1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | #include <linux/slab.h> |
3 | #include <linux/file.h> |
4 | #include <linux/fdtable.h> |
5 | #include <linux/freezer.h> |
6 | #include <linux/mm.h> |
7 | #include <linux/stat.h> |
8 | #include <linux/fcntl.h> |
9 | #include <linux/swap.h> |
10 | #include <linux/ctype.h> |
11 | #include <linux/string.h> |
12 | #include <linux/init.h> |
13 | #include <linux/pagemap.h> |
14 | #include <linux/perf_event.h> |
15 | #include <linux/highmem.h> |
16 | #include <linux/spinlock.h> |
17 | #include <linux/key.h> |
18 | #include <linux/personality.h> |
19 | #include <linux/binfmts.h> |
20 | #include <linux/coredump.h> |
21 | #include <linux/sort.h> |
22 | #include <linux/sched/coredump.h> |
23 | #include <linux/sched/signal.h> |
24 | #include <linux/sched/task_stack.h> |
25 | #include <linux/utsname.h> |
26 | #include <linux/pid_namespace.h> |
27 | #include <linux/module.h> |
28 | #include <linux/namei.h> |
29 | #include <linux/mount.h> |
30 | #include <linux/security.h> |
31 | #include <linux/syscalls.h> |
32 | #include <linux/tsacct_kern.h> |
33 | #include <linux/cn_proc.h> |
34 | #include <linux/audit.h> |
35 | #include <linux/kmod.h> |
36 | #include <linux/fsnotify.h> |
37 | #include <linux/fs_struct.h> |
38 | #include <linux/pipe_fs_i.h> |
39 | #include <linux/oom.h> |
40 | #include <linux/compat.h> |
41 | #include <linux/fs.h> |
42 | #include <linux/path.h> |
43 | #include <linux/timekeeping.h> |
44 | #include <linux/sysctl.h> |
45 | #include <linux/elf.h> |
46 | #include <linux/pidfs.h> |
47 | #include <linux/net.h> |
48 | #include <linux/socket.h> |
49 | #include <net/af_unix.h> |
50 | #include <net/net_namespace.h> |
51 | #include <net/sock.h> |
52 | #include <uapi/linux/pidfd.h> |
53 | #include <uapi/linux/un.h> |
54 | |
55 | #include <linux/uaccess.h> |
56 | #include <asm/mmu_context.h> |
57 | #include <asm/tlb.h> |
58 | #include <asm/exec.h> |
59 | |
60 | #include <trace/events/task.h> |
61 | #include "internal.h" |
62 | |
63 | #include <trace/events/sched.h> |
64 | |
65 | static bool dump_vma_snapshot(struct coredump_params *cprm); |
66 | static void free_vma_snapshot(struct coredump_params *cprm); |
67 | |
68 | #define CORE_FILE_NOTE_SIZE_DEFAULT (4*1024*1024) |
69 | /* Define a reasonable max cap */ |
70 | #define CORE_FILE_NOTE_SIZE_MAX (16*1024*1024) |
71 | /* |
72 | * File descriptor number for the pidfd for the thread-group leader of |
73 | * the coredumping task installed into the usermode helper's file |
74 | * descriptor table. |
75 | */ |
76 | #define COREDUMP_PIDFD_NUMBER 3 |
77 | |
78 | static int core_uses_pid; |
79 | static unsigned int core_pipe_limit; |
80 | static unsigned int core_sort_vma; |
81 | static char core_pattern[CORENAME_MAX_SIZE] = "core"; |
82 | static int core_name_size = CORENAME_MAX_SIZE; |
83 | unsigned int core_file_note_size_limit = CORE_FILE_NOTE_SIZE_DEFAULT; |
84 | |
85 | enum coredump_type_t { |
86 | COREDUMP_FILE = 1, |
87 | COREDUMP_PIPE = 2, |
88 | COREDUMP_SOCK = 3, |
89 | }; |
90 | |
91 | struct core_name { |
92 | char *corename; |
93 | int used, size; |
94 | enum coredump_type_t core_type; |
95 | }; |
96 | |
97 | static int expand_corename(struct core_name *cn, int size) |
98 | { |
99 | char *corename; |
100 | |
101 | size = kmalloc_size_roundup(size); |
102 | corename = krealloc(cn->corename, size, GFP_KERNEL); |
103 | |
104 | if (!corename) |
105 | return -ENOMEM; |
106 | |
107 | if (size > core_name_size) /* racy but harmless */ |
108 | core_name_size = size; |
109 | |
110 | cn->size = size; |
111 | cn->corename = corename; |
112 | return 0; |
113 | } |
114 | |
115 | static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt, |
116 | va_list arg) |
117 | { |
118 | int free, need; |
119 | va_list arg_copy; |
120 | |
121 | again: |
122 | free = cn->size - cn->used; |
123 | |
124 | va_copy(arg_copy, arg); |
125 | need = vsnprintf(buf: cn->corename + cn->used, size: free, fmt, args: arg_copy); |
126 | va_end(arg_copy); |
127 | |
128 | if (need < free) { |
129 | cn->used += need; |
130 | return 0; |
131 | } |
132 | |
133 | if (!expand_corename(cn, size: cn->size + need - free + 1)) |
134 | goto again; |
135 | |
136 | return -ENOMEM; |
137 | } |
138 | |
139 | static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...) |
140 | { |
141 | va_list arg; |
142 | int ret; |
143 | |
144 | va_start(arg, fmt); |
145 | ret = cn_vprintf(cn, fmt, arg); |
146 | va_end(arg); |
147 | |
148 | return ret; |
149 | } |
150 | |
151 | static __printf(2, 3) |
152 | int cn_esc_printf(struct core_name *cn, const char *fmt, ...) |
153 | { |
154 | int cur = cn->used; |
155 | va_list arg; |
156 | int ret; |
157 | |
158 | va_start(arg, fmt); |
159 | ret = cn_vprintf(cn, fmt, arg); |
160 | va_end(arg); |
161 | |
162 | if (ret == 0) { |
163 | /* |
164 | * Ensure that this coredump name component can't cause the |
165 | * resulting corefile path to consist of a ".." or ".". |
166 | */ |
167 | if ((cn->used - cur == 1 && cn->corename[cur] == '.') || |
168 | (cn->used - cur == 2 && cn->corename[cur] == '.' |
169 | && cn->corename[cur+1] == '.')) |
170 | cn->corename[cur] = '!'; |
171 | |
172 | /* |
173 | * Empty names are fishy and could be used to create a "//" in a |
174 | * corefile name, causing the coredump to happen one directory |
175 | * level too high. Enforce that all components of the core |
176 | * pattern are at least one character long. |
177 | */ |
178 | if (cn->used == cur) |
179 | ret = cn_printf(cn, fmt: "!"); |
180 | } |
181 | |
182 | for (; cur < cn->used; ++cur) { |
183 | if (cn->corename[cur] == '/') |
184 | cn->corename[cur] = '!'; |
185 | } |
186 | return ret; |
187 | } |
188 | |
189 | static int cn_print_exe_file(struct core_name *cn, bool name_only) |
190 | { |
191 | struct file *exe_file; |
192 | char *pathbuf, *path, *ptr; |
193 | int ret; |
194 | |
195 | exe_file = get_mm_exe_file(current->mm); |
196 | if (!exe_file) |
197 | return cn_esc_printf(cn, fmt: "%s (path unknown)", current->comm); |
198 | |
199 | pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); |
200 | if (!pathbuf) { |
201 | ret = -ENOMEM; |
202 | goto put_exe_file; |
203 | } |
204 | |
205 | path = file_path(exe_file, pathbuf, PATH_MAX); |
206 | if (IS_ERR(ptr: path)) { |
207 | ret = PTR_ERR(ptr: path); |
208 | goto free_buf; |
209 | } |
210 | |
211 | if (name_only) { |
212 | ptr = strrchr(path, '/'); |
213 | if (ptr) |
214 | path = ptr + 1; |
215 | } |
216 | ret = cn_esc_printf(cn, fmt: "%s", path); |
217 | |
218 | free_buf: |
219 | kfree(objp: pathbuf); |
220 | put_exe_file: |
221 | fput(exe_file); |
222 | return ret; |
223 | } |
224 | |
225 | /* format_corename will inspect the pattern parameter, and output a |
226 | * name into corename, which must have space for at least |
227 | * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. |
228 | */ |
229 | static int format_corename(struct core_name *cn, struct coredump_params *cprm, |
230 | size_t **argv, int *argc) |
231 | { |
232 | const struct cred *cred = current_cred(); |
233 | const char *pat_ptr = core_pattern; |
234 | bool was_space = false; |
235 | int pid_in_pattern = 0; |
236 | int err = 0; |
237 | |
238 | cn->used = 0; |
239 | cn->corename = NULL; |
240 | if (*pat_ptr == '|') |
241 | cn->core_type = COREDUMP_PIPE; |
242 | else if (*pat_ptr == '@') |
243 | cn->core_type = COREDUMP_SOCK; |
244 | else |
245 | cn->core_type = COREDUMP_FILE; |
246 | if (expand_corename(cn, size: core_name_size)) |
247 | return -ENOMEM; |
248 | cn->corename[0] = '\0'; |
249 | |
250 | switch (cn->core_type) { |
251 | case COREDUMP_PIPE: { |
252 | int argvs = sizeof(core_pattern) / 2; |
253 | (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL); |
254 | if (!(*argv)) |
255 | return -ENOMEM; |
256 | (*argv)[(*argc)++] = 0; |
257 | ++pat_ptr; |
258 | if (!(*pat_ptr)) |
259 | return -ENOMEM; |
260 | break; |
261 | } |
262 | case COREDUMP_SOCK: { |
263 | /* skip the @ */ |
264 | pat_ptr++; |
265 | if (!(*pat_ptr)) |
266 | return -ENOMEM; |
267 | |
268 | err = cn_printf(cn, fmt: "%s", pat_ptr); |
269 | if (err) |
270 | return err; |
271 | |
272 | /* Require absolute paths. */ |
273 | if (cn->corename[0] != '/') |
274 | return -EINVAL; |
275 | |
276 | /* |
277 | * Ensure we can uses spaces to indicate additional |
278 | * parameters in the future. |
279 | */ |
280 | if (strchr(cn->corename, ' ')) { |
281 | coredump_report_failure("Coredump socket may not %s contain spaces", cn->corename); |
282 | return -EINVAL; |
283 | } |
284 | |
285 | /* |
286 | * Currently no need to parse any other options. |
287 | * Relevant information can be retrieved from the peer |
288 | * pidfd retrievable via SO_PEERPIDFD by the receiver or |
289 | * via /proc/<pid>, using the SO_PEERPIDFD to guard |
290 | * against pid recycling when opening /proc/<pid>. |
291 | */ |
292 | return 0; |
293 | } |
294 | case COREDUMP_FILE: |
295 | break; |
296 | default: |
297 | WARN_ON_ONCE(true); |
298 | return -EINVAL; |
299 | } |
300 | |
301 | /* Repeat as long as we have more pattern to process and more output |
302 | space */ |
303 | while (*pat_ptr) { |
304 | /* |
305 | * Split on spaces before doing template expansion so that |
306 | * %e and %E don't get split if they have spaces in them |
307 | */ |
308 | if (cn->core_type == COREDUMP_PIPE) { |
309 | if (isspace(*pat_ptr)) { |
310 | if (cn->used != 0) |
311 | was_space = true; |
312 | pat_ptr++; |
313 | continue; |
314 | } else if (was_space) { |
315 | was_space = false; |
316 | err = cn_printf(cn, fmt: "%c", '\0'); |
317 | if (err) |
318 | return err; |
319 | (*argv)[(*argc)++] = cn->used; |
320 | } |
321 | } |
322 | if (*pat_ptr != '%') { |
323 | err = cn_printf(cn, fmt: "%c", *pat_ptr++); |
324 | } else { |
325 | switch (*++pat_ptr) { |
326 | /* single % at the end, drop that */ |
327 | case 0: |
328 | goto out; |
329 | /* Double percent, output one percent */ |
330 | case '%': |
331 | err = cn_printf(cn, fmt: "%c", '%'); |
332 | break; |
333 | /* pid */ |
334 | case 'p': |
335 | pid_in_pattern = 1; |
336 | err = cn_printf(cn, fmt: "%d", |
337 | task_tgid_vnr(current)); |
338 | break; |
339 | /* global pid */ |
340 | case 'P': |
341 | err = cn_printf(cn, fmt: "%d", |
342 | task_tgid_nr(current)); |
343 | break; |
344 | case 'i': |
345 | err = cn_printf(cn, fmt: "%d", |
346 | task_pid_vnr(current)); |
347 | break; |
348 | case 'I': |
349 | err = cn_printf(cn, fmt: "%d", |
350 | task_pid_nr(current)); |
351 | break; |
352 | /* uid */ |
353 | case 'u': |
354 | err = cn_printf(cn, fmt: "%u", |
355 | from_kuid(to: &init_user_ns, |
356 | uid: cred->uid)); |
357 | break; |
358 | /* gid */ |
359 | case 'g': |
360 | err = cn_printf(cn, fmt: "%u", |
361 | from_kgid(to: &init_user_ns, |
362 | gid: cred->gid)); |
363 | break; |
364 | case 'd': |
365 | err = cn_printf(cn, fmt: "%d", |
366 | __get_dumpable(mm_flags: cprm->mm_flags)); |
367 | break; |
368 | /* signal that caused the coredump */ |
369 | case 's': |
370 | err = cn_printf(cn, fmt: "%d", |
371 | cprm->siginfo->si_signo); |
372 | break; |
373 | /* UNIX time of coredump */ |
374 | case 't': { |
375 | time64_t time; |
376 | |
377 | time = ktime_get_real_seconds(); |
378 | err = cn_printf(cn, fmt: "%lld", time); |
379 | break; |
380 | } |
381 | /* hostname */ |
382 | case 'h': |
383 | down_read(sem: &uts_sem); |
384 | err = cn_esc_printf(cn, fmt: "%s", |
385 | utsname()->nodename); |
386 | up_read(sem: &uts_sem); |
387 | break; |
388 | /* executable, could be changed by prctl PR_SET_NAME etc */ |
389 | case 'e': |
390 | err = cn_esc_printf(cn, fmt: "%s", current->comm); |
391 | break; |
392 | /* file name of executable */ |
393 | case 'f': |
394 | err = cn_print_exe_file(cn, name_only: true); |
395 | break; |
396 | case 'E': |
397 | err = cn_print_exe_file(cn, name_only: false); |
398 | break; |
399 | /* core limit size */ |
400 | case 'c': |
401 | err = cn_printf(cn, fmt: "%lu", |
402 | rlimit(RLIMIT_CORE)); |
403 | break; |
404 | /* CPU the task ran on */ |
405 | case 'C': |
406 | err = cn_printf(cn, fmt: "%d", cprm->cpu); |
407 | break; |
408 | /* pidfd number */ |
409 | case 'F': { |
410 | /* |
411 | * Installing a pidfd only makes sense if |
412 | * we actually spawn a usermode helper. |
413 | */ |
414 | if (cn->core_type != COREDUMP_PIPE) |
415 | break; |
416 | |
417 | /* |
418 | * Note that we'll install a pidfd for the |
419 | * thread-group leader. We know that task |
420 | * linkage hasn't been removed yet and even if |
421 | * this @current isn't the actual thread-group |
422 | * leader we know that the thread-group leader |
423 | * cannot be reaped until @current has exited. |
424 | */ |
425 | cprm->pid = task_tgid(current); |
426 | err = cn_printf(cn, fmt: "%d", COREDUMP_PIDFD_NUMBER); |
427 | break; |
428 | } |
429 | default: |
430 | break; |
431 | } |
432 | ++pat_ptr; |
433 | } |
434 | |
435 | if (err) |
436 | return err; |
437 | } |
438 | |
439 | out: |
440 | /* Backward compatibility with core_uses_pid: |
441 | * |
442 | * If core_pattern does not include a %p (as is the default) |
443 | * and core_uses_pid is set, then .%pid will be appended to |
444 | * the filename. Do not do this for piped commands. */ |
445 | if (cn->core_type == COREDUMP_FILE && !pid_in_pattern && core_uses_pid) |
446 | return cn_printf(cn, fmt: ".%d", task_tgid_vnr(current)); |
447 | |
448 | return 0; |
449 | } |
450 | |
451 | static int zap_process(struct signal_struct *signal, int exit_code) |
452 | { |
453 | struct task_struct *t; |
454 | int nr = 0; |
455 | |
456 | signal->flags = SIGNAL_GROUP_EXIT; |
457 | signal->group_exit_code = exit_code; |
458 | signal->group_stop_count = 0; |
459 | |
460 | __for_each_thread(signal, t) { |
461 | task_clear_jobctl_pending(task: t, JOBCTL_PENDING_MASK); |
462 | if (t != current && !(t->flags & PF_POSTCOREDUMP)) { |
463 | sigaddset(set: &t->pending.signal, SIGKILL); |
464 | signal_wake_up(t, fatal: 1); |
465 | nr++; |
466 | } |
467 | } |
468 | |
469 | return nr; |
470 | } |
471 | |
472 | static int zap_threads(struct task_struct *tsk, |
473 | struct core_state *core_state, int exit_code) |
474 | { |
475 | struct signal_struct *signal = tsk->signal; |
476 | int nr = -EAGAIN; |
477 | |
478 | spin_lock_irq(lock: &tsk->sighand->siglock); |
479 | if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) { |
480 | /* Allow SIGKILL, see prepare_signal() */ |
481 | signal->core_state = core_state; |
482 | nr = zap_process(signal, exit_code); |
483 | clear_tsk_thread_flag(tsk, TIF_SIGPENDING); |
484 | tsk->flags |= PF_DUMPCORE; |
485 | atomic_set(v: &core_state->nr_threads, i: nr); |
486 | } |
487 | spin_unlock_irq(lock: &tsk->sighand->siglock); |
488 | return nr; |
489 | } |
490 | |
491 | static int coredump_wait(int exit_code, struct core_state *core_state) |
492 | { |
493 | struct task_struct *tsk = current; |
494 | int core_waiters = -EBUSY; |
495 | |
496 | init_completion(x: &core_state->startup); |
497 | core_state->dumper.task = tsk; |
498 | core_state->dumper.next = NULL; |
499 | |
500 | core_waiters = zap_threads(tsk, core_state, exit_code); |
501 | if (core_waiters > 0) { |
502 | struct core_thread *ptr; |
503 | |
504 | wait_for_completion_state(x: &core_state->startup, |
505 | TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); |
506 | /* |
507 | * Wait for all the threads to become inactive, so that |
508 | * all the thread context (extended register state, like |
509 | * fpu etc) gets copied to the memory. |
510 | */ |
511 | ptr = core_state->dumper.next; |
512 | while (ptr != NULL) { |
513 | wait_task_inactive(ptr->task, TASK_ANY); |
514 | ptr = ptr->next; |
515 | } |
516 | } |
517 | |
518 | return core_waiters; |
519 | } |
520 | |
521 | static void coredump_finish(bool core_dumped) |
522 | { |
523 | struct core_thread *curr, *next; |
524 | struct task_struct *task; |
525 | |
526 | spin_lock_irq(lock: ¤t->sighand->siglock); |
527 | if (core_dumped && !__fatal_signal_pending(current)) |
528 | current->signal->group_exit_code |= 0x80; |
529 | next = current->signal->core_state->dumper.next; |
530 | current->signal->core_state = NULL; |
531 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
532 | |
533 | while ((curr = next) != NULL) { |
534 | next = curr->next; |
535 | task = curr->task; |
536 | /* |
537 | * see coredump_task_exit(), curr->task must not see |
538 | * ->task == NULL before we read ->next. |
539 | */ |
540 | smp_mb(); |
541 | curr->task = NULL; |
542 | wake_up_process(tsk: task); |
543 | } |
544 | } |
545 | |
546 | static bool dump_interrupted(void) |
547 | { |
548 | /* |
549 | * SIGKILL or freezing() interrupt the coredumping. Perhaps we |
550 | * can do try_to_freeze() and check __fatal_signal_pending(), |
551 | * but then we need to teach dump_write() to restart and clear |
552 | * TIF_SIGPENDING. |
553 | */ |
554 | return fatal_signal_pending(current) || freezing(current); |
555 | } |
556 | |
557 | static void wait_for_dump_helpers(struct file *file) |
558 | { |
559 | struct pipe_inode_info *pipe = file->private_data; |
560 | |
561 | pipe_lock(pipe); |
562 | pipe->readers++; |
563 | pipe->writers--; |
564 | wake_up_interruptible_sync(&pipe->rd_wait); |
565 | kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
566 | pipe_unlock(pipe); |
567 | |
568 | /* |
569 | * We actually want wait_event_freezable() but then we need |
570 | * to clear TIF_SIGPENDING and improve dump_interrupted(). |
571 | */ |
572 | wait_event_interruptible(pipe->rd_wait, pipe->readers == 1); |
573 | |
574 | pipe_lock(pipe); |
575 | pipe->readers--; |
576 | pipe->writers++; |
577 | pipe_unlock(pipe); |
578 | } |
579 | |
580 | /* |
581 | * umh_coredump_setup |
582 | * helper function to customize the process used |
583 | * to collect the core in userspace. Specifically |
584 | * it sets up a pipe and installs it as fd 0 (stdin) |
585 | * for the process. Returns 0 on success, or |
586 | * PTR_ERR on failure. |
587 | * Note that it also sets the core limit to 1. This |
588 | * is a special value that we use to trap recursive |
589 | * core dumps |
590 | */ |
591 | static int umh_coredump_setup(struct subprocess_info *info, struct cred *new) |
592 | { |
593 | struct file *files[2]; |
594 | struct coredump_params *cp = (struct coredump_params *)info->data; |
595 | int err; |
596 | |
597 | if (cp->pid) { |
598 | struct file *pidfs_file __free(fput) = NULL; |
599 | |
600 | pidfs_file = pidfs_alloc_file(pid: cp->pid, flags: 0); |
601 | if (IS_ERR(ptr: pidfs_file)) |
602 | return PTR_ERR(ptr: pidfs_file); |
603 | |
604 | pidfs_coredump(cprm: cp); |
605 | |
606 | /* |
607 | * Usermode helpers are childen of either |
608 | * system_unbound_wq or of kthreadd. So we know that |
609 | * we're starting off with a clean file descriptor |
610 | * table. So we should always be able to use |
611 | * COREDUMP_PIDFD_NUMBER as our file descriptor value. |
612 | */ |
613 | err = replace_fd(COREDUMP_PIDFD_NUMBER, file: pidfs_file, flags: 0); |
614 | if (err < 0) |
615 | return err; |
616 | } |
617 | |
618 | err = create_pipe_files(files, 0); |
619 | if (err) |
620 | return err; |
621 | |
622 | cp->file = files[1]; |
623 | |
624 | err = replace_fd(fd: 0, file: files[0], flags: 0); |
625 | fput(files[0]); |
626 | if (err < 0) |
627 | return err; |
628 | |
629 | /* and disallow core files too */ |
630 | current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; |
631 | |
632 | return 0; |
633 | } |
634 | |
635 | void do_coredump(const kernel_siginfo_t *siginfo) |
636 | { |
637 | struct core_state core_state; |
638 | struct core_name cn; |
639 | struct mm_struct *mm = current->mm; |
640 | struct linux_binfmt * binfmt; |
641 | const struct cred *old_cred; |
642 | struct cred *cred; |
643 | int retval = 0; |
644 | size_t *argv = NULL; |
645 | int argc = 0; |
646 | /* require nonrelative corefile path and be extra careful */ |
647 | bool need_suid_safe = false; |
648 | bool core_dumped = false; |
649 | static atomic_t core_dump_count = ATOMIC_INIT(0); |
650 | struct coredump_params cprm = { |
651 | .siginfo = siginfo, |
652 | .limit = rlimit(RLIMIT_CORE), |
653 | /* |
654 | * We must use the same mm->flags while dumping core to avoid |
655 | * inconsistency of bit flags, since this flag is not protected |
656 | * by any locks. |
657 | */ |
658 | .mm_flags = mm->flags, |
659 | .vma_meta = NULL, |
660 | .cpu = raw_smp_processor_id(), |
661 | }; |
662 | |
663 | audit_core_dumps(signr: siginfo->si_signo); |
664 | |
665 | binfmt = mm->binfmt; |
666 | if (!binfmt || !binfmt->core_dump) |
667 | goto fail; |
668 | if (!__get_dumpable(mm_flags: cprm.mm_flags)) |
669 | goto fail; |
670 | |
671 | cred = prepare_creds(); |
672 | if (!cred) |
673 | goto fail; |
674 | /* |
675 | * We cannot trust fsuid as being the "true" uid of the process |
676 | * nor do we know its entire history. We only know it was tainted |
677 | * so we dump it as root in mode 2, and only into a controlled |
678 | * environment (pipe handler or fully qualified path). |
679 | */ |
680 | if (__get_dumpable(mm_flags: cprm.mm_flags) == SUID_DUMP_ROOT) { |
681 | /* Setuid core dump mode */ |
682 | cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */ |
683 | need_suid_safe = true; |
684 | } |
685 | |
686 | retval = coredump_wait(siginfo->si_signo, &core_state); |
687 | if (retval < 0) |
688 | goto fail_creds; |
689 | |
690 | old_cred = override_creds(cred); |
691 | |
692 | retval = format_corename(&cn, &cprm, &argv, &argc); |
693 | if (retval < 0) { |
694 | coredump_report_failure("format_corename failed, aborting core"); |
695 | goto fail_unlock; |
696 | } |
697 | |
698 | switch (cn.core_type) { |
699 | case COREDUMP_FILE: { |
700 | struct mnt_idmap *idmap; |
701 | struct inode *inode; |
702 | int open_flags = O_CREAT | O_WRONLY | O_NOFOLLOW | |
703 | O_LARGEFILE | O_EXCL; |
704 | |
705 | if (cprm.limit < binfmt->min_coredump) |
706 | goto fail_unlock; |
707 | |
708 | if (need_suid_safe && cn.corename[0] != '/') { |
709 | coredump_report_failure( |
710 | "this process can only dump core to a fully qualified path, skipping core dump"); |
711 | goto fail_unlock; |
712 | } |
713 | |
714 | /* |
715 | * Unlink the file if it exists unless this is a SUID |
716 | * binary - in that case, we're running around with root |
717 | * privs and don't want to unlink another user's coredump. |
718 | */ |
719 | if (!need_suid_safe) { |
720 | /* |
721 | * If it doesn't exist, that's fine. If there's some |
722 | * other problem, we'll catch it at the filp_open(). |
723 | */ |
724 | do_unlinkat(AT_FDCWD, getname_kernel(cn.corename)); |
725 | } |
726 | |
727 | /* |
728 | * There is a race between unlinking and creating the |
729 | * file, but if that causes an EEXIST here, that's |
730 | * fine - another process raced with us while creating |
731 | * the corefile, and the other process won. To userspace, |
732 | * what matters is that at least one of the two processes |
733 | * writes its coredump successfully, not which one. |
734 | */ |
735 | if (need_suid_safe) { |
736 | /* |
737 | * Using user namespaces, normal user tasks can change |
738 | * their current->fs->root to point to arbitrary |
739 | * directories. Since the intention of the "only dump |
740 | * with a fully qualified path" rule is to control where |
741 | * coredumps may be placed using root privileges, |
742 | * current->fs->root must not be used. Instead, use the |
743 | * root directory of init_task. |
744 | */ |
745 | struct path root; |
746 | |
747 | task_lock(&init_task); |
748 | get_fs_root(init_task.fs, &root); |
749 | task_unlock(&init_task); |
750 | cprm.file = file_open_root(&root, cn.corename, |
751 | open_flags, 0600); |
752 | path_put(&root); |
753 | } else { |
754 | cprm.file = filp_open(cn.corename, open_flags, 0600); |
755 | } |
756 | if (IS_ERR(cprm.file)) |
757 | goto fail_unlock; |
758 | |
759 | inode = file_inode(cprm.file); |
760 | if (inode->i_nlink > 1) |
761 | goto close_fail; |
762 | if (d_unhashed(cprm.file->f_path.dentry)) |
763 | goto close_fail; |
764 | /* |
765 | * AK: actually i see no reason to not allow this for named |
766 | * pipes etc, but keep the previous behaviour for now. |
767 | */ |
768 | if (!S_ISREG(inode->i_mode)) |
769 | goto close_fail; |
770 | /* |
771 | * Don't dump core if the filesystem changed owner or mode |
772 | * of the file during file creation. This is an issue when |
773 | * a process dumps core while its cwd is e.g. on a vfat |
774 | * filesystem. |
775 | */ |
776 | idmap = file_mnt_idmap(cprm.file); |
777 | if (!vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), |
778 | current_fsuid())) { |
779 | coredump_report_failure("Core dump to %s aborted: " |
780 | "cannot preserve file owner", cn.corename); |
781 | goto close_fail; |
782 | } |
783 | if ((inode->i_mode & 0677) != 0600) { |
784 | coredump_report_failure("Core dump to %s aborted: " |
785 | "cannot preserve file permissions", cn.corename); |
786 | goto close_fail; |
787 | } |
788 | if (!(cprm.file->f_mode & FMODE_CAN_WRITE)) |
789 | goto close_fail; |
790 | if (do_truncate(idmap, cprm.file->f_path.dentry, |
791 | 0, 0, cprm.file)) |
792 | goto close_fail; |
793 | break; |
794 | } |
795 | case COREDUMP_PIPE: { |
796 | int argi; |
797 | int dump_count; |
798 | char **helper_argv; |
799 | struct subprocess_info *sub_info; |
800 | |
801 | if (cprm.limit == 1) { |
802 | /* See umh_coredump_setup() which sets RLIMIT_CORE = 1. |
803 | * |
804 | * Normally core limits are irrelevant to pipes, since |
805 | * we're not writing to the file system, but we use |
806 | * cprm.limit of 1 here as a special value, this is a |
807 | * consistent way to catch recursive crashes. |
808 | * We can still crash if the core_pattern binary sets |
809 | * RLIM_CORE = !1, but it runs as root, and can do |
810 | * lots of stupid things. |
811 | * |
812 | * Note that we use task_tgid_vnr here to grab the pid |
813 | * of the process group leader. That way we get the |
814 | * right pid if a thread in a multi-threaded |
815 | * core_pattern process dies. |
816 | */ |
817 | coredump_report_failure("RLIMIT_CORE is set to 1, aborting core"); |
818 | goto fail_unlock; |
819 | } |
820 | cprm.limit = RLIM_INFINITY; |
821 | |
822 | dump_count = atomic_inc_return(&core_dump_count); |
823 | if (core_pipe_limit && (core_pipe_limit < dump_count)) { |
824 | coredump_report_failure("over core_pipe_limit, skipping core dump"); |
825 | goto fail_dropcount; |
826 | } |
827 | |
828 | helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv), |
829 | GFP_KERNEL); |
830 | if (!helper_argv) { |
831 | coredump_report_failure("%s failed to allocate memory", __func__); |
832 | goto fail_dropcount; |
833 | } |
834 | for (argi = 0; argi < argc; argi++) |
835 | helper_argv[argi] = cn.corename + argv[argi]; |
836 | helper_argv[argi] = NULL; |
837 | |
838 | retval = -ENOMEM; |
839 | sub_info = call_usermodehelper_setup(helper_argv[0], |
840 | helper_argv, NULL, GFP_KERNEL, |
841 | umh_coredump_setup, NULL, &cprm); |
842 | if (sub_info) |
843 | retval = call_usermodehelper_exec(sub_info, |
844 | UMH_WAIT_EXEC); |
845 | |
846 | kfree(helper_argv); |
847 | if (retval) { |
848 | coredump_report_failure("|%s pipe failed", cn.corename); |
849 | goto close_fail; |
850 | } |
851 | break; |
852 | } |
853 | case COREDUMP_SOCK: { |
854 | #ifdef CONFIG_UNIX |
855 | struct file *file __free(fput) = NULL; |
856 | struct sockaddr_un addr = { |
857 | .sun_family = AF_UNIX, |
858 | }; |
859 | ssize_t addr_len; |
860 | struct socket *socket; |
861 | |
862 | addr_len = strscpy(addr.sun_path, cn.corename); |
863 | if (addr_len < 0) |
864 | goto close_fail; |
865 | addr_len += offsetof(struct sockaddr_un, sun_path) + 1; |
866 | |
867 | /* |
868 | * It is possible that the userspace process which is |
869 | * supposed to handle the coredump and is listening on |
870 | * the AF_UNIX socket coredumps. Userspace should just |
871 | * mark itself non dumpable. |
872 | */ |
873 | |
874 | retval = sock_create_kern(&init_net, AF_UNIX, SOCK_STREAM, 0, &socket); |
875 | if (retval < 0) |
876 | goto close_fail; |
877 | |
878 | file = sock_alloc_file(socket, 0, NULL); |
879 | if (IS_ERR(file)) |
880 | goto close_fail; |
881 | |
882 | /* |
883 | * Set the thread-group leader pid which is used for the |
884 | * peer credentials during connect() below. Then |
885 | * immediately register it in pidfs... |
886 | */ |
887 | cprm.pid = task_tgid(current); |
888 | retval = pidfs_register_pid(cprm.pid); |
889 | if (retval) |
890 | goto close_fail; |
891 | |
892 | /* |
893 | * ... and set the coredump information so userspace |
894 | * has it available after connect()... |
895 | */ |
896 | pidfs_coredump(&cprm); |
897 | |
898 | retval = kernel_connect(socket, (struct sockaddr *)(&addr), |
899 | addr_len, O_NONBLOCK | SOCK_COREDUMP); |
900 | |
901 | /* |
902 | * ... Make sure to only put our reference after connect() took |
903 | * its own reference keeping the pidfs entry alive ... |
904 | */ |
905 | pidfs_put_pid(cprm.pid); |
906 | |
907 | if (retval) { |
908 | if (retval == -EAGAIN) |
909 | coredump_report_failure("Coredump socket %s receive queue full", addr.sun_path); |
910 | else |
911 | coredump_report_failure("Coredump socket connection %s failed %d", addr.sun_path, retval); |
912 | goto close_fail; |
913 | } |
914 | |
915 | /* ... and validate that @sk_peer_pid matches @cprm.pid. */ |
916 | if (WARN_ON_ONCE(unix_peer(socket->sk)->sk_peer_pid != cprm.pid)) |
917 | goto close_fail; |
918 | |
919 | cprm.limit = RLIM_INFINITY; |
920 | cprm.file = no_free_ptr(file); |
921 | #else |
922 | coredump_report_failure("Core dump socket support %s disabled", cn.corename); |
923 | goto close_fail; |
924 | #endif |
925 | break; |
926 | } |
927 | default: |
928 | WARN_ON_ONCE(true); |
929 | goto close_fail; |
930 | } |
931 | |
932 | /* get us an unshared descriptor table; almost always a no-op */ |
933 | /* The cell spufs coredump code reads the file descriptor tables */ |
934 | retval = unshare_files(); |
935 | if (retval) |
936 | goto close_fail; |
937 | if (!dump_interrupted()) { |
938 | /* |
939 | * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would |
940 | * have this set to NULL. |
941 | */ |
942 | if (!cprm.file) { |
943 | coredump_report_failure("Core dump to |%s disabled", cn.corename); |
944 | goto close_fail; |
945 | } |
946 | if (!dump_vma_snapshot(&cprm)) |
947 | goto close_fail; |
948 | |
949 | file_start_write(cprm.file); |
950 | core_dumped = binfmt->core_dump(&cprm); |
951 | /* |
952 | * Ensures that file size is big enough to contain the current |
953 | * file postion. This prevents gdb from complaining about |
954 | * a truncated file if the last "write" to the file was |
955 | * dump_skip. |
956 | */ |
957 | if (cprm.to_skip) { |
958 | cprm.to_skip--; |
959 | dump_emit(&cprm, "", 1); |
960 | } |
961 | file_end_write(cprm.file); |
962 | free_vma_snapshot(&cprm); |
963 | } |
964 | |
965 | #ifdef CONFIG_UNIX |
966 | /* Let userspace know we're done processing the coredump. */ |
967 | if (sock_from_file(cprm.file)) |
968 | kernel_sock_shutdown(sock_from_file(cprm.file), SHUT_WR); |
969 | #endif |
970 | |
971 | /* |
972 | * When core_pipe_limit is set we wait for the coredump server |
973 | * or usermodehelper to finish before exiting so it can e.g., |
974 | * inspect /proc/<pid>. |
975 | */ |
976 | if (core_pipe_limit) { |
977 | switch (cn.core_type) { |
978 | case COREDUMP_PIPE: |
979 | wait_for_dump_helpers(cprm.file); |
980 | break; |
981 | #ifdef CONFIG_UNIX |
982 | case COREDUMP_SOCK: { |
983 | ssize_t n; |
984 | |
985 | /* |
986 | * We use a simple read to wait for the coredump |
987 | * processing to finish. Either the socket is |
988 | * closed or we get sent unexpected data. In |
989 | * both cases, we're done. |
990 | */ |
991 | n = __kernel_read(cprm.file, &(char){ 0 }, 1, NULL); |
992 | if (n != 0) |
993 | coredump_report_failure("Unexpected data on coredump socket"); |
994 | break; |
995 | } |
996 | #endif |
997 | default: |
998 | break; |
999 | } |
1000 | } |
1001 | |
1002 | close_fail: |
1003 | if (cprm.file) |
1004 | filp_close(cprm.file, NULL); |
1005 | fail_dropcount: |
1006 | if (cn.core_type == COREDUMP_PIPE) |
1007 | atomic_dec(&core_dump_count); |
1008 | fail_unlock: |
1009 | kfree(argv); |
1010 | kfree(cn.corename); |
1011 | coredump_finish(core_dumped); |
1012 | revert_creds(old_cred); |
1013 | fail_creds: |
1014 | put_cred(cred); |
1015 | fail: |
1016 | return; |
1017 | } |
1018 | |
1019 | /* |
1020 | * Core dumping helper functions. These are the only things you should |
1021 | * do on a core-file: use only these functions to write out all the |
1022 | * necessary info. |
1023 | */ |
1024 | static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr) |
1025 | { |
1026 | struct file *file = cprm->file; |
1027 | loff_t pos = file->f_pos; |
1028 | ssize_t n; |
1029 | |
1030 | if (cprm->written + nr > cprm->limit) |
1031 | return 0; |
1032 | if (dump_interrupted()) |
1033 | return 0; |
1034 | n = __kernel_write(file, addr, nr, &pos); |
1035 | if (n != nr) |
1036 | return 0; |
1037 | file->f_pos = pos; |
1038 | cprm->written += n; |
1039 | cprm->pos += n; |
1040 | |
1041 | return 1; |
1042 | } |
1043 | |
1044 | static int __dump_skip(struct coredump_params *cprm, size_t nr) |
1045 | { |
1046 | static char zeroes[PAGE_SIZE]; |
1047 | struct file *file = cprm->file; |
1048 | |
1049 | if (file->f_mode & FMODE_LSEEK) { |
1050 | if (dump_interrupted() || vfs_llseek(file, offset: nr, SEEK_CUR) < 0) |
1051 | return 0; |
1052 | cprm->pos += nr; |
1053 | return 1; |
1054 | } |
1055 | |
1056 | while (nr > PAGE_SIZE) { |
1057 | if (!__dump_emit(cprm, addr: zeroes, PAGE_SIZE)) |
1058 | return 0; |
1059 | nr -= PAGE_SIZE; |
1060 | } |
1061 | |
1062 | return __dump_emit(cprm, addr: zeroes, nr); |
1063 | } |
1064 | |
1065 | int dump_emit(struct coredump_params *cprm, const void *addr, int nr) |
1066 | { |
1067 | if (cprm->to_skip) { |
1068 | if (!__dump_skip(cprm, nr: cprm->to_skip)) |
1069 | return 0; |
1070 | cprm->to_skip = 0; |
1071 | } |
1072 | return __dump_emit(cprm, addr, nr); |
1073 | } |
1074 | EXPORT_SYMBOL(dump_emit); |
1075 | |
1076 | void dump_skip_to(struct coredump_params *cprm, unsigned long pos) |
1077 | { |
1078 | cprm->to_skip = pos - cprm->pos; |
1079 | } |
1080 | EXPORT_SYMBOL(dump_skip_to); |
1081 | |
1082 | void dump_skip(struct coredump_params *cprm, size_t nr) |
1083 | { |
1084 | cprm->to_skip += nr; |
1085 | } |
1086 | EXPORT_SYMBOL(dump_skip); |
1087 | |
1088 | #ifdef CONFIG_ELF_CORE |
1089 | static int dump_emit_page(struct coredump_params *cprm, struct page *page) |
1090 | { |
1091 | struct bio_vec bvec; |
1092 | struct iov_iter iter; |
1093 | struct file *file = cprm->file; |
1094 | loff_t pos; |
1095 | ssize_t n; |
1096 | |
1097 | if (!page) |
1098 | return 0; |
1099 | |
1100 | if (cprm->to_skip) { |
1101 | if (!__dump_skip(cprm, nr: cprm->to_skip)) |
1102 | return 0; |
1103 | cprm->to_skip = 0; |
1104 | } |
1105 | if (cprm->written + PAGE_SIZE > cprm->limit) |
1106 | return 0; |
1107 | if (dump_interrupted()) |
1108 | return 0; |
1109 | pos = file->f_pos; |
1110 | bvec_set_page(bv: &bvec, page, PAGE_SIZE, offset: 0); |
1111 | iov_iter_bvec(i: &iter, ITER_SOURCE, bvec: &bvec, nr_segs: 1, PAGE_SIZE); |
1112 | n = __kernel_write_iter(file: cprm->file, from: &iter, pos: &pos); |
1113 | if (n != PAGE_SIZE) |
1114 | return 0; |
1115 | file->f_pos = pos; |
1116 | cprm->written += PAGE_SIZE; |
1117 | cprm->pos += PAGE_SIZE; |
1118 | |
1119 | return 1; |
1120 | } |
1121 | |
1122 | /* |
1123 | * If we might get machine checks from kernel accesses during the |
1124 | * core dump, let's get those errors early rather than during the |
1125 | * IO. This is not performance-critical enough to warrant having |
1126 | * all the machine check logic in the iovec paths. |
1127 | */ |
1128 | #ifdef copy_mc_to_kernel |
1129 | |
1130 | #define dump_page_alloc() alloc_page(GFP_KERNEL) |
1131 | #define dump_page_free(x) __free_page(x) |
1132 | static struct page *dump_page_copy(struct page *src, struct page *dst) |
1133 | { |
1134 | void *buf = kmap_local_page(page: src); |
1135 | size_t left = copy_mc_to_kernel(page_address(dst), from: buf, PAGE_SIZE); |
1136 | kunmap_local(buf); |
1137 | return left ? NULL : dst; |
1138 | } |
1139 | |
1140 | #else |
1141 | |
1142 | /* We just want to return non-NULL; it's never used. */ |
1143 | #define dump_page_alloc() ERR_PTR(-EINVAL) |
1144 | #define dump_page_free(x) ((void)(x)) |
1145 | static inline struct page *dump_page_copy(struct page *src, struct page *dst) |
1146 | { |
1147 | return src; |
1148 | } |
1149 | #endif |
1150 | |
1151 | int dump_user_range(struct coredump_params *cprm, unsigned long start, |
1152 | unsigned long len) |
1153 | { |
1154 | unsigned long addr; |
1155 | struct page *dump_page; |
1156 | int locked, ret; |
1157 | |
1158 | dump_page = dump_page_alloc(); |
1159 | if (!dump_page) |
1160 | return 0; |
1161 | |
1162 | ret = 0; |
1163 | locked = 0; |
1164 | for (addr = start; addr < start + len; addr += PAGE_SIZE) { |
1165 | struct page *page; |
1166 | |
1167 | if (!locked) { |
1168 | if (mmap_read_lock_killable(current->mm)) |
1169 | goto out; |
1170 | locked = 1; |
1171 | } |
1172 | |
1173 | /* |
1174 | * To avoid having to allocate page tables for virtual address |
1175 | * ranges that have never been used yet, and also to make it |
1176 | * easy to generate sparse core files, use a helper that returns |
1177 | * NULL when encountering an empty page table entry that would |
1178 | * otherwise have been filled with the zero page. |
1179 | */ |
1180 | page = get_dump_page(addr, locked: &locked); |
1181 | if (page) { |
1182 | if (locked) { |
1183 | mmap_read_unlock(current->mm); |
1184 | locked = 0; |
1185 | } |
1186 | int stop = !dump_emit_page(cprm, page: dump_page_copy(src: page, dst: dump_page)); |
1187 | put_page(page); |
1188 | if (stop) |
1189 | goto out; |
1190 | } else { |
1191 | dump_skip(cprm, PAGE_SIZE); |
1192 | } |
1193 | |
1194 | if (dump_interrupted()) |
1195 | goto out; |
1196 | |
1197 | if (!need_resched()) |
1198 | continue; |
1199 | if (locked) { |
1200 | mmap_read_unlock(current->mm); |
1201 | locked = 0; |
1202 | } |
1203 | cond_resched(); |
1204 | } |
1205 | ret = 1; |
1206 | out: |
1207 | if (locked) |
1208 | mmap_read_unlock(current->mm); |
1209 | |
1210 | dump_page_free(dump_page); |
1211 | return ret; |
1212 | } |
1213 | #endif |
1214 | |
1215 | int dump_align(struct coredump_params *cprm, int align) |
1216 | { |
1217 | unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1); |
1218 | if (align & (align - 1)) |
1219 | return 0; |
1220 | if (mod) |
1221 | cprm->to_skip += align - mod; |
1222 | return 1; |
1223 | } |
1224 | EXPORT_SYMBOL(dump_align); |
1225 | |
1226 | #ifdef CONFIG_SYSCTL |
1227 | |
1228 | void validate_coredump_safety(void) |
1229 | { |
1230 | if (suid_dumpable == SUID_DUMP_ROOT && |
1231 | core_pattern[0] != '/' && core_pattern[0] != '|' && core_pattern[0] != '@') { |
1232 | |
1233 | coredump_report_failure("Unsafe core_pattern used with fs.suid_dumpable=2: " |
1234 | "pipe handler or fully qualified core dump path required. " |
1235 | "Set kernel.core_pattern before fs.suid_dumpable."); |
1236 | } |
1237 | } |
1238 | |
1239 | static inline bool check_coredump_socket(void) |
1240 | { |
1241 | if (core_pattern[0] != '@') |
1242 | return true; |
1243 | |
1244 | /* |
1245 | * Coredump socket must be located in the initial mount |
1246 | * namespace. Don't give the impression that anything else is |
1247 | * supported right now. |
1248 | */ |
1249 | if (current->nsproxy->mnt_ns != init_task.nsproxy->mnt_ns) |
1250 | return false; |
1251 | |
1252 | /* Must be an absolute path. */ |
1253 | if (*(core_pattern + 1) != '/') |
1254 | return false; |
1255 | |
1256 | return true; |
1257 | } |
1258 | |
1259 | static int proc_dostring_coredump(const struct ctl_table *table, int write, |
1260 | void *buffer, size_t *lenp, loff_t *ppos) |
1261 | { |
1262 | int error; |
1263 | ssize_t retval; |
1264 | char old_core_pattern[CORENAME_MAX_SIZE]; |
1265 | |
1266 | retval = strscpy(old_core_pattern, core_pattern, CORENAME_MAX_SIZE); |
1267 | |
1268 | error = proc_dostring(table, write, buffer, lenp, ppos); |
1269 | if (error) |
1270 | return error; |
1271 | if (!check_coredump_socket()) { |
1272 | strscpy(core_pattern, old_core_pattern, retval + 1); |
1273 | return -EINVAL; |
1274 | } |
1275 | |
1276 | validate_coredump_safety(); |
1277 | return error; |
1278 | } |
1279 | |
1280 | static const unsigned int core_file_note_size_min = CORE_FILE_NOTE_SIZE_DEFAULT; |
1281 | static const unsigned int core_file_note_size_max = CORE_FILE_NOTE_SIZE_MAX; |
1282 | static char core_modes[] = { |
1283 | "file\npipe" |
1284 | #ifdef CONFIG_UNIX |
1285 | "\nsocket" |
1286 | #endif |
1287 | }; |
1288 | |
1289 | static const struct ctl_table coredump_sysctls[] = { |
1290 | { |
1291 | .procname = "core_uses_pid", |
1292 | .data = &core_uses_pid, |
1293 | .maxlen = sizeof(int), |
1294 | .mode = 0644, |
1295 | .proc_handler = proc_dointvec, |
1296 | }, |
1297 | { |
1298 | .procname = "core_pattern", |
1299 | .data = core_pattern, |
1300 | .maxlen = CORENAME_MAX_SIZE, |
1301 | .mode = 0644, |
1302 | .proc_handler = proc_dostring_coredump, |
1303 | }, |
1304 | { |
1305 | .procname = "core_pipe_limit", |
1306 | .data = &core_pipe_limit, |
1307 | .maxlen = sizeof(unsigned int), |
1308 | .mode = 0644, |
1309 | .proc_handler = proc_dointvec_minmax, |
1310 | .extra1 = SYSCTL_ZERO, |
1311 | .extra2 = SYSCTL_INT_MAX, |
1312 | }, |
1313 | { |
1314 | .procname = "core_file_note_size_limit", |
1315 | .data = &core_file_note_size_limit, |
1316 | .maxlen = sizeof(unsigned int), |
1317 | .mode = 0644, |
1318 | .proc_handler = proc_douintvec_minmax, |
1319 | .extra1 = (unsigned int *)&core_file_note_size_min, |
1320 | .extra2 = (unsigned int *)&core_file_note_size_max, |
1321 | }, |
1322 | { |
1323 | .procname = "core_sort_vma", |
1324 | .data = &core_sort_vma, |
1325 | .maxlen = sizeof(int), |
1326 | .mode = 0644, |
1327 | .proc_handler = proc_douintvec_minmax, |
1328 | .extra1 = SYSCTL_ZERO, |
1329 | .extra2 = SYSCTL_ONE, |
1330 | }, |
1331 | { |
1332 | .procname = "core_modes", |
1333 | .data = core_modes, |
1334 | .maxlen = sizeof(core_modes) - 1, |
1335 | .mode = 0444, |
1336 | .proc_handler = proc_dostring, |
1337 | }, |
1338 | }; |
1339 | |
1340 | static int __init init_fs_coredump_sysctls(void) |
1341 | { |
1342 | register_sysctl_init("kernel", coredump_sysctls); |
1343 | return 0; |
1344 | } |
1345 | fs_initcall(init_fs_coredump_sysctls); |
1346 | #endif /* CONFIG_SYSCTL */ |
1347 | |
1348 | /* |
1349 | * The purpose of always_dump_vma() is to make sure that special kernel mappings |
1350 | * that are useful for post-mortem analysis are included in every core dump. |
1351 | * In that way we ensure that the core dump is fully interpretable later |
1352 | * without matching up the same kernel and hardware config to see what PC values |
1353 | * meant. These special mappings include - vDSO, vsyscall, and other |
1354 | * architecture specific mappings |
1355 | */ |
1356 | static bool always_dump_vma(struct vm_area_struct *vma) |
1357 | { |
1358 | /* Any vsyscall mappings? */ |
1359 | if (vma == get_gate_vma(mm: vma->vm_mm)) |
1360 | return true; |
1361 | |
1362 | /* |
1363 | * Assume that all vmas with a .name op should always be dumped. |
1364 | * If this changes, a new vm_ops field can easily be added. |
1365 | */ |
1366 | if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma)) |
1367 | return true; |
1368 | |
1369 | /* |
1370 | * arch_vma_name() returns non-NULL for special architecture mappings, |
1371 | * such as vDSO sections. |
1372 | */ |
1373 | if (arch_vma_name(vma)) |
1374 | return true; |
1375 | |
1376 | return false; |
1377 | } |
1378 | |
1379 | #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1 |
1380 | |
1381 | /* |
1382 | * Decide how much of @vma's contents should be included in a core dump. |
1383 | */ |
1384 | static unsigned long vma_dump_size(struct vm_area_struct *vma, |
1385 | unsigned long mm_flags) |
1386 | { |
1387 | #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) |
1388 | |
1389 | /* always dump the vdso and vsyscall sections */ |
1390 | if (always_dump_vma(vma)) |
1391 | goto whole; |
1392 | |
1393 | if (vma->vm_flags & VM_DONTDUMP) |
1394 | return 0; |
1395 | |
1396 | /* support for DAX */ |
1397 | if (vma_is_dax(vma)) { |
1398 | if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED)) |
1399 | goto whole; |
1400 | if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE)) |
1401 | goto whole; |
1402 | return 0; |
1403 | } |
1404 | |
1405 | /* Hugetlb memory check */ |
1406 | if (is_vm_hugetlb_page(vma)) { |
1407 | if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) |
1408 | goto whole; |
1409 | if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) |
1410 | goto whole; |
1411 | return 0; |
1412 | } |
1413 | |
1414 | /* Do not dump I/O mapped devices or special mappings */ |
1415 | if (vma->vm_flags & VM_IO) |
1416 | return 0; |
1417 | |
1418 | /* By default, dump shared memory if mapped from an anonymous file. */ |
1419 | if (vma->vm_flags & VM_SHARED) { |
1420 | if (file_inode(f: vma->vm_file)->i_nlink == 0 ? |
1421 | FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) |
1422 | goto whole; |
1423 | return 0; |
1424 | } |
1425 | |
1426 | /* Dump segments that have been written to. */ |
1427 | if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE)) |
1428 | goto whole; |
1429 | if (vma->vm_file == NULL) |
1430 | return 0; |
1431 | |
1432 | if (FILTER(MAPPED_PRIVATE)) |
1433 | goto whole; |
1434 | |
1435 | /* |
1436 | * If this is the beginning of an executable file mapping, |
1437 | * dump the first page to aid in determining what was mapped here. |
1438 | */ |
1439 | if (FILTER(ELF_HEADERS) && |
1440 | vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { |
1441 | if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0) |
1442 | return PAGE_SIZE; |
1443 | |
1444 | /* |
1445 | * ELF libraries aren't always executable. |
1446 | * We'll want to check whether the mapping starts with the ELF |
1447 | * magic, but not now - we're holding the mmap lock, |
1448 | * so copy_from_user() doesn't work here. |
1449 | * Use a placeholder instead, and fix it up later in |
1450 | * dump_vma_snapshot(). |
1451 | */ |
1452 | return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER; |
1453 | } |
1454 | |
1455 | #undef FILTER |
1456 | |
1457 | return 0; |
1458 | |
1459 | whole: |
1460 | return vma->vm_end - vma->vm_start; |
1461 | } |
1462 | |
1463 | /* |
1464 | * Helper function for iterating across a vma list. It ensures that the caller |
1465 | * will visit `gate_vma' prior to terminating the search. |
1466 | */ |
1467 | static struct vm_area_struct *coredump_next_vma(struct vma_iterator *vmi, |
1468 | struct vm_area_struct *vma, |
1469 | struct vm_area_struct *gate_vma) |
1470 | { |
1471 | if (gate_vma && (vma == gate_vma)) |
1472 | return NULL; |
1473 | |
1474 | vma = vma_next(vmi); |
1475 | if (vma) |
1476 | return vma; |
1477 | return gate_vma; |
1478 | } |
1479 | |
1480 | static void free_vma_snapshot(struct coredump_params *cprm) |
1481 | { |
1482 | if (cprm->vma_meta) { |
1483 | int i; |
1484 | for (i = 0; i < cprm->vma_count; i++) { |
1485 | struct file *file = cprm->vma_meta[i].file; |
1486 | if (file) |
1487 | fput(file); |
1488 | } |
1489 | kvfree(addr: cprm->vma_meta); |
1490 | cprm->vma_meta = NULL; |
1491 | } |
1492 | } |
1493 | |
1494 | static int cmp_vma_size(const void *vma_meta_lhs_ptr, const void *vma_meta_rhs_ptr) |
1495 | { |
1496 | const struct core_vma_metadata *vma_meta_lhs = vma_meta_lhs_ptr; |
1497 | const struct core_vma_metadata *vma_meta_rhs = vma_meta_rhs_ptr; |
1498 | |
1499 | if (vma_meta_lhs->dump_size < vma_meta_rhs->dump_size) |
1500 | return -1; |
1501 | if (vma_meta_lhs->dump_size > vma_meta_rhs->dump_size) |
1502 | return 1; |
1503 | return 0; |
1504 | } |
1505 | |
1506 | /* |
1507 | * Under the mmap_lock, take a snapshot of relevant information about the task's |
1508 | * VMAs. |
1509 | */ |
1510 | static bool dump_vma_snapshot(struct coredump_params *cprm) |
1511 | { |
1512 | struct vm_area_struct *gate_vma, *vma = NULL; |
1513 | struct mm_struct *mm = current->mm; |
1514 | VMA_ITERATOR(vmi, mm, 0); |
1515 | int i = 0; |
1516 | |
1517 | /* |
1518 | * Once the stack expansion code is fixed to not change VMA bounds |
1519 | * under mmap_lock in read mode, this can be changed to take the |
1520 | * mmap_lock in read mode. |
1521 | */ |
1522 | if (mmap_write_lock_killable(mm)) |
1523 | return false; |
1524 | |
1525 | cprm->vma_data_size = 0; |
1526 | gate_vma = get_gate_vma(mm); |
1527 | cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0); |
1528 | |
1529 | cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL); |
1530 | if (!cprm->vma_meta) { |
1531 | mmap_write_unlock(mm); |
1532 | return false; |
1533 | } |
1534 | |
1535 | while ((vma = coredump_next_vma(vmi: &vmi, vma, gate_vma)) != NULL) { |
1536 | struct core_vma_metadata *m = cprm->vma_meta + i; |
1537 | |
1538 | m->start = vma->vm_start; |
1539 | m->end = vma->vm_end; |
1540 | m->flags = vma->vm_flags; |
1541 | m->dump_size = vma_dump_size(vma, mm_flags: cprm->mm_flags); |
1542 | m->pgoff = vma->vm_pgoff; |
1543 | m->file = vma->vm_file; |
1544 | if (m->file) |
1545 | get_file(f: m->file); |
1546 | i++; |
1547 | } |
1548 | |
1549 | mmap_write_unlock(mm); |
1550 | |
1551 | for (i = 0; i < cprm->vma_count; i++) { |
1552 | struct core_vma_metadata *m = cprm->vma_meta + i; |
1553 | |
1554 | if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) { |
1555 | char elfmag[SELFMAG]; |
1556 | |
1557 | if (copy_from_user(to: elfmag, from: (void __user *)m->start, SELFMAG) || |
1558 | memcmp(p: elfmag, ELFMAG, SELFMAG) != 0) { |
1559 | m->dump_size = 0; |
1560 | } else { |
1561 | m->dump_size = PAGE_SIZE; |
1562 | } |
1563 | } |
1564 | |
1565 | cprm->vma_data_size += m->dump_size; |
1566 | } |
1567 | |
1568 | if (core_sort_vma) |
1569 | sort(base: cprm->vma_meta, num: cprm->vma_count, size: sizeof(*cprm->vma_meta), |
1570 | cmp_func: cmp_vma_size, NULL); |
1571 | |
1572 | return true; |
1573 | } |
1574 |
Definitions
- core_uses_pid
- core_pipe_limit
- core_sort_vma
- core_pattern
- core_name_size
- core_file_note_size_limit
- coredump_type_t
- core_name
- expand_corename
- cn_vprintf
- cn_printf
- cn_esc_printf
- cn_print_exe_file
- format_corename
- zap_process
- zap_threads
- coredump_wait
- coredump_finish
- dump_interrupted
- wait_for_dump_helpers
- umh_coredump_setup
- do_coredump
- __dump_emit
- __dump_skip
- dump_emit
- dump_skip_to
- dump_skip
- dump_emit_page
- dump_page_copy
- dump_user_range
- dump_align
- validate_coredump_safety
- check_coredump_socket
- proc_dostring_coredump
- core_file_note_size_min
- core_file_note_size_max
- core_modes
- coredump_sysctls
- init_fs_coredump_sysctls
- always_dump_vma
- vma_dump_size
- coredump_next_vma
- free_vma_snapshot
- cmp_vma_size
Improve your Profiling and Debugging skills
Find out more