1 | /* |
2 | * POSIX message queues filesystem for Linux. |
3 | * |
4 | * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl) |
5 | * Michal Wronski (michal.wronski@gmail.com) |
6 | * |
7 | * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com) |
8 | * Lockless receive & send, fd based notify: |
9 | * Manfred Spraul (manfred@colorfullife.com) |
10 | * |
11 | * Audit: George Wilson (ltcgcw@us.ibm.com) |
12 | * |
13 | * This file is released under the GPL. |
14 | */ |
15 | |
16 | #include <linux/capability.h> |
17 | #include <linux/init.h> |
18 | #include <linux/pagemap.h> |
19 | #include <linux/file.h> |
20 | #include <linux/mount.h> |
21 | #include <linux/fs_context.h> |
22 | #include <linux/namei.h> |
23 | #include <linux/sysctl.h> |
24 | #include <linux/poll.h> |
25 | #include <linux/mqueue.h> |
26 | #include <linux/msg.h> |
27 | #include <linux/skbuff.h> |
28 | #include <linux/vmalloc.h> |
29 | #include <linux/netlink.h> |
30 | #include <linux/syscalls.h> |
31 | #include <linux/audit.h> |
32 | #include <linux/signal.h> |
33 | #include <linux/mutex.h> |
34 | #include <linux/nsproxy.h> |
35 | #include <linux/pid.h> |
36 | #include <linux/ipc_namespace.h> |
37 | #include <linux/user_namespace.h> |
38 | #include <linux/slab.h> |
39 | #include <linux/sched/wake_q.h> |
40 | #include <linux/sched/signal.h> |
41 | #include <linux/sched/user.h> |
42 | |
43 | #include <net/sock.h> |
44 | #include "util.h" |
45 | |
46 | struct mqueue_fs_context { |
47 | struct ipc_namespace *ipc_ns; |
48 | bool newns; /* Set if newly created ipc namespace */ |
49 | }; |
50 | |
51 | #define MQUEUE_MAGIC 0x19800202 |
52 | #define DIRENT_SIZE 20 |
53 | #define FILENT_SIZE 80 |
54 | |
55 | #define SEND 0 |
56 | #define RECV 1 |
57 | |
58 | #define STATE_NONE 0 |
59 | #define STATE_READY 1 |
60 | |
61 | struct posix_msg_tree_node { |
62 | struct rb_node rb_node; |
63 | struct list_head msg_list; |
64 | int priority; |
65 | }; |
66 | |
67 | /* |
68 | * Locking: |
69 | * |
70 | * Accesses to a message queue are synchronized by acquiring info->lock. |
71 | * |
72 | * There are two notable exceptions: |
73 | * - The actual wakeup of a sleeping task is performed using the wake_q |
74 | * framework. info->lock is already released when wake_up_q is called. |
75 | * - The exit codepaths after sleeping check ext_wait_queue->state without |
76 | * any locks. If it is STATE_READY, then the syscall is completed without |
77 | * acquiring info->lock. |
78 | * |
79 | * MQ_BARRIER: |
80 | * To achieve proper release/acquire memory barrier pairing, the state is set to |
81 | * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed |
82 | * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used. |
83 | * |
84 | * This prevents the following races: |
85 | * |
86 | * 1) With the simple wake_q_add(), the task could be gone already before |
87 | * the increase of the reference happens |
88 | * Thread A |
89 | * Thread B |
90 | * WRITE_ONCE(wait.state, STATE_NONE); |
91 | * schedule_hrtimeout() |
92 | * wake_q_add(A) |
93 | * if (cmpxchg()) // success |
94 | * ->state = STATE_READY (reordered) |
95 | * <timeout returns> |
96 | * if (wait.state == STATE_READY) return; |
97 | * sysret to user space |
98 | * sys_exit() |
99 | * get_task_struct() // UaF |
100 | * |
101 | * Solution: Use wake_q_add_safe() and perform the get_task_struct() before |
102 | * the smp_store_release() that does ->state = STATE_READY. |
103 | * |
104 | * 2) Without proper _release/_acquire barriers, the woken up task |
105 | * could read stale data |
106 | * |
107 | * Thread A |
108 | * Thread B |
109 | * do_mq_timedreceive |
110 | * WRITE_ONCE(wait.state, STATE_NONE); |
111 | * schedule_hrtimeout() |
112 | * state = STATE_READY; |
113 | * <timeout returns> |
114 | * if (wait.state == STATE_READY) return; |
115 | * msg_ptr = wait.msg; // Access to stale data! |
116 | * receiver->msg = message; (reordered) |
117 | * |
118 | * Solution: use _release and _acquire barriers. |
119 | * |
120 | * 3) There is intentionally no barrier when setting current->state |
121 | * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the |
122 | * release memory barrier, and the wakeup is triggered when holding |
123 | * info->lock, i.e. spin_lock(&info->lock) provided a pairing |
124 | * acquire memory barrier. |
125 | */ |
126 | |
127 | struct ext_wait_queue { /* queue of sleeping tasks */ |
128 | struct task_struct *task; |
129 | struct list_head list; |
130 | struct msg_msg *msg; /* ptr of loaded message */ |
131 | int state; /* one of STATE_* values */ |
132 | }; |
133 | |
134 | struct mqueue_inode_info { |
135 | spinlock_t lock; |
136 | struct inode vfs_inode; |
137 | wait_queue_head_t wait_q; |
138 | |
139 | struct rb_root msg_tree; |
140 | struct rb_node *msg_tree_rightmost; |
141 | struct posix_msg_tree_node *node_cache; |
142 | struct mq_attr attr; |
143 | |
144 | struct sigevent notify; |
145 | struct pid *notify_owner; |
146 | u32 notify_self_exec_id; |
147 | struct user_namespace *notify_user_ns; |
148 | struct ucounts *ucounts; /* user who created, for accounting */ |
149 | struct sock *notify_sock; |
150 | struct sk_buff *notify_cookie; |
151 | |
152 | /* for tasks waiting for free space and messages, respectively */ |
153 | struct ext_wait_queue e_wait_q[2]; |
154 | |
155 | unsigned long qsize; /* size of queue in memory (sum of all msgs) */ |
156 | }; |
157 | |
158 | static struct file_system_type mqueue_fs_type; |
159 | static const struct inode_operations mqueue_dir_inode_operations; |
160 | static const struct file_operations mqueue_file_operations; |
161 | static const struct super_operations mqueue_super_ops; |
162 | static const struct fs_context_operations mqueue_fs_context_ops; |
163 | static void remove_notification(struct mqueue_inode_info *info); |
164 | |
165 | static struct kmem_cache *mqueue_inode_cachep; |
166 | |
167 | static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode) |
168 | { |
169 | return container_of(inode, struct mqueue_inode_info, vfs_inode); |
170 | } |
171 | |
172 | /* |
173 | * This routine should be called with the mq_lock held. |
174 | */ |
175 | static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode) |
176 | { |
177 | return get_ipc_ns(ns: inode->i_sb->s_fs_info); |
178 | } |
179 | |
180 | static struct ipc_namespace *get_ns_from_inode(struct inode *inode) |
181 | { |
182 | struct ipc_namespace *ns; |
183 | |
184 | spin_lock(lock: &mq_lock); |
185 | ns = __get_ns_from_inode(inode); |
186 | spin_unlock(lock: &mq_lock); |
187 | return ns; |
188 | } |
189 | |
190 | /* Auxiliary functions to manipulate messages' list */ |
191 | static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info) |
192 | { |
193 | struct rb_node **p, *parent = NULL; |
194 | struct posix_msg_tree_node *leaf; |
195 | bool rightmost = true; |
196 | |
197 | p = &info->msg_tree.rb_node; |
198 | while (*p) { |
199 | parent = *p; |
200 | leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); |
201 | |
202 | if (likely(leaf->priority == msg->m_type)) |
203 | goto insert_msg; |
204 | else if (msg->m_type < leaf->priority) { |
205 | p = &(*p)->rb_left; |
206 | rightmost = false; |
207 | } else |
208 | p = &(*p)->rb_right; |
209 | } |
210 | if (info->node_cache) { |
211 | leaf = info->node_cache; |
212 | info->node_cache = NULL; |
213 | } else { |
214 | leaf = kmalloc(size: sizeof(*leaf), GFP_ATOMIC); |
215 | if (!leaf) |
216 | return -ENOMEM; |
217 | INIT_LIST_HEAD(list: &leaf->msg_list); |
218 | } |
219 | leaf->priority = msg->m_type; |
220 | |
221 | if (rightmost) |
222 | info->msg_tree_rightmost = &leaf->rb_node; |
223 | |
224 | rb_link_node(node: &leaf->rb_node, parent, rb_link: p); |
225 | rb_insert_color(&leaf->rb_node, &info->msg_tree); |
226 | insert_msg: |
227 | info->attr.mq_curmsgs++; |
228 | info->qsize += msg->m_ts; |
229 | list_add_tail(new: &msg->m_list, head: &leaf->msg_list); |
230 | return 0; |
231 | } |
232 | |
233 | static inline void msg_tree_erase(struct posix_msg_tree_node *leaf, |
234 | struct mqueue_inode_info *info) |
235 | { |
236 | struct rb_node *node = &leaf->rb_node; |
237 | |
238 | if (info->msg_tree_rightmost == node) |
239 | info->msg_tree_rightmost = rb_prev(node); |
240 | |
241 | rb_erase(node, &info->msg_tree); |
242 | if (info->node_cache) |
243 | kfree(objp: leaf); |
244 | else |
245 | info->node_cache = leaf; |
246 | } |
247 | |
248 | static inline struct msg_msg *msg_get(struct mqueue_inode_info *info) |
249 | { |
250 | struct rb_node *parent = NULL; |
251 | struct posix_msg_tree_node *leaf; |
252 | struct msg_msg *msg; |
253 | |
254 | try_again: |
255 | /* |
256 | * During insert, low priorities go to the left and high to the |
257 | * right. On receive, we want the highest priorities first, so |
258 | * walk all the way to the right. |
259 | */ |
260 | parent = info->msg_tree_rightmost; |
261 | if (!parent) { |
262 | if (info->attr.mq_curmsgs) { |
263 | pr_warn_once("Inconsistency in POSIX message queue, " |
264 | "no tree element, but supposedly messages " |
265 | "should exist!\n" ); |
266 | info->attr.mq_curmsgs = 0; |
267 | } |
268 | return NULL; |
269 | } |
270 | leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node); |
271 | if (unlikely(list_empty(&leaf->msg_list))) { |
272 | pr_warn_once("Inconsistency in POSIX message queue, " |
273 | "empty leaf node but we haven't implemented " |
274 | "lazy leaf delete!\n" ); |
275 | msg_tree_erase(leaf, info); |
276 | goto try_again; |
277 | } else { |
278 | msg = list_first_entry(&leaf->msg_list, |
279 | struct msg_msg, m_list); |
280 | list_del(entry: &msg->m_list); |
281 | if (list_empty(head: &leaf->msg_list)) { |
282 | msg_tree_erase(leaf, info); |
283 | } |
284 | } |
285 | info->attr.mq_curmsgs--; |
286 | info->qsize -= msg->m_ts; |
287 | return msg; |
288 | } |
289 | |
290 | static struct inode *mqueue_get_inode(struct super_block *sb, |
291 | struct ipc_namespace *ipc_ns, umode_t mode, |
292 | struct mq_attr *attr) |
293 | { |
294 | struct inode *inode; |
295 | int ret = -ENOMEM; |
296 | |
297 | inode = new_inode(sb); |
298 | if (!inode) |
299 | goto err; |
300 | |
301 | inode->i_ino = get_next_ino(); |
302 | inode->i_mode = mode; |
303 | inode->i_uid = current_fsuid(); |
304 | inode->i_gid = current_fsgid(); |
305 | simple_inode_init_ts(inode); |
306 | |
307 | if (S_ISREG(mode)) { |
308 | struct mqueue_inode_info *info; |
309 | unsigned long mq_bytes, mq_treesize; |
310 | |
311 | inode->i_fop = &mqueue_file_operations; |
312 | inode->i_size = FILENT_SIZE; |
313 | /* mqueue specific info */ |
314 | info = MQUEUE_I(inode); |
315 | spin_lock_init(&info->lock); |
316 | init_waitqueue_head(&info->wait_q); |
317 | INIT_LIST_HEAD(list: &info->e_wait_q[0].list); |
318 | INIT_LIST_HEAD(list: &info->e_wait_q[1].list); |
319 | info->notify_owner = NULL; |
320 | info->notify_user_ns = NULL; |
321 | info->qsize = 0; |
322 | info->ucounts = NULL; /* set when all is ok */ |
323 | info->msg_tree = RB_ROOT; |
324 | info->msg_tree_rightmost = NULL; |
325 | info->node_cache = NULL; |
326 | memset(&info->attr, 0, sizeof(info->attr)); |
327 | info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max, |
328 | ipc_ns->mq_msg_default); |
329 | info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max, |
330 | ipc_ns->mq_msgsize_default); |
331 | if (attr) { |
332 | info->attr.mq_maxmsg = attr->mq_maxmsg; |
333 | info->attr.mq_msgsize = attr->mq_msgsize; |
334 | } |
335 | /* |
336 | * We used to allocate a static array of pointers and account |
337 | * the size of that array as well as one msg_msg struct per |
338 | * possible message into the queue size. That's no longer |
339 | * accurate as the queue is now an rbtree and will grow and |
340 | * shrink depending on usage patterns. We can, however, still |
341 | * account one msg_msg struct per message, but the nodes are |
342 | * allocated depending on priority usage, and most programs |
343 | * only use one, or a handful, of priorities. However, since |
344 | * this is pinned memory, we need to assume worst case, so |
345 | * that means the min(mq_maxmsg, max_priorities) * struct |
346 | * posix_msg_tree_node. |
347 | */ |
348 | |
349 | ret = -EINVAL; |
350 | if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0) |
351 | goto out_inode; |
352 | if (capable(CAP_SYS_RESOURCE)) { |
353 | if (info->attr.mq_maxmsg > HARD_MSGMAX || |
354 | info->attr.mq_msgsize > HARD_MSGSIZEMAX) |
355 | goto out_inode; |
356 | } else { |
357 | if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max || |
358 | info->attr.mq_msgsize > ipc_ns->mq_msgsize_max) |
359 | goto out_inode; |
360 | } |
361 | ret = -EOVERFLOW; |
362 | /* check for overflow */ |
363 | if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg) |
364 | goto out_inode; |
365 | mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + |
366 | min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * |
367 | sizeof(struct posix_msg_tree_node); |
368 | mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize; |
369 | if (mq_bytes + mq_treesize < mq_bytes) |
370 | goto out_inode; |
371 | mq_bytes += mq_treesize; |
372 | info->ucounts = get_ucounts(current_ucounts()); |
373 | if (info->ucounts) { |
374 | long msgqueue; |
375 | |
376 | spin_lock(lock: &mq_lock); |
377 | msgqueue = inc_rlimit_ucounts(ucounts: info->ucounts, type: UCOUNT_RLIMIT_MSGQUEUE, v: mq_bytes); |
378 | if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) { |
379 | dec_rlimit_ucounts(ucounts: info->ucounts, type: UCOUNT_RLIMIT_MSGQUEUE, v: mq_bytes); |
380 | spin_unlock(lock: &mq_lock); |
381 | put_ucounts(ucounts: info->ucounts); |
382 | info->ucounts = NULL; |
383 | /* mqueue_evict_inode() releases info->messages */ |
384 | ret = -EMFILE; |
385 | goto out_inode; |
386 | } |
387 | spin_unlock(lock: &mq_lock); |
388 | } |
389 | } else if (S_ISDIR(mode)) { |
390 | inc_nlink(inode); |
391 | /* Some things misbehave if size == 0 on a directory */ |
392 | inode->i_size = 2 * DIRENT_SIZE; |
393 | inode->i_op = &mqueue_dir_inode_operations; |
394 | inode->i_fop = &simple_dir_operations; |
395 | } |
396 | |
397 | return inode; |
398 | out_inode: |
399 | iput(inode); |
400 | err: |
401 | return ERR_PTR(error: ret); |
402 | } |
403 | |
404 | static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc) |
405 | { |
406 | struct inode *inode; |
407 | struct ipc_namespace *ns = sb->s_fs_info; |
408 | |
409 | sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; |
410 | sb->s_blocksize = PAGE_SIZE; |
411 | sb->s_blocksize_bits = PAGE_SHIFT; |
412 | sb->s_magic = MQUEUE_MAGIC; |
413 | sb->s_op = &mqueue_super_ops; |
414 | |
415 | inode = mqueue_get_inode(sb, ipc_ns: ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL); |
416 | if (IS_ERR(ptr: inode)) |
417 | return PTR_ERR(ptr: inode); |
418 | |
419 | sb->s_root = d_make_root(inode); |
420 | if (!sb->s_root) |
421 | return -ENOMEM; |
422 | return 0; |
423 | } |
424 | |
425 | static int mqueue_get_tree(struct fs_context *fc) |
426 | { |
427 | struct mqueue_fs_context *ctx = fc->fs_private; |
428 | |
429 | /* |
430 | * With a newly created ipc namespace, we don't need to do a search |
431 | * for an ipc namespace match, but we still need to set s_fs_info. |
432 | */ |
433 | if (ctx->newns) { |
434 | fc->s_fs_info = ctx->ipc_ns; |
435 | return get_tree_nodev(fc, fill_super: mqueue_fill_super); |
436 | } |
437 | return get_tree_keyed(fc, fill_super: mqueue_fill_super, key: ctx->ipc_ns); |
438 | } |
439 | |
440 | static void mqueue_fs_context_free(struct fs_context *fc) |
441 | { |
442 | struct mqueue_fs_context *ctx = fc->fs_private; |
443 | |
444 | put_ipc_ns(ns: ctx->ipc_ns); |
445 | kfree(objp: ctx); |
446 | } |
447 | |
448 | static int mqueue_init_fs_context(struct fs_context *fc) |
449 | { |
450 | struct mqueue_fs_context *ctx; |
451 | |
452 | ctx = kzalloc(size: sizeof(struct mqueue_fs_context), GFP_KERNEL); |
453 | if (!ctx) |
454 | return -ENOMEM; |
455 | |
456 | ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns); |
457 | put_user_ns(ns: fc->user_ns); |
458 | fc->user_ns = get_user_ns(ns: ctx->ipc_ns->user_ns); |
459 | fc->fs_private = ctx; |
460 | fc->ops = &mqueue_fs_context_ops; |
461 | return 0; |
462 | } |
463 | |
464 | /* |
465 | * mq_init_ns() is currently the only caller of mq_create_mount(). |
466 | * So the ns parameter is always a newly created ipc namespace. |
467 | */ |
468 | static struct vfsmount *mq_create_mount(struct ipc_namespace *ns) |
469 | { |
470 | struct mqueue_fs_context *ctx; |
471 | struct fs_context *fc; |
472 | struct vfsmount *mnt; |
473 | |
474 | fc = fs_context_for_mount(fs_type: &mqueue_fs_type, SB_KERNMOUNT); |
475 | if (IS_ERR(ptr: fc)) |
476 | return ERR_CAST(ptr: fc); |
477 | |
478 | ctx = fc->fs_private; |
479 | ctx->newns = true; |
480 | put_ipc_ns(ns: ctx->ipc_ns); |
481 | ctx->ipc_ns = get_ipc_ns(ns); |
482 | put_user_ns(ns: fc->user_ns); |
483 | fc->user_ns = get_user_ns(ns: ctx->ipc_ns->user_ns); |
484 | |
485 | mnt = fc_mount(fc); |
486 | put_fs_context(fc); |
487 | return mnt; |
488 | } |
489 | |
490 | static void init_once(void *foo) |
491 | { |
492 | struct mqueue_inode_info *p = foo; |
493 | |
494 | inode_init_once(&p->vfs_inode); |
495 | } |
496 | |
497 | static struct inode *mqueue_alloc_inode(struct super_block *sb) |
498 | { |
499 | struct mqueue_inode_info *ei; |
500 | |
501 | ei = alloc_inode_sb(sb, cache: mqueue_inode_cachep, GFP_KERNEL); |
502 | if (!ei) |
503 | return NULL; |
504 | return &ei->vfs_inode; |
505 | } |
506 | |
507 | static void mqueue_free_inode(struct inode *inode) |
508 | { |
509 | kmem_cache_free(s: mqueue_inode_cachep, objp: MQUEUE_I(inode)); |
510 | } |
511 | |
512 | static void mqueue_evict_inode(struct inode *inode) |
513 | { |
514 | struct mqueue_inode_info *info; |
515 | struct ipc_namespace *ipc_ns; |
516 | struct msg_msg *msg, *nmsg; |
517 | LIST_HEAD(tmp_msg); |
518 | |
519 | clear_inode(inode); |
520 | |
521 | if (S_ISDIR(inode->i_mode)) |
522 | return; |
523 | |
524 | ipc_ns = get_ns_from_inode(inode); |
525 | info = MQUEUE_I(inode); |
526 | spin_lock(lock: &info->lock); |
527 | while ((msg = msg_get(info)) != NULL) |
528 | list_add_tail(new: &msg->m_list, head: &tmp_msg); |
529 | kfree(objp: info->node_cache); |
530 | spin_unlock(lock: &info->lock); |
531 | |
532 | list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) { |
533 | list_del(entry: &msg->m_list); |
534 | free_msg(msg); |
535 | } |
536 | |
537 | if (info->ucounts) { |
538 | unsigned long mq_bytes, mq_treesize; |
539 | |
540 | /* Total amount of bytes accounted for the mqueue */ |
541 | mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) + |
542 | min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) * |
543 | sizeof(struct posix_msg_tree_node); |
544 | |
545 | mq_bytes = mq_treesize + (info->attr.mq_maxmsg * |
546 | info->attr.mq_msgsize); |
547 | |
548 | spin_lock(lock: &mq_lock); |
549 | dec_rlimit_ucounts(ucounts: info->ucounts, type: UCOUNT_RLIMIT_MSGQUEUE, v: mq_bytes); |
550 | /* |
551 | * get_ns_from_inode() ensures that the |
552 | * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns |
553 | * to which we now hold a reference, or it is NULL. |
554 | * We can't put it here under mq_lock, though. |
555 | */ |
556 | if (ipc_ns) |
557 | ipc_ns->mq_queues_count--; |
558 | spin_unlock(lock: &mq_lock); |
559 | put_ucounts(ucounts: info->ucounts); |
560 | info->ucounts = NULL; |
561 | } |
562 | if (ipc_ns) |
563 | put_ipc_ns(ns: ipc_ns); |
564 | } |
565 | |
566 | static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg) |
567 | { |
568 | struct inode *dir = dentry->d_parent->d_inode; |
569 | struct inode *inode; |
570 | struct mq_attr *attr = arg; |
571 | int error; |
572 | struct ipc_namespace *ipc_ns; |
573 | |
574 | spin_lock(lock: &mq_lock); |
575 | ipc_ns = __get_ns_from_inode(inode: dir); |
576 | if (!ipc_ns) { |
577 | error = -EACCES; |
578 | goto out_unlock; |
579 | } |
580 | |
581 | if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max && |
582 | !capable(CAP_SYS_RESOURCE)) { |
583 | error = -ENOSPC; |
584 | goto out_unlock; |
585 | } |
586 | ipc_ns->mq_queues_count++; |
587 | spin_unlock(lock: &mq_lock); |
588 | |
589 | inode = mqueue_get_inode(sb: dir->i_sb, ipc_ns, mode, attr); |
590 | if (IS_ERR(ptr: inode)) { |
591 | error = PTR_ERR(ptr: inode); |
592 | spin_lock(lock: &mq_lock); |
593 | ipc_ns->mq_queues_count--; |
594 | goto out_unlock; |
595 | } |
596 | |
597 | put_ipc_ns(ns: ipc_ns); |
598 | dir->i_size += DIRENT_SIZE; |
599 | simple_inode_init_ts(inode: dir); |
600 | |
601 | d_instantiate(dentry, inode); |
602 | dget(dentry); |
603 | return 0; |
604 | out_unlock: |
605 | spin_unlock(lock: &mq_lock); |
606 | if (ipc_ns) |
607 | put_ipc_ns(ns: ipc_ns); |
608 | return error; |
609 | } |
610 | |
611 | static int mqueue_create(struct mnt_idmap *idmap, struct inode *dir, |
612 | struct dentry *dentry, umode_t mode, bool excl) |
613 | { |
614 | return mqueue_create_attr(dentry, mode, NULL); |
615 | } |
616 | |
617 | static int mqueue_unlink(struct inode *dir, struct dentry *dentry) |
618 | { |
619 | struct inode *inode = d_inode(dentry); |
620 | |
621 | simple_inode_init_ts(inode: dir); |
622 | dir->i_size -= DIRENT_SIZE; |
623 | drop_nlink(inode); |
624 | dput(dentry); |
625 | return 0; |
626 | } |
627 | |
628 | /* |
629 | * This is routine for system read from queue file. |
630 | * To avoid mess with doing here some sort of mq_receive we allow |
631 | * to read only queue size & notification info (the only values |
632 | * that are interesting from user point of view and aren't accessible |
633 | * through std routines) |
634 | */ |
635 | static ssize_t mqueue_read_file(struct file *filp, char __user *u_data, |
636 | size_t count, loff_t *off) |
637 | { |
638 | struct inode *inode = file_inode(f: filp); |
639 | struct mqueue_inode_info *info = MQUEUE_I(inode); |
640 | char buffer[FILENT_SIZE]; |
641 | ssize_t ret; |
642 | |
643 | spin_lock(lock: &info->lock); |
644 | snprintf(buf: buffer, size: sizeof(buffer), |
645 | fmt: "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n" , |
646 | info->qsize, |
647 | info->notify_owner ? info->notify.sigev_notify : 0, |
648 | (info->notify_owner && |
649 | info->notify.sigev_notify == SIGEV_SIGNAL) ? |
650 | info->notify.sigev_signo : 0, |
651 | pid_vnr(pid: info->notify_owner)); |
652 | spin_unlock(lock: &info->lock); |
653 | buffer[sizeof(buffer)-1] = '\0'; |
654 | |
655 | ret = simple_read_from_buffer(to: u_data, count, ppos: off, from: buffer, |
656 | strlen(buffer)); |
657 | if (ret <= 0) |
658 | return ret; |
659 | |
660 | inode_set_atime_to_ts(inode, ts: inode_set_ctime_current(inode)); |
661 | return ret; |
662 | } |
663 | |
664 | static int mqueue_flush_file(struct file *filp, fl_owner_t id) |
665 | { |
666 | struct mqueue_inode_info *info = MQUEUE_I(inode: file_inode(f: filp)); |
667 | |
668 | spin_lock(lock: &info->lock); |
669 | if (task_tgid(current) == info->notify_owner) |
670 | remove_notification(info); |
671 | |
672 | spin_unlock(lock: &info->lock); |
673 | return 0; |
674 | } |
675 | |
676 | static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab) |
677 | { |
678 | struct mqueue_inode_info *info = MQUEUE_I(inode: file_inode(f: filp)); |
679 | __poll_t retval = 0; |
680 | |
681 | poll_wait(filp, wait_address: &info->wait_q, p: poll_tab); |
682 | |
683 | spin_lock(lock: &info->lock); |
684 | if (info->attr.mq_curmsgs) |
685 | retval = EPOLLIN | EPOLLRDNORM; |
686 | |
687 | if (info->attr.mq_curmsgs < info->attr.mq_maxmsg) |
688 | retval |= EPOLLOUT | EPOLLWRNORM; |
689 | spin_unlock(lock: &info->lock); |
690 | |
691 | return retval; |
692 | } |
693 | |
694 | /* Adds current to info->e_wait_q[sr] before element with smaller prio */ |
695 | static void wq_add(struct mqueue_inode_info *info, int sr, |
696 | struct ext_wait_queue *ewp) |
697 | { |
698 | struct ext_wait_queue *walk; |
699 | |
700 | list_for_each_entry(walk, &info->e_wait_q[sr].list, list) { |
701 | if (walk->task->prio <= current->prio) { |
702 | list_add_tail(new: &ewp->list, head: &walk->list); |
703 | return; |
704 | } |
705 | } |
706 | list_add_tail(new: &ewp->list, head: &info->e_wait_q[sr].list); |
707 | } |
708 | |
709 | /* |
710 | * Puts current task to sleep. Caller must hold queue lock. After return |
711 | * lock isn't held. |
712 | * sr: SEND or RECV |
713 | */ |
714 | static int wq_sleep(struct mqueue_inode_info *info, int sr, |
715 | ktime_t *timeout, struct ext_wait_queue *ewp) |
716 | __releases(&info->lock) |
717 | { |
718 | int retval; |
719 | signed long time; |
720 | |
721 | wq_add(info, sr, ewp); |
722 | |
723 | for (;;) { |
724 | /* memory barrier not required, we hold info->lock */ |
725 | __set_current_state(TASK_INTERRUPTIBLE); |
726 | |
727 | spin_unlock(lock: &info->lock); |
728 | time = schedule_hrtimeout_range_clock(expires: timeout, delta: 0, |
729 | mode: HRTIMER_MODE_ABS, CLOCK_REALTIME); |
730 | |
731 | if (READ_ONCE(ewp->state) == STATE_READY) { |
732 | /* see MQ_BARRIER for purpose/pairing */ |
733 | smp_acquire__after_ctrl_dep(); |
734 | retval = 0; |
735 | goto out; |
736 | } |
737 | spin_lock(lock: &info->lock); |
738 | |
739 | /* we hold info->lock, so no memory barrier required */ |
740 | if (READ_ONCE(ewp->state) == STATE_READY) { |
741 | retval = 0; |
742 | goto out_unlock; |
743 | } |
744 | if (signal_pending(current)) { |
745 | retval = -ERESTARTSYS; |
746 | break; |
747 | } |
748 | if (time == 0) { |
749 | retval = -ETIMEDOUT; |
750 | break; |
751 | } |
752 | } |
753 | list_del(entry: &ewp->list); |
754 | out_unlock: |
755 | spin_unlock(lock: &info->lock); |
756 | out: |
757 | return retval; |
758 | } |
759 | |
760 | /* |
761 | * Returns waiting task that should be serviced first or NULL if none exists |
762 | */ |
763 | static struct ext_wait_queue *wq_get_first_waiter( |
764 | struct mqueue_inode_info *info, int sr) |
765 | { |
766 | struct list_head *ptr; |
767 | |
768 | ptr = info->e_wait_q[sr].list.prev; |
769 | if (ptr == &info->e_wait_q[sr].list) |
770 | return NULL; |
771 | return list_entry(ptr, struct ext_wait_queue, list); |
772 | } |
773 | |
774 | |
775 | static inline void set_cookie(struct sk_buff *skb, char code) |
776 | { |
777 | ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code; |
778 | } |
779 | |
780 | /* |
781 | * The next function is only to split too long sys_mq_timedsend |
782 | */ |
783 | static void __do_notify(struct mqueue_inode_info *info) |
784 | { |
785 | /* notification |
786 | * invoked when there is registered process and there isn't process |
787 | * waiting synchronously for message AND state of queue changed from |
788 | * empty to not empty. Here we are sure that no one is waiting |
789 | * synchronously. */ |
790 | if (info->notify_owner && |
791 | info->attr.mq_curmsgs == 1) { |
792 | switch (info->notify.sigev_notify) { |
793 | case SIGEV_NONE: |
794 | break; |
795 | case SIGEV_SIGNAL: { |
796 | struct kernel_siginfo sig_i; |
797 | struct task_struct *task; |
798 | |
799 | /* do_mq_notify() accepts sigev_signo == 0, why?? */ |
800 | if (!info->notify.sigev_signo) |
801 | break; |
802 | |
803 | clear_siginfo(info: &sig_i); |
804 | sig_i.si_signo = info->notify.sigev_signo; |
805 | sig_i.si_errno = 0; |
806 | sig_i.si_code = SI_MESGQ; |
807 | sig_i.si_value = info->notify.sigev_value; |
808 | rcu_read_lock(); |
809 | /* map current pid/uid into info->owner's namespaces */ |
810 | sig_i.si_pid = task_tgid_nr_ns(current, |
811 | ns: ns_of_pid(pid: info->notify_owner)); |
812 | sig_i.si_uid = from_kuid_munged(to: info->notify_user_ns, |
813 | current_uid()); |
814 | /* |
815 | * We can't use kill_pid_info(), this signal should |
816 | * bypass check_kill_permission(). It is from kernel |
817 | * but si_fromuser() can't know this. |
818 | * We do check the self_exec_id, to avoid sending |
819 | * signals to programs that don't expect them. |
820 | */ |
821 | task = pid_task(pid: info->notify_owner, PIDTYPE_TGID); |
822 | if (task && task->self_exec_id == |
823 | info->notify_self_exec_id) { |
824 | do_send_sig_info(sig: info->notify.sigev_signo, |
825 | info: &sig_i, p: task, type: PIDTYPE_TGID); |
826 | } |
827 | rcu_read_unlock(); |
828 | break; |
829 | } |
830 | case SIGEV_THREAD: |
831 | set_cookie(skb: info->notify_cookie, NOTIFY_WOKENUP); |
832 | netlink_sendskb(sk: info->notify_sock, skb: info->notify_cookie); |
833 | break; |
834 | } |
835 | /* after notification unregisters process */ |
836 | put_pid(pid: info->notify_owner); |
837 | put_user_ns(ns: info->notify_user_ns); |
838 | info->notify_owner = NULL; |
839 | info->notify_user_ns = NULL; |
840 | } |
841 | wake_up(&info->wait_q); |
842 | } |
843 | |
844 | static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout, |
845 | struct timespec64 *ts) |
846 | { |
847 | if (get_timespec64(ts, uts: u_abs_timeout)) |
848 | return -EFAULT; |
849 | if (!timespec64_valid(ts)) |
850 | return -EINVAL; |
851 | return 0; |
852 | } |
853 | |
854 | static void remove_notification(struct mqueue_inode_info *info) |
855 | { |
856 | if (info->notify_owner != NULL && |
857 | info->notify.sigev_notify == SIGEV_THREAD) { |
858 | set_cookie(skb: info->notify_cookie, NOTIFY_REMOVED); |
859 | netlink_sendskb(sk: info->notify_sock, skb: info->notify_cookie); |
860 | } |
861 | put_pid(pid: info->notify_owner); |
862 | put_user_ns(ns: info->notify_user_ns); |
863 | info->notify_owner = NULL; |
864 | info->notify_user_ns = NULL; |
865 | } |
866 | |
867 | static int prepare_open(struct dentry *dentry, int oflag, int ro, |
868 | umode_t mode, struct filename *name, |
869 | struct mq_attr *attr) |
870 | { |
871 | static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE, |
872 | MAY_READ | MAY_WRITE }; |
873 | int acc; |
874 | |
875 | if (d_really_is_negative(dentry)) { |
876 | if (!(oflag & O_CREAT)) |
877 | return -ENOENT; |
878 | if (ro) |
879 | return ro; |
880 | audit_inode_parent_hidden(name, dentry: dentry->d_parent); |
881 | return vfs_mkobj(dentry, mode & ~current_umask(), |
882 | f: mqueue_create_attr, attr); |
883 | } |
884 | /* it already existed */ |
885 | audit_inode(name, dentry, aflags: 0); |
886 | if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) |
887 | return -EEXIST; |
888 | if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) |
889 | return -EINVAL; |
890 | acc = oflag2acc[oflag & O_ACCMODE]; |
891 | return inode_permission(&nop_mnt_idmap, d_inode(dentry), acc); |
892 | } |
893 | |
894 | static int do_mq_open(const char __user *u_name, int oflag, umode_t mode, |
895 | struct mq_attr *attr) |
896 | { |
897 | struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt; |
898 | struct dentry *root = mnt->mnt_root; |
899 | struct filename *name; |
900 | struct path path; |
901 | int fd, error; |
902 | int ro; |
903 | |
904 | audit_mq_open(oflag, mode, attr); |
905 | |
906 | if (IS_ERR(ptr: name = getname(u_name))) |
907 | return PTR_ERR(ptr: name); |
908 | |
909 | fd = get_unused_fd_flags(O_CLOEXEC); |
910 | if (fd < 0) |
911 | goto out_putname; |
912 | |
913 | ro = mnt_want_write(mnt); /* we'll drop it in any case */ |
914 | inode_lock(inode: d_inode(dentry: root)); |
915 | path.dentry = lookup_one_len(name->name, root, strlen(name->name)); |
916 | if (IS_ERR(ptr: path.dentry)) { |
917 | error = PTR_ERR(ptr: path.dentry); |
918 | goto out_putfd; |
919 | } |
920 | path.mnt = mntget(mnt); |
921 | error = prepare_open(dentry: path.dentry, oflag, ro, mode, name, attr); |
922 | if (!error) { |
923 | struct file *file = dentry_open(path: &path, flags: oflag, current_cred()); |
924 | if (!IS_ERR(ptr: file)) |
925 | fd_install(fd, file); |
926 | else |
927 | error = PTR_ERR(ptr: file); |
928 | } |
929 | path_put(&path); |
930 | out_putfd: |
931 | if (error) { |
932 | put_unused_fd(fd); |
933 | fd = error; |
934 | } |
935 | inode_unlock(inode: d_inode(dentry: root)); |
936 | if (!ro) |
937 | mnt_drop_write(mnt); |
938 | out_putname: |
939 | putname(name); |
940 | return fd; |
941 | } |
942 | |
943 | SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode, |
944 | struct mq_attr __user *, u_attr) |
945 | { |
946 | struct mq_attr attr; |
947 | if (u_attr && copy_from_user(to: &attr, from: u_attr, n: sizeof(struct mq_attr))) |
948 | return -EFAULT; |
949 | |
950 | return do_mq_open(u_name, oflag, mode, attr: u_attr ? &attr : NULL); |
951 | } |
952 | |
953 | SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name) |
954 | { |
955 | int err; |
956 | struct filename *name; |
957 | struct dentry *dentry; |
958 | struct inode *inode = NULL; |
959 | struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns; |
960 | struct vfsmount *mnt = ipc_ns->mq_mnt; |
961 | |
962 | name = getname(u_name); |
963 | if (IS_ERR(ptr: name)) |
964 | return PTR_ERR(ptr: name); |
965 | |
966 | audit_inode_parent_hidden(name, dentry: mnt->mnt_root); |
967 | err = mnt_want_write(mnt); |
968 | if (err) |
969 | goto out_name; |
970 | inode_lock_nested(inode: d_inode(dentry: mnt->mnt_root), subclass: I_MUTEX_PARENT); |
971 | dentry = lookup_one_len(name->name, mnt->mnt_root, |
972 | strlen(name->name)); |
973 | if (IS_ERR(ptr: dentry)) { |
974 | err = PTR_ERR(ptr: dentry); |
975 | goto out_unlock; |
976 | } |
977 | |
978 | inode = d_inode(dentry); |
979 | if (!inode) { |
980 | err = -ENOENT; |
981 | } else { |
982 | ihold(inode); |
983 | err = vfs_unlink(&nop_mnt_idmap, d_inode(dentry: dentry->d_parent), |
984 | dentry, NULL); |
985 | } |
986 | dput(dentry); |
987 | |
988 | out_unlock: |
989 | inode_unlock(inode: d_inode(dentry: mnt->mnt_root)); |
990 | iput(inode); |
991 | mnt_drop_write(mnt); |
992 | out_name: |
993 | putname(name); |
994 | |
995 | return err; |
996 | } |
997 | |
998 | /* Pipelined send and receive functions. |
999 | * |
1000 | * If a receiver finds no waiting message, then it registers itself in the |
1001 | * list of waiting receivers. A sender checks that list before adding the new |
1002 | * message into the message array. If there is a waiting receiver, then it |
1003 | * bypasses the message array and directly hands the message over to the |
1004 | * receiver. The receiver accepts the message and returns without grabbing the |
1005 | * queue spinlock: |
1006 | * |
1007 | * - Set pointer to message. |
1008 | * - Queue the receiver task for later wakeup (without the info->lock). |
1009 | * - Update its state to STATE_READY. Now the receiver can continue. |
1010 | * - Wake up the process after the lock is dropped. Should the process wake up |
1011 | * before this wakeup (due to a timeout or a signal) it will either see |
1012 | * STATE_READY and continue or acquire the lock to check the state again. |
1013 | * |
1014 | * The same algorithm is used for senders. |
1015 | */ |
1016 | |
1017 | static inline void __pipelined_op(struct wake_q_head *wake_q, |
1018 | struct mqueue_inode_info *info, |
1019 | struct ext_wait_queue *this) |
1020 | { |
1021 | struct task_struct *task; |
1022 | |
1023 | list_del(entry: &this->list); |
1024 | task = get_task_struct(t: this->task); |
1025 | |
1026 | /* see MQ_BARRIER for purpose/pairing */ |
1027 | smp_store_release(&this->state, STATE_READY); |
1028 | wake_q_add_safe(head: wake_q, task); |
1029 | } |
1030 | |
1031 | /* pipelined_send() - send a message directly to the task waiting in |
1032 | * sys_mq_timedreceive() (without inserting message into a queue). |
1033 | */ |
1034 | static inline void pipelined_send(struct wake_q_head *wake_q, |
1035 | struct mqueue_inode_info *info, |
1036 | struct msg_msg *message, |
1037 | struct ext_wait_queue *receiver) |
1038 | { |
1039 | receiver->msg = message; |
1040 | __pipelined_op(wake_q, info, this: receiver); |
1041 | } |
1042 | |
1043 | /* pipelined_receive() - if there is task waiting in sys_mq_timedsend() |
1044 | * gets its message and put to the queue (we have one free place for sure). */ |
1045 | static inline void pipelined_receive(struct wake_q_head *wake_q, |
1046 | struct mqueue_inode_info *info) |
1047 | { |
1048 | struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND); |
1049 | |
1050 | if (!sender) { |
1051 | /* for poll */ |
1052 | wake_up_interruptible(&info->wait_q); |
1053 | return; |
1054 | } |
1055 | if (msg_insert(msg: sender->msg, info)) |
1056 | return; |
1057 | |
1058 | __pipelined_op(wake_q, info, this: sender); |
1059 | } |
1060 | |
1061 | static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr, |
1062 | size_t msg_len, unsigned int msg_prio, |
1063 | struct timespec64 *ts) |
1064 | { |
1065 | struct fd f; |
1066 | struct inode *inode; |
1067 | struct ext_wait_queue wait; |
1068 | struct ext_wait_queue *receiver; |
1069 | struct msg_msg *msg_ptr; |
1070 | struct mqueue_inode_info *info; |
1071 | ktime_t expires, *timeout = NULL; |
1072 | struct posix_msg_tree_node *new_leaf = NULL; |
1073 | int ret = 0; |
1074 | DEFINE_WAKE_Q(wake_q); |
1075 | |
1076 | if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX)) |
1077 | return -EINVAL; |
1078 | |
1079 | if (ts) { |
1080 | expires = timespec64_to_ktime(ts: *ts); |
1081 | timeout = &expires; |
1082 | } |
1083 | |
1084 | audit_mq_sendrecv(mqdes, msg_len, msg_prio, abs_timeout: ts); |
1085 | |
1086 | f = fdget(fd: mqdes); |
1087 | if (unlikely(!f.file)) { |
1088 | ret = -EBADF; |
1089 | goto out; |
1090 | } |
1091 | |
1092 | inode = file_inode(f: f.file); |
1093 | if (unlikely(f.file->f_op != &mqueue_file_operations)) { |
1094 | ret = -EBADF; |
1095 | goto out_fput; |
1096 | } |
1097 | info = MQUEUE_I(inode); |
1098 | audit_file(file: f.file); |
1099 | |
1100 | if (unlikely(!(f.file->f_mode & FMODE_WRITE))) { |
1101 | ret = -EBADF; |
1102 | goto out_fput; |
1103 | } |
1104 | |
1105 | if (unlikely(msg_len > info->attr.mq_msgsize)) { |
1106 | ret = -EMSGSIZE; |
1107 | goto out_fput; |
1108 | } |
1109 | |
1110 | /* First try to allocate memory, before doing anything with |
1111 | * existing queues. */ |
1112 | msg_ptr = load_msg(src: u_msg_ptr, len: msg_len); |
1113 | if (IS_ERR(ptr: msg_ptr)) { |
1114 | ret = PTR_ERR(ptr: msg_ptr); |
1115 | goto out_fput; |
1116 | } |
1117 | msg_ptr->m_ts = msg_len; |
1118 | msg_ptr->m_type = msg_prio; |
1119 | |
1120 | /* |
1121 | * msg_insert really wants us to have a valid, spare node struct so |
1122 | * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will |
1123 | * fall back to that if necessary. |
1124 | */ |
1125 | if (!info->node_cache) |
1126 | new_leaf = kmalloc(size: sizeof(*new_leaf), GFP_KERNEL); |
1127 | |
1128 | spin_lock(lock: &info->lock); |
1129 | |
1130 | if (!info->node_cache && new_leaf) { |
1131 | /* Save our speculative allocation into the cache */ |
1132 | INIT_LIST_HEAD(list: &new_leaf->msg_list); |
1133 | info->node_cache = new_leaf; |
1134 | new_leaf = NULL; |
1135 | } else { |
1136 | kfree(objp: new_leaf); |
1137 | } |
1138 | |
1139 | if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) { |
1140 | if (f.file->f_flags & O_NONBLOCK) { |
1141 | ret = -EAGAIN; |
1142 | } else { |
1143 | wait.task = current; |
1144 | wait.msg = (void *) msg_ptr; |
1145 | |
1146 | /* memory barrier not required, we hold info->lock */ |
1147 | WRITE_ONCE(wait.state, STATE_NONE); |
1148 | ret = wq_sleep(info, SEND, timeout, ewp: &wait); |
1149 | /* |
1150 | * wq_sleep must be called with info->lock held, and |
1151 | * returns with the lock released |
1152 | */ |
1153 | goto out_free; |
1154 | } |
1155 | } else { |
1156 | receiver = wq_get_first_waiter(info, RECV); |
1157 | if (receiver) { |
1158 | pipelined_send(wake_q: &wake_q, info, message: msg_ptr, receiver); |
1159 | } else { |
1160 | /* adds message to the queue */ |
1161 | ret = msg_insert(msg: msg_ptr, info); |
1162 | if (ret) |
1163 | goto out_unlock; |
1164 | __do_notify(info); |
1165 | } |
1166 | simple_inode_init_ts(inode); |
1167 | } |
1168 | out_unlock: |
1169 | spin_unlock(lock: &info->lock); |
1170 | wake_up_q(head: &wake_q); |
1171 | out_free: |
1172 | if (ret) |
1173 | free_msg(msg: msg_ptr); |
1174 | out_fput: |
1175 | fdput(fd: f); |
1176 | out: |
1177 | return ret; |
1178 | } |
1179 | |
1180 | static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr, |
1181 | size_t msg_len, unsigned int __user *u_msg_prio, |
1182 | struct timespec64 *ts) |
1183 | { |
1184 | ssize_t ret; |
1185 | struct msg_msg *msg_ptr; |
1186 | struct fd f; |
1187 | struct inode *inode; |
1188 | struct mqueue_inode_info *info; |
1189 | struct ext_wait_queue wait; |
1190 | ktime_t expires, *timeout = NULL; |
1191 | struct posix_msg_tree_node *new_leaf = NULL; |
1192 | |
1193 | if (ts) { |
1194 | expires = timespec64_to_ktime(ts: *ts); |
1195 | timeout = &expires; |
1196 | } |
1197 | |
1198 | audit_mq_sendrecv(mqdes, msg_len, msg_prio: 0, abs_timeout: ts); |
1199 | |
1200 | f = fdget(fd: mqdes); |
1201 | if (unlikely(!f.file)) { |
1202 | ret = -EBADF; |
1203 | goto out; |
1204 | } |
1205 | |
1206 | inode = file_inode(f: f.file); |
1207 | if (unlikely(f.file->f_op != &mqueue_file_operations)) { |
1208 | ret = -EBADF; |
1209 | goto out_fput; |
1210 | } |
1211 | info = MQUEUE_I(inode); |
1212 | audit_file(file: f.file); |
1213 | |
1214 | if (unlikely(!(f.file->f_mode & FMODE_READ))) { |
1215 | ret = -EBADF; |
1216 | goto out_fput; |
1217 | } |
1218 | |
1219 | /* checks if buffer is big enough */ |
1220 | if (unlikely(msg_len < info->attr.mq_msgsize)) { |
1221 | ret = -EMSGSIZE; |
1222 | goto out_fput; |
1223 | } |
1224 | |
1225 | /* |
1226 | * msg_insert really wants us to have a valid, spare node struct so |
1227 | * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will |
1228 | * fall back to that if necessary. |
1229 | */ |
1230 | if (!info->node_cache) |
1231 | new_leaf = kmalloc(size: sizeof(*new_leaf), GFP_KERNEL); |
1232 | |
1233 | spin_lock(lock: &info->lock); |
1234 | |
1235 | if (!info->node_cache && new_leaf) { |
1236 | /* Save our speculative allocation into the cache */ |
1237 | INIT_LIST_HEAD(list: &new_leaf->msg_list); |
1238 | info->node_cache = new_leaf; |
1239 | } else { |
1240 | kfree(objp: new_leaf); |
1241 | } |
1242 | |
1243 | if (info->attr.mq_curmsgs == 0) { |
1244 | if (f.file->f_flags & O_NONBLOCK) { |
1245 | spin_unlock(lock: &info->lock); |
1246 | ret = -EAGAIN; |
1247 | } else { |
1248 | wait.task = current; |
1249 | |
1250 | /* memory barrier not required, we hold info->lock */ |
1251 | WRITE_ONCE(wait.state, STATE_NONE); |
1252 | ret = wq_sleep(info, RECV, timeout, ewp: &wait); |
1253 | msg_ptr = wait.msg; |
1254 | } |
1255 | } else { |
1256 | DEFINE_WAKE_Q(wake_q); |
1257 | |
1258 | msg_ptr = msg_get(info); |
1259 | |
1260 | simple_inode_init_ts(inode); |
1261 | |
1262 | /* There is now free space in queue. */ |
1263 | pipelined_receive(wake_q: &wake_q, info); |
1264 | spin_unlock(lock: &info->lock); |
1265 | wake_up_q(head: &wake_q); |
1266 | ret = 0; |
1267 | } |
1268 | if (ret == 0) { |
1269 | ret = msg_ptr->m_ts; |
1270 | |
1271 | if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) || |
1272 | store_msg(dest: u_msg_ptr, msg: msg_ptr, len: msg_ptr->m_ts)) { |
1273 | ret = -EFAULT; |
1274 | } |
1275 | free_msg(msg: msg_ptr); |
1276 | } |
1277 | out_fput: |
1278 | fdput(fd: f); |
1279 | out: |
1280 | return ret; |
1281 | } |
1282 | |
1283 | SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr, |
1284 | size_t, msg_len, unsigned int, msg_prio, |
1285 | const struct __kernel_timespec __user *, u_abs_timeout) |
1286 | { |
1287 | struct timespec64 ts, *p = NULL; |
1288 | if (u_abs_timeout) { |
1289 | int res = prepare_timeout(u_abs_timeout, ts: &ts); |
1290 | if (res) |
1291 | return res; |
1292 | p = &ts; |
1293 | } |
1294 | return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, ts: p); |
1295 | } |
1296 | |
1297 | SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr, |
1298 | size_t, msg_len, unsigned int __user *, u_msg_prio, |
1299 | const struct __kernel_timespec __user *, u_abs_timeout) |
1300 | { |
1301 | struct timespec64 ts, *p = NULL; |
1302 | if (u_abs_timeout) { |
1303 | int res = prepare_timeout(u_abs_timeout, ts: &ts); |
1304 | if (res) |
1305 | return res; |
1306 | p = &ts; |
1307 | } |
1308 | return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, ts: p); |
1309 | } |
1310 | |
1311 | /* |
1312 | * Notes: the case when user wants us to deregister (with NULL as pointer) |
1313 | * and he isn't currently owner of notification, will be silently discarded. |
1314 | * It isn't explicitly defined in the POSIX. |
1315 | */ |
1316 | static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification) |
1317 | { |
1318 | int ret; |
1319 | struct fd f; |
1320 | struct sock *sock; |
1321 | struct inode *inode; |
1322 | struct mqueue_inode_info *info; |
1323 | struct sk_buff *nc; |
1324 | |
1325 | audit_mq_notify(mqdes, notification); |
1326 | |
1327 | nc = NULL; |
1328 | sock = NULL; |
1329 | if (notification != NULL) { |
1330 | if (unlikely(notification->sigev_notify != SIGEV_NONE && |
1331 | notification->sigev_notify != SIGEV_SIGNAL && |
1332 | notification->sigev_notify != SIGEV_THREAD)) |
1333 | return -EINVAL; |
1334 | if (notification->sigev_notify == SIGEV_SIGNAL && |
1335 | !valid_signal(sig: notification->sigev_signo)) { |
1336 | return -EINVAL; |
1337 | } |
1338 | if (notification->sigev_notify == SIGEV_THREAD) { |
1339 | long timeo; |
1340 | |
1341 | /* create the notify skb */ |
1342 | nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL); |
1343 | if (!nc) |
1344 | return -ENOMEM; |
1345 | |
1346 | if (copy_from_user(to: nc->data, |
1347 | from: notification->sigev_value.sival_ptr, |
1348 | NOTIFY_COOKIE_LEN)) { |
1349 | ret = -EFAULT; |
1350 | goto free_skb; |
1351 | } |
1352 | |
1353 | /* TODO: add a header? */ |
1354 | skb_put(skb: nc, NOTIFY_COOKIE_LEN); |
1355 | /* and attach it to the socket */ |
1356 | retry: |
1357 | f = fdget(fd: notification->sigev_signo); |
1358 | if (!f.file) { |
1359 | ret = -EBADF; |
1360 | goto out; |
1361 | } |
1362 | sock = netlink_getsockbyfilp(filp: f.file); |
1363 | fdput(fd: f); |
1364 | if (IS_ERR(ptr: sock)) { |
1365 | ret = PTR_ERR(ptr: sock); |
1366 | goto free_skb; |
1367 | } |
1368 | |
1369 | timeo = MAX_SCHEDULE_TIMEOUT; |
1370 | ret = netlink_attachskb(sk: sock, skb: nc, timeo: &timeo, NULL); |
1371 | if (ret == 1) { |
1372 | sock = NULL; |
1373 | goto retry; |
1374 | } |
1375 | if (ret) |
1376 | return ret; |
1377 | } |
1378 | } |
1379 | |
1380 | f = fdget(fd: mqdes); |
1381 | if (!f.file) { |
1382 | ret = -EBADF; |
1383 | goto out; |
1384 | } |
1385 | |
1386 | inode = file_inode(f: f.file); |
1387 | if (unlikely(f.file->f_op != &mqueue_file_operations)) { |
1388 | ret = -EBADF; |
1389 | goto out_fput; |
1390 | } |
1391 | info = MQUEUE_I(inode); |
1392 | |
1393 | ret = 0; |
1394 | spin_lock(lock: &info->lock); |
1395 | if (notification == NULL) { |
1396 | if (info->notify_owner == task_tgid(current)) { |
1397 | remove_notification(info); |
1398 | inode_set_atime_to_ts(inode, |
1399 | ts: inode_set_ctime_current(inode)); |
1400 | } |
1401 | } else if (info->notify_owner != NULL) { |
1402 | ret = -EBUSY; |
1403 | } else { |
1404 | switch (notification->sigev_notify) { |
1405 | case SIGEV_NONE: |
1406 | info->notify.sigev_notify = SIGEV_NONE; |
1407 | break; |
1408 | case SIGEV_THREAD: |
1409 | info->notify_sock = sock; |
1410 | info->notify_cookie = nc; |
1411 | sock = NULL; |
1412 | nc = NULL; |
1413 | info->notify.sigev_notify = SIGEV_THREAD; |
1414 | break; |
1415 | case SIGEV_SIGNAL: |
1416 | info->notify.sigev_signo = notification->sigev_signo; |
1417 | info->notify.sigev_value = notification->sigev_value; |
1418 | info->notify.sigev_notify = SIGEV_SIGNAL; |
1419 | info->notify_self_exec_id = current->self_exec_id; |
1420 | break; |
1421 | } |
1422 | |
1423 | info->notify_owner = get_pid(pid: task_tgid(current)); |
1424 | info->notify_user_ns = get_user_ns(current_user_ns()); |
1425 | inode_set_atime_to_ts(inode, ts: inode_set_ctime_current(inode)); |
1426 | } |
1427 | spin_unlock(lock: &info->lock); |
1428 | out_fput: |
1429 | fdput(fd: f); |
1430 | out: |
1431 | if (sock) |
1432 | netlink_detachskb(sk: sock, skb: nc); |
1433 | else |
1434 | free_skb: |
1435 | dev_kfree_skb(nc); |
1436 | |
1437 | return ret; |
1438 | } |
1439 | |
1440 | SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, |
1441 | const struct sigevent __user *, u_notification) |
1442 | { |
1443 | struct sigevent n, *p = NULL; |
1444 | if (u_notification) { |
1445 | if (copy_from_user(to: &n, from: u_notification, n: sizeof(struct sigevent))) |
1446 | return -EFAULT; |
1447 | p = &n; |
1448 | } |
1449 | return do_mq_notify(mqdes, notification: p); |
1450 | } |
1451 | |
1452 | static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old) |
1453 | { |
1454 | struct fd f; |
1455 | struct inode *inode; |
1456 | struct mqueue_inode_info *info; |
1457 | |
1458 | if (new && (new->mq_flags & (~O_NONBLOCK))) |
1459 | return -EINVAL; |
1460 | |
1461 | f = fdget(fd: mqdes); |
1462 | if (!f.file) |
1463 | return -EBADF; |
1464 | |
1465 | if (unlikely(f.file->f_op != &mqueue_file_operations)) { |
1466 | fdput(fd: f); |
1467 | return -EBADF; |
1468 | } |
1469 | |
1470 | inode = file_inode(f: f.file); |
1471 | info = MQUEUE_I(inode); |
1472 | |
1473 | spin_lock(lock: &info->lock); |
1474 | |
1475 | if (old) { |
1476 | *old = info->attr; |
1477 | old->mq_flags = f.file->f_flags & O_NONBLOCK; |
1478 | } |
1479 | if (new) { |
1480 | audit_mq_getsetattr(mqdes, mqstat: new); |
1481 | spin_lock(lock: &f.file->f_lock); |
1482 | if (new->mq_flags & O_NONBLOCK) |
1483 | f.file->f_flags |= O_NONBLOCK; |
1484 | else |
1485 | f.file->f_flags &= ~O_NONBLOCK; |
1486 | spin_unlock(lock: &f.file->f_lock); |
1487 | |
1488 | inode_set_atime_to_ts(inode, ts: inode_set_ctime_current(inode)); |
1489 | } |
1490 | |
1491 | spin_unlock(lock: &info->lock); |
1492 | fdput(fd: f); |
1493 | return 0; |
1494 | } |
1495 | |
1496 | SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, |
1497 | const struct mq_attr __user *, u_mqstat, |
1498 | struct mq_attr __user *, u_omqstat) |
1499 | { |
1500 | int ret; |
1501 | struct mq_attr mqstat, omqstat; |
1502 | struct mq_attr *new = NULL, *old = NULL; |
1503 | |
1504 | if (u_mqstat) { |
1505 | new = &mqstat; |
1506 | if (copy_from_user(to: new, from: u_mqstat, n: sizeof(struct mq_attr))) |
1507 | return -EFAULT; |
1508 | } |
1509 | if (u_omqstat) |
1510 | old = &omqstat; |
1511 | |
1512 | ret = do_mq_getsetattr(mqdes, new, old); |
1513 | if (ret || !old) |
1514 | return ret; |
1515 | |
1516 | if (copy_to_user(to: u_omqstat, from: old, n: sizeof(struct mq_attr))) |
1517 | return -EFAULT; |
1518 | return 0; |
1519 | } |
1520 | |
1521 | #ifdef CONFIG_COMPAT |
1522 | |
1523 | struct compat_mq_attr { |
1524 | compat_long_t mq_flags; /* message queue flags */ |
1525 | compat_long_t mq_maxmsg; /* maximum number of messages */ |
1526 | compat_long_t mq_msgsize; /* maximum message size */ |
1527 | compat_long_t mq_curmsgs; /* number of messages currently queued */ |
1528 | compat_long_t __reserved[4]; /* ignored for input, zeroed for output */ |
1529 | }; |
1530 | |
1531 | static inline int get_compat_mq_attr(struct mq_attr *attr, |
1532 | const struct compat_mq_attr __user *uattr) |
1533 | { |
1534 | struct compat_mq_attr v; |
1535 | |
1536 | if (copy_from_user(to: &v, from: uattr, n: sizeof(*uattr))) |
1537 | return -EFAULT; |
1538 | |
1539 | memset(attr, 0, sizeof(*attr)); |
1540 | attr->mq_flags = v.mq_flags; |
1541 | attr->mq_maxmsg = v.mq_maxmsg; |
1542 | attr->mq_msgsize = v.mq_msgsize; |
1543 | attr->mq_curmsgs = v.mq_curmsgs; |
1544 | return 0; |
1545 | } |
1546 | |
1547 | static inline int put_compat_mq_attr(const struct mq_attr *attr, |
1548 | struct compat_mq_attr __user *uattr) |
1549 | { |
1550 | struct compat_mq_attr v; |
1551 | |
1552 | memset(&v, 0, sizeof(v)); |
1553 | v.mq_flags = attr->mq_flags; |
1554 | v.mq_maxmsg = attr->mq_maxmsg; |
1555 | v.mq_msgsize = attr->mq_msgsize; |
1556 | v.mq_curmsgs = attr->mq_curmsgs; |
1557 | if (copy_to_user(to: uattr, from: &v, n: sizeof(*uattr))) |
1558 | return -EFAULT; |
1559 | return 0; |
1560 | } |
1561 | |
1562 | COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name, |
1563 | int, oflag, compat_mode_t, mode, |
1564 | struct compat_mq_attr __user *, u_attr) |
1565 | { |
1566 | struct mq_attr attr, *p = NULL; |
1567 | if (u_attr && oflag & O_CREAT) { |
1568 | p = &attr; |
1569 | if (get_compat_mq_attr(attr: &attr, uattr: u_attr)) |
1570 | return -EFAULT; |
1571 | } |
1572 | return do_mq_open(u_name, oflag, mode, attr: p); |
1573 | } |
1574 | |
1575 | COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes, |
1576 | const struct compat_sigevent __user *, u_notification) |
1577 | { |
1578 | struct sigevent n, *p = NULL; |
1579 | if (u_notification) { |
1580 | if (get_compat_sigevent(event: &n, u_event: u_notification)) |
1581 | return -EFAULT; |
1582 | if (n.sigev_notify == SIGEV_THREAD) |
1583 | n.sigev_value.sival_ptr = compat_ptr(uptr: n.sigev_value.sival_int); |
1584 | p = &n; |
1585 | } |
1586 | return do_mq_notify(mqdes, notification: p); |
1587 | } |
1588 | |
1589 | COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes, |
1590 | const struct compat_mq_attr __user *, u_mqstat, |
1591 | struct compat_mq_attr __user *, u_omqstat) |
1592 | { |
1593 | int ret; |
1594 | struct mq_attr mqstat, omqstat; |
1595 | struct mq_attr *new = NULL, *old = NULL; |
1596 | |
1597 | if (u_mqstat) { |
1598 | new = &mqstat; |
1599 | if (get_compat_mq_attr(attr: new, uattr: u_mqstat)) |
1600 | return -EFAULT; |
1601 | } |
1602 | if (u_omqstat) |
1603 | old = &omqstat; |
1604 | |
1605 | ret = do_mq_getsetattr(mqdes, new, old); |
1606 | if (ret || !old) |
1607 | return ret; |
1608 | |
1609 | if (put_compat_mq_attr(attr: old, uattr: u_omqstat)) |
1610 | return -EFAULT; |
1611 | return 0; |
1612 | } |
1613 | #endif |
1614 | |
1615 | #ifdef CONFIG_COMPAT_32BIT_TIME |
1616 | static int compat_prepare_timeout(const struct old_timespec32 __user *p, |
1617 | struct timespec64 *ts) |
1618 | { |
1619 | if (get_old_timespec32(ts, p)) |
1620 | return -EFAULT; |
1621 | if (!timespec64_valid(ts)) |
1622 | return -EINVAL; |
1623 | return 0; |
1624 | } |
1625 | |
1626 | SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes, |
1627 | const char __user *, u_msg_ptr, |
1628 | unsigned int, msg_len, unsigned int, msg_prio, |
1629 | const struct old_timespec32 __user *, u_abs_timeout) |
1630 | { |
1631 | struct timespec64 ts, *p = NULL; |
1632 | if (u_abs_timeout) { |
1633 | int res = compat_prepare_timeout(p: u_abs_timeout, ts: &ts); |
1634 | if (res) |
1635 | return res; |
1636 | p = &ts; |
1637 | } |
1638 | return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, ts: p); |
1639 | } |
1640 | |
1641 | SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes, |
1642 | char __user *, u_msg_ptr, |
1643 | unsigned int, msg_len, unsigned int __user *, u_msg_prio, |
1644 | const struct old_timespec32 __user *, u_abs_timeout) |
1645 | { |
1646 | struct timespec64 ts, *p = NULL; |
1647 | if (u_abs_timeout) { |
1648 | int res = compat_prepare_timeout(p: u_abs_timeout, ts: &ts); |
1649 | if (res) |
1650 | return res; |
1651 | p = &ts; |
1652 | } |
1653 | return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, ts: p); |
1654 | } |
1655 | #endif |
1656 | |
1657 | static const struct inode_operations mqueue_dir_inode_operations = { |
1658 | .lookup = simple_lookup, |
1659 | .create = mqueue_create, |
1660 | .unlink = mqueue_unlink, |
1661 | }; |
1662 | |
1663 | static const struct file_operations mqueue_file_operations = { |
1664 | .flush = mqueue_flush_file, |
1665 | .poll = mqueue_poll_file, |
1666 | .read = mqueue_read_file, |
1667 | .llseek = default_llseek, |
1668 | }; |
1669 | |
1670 | static const struct super_operations mqueue_super_ops = { |
1671 | .alloc_inode = mqueue_alloc_inode, |
1672 | .free_inode = mqueue_free_inode, |
1673 | .evict_inode = mqueue_evict_inode, |
1674 | .statfs = simple_statfs, |
1675 | }; |
1676 | |
1677 | static const struct fs_context_operations mqueue_fs_context_ops = { |
1678 | .free = mqueue_fs_context_free, |
1679 | .get_tree = mqueue_get_tree, |
1680 | }; |
1681 | |
1682 | static struct file_system_type mqueue_fs_type = { |
1683 | .name = "mqueue" , |
1684 | .init_fs_context = mqueue_init_fs_context, |
1685 | .kill_sb = kill_litter_super, |
1686 | .fs_flags = FS_USERNS_MOUNT, |
1687 | }; |
1688 | |
1689 | int mq_init_ns(struct ipc_namespace *ns) |
1690 | { |
1691 | struct vfsmount *m; |
1692 | |
1693 | ns->mq_queues_count = 0; |
1694 | ns->mq_queues_max = DFLT_QUEUESMAX; |
1695 | ns->mq_msg_max = DFLT_MSGMAX; |
1696 | ns->mq_msgsize_max = DFLT_MSGSIZEMAX; |
1697 | ns->mq_msg_default = DFLT_MSG; |
1698 | ns->mq_msgsize_default = DFLT_MSGSIZE; |
1699 | |
1700 | m = mq_create_mount(ns); |
1701 | if (IS_ERR(ptr: m)) |
1702 | return PTR_ERR(ptr: m); |
1703 | ns->mq_mnt = m; |
1704 | return 0; |
1705 | } |
1706 | |
1707 | void mq_clear_sbinfo(struct ipc_namespace *ns) |
1708 | { |
1709 | ns->mq_mnt->mnt_sb->s_fs_info = NULL; |
1710 | } |
1711 | |
1712 | static int __init init_mqueue_fs(void) |
1713 | { |
1714 | int error; |
1715 | |
1716 | mqueue_inode_cachep = kmem_cache_create(name: "mqueue_inode_cache" , |
1717 | size: sizeof(struct mqueue_inode_info), align: 0, |
1718 | SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, ctor: init_once); |
1719 | if (mqueue_inode_cachep == NULL) |
1720 | return -ENOMEM; |
1721 | |
1722 | if (!setup_mq_sysctls(&init_ipc_ns)) { |
1723 | pr_warn("sysctl registration failed\n" ); |
1724 | error = -ENOMEM; |
1725 | goto out_kmem; |
1726 | } |
1727 | |
1728 | error = register_filesystem(&mqueue_fs_type); |
1729 | if (error) |
1730 | goto out_sysctl; |
1731 | |
1732 | spin_lock_init(&mq_lock); |
1733 | |
1734 | error = mq_init_ns(ns: &init_ipc_ns); |
1735 | if (error) |
1736 | goto out_filesystem; |
1737 | |
1738 | return 0; |
1739 | |
1740 | out_filesystem: |
1741 | unregister_filesystem(&mqueue_fs_type); |
1742 | out_sysctl: |
1743 | retire_mq_sysctls(ns: &init_ipc_ns); |
1744 | out_kmem: |
1745 | kmem_cache_destroy(s: mqueue_inode_cachep); |
1746 | return error; |
1747 | } |
1748 | |
1749 | device_initcall(init_mqueue_fs); |
1750 | |