULL, level: 0, hint: 0, empty_size: 0, reloc_src_root: 0, nest: BTRFS_NESTING_NORMAL); | 
| 942 | 	if (IS_ERR(ptr: leaf)) | 
| 943 | 		return PTR_ERR(ptr: leaf); | 
| 944 |  | 
| 945 | 	root->node = leaf; | 
| 946 |  | 
| 947 | 	btrfs_mark_buffer_dirty(trans, buf: root->node); | 
| 948 | 	btrfs_tree_unlock(eb: root->node); | 
| 949 |  | 
| 950 | 	return 0; | 
| 951 | } | 
| 952 |  | 
| 953 | int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, | 
| 954 | 			     struct btrfs_fs_info *fs_info) | 
| 955 | { | 
| 956 | 	struct btrfs_root *log_root; | 
| 957 |  | 
| 958 | 	log_root = alloc_log_tree(fs_info); | 
| 959 | 	if (IS_ERR(ptr: log_root)) | 
| 960 | 		return PTR_ERR(ptr: log_root); | 
| 961 |  | 
| 962 | 	if (!btrfs_is_zoned(fs_info)) { | 
| 963 | 		int ret = btrfs_alloc_log_tree_node(trans, root: log_root); | 
| 964 |  | 
| 965 | 		if (ret) { | 
| 966 | 			btrfs_put_root(root: log_root); | 
| 967 | 			return ret; | 
| 968 | 		} | 
| 969 | 	} | 
| 970 |  | 
| 971 | 	WARN_ON(fs_info->log_root_tree); | 
| 972 | 	fs_info->log_root_tree = log_root; | 
| 973 | 	return 0; | 
| 974 | } | 
| 975 |  | 
| 976 | int btrfs_add_log_tree(struct btrfs_trans_handle *trans, | 
| 977 | 		       struct btrfs_root *root) | 
| 978 | { | 
| 979 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
| 980 | 	struct btrfs_root *log_root; | 
| 981 | 	struct btrfs_inode_item *inode_item; | 
| 982 | 	int ret; | 
| 983 |  | 
| 984 | 	log_root = alloc_log_tree(fs_info); | 
| 985 | 	if (IS_ERR(ptr: log_root)) | 
| 986 | 		return PTR_ERR(ptr: log_root); | 
| 987 |  | 
| 988 | 	ret = btrfs_alloc_log_tree_node(trans, root: log_root); | 
| 989 | 	if (ret) { | 
| 990 | 		btrfs_put_root(root: log_root); | 
| 991 | 		return ret; | 
| 992 | 	} | 
| 993 |  | 
| 994 | 	btrfs_set_root_last_trans(root: log_root, transid: trans->transid); | 
| 995 | 	log_root->root_key.offset = btrfs_root_id(root); | 
| 996 |  | 
| 997 | 	inode_item = &log_root->root_item.inode; | 
| 998 | 	btrfs_set_stack_inode_generation(s: inode_item, val: 1); | 
| 999 | 	btrfs_set_stack_inode_size(s: inode_item, val: 3); | 
| 1000 | 	btrfs_set_stack_inode_nlink(s: inode_item, val: 1); | 
| 1001 | 	btrfs_set_stack_inode_nbytes(s: inode_item, | 
| 1002 | 				     val: fs_info->nodesize); | 
| 1003 | 	btrfs_set_stack_inode_mode(s: inode_item, S_IFDIR | 0755); | 
| 1004 |  | 
| 1005 | 	btrfs_set_root_node(item: &log_root->root_item, node: log_root->node); | 
| 1006 |  | 
| 1007 | 	WARN_ON(root->log_root); | 
| 1008 | 	root->log_root = log_root; | 
| 1009 | 	btrfs_set_root_log_transid(root, log_transid: 0); | 
| 1010 | 	root->log_transid_committed = -1; | 
| 1011 | 	btrfs_set_root_last_log_commit(root, commit_id: 0); | 
| 1012 | 	return 0; | 
| 1013 | } | 
| 1014 |  | 
| 1015 | static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, | 
| 1016 | 					      struct btrfs_path *path, | 
| 1017 | 					      const struct btrfs_key *key) | 
| 1018 | { | 
| 1019 | 	struct btrfs_root *root; | 
| 1020 | 	struct btrfs_tree_parent_check check = { 0 }; | 
| 1021 | 	struct btrfs_fs_info *fs_info = tree_root->fs_info; | 
| 1022 | 	u64 generation; | 
| 1023 | 	int ret; | 
| 1024 | 	int level; | 
| 1025 |  | 
| 1026 | 	root = btrfs_alloc_root(fs_info, objectid: key->objectid, GFP_NOFS); | 
| 1027 | 	if (!root) | 
| 1028 | 		return ERR_PTR(error: -ENOMEM); | 
| 1029 |  | 
| 1030 | 	ret = btrfs_find_root(root: tree_root, search_key: key, path, | 
| 1031 | 			      root_item: &root->root_item, root_key: &root->root_key); | 
| 1032 | 	if (ret) { | 
| 1033 | 		if (ret > 0) | 
| 1034 | 			ret = -ENOENT; | 
| 1035 | 		goto fail; | 
| 1036 | 	} | 
| 1037 |  | 
| 1038 | 	generation = btrfs_root_generation(s: &root->root_item); | 
| 1039 | 	level = btrfs_root_level(s: &root->root_item); | 
| 1040 | 	check.level = level; | 
| 1041 | 	check.transid = generation; | 
| 1042 | 	check.owner_root = key->objectid; | 
| 1043 | 	root->node = read_tree_block(fs_info, bytenr: btrfs_root_bytenr(s: &root->root_item), | 
| 1044 | 				     check: &check); | 
| 1045 | 	if (IS_ERR(ptr: root->node)) { | 
| 1046 | 		ret = PTR_ERR(ptr: root->node); | 
| 1047 | 		root->node = NULL; | 
| 1048 | 		goto fail; | 
| 1049 | 	} | 
| 1050 | 	if (!btrfs_buffer_uptodate(eb: root->node, parent_transid: generation, atomic: 0)) { | 
| 1051 | 		ret = -EIO; | 
| 1052 | 		goto fail; | 
| 1053 | 	} | 
| 1054 |  | 
| 1055 | 	/* | 
| 1056 | 	 * For real fs, and not log/reloc trees, root owner must | 
| 1057 | 	 * match its root node owner | 
| 1058 | 	 */ | 
| 1059 | 	if (!btrfs_is_testing(fs_info) && | 
| 1060 | 	    btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && | 
| 1061 | 	    btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && | 
| 1062 | 	    btrfs_root_id(root) != btrfs_header_owner(eb: root->node)) { | 
| 1063 | 		btrfs_crit(fs_info, | 
| 1064 | "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu" , | 
| 1065 | 			   btrfs_root_id(root), root->node->start, | 
| 1066 | 			   btrfs_header_owner(root->node), | 
| 1067 | 			   btrfs_root_id(root)); | 
| 1068 | 		ret = -EUCLEAN; | 
| 1069 | 		goto fail; | 
| 1070 | 	} | 
| 1071 | 	root->commit_root = btrfs_root_node(root); | 
| 1072 | 	return root; | 
| 1073 | fail: | 
| 1074 | 	btrfs_put_root(root); | 
| 1075 | 	return ERR_PTR(error: ret); | 
| 1076 | } | 
| 1077 |  | 
| 1078 | struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, | 
| 1079 | 					const struct btrfs_key *key) | 
| 1080 | { | 
| 1081 | 	struct btrfs_root *root; | 
| 1082 | 	BTRFS_PATH_AUTO_FREE(path); | 
| 1083 |  | 
| 1084 | 	path = btrfs_alloc_path(); | 
| 1085 | 	if (!path) | 
| 1086 | 		return ERR_PTR(error: -ENOMEM); | 
| 1087 | 	root = read_tree_root_path(tree_root, path, key); | 
| 1088 |  | 
| 1089 | 	return root; | 
| 1090 | } | 
| 1091 |  | 
| 1092 | /* | 
| 1093 |  * Initialize subvolume root in-memory structure. | 
| 1094 |  * | 
| 1095 |  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new | 
| 1096 |  * | 
| 1097 |  * In case of failure the caller is responsible to call btrfs_free_fs_root() | 
| 1098 |  */ | 
| 1099 | static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) | 
| 1100 | { | 
| 1101 | 	int ret; | 
| 1102 |  | 
| 1103 | 	btrfs_drew_lock_init(lock: &root->snapshot_lock); | 
| 1104 |  | 
| 1105 | 	if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && | 
| 1106 | 	    !btrfs_is_data_reloc_root(root) && | 
| 1107 | 	    is_fstree(rootid: btrfs_root_id(root))) { | 
| 1108 | 		set_bit(nr: BTRFS_ROOT_SHAREABLE, addr: &root->state); | 
| 1109 | 		btrfs_check_and_init_root_item(item: &root->root_item); | 
| 1110 | 	} | 
| 1111 |  | 
| 1112 | 	/* | 
| 1113 | 	 * Don't assign anonymous block device to roots that are not exposed to | 
| 1114 | 	 * userspace, the id pool is limited to 1M | 
| 1115 | 	 */ | 
| 1116 | 	if (is_fstree(rootid: btrfs_root_id(root)) && | 
| 1117 | 	    btrfs_root_refs(s: &root->root_item) > 0) { | 
| 1118 | 		if (!anon_dev) { | 
| 1119 | 			ret = get_anon_bdev(&root->anon_dev); | 
| 1120 | 			if (ret) | 
| 1121 | 				return ret; | 
| 1122 | 		} else { | 
| 1123 | 			root->anon_dev = anon_dev; | 
| 1124 | 		} | 
| 1125 | 	} | 
| 1126 |  | 
| 1127 | 	mutex_lock(&root->objectid_mutex); | 
| 1128 | 	ret = btrfs_init_root_free_objectid(root); | 
| 1129 | 	if (ret) { | 
| 1130 | 		mutex_unlock(lock: &root->objectid_mutex); | 
| 1131 | 		return ret; | 
| 1132 | 	} | 
| 1133 |  | 
| 1134 | 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); | 
| 1135 |  | 
| 1136 | 	mutex_unlock(lock: &root->objectid_mutex); | 
| 1137 |  | 
| 1138 | 	return 0; | 
| 1139 | } | 
| 1140 |  | 
| 1141 | static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, | 
| 1142 | 					       u64 root_id) | 
| 1143 | { | 
| 1144 | 	struct btrfs_root *root; | 
| 1145 |  | 
| 1146 | 	spin_lock(lock: &fs_info->fs_roots_radix_lock); | 
| 1147 | 	root = radix_tree_lookup(&fs_info->fs_roots_radix, | 
| 1148 | 				 (unsigned long)root_id); | 
| 1149 | 	root = btrfs_grab_root(root); | 
| 1150 | 	spin_unlock(lock: &fs_info->fs_roots_radix_lock); | 
| 1151 | 	return root; | 
| 1152 | } | 
| 1153 |  | 
| 1154 | static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, | 
| 1155 | 						u64 objectid) | 
| 1156 | { | 
| 1157 | 	struct btrfs_key key = { | 
| 1158 | 		.objectid = objectid, | 
| 1159 | 		.type = BTRFS_ROOT_ITEM_KEY, | 
| 1160 | 		.offset = 0, | 
| 1161 | 	}; | 
| 1162 |  | 
| 1163 | 	switch (objectid) { | 
| 1164 | 	case BTRFS_ROOT_TREE_OBJECTID: | 
| 1165 | 		return btrfs_grab_root(root: fs_info->tree_root); | 
| 1166 | 	case BTRFS_EXTENT_TREE_OBJECTID: | 
| 1167 | 		return btrfs_grab_root(root: btrfs_global_root(fs_info, key: &key)); | 
| 1168 | 	case BTRFS_CHUNK_TREE_OBJECTID: | 
| 1169 | 		return btrfs_grab_root(root: fs_info->chunk_root); | 
| 1170 | 	case BTRFS_DEV_TREE_OBJECTID: | 
| 1171 | 		return btrfs_grab_root(root: fs_info->dev_root); | 
| 1172 | 	case BTRFS_CSUM_TREE_OBJECTID: | 
| 1173 | 		return btrfs_grab_root(root: btrfs_global_root(fs_info, key: &key)); | 
| 1174 | 	case BTRFS_QUOTA_TREE_OBJECTID: | 
| 1175 | 		return btrfs_grab_root(root: fs_info->quota_root); | 
| 1176 | 	case BTRFS_UUID_TREE_OBJECTID: | 
| 1177 | 		return btrfs_grab_root(root: fs_info->uuid_root); | 
| 1178 | 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID: | 
| 1179 | 		return btrfs_grab_root(root: fs_info->block_group_root); | 
| 1180 | 	case BTRFS_FREE_SPACE_TREE_OBJECTID: | 
| 1181 | 		return btrfs_grab_root(root: btrfs_global_root(fs_info, key: &key)); | 
| 1182 | 	case BTRFS_RAID_STRIPE_TREE_OBJECTID: | 
| 1183 | 		return btrfs_grab_root(root: fs_info->stripe_root); | 
| 1184 | 	default: | 
| 1185 | 		return NULL; | 
| 1186 | 	} | 
| 1187 | } | 
| 1188 |  | 
| 1189 | int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, | 
| 1190 | 			 struct btrfs_root *root) | 
| 1191 | { | 
| 1192 | 	int ret; | 
| 1193 |  | 
| 1194 | 	ret = radix_tree_preload(GFP_NOFS); | 
| 1195 | 	if (ret) | 
| 1196 | 		return ret; | 
| 1197 |  | 
| 1198 | 	spin_lock(lock: &fs_info->fs_roots_radix_lock); | 
| 1199 | 	ret = radix_tree_insert(&fs_info->fs_roots_radix, | 
| 1200 | 				index: (unsigned long)btrfs_root_id(root), | 
| 1201 | 				root); | 
| 1202 | 	if (ret == 0) { | 
| 1203 | 		btrfs_grab_root(root); | 
| 1204 | 		set_bit(nr: BTRFS_ROOT_IN_RADIX, addr: &root->state); | 
| 1205 | 	} | 
| 1206 | 	spin_unlock(lock: &fs_info->fs_roots_radix_lock); | 
| 1207 | 	radix_tree_preload_end(); | 
| 1208 |  | 
| 1209 | 	return ret; | 
| 1210 | } | 
| 1211 |  | 
| 1212 | void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) | 
| 1213 | { | 
| 1214 | #ifdef CONFIG_BTRFS_DEBUG | 
| 1215 | 	struct btrfs_root *root; | 
| 1216 |  | 
| 1217 | 	while (!list_empty(head: &fs_info->allocated_roots)) { | 
| 1218 | 		char buf[BTRFS_ROOT_NAME_BUF_LEN]; | 
| 1219 |  | 
| 1220 | 		root = list_first_entry(&fs_info->allocated_roots, | 
| 1221 | 					struct btrfs_root, leak_list); | 
| 1222 | 		btrfs_err(fs_info, "leaked root %s refcount %d" , | 
| 1223 | 			  btrfs_root_name(&root->root_key, buf), | 
| 1224 | 			  refcount_read(&root->refs)); | 
| 1225 | 		WARN_ON_ONCE(1); | 
| 1226 | 		while (refcount_read(r: &root->refs) > 1) | 
| 1227 | 			btrfs_put_root(root); | 
| 1228 | 		btrfs_put_root(root); | 
| 1229 | 	} | 
| 1230 | #endif | 
| 1231 | } | 
| 1232 |  | 
| 1233 | static void free_global_roots(struct btrfs_fs_info *fs_info) | 
| 1234 | { | 
| 1235 | 	struct btrfs_root *root; | 
| 1236 | 	struct rb_node *node; | 
| 1237 |  | 
| 1238 | 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { | 
| 1239 | 		root = rb_entry(node, struct btrfs_root, rb_node); | 
| 1240 | 		rb_erase(&root->rb_node, &fs_info->global_root_tree); | 
| 1241 | 		btrfs_put_root(root); | 
| 1242 | 	} | 
| 1243 | } | 
| 1244 |  | 
| 1245 | void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) | 
| 1246 | { | 
| 1247 | 	struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; | 
| 1248 |  | 
| 1249 | 	percpu_counter_destroy(fbc: &fs_info->stats_read_blocks); | 
| 1250 | 	percpu_counter_destroy(fbc: &fs_info->dirty_metadata_bytes); | 
| 1251 | 	percpu_counter_destroy(fbc: &fs_info->delalloc_bytes); | 
| 1252 | 	percpu_counter_destroy(fbc: &fs_info->ordered_bytes); | 
| 1253 | 	if (percpu_counter_initialized(fbc: em_counter)) | 
| 1254 | 		ASSERT(percpu_counter_sum_positive(em_counter) == 0); | 
| 1255 | 	percpu_counter_destroy(fbc: em_counter); | 
| 1256 | 	percpu_counter_destroy(fbc: &fs_info->dev_replace.bio_counter); | 
| 1257 | 	btrfs_free_csum_hash(fs_info); | 
| 1258 | 	btrfs_free_stripe_hash_table(info: fs_info); | 
| 1259 | 	btrfs_free_ref_cache(fs_info); | 
| 1260 | 	kfree(objp: fs_info->balance_ctl); | 
| 1261 | 	kfree(objp: fs_info->delayed_root); | 
| 1262 | 	free_global_roots(fs_info); | 
| 1263 | 	btrfs_put_root(root: fs_info->tree_root); | 
| 1264 | 	btrfs_put_root(root: fs_info->chunk_root); | 
| 1265 | 	btrfs_put_root(root: fs_info->dev_root); | 
| 1266 | 	btrfs_put_root(root: fs_info->quota_root); | 
| 1267 | 	btrfs_put_root(root: fs_info->uuid_root); | 
| 1268 | 	btrfs_put_root(root: fs_info->fs_root); | 
| 1269 | 	btrfs_put_root(root: fs_info->data_reloc_root); | 
| 1270 | 	btrfs_put_root(root: fs_info->block_group_root); | 
| 1271 | 	btrfs_put_root(root: fs_info->stripe_root); | 
| 1272 | 	btrfs_check_leaked_roots(fs_info); | 
| 1273 | 	btrfs_extent_buffer_leak_debug_check(fs_info); | 
| 1274 | 	kfree(objp: fs_info->super_copy); | 
| 1275 | 	kfree(objp: fs_info->super_for_commit); | 
| 1276 | 	kvfree(addr: fs_info); | 
| 1277 | } | 
| 1278 |  | 
| 1279 |  | 
| 1280 | /* | 
| 1281 |  * Get an in-memory reference of a root structure. | 
| 1282 |  * | 
| 1283 |  * For essential trees like root/extent tree, we grab it from fs_info directly. | 
| 1284 |  * For subvolume trees, we check the cached filesystem roots first. If not | 
| 1285 |  * found, then read it from disk and add it to cached fs roots. | 
| 1286 |  * | 
| 1287 |  * Caller should release the root by calling btrfs_put_root() after the usage. | 
| 1288 |  * | 
| 1289 |  * NOTE: Reloc and log trees can't be read by this function as they share the | 
| 1290 |  *	 same root objectid. | 
| 1291 |  * | 
| 1292 |  * @objectid:	root id | 
| 1293 |  * @anon_dev:	preallocated anonymous block device number for new roots, | 
| 1294 |  *		pass NULL for a new allocation. | 
| 1295 |  * @check_ref:	whether to check root item references, If true, return -ENOENT | 
| 1296 |  *		for orphan roots | 
| 1297 |  */ | 
| 1298 | static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, | 
| 1299 | 					     u64 objectid, dev_t *anon_dev, | 
| 1300 | 					     bool check_ref) | 
| 1301 | { | 
| 1302 | 	struct btrfs_root *root; | 
| 1303 | 	struct btrfs_path *path; | 
| 1304 | 	struct btrfs_key key; | 
| 1305 | 	int ret; | 
| 1306 |  | 
| 1307 | 	root = btrfs_get_global_root(fs_info, objectid); | 
| 1308 | 	if (root) | 
| 1309 | 		return root; | 
| 1310 |  | 
| 1311 | 	/* | 
| 1312 | 	 * If we're called for non-subvolume trees, and above function didn't | 
| 1313 | 	 * find one, do not try to read it from disk. | 
| 1314 | 	 * | 
| 1315 | 	 * This is namely for free-space-tree and quota tree, which can change | 
| 1316 | 	 * at runtime and should only be grabbed from fs_info. | 
| 1317 | 	 */ | 
| 1318 | 	if (!is_fstree(rootid: objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) | 
| 1319 | 		return ERR_PTR(error: -ENOENT); | 
| 1320 | again: | 
| 1321 | 	root = btrfs_lookup_fs_root(fs_info, root_id: objectid); | 
| 1322 | 	if (root) { | 
| 1323 | 		/* | 
| 1324 | 		 * Some other caller may have read out the newly inserted | 
| 1325 | 		 * subvolume already (for things like backref walk etc).  Not | 
| 1326 | 		 * that common but still possible.  In that case, we just need | 
| 1327 | 		 * to free the anon_dev. | 
| 1328 | 		 */ | 
| 1329 | 		if (unlikely(anon_dev && *anon_dev)) { | 
| 1330 | 			free_anon_bdev(*anon_dev); | 
| 1331 | 			*anon_dev = 0; | 
| 1332 | 		} | 
| 1333 |  | 
| 1334 | 		if (check_ref && btrfs_root_refs(s: &root->root_item) == 0) { | 
| 1335 | 			btrfs_put_root(root); | 
| 1336 | 			return ERR_PTR(error: -ENOENT); | 
| 1337 | 		} | 
| 1338 | 		return root; | 
| 1339 | 	} | 
| 1340 |  | 
| 1341 | 	key.objectid = objectid; | 
| 1342 | 	key.type = BTRFS_ROOT_ITEM_KEY; | 
| 1343 | 	key.offset = (u64)-1; | 
| 1344 | 	root = btrfs_read_tree_root(tree_root: fs_info->tree_root, key: &key); | 
| 1345 | 	if (IS_ERR(ptr: root)) | 
| 1346 | 		return root; | 
| 1347 |  | 
| 1348 | 	if (check_ref && btrfs_root_refs(s: &root->root_item) == 0) { | 
| 1349 | 		ret = -ENOENT; | 
| 1350 | 		goto fail; | 
| 1351 | 	} | 
| 1352 |  | 
| 1353 | 	ret = btrfs_init_fs_root(root, anon_dev: anon_dev ? *anon_dev : 0); | 
| 1354 | 	if (ret) | 
| 1355 | 		goto fail; | 
| 1356 |  | 
| 1357 | 	path = btrfs_alloc_path(); | 
| 1358 | 	if (!path) { | 
| 1359 | 		ret = -ENOMEM; | 
| 1360 | 		goto fail; | 
| 1361 | 	} | 
| 1362 | 	key.objectid = BTRFS_ORPHAN_OBJECTID; | 
| 1363 | 	key.type = BTRFS_ORPHAN_ITEM_KEY; | 
| 1364 | 	key.offset = objectid; | 
| 1365 |  | 
| 1366 | 	ret = btrfs_search_slot(NULL, root: fs_info->tree_root, key: &key, p: path, ins_len: 0, cow: 0); | 
| 1367 | 	btrfs_free_path(p: path); | 
| 1368 | 	if (ret < 0) | 
| 1369 | 		goto fail; | 
| 1370 | 	if (ret == 0) | 
| 1371 | 		set_bit(nr: BTRFS_ROOT_ORPHAN_ITEM_INSERTED, addr: &root->state); | 
| 1372 |  | 
| 1373 | 	ret = btrfs_insert_fs_root(fs_info, root); | 
| 1374 | 	if (ret) { | 
| 1375 | 		if (ret == -EEXIST) { | 
| 1376 | 			btrfs_put_root(root); | 
| 1377 | 			goto again; | 
| 1378 | 		} | 
| 1379 | 		goto fail; | 
| 1380 | 	} | 
| 1381 | 	return root; | 
| 1382 | fail: | 
| 1383 | 	/* | 
| 1384 | 	 * If our caller provided us an anonymous device, then it's his | 
| 1385 | 	 * responsibility to free it in case we fail. So we have to set our | 
| 1386 | 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() | 
| 1387 | 	 * and once again by our caller. | 
| 1388 | 	 */ | 
| 1389 | 	if (anon_dev && *anon_dev) | 
| 1390 | 		root->anon_dev = 0; | 
| 1391 | 	btrfs_put_root(root); | 
| 1392 | 	return ERR_PTR(error: ret); | 
| 1393 | } | 
| 1394 |  | 
| 1395 | /* | 
| 1396 |  * Get in-memory reference of a root structure | 
| 1397 |  * | 
| 1398 |  * @objectid:	tree objectid | 
| 1399 |  * @check_ref:	if set, verify that the tree exists and the item has at least | 
| 1400 |  *		one reference | 
| 1401 |  */ | 
| 1402 | struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, | 
| 1403 | 				     u64 objectid, bool check_ref) | 
| 1404 | { | 
| 1405 | 	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); | 
| 1406 | } | 
| 1407 |  | 
| 1408 | /* | 
| 1409 |  * Get in-memory reference of a root structure, created as new, optionally pass | 
| 1410 |  * the anonymous block device id | 
| 1411 |  * | 
| 1412 |  * @objectid:	tree objectid | 
| 1413 |  * @anon_dev:	if NULL, allocate a new anonymous block device or use the | 
| 1414 |  *		parameter value if not NULL | 
| 1415 |  */ | 
| 1416 | struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, | 
| 1417 | 					 u64 objectid, dev_t *anon_dev) | 
| 1418 | { | 
| 1419 | 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, check_ref: true); | 
| 1420 | } | 
| 1421 |  | 
| 1422 | /* | 
| 1423 |  * Return a root for the given objectid. | 
| 1424 |  * | 
| 1425 |  * @fs_info:	the fs_info | 
| 1426 |  * @objectid:	the objectid we need to lookup | 
| 1427 |  * | 
| 1428 |  * This is exclusively used for backref walking, and exists specifically because | 
| 1429 |  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref | 
| 1430 |  * creation time, which means we may have to read the tree_root in order to look | 
| 1431 |  * up a fs root that is not in memory.  If the root is not in memory we will | 
| 1432 |  * read the tree root commit root and look up the fs root from there.  This is a | 
| 1433 |  * temporary root, it will not be inserted into the radix tree as it doesn't | 
| 1434 |  * have the most uptodate information, it'll simply be discarded once the | 
| 1435 |  * backref code is finished using the root. | 
| 1436 |  */ | 
| 1437 | struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, | 
| 1438 | 						 struct btrfs_path *path, | 
| 1439 | 						 u64 objectid) | 
| 1440 | { | 
| 1441 | 	struct btrfs_root *root; | 
| 1442 | 	struct btrfs_key key; | 
| 1443 |  | 
| 1444 | 	ASSERT(path->search_commit_root && path->skip_locking); | 
| 1445 |  | 
| 1446 | 	/* | 
| 1447 | 	 * This can return -ENOENT if we ask for a root that doesn't exist, but | 
| 1448 | 	 * since this is called via the backref walking code we won't be looking | 
| 1449 | 	 * up a root that doesn't exist, unless there's corruption.  So if root | 
| 1450 | 	 * != NULL just return it. | 
| 1451 | 	 */ | 
| 1452 | 	root = btrfs_get_global_root(fs_info, objectid); | 
| 1453 | 	if (root) | 
| 1454 | 		return root; | 
| 1455 |  | 
| 1456 | 	root = btrfs_lookup_fs_root(fs_info, root_id: objectid); | 
| 1457 | 	if (root) | 
| 1458 | 		return root; | 
| 1459 |  | 
| 1460 | 	key.objectid = objectid; | 
| 1461 | 	key.type = BTRFS_ROOT_ITEM_KEY; | 
| 1462 | 	key.offset = (u64)-1; | 
| 1463 | 	root = read_tree_root_path(tree_root: fs_info->tree_root, path, key: &key); | 
| 1464 | 	btrfs_release_path(p: path); | 
| 1465 |  | 
| 1466 | 	return root; | 
| 1467 | } | 
| 1468 |  | 
| 1469 | static int cleaner_kthread(void *arg) | 
| 1470 | { | 
| 1471 | 	struct btrfs_fs_info *fs_info = arg; | 
| 1472 | 	int again; | 
| 1473 |  | 
| 1474 | 	while (1) { | 
| 1475 | 		again = 0; | 
| 1476 |  | 
| 1477 | 		set_bit(nr: BTRFS_FS_CLEANER_RUNNING, addr: &fs_info->flags); | 
| 1478 |  | 
| 1479 | 		/* Make the cleaner go to sleep early. */ | 
| 1480 | 		if (btrfs_need_cleaner_sleep(fs_info)) | 
| 1481 | 			goto sleep; | 
| 1482 |  | 
| 1483 | 		/* | 
| 1484 | 		 * Do not do anything if we might cause open_ctree() to block | 
| 1485 | 		 * before we have finished mounting the filesystem. | 
| 1486 | 		 */ | 
| 1487 | 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) | 
| 1488 | 			goto sleep; | 
| 1489 |  | 
| 1490 | 		if (!mutex_trylock(&fs_info->cleaner_mutex)) | 
| 1491 | 			goto sleep; | 
| 1492 |  | 
| 1493 | 		/* | 
| 1494 | 		 * Avoid the problem that we change the status of the fs | 
| 1495 | 		 * during the above check and trylock. | 
| 1496 | 		 */ | 
| 1497 | 		if (btrfs_need_cleaner_sleep(fs_info)) { | 
| 1498 | 			mutex_unlock(lock: &fs_info->cleaner_mutex); | 
| 1499 | 			goto sleep; | 
| 1500 | 		} | 
| 1501 |  | 
| 1502 | 		if (test_and_clear_bit(nr: BTRFS_FS_FEATURE_CHANGED, addr: &fs_info->flags)) | 
| 1503 | 			btrfs_sysfs_feature_update(fs_info); | 
| 1504 |  | 
| 1505 | 		btrfs_run_delayed_iputs(fs_info); | 
| 1506 |  | 
| 1507 | 		again = btrfs_clean_one_deleted_snapshot(fs_info); | 
| 1508 | 		mutex_unlock(lock: &fs_info->cleaner_mutex); | 
| 1509 |  | 
| 1510 | 		/* | 
| 1511 | 		 * The defragger has dealt with the R/O remount and umount, | 
| 1512 | 		 * needn't do anything special here. | 
| 1513 | 		 */ | 
| 1514 | 		btrfs_run_defrag_inodes(fs_info); | 
| 1515 |  | 
| 1516 | 		/* | 
| 1517 | 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing | 
| 1518 | 		 * with relocation (btrfs_relocate_chunk) and relocation | 
| 1519 | 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) | 
| 1520 | 		 * after acquiring fs_info->reclaim_bgs_lock. So we | 
| 1521 | 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting | 
| 1522 | 		 * unused block groups. | 
| 1523 | 		 */ | 
| 1524 | 		btrfs_delete_unused_bgs(fs_info); | 
| 1525 |  | 
| 1526 | 		/* | 
| 1527 | 		 * Reclaim block groups in the reclaim_bgs list after we deleted | 
| 1528 | 		 * all unused block_groups. This possibly gives us some more free | 
| 1529 | 		 * space. | 
| 1530 | 		 */ | 
| 1531 | 		btrfs_reclaim_bgs(fs_info); | 
| 1532 | sleep: | 
| 1533 | 		clear_and_wake_up_bit(bit: BTRFS_FS_CLEANER_RUNNING, word: &fs_info->flags); | 
| 1534 | 		if (kthread_should_park()) | 
| 1535 | 			kthread_parkme(); | 
| 1536 | 		if (kthread_should_stop()) | 
| 1537 | 			return 0; | 
| 1538 | 		if (!again) { | 
| 1539 | 			set_current_state(TASK_INTERRUPTIBLE); | 
| 1540 | 			schedule(); | 
| 1541 | 			__set_current_state(TASK_RUNNING); | 
| 1542 | 		} | 
| 1543 | 	} | 
| 1544 | } | 
| 1545 |  | 
| 1546 | static int transaction_kthread(void *arg) | 
| 1547 | { | 
| 1548 | 	struct btrfs_root *root = arg; | 
| 1549 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
| 1550 | 	struct btrfs_trans_handle *trans; | 
| 1551 | 	struct btrfs_transaction *cur; | 
| 1552 | 	u64 transid; | 
| 1553 | 	time64_t delta; | 
| 1554 | 	unsigned long delay; | 
| 1555 | 	bool cannot_commit; | 
| 1556 |  | 
| 1557 | 	do { | 
| 1558 | 		cannot_commit = false; | 
| 1559 | 		delay = secs_to_jiffies(fs_info->commit_interval); | 
| 1560 | 		mutex_lock(&fs_info->transaction_kthread_mutex); | 
| 1561 |  | 
| 1562 | 		spin_lock(lock: &fs_info->trans_lock); | 
| 1563 | 		cur = fs_info->running_transaction; | 
| 1564 | 		if (!cur) { | 
| 1565 | 			spin_unlock(lock: &fs_info->trans_lock); | 
| 1566 | 			goto sleep; | 
| 1567 | 		} | 
| 1568 |  | 
| 1569 | 		delta = ktime_get_seconds() - cur->start_time; | 
| 1570 | 		if (!test_and_clear_bit(nr: BTRFS_FS_COMMIT_TRANS, addr: &fs_info->flags) && | 
| 1571 | 		    cur->state < TRANS_STATE_COMMIT_PREP && | 
| 1572 | 		    delta < fs_info->commit_interval) { | 
| 1573 | 			spin_unlock(lock: &fs_info->trans_lock); | 
| 1574 | 			delay -= secs_to_jiffies(delta - 1); | 
| 1575 | 			delay = min(delay, | 
| 1576 | 				    secs_to_jiffies(fs_info->commit_interval)); | 
| 1577 | 			goto sleep; | 
| 1578 | 		} | 
| 1579 | 		transid = cur->transid; | 
| 1580 | 		spin_unlock(lock: &fs_info->trans_lock); | 
| 1581 |  | 
| 1582 | 		/* If the file system is aborted, this will always fail. */ | 
| 1583 | 		trans = btrfs_attach_transaction(root); | 
| 1584 | 		if (IS_ERR(ptr: trans)) { | 
| 1585 | 			if (PTR_ERR(ptr: trans) != -ENOENT) | 
| 1586 | 				cannot_commit = true; | 
| 1587 | 			goto sleep; | 
| 1588 | 		} | 
| 1589 | 		if (transid == trans->transid) { | 
| 1590 | 			btrfs_commit_transaction(trans); | 
| 1591 | 		} else { | 
| 1592 | 			btrfs_end_transaction(trans); | 
| 1593 | 		} | 
| 1594 | sleep: | 
| 1595 | 		wake_up_process(tsk: fs_info->cleaner_kthread); | 
| 1596 | 		mutex_unlock(lock: &fs_info->transaction_kthread_mutex); | 
| 1597 |  | 
| 1598 | 		if (BTRFS_FS_ERROR(fs_info)) | 
| 1599 | 			btrfs_cleanup_transaction(fs_info); | 
| 1600 | 		if (!kthread_should_stop() && | 
| 1601 | 				(!btrfs_transaction_blocked(info: fs_info) || | 
| 1602 | 				 cannot_commit)) | 
| 1603 | 			schedule_timeout_interruptible(timeout: delay); | 
| 1604 | 	} while (!kthread_should_stop()); | 
| 1605 | 	return 0; | 
| 1606 | } | 
| 1607 |  | 
| 1608 | /* | 
| 1609 |  * This will find the highest generation in the array of root backups.  The | 
| 1610 |  * index of the highest array is returned, or -EINVAL if we can't find | 
| 1611 |  * anything. | 
| 1612 |  * | 
| 1613 |  * We check to make sure the array is valid by comparing the | 
| 1614 |  * generation of the latest  root in the array with the generation | 
| 1615 |  * in the super block.  If they don't match we pitch it. | 
| 1616 |  */ | 
| 1617 | static int find_newest_super_backup(struct btrfs_fs_info *info) | 
| 1618 | { | 
| 1619 | 	const u64 newest_gen = btrfs_super_generation(s: info->super_copy); | 
| 1620 | 	u64 cur; | 
| 1621 | 	struct btrfs_root_backup *root_backup; | 
| 1622 | 	int i; | 
| 1623 |  | 
| 1624 | 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { | 
| 1625 | 		root_backup = info->super_copy->super_roots + i; | 
| 1626 | 		cur = btrfs_backup_tree_root_gen(s: root_backup); | 
| 1627 | 		if (cur == newest_gen) | 
| 1628 | 			return i; | 
| 1629 | 	} | 
| 1630 |  | 
| 1631 | 	return -EINVAL; | 
| 1632 | } | 
| 1633 |  | 
| 1634 | /* | 
| 1635 |  * copy all the root pointers into the super backup array. | 
| 1636 |  * this will bump the backup pointer by one when it is | 
| 1637 |  * done | 
| 1638 |  */ | 
| 1639 | static void backup_super_roots(struct btrfs_fs_info *info) | 
| 1640 | { | 
| 1641 | 	const int next_backup = info->backup_root_index; | 
| 1642 | 	struct btrfs_root_backup *root_backup; | 
| 1643 |  | 
| 1644 | 	root_backup = info->super_for_commit->super_roots + next_backup; | 
| 1645 |  | 
| 1646 | 	/* | 
| 1647 | 	 * make sure all of our padding and empty slots get zero filled | 
| 1648 | 	 * regardless of which ones we use today | 
| 1649 | 	 */ | 
| 1650 | 	memset(root_backup, 0, sizeof(*root_backup)); | 
| 1651 |  | 
| 1652 | 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; | 
| 1653 |  | 
| 1654 | 	btrfs_set_backup_tree_root(s: root_backup, val: info->tree_root->node->start); | 
| 1655 | 	btrfs_set_backup_tree_root_gen(s: root_backup, | 
| 1656 | 			       val: btrfs_header_generation(eb: info->tree_root->node)); | 
| 1657 |  | 
| 1658 | 	btrfs_set_backup_tree_root_level(s: root_backup, | 
| 1659 | 			       val: btrfs_header_level(eb: info->tree_root->node)); | 
| 1660 |  | 
| 1661 | 	btrfs_set_backup_chunk_root(s: root_backup, val: info->chunk_root->node->start); | 
| 1662 | 	btrfs_set_backup_chunk_root_gen(s: root_backup, | 
| 1663 | 			       val: btrfs_header_generation(eb: info->chunk_root->node)); | 
| 1664 | 	btrfs_set_backup_chunk_root_level(s: root_backup, | 
| 1665 | 			       val: btrfs_header_level(eb: info->chunk_root->node)); | 
| 1666 |  | 
| 1667 | 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { | 
| 1668 | 		struct btrfs_root *extent_root = btrfs_extent_root(fs_info: info, bytenr: 0); | 
| 1669 | 		struct btrfs_root *csum_root = btrfs_csum_root(fs_info: info, bytenr: 0); | 
| 1670 |  | 
| 1671 | 		btrfs_set_backup_extent_root(s: root_backup, | 
| 1672 | 					     val: extent_root->node->start); | 
| 1673 | 		btrfs_set_backup_extent_root_gen(s: root_backup, | 
| 1674 | 				val: btrfs_header_generation(eb: extent_root->node)); | 
| 1675 | 		btrfs_set_backup_extent_root_level(s: root_backup, | 
| 1676 | 					val: btrfs_header_level(eb: extent_root->node)); | 
| 1677 |  | 
| 1678 | 		btrfs_set_backup_csum_root(s: root_backup, val: csum_root->node->start); | 
| 1679 | 		btrfs_set_backup_csum_root_gen(s: root_backup, | 
| 1680 | 					       val: btrfs_header_generation(eb: csum_root->node)); | 
| 1681 | 		btrfs_set_backup_csum_root_level(s: root_backup, | 
| 1682 | 						 val: btrfs_header_level(eb: csum_root->node)); | 
| 1683 | 	} | 
| 1684 |  | 
| 1685 | 	/* | 
| 1686 | 	 * we might commit during log recovery, which happens before we set | 
| 1687 | 	 * the fs_root.  Make sure it is valid before we fill it in. | 
| 1688 | 	 */ | 
| 1689 | 	if (info->fs_root && info->fs_root->node) { | 
| 1690 | 		btrfs_set_backup_fs_root(s: root_backup, | 
| 1691 | 					 val: info->fs_root->node->start); | 
| 1692 | 		btrfs_set_backup_fs_root_gen(s: root_backup, | 
| 1693 | 			       val: btrfs_header_generation(eb: info->fs_root->node)); | 
| 1694 | 		btrfs_set_backup_fs_root_level(s: root_backup, | 
| 1695 | 			       val: btrfs_header_level(eb: info->fs_root->node)); | 
| 1696 | 	} | 
| 1697 |  | 
| 1698 | 	btrfs_set_backup_dev_root(s: root_backup, val: info->dev_root->node->start); | 
| 1699 | 	btrfs_set_backup_dev_root_gen(s: root_backup, | 
| 1700 | 			       val: btrfs_header_generation(eb: info->dev_root->node)); | 
| 1701 | 	btrfs_set_backup_dev_root_level(s: root_backup, | 
| 1702 | 				       val: btrfs_header_level(eb: info->dev_root->node)); | 
| 1703 |  | 
| 1704 | 	btrfs_set_backup_total_bytes(s: root_backup, | 
| 1705 | 			     val: btrfs_super_total_bytes(s: info->super_copy)); | 
| 1706 | 	btrfs_set_backup_bytes_used(s: root_backup, | 
| 1707 | 			     val: btrfs_super_bytes_used(s: info->super_copy)); | 
| 1708 | 	btrfs_set_backup_num_devices(s: root_backup, | 
| 1709 | 			     val: btrfs_super_num_devices(s: info->super_copy)); | 
| 1710 |  | 
| 1711 | 	/* | 
| 1712 | 	 * if we don't copy this out to the super_copy, it won't get remembered | 
| 1713 | 	 * for the next commit | 
| 1714 | 	 */ | 
| 1715 | 	memcpy(&info->super_copy->super_roots, | 
| 1716 | 	       &info->super_for_commit->super_roots, | 
| 1717 | 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); | 
| 1718 | } | 
| 1719 |  | 
| 1720 | /* | 
| 1721 |  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio | 
| 1722 |  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots | 
| 1723 |  * | 
| 1724 |  * @fs_info:  filesystem whose backup roots need to be read | 
| 1725 |  * @priority: priority of backup root required | 
| 1726 |  * | 
| 1727 |  * Returns backup root index on success and -EINVAL otherwise. | 
| 1728 |  */ | 
| 1729 | static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) | 
| 1730 | { | 
| 1731 | 	int backup_index = find_newest_super_backup(info: fs_info); | 
| 1732 | 	struct btrfs_super_block *super = fs_info->super_copy; | 
| 1733 | 	struct btrfs_root_backup *root_backup; | 
| 1734 |  | 
| 1735 | 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { | 
| 1736 | 		if (priority == 0) | 
| 1737 | 			return backup_index; | 
| 1738 |  | 
| 1739 | 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; | 
| 1740 | 		backup_index %= BTRFS_NUM_BACKUP_ROOTS; | 
| 1741 | 	} else { | 
| 1742 | 		return -EINVAL; | 
| 1743 | 	} | 
| 1744 |  | 
| 1745 | 	root_backup = super->super_roots + backup_index; | 
| 1746 |  | 
| 1747 | 	btrfs_set_super_generation(s: super, | 
| 1748 | 				   val: btrfs_backup_tree_root_gen(s: root_backup)); | 
| 1749 | 	btrfs_set_super_root(s: super, val: btrfs_backup_tree_root(s: root_backup)); | 
| 1750 | 	btrfs_set_super_root_level(s: super, | 
| 1751 | 				   val: btrfs_backup_tree_root_level(s: root_backup)); | 
| 1752 | 	btrfs_set_super_bytes_used(s: super, val: btrfs_backup_bytes_used(s: root_backup)); | 
| 1753 |  | 
| 1754 | 	/* | 
| 1755 | 	 * Fixme: the total bytes and num_devices need to match or we should | 
| 1756 | 	 * need a fsck | 
| 1757 | 	 */ | 
| 1758 | 	btrfs_set_super_total_bytes(s: super, val: btrfs_backup_total_bytes(s: root_backup)); | 
| 1759 | 	btrfs_set_super_num_devices(s: super, val: btrfs_backup_num_devices(s: root_backup)); | 
| 1760 |  | 
| 1761 | 	return backup_index; | 
| 1762 | } | 
| 1763 |  | 
| 1764 | /* helper to cleanup workers */ | 
| 1765 | static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) | 
| 1766 | { | 
| 1767 | 	btrfs_destroy_workqueue(wq: fs_info->fixup_workers); | 
| 1768 | 	btrfs_destroy_workqueue(wq: fs_info->delalloc_workers); | 
| 1769 | 	btrfs_destroy_workqueue(wq: fs_info->workers); | 
| 1770 | 	if (fs_info->endio_workers) | 
| 1771 | 		destroy_workqueue(wq: fs_info->endio_workers); | 
| 1772 | 	if (fs_info->rmw_workers) | 
| 1773 | 		destroy_workqueue(wq: fs_info->rmw_workers); | 
| 1774 | 	if (fs_info->compressed_write_workers) | 
| 1775 | 		destroy_workqueue(wq: fs_info->compressed_write_workers); | 
| 1776 | 	btrfs_destroy_workqueue(wq: fs_info->endio_write_workers); | 
| 1777 | 	btrfs_destroy_workqueue(wq: fs_info->endio_freespace_worker); | 
| 1778 | 	btrfs_destroy_workqueue(wq: fs_info->delayed_workers); | 
| 1779 | 	btrfs_destroy_workqueue(wq: fs_info->caching_workers); | 
| 1780 | 	btrfs_destroy_workqueue(wq: fs_info->flush_workers); | 
| 1781 | 	btrfs_destroy_workqueue(wq: fs_info->qgroup_rescan_workers); | 
| 1782 | 	if (fs_info->discard_ctl.discard_workers) | 
| 1783 | 		destroy_workqueue(wq: fs_info->discard_ctl.discard_workers); | 
| 1784 | 	/* | 
| 1785 | 	 * Now that all other work queues are destroyed, we can safely destroy | 
| 1786 | 	 * the queues used for metadata I/O, since tasks from those other work | 
| 1787 | 	 * queues can do metadata I/O operations. | 
| 1788 | 	 */ | 
| 1789 | 	if (fs_info->endio_meta_workers) | 
| 1790 | 		destroy_workqueue(wq: fs_info->endio_meta_workers); | 
| 1791 | } | 
| 1792 |  | 
| 1793 | static void free_root_extent_buffers(struct btrfs_root *root) | 
| 1794 | { | 
| 1795 | 	if (root) { | 
| 1796 | 		free_extent_buffer(eb: root->node); | 
| 1797 | 		free_extent_buffer(eb: root->commit_root); | 
| 1798 | 		root->node = NULL; | 
| 1799 | 		root->commit_root = NULL; | 
| 1800 | 	} | 
| 1801 | } | 
| 1802 |  | 
| 1803 | static void free_global_root_pointers(struct btrfs_fs_info *fs_info) | 
| 1804 | { | 
| 1805 | 	struct btrfs_root *root, *tmp; | 
| 1806 |  | 
| 1807 | 	rbtree_postorder_for_each_entry_safe(root, tmp, | 
| 1808 | 					     &fs_info->global_root_tree, | 
| 1809 | 					     rb_node) | 
| 1810 | 		free_root_extent_buffers(root); | 
| 1811 | } | 
| 1812 |  | 
| 1813 | /* helper to cleanup tree roots */ | 
| 1814 | static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) | 
| 1815 | { | 
| 1816 | 	free_root_extent_buffers(root: info->tree_root); | 
| 1817 |  | 
| 1818 | 	free_global_root_pointers(fs_info: info); | 
| 1819 | 	free_root_extent_buffers(root: info->dev_root); | 
| 1820 | 	free_root_extent_buffers(root: info->quota_root); | 
| 1821 | 	free_root_extent_buffers(root: info->uuid_root); | 
| 1822 | 	free_root_extent_buffers(root: info->fs_root); | 
| 1823 | 	free_root_extent_buffers(root: info->data_reloc_root); | 
| 1824 | 	free_root_extent_buffers(root: info->block_group_root); | 
| 1825 | 	free_root_extent_buffers(root: info->stripe_root); | 
| 1826 | 	if (free_chunk_root) | 
| 1827 | 		free_root_extent_buffers(root: info->chunk_root); | 
| 1828 | } | 
| 1829 |  | 
| 1830 | void btrfs_put_root(struct btrfs_root *root) | 
| 1831 | { | 
| 1832 | 	if (!root) | 
| 1833 | 		return; | 
| 1834 |  | 
| 1835 | 	if (refcount_dec_and_test(r: &root->refs)) { | 
| 1836 | 		if (WARN_ON(!xa_empty(&root->inodes))) | 
| 1837 | 			xa_destroy(&root->inodes); | 
| 1838 | 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); | 
| 1839 | 		if (root->anon_dev) | 
| 1840 | 			free_anon_bdev(root->anon_dev); | 
| 1841 | 		free_root_extent_buffers(root); | 
| 1842 | #ifdef CONFIG_BTRFS_DEBUG | 
| 1843 | 		spin_lock(lock: &root->fs_info->fs_roots_radix_lock); | 
| 1844 | 		list_del_init(entry: &root->leak_list); | 
| 1845 | 		spin_unlock(lock: &root->fs_info->fs_roots_radix_lock); | 
| 1846 | #endif | 
| 1847 | 		kfree(objp: root); | 
| 1848 | 	} | 
| 1849 | } | 
| 1850 |  | 
| 1851 | void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) | 
| 1852 | { | 
| 1853 | 	int ret; | 
| 1854 | 	struct btrfs_root *gang[8]; | 
| 1855 | 	int i; | 
| 1856 |  | 
| 1857 | 	while (!list_empty(head: &fs_info->dead_roots)) { | 
| 1858 | 		gang[0] = list_first_entry(&fs_info->dead_roots, | 
| 1859 | 					   struct btrfs_root, root_list); | 
| 1860 | 		list_del(entry: &gang[0]->root_list); | 
| 1861 |  | 
| 1862 | 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) | 
| 1863 | 			btrfs_drop_and_free_fs_root(fs_info, root: gang[0]); | 
| 1864 | 		btrfs_put_root(root: gang[0]); | 
| 1865 | 	} | 
| 1866 |  | 
| 1867 | 	while (1) { | 
| 1868 | 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
| 1869 | 					     results: (void **)gang, first_index: 0, | 
| 1870 | 					     ARRAY_SIZE(gang)); | 
| 1871 | 		if (!ret) | 
| 1872 | 			break; | 
| 1873 | 		for (i = 0; i < ret; i++) | 
| 1874 | 			btrfs_drop_and_free_fs_root(fs_info, root: gang[i]); | 
| 1875 | 	} | 
| 1876 | } | 
| 1877 |  | 
| 1878 | static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) | 
| 1879 | { | 
| 1880 | 	mutex_init(&fs_info->scrub_lock); | 
| 1881 | 	atomic_set(v: &fs_info->scrubs_running, i: 0); | 
| 1882 | 	atomic_set(v: &fs_info->scrub_pause_req, i: 0); | 
| 1883 | 	atomic_set(v: &fs_info->scrubs_paused, i: 0); | 
| 1884 | 	atomic_set(v: &fs_info->scrub_cancel_req, i: 0); | 
| 1885 | 	init_waitqueue_head(&fs_info->scrub_pause_wait); | 
| 1886 | 	refcount_set(r: &fs_info->scrub_workers_refcnt, n: 0); | 
| 1887 | } | 
| 1888 |  | 
| 1889 | static void btrfs_init_balance(struct btrfs_fs_info *fs_info) | 
| 1890 | { | 
| 1891 | 	spin_lock_init(&fs_info->balance_lock); | 
| 1892 | 	mutex_init(&fs_info->balance_mutex); | 
| 1893 | 	atomic_set(v: &fs_info->balance_pause_req, i: 0); | 
| 1894 | 	atomic_set(v: &fs_info->balance_cancel_req, i: 0); | 
| 1895 | 	fs_info->balance_ctl = NULL; | 
| 1896 | 	init_waitqueue_head(&fs_info->balance_wait_q); | 
| 1897 | 	atomic_set(v: &fs_info->reloc_cancel_req, i: 0); | 
| 1898 | } | 
| 1899 |  | 
| 1900 | static int btrfs_init_btree_inode(struct super_block *sb) | 
| 1901 | { | 
| 1902 | 	struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
| 1903 | 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, | 
| 1904 | 					      root: fs_info->tree_root); | 
| 1905 | 	struct inode *inode; | 
| 1906 |  | 
| 1907 | 	inode = new_inode(sb); | 
| 1908 | 	if (!inode) | 
| 1909 | 		return -ENOMEM; | 
| 1910 |  | 
| 1911 | 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); | 
| 1912 | 	set_nlink(inode, nlink: 1); | 
| 1913 | 	/* | 
| 1914 | 	 * we set the i_size on the btree inode to the max possible int. | 
| 1915 | 	 * the real end of the address space is determined by all of | 
| 1916 | 	 * the devices in the system | 
| 1917 | 	 */ | 
| 1918 | 	inode->i_size = OFFSET_MAX; | 
| 1919 | 	inode->i_mapping->a_ops = &btree_aops; | 
| 1920 | 	mapping_set_gfp_mask(m: inode->i_mapping, GFP_NOFS); | 
| 1921 |  | 
| 1922 | 	btrfs_extent_io_tree_init(fs_info, tree: &BTRFS_I(inode)->io_tree, | 
| 1923 | 				  owner: IO_TREE_BTREE_INODE_IO); | 
| 1924 | 	btrfs_extent_map_tree_init(tree: &BTRFS_I(inode)->extent_tree); | 
| 1925 |  | 
| 1926 | 	BTRFS_I(inode)->root = btrfs_grab_root(root: fs_info->tree_root); | 
| 1927 | 	set_bit(nr: BTRFS_INODE_DUMMY, addr: &BTRFS_I(inode)->runtime_flags); | 
| 1928 | 	__insert_inode_hash(inode, hashval: hash); | 
| 1929 | 	fs_info->btree_inode = inode; | 
| 1930 |  | 
| 1931 | 	return 0; | 
| 1932 | } | 
| 1933 |  | 
| 1934 | static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) | 
| 1935 | { | 
| 1936 | 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); | 
| 1937 | 	init_rwsem(&fs_info->dev_replace.rwsem); | 
| 1938 | 	init_waitqueue_head(&fs_info->dev_replace.replace_wait); | 
| 1939 | } | 
| 1940 |  | 
| 1941 | static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) | 
| 1942 | { | 
| 1943 | 	spin_lock_init(&fs_info->qgroup_lock); | 
| 1944 | 	mutex_init(&fs_info->qgroup_ioctl_lock); | 
| 1945 | 	fs_info->qgroup_tree = RB_ROOT; | 
| 1946 | 	INIT_LIST_HEAD(list: &fs_info->dirty_qgroups); | 
| 1947 | 	fs_info->qgroup_seq = 1; | 
| 1948 | 	fs_info->qgroup_ulist = NULL; | 
| 1949 | 	fs_info->qgroup_rescan_running = false; | 
| 1950 | 	fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT; | 
| 1951 | 	mutex_init(&fs_info->qgroup_rescan_lock); | 
| 1952 | } | 
| 1953 |  | 
| 1954 | static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) | 
| 1955 | { | 
| 1956 | 	u32 max_active = fs_info->thread_pool_size; | 
| 1957 | 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; | 
| 1958 | 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; | 
| 1959 |  | 
| 1960 | 	fs_info->workers = | 
| 1961 | 		btrfs_alloc_workqueue(fs_info, name: "worker" , flags, limit_active: max_active, thresh: 16); | 
| 1962 |  | 
| 1963 | 	fs_info->delalloc_workers = | 
| 1964 | 		btrfs_alloc_workqueue(fs_info, name: "delalloc" , | 
| 1965 | 				      flags, limit_active: max_active, thresh: 2); | 
| 1966 |  | 
| 1967 | 	fs_info->flush_workers = | 
| 1968 | 		btrfs_alloc_workqueue(fs_info, name: "flush_delalloc" , | 
| 1969 | 				      flags, limit_active: max_active, thresh: 0); | 
| 1970 |  | 
| 1971 | 	fs_info->caching_workers = | 
| 1972 | 		btrfs_alloc_workqueue(fs_info, name: "cache" , flags, limit_active: max_active, thresh: 0); | 
| 1973 |  | 
| 1974 | 	fs_info->fixup_workers = | 
| 1975 | 		btrfs_alloc_ordered_workqueue(fs_info, name: "fixup" , flags: ordered_flags); | 
| 1976 |  | 
| 1977 | 	fs_info->endio_workers = | 
| 1978 | 		alloc_workqueue(fmt: "btrfs-endio" , flags, max_active); | 
| 1979 | 	fs_info->endio_meta_workers = | 
| 1980 | 		alloc_workqueue(fmt: "btrfs-endio-meta" , flags, max_active); | 
| 1981 | 	fs_info->rmw_workers = alloc_workqueue(fmt: "btrfs-rmw" , flags, max_active); | 
| 1982 | 	fs_info->endio_write_workers = | 
| 1983 | 		btrfs_alloc_workqueue(fs_info, name: "endio-write" , flags, | 
| 1984 | 				      limit_active: max_active, thresh: 2); | 
| 1985 | 	fs_info->compressed_write_workers = | 
| 1986 | 		alloc_workqueue(fmt: "btrfs-compressed-write" , flags, max_active); | 
| 1987 | 	fs_info->endio_freespace_worker = | 
| 1988 | 		btrfs_alloc_workqueue(fs_info, name: "freespace-write" , flags, | 
| 1989 | 				      limit_active: max_active, thresh: 0); | 
| 1990 | 	fs_info->delayed_workers = | 
| 1991 | 		btrfs_alloc_workqueue(fs_info, name: "delayed-meta" , flags, | 
| 1992 | 				      limit_active: max_active, thresh: 0); | 
| 1993 | 	fs_info->qgroup_rescan_workers = | 
| 1994 | 		btrfs_alloc_ordered_workqueue(fs_info, name: "qgroup-rescan" , | 
| 1995 | 					      flags: ordered_flags); | 
| 1996 | 	fs_info->discard_ctl.discard_workers = | 
| 1997 | 		alloc_ordered_workqueue("btrfs-discard" , WQ_FREEZABLE); | 
| 1998 |  | 
| 1999 | 	if (!(fs_info->workers && | 
| 2000 | 	      fs_info->delalloc_workers && fs_info->flush_workers && | 
| 2001 | 	      fs_info->endio_workers && fs_info->endio_meta_workers && | 
| 2002 | 	      fs_info->compressed_write_workers && | 
| 2003 | 	      fs_info->endio_write_workers && | 
| 2004 | 	      fs_info->endio_freespace_worker && fs_info->rmw_workers && | 
| 2005 | 	      fs_info->caching_workers && fs_info->fixup_workers && | 
| 2006 | 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers && | 
| 2007 | 	      fs_info->discard_ctl.discard_workers)) { | 
| 2008 | 		return -ENOMEM; | 
| 2009 | 	} | 
| 2010 |  | 
| 2011 | 	return 0; | 
| 2012 | } | 
| 2013 |  | 
| 2014 | static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) | 
| 2015 | { | 
| 2016 | 	struct crypto_shash *csum_shash; | 
| 2017 | 	const char *csum_driver = btrfs_super_csum_driver(csum_type); | 
| 2018 |  | 
| 2019 | 	csum_shash = crypto_alloc_shash(alg_name: csum_driver, type: 0, mask: 0); | 
| 2020 |  | 
| 2021 | 	if (IS_ERR(ptr: csum_shash)) { | 
| 2022 | 		btrfs_err(fs_info, "error allocating %s hash for checksum" , | 
| 2023 | 			  csum_driver); | 
| 2024 | 		return PTR_ERR(ptr: csum_shash); | 
| 2025 | 	} | 
| 2026 |  | 
| 2027 | 	fs_info->csum_shash = csum_shash; | 
| 2028 |  | 
| 2029 | 	/* | 
| 2030 | 	 * Check if the checksum implementation is a fast accelerated one. | 
| 2031 | 	 * As-is this is a bit of a hack and should be replaced once the csum | 
| 2032 | 	 * implementations provide that information themselves. | 
| 2033 | 	 */ | 
| 2034 | 	switch (csum_type) { | 
| 2035 | 	case BTRFS_CSUM_TYPE_CRC32: | 
| 2036 | 		if (!strstr(crypto_shash_driver_name(tfm: csum_shash), "generic" )) | 
| 2037 | 			set_bit(nr: BTRFS_FS_CSUM_IMPL_FAST, addr: &fs_info->flags); | 
| 2038 | 		break; | 
| 2039 | 	case BTRFS_CSUM_TYPE_XXHASH: | 
| 2040 | 		set_bit(nr: BTRFS_FS_CSUM_IMPL_FAST, addr: &fs_info->flags); | 
| 2041 | 		break; | 
| 2042 | 	default: | 
| 2043 | 		break; | 
| 2044 | 	} | 
| 2045 |  | 
| 2046 | 	btrfs_info(fs_info, "using %s (%s) checksum algorithm" , | 
| 2047 | 			btrfs_super_csum_name(csum_type), | 
| 2048 | 			crypto_shash_driver_name(csum_shash)); | 
| 2049 | 	return 0; | 
| 2050 | } | 
| 2051 |  | 
| 2052 | static int btrfs_replay_log(struct btrfs_fs_info *fs_info, | 
| 2053 | 			    struct btrfs_fs_devices *fs_devices) | 
| 2054 | { | 
| 2055 | 	int ret; | 
| 2056 | 	struct btrfs_tree_parent_check check = { 0 }; | 
| 2057 | 	struct btrfs_root *log_tree_root; | 
| 2058 | 	struct btrfs_super_block *disk_super = fs_info->super_copy; | 
| 2059 | 	u64 bytenr = btrfs_super_log_root(s: disk_super); | 
| 2060 | 	int level = btrfs_super_log_root_level(s: disk_super); | 
| 2061 |  | 
| 2062 | 	if (fs_devices->rw_devices == 0) { | 
| 2063 | 		btrfs_warn(fs_info, "log replay required on RO media" ); | 
| 2064 | 		return -EIO; | 
| 2065 | 	} | 
| 2066 |  | 
| 2067 | 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, | 
| 2068 | 					 GFP_KERNEL); | 
| 2069 | 	if (!log_tree_root) | 
| 2070 | 		return -ENOMEM; | 
| 2071 |  | 
| 2072 | 	check.level = level; | 
| 2073 | 	check.transid = fs_info->generation + 1; | 
| 2074 | 	check.owner_root = BTRFS_TREE_LOG_OBJECTID; | 
| 2075 | 	log_tree_root->node = read_tree_block(fs_info, bytenr, check: &check); | 
| 2076 | 	if (IS_ERR(ptr: log_tree_root->node)) { | 
| 2077 | 		btrfs_warn(fs_info, "failed to read log tree" ); | 
| 2078 | 		ret = PTR_ERR(ptr: log_tree_root->node); | 
| 2079 | 		log_tree_root->node = NULL; | 
| 2080 | 		btrfs_put_root(root: log_tree_root); | 
| 2081 | 		return ret; | 
| 2082 | 	} | 
| 2083 | 	if (!extent_buffer_uptodate(eb: log_tree_root->node)) { | 
| 2084 | 		btrfs_err(fs_info, "failed to read log tree" ); | 
| 2085 | 		btrfs_put_root(root: log_tree_root); | 
| 2086 | 		return -EIO; | 
| 2087 | 	} | 
| 2088 |  | 
| 2089 | 	/* returns with log_tree_root freed on success */ | 
| 2090 | 	ret = btrfs_recover_log_trees(tree_root: log_tree_root); | 
| 2091 | 	if (ret) { | 
| 2092 | 		btrfs_handle_fs_error(fs_info, ret, | 
| 2093 | 				      "Failed to recover log tree" ); | 
| 2094 | 		btrfs_put_root(root: log_tree_root); | 
| 2095 | 		return ret; | 
| 2096 | 	} | 
| 2097 |  | 
| 2098 | 	if (sb_rdonly(sb: fs_info->sb)) { | 
| 2099 | 		ret = btrfs_commit_super(fs_info); | 
| 2100 | 		if (ret) | 
| 2101 | 			return ret; | 
| 2102 | 	} | 
| 2103 |  | 
| 2104 | 	return 0; | 
| 2105 | } | 
| 2106 |  | 
| 2107 | static int load_global_roots_objectid(struct btrfs_root *tree_root, | 
| 2108 | 				      struct btrfs_path *path, u64 objectid, | 
| 2109 | 				      const char *name) | 
| 2110 | { | 
| 2111 | 	struct btrfs_fs_info *fs_info = tree_root->fs_info; | 
| 2112 | 	struct btrfs_root *root; | 
| 2113 | 	u64 max_global_id = 0; | 
| 2114 | 	int ret; | 
| 2115 | 	struct btrfs_key key = { | 
| 2116 | 		.objectid = objectid, | 
| 2117 | 		.type = BTRFS_ROOT_ITEM_KEY, | 
| 2118 | 		.offset = 0, | 
| 2119 | 	}; | 
| 2120 | 	bool found = false; | 
| 2121 |  | 
| 2122 | 	/* If we have IGNOREDATACSUMS skip loading these roots. */ | 
| 2123 | 	if (objectid == BTRFS_CSUM_TREE_OBJECTID && | 
| 2124 | 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { | 
| 2125 | 		set_bit(nr: BTRFS_FS_STATE_NO_DATA_CSUMS, addr: &fs_info->fs_state); | 
| 2126 | 		return 0; | 
| 2127 | 	} | 
| 2128 |  | 
| 2129 | 	while (1) { | 
| 2130 | 		ret = btrfs_search_slot(NULL, root: tree_root, key: &key, p: path, ins_len: 0, cow: 0); | 
| 2131 | 		if (ret < 0) | 
| 2132 | 			break; | 
| 2133 |  | 
| 2134 | 		if (path->slots[0] >= btrfs_header_nritems(eb: path->nodes[0])) { | 
| 2135 | 			ret = btrfs_next_leaf(root: tree_root, path); | 
| 2136 | 			if (ret) { | 
| 2137 | 				if (ret > 0) | 
| 2138 | 					ret = 0; | 
| 2139 | 				break; | 
| 2140 | 			} | 
| 2141 | 		} | 
| 2142 | 		ret = 0; | 
| 2143 |  | 
| 2144 | 		btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0]); | 
| 2145 | 		if (key.objectid != objectid) | 
| 2146 | 			break; | 
| 2147 | 		btrfs_release_path(p: path); | 
| 2148 |  | 
| 2149 | 		/* | 
| 2150 | 		 * Just worry about this for extent tree, it'll be the same for | 
| 2151 | 		 * everybody. | 
| 2152 | 		 */ | 
| 2153 | 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID) | 
| 2154 | 			max_global_id = max(max_global_id, key.offset); | 
| 2155 |  | 
| 2156 | 		found = true; | 
| 2157 | 		root = read_tree_root_path(tree_root, path, key: &key); | 
| 2158 | 		if (IS_ERR(ptr: root)) { | 
| 2159 | 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) | 
| 2160 | 				ret = PTR_ERR(ptr: root); | 
| 2161 | 			break; | 
| 2162 | 		} | 
| 2163 | 		set_bit(nr: BTRFS_ROOT_TRACK_DIRTY, addr: &root->state); | 
| 2164 | 		ret = btrfs_global_root_insert(root); | 
| 2165 | 		if (ret) { | 
| 2166 | 			btrfs_put_root(root); | 
| 2167 | 			break; | 
| 2168 | 		} | 
| 2169 | 		key.offset++; | 
| 2170 | 	} | 
| 2171 | 	btrfs_release_path(p: path); | 
| 2172 |  | 
| 2173 | 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID) | 
| 2174 | 		fs_info->nr_global_roots = max_global_id + 1; | 
| 2175 |  | 
| 2176 | 	if (!found || ret) { | 
| 2177 | 		if (objectid == BTRFS_CSUM_TREE_OBJECTID) | 
| 2178 | 			set_bit(nr: BTRFS_FS_STATE_NO_DATA_CSUMS, addr: &fs_info->fs_state); | 
| 2179 |  | 
| 2180 | 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) | 
| 2181 | 			ret = ret ? ret : -ENOENT; | 
| 2182 | 		else | 
| 2183 | 			ret = 0; | 
| 2184 | 		btrfs_err(fs_info, "failed to load root %s" , name); | 
| 2185 | 	} | 
| 2186 | 	return ret; | 
| 2187 | } | 
| 2188 |  | 
| 2189 | static int load_global_roots(struct btrfs_root *tree_root) | 
| 2190 | { | 
| 2191 | 	BTRFS_PATH_AUTO_FREE(path); | 
| 2192 | 	int ret; | 
| 2193 |  | 
| 2194 | 	path = btrfs_alloc_path(); | 
| 2195 | 	if (!path) | 
| 2196 | 		return -ENOMEM; | 
| 2197 |  | 
| 2198 | 	ret = load_global_roots_objectid(tree_root, path, | 
| 2199 | 					 BTRFS_EXTENT_TREE_OBJECTID, name: "extent" ); | 
| 2200 | 	if (ret) | 
| 2201 | 		return ret; | 
| 2202 | 	ret = load_global_roots_objectid(tree_root, path, | 
| 2203 | 					 BTRFS_CSUM_TREE_OBJECTID, name: "csum" ); | 
| 2204 | 	if (ret) | 
| 2205 | 		return ret; | 
| 2206 | 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) | 
| 2207 | 		return ret; | 
| 2208 | 	ret = load_global_roots_objectid(tree_root, path, | 
| 2209 | 					 BTRFS_FREE_SPACE_TREE_OBJECTID, | 
| 2210 | 					 name: "free space" ); | 
| 2211 |  | 
| 2212 | 	return ret; | 
| 2213 | } | 
| 2214 |  | 
| 2215 | static int btrfs_read_roots(struct btrfs_fs_info *fs_info) | 
| 2216 | { | 
| 2217 | 	struct btrfs_root *tree_root = fs_info->tree_root; | 
| 2218 | 	struct btrfs_root *root; | 
| 2219 | 	struct btrfs_key location; | 
| 2220 | 	int ret; | 
| 2221 |  | 
| 2222 | 	ASSERT(fs_info->tree_root); | 
| 2223 |  | 
| 2224 | 	ret = load_global_roots(tree_root); | 
| 2225 | 	if (ret) | 
| 2226 | 		return ret; | 
| 2227 |  | 
| 2228 | 	location.type = BTRFS_ROOT_ITEM_KEY; | 
| 2229 | 	location.offset = 0; | 
| 2230 |  | 
| 2231 | 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { | 
| 2232 | 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; | 
| 2233 | 		root = btrfs_read_tree_root(tree_root, key: &location); | 
| 2234 | 		if (IS_ERR(ptr: root)) { | 
| 2235 | 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { | 
| 2236 | 				ret = PTR_ERR(ptr: root); | 
| 2237 | 				goto out; | 
| 2238 | 			} | 
| 2239 | 		} else { | 
| 2240 | 			set_bit(nr: BTRFS_ROOT_TRACK_DIRTY, addr: &root->state); | 
| 2241 | 			fs_info->block_group_root = root; | 
| 2242 | 		} | 
| 2243 | 	} | 
| 2244 |  | 
| 2245 | 	location.objectid = BTRFS_DEV_TREE_OBJECTID; | 
| 2246 | 	root = btrfs_read_tree_root(tree_root, key: &location); | 
| 2247 | 	if (IS_ERR(ptr: root)) { | 
| 2248 | 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { | 
| 2249 | 			ret = PTR_ERR(ptr: root); | 
| 2250 | 			goto out; | 
| 2251 | 		} | 
| 2252 | 	} else { | 
| 2253 | 		set_bit(nr: BTRFS_ROOT_TRACK_DIRTY, addr: &root->state); | 
| 2254 | 		fs_info->dev_root = root; | 
| 2255 | 	} | 
| 2256 | 	/* Initialize fs_info for all devices in any case */ | 
| 2257 | 	ret = btrfs_init_devices_late(fs_info); | 
| 2258 | 	if (ret) | 
| 2259 | 		goto out; | 
| 2260 |  | 
| 2261 | 	/* | 
| 2262 | 	 * This tree can share blocks with some other fs tree during relocation | 
| 2263 | 	 * and we need a proper setup by btrfs_get_fs_root | 
| 2264 | 	 */ | 
| 2265 | 	root = btrfs_get_fs_root(fs_info: tree_root->fs_info, | 
| 2266 | 				 BTRFS_DATA_RELOC_TREE_OBJECTID, check_ref: true); | 
| 2267 | 	if (IS_ERR(ptr: root)) { | 
| 2268 | 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { | 
| 2269 | 			ret = PTR_ERR(ptr: root); | 
| 2270 | 			goto out; | 
| 2271 | 		} | 
| 2272 | 	} else { | 
| 2273 | 		set_bit(nr: BTRFS_ROOT_TRACK_DIRTY, addr: &root->state); | 
| 2274 | 		fs_info->data_reloc_root = root; | 
| 2275 | 	} | 
| 2276 |  | 
| 2277 | 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID; | 
| 2278 | 	root = btrfs_read_tree_root(tree_root, key: &location); | 
| 2279 | 	if (!IS_ERR(ptr: root)) { | 
| 2280 | 		set_bit(nr: BTRFS_ROOT_TRACK_DIRTY, addr: &root->state); | 
| 2281 | 		fs_info->quota_root = root; | 
| 2282 | 	} | 
| 2283 |  | 
| 2284 | 	location.objectid = BTRFS_UUID_TREE_OBJECTID; | 
| 2285 | 	root = btrfs_read_tree_root(tree_root, key: &location); | 
| 2286 | 	if (IS_ERR(ptr: root)) { | 
| 2287 | 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { | 
| 2288 | 			ret = PTR_ERR(ptr: root); | 
| 2289 | 			if (ret != -ENOENT) | 
| 2290 | 				goto out; | 
| 2291 | 		} | 
| 2292 | 	} else { | 
| 2293 | 		set_bit(nr: BTRFS_ROOT_TRACK_DIRTY, addr: &root->state); | 
| 2294 | 		fs_info->uuid_root = root; | 
| 2295 | 	} | 
| 2296 |  | 
| 2297 | 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { | 
| 2298 | 		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; | 
| 2299 | 		root = btrfs_read_tree_root(tree_root, key: &location); | 
| 2300 | 		if (IS_ERR(ptr: root)) { | 
| 2301 | 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { | 
| 2302 | 				ret = PTR_ERR(ptr: root); | 
| 2303 | 				goto out; | 
| 2304 | 			} | 
| 2305 | 		} else { | 
| 2306 | 			set_bit(nr: BTRFS_ROOT_TRACK_DIRTY, addr: &root->state); | 
| 2307 | 			fs_info->stripe_root = root; | 
| 2308 | 		} | 
| 2309 | 	} | 
| 2310 |  | 
| 2311 | 	return 0; | 
| 2312 | out: | 
| 2313 | 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d" , | 
| 2314 | 		   location.objectid, ret); | 
| 2315 | 	return ret; | 
| 2316 | } | 
| 2317 |  | 
| 2318 | static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info, | 
| 2319 | 				    const struct btrfs_super_block *sb) | 
| 2320 | { | 
| 2321 | 	unsigned int cur = 0; /* Offset inside the sys chunk array */ | 
| 2322 | 	/* | 
| 2323 | 	 * At sb read time, fs_info is not fully initialized. Thus we have | 
| 2324 | 	 * to use super block sectorsize, which should have been validated. | 
| 2325 | 	 */ | 
| 2326 | 	const u32 sectorsize = btrfs_super_sectorsize(s: sb); | 
| 2327 | 	u32 sys_array_size = btrfs_super_sys_array_size(s: sb); | 
| 2328 |  | 
| 2329 | 	if (sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { | 
| 2330 | 		btrfs_err(fs_info, "system chunk array too big %u > %u" , | 
| 2331 | 			  sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); | 
| 2332 | 		return -EUCLEAN; | 
| 2333 | 	} | 
| 2334 |  | 
| 2335 | 	while (cur < sys_array_size) { | 
| 2336 | 		struct btrfs_disk_key *disk_key; | 
| 2337 | 		struct btrfs_chunk *chunk; | 
| 2338 | 		struct btrfs_key key; | 
| 2339 | 		u64 type; | 
| 2340 | 		u16 num_stripes; | 
| 2341 | 		u32 len; | 
| 2342 | 		int ret; | 
| 2343 |  | 
| 2344 | 		disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur); | 
| 2345 | 		len = sizeof(*disk_key); | 
| 2346 |  | 
| 2347 | 		if (cur + len > sys_array_size) | 
| 2348 | 			goto short_read; | 
| 2349 | 		cur += len; | 
| 2350 |  | 
| 2351 | 		btrfs_disk_key_to_cpu(cpu_key: &key, disk_key); | 
| 2352 | 		if (key.type != BTRFS_CHUNK_ITEM_KEY) { | 
| 2353 | 			btrfs_err(fs_info, | 
| 2354 | 			    "unexpected item type %u in sys_array at offset %u" , | 
| 2355 | 				  key.type, cur); | 
| 2356 | 			return -EUCLEAN; | 
| 2357 | 		} | 
| 2358 | 		chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur); | 
| 2359 | 		num_stripes = btrfs_stack_chunk_num_stripes(s: chunk); | 
| 2360 | 		if (cur + btrfs_chunk_item_size(num_stripes) > sys_array_size) | 
| 2361 | 			goto short_read; | 
| 2362 | 		type = btrfs_stack_chunk_type(s: chunk); | 
| 2363 | 		if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) { | 
| 2364 | 			btrfs_err(fs_info, | 
| 2365 | 			"invalid chunk type %llu in sys_array at offset %u" , | 
| 2366 | 				  type, cur); | 
| 2367 | 			return -EUCLEAN; | 
| 2368 | 		} | 
| 2369 | 		ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, logical: key.offset, | 
| 2370 | 					      sectorsize); | 
| 2371 | 		if (ret < 0) | 
| 2372 | 			return ret; | 
| 2373 | 		cur += btrfs_chunk_item_size(num_stripes); | 
| 2374 | 	} | 
| 2375 | 	return 0; | 
| 2376 | short_read: | 
| 2377 | 	btrfs_err(fs_info, | 
| 2378 | 	"super block sys chunk array short read, cur=%u sys_array_size=%u" , | 
| 2379 | 		  cur, sys_array_size); | 
| 2380 | 	return -EUCLEAN; | 
| 2381 | } | 
| 2382 |  | 
| 2383 | /* | 
| 2384 |  * Real super block validation | 
| 2385 |  * NOTE: super csum type and incompat features will not be checked here. | 
| 2386 |  * | 
| 2387 |  * @sb:		super block to check | 
| 2388 |  * @mirror_num:	the super block number to check its bytenr: | 
| 2389 |  * 		0	the primary (1st) sb | 
| 2390 |  * 		1, 2	2nd and 3rd backup copy | 
| 2391 |  * 	       -1	skip bytenr check | 
| 2392 |  */ | 
| 2393 | int btrfs_validate_super(const struct btrfs_fs_info *fs_info, | 
| 2394 | 			 const struct btrfs_super_block *sb, int mirror_num) | 
| 2395 | { | 
| 2396 | 	u64 nodesize = btrfs_super_nodesize(s: sb); | 
| 2397 | 	u64 sectorsize = btrfs_super_sectorsize(s: sb); | 
| 2398 | 	int ret = 0; | 
| 2399 | 	const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); | 
| 2400 |  | 
| 2401 | 	if (btrfs_super_magic(s: sb) != BTRFS_MAGIC) { | 
| 2402 | 		btrfs_err(fs_info, "no valid FS found" ); | 
| 2403 | 		ret = -EINVAL; | 
| 2404 | 	} | 
| 2405 | 	if ((btrfs_super_flags(s: sb) & ~BTRFS_SUPER_FLAG_SUPP)) { | 
| 2406 | 		if (!ignore_flags) { | 
| 2407 | 			btrfs_err(fs_info, | 
| 2408 | 			"unrecognized or unsupported super flag 0x%llx" , | 
| 2409 | 				  btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); | 
| 2410 | 			ret = -EINVAL; | 
| 2411 | 		} else { | 
| 2412 | 			btrfs_info(fs_info, | 
| 2413 | 			"unrecognized or unsupported super flags: 0x%llx, ignored" , | 
| 2414 | 				   btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); | 
| 2415 | 		} | 
| 2416 | 	} | 
| 2417 | 	if (btrfs_super_root_level(s: sb) >= BTRFS_MAX_LEVEL) { | 
| 2418 | 		btrfs_err(fs_info, "tree_root level too big: %d >= %d" , | 
| 2419 | 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); | 
| 2420 | 		ret = -EINVAL; | 
| 2421 | 	} | 
| 2422 | 	if (btrfs_super_chunk_root_level(s: sb) >= BTRFS_MAX_LEVEL) { | 
| 2423 | 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d" , | 
| 2424 | 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); | 
| 2425 | 		ret = -EINVAL; | 
| 2426 | 	} | 
| 2427 | 	if (btrfs_super_log_root_level(s: sb) >= BTRFS_MAX_LEVEL) { | 
| 2428 | 		btrfs_err(fs_info, "log_root level too big: %d >= %d" , | 
| 2429 | 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); | 
| 2430 | 		ret = -EINVAL; | 
| 2431 | 	} | 
| 2432 |  | 
| 2433 | 	/* | 
| 2434 | 	 * Check sectorsize and nodesize first, other check will need it. | 
| 2435 | 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. | 
| 2436 | 	 */ | 
| 2437 | 	if (!is_power_of_2(n: sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE || | 
| 2438 | 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { | 
| 2439 | 		btrfs_err(fs_info, "invalid sectorsize %llu" , sectorsize); | 
| 2440 | 		ret = -EINVAL; | 
| 2441 | 	} | 
| 2442 |  | 
| 2443 | 	/* | 
| 2444 | 	 * We only support at most 3 sectorsizes: 4K, PAGE_SIZE, MIN_BLOCKSIZE. | 
| 2445 | 	 * | 
| 2446 | 	 * For 4K page sized systems with non-debug builds, all 3 matches (4K). | 
| 2447 | 	 * For 4K page sized systems with debug builds, there are two block sizes | 
| 2448 | 	 * supported. (4K and 2K) | 
| 2449 | 	 * | 
| 2450 | 	 * We can support 16K sectorsize with 64K page size without problem, | 
| 2451 | 	 * but such sectorsize/pagesize combination doesn't make much sense. | 
| 2452 | 	 * 4K will be our future standard, PAGE_SIZE is supported from the very | 
| 2453 | 	 * beginning. | 
| 2454 | 	 */ | 
| 2455 | 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && | 
| 2456 | 				       sectorsize != PAGE_SIZE && | 
| 2457 | 				       sectorsize != BTRFS_MIN_BLOCKSIZE)) { | 
| 2458 | 		btrfs_err(fs_info, | 
| 2459 | 			"sectorsize %llu not yet supported for page size %lu" , | 
| 2460 | 			sectorsize, PAGE_SIZE); | 
| 2461 | 		ret = -EINVAL; | 
| 2462 | 	} | 
| 2463 |  | 
| 2464 | 	if (!is_power_of_2(n: nodesize) || nodesize < sectorsize || | 
| 2465 | 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { | 
| 2466 | 		btrfs_err(fs_info, "invalid nodesize %llu" , nodesize); | 
| 2467 | 		ret = -EINVAL; | 
| 2468 | 	} | 
| 2469 | 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { | 
| 2470 | 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu" , | 
| 2471 | 			  le32_to_cpu(sb->__unused_leafsize), nodesize); | 
| 2472 | 		ret = -EINVAL; | 
| 2473 | 	} | 
| 2474 |  | 
| 2475 | 	/* Root alignment check */ | 
| 2476 | 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { | 
| 2477 | 		btrfs_warn(fs_info, "tree_root block unaligned: %llu" , | 
| 2478 | 			   btrfs_super_root(sb)); | 
| 2479 | 		ret = -EINVAL; | 
| 2480 | 	} | 
| 2481 | 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { | 
| 2482 | 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu" , | 
| 2483 | 			   btrfs_super_chunk_root(sb)); | 
| 2484 | 		ret = -EINVAL; | 
| 2485 | 	} | 
| 2486 | 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { | 
| 2487 | 		btrfs_warn(fs_info, "log_root block unaligned: %llu" , | 
| 2488 | 			   btrfs_super_log_root(sb)); | 
| 2489 | 		ret = -EINVAL; | 
| 2490 | 	} | 
| 2491 |  | 
| 2492 | 	if (!fs_info->fs_devices->temp_fsid && | 
| 2493 | 	    memcmp(p: fs_info->fs_devices->fsid, q: sb->fsid, BTRFS_FSID_SIZE) != 0) { | 
| 2494 | 		btrfs_err(fs_info, | 
| 2495 | 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU" , | 
| 2496 | 			  sb->fsid, fs_info->fs_devices->fsid); | 
| 2497 | 		ret = -EINVAL; | 
| 2498 | 	} | 
| 2499 |  | 
| 2500 | 	if (memcmp(p: fs_info->fs_devices->metadata_uuid, q: btrfs_sb_fsid_ptr(sb), | 
| 2501 | 		   BTRFS_FSID_SIZE) != 0) { | 
| 2502 | 		btrfs_err(fs_info, | 
| 2503 | "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU" , | 
| 2504 | 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); | 
| 2505 | 		ret = -EINVAL; | 
| 2506 | 	} | 
| 2507 |  | 
| 2508 | 	if (memcmp(p: fs_info->fs_devices->metadata_uuid, q: sb->dev_item.fsid, | 
| 2509 | 		   BTRFS_FSID_SIZE) != 0) { | 
| 2510 | 		btrfs_err(fs_info, | 
| 2511 | 			"dev_item UUID does not match metadata fsid: %pU != %pU" , | 
| 2512 | 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); | 
| 2513 | 		ret = -EINVAL; | 
| 2514 | 	} | 
| 2515 |  | 
| 2516 | 	/* | 
| 2517 | 	 * Artificial requirement for block-group-tree to force newer features | 
| 2518 | 	 * (free-space-tree, no-holes) so the test matrix is smaller. | 
| 2519 | 	 */ | 
| 2520 | 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && | 
| 2521 | 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || | 
| 2522 | 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) { | 
| 2523 | 		btrfs_err(fs_info, | 
| 2524 | 		"block-group-tree feature requires free-space-tree and no-holes" ); | 
| 2525 | 		ret = -EINVAL; | 
| 2526 | 	} | 
| 2527 |  | 
| 2528 | 	/* | 
| 2529 | 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are | 
| 2530 | 	 * done later | 
| 2531 | 	 */ | 
| 2532 | 	if (btrfs_super_bytes_used(s: sb) < 6 * btrfs_super_nodesize(s: sb)) { | 
| 2533 | 		btrfs_err(fs_info, "bytes_used is too small %llu" , | 
| 2534 | 			  btrfs_super_bytes_used(sb)); | 
| 2535 | 		ret = -EINVAL; | 
| 2536 | 	} | 
| 2537 | 	if (!is_power_of_2(n: btrfs_super_stripesize(s: sb))) { | 
| 2538 | 		btrfs_err(fs_info, "invalid stripesize %u" , | 
| 2539 | 			  btrfs_super_stripesize(sb)); | 
| 2540 | 		ret = -EINVAL; | 
| 2541 | 	} | 
| 2542 | 	if (btrfs_super_num_devices(s: sb) > (1UL << 31)) | 
| 2543 | 		btrfs_warn(fs_info, "suspicious number of devices: %llu" , | 
| 2544 | 			   btrfs_super_num_devices(sb)); | 
| 2545 | 	if (btrfs_super_num_devices(s: sb) == 0) { | 
| 2546 | 		btrfs_err(fs_info, "number of devices is 0" ); | 
| 2547 | 		ret = -EINVAL; | 
| 2548 | 	} | 
| 2549 |  | 
| 2550 | 	if (mirror_num >= 0 && | 
| 2551 | 	    btrfs_super_bytenr(s: sb) != btrfs_sb_offset(mirror: mirror_num)) { | 
| 2552 | 		btrfs_err(fs_info, "super offset mismatch %llu != %u" , | 
| 2553 | 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); | 
| 2554 | 		ret = -EINVAL; | 
| 2555 | 	} | 
| 2556 |  | 
| 2557 | 	if (ret) | 
| 2558 | 		return ret; | 
| 2559 |  | 
| 2560 | 	ret = validate_sys_chunk_array(fs_info, sb); | 
| 2561 |  | 
| 2562 | 	/* | 
| 2563 | 	 * Obvious sys_chunk_array corruptions, it must hold at least one key | 
| 2564 | 	 * and one chunk | 
| 2565 | 	 */ | 
| 2566 | 	if (btrfs_super_sys_array_size(s: sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { | 
| 2567 | 		btrfs_err(fs_info, "system chunk array too big %u > %u" , | 
| 2568 | 			  btrfs_super_sys_array_size(sb), | 
| 2569 | 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); | 
| 2570 | 		ret = -EINVAL; | 
| 2571 | 	} | 
| 2572 | 	if (btrfs_super_sys_array_size(s: sb) < sizeof(struct btrfs_disk_key) | 
| 2573 | 			+ sizeof(struct btrfs_chunk)) { | 
| 2574 | 		btrfs_err(fs_info, "system chunk array too small %u < %zu" , | 
| 2575 | 			  btrfs_super_sys_array_size(sb), | 
| 2576 | 			  sizeof(struct btrfs_disk_key) | 
| 2577 | 			  + sizeof(struct btrfs_chunk)); | 
| 2578 | 		ret = -EINVAL; | 
| 2579 | 	} | 
| 2580 |  | 
| 2581 | 	/* | 
| 2582 | 	 * The generation is a global counter, we'll trust it more than the others | 
| 2583 | 	 * but it's still possible that it's the one that's wrong. | 
| 2584 | 	 */ | 
| 2585 | 	if (btrfs_super_generation(s: sb) < btrfs_super_chunk_root_generation(s: sb)) | 
| 2586 | 		btrfs_warn(fs_info, | 
| 2587 | 			"suspicious: generation < chunk_root_generation: %llu < %llu" , | 
| 2588 | 			btrfs_super_generation(sb), | 
| 2589 | 			btrfs_super_chunk_root_generation(sb)); | 
| 2590 | 	if (btrfs_super_generation(s: sb) < btrfs_super_cache_generation(s: sb) | 
| 2591 | 	    && btrfs_super_cache_generation(s: sb) != (u64)-1) | 
| 2592 | 		btrfs_warn(fs_info, | 
| 2593 | 			"suspicious: generation < cache_generation: %llu < %llu" , | 
| 2594 | 			btrfs_super_generation(sb), | 
| 2595 | 			btrfs_super_cache_generation(sb)); | 
| 2596 |  | 
| 2597 | 	return ret; | 
| 2598 | } | 
| 2599 |  | 
| 2600 | /* | 
| 2601 |  * Validation of super block at mount time. | 
| 2602 |  * Some checks already done early at mount time, like csum type and incompat | 
| 2603 |  * flags will be skipped. | 
| 2604 |  */ | 
| 2605 | static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) | 
| 2606 | { | 
| 2607 | 	return btrfs_validate_super(fs_info, sb: fs_info->super_copy, mirror_num: 0); | 
| 2608 | } | 
| 2609 |  | 
| 2610 | /* | 
| 2611 |  * Validation of super block at write time. | 
| 2612 |  * Some checks like bytenr check will be skipped as their values will be | 
| 2613 |  * overwritten soon. | 
| 2614 |  * Extra checks like csum type and incompat flags will be done here. | 
| 2615 |  */ | 
| 2616 | static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, | 
| 2617 | 				      struct btrfs_super_block *sb) | 
| 2618 | { | 
| 2619 | 	int ret; | 
| 2620 |  | 
| 2621 | 	ret = btrfs_validate_super(fs_info, sb, mirror_num: -1); | 
| 2622 | 	if (ret < 0) | 
| 2623 | 		goto out; | 
| 2624 | 	if (!btrfs_supported_super_csum(csum_type: btrfs_super_csum_type(s: sb))) { | 
| 2625 | 		ret = -EUCLEAN; | 
| 2626 | 		btrfs_err(fs_info, "invalid csum type, has %u want %u" , | 
| 2627 | 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); | 
| 2628 | 		goto out; | 
| 2629 | 	} | 
| 2630 | 	if (btrfs_super_incompat_flags(s: sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { | 
| 2631 | 		ret = -EUCLEAN; | 
| 2632 | 		btrfs_err(fs_info, | 
| 2633 | 		"invalid incompat flags, has 0x%llx valid mask 0x%llx" , | 
| 2634 | 			  btrfs_super_incompat_flags(sb), | 
| 2635 | 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); | 
| 2636 | 		goto out; | 
| 2637 | 	} | 
| 2638 | out: | 
| 2639 | 	if (ret < 0) | 
| 2640 | 		btrfs_err(fs_info, | 
| 2641 | 		"super block corruption detected before writing it to disk" ); | 
| 2642 | 	return ret; | 
| 2643 | } | 
| 2644 |  | 
| 2645 | static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) | 
| 2646 | { | 
| 2647 | 	struct btrfs_tree_parent_check check = { | 
| 2648 | 		.level = level, | 
| 2649 | 		.transid = gen, | 
| 2650 | 		.owner_root = btrfs_root_id(root) | 
| 2651 | 	}; | 
| 2652 | 	int ret = 0; | 
| 2653 |  | 
| 2654 | 	root->node = read_tree_block(fs_info: root->fs_info, bytenr, check: &check); | 
| 2655 | 	if (IS_ERR(ptr: root->node)) { | 
| 2656 | 		ret = PTR_ERR(ptr: root->node); | 
| 2657 | 		root->node = NULL; | 
| 2658 | 		return ret; | 
| 2659 | 	} | 
| 2660 | 	if (!extent_buffer_uptodate(eb: root->node)) { | 
| 2661 | 		free_extent_buffer(eb: root->node); | 
| 2662 | 		root->node = NULL; | 
| 2663 | 		return -EIO; | 
| 2664 | 	} | 
| 2665 |  | 
| 2666 | 	btrfs_set_root_node(item: &root->root_item, node: root->node); | 
| 2667 | 	root->commit_root = btrfs_root_node(root); | 
| 2668 | 	btrfs_set_root_refs(s: &root->root_item, val: 1); | 
| 2669 | 	return ret; | 
| 2670 | } | 
| 2671 |  | 
| 2672 | static int load_important_roots(struct btrfs_fs_info *fs_info) | 
| 2673 | { | 
| 2674 | 	struct btrfs_super_block *sb = fs_info->super_copy; | 
| 2675 | 	u64 gen, bytenr; | 
| 2676 | 	int level, ret; | 
| 2677 |  | 
| 2678 | 	bytenr = btrfs_super_root(s: sb); | 
| 2679 | 	gen = btrfs_super_generation(s: sb); | 
| 2680 | 	level = btrfs_super_root_level(s: sb); | 
| 2681 | 	ret = load_super_root(root: fs_info->tree_root, bytenr, gen, level); | 
| 2682 | 	if (ret) { | 
| 2683 | 		btrfs_warn(fs_info, "couldn't read tree root" ); | 
| 2684 | 		return ret; | 
| 2685 | 	} | 
| 2686 | 	return 0; | 
| 2687 | } | 
| 2688 |  | 
| 2689 | static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) | 
| 2690 | { | 
| 2691 | 	int backup_index = find_newest_super_backup(info: fs_info); | 
| 2692 | 	struct btrfs_super_block *sb = fs_info->super_copy; | 
| 2693 | 	struct btrfs_root *tree_root = fs_info->tree_root; | 
| 2694 | 	bool handle_error = false; | 
| 2695 | 	int ret = 0; | 
| 2696 | 	int i; | 
| 2697 |  | 
| 2698 | 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { | 
| 2699 | 		if (handle_error) { | 
| 2700 | 			if (!IS_ERR(ptr: tree_root->node)) | 
| 2701 | 				free_extent_buffer(eb: tree_root->node); | 
| 2702 | 			tree_root->node = NULL; | 
| 2703 |  | 
| 2704 | 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) | 
| 2705 | 				break; | 
| 2706 |  | 
| 2707 | 			free_root_pointers(info: fs_info, free_chunk_root: 0); | 
| 2708 |  | 
| 2709 | 			/* | 
| 2710 | 			 * Don't use the log in recovery mode, it won't be | 
| 2711 | 			 * valid | 
| 2712 | 			 */ | 
| 2713 | 			btrfs_set_super_log_root(s: sb, val: 0); | 
| 2714 |  | 
| 2715 | 			btrfs_warn(fs_info, "try to load backup roots slot %d" , i); | 
| 2716 | 			ret = read_backup_root(fs_info, priority: i); | 
| 2717 | 			backup_index = ret; | 
| 2718 | 			if (ret < 0) | 
| 2719 | 				return ret; | 
| 2720 | 		} | 
| 2721 |  | 
| 2722 | 		ret = load_important_roots(fs_info); | 
| 2723 | 		if (ret) { | 
| 2724 | 			handle_error = true; | 
| 2725 | 			continue; | 
| 2726 | 		} | 
| 2727 |  | 
| 2728 | 		/* | 
| 2729 | 		 * No need to hold btrfs_root::objectid_mutex since the fs | 
| 2730 | 		 * hasn't been fully initialised and we are the only user | 
| 2731 | 		 */ | 
| 2732 | 		ret = btrfs_init_root_free_objectid(root: tree_root); | 
| 2733 | 		if (ret < 0) { | 
| 2734 | 			handle_error = true; | 
| 2735 | 			continue; | 
| 2736 | 		} | 
| 2737 |  | 
| 2738 | 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); | 
| 2739 |  | 
| 2740 | 		ret = btrfs_read_roots(fs_info); | 
| 2741 | 		if (ret < 0) { | 
| 2742 | 			handle_error = true; | 
| 2743 | 			continue; | 
| 2744 | 		} | 
| 2745 |  | 
| 2746 | 		/* All successful */ | 
| 2747 | 		fs_info->generation = btrfs_header_generation(eb: tree_root->node); | 
| 2748 | 		btrfs_set_last_trans_committed(fs_info, gen: fs_info->generation); | 
| 2749 | 		fs_info->last_reloc_trans = 0; | 
| 2750 |  | 
| 2751 | 		/* Always begin writing backup roots after the one being used */ | 
| 2752 | 		if (backup_index < 0) { | 
| 2753 | 			fs_info->backup_root_index = 0; | 
| 2754 | 		} else { | 
| 2755 | 			fs_info->backup_root_index = backup_index + 1; | 
| 2756 | 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; | 
| 2757 | 		} | 
| 2758 | 		break; | 
| 2759 | 	} | 
| 2760 |  | 
| 2761 | 	return ret; | 
| 2762 | } | 
| 2763 |  | 
| 2764 | /* | 
| 2765 |  * Lockdep gets confused between our buffer_tree which requires IRQ locking because | 
| 2766 |  * we modify marks in the IRQ context, and our delayed inode xarray which doesn't | 
| 2767 |  * have these requirements. Use a class key so lockdep doesn't get them mixed up. | 
| 2768 |  */ | 
| 2769 | static struct lock_class_key buffer_xa_class; | 
| 2770 |  | 
| 2771 | void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) | 
| 2772 | { | 
| 2773 | 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); | 
| 2774 |  | 
| 2775 | 	/* Use the same flags as mapping->i_pages. */ | 
| 2776 | 	xa_init_flags(xa: &fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); | 
| 2777 | 	lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class); | 
| 2778 |  | 
| 2779 | 	INIT_LIST_HEAD(list: &fs_info->trans_list); | 
| 2780 | 	INIT_LIST_HEAD(list: &fs_info->dead_roots); | 
| 2781 | 	INIT_LIST_HEAD(list: &fs_info->delayed_iputs); | 
| 2782 | 	INIT_LIST_HEAD(list: &fs_info->delalloc_roots); | 
| 2783 | 	INIT_LIST_HEAD(list: &fs_info->caching_block_groups); | 
| 2784 | 	spin_lock_init(&fs_info->delalloc_root_lock); | 
| 2785 | 	spin_lock_init(&fs_info->trans_lock); | 
| 2786 | 	spin_lock_init(&fs_info->fs_roots_radix_lock); | 
| 2787 | 	spin_lock_init(&fs_info->delayed_iput_lock); | 
| 2788 | 	spin_lock_init(&fs_info->defrag_inodes_lock); | 
| 2789 | 	spin_lock_init(&fs_info->super_lock); | 
| 2790 | 	spin_lock_init(&fs_info->unused_bgs_lock); | 
| 2791 | 	spin_lock_init(&fs_info->treelog_bg_lock); | 
| 2792 | 	spin_lock_init(&fs_info->zone_active_bgs_lock); | 
| 2793 | 	spin_lock_init(&fs_info->relocation_bg_lock); | 
| 2794 | 	rwlock_init(&fs_info->tree_mod_log_lock); | 
| 2795 | 	rwlock_init(&fs_info->global_root_lock); | 
| 2796 | 	mutex_init(&fs_info->unused_bg_unpin_mutex); | 
| 2797 | 	mutex_init(&fs_info->reclaim_bgs_lock); | 
| 2798 | 	mutex_init(&fs_info->reloc_mutex); | 
| 2799 | 	mutex_init(&fs_info->delalloc_root_mutex); | 
| 2800 | 	mutex_init(&fs_info->zoned_meta_io_lock); | 
| 2801 | 	mutex_init(&fs_info->zoned_data_reloc_io_lock); | 
| 2802 | 	seqlock_init(&fs_info->profiles_lock); | 
| 2803 |  | 
| 2804 | 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); | 
| 2805 | 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); | 
| 2806 | 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); | 
| 2807 | 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); | 
| 2808 | 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, | 
| 2809 | 				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP); | 
| 2810 | 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, | 
| 2811 | 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED); | 
| 2812 | 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, | 
| 2813 | 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); | 
| 2814 | 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, | 
| 2815 | 				     BTRFS_LOCKDEP_TRANS_COMPLETED); | 
| 2816 |  | 
| 2817 | 	INIT_LIST_HEAD(list: &fs_info->dirty_cowonly_roots); | 
| 2818 | 	INIT_LIST_HEAD(list: &fs_info->space_info); | 
| 2819 | 	INIT_LIST_HEAD(list: &fs_info->tree_mod_seq_list); | 
| 2820 | 	INIT_LIST_HEAD(list: &fs_info->unused_bgs); | 
| 2821 | 	INIT_LIST_HEAD(list: &fs_info->reclaim_bgs); | 
| 2822 | 	INIT_LIST_HEAD(list: &fs_info->zone_active_bgs); | 
| 2823 | #ifdef CONFIG_BTRFS_DEBUG | 
| 2824 | 	INIT_LIST_HEAD(list: &fs_info->allocated_roots); | 
| 2825 | 	INIT_LIST_HEAD(list: &fs_info->allocated_ebs); | 
| 2826 | 	spin_lock_init(&fs_info->eb_leak_lock); | 
| 2827 | #endif | 
| 2828 | 	fs_info->mapping_tree = RB_ROOT_CACHED; | 
| 2829 | 	rwlock_init(&fs_info->mapping_tree_lock); | 
| 2830 | 	btrfs_init_block_rsv(rsv: &fs_info->global_block_rsv, | 
| 2831 | 			     type: BTRFS_BLOCK_RSV_GLOBAL); | 
| 2832 | 	btrfs_init_block_rsv(rsv: &fs_info->trans_block_rsv, type: BTRFS_BLOCK_RSV_TRANS); | 
| 2833 | 	btrfs_init_block_rsv(rsv: &fs_info->chunk_block_rsv, type: BTRFS_BLOCK_RSV_CHUNK); | 
| 2834 | 	btrfs_init_block_rsv(rsv: &fs_info->treelog_rsv, type: BTRFS_BLOCK_RSV_TREELOG); | 
| 2835 | 	btrfs_init_block_rsv(rsv: &fs_info->empty_block_rsv, type: BTRFS_BLOCK_RSV_EMPTY); | 
| 2836 | 	btrfs_init_block_rsv(rsv: &fs_info->delayed_block_rsv, | 
| 2837 | 			     type: BTRFS_BLOCK_RSV_DELOPS); | 
| 2838 | 	btrfs_init_block_rsv(rsv: &fs_info->delayed_refs_rsv, | 
| 2839 | 			     type: BTRFS_BLOCK_RSV_DELREFS); | 
| 2840 |  | 
| 2841 | 	atomic_set(v: &fs_info->async_delalloc_pages, i: 0); | 
| 2842 | 	atomic_set(v: &fs_info->defrag_running, i: 0); | 
| 2843 | 	atomic_set(v: &fs_info->nr_delayed_iputs, i: 0); | 
| 2844 | 	atomic64_set(v: &fs_info->tree_mod_seq, i: 0); | 
| 2845 | 	fs_info->global_root_tree = RB_ROOT; | 
| 2846 | 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; | 
| 2847 | 	fs_info->metadata_ratio = 0; | 
| 2848 | 	fs_info->defrag_inodes = RB_ROOT; | 
| 2849 | 	atomic64_set(v: &fs_info->free_chunk_space, i: 0); | 
| 2850 | 	fs_info->tree_mod_log = RB_ROOT; | 
| 2851 | 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; | 
| 2852 | 	btrfs_init_ref_verify(fs_info); | 
| 2853 |  | 
| 2854 | 	fs_info->thread_pool_size = min_t(unsigned long, | 
| 2855 | 					  num_online_cpus() + 2, 8); | 
| 2856 |  | 
| 2857 | 	INIT_LIST_HEAD(list: &fs_info->ordered_roots); | 
| 2858 | 	spin_lock_init(&fs_info->ordered_root_lock); | 
| 2859 |  | 
| 2860 | 	btrfs_init_scrub(fs_info); | 
| 2861 | 	btrfs_init_balance(fs_info); | 
| 2862 | 	btrfs_init_async_reclaim_work(fs_info); | 
| 2863 | 	btrfs_init_extent_map_shrinker_work(fs_info); | 
| 2864 |  | 
| 2865 | 	rwlock_init(&fs_info->block_group_cache_lock); | 
| 2866 | 	fs_info->block_group_cache_tree = RB_ROOT_CACHED; | 
| 2867 |  | 
| 2868 | 	btrfs_extent_io_tree_init(fs_info, tree: &fs_info->excluded_extents, | 
| 2869 | 				  owner: IO_TREE_FS_EXCLUDED_EXTENTS); | 
| 2870 |  | 
| 2871 | 	mutex_init(&fs_info->ordered_operations_mutex); | 
| 2872 | 	mutex_init(&fs_info->tree_log_mutex); | 
| 2873 | 	mutex_init(&fs_info->chunk_mutex); | 
| 2874 | 	mutex_init(&fs_info->transaction_kthread_mutex); | 
| 2875 | 	mutex_init(&fs_info->cleaner_mutex); | 
| 2876 | 	mutex_init(&fs_info->ro_block_group_mutex); | 
| 2877 | 	init_rwsem(&fs_info->commit_root_sem); | 
| 2878 | 	init_rwsem(&fs_info->cleanup_work_sem); | 
| 2879 | 	init_rwsem(&fs_info->subvol_sem); | 
| 2880 | 	sema_init(sem: &fs_info->uuid_tree_rescan_sem, val: 1); | 
| 2881 |  | 
| 2882 | 	btrfs_init_dev_replace_locks(fs_info); | 
| 2883 | 	btrfs_init_qgroup(fs_info); | 
| 2884 | 	btrfs_discard_init(fs_info); | 
| 2885 |  | 
| 2886 | 	btrfs_init_free_cluster(cluster: &fs_info->meta_alloc_cluster); | 
| 2887 | 	btrfs_init_free_cluster(cluster: &fs_info->data_alloc_cluster); | 
| 2888 |  | 
| 2889 | 	init_waitqueue_head(&fs_info->transaction_throttle); | 
| 2890 | 	init_waitqueue_head(&fs_info->transaction_wait); | 
| 2891 | 	init_waitqueue_head(&fs_info->transaction_blocked_wait); | 
| 2892 | 	init_waitqueue_head(&fs_info->async_submit_wait); | 
| 2893 | 	init_waitqueue_head(&fs_info->delayed_iputs_wait); | 
| 2894 |  | 
| 2895 | 	/* Usable values until the real ones are cached from the superblock */ | 
| 2896 | 	fs_info->nodesize = 4096; | 
| 2897 | 	fs_info->sectorsize = 4096; | 
| 2898 | 	fs_info->sectorsize_bits = ilog2(4096); | 
| 2899 | 	fs_info->stripesize = 4096; | 
| 2900 |  | 
| 2901 | 	/* Default compress algorithm when user does -o compress */ | 
| 2902 | 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB; | 
| 2903 |  | 
| 2904 | 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; | 
| 2905 |  | 
| 2906 | 	spin_lock_init(&fs_info->swapfile_pins_lock); | 
| 2907 | 	fs_info->swapfile_pins = RB_ROOT; | 
| 2908 |  | 
| 2909 | 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; | 
| 2910 | 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); | 
| 2911 | } | 
| 2912 |  | 
| 2913 | static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) | 
| 2914 | { | 
| 2915 | 	int ret; | 
| 2916 |  | 
| 2917 | 	fs_info->sb = sb; | 
| 2918 | 	/* Temporary fixed values for block size until we read the superblock. */ | 
| 2919 | 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; | 
| 2920 | 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); | 
| 2921 |  | 
| 2922 | 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); | 
| 2923 | 	if (ret) | 
| 2924 | 		return ret; | 
| 2925 |  | 
| 2926 | 	ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); | 
| 2927 | 	if (ret) | 
| 2928 | 		return ret; | 
| 2929 |  | 
| 2930 | 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); | 
| 2931 | 	if (ret) | 
| 2932 | 		return ret; | 
| 2933 |  | 
| 2934 | 	ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL); | 
| 2935 | 	if (ret) | 
| 2936 | 		return ret; | 
| 2937 |  | 
| 2938 | 	fs_info->dirty_metadata_batch = PAGE_SIZE * | 
| 2939 | 					(1 + ilog2(nr_cpu_ids)); | 
| 2940 |  | 
| 2941 | 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); | 
| 2942 | 	if (ret) | 
| 2943 | 		return ret; | 
| 2944 |  | 
| 2945 | 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, | 
| 2946 | 			GFP_KERNEL); | 
| 2947 | 	if (ret) | 
| 2948 | 		return ret; | 
| 2949 |  | 
| 2950 | 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), | 
| 2951 | 					GFP_KERNEL); | 
| 2952 | 	if (!fs_info->delayed_root) | 
| 2953 | 		return -ENOMEM; | 
| 2954 | 	btrfs_init_delayed_root(delayed_root: fs_info->delayed_root); | 
| 2955 |  | 
| 2956 | 	if (sb_rdonly(sb)) | 
| 2957 | 		set_bit(nr: BTRFS_FS_STATE_RO, addr: &fs_info->fs_state); | 
| 2958 | 	if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) | 
| 2959 | 		set_bit(nr: BTRFS_FS_STATE_SKIP_META_CSUMS, addr: &fs_info->fs_state); | 
| 2960 |  | 
| 2961 | 	return btrfs_alloc_stripe_hash_table(info: fs_info); | 
| 2962 | } | 
| 2963 |  | 
| 2964 | static int btrfs_uuid_rescan_kthread(void *data) | 
| 2965 | { | 
| 2966 | 	struct btrfs_fs_info *fs_info = data; | 
| 2967 | 	int ret; | 
| 2968 |  | 
| 2969 | 	/* | 
| 2970 | 	 * 1st step is to iterate through the existing UUID tree and | 
| 2971 | 	 * to delete all entries that contain outdated data. | 
| 2972 | 	 * 2nd step is to add all missing entries to the UUID tree. | 
| 2973 | 	 */ | 
| 2974 | 	ret = btrfs_uuid_tree_iterate(fs_info); | 
| 2975 | 	if (ret < 0) { | 
| 2976 | 		if (ret != -EINTR) | 
| 2977 | 			btrfs_warn(fs_info, "iterating uuid_tree failed %d" , | 
| 2978 | 				   ret); | 
| 2979 | 		up(sem: &fs_info->uuid_tree_rescan_sem); | 
| 2980 | 		return ret; | 
| 2981 | 	} | 
| 2982 | 	return btrfs_uuid_scan_kthread(data); | 
| 2983 | } | 
| 2984 |  | 
| 2985 | static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) | 
| 2986 | { | 
| 2987 | 	struct task_struct *task; | 
| 2988 |  | 
| 2989 | 	down(sem: &fs_info->uuid_tree_rescan_sem); | 
| 2990 | 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid" ); | 
| 2991 | 	if (IS_ERR(ptr: task)) { | 
| 2992 | 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */ | 
| 2993 | 		btrfs_warn(fs_info, "failed to start uuid_rescan task" ); | 
| 2994 | 		up(sem: &fs_info->uuid_tree_rescan_sem); | 
| 2995 | 		return PTR_ERR(ptr: task); | 
| 2996 | 	} | 
| 2997 |  | 
| 2998 | 	return 0; | 
| 2999 | } | 
| 3000 |  | 
| 3001 | static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) | 
| 3002 | { | 
| 3003 | 	u64 root_objectid = 0; | 
| 3004 | 	struct btrfs_root *gang[8]; | 
| 3005 | 	int ret = 0; | 
| 3006 |  | 
| 3007 | 	while (1) { | 
| 3008 | 		unsigned int found; | 
| 3009 |  | 
| 3010 | 		spin_lock(lock: &fs_info->fs_roots_radix_lock); | 
| 3011 | 		found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
| 3012 | 					     results: (void **)gang, first_index: root_objectid, | 
| 3013 | 					     ARRAY_SIZE(gang)); | 
| 3014 | 		if (!found) { | 
| 3015 | 			spin_unlock(lock: &fs_info->fs_roots_radix_lock); | 
| 3016 | 			break; | 
| 3017 | 		} | 
| 3018 | 		root_objectid = btrfs_root_id(root: gang[found - 1]) + 1; | 
| 3019 |  | 
| 3020 | 		for (int i = 0; i < found; i++) { | 
| 3021 | 			/* Avoid to grab roots in dead_roots. */ | 
| 3022 | 			if (btrfs_root_refs(s: &gang[i]->root_item) == 0) { | 
| 3023 | 				gang[i] = NULL; | 
| 3024 | 				continue; | 
| 3025 | 			} | 
| 3026 | 			/* Grab all the search result for later use. */ | 
| 3027 | 			gang[i] = btrfs_grab_root(root: gang[i]); | 
| 3028 | 		} | 
| 3029 | 		spin_unlock(lock: &fs_info->fs_roots_radix_lock); | 
| 3030 |  | 
| 3031 | 		for (int i = 0; i < found; i++) { | 
| 3032 | 			if (!gang[i]) | 
| 3033 | 				continue; | 
| 3034 | 			root_objectid = btrfs_root_id(root: gang[i]); | 
| 3035 | 			/* | 
| 3036 | 			 * Continue to release the remaining roots after the first | 
| 3037 | 			 * error without cleanup and preserve the first error | 
| 3038 | 			 * for the return. | 
| 3039 | 			 */ | 
| 3040 | 			if (!ret) | 
| 3041 | 				ret = btrfs_orphan_cleanup(root: gang[i]); | 
| 3042 | 			btrfs_put_root(root: gang[i]); | 
| 3043 | 		} | 
| 3044 | 		if (ret) | 
| 3045 | 			break; | 
| 3046 |  | 
| 3047 | 		root_objectid++; | 
| 3048 | 	} | 
| 3049 | 	return ret; | 
| 3050 | } | 
| 3051 |  | 
| 3052 | /* | 
| 3053 |  * Mounting logic specific to read-write file systems. Shared by open_ctree | 
| 3054 |  * and btrfs_remount when remounting from read-only to read-write. | 
| 3055 |  */ | 
| 3056 | int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) | 
| 3057 | { | 
| 3058 | 	int ret; | 
| 3059 | 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); | 
| 3060 | 	bool rebuild_free_space_tree = false; | 
| 3061 |  | 
| 3062 | 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) && | 
| 3063 | 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { | 
| 3064 | 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) | 
| 3065 | 			btrfs_warn(fs_info, | 
| 3066 | 				   "'clear_cache' option is ignored with extent tree v2" ); | 
| 3067 | 		else | 
| 3068 | 			rebuild_free_space_tree = true; | 
| 3069 | 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && | 
| 3070 | 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { | 
| 3071 | 		btrfs_warn(fs_info, "free space tree is invalid" ); | 
| 3072 | 		rebuild_free_space_tree = true; | 
| 3073 | 	} | 
| 3074 |  | 
| 3075 | 	if (rebuild_free_space_tree) { | 
| 3076 | 		btrfs_info(fs_info, "rebuilding free space tree" ); | 
| 3077 | 		ret = btrfs_rebuild_free_space_tree(fs_info); | 
| 3078 | 		if (ret) { | 
| 3079 | 			btrfs_warn(fs_info, | 
| 3080 | 				   "failed to rebuild free space tree: %d" , ret); | 
| 3081 | 			goto out; | 
| 3082 | 		} | 
| 3083 | 	} | 
| 3084 |  | 
| 3085 | 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && | 
| 3086 | 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { | 
| 3087 | 		btrfs_info(fs_info, "disabling free space tree" ); | 
| 3088 | 		ret = btrfs_delete_free_space_tree(fs_info); | 
| 3089 | 		if (ret) { | 
| 3090 | 			btrfs_warn(fs_info, | 
| 3091 | 				   "failed to disable free space tree: %d" , ret); | 
| 3092 | 			goto out; | 
| 3093 | 		} | 
| 3094 | 	} | 
| 3095 |  | 
| 3096 | 	/* | 
| 3097 | 	 * btrfs_find_orphan_roots() is responsible for finding all the dead | 
| 3098 | 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load | 
| 3099 | 	 * them into the fs_info->fs_roots_radix tree. This must be done before | 
| 3100 | 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it | 
| 3101 | 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan | 
| 3102 | 	 * item before the root's tree is deleted - this means that if we unmount | 
| 3103 | 	 * or crash before the deletion completes, on the next mount we will not | 
| 3104 | 	 * delete what remains of the tree because the orphan item does not | 
| 3105 | 	 * exists anymore, which is what tells us we have a pending deletion. | 
| 3106 | 	 */ | 
| 3107 | 	ret = btrfs_find_orphan_roots(fs_info); | 
| 3108 | 	if (ret) | 
| 3109 | 		goto out; | 
| 3110 |  | 
| 3111 | 	ret = btrfs_cleanup_fs_roots(fs_info); | 
| 3112 | 	if (ret) | 
| 3113 | 		goto out; | 
| 3114 |  | 
| 3115 | 	down_read(sem: &fs_info->cleanup_work_sem); | 
| 3116 | 	if ((ret = btrfs_orphan_cleanup(root: fs_info->fs_root)) || | 
| 3117 | 	    (ret = btrfs_orphan_cleanup(root: fs_info->tree_root))) { | 
| 3118 | 		up_read(sem: &fs_info->cleanup_work_sem); | 
| 3119 | 		goto out; | 
| 3120 | 	} | 
| 3121 | 	up_read(sem: &fs_info->cleanup_work_sem); | 
| 3122 |  | 
| 3123 | 	mutex_lock(&fs_info->cleaner_mutex); | 
| 3124 | 	ret = btrfs_recover_relocation(fs_info); | 
| 3125 | 	mutex_unlock(lock: &fs_info->cleaner_mutex); | 
| 3126 | 	if (ret < 0) { | 
| 3127 | 		btrfs_warn(fs_info, "failed to recover relocation: %d" , ret); | 
| 3128 | 		goto out; | 
| 3129 | 	} | 
| 3130 |  | 
| 3131 | 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && | 
| 3132 | 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { | 
| 3133 | 		btrfs_info(fs_info, "creating free space tree" ); | 
| 3134 | 		ret = btrfs_create_free_space_tree(fs_info); | 
| 3135 | 		if (ret) { | 
| 3136 | 			btrfs_warn(fs_info, | 
| 3137 | 				"failed to create free space tree: %d" , ret); | 
| 3138 | 			goto out; | 
| 3139 | 		} | 
| 3140 | 	} | 
| 3141 |  | 
| 3142 | 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { | 
| 3143 | 		ret = btrfs_set_free_space_cache_v1_active(fs_info, active: cache_opt); | 
| 3144 | 		if (ret) | 
| 3145 | 			goto out; | 
| 3146 | 	} | 
| 3147 |  | 
| 3148 | 	ret = btrfs_resume_balance_async(fs_info); | 
| 3149 | 	if (ret) | 
| 3150 | 		goto out; | 
| 3151 |  | 
| 3152 | 	ret = btrfs_resume_dev_replace_async(fs_info); | 
| 3153 | 	if (ret) { | 
| 3154 | 		btrfs_warn(fs_info, "failed to resume dev_replace" ); | 
| 3155 | 		goto out; | 
| 3156 | 	} | 
| 3157 |  | 
| 3158 | 	btrfs_qgroup_rescan_resume(fs_info); | 
| 3159 |  | 
| 3160 | 	if (!fs_info->uuid_root) { | 
| 3161 | 		btrfs_info(fs_info, "creating UUID tree" ); | 
| 3162 | 		ret = btrfs_create_uuid_tree(fs_info); | 
| 3163 | 		if (ret) { | 
| 3164 | 			btrfs_warn(fs_info, | 
| 3165 | 				   "failed to create the UUID tree %d" , ret); | 
| 3166 | 			goto out; | 
| 3167 | 		} | 
| 3168 | 	} | 
| 3169 |  | 
| 3170 | out: | 
| 3171 | 	return ret; | 
| 3172 | } | 
| 3173 |  | 
| 3174 | /* | 
| 3175 |  * Do various sanity and dependency checks of different features. | 
| 3176 |  * | 
| 3177 |  * @is_rw_mount:	If the mount is read-write. | 
| 3178 |  * | 
| 3179 |  * This is the place for less strict checks (like for subpage or artificial | 
| 3180 |  * feature dependencies). | 
| 3181 |  * | 
| 3182 |  * For strict checks or possible corruption detection, see | 
| 3183 |  * btrfs_validate_super(). | 
| 3184 |  * | 
| 3185 |  * This should be called after btrfs_parse_options(), as some mount options | 
| 3186 |  * (space cache related) can modify on-disk format like free space tree and | 
| 3187 |  * screw up certain feature dependencies. | 
| 3188 |  */ | 
| 3189 | int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) | 
| 3190 | { | 
| 3191 | 	struct btrfs_super_block *disk_super = fs_info->super_copy; | 
| 3192 | 	u64 incompat = btrfs_super_incompat_flags(s: disk_super); | 
| 3193 | 	const u64 compat_ro = btrfs_super_compat_ro_flags(s: disk_super); | 
| 3194 | 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); | 
| 3195 |  | 
| 3196 | 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { | 
| 3197 | 		btrfs_err(fs_info, | 
| 3198 | 		"cannot mount because of unknown incompat features (0x%llx)" , | 
| 3199 | 		    incompat); | 
| 3200 | 		return -EINVAL; | 
| 3201 | 	} | 
| 3202 |  | 
| 3203 | 	/* Runtime limitation for mixed block groups. */ | 
| 3204 | 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && | 
| 3205 | 	    (fs_info->sectorsize != fs_info->nodesize)) { | 
| 3206 | 		btrfs_err(fs_info, | 
| 3207 | "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups" , | 
| 3208 | 			fs_info->nodesize, fs_info->sectorsize); | 
| 3209 | 		return -EINVAL; | 
| 3210 | 	} | 
| 3211 |  | 
| 3212 | 	/* Mixed backref is an always-enabled feature. */ | 
| 3213 | 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; | 
| 3214 |  | 
| 3215 | 	/* Set compression related flags just in case. */ | 
| 3216 | 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO) | 
| 3217 | 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; | 
| 3218 | 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) | 
| 3219 | 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; | 
| 3220 |  | 
| 3221 | 	/* | 
| 3222 | 	 * An ancient flag, which should really be marked deprecated. | 
| 3223 | 	 * Such runtime limitation doesn't really need a incompat flag. | 
| 3224 | 	 */ | 
| 3225 | 	if (btrfs_super_nodesize(s: disk_super) > PAGE_SIZE) | 
| 3226 | 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; | 
| 3227 |  | 
| 3228 | 	if (compat_ro_unsupp && is_rw_mount) { | 
| 3229 | 		btrfs_err(fs_info, | 
| 3230 | 	"cannot mount read-write because of unknown compat_ro features (0x%llx)" , | 
| 3231 | 		       compat_ro); | 
| 3232 | 		return -EINVAL; | 
| 3233 | 	} | 
| 3234 |  | 
| 3235 | 	/* | 
| 3236 | 	 * We have unsupported RO compat features, although RO mounted, we | 
| 3237 | 	 * should not cause any metadata writes, including log replay. | 
| 3238 | 	 * Or we could screw up whatever the new feature requires. | 
| 3239 | 	 */ | 
| 3240 | 	if (compat_ro_unsupp && btrfs_super_log_root(s: disk_super) && | 
| 3241 | 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) { | 
| 3242 | 		btrfs_err(fs_info, | 
| 3243 | "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay" , | 
| 3244 | 			  compat_ro); | 
| 3245 | 		return -EINVAL; | 
| 3246 | 	} | 
| 3247 |  | 
| 3248 | 	/* | 
| 3249 | 	 * Artificial limitations for block group tree, to force | 
| 3250 | 	 * block-group-tree to rely on no-holes and free-space-tree. | 
| 3251 | 	 */ | 
| 3252 | 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && | 
| 3253 | 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) || | 
| 3254 | 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { | 
| 3255 | 		btrfs_err(fs_info, | 
| 3256 | "block-group-tree feature requires no-holes and free-space-tree features" ); | 
| 3257 | 		return -EINVAL; | 
| 3258 | 	} | 
| 3259 |  | 
| 3260 | 	/* | 
| 3261 | 	 * Subpage runtime limitation on v1 cache. | 
| 3262 | 	 * | 
| 3263 | 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while | 
| 3264 | 	 * we're already defaulting to v2 cache, no need to bother v1 as it's | 
| 3265 | 	 * going to be deprecated anyway. | 
| 3266 | 	 */ | 
| 3267 | 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { | 
| 3268 | 		btrfs_warn(fs_info, | 
| 3269 | 	"v1 space cache is not supported for page size %lu with sectorsize %u" , | 
| 3270 | 			   PAGE_SIZE, fs_info->sectorsize); | 
| 3271 | 		return -EINVAL; | 
| 3272 | 	} | 
| 3273 |  | 
| 3274 | 	/* This can be called by remount, we need to protect the super block. */ | 
| 3275 | 	spin_lock(lock: &fs_info->super_lock); | 
| 3276 | 	btrfs_set_super_incompat_flags(s: disk_super, val: incompat); | 
| 3277 | 	spin_unlock(lock: &fs_info->super_lock); | 
| 3278 |  | 
| 3279 | 	return 0; | 
| 3280 | } | 
| 3281 |  | 
| 3282 | int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices) | 
| 3283 | { | 
| 3284 | 	u32 sectorsize; | 
| 3285 | 	u32 nodesize; | 
| 3286 | 	u32 stripesize; | 
| 3287 | 	u64 generation; | 
| 3288 | 	u16 csum_type; | 
| 3289 | 	struct btrfs_super_block *disk_super; | 
| 3290 | 	struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
| 3291 | 	struct btrfs_root *tree_root; | 
| 3292 | 	struct btrfs_root *chunk_root; | 
| 3293 | 	int ret; | 
| 3294 | 	int level; | 
| 3295 |  | 
| 3296 | 	ret = init_mount_fs_info(fs_info, sb); | 
| 3297 | 	if (ret) | 
| 3298 | 		goto fail; | 
| 3299 |  | 
| 3300 | 	/* These need to be init'ed before we start creating inodes and such. */ | 
| 3301 | 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, | 
| 3302 | 				     GFP_KERNEL); | 
| 3303 | 	fs_info->tree_root = tree_root; | 
| 3304 | 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, | 
| 3305 | 				      GFP_KERNEL); | 
| 3306 | 	fs_info->chunk_root = chunk_root; | 
| 3307 | 	if (!tree_root || !chunk_root) { | 
| 3308 | 		ret = -ENOMEM; | 
| 3309 | 		goto fail; | 
| 3310 | 	} | 
| 3311 |  | 
| 3312 | 	ret = btrfs_init_btree_inode(sb); | 
| 3313 | 	if (ret) | 
| 3314 | 		goto fail; | 
| 3315 |  | 
| 3316 | 	invalidate_bdev(bdev: fs_devices->latest_dev->bdev); | 
| 3317 |  | 
| 3318 | 	/* | 
| 3319 | 	 * Read super block and check the signature bytes only | 
| 3320 | 	 */ | 
| 3321 | 	disk_super = btrfs_read_disk_super(bdev: fs_devices->latest_dev->bdev, copy_num: 0, drop_cache: false); | 
| 3322 | 	if (IS_ERR(ptr: disk_super)) { | 
| 3323 | 		ret = PTR_ERR(ptr: disk_super); | 
| 3324 | 		goto fail_alloc; | 
| 3325 | 	} | 
| 3326 |  | 
| 3327 | 	btrfs_info(fs_info, "first mount of filesystem %pU" , disk_super->fsid); | 
| 3328 | 	/* | 
| 3329 | 	 * Verify the type first, if that or the checksum value are | 
| 3330 | 	 * corrupted, we'll find out | 
| 3331 | 	 */ | 
| 3332 | 	csum_type = btrfs_super_csum_type(s: disk_super); | 
| 3333 | 	if (!btrfs_supported_super_csum(csum_type)) { | 
| 3334 | 		btrfs_err(fs_info, "unsupported checksum algorithm: %u" , | 
| 3335 | 			  csum_type); | 
| 3336 | 		ret = -EINVAL; | 
| 3337 | 		btrfs_release_disk_super(super: disk_super); | 
| 3338 | 		goto fail_alloc; | 
| 3339 | 	} | 
| 3340 |  | 
| 3341 | 	fs_info->csum_size = btrfs_super_csum_size(s: disk_super); | 
| 3342 |  | 
| 3343 | 	ret = btrfs_init_csum_hash(fs_info, csum_type); | 
| 3344 | 	if (ret) { | 
| 3345 | 		btrfs_release_disk_super(super: disk_super); | 
| 3346 | 		goto fail_alloc; | 
| 3347 | 	} | 
| 3348 |  | 
| 3349 | 	/* | 
| 3350 | 	 * We want to check superblock checksum, the type is stored inside. | 
| 3351 | 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). | 
| 3352 | 	 */ | 
| 3353 | 	if (btrfs_check_super_csum(fs_info, disk_sb: disk_super)) { | 
| 3354 | 		btrfs_err(fs_info, "superblock checksum mismatch" ); | 
| 3355 | 		ret = -EINVAL; | 
| 3356 | 		btrfs_release_disk_super(super: disk_super); | 
| 3357 | 		goto fail_alloc; | 
| 3358 | 	} | 
| 3359 |  | 
| 3360 | 	/* | 
| 3361 | 	 * super_copy is zeroed at allocation time and we never touch the | 
| 3362 | 	 * following bytes up to INFO_SIZE, the checksum is calculated from | 
| 3363 | 	 * the whole block of INFO_SIZE | 
| 3364 | 	 */ | 
| 3365 | 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); | 
| 3366 | 	btrfs_release_disk_super(super: disk_super); | 
| 3367 |  | 
| 3368 | 	disk_super = fs_info->super_copy; | 
| 3369 |  | 
| 3370 | 	memcpy(fs_info->super_for_commit, fs_info->super_copy, | 
| 3371 | 	       sizeof(*fs_info->super_for_commit)); | 
| 3372 |  | 
| 3373 | 	ret = btrfs_validate_mount_super(fs_info); | 
| 3374 | 	if (ret) { | 
| 3375 | 		btrfs_err(fs_info, "superblock contains fatal errors" ); | 
| 3376 | 		ret = -EINVAL; | 
| 3377 | 		goto fail_alloc; | 
| 3378 | 	} | 
| 3379 |  | 
| 3380 | 	if (!btrfs_super_root(s: disk_super)) { | 
| 3381 | 		btrfs_err(fs_info, "invalid superblock tree root bytenr" ); | 
| 3382 | 		ret = -EINVAL; | 
| 3383 | 		goto fail_alloc; | 
| 3384 | 	} | 
| 3385 |  | 
| 3386 | 	/* check FS state, whether FS is broken. */ | 
| 3387 | 	if (btrfs_super_flags(s: disk_super) & BTRFS_SUPER_FLAG_ERROR) | 
| 3388 | 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN); | 
| 3389 |  | 
| 3390 | 	/* Set up fs_info before parsing mount options */ | 
| 3391 | 	nodesize = btrfs_super_nodesize(s: disk_super); | 
| 3392 | 	sectorsize = btrfs_super_sectorsize(s: disk_super); | 
| 3393 | 	stripesize = sectorsize; | 
| 3394 | 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); | 
| 3395 | 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); | 
| 3396 |  | 
| 3397 | 	fs_info->nodesize = nodesize; | 
| 3398 | 	fs_info->sectorsize = sectorsize; | 
| 3399 | 	fs_info->sectorsize_bits = ilog2(sectorsize); | 
| 3400 | 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(info: fs_info) / fs_info->csum_size; | 
| 3401 | 	fs_info->stripesize = stripesize; | 
| 3402 | 	fs_info->fs_devices->fs_info = fs_info; | 
| 3403 |  | 
| 3404 | 	/* | 
| 3405 | 	 * Handle the space caching options appropriately now that we have the | 
| 3406 | 	 * super block loaded and validated. | 
| 3407 | 	 */ | 
| 3408 | 	btrfs_set_free_space_cache_settings(fs_info); | 
| 3409 |  | 
| 3410 | 	if (!btrfs_check_options(info: fs_info, mount_opt: &fs_info->mount_opt, flags: sb->s_flags)) { | 
| 3411 | 		ret = -EINVAL; | 
| 3412 | 		goto fail_alloc; | 
| 3413 | 	} | 
| 3414 |  | 
| 3415 | 	ret = btrfs_check_features(fs_info, is_rw_mount: !sb_rdonly(sb)); | 
| 3416 | 	if (ret < 0) | 
| 3417 | 		goto fail_alloc; | 
| 3418 |  | 
| 3419 | 	/* | 
| 3420 | 	 * At this point our mount options are validated, if we set ->max_inline | 
| 3421 | 	 * to something non-standard make sure we truncate it to sectorsize. | 
| 3422 | 	 */ | 
| 3423 | 	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); | 
| 3424 |  | 
| 3425 | 	ret = btrfs_init_workqueues(fs_info); | 
| 3426 | 	if (ret) | 
| 3427 | 		goto fail_sb_buffer; | 
| 3428 |  | 
| 3429 | 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(s: disk_super); | 
| 3430 | 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); | 
| 3431 |  | 
| 3432 | 	/* Update the values for the current filesystem. */ | 
| 3433 | 	sb->s_blocksize = sectorsize; | 
| 3434 | 	sb->s_blocksize_bits = blksize_bits(size: sectorsize); | 
| 3435 | 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); | 
| 3436 |  | 
| 3437 | 	mutex_lock(&fs_info->chunk_mutex); | 
| 3438 | 	ret = btrfs_read_sys_array(fs_info); | 
| 3439 | 	mutex_unlock(lock: &fs_info->chunk_mutex); | 
| 3440 | 	if (ret) { | 
| 3441 | 		btrfs_err(fs_info, "failed to read the system array: %d" , ret); | 
| 3442 | 		goto fail_sb_buffer; | 
| 3443 | 	} | 
| 3444 |  | 
| 3445 | 	generation = btrfs_super_chunk_root_generation(s: disk_super); | 
| 3446 | 	level = btrfs_super_chunk_root_level(s: disk_super); | 
| 3447 | 	ret = load_super_root(root: chunk_root, bytenr: btrfs_super_chunk_root(s: disk_super), | 
| 3448 | 			      gen: generation, level); | 
| 3449 | 	if (ret) { | 
| 3450 | 		btrfs_err(fs_info, "failed to read chunk root" ); | 
| 3451 | 		goto fail_tree_roots; | 
| 3452 | 	} | 
| 3453 |  | 
| 3454 | 	read_extent_buffer(eb: chunk_root->node, dst: fs_info->chunk_tree_uuid, | 
| 3455 | 			   offsetof(struct btrfs_header, chunk_tree_uuid), | 
| 3456 | 			   BTRFS_UUID_SIZE); | 
| 3457 |  | 
| 3458 | 	ret = btrfs_read_chunk_tree(fs_info); | 
| 3459 | 	if (ret) { | 
| 3460 | 		btrfs_err(fs_info, "failed to read chunk tree: %d" , ret); | 
| 3461 | 		goto fail_tree_roots; | 
| 3462 | 	} | 
| 3463 |  | 
| 3464 | 	/* | 
| 3465 | 	 * At this point we know all the devices that make this filesystem, | 
| 3466 | 	 * including the seed devices but we don't know yet if the replace | 
| 3467 | 	 * target is required. So free devices that are not part of this | 
| 3468 | 	 * filesystem but skip the replace target device which is checked | 
| 3469 | 	 * below in btrfs_init_dev_replace(). | 
| 3470 | 	 */ | 
| 3471 | 	btrfs_free_extra_devids(fs_devices); | 
| 3472 | 	if (!fs_devices->latest_dev->bdev) { | 
| 3473 | 		btrfs_err(fs_info, "failed to read devices" ); | 
| 3474 | 		ret = -EIO; | 
| 3475 | 		goto fail_tree_roots; | 
| 3476 | 	} | 
| 3477 |  | 
| 3478 | 	ret = init_tree_roots(fs_info); | 
| 3479 | 	if (ret) | 
| 3480 | 		goto fail_tree_roots; | 
| 3481 |  | 
| 3482 | 	/* | 
| 3483 | 	 * Get zone type information of zoned block devices. This will also | 
| 3484 | 	 * handle emulation of a zoned filesystem if a regular device has the | 
| 3485 | 	 * zoned incompat feature flag set. | 
| 3486 | 	 */ | 
| 3487 | 	ret = btrfs_get_dev_zone_info_all_devices(fs_info); | 
| 3488 | 	if (ret) { | 
| 3489 | 		btrfs_err(fs_info, | 
| 3490 | 			  "zoned: failed to read device zone info: %d" , ret); | 
| 3491 | 		goto fail_block_groups; | 
| 3492 | 	} | 
| 3493 |  | 
| 3494 | 	/* | 
| 3495 | 	 * If we have a uuid root and we're not being told to rescan we need to | 
| 3496 | 	 * check the generation here so we can set the | 
| 3497 | 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the | 
| 3498 | 	 * transaction during a balance or the log replay without updating the | 
| 3499 | 	 * uuid generation, and then if we crash we would rescan the uuid tree, | 
| 3500 | 	 * even though it was perfectly fine. | 
| 3501 | 	 */ | 
| 3502 | 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && | 
| 3503 | 	    fs_info->generation == btrfs_super_uuid_tree_generation(s: disk_super)) | 
| 3504 | 		set_bit(nr: BTRFS_FS_UPDATE_UUID_TREE_GEN, addr: &fs_info->flags); | 
| 3505 |  | 
| 3506 | 	ret = btrfs_verify_dev_extents(fs_info); | 
| 3507 | 	if (ret) { | 
| 3508 | 		btrfs_err(fs_info, | 
| 3509 | 			  "failed to verify dev extents against chunks: %d" , | 
| 3510 | 			  ret); | 
| 3511 | 		goto fail_block_groups; | 
| 3512 | 	} | 
| 3513 | 	ret = btrfs_recover_balance(fs_info); | 
| 3514 | 	if (ret) { | 
| 3515 | 		btrfs_err(fs_info, "failed to recover balance: %d" , ret); | 
| 3516 | 		goto fail_block_groups; | 
| 3517 | 	} | 
| 3518 |  | 
| 3519 | 	ret = btrfs_init_dev_stats(fs_info); | 
| 3520 | 	if (ret) { | 
| 3521 | 		btrfs_err(fs_info, "failed to init dev_stats: %d" , ret); | 
| 3522 | 		goto fail_block_groups; | 
| 3523 | 	} | 
| 3524 |  | 
| 3525 | 	ret = btrfs_init_dev_replace(fs_info); | 
| 3526 | 	if (ret) { | 
| 3527 | 		btrfs_err(fs_info, "failed to init dev_replace: %d" , ret); | 
| 3528 | 		goto fail_block_groups; | 
| 3529 | 	} | 
| 3530 |  | 
| 3531 | 	ret = btrfs_check_zoned_mode(fs_info); | 
| 3532 | 	if (ret) { | 
| 3533 | 		btrfs_err(fs_info, "failed to initialize zoned mode: %d" , | 
| 3534 | 			  ret); | 
| 3535 | 		goto fail_block_groups; | 
| 3536 | 	} | 
| 3537 |  | 
| 3538 | 	ret = btrfs_sysfs_add_fsid(fs_devs: fs_devices); | 
| 3539 | 	if (ret) { | 
| 3540 | 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d" , | 
| 3541 | 				ret); | 
| 3542 | 		goto fail_block_groups; | 
| 3543 | 	} | 
| 3544 |  | 
| 3545 | 	ret = btrfs_sysfs_add_mounted(fs_info); | 
| 3546 | 	if (ret) { | 
| 3547 | 		btrfs_err(fs_info, "failed to init sysfs interface: %d" , ret); | 
| 3548 | 		goto fail_fsdev_sysfs; | 
| 3549 | 	} | 
| 3550 |  | 
| 3551 | 	ret = btrfs_init_space_info(fs_info); | 
| 3552 | 	if (ret) { | 
| 3553 | 		btrfs_err(fs_info, "failed to initialize space info: %d" , ret); | 
| 3554 | 		goto fail_sysfs; | 
| 3555 | 	} | 
| 3556 |  | 
| 3557 | 	ret = btrfs_read_block_groups(info: fs_info); | 
| 3558 | 	if (ret) { | 
| 3559 | 		btrfs_err(fs_info, "failed to read block groups: %d" , ret); | 
| 3560 | 		goto fail_sysfs; | 
| 3561 | 	} | 
| 3562 |  | 
| 3563 | 	btrfs_free_zone_cache(fs_info); | 
| 3564 |  | 
| 3565 | 	btrfs_check_active_zone_reservation(fs_info); | 
| 3566 |  | 
| 3567 | 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && | 
| 3568 | 	    !btrfs_check_rw_degradable(fs_info, NULL)) { | 
| 3569 | 		btrfs_warn(fs_info, | 
| 3570 | 		"writable mount is not allowed due to too many missing devices" ); | 
| 3571 | 		ret = -EINVAL; | 
| 3572 | 		goto fail_sysfs; | 
| 3573 | 	} | 
| 3574 |  | 
| 3575 | 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, | 
| 3576 | 					       "btrfs-cleaner" ); | 
| 3577 | 	if (IS_ERR(ptr: fs_info->cleaner_kthread)) { | 
| 3578 | 		ret = PTR_ERR(ptr: fs_info->cleaner_kthread); | 
| 3579 | 		goto fail_sysfs; | 
| 3580 | 	} | 
| 3581 |  | 
| 3582 | 	fs_info->transaction_kthread = kthread_run(transaction_kthread, | 
| 3583 | 						   tree_root, | 
| 3584 | 						   "btrfs-transaction" ); | 
| 3585 | 	if (IS_ERR(ptr: fs_info->transaction_kthread)) { | 
| 3586 | 		ret = PTR_ERR(ptr: fs_info->transaction_kthread); | 
| 3587 | 		goto fail_cleaner; | 
| 3588 | 	} | 
| 3589 |  | 
| 3590 | 	ret = btrfs_read_qgroup_config(fs_info); | 
| 3591 | 	if (ret) | 
| 3592 | 		goto fail_trans_kthread; | 
| 3593 |  | 
| 3594 | 	if (btrfs_build_ref_tree(fs_info)) | 
| 3595 | 		btrfs_err(fs_info, "couldn't build ref tree" ); | 
| 3596 |  | 
| 3597 | 	/* do not make disk changes in broken FS or nologreplay is given */ | 
| 3598 | 	if (btrfs_super_log_root(s: disk_super) != 0 && | 
| 3599 | 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) { | 
| 3600 | 		btrfs_info(fs_info, "start tree-log replay" ); | 
| 3601 | 		ret = btrfs_replay_log(fs_info, fs_devices); | 
| 3602 | 		if (ret) | 
| 3603 | 			goto fail_qgroup; | 
| 3604 | 	} | 
| 3605 |  | 
| 3606 | 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, check_ref: true); | 
| 3607 | 	if (IS_ERR(ptr: fs_info->fs_root)) { | 
| 3608 | 		ret = PTR_ERR(ptr: fs_info->fs_root); | 
| 3609 | 		btrfs_warn(fs_info, "failed to read fs tree: %d" , ret); | 
| 3610 | 		fs_info->fs_root = NULL; | 
| 3611 | 		goto fail_qgroup; | 
| 3612 | 	} | 
| 3613 |  | 
| 3614 | 	if (sb_rdonly(sb)) | 
| 3615 | 		return 0; | 
| 3616 |  | 
| 3617 | 	ret = btrfs_start_pre_rw_mount(fs_info); | 
| 3618 | 	if (ret) { | 
| 3619 | 		close_ctree(fs_info); | 
| 3620 | 		return ret; | 
| 3621 | 	} | 
| 3622 | 	btrfs_discard_resume(fs_info); | 
| 3623 |  | 
| 3624 | 	if (fs_info->uuid_root && | 
| 3625 | 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || | 
| 3626 | 	     fs_info->generation != btrfs_super_uuid_tree_generation(s: disk_super))) { | 
| 3627 | 		btrfs_info(fs_info, "checking UUID tree" ); | 
| 3628 | 		ret = btrfs_check_uuid_tree(fs_info); | 
| 3629 | 		if (ret) { | 
| 3630 | 			btrfs_warn(fs_info, | 
| 3631 | 				"failed to check the UUID tree: %d" , ret); | 
| 3632 | 			close_ctree(fs_info); | 
| 3633 | 			return ret; | 
| 3634 | 		} | 
| 3635 | 	} | 
| 3636 |  | 
| 3637 | 	set_bit(nr: BTRFS_FS_OPEN, addr: &fs_info->flags); | 
| 3638 |  | 
| 3639 | 	/* Kick the cleaner thread so it'll start deleting snapshots. */ | 
| 3640 | 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) | 
| 3641 | 		wake_up_process(tsk: fs_info->cleaner_kthread); | 
| 3642 |  | 
| 3643 | 	return 0; | 
| 3644 |  | 
| 3645 | fail_qgroup: | 
| 3646 | 	btrfs_free_qgroup_config(fs_info); | 
| 3647 | fail_trans_kthread: | 
| 3648 | 	kthread_stop(k: fs_info->transaction_kthread); | 
| 3649 | 	btrfs_cleanup_transaction(fs_info); | 
| 3650 | 	btrfs_free_fs_roots(fs_info); | 
| 3651 | fail_cleaner: | 
| 3652 | 	kthread_stop(k: fs_info->cleaner_kthread); | 
| 3653 |  | 
| 3654 | 	/* | 
| 3655 | 	 * make sure we're done with the btree inode before we stop our | 
| 3656 | 	 * kthreads | 
| 3657 | 	 */ | 
| 3658 | 	filemap_write_and_wait(mapping: fs_info->btree_inode->i_mapping); | 
| 3659 |  | 
| 3660 | fail_sysfs: | 
| 3661 | 	btrfs_sysfs_remove_mounted(fs_info); | 
| 3662 |  | 
| 3663 | fail_fsdev_sysfs: | 
| 3664 | 	btrfs_sysfs_remove_fsid(fs_devs: fs_info->fs_devices); | 
| 3665 |  | 
| 3666 | fail_block_groups: | 
| 3667 | 	btrfs_put_block_group_cache(info: fs_info); | 
| 3668 |  | 
| 3669 | fail_tree_roots: | 
| 3670 | 	if (fs_info->data_reloc_root) | 
| 3671 | 		btrfs_drop_and_free_fs_root(fs_info, root: fs_info->data_reloc_root); | 
| 3672 | 	free_root_pointers(info: fs_info, free_chunk_root: true); | 
| 3673 | 	invalidate_inode_pages2(mapping: fs_info->btree_inode->i_mapping); | 
| 3674 |  | 
| 3675 | fail_sb_buffer: | 
| 3676 | 	btrfs_stop_all_workers(fs_info); | 
| 3677 | 	btrfs_free_block_groups(info: fs_info); | 
| 3678 | fail_alloc: | 
| 3679 | 	btrfs_mapping_tree_free(fs_info); | 
| 3680 |  | 
| 3681 | 	iput(fs_info->btree_inode); | 
| 3682 | fail: | 
| 3683 | 	btrfs_close_devices(fs_devices: fs_info->fs_devices); | 
| 3684 | 	ASSERT(ret < 0); | 
| 3685 | 	return ret; | 
| 3686 | } | 
| 3687 | ALLOW_ERROR_INJECTION(open_ctree, ERRNO); | 
| 3688 |  | 
| 3689 | static void btrfs_end_super_write(struct bio *bio) | 
| 3690 | { | 
| 3691 | 	struct btrfs_device *device = bio->bi_private; | 
| 3692 | 	struct folio_iter fi; | 
| 3693 |  | 
| 3694 | 	bio_for_each_folio_all(fi, bio) { | 
| 3695 | 		if (bio->bi_status) { | 
| 3696 | 			btrfs_warn_rl_in_rcu(device->fs_info, | 
| 3697 | 				"lost super block write due to IO error on %s (%d)" , | 
| 3698 | 				btrfs_dev_name(device), | 
| 3699 | 				blk_status_to_errno(bio->bi_status)); | 
| 3700 | 			btrfs_dev_stat_inc_and_print(dev: device, | 
| 3701 | 						     index: BTRFS_DEV_STAT_WRITE_ERRS); | 
| 3702 | 			/* Ensure failure if the primary sb fails. */ | 
| 3703 | 			if (bio->bi_opf & REQ_FUA) | 
| 3704 | 				atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, | 
| 3705 | 					   v: &device->sb_write_errors); | 
| 3706 | 			else | 
| 3707 | 				atomic_inc(v: &device->sb_write_errors); | 
| 3708 | 		} | 
| 3709 | 		folio_unlock(folio: fi.folio); | 
| 3710 | 		folio_put(folio: fi.folio); | 
| 3711 | 	} | 
| 3712 |  | 
| 3713 | 	bio_put(bio); | 
| 3714 | } | 
| 3715 |  | 
| 3716 | /* | 
| 3717 |  * Write superblock @sb to the @device. Do not wait for completion, all the | 
| 3718 |  * folios we use for writing are locked. | 
| 3719 |  * | 
| 3720 |  * Write @max_mirrors copies of the superblock, where 0 means default that fit | 
| 3721 |  * the expected device size at commit time. Note that max_mirrors must be | 
| 3722 |  * same for write and wait phases. | 
| 3723 |  * | 
| 3724 |  * Return number of errors when folio is not found or submission fails. | 
| 3725 |  */ | 
| 3726 | static int write_dev_supers(struct btrfs_device *device, | 
| 3727 | 			    struct btrfs_super_block *sb, int max_mirrors) | 
| 3728 | { | 
| 3729 | 	struct btrfs_fs_info *fs_info = device->fs_info; | 
| 3730 | 	struct address_space *mapping = device->bdev->bd_mapping; | 
| 3731 | 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); | 
| 3732 | 	int i; | 
| 3733 | 	int ret; | 
| 3734 | 	u64 bytenr, bytenr_orig; | 
| 3735 |  | 
| 3736 | 	atomic_set(v: &device->sb_write_errors, i: 0); | 
| 3737 |  | 
| 3738 | 	if (max_mirrors == 0) | 
| 3739 | 		max_mirrors = BTRFS_SUPER_MIRROR_MAX; | 
| 3740 |  | 
| 3741 | 	shash->tfm = fs_info->csum_shash; | 
| 3742 |  | 
| 3743 | 	for (i = 0; i < max_mirrors; i++) { | 
| 3744 | 		struct folio *folio; | 
| 3745 | 		struct bio *bio; | 
| 3746 | 		struct btrfs_super_block *disk_super; | 
| 3747 | 		size_t offset; | 
| 3748 |  | 
| 3749 | 		bytenr_orig = btrfs_sb_offset(mirror: i); | 
| 3750 | 		ret = btrfs_sb_log_location(device, mirror: i, WRITE, bytenr_ret: &bytenr); | 
| 3751 | 		if (ret == -ENOENT) { | 
| 3752 | 			continue; | 
| 3753 | 		} else if (ret < 0) { | 
| 3754 | 			btrfs_err(device->fs_info, | 
| 3755 | 			  "couldn't get super block location for mirror %d error %d" , | 
| 3756 | 			  i, ret); | 
| 3757 | 			atomic_inc(v: &device->sb_write_errors); | 
| 3758 | 			continue; | 
| 3759 | 		} | 
| 3760 | 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= | 
| 3761 | 		    device->commit_total_bytes) | 
| 3762 | 			break; | 
| 3763 |  | 
| 3764 | 		btrfs_set_super_bytenr(s: sb, val: bytenr_orig); | 
| 3765 |  | 
| 3766 | 		crypto_shash_digest(desc: shash, data: (const char *)sb + BTRFS_CSUM_SIZE, | 
| 3767 | 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, | 
| 3768 | 				    out: sb->csum); | 
| 3769 |  | 
| 3770 | 		folio = __filemap_get_folio(mapping, index: bytenr >> PAGE_SHIFT, | 
| 3771 | 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, | 
| 3772 | 					    GFP_NOFS); | 
| 3773 | 		if (IS_ERR(ptr: folio)) { | 
| 3774 | 			btrfs_err(device->fs_info, | 
| 3775 | 			  "couldn't get super block page for bytenr %llu error %ld" , | 
| 3776 | 			  bytenr, PTR_ERR(folio)); | 
| 3777 | 			atomic_inc(v: &device->sb_write_errors); | 
| 3778 | 			continue; | 
| 3779 | 		} | 
| 3780 |  | 
| 3781 | 		offset = offset_in_folio(folio, bytenr); | 
| 3782 | 		disk_super = folio_address(folio) + offset; | 
| 3783 | 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); | 
| 3784 |  | 
| 3785 | 		/* | 
| 3786 | 		 * Directly use bios here instead of relying on the page cache | 
| 3787 | 		 * to do I/O, so we don't lose the ability to do integrity | 
| 3788 | 		 * checking. | 
| 3789 | 		 */ | 
| 3790 | 		bio = bio_alloc(bdev: device->bdev, nr_vecs: 1, | 
| 3791 | 				opf: REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, | 
| 3792 | 				GFP_NOFS); | 
| 3793 | 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; | 
| 3794 | 		bio->bi_private = device; | 
| 3795 | 		bio->bi_end_io = btrfs_end_super_write; | 
| 3796 | 		bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, off: offset); | 
| 3797 |  | 
| 3798 | 		/* | 
| 3799 | 		 * We FUA only the first super block.  The others we allow to | 
| 3800 | 		 * go down lazy and there's a short window where the on-disk | 
| 3801 | 		 * copies might still contain the older version. | 
| 3802 | 		 */ | 
| 3803 | 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) | 
| 3804 | 			bio->bi_opf |= REQ_FUA; | 
| 3805 | 		submit_bio(bio); | 
| 3806 |  | 
| 3807 | 		if (btrfs_advance_sb_log(device, mirror: i)) | 
| 3808 | 			atomic_inc(v: &device->sb_write_errors); | 
| 3809 | 	} | 
| 3810 | 	return atomic_read(v: &device->sb_write_errors) < i ? 0 : -1; | 
| 3811 | } | 
| 3812 |  | 
| 3813 | /* | 
| 3814 |  * Wait for write completion of superblocks done by write_dev_supers, | 
| 3815 |  * @max_mirrors same for write and wait phases. | 
| 3816 |  * | 
| 3817 |  * Return -1 if primary super block write failed or when there were no super block | 
| 3818 |  * copies written. Otherwise 0. | 
| 3819 |  */ | 
| 3820 | static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) | 
| 3821 | { | 
| 3822 | 	int i; | 
| 3823 | 	int errors = 0; | 
| 3824 | 	bool primary_failed = false; | 
| 3825 | 	int ret; | 
| 3826 | 	u64 bytenr; | 
| 3827 |  | 
| 3828 | 	if (max_mirrors == 0) | 
| 3829 | 		max_mirrors = BTRFS_SUPER_MIRROR_MAX; | 
| 3830 |  | 
| 3831 | 	for (i = 0; i < max_mirrors; i++) { | 
| 3832 | 		struct folio *folio; | 
| 3833 |  | 
| 3834 | 		ret = btrfs_sb_log_location(device, mirror: i, READ, bytenr_ret: &bytenr); | 
| 3835 | 		if (ret == -ENOENT) { | 
| 3836 | 			break; | 
| 3837 | 		} else if (ret < 0) { | 
| 3838 | 			errors++; | 
| 3839 | 			if (i == 0) | 
| 3840 | 				primary_failed = true; | 
| 3841 | 			continue; | 
| 3842 | 		} | 
| 3843 | 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= | 
| 3844 | 		    device->commit_total_bytes) | 
| 3845 | 			break; | 
| 3846 |  | 
| 3847 | 		folio = filemap_get_folio(mapping: device->bdev->bd_mapping, | 
| 3848 | 					  index: bytenr >> PAGE_SHIFT); | 
| 3849 | 		/* If the folio has been removed, then we know it completed. */ | 
| 3850 | 		if (IS_ERR(ptr: folio)) | 
| 3851 | 			continue; | 
| 3852 |  | 
| 3853 | 		/* Folio will be unlocked once the write completes. */ | 
| 3854 | 		folio_wait_locked(folio); | 
| 3855 | 		folio_put(folio); | 
| 3856 | 	} | 
| 3857 |  | 
| 3858 | 	errors += atomic_read(v: &device->sb_write_errors); | 
| 3859 | 	if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) | 
| 3860 | 		primary_failed = true; | 
| 3861 | 	if (primary_failed) { | 
| 3862 | 		btrfs_err(device->fs_info, "error writing primary super block to device %llu" , | 
| 3863 | 			  device->devid); | 
| 3864 | 		return -1; | 
| 3865 | 	} | 
| 3866 |  | 
| 3867 | 	return errors < i ? 0 : -1; | 
| 3868 | } | 
| 3869 |  | 
| 3870 | /* | 
| 3871 |  * endio for the write_dev_flush, this will wake anyone waiting | 
| 3872 |  * for the barrier when it is done | 
| 3873 |  */ | 
| 3874 | static void btrfs_end_empty_barrier(struct bio *bio) | 
| 3875 | { | 
| 3876 | 	bio_uninit(bio); | 
| 3877 | 	complete(bio->bi_private); | 
| 3878 | } | 
| 3879 |  | 
| 3880 | /* | 
| 3881 |  * Submit a flush request to the device if it supports it. Error handling is | 
| 3882 |  * done in the waiting counterpart. | 
| 3883 |  */ | 
| 3884 | static void write_dev_flush(struct btrfs_device *device) | 
| 3885 | { | 
| 3886 | 	struct bio *bio = &device->flush_bio; | 
| 3887 |  | 
| 3888 | 	device->last_flush_error = BLK_STS_OK; | 
| 3889 |  | 
| 3890 | 	bio_init(bio, bdev: device->bdev, NULL, max_vecs: 0, | 
| 3891 | 		 opf: REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); | 
| 3892 | 	bio->bi_end_io = btrfs_end_empty_barrier; | 
| 3893 | 	init_completion(x: &device->flush_wait); | 
| 3894 | 	bio->bi_private = &device->flush_wait; | 
| 3895 | 	submit_bio(bio); | 
| 3896 | 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, addr: &device->dev_state); | 
| 3897 | } | 
| 3898 |  | 
| 3899 | /* | 
| 3900 |  * If the flush bio has been submitted by write_dev_flush, wait for it. | 
| 3901 |  * Return true for any error, and false otherwise. | 
| 3902 |  */ | 
| 3903 | static bool wait_dev_flush(struct btrfs_device *device) | 
| 3904 | { | 
| 3905 | 	struct bio *bio = &device->flush_bio; | 
| 3906 |  | 
| 3907 | 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, addr: &device->dev_state)) | 
| 3908 | 		return false; | 
| 3909 |  | 
| 3910 | 	wait_for_completion_io(&device->flush_wait); | 
| 3911 |  | 
| 3912 | 	if (bio->bi_status) { | 
| 3913 | 		device->last_flush_error = bio->bi_status; | 
| 3914 | 		btrfs_dev_stat_inc_and_print(dev: device, index: BTRFS_DEV_STAT_FLUSH_ERRS); | 
| 3915 | 		return true; | 
| 3916 | 	} | 
| 3917 |  | 
| 3918 | 	return false; | 
| 3919 | } | 
| 3920 |  | 
| 3921 | /* | 
| 3922 |  * send an empty flush down to each device in parallel, | 
| 3923 |  * then wait for them | 
| 3924 |  */ | 
| 3925 | static int barrier_all_devices(struct btrfs_fs_info *info) | 
| 3926 | { | 
| 3927 | 	struct list_head *head; | 
| 3928 | 	struct btrfs_device *dev; | 
| 3929 | 	int errors_wait = 0; | 
| 3930 |  | 
| 3931 | 	lockdep_assert_held(&info->fs_devices->device_list_mutex); | 
| 3932 | 	/* send down all the barriers */ | 
| 3933 | 	head = &info->fs_devices->devices; | 
| 3934 | 	list_for_each_entry(dev, head, dev_list) { | 
| 3935 | 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) | 
| 3936 | 			continue; | 
| 3937 | 		if (!dev->bdev) | 
| 3938 | 			continue; | 
| 3939 | 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
| 3940 | 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
| 3941 | 			continue; | 
| 3942 |  | 
| 3943 | 		write_dev_flush(device: dev); | 
| 3944 | 	} | 
| 3945 |  | 
| 3946 | 	/* wait for all the barriers */ | 
| 3947 | 	list_for_each_entry(dev, head, dev_list) { | 
| 3948 | 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) | 
| 3949 | 			continue; | 
| 3950 | 		if (!dev->bdev) { | 
| 3951 | 			errors_wait++; | 
| 3952 | 			continue; | 
| 3953 | 		} | 
| 3954 | 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
| 3955 | 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
| 3956 | 			continue; | 
| 3957 |  | 
| 3958 | 		if (wait_dev_flush(device: dev)) | 
| 3959 | 			errors_wait++; | 
| 3960 | 	} | 
| 3961 |  | 
| 3962 | 	/* | 
| 3963 | 	 * Checks last_flush_error of disks in order to determine the device | 
| 3964 | 	 * state. | 
| 3965 | 	 */ | 
| 3966 | 	if (errors_wait && !btrfs_check_rw_degradable(fs_info: info, NULL)) | 
| 3967 | 		return -EIO; | 
| 3968 |  | 
| 3969 | 	return 0; | 
| 3970 | } | 
| 3971 |  | 
| 3972 | int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) | 
| 3973 | { | 
| 3974 | 	int raid_type; | 
| 3975 | 	int min_tolerated = INT_MAX; | 
| 3976 |  | 
| 3977 | 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || | 
| 3978 | 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) | 
| 3979 | 		min_tolerated = min_t(int, min_tolerated, | 
| 3980 | 				    btrfs_raid_array[BTRFS_RAID_SINGLE]. | 
| 3981 | 				    tolerated_failures); | 
| 3982 |  | 
| 3983 | 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { | 
| 3984 | 		if (raid_type == BTRFS_RAID_SINGLE) | 
| 3985 | 			continue; | 
| 3986 | 		if (!(flags & btrfs_raid_array[raid_type].bg_flag)) | 
| 3987 | 			continue; | 
| 3988 | 		min_tolerated = min_t(int, min_tolerated, | 
| 3989 | 				    btrfs_raid_array[raid_type]. | 
| 3990 | 				    tolerated_failures); | 
| 3991 | 	} | 
| 3992 |  | 
| 3993 | 	if (min_tolerated == INT_MAX) { | 
| 3994 | 		pr_warn("BTRFS: unknown raid flag: %llu" , flags); | 
| 3995 | 		min_tolerated = 0; | 
| 3996 | 	} | 
| 3997 |  | 
| 3998 | 	return min_tolerated; | 
| 3999 | } | 
| 4000 |  | 
| 4001 | int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) | 
| 4002 | { | 
| 4003 | 	struct list_head *head; | 
| 4004 | 	struct btrfs_device *dev; | 
| 4005 | 	struct btrfs_super_block *sb; | 
| 4006 | 	struct btrfs_dev_item *dev_item; | 
| 4007 | 	int ret; | 
| 4008 | 	int do_barriers; | 
| 4009 | 	int max_errors; | 
| 4010 | 	int total_errors = 0; | 
| 4011 | 	u64 flags; | 
| 4012 |  | 
| 4013 | 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); | 
| 4014 |  | 
| 4015 | 	/* | 
| 4016 | 	 * max_mirrors == 0 indicates we're from commit_transaction, | 
| 4017 | 	 * not from fsync where the tree roots in fs_info have not | 
| 4018 | 	 * been consistent on disk. | 
| 4019 | 	 */ | 
| 4020 | 	if (max_mirrors == 0) | 
| 4021 | 		backup_super_roots(info: fs_info); | 
| 4022 |  | 
| 4023 | 	sb = fs_info->super_for_commit; | 
| 4024 | 	dev_item = &sb->dev_item; | 
| 4025 |  | 
| 4026 | 	mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
| 4027 | 	head = &fs_info->fs_devices->devices; | 
| 4028 | 	max_errors = btrfs_super_num_devices(s: fs_info->super_copy) - 1; | 
| 4029 |  | 
| 4030 | 	if (do_barriers) { | 
| 4031 | 		ret = barrier_all_devices(info: fs_info); | 
| 4032 | 		if (ret) { | 
| 4033 | 			mutex_unlock( | 
| 4034 | 				lock: &fs_info->fs_devices->device_list_mutex); | 
| 4035 | 			btrfs_handle_fs_error(fs_info, ret, | 
| 4036 | 					      "errors while submitting device barriers." ); | 
| 4037 | 			return ret; | 
| 4038 | 		} | 
| 4039 | 	} | 
| 4040 |  | 
| 4041 | 	list_for_each_entry(dev, head, dev_list) { | 
| 4042 | 		if (!dev->bdev) { | 
| 4043 | 			total_errors++; | 
| 4044 | 			continue; | 
| 4045 | 		} | 
| 4046 | 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
| 4047 | 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
| 4048 | 			continue; | 
| 4049 |  | 
| 4050 | 		btrfs_set_stack_device_generation(s: dev_item, val: 0); | 
| 4051 | 		btrfs_set_stack_device_type(s: dev_item, val: dev->type); | 
| 4052 | 		btrfs_set_stack_device_id(s: dev_item, val: dev->devid); | 
| 4053 | 		btrfs_set_stack_device_total_bytes(s: dev_item, | 
| 4054 | 						   val: dev->commit_total_bytes); | 
| 4055 | 		btrfs_set_stack_device_bytes_used(s: dev_item, | 
| 4056 | 						  val: dev->commit_bytes_used); | 
| 4057 | 		btrfs_set_stack_device_io_align(s: dev_item, val: dev->io_align); | 
| 4058 | 		btrfs_set_stack_device_io_width(s: dev_item, val: dev->io_width); | 
| 4059 | 		btrfs_set_stack_device_sector_size(s: dev_item, val: dev->sector_size); | 
| 4060 | 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); | 
| 4061 | 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, | 
| 4062 | 		       BTRFS_FSID_SIZE); | 
| 4063 |  | 
| 4064 | 		flags = btrfs_super_flags(s: sb); | 
| 4065 | 		btrfs_set_super_flags(s: sb, val: flags | BTRFS_HEADER_FLAG_WRITTEN); | 
| 4066 |  | 
| 4067 | 		ret = btrfs_validate_write_super(fs_info, sb); | 
| 4068 | 		if (ret < 0) { | 
| 4069 | 			mutex_unlock(lock: &fs_info->fs_devices->device_list_mutex); | 
| 4070 | 			btrfs_handle_fs_error(fs_info, -EUCLEAN, | 
| 4071 | 				"unexpected superblock corruption detected" ); | 
| 4072 | 			return -EUCLEAN; | 
| 4073 | 		} | 
| 4074 |  | 
| 4075 | 		ret = write_dev_supers(device: dev, sb, max_mirrors); | 
| 4076 | 		if (ret) | 
| 4077 | 			total_errors++; | 
| 4078 | 	} | 
| 4079 | 	if (total_errors > max_errors) { | 
| 4080 | 		btrfs_err(fs_info, "%d errors while writing supers" , | 
| 4081 | 			  total_errors); | 
| 4082 | 		mutex_unlock(lock: &fs_info->fs_devices->device_list_mutex); | 
| 4083 |  | 
| 4084 | 		/* FUA is masked off if unsupported and can't be the reason */ | 
| 4085 | 		btrfs_handle_fs_error(fs_info, -EIO, | 
| 4086 | 				      "%d errors while writing supers" , | 
| 4087 | 				      total_errors); | 
| 4088 | 		return -EIO; | 
| 4089 | 	} | 
| 4090 |  | 
| 4091 | 	total_errors = 0; | 
| 4092 | 	list_for_each_entry(dev, head, dev_list) { | 
| 4093 | 		if (!dev->bdev) | 
| 4094 | 			continue; | 
| 4095 | 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
| 4096 | 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
| 4097 | 			continue; | 
| 4098 |  | 
| 4099 | 		ret = wait_dev_supers(device: dev, max_mirrors); | 
| 4100 | 		if (ret) | 
| 4101 | 			total_errors++; | 
| 4102 | 	} | 
| 4103 | 	mutex_unlock(lock: &fs_info->fs_devices->device_list_mutex); | 
| 4104 | 	if (total_errors > max_errors) { | 
| 4105 | 		btrfs_handle_fs_error(fs_info, -EIO, | 
| 4106 | 				      "%d errors while writing supers" , | 
| 4107 | 				      total_errors); | 
| 4108 | 		return -EIO; | 
| 4109 | 	} | 
| 4110 | 	return 0; | 
| 4111 | } | 
| 4112 |  | 
| 4113 | /* Drop a fs root from the radix tree and free it. */ | 
| 4114 | void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, | 
| 4115 | 				  struct btrfs_root *root) | 
| 4116 | { | 
| 4117 | 	bool drop_ref = false; | 
| 4118 |  | 
| 4119 | 	spin_lock(lock: &fs_info->fs_roots_radix_lock); | 
| 4120 | 	radix_tree_delete(&fs_info->fs_roots_radix, | 
| 4121 | 			  (unsigned long)btrfs_root_id(root)); | 
| 4122 | 	if (test_and_clear_bit(nr: BTRFS_ROOT_IN_RADIX, addr: &root->state)) | 
| 4123 | 		drop_ref = true; | 
| 4124 | 	spin_unlock(lock: &fs_info->fs_roots_radix_lock); | 
| 4125 |  | 
| 4126 | 	if (BTRFS_FS_ERROR(fs_info)) { | 
| 4127 | 		ASSERT(root->log_root == NULL); | 
| 4128 | 		if (root->reloc_root) { | 
| 4129 | 			btrfs_put_root(root: root->reloc_root); | 
| 4130 | 			root->reloc_root = NULL; | 
| 4131 | 		} | 
| 4132 | 	} | 
| 4133 |  | 
| 4134 | 	if (drop_ref) | 
| 4135 | 		btrfs_put_root(root); | 
| 4136 | } | 
| 4137 |  | 
| 4138 | int btrfs_commit_super(struct btrfs_fs_info *fs_info) | 
| 4139 | { | 
| 4140 | 	mutex_lock(&fs_info->cleaner_mutex); | 
| 4141 | 	btrfs_run_delayed_iputs(fs_info); | 
| 4142 | 	mutex_unlock(lock: &fs_info->cleaner_mutex); | 
| 4143 | 	wake_up_process(tsk: fs_info->cleaner_kthread); | 
| 4144 |  | 
| 4145 | 	/* wait until ongoing cleanup work done */ | 
| 4146 | 	down_write(sem: &fs_info->cleanup_work_sem); | 
| 4147 | 	up_write(sem: &fs_info->cleanup_work_sem); | 
| 4148 |  | 
| 4149 | 	return btrfs_commit_current_transaction(root: fs_info->tree_root); | 
| 4150 | } | 
| 4151 |  | 
| 4152 | static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) | 
| 4153 | { | 
| 4154 | 	struct btrfs_transaction *trans; | 
| 4155 | 	struct btrfs_transaction *tmp; | 
| 4156 | 	bool found = false; | 
| 4157 |  | 
| 4158 | 	/* | 
| 4159 | 	 * This function is only called at the very end of close_ctree(), | 
| 4160 | 	 * thus no other running transaction, no need to take trans_lock. | 
| 4161 | 	 */ | 
| 4162 | 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); | 
| 4163 | 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { | 
| 4164 | 		struct extent_state *cached = NULL; | 
| 4165 | 		u64 dirty_bytes = 0; | 
| 4166 | 		u64 cur = 0; | 
| 4167 | 		u64 found_start; | 
| 4168 | 		u64 found_end; | 
| 4169 |  | 
| 4170 | 		found = true; | 
| 4171 | 		while (btrfs_find_first_extent_bit(tree: &trans->dirty_pages, start: cur, | 
| 4172 | 						   start_ret: &found_start, end_ret: &found_end, | 
| 4173 | 						   bits: EXTENT_DIRTY, cached_state: &cached)) { | 
| 4174 | 			dirty_bytes += found_end + 1 - found_start; | 
| 4175 | 			cur = found_end + 1; | 
| 4176 | 		} | 
| 4177 | 		btrfs_warn(fs_info, | 
| 4178 | 	"transaction %llu (with %llu dirty metadata bytes) is not committed" , | 
| 4179 | 			   trans->transid, dirty_bytes); | 
| 4180 | 		btrfs_cleanup_one_transaction(trans); | 
| 4181 |  | 
| 4182 | 		if (trans == fs_info->running_transaction) | 
| 4183 | 			fs_info->running_transaction = NULL; | 
| 4184 | 		list_del_init(entry: &trans->list); | 
| 4185 |  | 
| 4186 | 		btrfs_put_transaction(transaction: trans); | 
| 4187 | 		trace_btrfs_transaction_commit(fs_info); | 
| 4188 | 	} | 
| 4189 | 	ASSERT(!found); | 
| 4190 | } | 
| 4191 |  | 
| 4192 | void __cold close_ctree(struct btrfs_fs_info *fs_info) | 
| 4193 | { | 
| 4194 | 	int ret; | 
| 4195 |  | 
| 4196 | 	set_bit(nr: BTRFS_FS_CLOSING_START, addr: &fs_info->flags); | 
| 4197 |  | 
| 4198 | 	/* | 
| 4199 | 	 * If we had UNFINISHED_DROPS we could still be processing them, so | 
| 4200 | 	 * clear that bit and wake up relocation so it can stop. | 
| 4201 | 	 * We must do this before stopping the block group reclaim task, because | 
| 4202 | 	 * at btrfs_relocate_block_group() we wait for this bit, and after the | 
| 4203 | 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we | 
| 4204 | 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will | 
| 4205 | 	 * return 1. | 
| 4206 | 	 */ | 
| 4207 | 	btrfs_wake_unfinished_drop(fs_info); | 
| 4208 |  | 
| 4209 | 	/* | 
| 4210 | 	 * We may have the reclaim task running and relocating a data block group, | 
| 4211 | 	 * in which case it may create delayed iputs. So stop it before we park | 
| 4212 | 	 * the cleaner kthread otherwise we can get new delayed iputs after | 
| 4213 | 	 * parking the cleaner, and that can make the async reclaim task to hang | 
| 4214 | 	 * if it's waiting for delayed iputs to complete, since the cleaner is | 
| 4215 | 	 * parked and can not run delayed iputs - this will make us hang when | 
| 4216 | 	 * trying to stop the async reclaim task. | 
| 4217 | 	 */ | 
| 4218 | 	cancel_work_sync(work: &fs_info->reclaim_bgs_work); | 
| 4219 | 	/* | 
| 4220 | 	 * We don't want the cleaner to start new transactions, add more delayed | 
| 4221 | 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet | 
| 4222 | 	 * because that frees the task_struct, and the transaction kthread might | 
| 4223 | 	 * still try to wake up the cleaner. | 
| 4224 | 	 */ | 
| 4225 | 	kthread_park(k: fs_info->cleaner_kthread); | 
| 4226 |  | 
| 4227 | 	/* wait for the qgroup rescan worker to stop */ | 
| 4228 | 	btrfs_qgroup_wait_for_completion(fs_info, interruptible: false); | 
| 4229 |  | 
| 4230 | 	/* wait for the uuid_scan task to finish */ | 
| 4231 | 	down(sem: &fs_info->uuid_tree_rescan_sem); | 
| 4232 | 	/* avoid complains from lockdep et al., set sem back to initial state */ | 
| 4233 | 	up(sem: &fs_info->uuid_tree_rescan_sem); | 
| 4234 |  | 
| 4235 | 	/* pause restriper - we want to resume on mount */ | 
| 4236 | 	btrfs_pause_balance(fs_info); | 
| 4237 |  | 
| 4238 | 	btrfs_dev_replace_suspend_for_unmount(fs_info); | 
| 4239 |  | 
| 4240 | 	btrfs_scrub_cancel(info: fs_info); | 
| 4241 |  | 
| 4242 | 	/* wait for any defraggers to finish */ | 
| 4243 | 	wait_event(fs_info->transaction_wait, | 
| 4244 | 		   (atomic_read(&fs_info->defrag_running) == 0)); | 
| 4245 |  | 
| 4246 | 	/* clear out the rbtree of defraggable inodes */ | 
| 4247 | 	btrfs_cleanup_defrag_inodes(fs_info); | 
| 4248 |  | 
| 4249 | 	/* | 
| 4250 | 	 * Handle the error fs first, as it will flush and wait for all ordered | 
| 4251 | 	 * extents.  This will generate delayed iputs, thus we want to handle | 
| 4252 | 	 * it first. | 
| 4253 | 	 */ | 
| 4254 | 	if (unlikely(BTRFS_FS_ERROR(fs_info))) | 
| 4255 | 		btrfs_error_commit_super(fs_info); | 
| 4256 |  | 
| 4257 | 	/* | 
| 4258 | 	 * Wait for any fixup workers to complete. | 
| 4259 | 	 * If we don't wait for them here and they are still running by the time | 
| 4260 | 	 * we call kthread_stop() against the cleaner kthread further below, we | 
| 4261 | 	 * get an use-after-free on the cleaner because the fixup worker adds an | 
| 4262 | 	 * inode to the list of delayed iputs and then attempts to wakeup the | 
| 4263 | 	 * cleaner kthread, which was already stopped and destroyed. We parked | 
| 4264 | 	 * already the cleaner, but below we run all pending delayed iputs. | 
| 4265 | 	 */ | 
| 4266 | 	btrfs_flush_workqueue(wq: fs_info->fixup_workers); | 
| 4267 | 	/* | 
| 4268 | 	 * Similar case here, we have to wait for delalloc workers before we | 
| 4269 | 	 * proceed below and stop the cleaner kthread, otherwise we trigger a | 
| 4270 | 	 * use-after-tree on the cleaner kthread task_struct when a delalloc | 
| 4271 | 	 * worker running submit_compressed_extents() adds a delayed iput, which | 
| 4272 | 	 * does a wake up on the cleaner kthread, which was already freed below | 
| 4273 | 	 * when we call kthread_stop(). | 
| 4274 | 	 */ | 
| 4275 | 	btrfs_flush_workqueue(wq: fs_info->delalloc_workers); | 
| 4276 |  | 
| 4277 | 	/* | 
| 4278 | 	 * We can have ordered extents getting their last reference dropped from | 
| 4279 | 	 * the fs_info->workers queue because for async writes for data bios we | 
| 4280 | 	 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs | 
| 4281 | 	 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio | 
| 4282 | 	 * has an error, and that later function can do the final | 
| 4283 | 	 * btrfs_put_ordered_extent() on the ordered extent attached to the bio, | 
| 4284 | 	 * which adds a delayed iput for the inode. So we must flush the queue | 
| 4285 | 	 * so that we don't have delayed iputs after committing the current | 
| 4286 | 	 * transaction below and stopping the cleaner and transaction kthreads. | 
| 4287 | 	 */ | 
| 4288 | 	btrfs_flush_workqueue(wq: fs_info->workers); | 
| 4289 |  | 
| 4290 | 	/* | 
| 4291 | 	 * When finishing a compressed write bio we schedule a work queue item | 
| 4292 | 	 * to finish an ordered extent - btrfs_finish_compressed_write_work() | 
| 4293 | 	 * calls btrfs_finish_ordered_extent() which in turns does a call to | 
| 4294 | 	 * btrfs_queue_ordered_fn(), and that queues the ordered extent | 
| 4295 | 	 * completion either in the endio_write_workers work queue or in the | 
| 4296 | 	 * fs_info->endio_freespace_worker work queue. We flush those queues | 
| 4297 | 	 * below, so before we flush them we must flush this queue for the | 
| 4298 | 	 * workers of compressed writes. | 
| 4299 | 	 */ | 
| 4300 | 	flush_workqueue(fs_info->compressed_write_workers); | 
| 4301 |  | 
| 4302 | 	/* | 
| 4303 | 	 * After we parked the cleaner kthread, ordered extents may have | 
| 4304 | 	 * completed and created new delayed iputs. If one of the async reclaim | 
| 4305 | 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we | 
| 4306 | 	 * can hang forever trying to stop it, because if a delayed iput is | 
| 4307 | 	 * added after it ran btrfs_run_delayed_iputs() and before it called | 
| 4308 | 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is | 
| 4309 | 	 * no one else to run iputs. | 
| 4310 | 	 * | 
| 4311 | 	 * So wait for all ongoing ordered extents to complete and then run | 
| 4312 | 	 * delayed iputs. This works because once we reach this point no one | 
| 4313 | 	 * can either create new ordered extents nor create delayed iputs | 
| 4314 | 	 * through some other means. | 
| 4315 | 	 * | 
| 4316 | 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because | 
| 4317 | 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, | 
| 4318 | 	 * but the delayed iput for the respective inode is made only when doing | 
| 4319 | 	 * the final btrfs_put_ordered_extent() (which must happen at | 
| 4320 | 	 * btrfs_finish_ordered_io() when we are unmounting). | 
| 4321 | 	 */ | 
| 4322 | 	btrfs_flush_workqueue(wq: fs_info->endio_write_workers); | 
| 4323 | 	/* Ordered extents for free space inodes. */ | 
| 4324 | 	btrfs_flush_workqueue(wq: fs_info->endio_freespace_worker); | 
| 4325 | 	btrfs_run_delayed_iputs(fs_info); | 
| 4326 | 	/* There should be no more workload to generate new delayed iputs. */ | 
| 4327 | 	set_bit(nr: BTRFS_FS_STATE_NO_DELAYED_IPUT, addr: &fs_info->fs_state); | 
| 4328 |  | 
| 4329 | 	cancel_work_sync(work: &fs_info->async_reclaim_work); | 
| 4330 | 	cancel_work_sync(work: &fs_info->async_data_reclaim_work); | 
| 4331 | 	cancel_work_sync(work: &fs_info->preempt_reclaim_work); | 
| 4332 | 	cancel_work_sync(work: &fs_info->em_shrinker_work); | 
| 4333 |  | 
| 4334 | 	/* Cancel or finish ongoing discard work */ | 
| 4335 | 	btrfs_discard_cleanup(fs_info); | 
| 4336 |  | 
| 4337 | 	if (!sb_rdonly(sb: fs_info->sb)) { | 
| 4338 | 		/* | 
| 4339 | 		 * The cleaner kthread is stopped, so do one final pass over | 
| 4340 | 		 * unused block groups. | 
| 4341 | 		 */ | 
| 4342 | 		btrfs_delete_unused_bgs(fs_info); | 
| 4343 |  | 
| 4344 | 		/* | 
| 4345 | 		 * There might be existing delayed inode workers still running | 
| 4346 | 		 * and holding an empty delayed inode item. We must wait for | 
| 4347 | 		 * them to complete first because they can create a transaction. | 
| 4348 | 		 * This happens when someone calls btrfs_balance_delayed_items() | 
| 4349 | 		 * and then a transaction commit runs the same delayed nodes | 
| 4350 | 		 * before any delayed worker has done something with the nodes. | 
| 4351 | 		 * We must wait for any worker here and not at transaction | 
| 4352 | 		 * commit time since that could cause a deadlock. | 
| 4353 | 		 * This is a very rare case. | 
| 4354 | 		 */ | 
| 4355 | 		btrfs_flush_workqueue(wq: fs_info->delayed_workers); | 
| 4356 |  | 
| 4357 | 		ret = btrfs_commit_super(fs_info); | 
| 4358 | 		if (ret) | 
| 4359 | 			btrfs_err(fs_info, "commit super ret %d" , ret); | 
| 4360 | 	} | 
| 4361 |  | 
| 4362 | 	kthread_stop(k: fs_info->transaction_kthread); | 
| 4363 | 	kthread_stop(k: fs_info->cleaner_kthread); | 
| 4364 |  | 
| 4365 | 	ASSERT(list_empty(&fs_info->delayed_iputs)); | 
| 4366 | 	set_bit(nr: BTRFS_FS_CLOSING_DONE, addr: &fs_info->flags); | 
| 4367 |  | 
| 4368 | 	if (btrfs_check_quota_leak(fs_info)) { | 
| 4369 | 		DEBUG_WARN("qgroup reserved space leaked" ); | 
| 4370 | 		btrfs_err(fs_info, "qgroup reserved space leaked" ); | 
| 4371 | 	} | 
| 4372 |  | 
| 4373 | 	btrfs_free_qgroup_config(fs_info); | 
| 4374 | 	ASSERT(list_empty(&fs_info->delalloc_roots)); | 
| 4375 |  | 
| 4376 | 	if (percpu_counter_sum(fbc: &fs_info->delalloc_bytes)) { | 
| 4377 | 		btrfs_info(fs_info, "at unmount delalloc count %lld" , | 
| 4378 | 		       percpu_counter_sum(&fs_info->delalloc_bytes)); | 
| 4379 | 	} | 
| 4380 |  | 
| 4381 | 	if (percpu_counter_sum(fbc: &fs_info->ordered_bytes)) | 
| 4382 | 		btrfs_info(fs_info, "at unmount dio bytes count %lld" , | 
| 4383 | 			   percpu_counter_sum(&fs_info->ordered_bytes)); | 
| 4384 |  | 
| 4385 | 	btrfs_sysfs_remove_mounted(fs_info); | 
| 4386 | 	btrfs_sysfs_remove_fsid(fs_devs: fs_info->fs_devices); | 
| 4387 |  | 
| 4388 | 	btrfs_put_block_group_cache(info: fs_info); | 
| 4389 |  | 
| 4390 | 	/* | 
| 4391 | 	 * we must make sure there is not any read request to | 
| 4392 | 	 * submit after we stopping all workers. | 
| 4393 | 	 */ | 
| 4394 | 	invalidate_inode_pages2(mapping: fs_info->btree_inode->i_mapping); | 
| 4395 | 	btrfs_stop_all_workers(fs_info); | 
| 4396 |  | 
| 4397 | 	/* We shouldn't have any transaction open at this point */ | 
| 4398 | 	warn_about_uncommitted_trans(fs_info); | 
| 4399 |  | 
| 4400 | 	clear_bit(nr: BTRFS_FS_OPEN, addr: &fs_info->flags); | 
| 4401 | 	free_root_pointers(info: fs_info, free_chunk_root: true); | 
| 4402 | 	btrfs_free_fs_roots(fs_info); | 
| 4403 |  | 
| 4404 | 	/* | 
| 4405 | 	 * We must free the block groups after dropping the fs_roots as we could | 
| 4406 | 	 * have had an IO error and have left over tree log blocks that aren't | 
| 4407 | 	 * cleaned up until the fs roots are freed.  This makes the block group | 
| 4408 | 	 * accounting appear to be wrong because there's pending reserved bytes, | 
| 4409 | 	 * so make sure we do the block group cleanup afterwards. | 
| 4410 | 	 */ | 
| 4411 | 	btrfs_free_block_groups(info: fs_info); | 
| 4412 |  | 
| 4413 | 	iput(fs_info->btree_inode); | 
| 4414 |  | 
| 4415 | 	btrfs_mapping_tree_free(fs_info); | 
| 4416 | 	btrfs_close_devices(fs_devices: fs_info->fs_devices); | 
| 4417 | } | 
| 4418 |  | 
| 4419 | void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, | 
| 4420 | 			     struct extent_buffer *buf) | 
| 4421 | { | 
| 4422 | 	struct btrfs_fs_info *fs_info = buf->fs_info; | 
| 4423 | 	u64 transid = btrfs_header_generation(eb: buf); | 
| 4424 |  | 
| 4425 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
| 4426 | 	/* | 
| 4427 | 	 * This is a fast path so only do this check if we have sanity tests | 
| 4428 | 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty | 
| 4429 | 	 * outside of the sanity tests. | 
| 4430 | 	 */ | 
| 4431 | 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) | 
| 4432 | 		return; | 
| 4433 | #endif | 
| 4434 | 	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ | 
| 4435 | 	ASSERT(trans->transid == fs_info->generation); | 
| 4436 | 	btrfs_assert_tree_write_locked(eb: buf); | 
| 4437 | 	if (unlikely(transid != fs_info->generation)) { | 
| 4438 | 		btrfs_abort_transaction(trans, -EUCLEAN); | 
| 4439 | 		btrfs_crit(fs_info, | 
| 4440 | "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu" , | 
| 4441 | 			   buf->start, transid, fs_info->generation); | 
| 4442 | 	} | 
| 4443 | 	set_extent_buffer_dirty(buf); | 
| 4444 | } | 
| 4445 |  | 
| 4446 | static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, | 
| 4447 | 					int flush_delayed) | 
| 4448 | { | 
| 4449 | 	/* | 
| 4450 | 	 * looks as though older kernels can get into trouble with | 
| 4451 | 	 * this code, they end up stuck in balance_dirty_pages forever | 
| 4452 | 	 */ | 
| 4453 | 	int ret; | 
| 4454 |  | 
| 4455 | 	if (current->flags & PF_MEMALLOC) | 
| 4456 | 		return; | 
| 4457 |  | 
| 4458 | 	if (flush_delayed) | 
| 4459 | 		btrfs_balance_delayed_items(fs_info); | 
| 4460 |  | 
| 4461 | 	ret = __percpu_counter_compare(fbc: &fs_info->dirty_metadata_bytes, | 
| 4462 | 				     BTRFS_DIRTY_METADATA_THRESH, | 
| 4463 | 				     batch: fs_info->dirty_metadata_batch); | 
| 4464 | 	if (ret > 0) { | 
| 4465 | 		balance_dirty_pages_ratelimited(mapping: fs_info->btree_inode->i_mapping); | 
| 4466 | 	} | 
| 4467 | } | 
| 4468 |  | 
| 4469 | void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) | 
| 4470 | { | 
| 4471 | 	__btrfs_btree_balance_dirty(fs_info, flush_delayed: 1); | 
| 4472 | } | 
| 4473 |  | 
| 4474 | void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) | 
| 4475 | { | 
| 4476 | 	__btrfs_btree_balance_dirty(fs_info, flush_delayed: 0); | 
| 4477 | } | 
| 4478 |  | 
| 4479 | static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) | 
| 4480 | { | 
| 4481 | 	/* cleanup FS via transaction */ | 
| 4482 | 	btrfs_cleanup_transaction(fs_info); | 
| 4483 |  | 
| 4484 | 	down_write(sem: &fs_info->cleanup_work_sem); | 
| 4485 | 	up_write(sem: &fs_info->cleanup_work_sem); | 
| 4486 | } | 
| 4487 |  | 
| 4488 | static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) | 
| 4489 | { | 
| 4490 | 	struct btrfs_root *gang[8]; | 
| 4491 | 	u64 root_objectid = 0; | 
| 4492 | 	int ret; | 
| 4493 |  | 
| 4494 | 	spin_lock(lock: &fs_info->fs_roots_radix_lock); | 
| 4495 | 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
| 4496 | 					     results: (void **)gang, first_index: root_objectid, | 
| 4497 | 					     ARRAY_SIZE(gang))) != 0) { | 
| 4498 | 		int i; | 
| 4499 |  | 
| 4500 | 		for (i = 0; i < ret; i++) | 
| 4501 | 			gang[i] = btrfs_grab_root(root: gang[i]); | 
| 4502 | 		spin_unlock(lock: &fs_info->fs_roots_radix_lock); | 
| 4503 |  | 
| 4504 | 		for (i = 0; i < ret; i++) { | 
| 4505 | 			if (!gang[i]) | 
| 4506 | 				continue; | 
| 4507 | 			root_objectid = btrfs_root_id(root: gang[i]); | 
| 4508 | 			btrfs_free_log(NULL, root: gang[i]); | 
| 4509 | 			btrfs_put_root(root: gang[i]); | 
| 4510 | 		} | 
| 4511 | 		root_objectid++; | 
| 4512 | 		spin_lock(lock: &fs_info->fs_roots_radix_lock); | 
| 4513 | 	} | 
| 4514 | 	spin_unlock(lock: &fs_info->fs_roots_radix_lock); | 
| 4515 | 	btrfs_free_log_root_tree(NULL, fs_info); | 
| 4516 | } | 
| 4517 |  | 
| 4518 | static void btrfs_destroy_ordered_extents(struct btrfs_root *root) | 
| 4519 | { | 
| 4520 | 	struct btrfs_ordered_extent *ordered; | 
| 4521 |  | 
| 4522 | 	spin_lock(lock: &root->ordered_extent_lock); | 
| 4523 | 	/* | 
| 4524 | 	 * This will just short circuit the ordered completion stuff which will | 
| 4525 | 	 * make sure the ordered extent gets properly cleaned up. | 
| 4526 | 	 */ | 
| 4527 | 	list_for_each_entry(ordered, &root->ordered_extents, | 
| 4528 | 			    root_extent_list) | 
| 4529 | 		set_bit(nr: BTRFS_ORDERED_IOERR, addr: &ordered->flags); | 
| 4530 | 	spin_unlock(lock: &root->ordered_extent_lock); | 
| 4531 | } | 
| 4532 |  | 
| 4533 | static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) | 
| 4534 | { | 
| 4535 | 	struct btrfs_root *root; | 
| 4536 | 	LIST_HEAD(splice); | 
| 4537 |  | 
| 4538 | 	spin_lock(lock: &fs_info->ordered_root_lock); | 
| 4539 | 	list_splice_init(list: &fs_info->ordered_roots, head: &splice); | 
| 4540 | 	while (!list_empty(head: &splice)) { | 
| 4541 | 		root = list_first_entry(&splice, struct btrfs_root, | 
| 4542 | 					ordered_root); | 
| 4543 | 		list_move_tail(list: &root->ordered_root, | 
| 4544 | 			       head: &fs_info->ordered_roots); | 
| 4545 |  | 
| 4546 | 		spin_unlock(lock: &fs_info->ordered_root_lock); | 
| 4547 | 		btrfs_destroy_ordered_extents(root); | 
| 4548 |  | 
| 4549 | 		cond_resched(); | 
| 4550 | 		spin_lock(lock: &fs_info->ordered_root_lock); | 
| 4551 | 	} | 
| 4552 | 	spin_unlock(lock: &fs_info->ordered_root_lock); | 
| 4553 |  | 
| 4554 | 	/* | 
| 4555 | 	 * We need this here because if we've been flipped read-only we won't | 
| 4556 | 	 * get sync() from the umount, so we need to make sure any ordered | 
| 4557 | 	 * extents that haven't had their dirty pages IO start writeout yet | 
| 4558 | 	 * actually get run and error out properly. | 
| 4559 | 	 */ | 
| 4560 | 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); | 
| 4561 | } | 
| 4562 |  | 
| 4563 | static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) | 
| 4564 | { | 
| 4565 | 	struct btrfs_inode *btrfs_inode; | 
| 4566 | 	LIST_HEAD(splice); | 
| 4567 |  | 
| 4568 | 	spin_lock(lock: &root->delalloc_lock); | 
| 4569 | 	list_splice_init(list: &root->delalloc_inodes, head: &splice); | 
| 4570 |  | 
| 4571 | 	while (!list_empty(head: &splice)) { | 
| 4572 | 		struct inode *inode = NULL; | 
| 4573 | 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode, | 
| 4574 | 					       delalloc_inodes); | 
| 4575 | 		btrfs_del_delalloc_inode(inode: btrfs_inode); | 
| 4576 | 		spin_unlock(lock: &root->delalloc_lock); | 
| 4577 |  | 
| 4578 | 		/* | 
| 4579 | 		 * Make sure we get a live inode and that it'll not disappear | 
| 4580 | 		 * meanwhile. | 
| 4581 | 		 */ | 
| 4582 | 		inode = igrab(&btrfs_inode->vfs_inode); | 
| 4583 | 		if (inode) { | 
| 4584 | 			unsigned int nofs_flag; | 
| 4585 |  | 
| 4586 | 			nofs_flag = memalloc_nofs_save(); | 
| 4587 | 			invalidate_inode_pages2(mapping: inode->i_mapping); | 
| 4588 | 			memalloc_nofs_restore(flags: nofs_flag); | 
| 4589 | 			iput(inode); | 
| 4590 | 		} | 
| 4591 | 		spin_lock(lock: &root->delalloc_lock); | 
| 4592 | 	} | 
| 4593 | 	spin_unlock(lock: &root->delalloc_lock); | 
| 4594 | } | 
| 4595 |  | 
| 4596 | static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) | 
| 4597 | { | 
| 4598 | 	struct btrfs_root *root; | 
| 4599 | 	LIST_HEAD(splice); | 
| 4600 |  | 
| 4601 | 	spin_lock(lock: &fs_info->delalloc_root_lock); | 
| 4602 | 	list_splice_init(list: &fs_info->delalloc_roots, head: &splice); | 
| 4603 | 	while (!list_empty(head: &splice)) { | 
| 4604 | 		root = list_first_entry(&splice, struct btrfs_root, | 
| 4605 | 					 delalloc_root); | 
| 4606 | 		root = btrfs_grab_root(root); | 
| 4607 | 		BUG_ON(!root); | 
| 4608 | 		spin_unlock(lock: &fs_info->delalloc_root_lock); | 
| 4609 |  | 
| 4610 | 		btrfs_destroy_delalloc_inodes(root); | 
| 4611 | 		btrfs_put_root(root); | 
| 4612 |  | 
| 4613 | 		spin_lock(lock: &fs_info->delalloc_root_lock); | 
| 4614 | 	} | 
| 4615 | 	spin_unlock(lock: &fs_info->delalloc_root_lock); | 
| 4616 | } | 
| 4617 |  | 
| 4618 | static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, | 
| 4619 | 					 struct extent_io_tree *dirty_pages, | 
| 4620 | 					 int mark) | 
| 4621 | { | 
| 4622 | 	struct extent_buffer *eb; | 
| 4623 | 	u64 start = 0; | 
| 4624 | 	u64 end; | 
| 4625 |  | 
| 4626 | 	while (btrfs_find_first_extent_bit(tree: dirty_pages, start, start_ret: &start, end_ret: &end, | 
| 4627 | 					   bits: mark, NULL)) { | 
| 4628 | 		btrfs_clear_extent_bits(tree: dirty_pages, start, end, bits: mark); | 
| 4629 | 		while (start <= end) { | 
| 4630 | 			eb = find_extent_buffer(fs_info, start); | 
| 4631 | 			start += fs_info->nodesize; | 
| 4632 | 			if (!eb) | 
| 4633 | 				continue; | 
| 4634 |  | 
| 4635 | 			btrfs_tree_lock(eb); | 
| 4636 | 			wait_on_extent_buffer_writeback(eb); | 
| 4637 | 			btrfs_clear_buffer_dirty(NULL, buf: eb); | 
| 4638 | 			btrfs_tree_unlock(eb); | 
| 4639 |  | 
| 4640 | 			free_extent_buffer_stale(eb); | 
| 4641 | 		} | 
| 4642 | 	} | 
| 4643 | } | 
| 4644 |  | 
| 4645 | static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, | 
| 4646 | 					struct extent_io_tree *unpin) | 
| 4647 | { | 
| 4648 | 	u64 start; | 
| 4649 | 	u64 end; | 
| 4650 |  | 
| 4651 | 	while (1) { | 
| 4652 | 		struct extent_state *cached_state = NULL; | 
| 4653 |  | 
| 4654 | 		/* | 
| 4655 | 		 * The btrfs_finish_extent_commit() may get the same range as | 
| 4656 | 		 * ours between find_first_extent_bit and clear_extent_dirty. | 
| 4657 | 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin | 
| 4658 | 		 * the same extent range. | 
| 4659 | 		 */ | 
| 4660 | 		mutex_lock(&fs_info->unused_bg_unpin_mutex); | 
| 4661 | 		if (!btrfs_find_first_extent_bit(tree: unpin, start: 0, start_ret: &start, end_ret: &end, | 
| 4662 | 						 bits: EXTENT_DIRTY, cached_state: &cached_state)) { | 
| 4663 | 			mutex_unlock(lock: &fs_info->unused_bg_unpin_mutex); | 
| 4664 | 			break; | 
| 4665 | 		} | 
| 4666 |  | 
| 4667 | 		btrfs_clear_extent_dirty(tree: unpin, start, end, cached: &cached_state); | 
| 4668 | 		btrfs_free_extent_state(state: cached_state); | 
| 4669 | 		btrfs_error_unpin_extent_range(fs_info, start, end); | 
| 4670 | 		mutex_unlock(lock: &fs_info->unused_bg_unpin_mutex); | 
| 4671 | 		cond_resched(); | 
| 4672 | 	} | 
| 4673 | } | 
| 4674 |  | 
| 4675 | static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) | 
| 4676 | { | 
| 4677 | 	struct inode *inode; | 
| 4678 |  | 
| 4679 | 	inode = cache->io_ctl.inode; | 
| 4680 | 	if (inode) { | 
| 4681 | 		unsigned int nofs_flag; | 
| 4682 |  | 
| 4683 | 		nofs_flag = memalloc_nofs_save(); | 
| 4684 | 		invalidate_inode_pages2(mapping: inode->i_mapping); | 
| 4685 | 		memalloc_nofs_restore(flags: nofs_flag); | 
| 4686 |  | 
| 4687 | 		BTRFS_I(inode)->generation = 0; | 
| 4688 | 		cache->io_ctl.inode = NULL; | 
| 4689 | 		iput(inode); | 
| 4690 | 	} | 
| 4691 | 	ASSERT(cache->io_ctl.pages == NULL); | 
| 4692 | 	btrfs_put_block_group(cache); | 
| 4693 | } | 
| 4694 |  | 
| 4695 | void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, | 
| 4696 | 			     struct btrfs_fs_info *fs_info) | 
| 4697 | { | 
| 4698 | 	struct btrfs_block_group *cache; | 
| 4699 |  | 
| 4700 | 	spin_lock(lock: &cur_trans->dirty_bgs_lock); | 
| 4701 | 	while (!list_empty(head: &cur_trans->dirty_bgs)) { | 
| 4702 | 		cache = list_first_entry(&cur_trans->dirty_bgs, | 
| 4703 | 					 struct btrfs_block_group, | 
| 4704 | 					 dirty_list); | 
| 4705 |  | 
| 4706 | 		if (!list_empty(head: &cache->io_list)) { | 
| 4707 | 			spin_unlock(lock: &cur_trans->dirty_bgs_lock); | 
| 4708 | 			list_del_init(entry: &cache->io_list); | 
| 4709 | 			btrfs_cleanup_bg_io(cache); | 
| 4710 | 			spin_lock(lock: &cur_trans->dirty_bgs_lock); | 
| 4711 | 		} | 
| 4712 |  | 
| 4713 | 		list_del_init(entry: &cache->dirty_list); | 
| 4714 | 		spin_lock(lock: &cache->lock); | 
| 4715 | 		cache->disk_cache_state = BTRFS_DC_ERROR; | 
| 4716 | 		spin_unlock(lock: &cache->lock); | 
| 4717 |  | 
| 4718 | 		spin_unlock(lock: &cur_trans->dirty_bgs_lock); | 
| 4719 | 		btrfs_put_block_group(cache); | 
| 4720 | 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); | 
| 4721 | 		spin_lock(lock: &cur_trans->dirty_bgs_lock); | 
| 4722 | 	} | 
| 4723 | 	spin_unlock(lock: &cur_trans->dirty_bgs_lock); | 
| 4724 |  | 
| 4725 | 	/* | 
| 4726 | 	 * Refer to the definition of io_bgs member for details why it's safe | 
| 4727 | 	 * to use it without any locking | 
| 4728 | 	 */ | 
| 4729 | 	while (!list_empty(head: &cur_trans->io_bgs)) { | 
| 4730 | 		cache = list_first_entry(&cur_trans->io_bgs, | 
| 4731 | 					 struct btrfs_block_group, | 
| 4732 | 					 io_list); | 
| 4733 |  | 
| 4734 | 		list_del_init(entry: &cache->io_list); | 
| 4735 | 		spin_lock(lock: &cache->lock); | 
| 4736 | 		cache->disk_cache_state = BTRFS_DC_ERROR; | 
| 4737 | 		spin_unlock(lock: &cache->lock); | 
| 4738 | 		btrfs_cleanup_bg_io(cache); | 
| 4739 | 	} | 
| 4740 | } | 
| 4741 |  | 
| 4742 | static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) | 
| 4743 | { | 
| 4744 | 	struct btrfs_root *gang[8]; | 
| 4745 | 	int i; | 
| 4746 | 	int ret; | 
| 4747 |  | 
| 4748 | 	spin_lock(lock: &fs_info->fs_roots_radix_lock); | 
| 4749 | 	while (1) { | 
| 4750 | 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, | 
| 4751 | 						 results: (void **)gang, first_index: 0, | 
| 4752 | 						 ARRAY_SIZE(gang), | 
| 4753 | 						 BTRFS_ROOT_TRANS_TAG); | 
| 4754 | 		if (ret == 0) | 
| 4755 | 			break; | 
| 4756 | 		for (i = 0; i < ret; i++) { | 
| 4757 | 			struct btrfs_root *root = gang[i]; | 
| 4758 |  | 
| 4759 | 			btrfs_qgroup_free_meta_all_pertrans(root); | 
| 4760 | 			radix_tree_tag_clear(&fs_info->fs_roots_radix, | 
| 4761 | 					index: (unsigned long)btrfs_root_id(root), | 
| 4762 | 					BTRFS_ROOT_TRANS_TAG); | 
| 4763 | 		} | 
| 4764 | 	} | 
| 4765 | 	spin_unlock(lock: &fs_info->fs_roots_radix_lock); | 
| 4766 | } | 
| 4767 |  | 
| 4768 | void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans) | 
| 4769 | { | 
| 4770 | 	struct btrfs_fs_info *fs_info = cur_trans->fs_info; | 
| 4771 | 	struct btrfs_device *dev, *tmp; | 
| 4772 |  | 
| 4773 | 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info); | 
| 4774 | 	ASSERT(list_empty(&cur_trans->dirty_bgs)); | 
| 4775 | 	ASSERT(list_empty(&cur_trans->io_bgs)); | 
| 4776 |  | 
| 4777 | 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, | 
| 4778 | 				 post_commit_list) { | 
| 4779 | 		list_del_init(entry: &dev->post_commit_list); | 
| 4780 | 	} | 
| 4781 |  | 
| 4782 | 	btrfs_destroy_delayed_refs(trans: cur_trans); | 
| 4783 |  | 
| 4784 | 	cur_trans->state = TRANS_STATE_COMMIT_START; | 
| 4785 | 	wake_up(&fs_info->transaction_blocked_wait); | 
| 4786 |  | 
| 4787 | 	cur_trans->state = TRANS_STATE_UNBLOCKED; | 
| 4788 | 	wake_up(&fs_info->transaction_wait); | 
| 4789 |  | 
| 4790 | 	btrfs_destroy_marked_extents(fs_info, dirty_pages: &cur_trans->dirty_pages, | 
| 4791 | 				     mark: EXTENT_DIRTY); | 
| 4792 | 	btrfs_destroy_pinned_extent(fs_info, unpin: &cur_trans->pinned_extents); | 
| 4793 |  | 
| 4794 | 	cur_trans->state =TRANS_STATE_COMPLETED; | 
| 4795 | 	wake_up(&cur_trans->commit_wait); | 
| 4796 | } | 
| 4797 |  | 
| 4798 | static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) | 
| 4799 | { | 
| 4800 | 	struct btrfs_transaction *t; | 
| 4801 |  | 
| 4802 | 	mutex_lock(&fs_info->transaction_kthread_mutex); | 
| 4803 |  | 
| 4804 | 	spin_lock(lock: &fs_info->trans_lock); | 
| 4805 | 	while (!list_empty(head: &fs_info->trans_list)) { | 
| 4806 | 		t = list_first_entry(&fs_info->trans_list, | 
| 4807 | 				     struct btrfs_transaction, list); | 
| 4808 | 		if (t->state >= TRANS_STATE_COMMIT_PREP) { | 
| 4809 | 			refcount_inc(r: &t->use_count); | 
| 4810 | 			spin_unlock(lock: &fs_info->trans_lock); | 
| 4811 | 			btrfs_wait_for_commit(fs_info, transid: t->transid); | 
| 4812 | 			btrfs_put_transaction(transaction: t); | 
| 4813 | 			spin_lock(lock: &fs_info->trans_lock); | 
| 4814 | 			continue; | 
| 4815 | 		} | 
| 4816 | 		if (t == fs_info->running_transaction) { | 
| 4817 | 			t->state = TRANS_STATE_COMMIT_DOING; | 
| 4818 | 			spin_unlock(lock: &fs_info->trans_lock); | 
| 4819 | 			/* | 
| 4820 | 			 * We wait for 0 num_writers since we don't hold a trans | 
| 4821 | 			 * handle open currently for this transaction. | 
| 4822 | 			 */ | 
| 4823 | 			wait_event(t->writer_wait, | 
| 4824 | 				   atomic_read(&t->num_writers) == 0); | 
| 4825 | 		} else { | 
| 4826 | 			spin_unlock(lock: &fs_info->trans_lock); | 
| 4827 | 		} | 
| 4828 | 		btrfs_cleanup_one_transaction(cur_trans: t); | 
| 4829 |  | 
| 4830 | 		spin_lock(lock: &fs_info->trans_lock); | 
| 4831 | 		if (t == fs_info->running_transaction) | 
| 4832 | 			fs_info->running_transaction = NULL; | 
| 4833 | 		list_del_init(entry: &t->list); | 
| 4834 | 		spin_unlock(lock: &fs_info->trans_lock); | 
| 4835 |  | 
| 4836 | 		btrfs_put_transaction(transaction: t); | 
| 4837 | 		trace_btrfs_transaction_commit(fs_info); | 
| 4838 | 		spin_lock(lock: &fs_info->trans_lock); | 
| 4839 | 	} | 
| 4840 | 	spin_unlock(lock: &fs_info->trans_lock); | 
| 4841 | 	btrfs_destroy_all_ordered_extents(fs_info); | 
| 4842 | 	btrfs_destroy_delayed_inodes(fs_info); | 
| 4843 | 	btrfs_assert_delayed_root_empty(fs_info); | 
| 4844 | 	btrfs_destroy_all_delalloc_inodes(fs_info); | 
| 4845 | 	btrfs_drop_all_logs(fs_info); | 
| 4846 | 	btrfs_free_all_qgroup_pertrans(fs_info); | 
| 4847 | 	mutex_unlock(lock: &fs_info->transaction_kthread_mutex); | 
| 4848 |  | 
| 4849 | 	return 0; | 
| 4850 | } | 
| 4851 |  | 
| 4852 | int btrfs_init_root_free_objectid(struct btrfs_root *root) | 
| 4853 | { | 
| 4854 | 	BTRFS_PATH_AUTO_FREE(path); | 
| 4855 | 	int ret; | 
| 4856 | 	struct extent_buffer *l; | 
| 4857 | 	struct btrfs_key search_key; | 
| 4858 | 	struct btrfs_key found_key; | 
| 4859 | 	int slot; | 
| 4860 |  | 
| 4861 | 	path = btrfs_alloc_path(); | 
| 4862 | 	if (!path) | 
| 4863 | 		return -ENOMEM; | 
| 4864 |  | 
| 4865 | 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID; | 
| 4866 | 	search_key.type = -1; | 
| 4867 | 	search_key.offset = (u64)-1; | 
| 4868 | 	ret = btrfs_search_slot(NULL, root, key: &search_key, p: path, ins_len: 0, cow: 0); | 
| 4869 | 	if (ret < 0) | 
| 4870 | 		return ret; | 
| 4871 | 	if (ret == 0) { | 
| 4872 | 		/* | 
| 4873 | 		 * Key with offset -1 found, there would have to exist a root | 
| 4874 | 		 * with such id, but this is out of valid range. | 
| 4875 | 		 */ | 
| 4876 | 		return -EUCLEAN; | 
| 4877 | 	} | 
| 4878 | 	if (path->slots[0] > 0) { | 
| 4879 | 		slot = path->slots[0] - 1; | 
| 4880 | 		l = path->nodes[0]; | 
| 4881 | 		btrfs_item_key_to_cpu(eb: l, cpu_key: &found_key, nr: slot); | 
| 4882 | 		root->free_objectid = max_t(u64, found_key.objectid + 1, | 
| 4883 | 					    BTRFS_FIRST_FREE_OBJECTID); | 
| 4884 | 	} else { | 
| 4885 | 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; | 
| 4886 | 	} | 
| 4887 |  | 
| 4888 | 	return 0; | 
| 4889 | } | 
| 4890 |  | 
| 4891 | int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) | 
| 4892 | { | 
| 4893 | 	int ret; | 
| 4894 | 	mutex_lock(&root->objectid_mutex); | 
| 4895 |  | 
| 4896 | 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { | 
| 4897 | 		btrfs_warn(root->fs_info, | 
| 4898 | 			   "the objectid of root %llu reaches its highest value" , | 
| 4899 | 			   btrfs_root_id(root)); | 
| 4900 | 		ret = -ENOSPC; | 
| 4901 | 		goto out; | 
| 4902 | 	} | 
| 4903 |  | 
| 4904 | 	*objectid = root->free_objectid++; | 
| 4905 | 	ret = 0; | 
| 4906 | out: | 
| 4907 | 	mutex_unlock(lock: &root->objectid_mutex); | 
| 4908 | 	return ret; | 
| 4909 | } | 
| 4910 |  |