1/*
2 * POSIX message queues filesystem for Linux.
3 *
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
6 *
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
10 *
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
12 *
13 * This file is released under the GPL.
14 */
15
16#include <linux/capability.h>
17#include <linux/init.h>
18#include <linux/pagemap.h>
19#include <linux/file.h>
20#include <linux/mount.h>
21#include <linux/fs_context.h>
22#include <linux/namei.h>
23#include <linux/sysctl.h>
24#include <linux/poll.h>
25#include <linux/mqueue.h>
26#include <linux/msg.h>
27#include <linux/skbuff.h>
28#include <linux/vmalloc.h>
29#include <linux/netlink.h>
30#include <linux/syscalls.h>
31#include <linux/audit.h>
32#include <linux/signal.h>
33#include <linux/mutex.h>
34#include <linux/nsproxy.h>
35#include <linux/pid.h>
36#include <linux/ipc_namespace.h>
37#include <linux/user_namespace.h>
38#include <linux/slab.h>
39#include <linux/sched/wake_q.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/user.h>
42
43#include <net/sock.h>
44#include "util.h"
45
46struct mqueue_fs_context {
47 struct ipc_namespace *ipc_ns;
48 bool newns; /* Set if newly created ipc namespace */
49};
50
51#define MQUEUE_MAGIC 0x19800202
52#define DIRENT_SIZE 20
53#define FILENT_SIZE 80
54
55#define SEND 0
56#define RECV 1
57
58#define STATE_NONE 0
59#define STATE_READY 1
60
61struct posix_msg_tree_node {
62 struct rb_node rb_node;
63 struct list_head msg_list;
64 int priority;
65};
66
67/*
68 * Locking:
69 *
70 * Accesses to a message queue are synchronized by acquiring info->lock.
71 *
72 * There are two notable exceptions:
73 * - The actual wakeup of a sleeping task is performed using the wake_q
74 * framework. info->lock is already released when wake_up_q is called.
75 * - The exit codepaths after sleeping check ext_wait_queue->state without
76 * any locks. If it is STATE_READY, then the syscall is completed without
77 * acquiring info->lock.
78 *
79 * MQ_BARRIER:
80 * To achieve proper release/acquire memory barrier pairing, the state is set to
81 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
82 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
83 *
84 * This prevents the following races:
85 *
86 * 1) With the simple wake_q_add(), the task could be gone already before
87 * the increase of the reference happens
88 * Thread A
89 * Thread B
90 * WRITE_ONCE(wait.state, STATE_NONE);
91 * schedule_hrtimeout()
92 * wake_q_add(A)
93 * if (cmpxchg()) // success
94 * ->state = STATE_READY (reordered)
95 * <timeout returns>
96 * if (wait.state == STATE_READY) return;
97 * sysret to user space
98 * sys_exit()
99 * get_task_struct() // UaF
100 *
101 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
102 * the smp_store_release() that does ->state = STATE_READY.
103 *
104 * 2) Without proper _release/_acquire barriers, the woken up task
105 * could read stale data
106 *
107 * Thread A
108 * Thread B
109 * do_mq_timedreceive
110 * WRITE_ONCE(wait.state, STATE_NONE);
111 * schedule_hrtimeout()
112 * state = STATE_READY;
113 * <timeout returns>
114 * if (wait.state == STATE_READY) return;
115 * msg_ptr = wait.msg; // Access to stale data!
116 * receiver->msg = message; (reordered)
117 *
118 * Solution: use _release and _acquire barriers.
119 *
120 * 3) There is intentionally no barrier when setting current->state
121 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
122 * release memory barrier, and the wakeup is triggered when holding
123 * info->lock, i.e. spin_lock(&info->lock) provided a pairing
124 * acquire memory barrier.
125 */
126
127struct ext_wait_queue { /* queue of sleeping tasks */
128 struct task_struct *task;
129 struct list_head list;
130 struct msg_msg *msg; /* ptr of loaded message */
131 int state; /* one of STATE_* values */
132};
133
134struct mqueue_inode_info {
135 spinlock_t lock;
136 struct inode vfs_inode;
137 wait_queue_head_t wait_q;
138
139 struct rb_root msg_tree;
140 struct rb_node *msg_tree_rightmost;
141 struct posix_msg_tree_node *node_cache;
142 struct mq_attr attr;
143
144 struct sigevent notify;
145 struct pid *notify_owner;
146 u32 notify_self_exec_id;
147 struct user_namespace *notify_user_ns;
148 struct ucounts *ucounts; /* user who created, for accounting */
149 struct sock *notify_sock;
150 struct sk_buff *notify_cookie;
151
152 /* for tasks waiting for free space and messages, respectively */
153 struct ext_wait_queue e_wait_q[2];
154
155 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
156};
157
158static struct file_system_type mqueue_fs_type;
159static const struct inode_operations mqueue_dir_inode_operations;
160static const struct file_operations mqueue_file_operations;
161static const struct super_operations mqueue_super_ops;
162static const struct fs_context_operations mqueue_fs_context_ops;
163static void remove_notification(struct mqueue_inode_info *info);
164
165static struct kmem_cache *mqueue_inode_cachep;
166
167static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
168{
169 return container_of(inode, struct mqueue_inode_info, vfs_inode);
170}
171
172/*
173 * This routine should be called with the mq_lock held.
174 */
175static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
176{
177 return get_ipc_ns(ns: inode->i_sb->s_fs_info);
178}
179
180static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
181{
182 struct ipc_namespace *ns;
183
184 spin_lock(lock: &mq_lock);
185 ns = __get_ns_from_inode(inode);
186 spin_unlock(lock: &mq_lock);
187 return ns;
188}
189
190/* Auxiliary functions to manipulate messages' list */
191static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
192{
193 struct rb_node **p, *parent = NULL;
194 struct posix_msg_tree_node *leaf;
195 bool rightmost = true;
196
197 p = &info->msg_tree.rb_node;
198 while (*p) {
199 parent = *p;
200 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
201
202 if (likely(leaf->priority == msg->m_type))
203 goto insert_msg;
204 else if (msg->m_type < leaf->priority) {
205 p = &(*p)->rb_left;
206 rightmost = false;
207 } else
208 p = &(*p)->rb_right;
209 }
210 if (info->node_cache) {
211 leaf = info->node_cache;
212 info->node_cache = NULL;
213 } else {
214 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
215 if (!leaf)
216 return -ENOMEM;
217 INIT_LIST_HEAD(list: &leaf->msg_list);
218 }
219 leaf->priority = msg->m_type;
220
221 if (rightmost)
222 info->msg_tree_rightmost = &leaf->rb_node;
223
224 rb_link_node(node: &leaf->rb_node, parent, rb_link: p);
225 rb_insert_color(&leaf->rb_node, &info->msg_tree);
226insert_msg:
227 info->attr.mq_curmsgs++;
228 info->qsize += msg->m_ts;
229 list_add_tail(new: &msg->m_list, head: &leaf->msg_list);
230 return 0;
231}
232
233static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
234 struct mqueue_inode_info *info)
235{
236 struct rb_node *node = &leaf->rb_node;
237
238 if (info->msg_tree_rightmost == node)
239 info->msg_tree_rightmost = rb_prev(node);
240
241 rb_erase(node, &info->msg_tree);
242 if (info->node_cache)
243 kfree(objp: leaf);
244 else
245 info->node_cache = leaf;
246}
247
248static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
249{
250 struct rb_node *parent = NULL;
251 struct posix_msg_tree_node *leaf;
252 struct msg_msg *msg;
253
254try_again:
255 /*
256 * During insert, low priorities go to the left and high to the
257 * right. On receive, we want the highest priorities first, so
258 * walk all the way to the right.
259 */
260 parent = info->msg_tree_rightmost;
261 if (!parent) {
262 if (info->attr.mq_curmsgs) {
263 pr_warn_once("Inconsistency in POSIX message queue, "
264 "no tree element, but supposedly messages "
265 "should exist!\n");
266 info->attr.mq_curmsgs = 0;
267 }
268 return NULL;
269 }
270 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
271 if (unlikely(list_empty(&leaf->msg_list))) {
272 pr_warn_once("Inconsistency in POSIX message queue, "
273 "empty leaf node but we haven't implemented "
274 "lazy leaf delete!\n");
275 msg_tree_erase(leaf, info);
276 goto try_again;
277 } else {
278 msg = list_first_entry(&leaf->msg_list,
279 struct msg_msg, m_list);
280 list_del(entry: &msg->m_list);
281 if (list_empty(head: &leaf->msg_list)) {
282 msg_tree_erase(leaf, info);
283 }
284 }
285 info->attr.mq_curmsgs--;
286 info->qsize -= msg->m_ts;
287 return msg;
288}
289
290static struct inode *mqueue_get_inode(struct super_block *sb,
291 struct ipc_namespace *ipc_ns, umode_t mode,
292 struct mq_attr *attr)
293{
294 struct inode *inode;
295 int ret = -ENOMEM;
296
297 inode = new_inode(sb);
298 if (!inode)
299 goto err;
300
301 inode->i_ino = get_next_ino();
302 inode->i_mode = mode;
303 inode->i_uid = current_fsuid();
304 inode->i_gid = current_fsgid();
305 simple_inode_init_ts(inode);
306
307 if (S_ISREG(mode)) {
308 struct mqueue_inode_info *info;
309 unsigned long mq_bytes, mq_treesize;
310
311 inode->i_fop = &mqueue_file_operations;
312 inode->i_size = FILENT_SIZE;
313 /* mqueue specific info */
314 info = MQUEUE_I(inode);
315 spin_lock_init(&info->lock);
316 init_waitqueue_head(&info->wait_q);
317 INIT_LIST_HEAD(list: &info->e_wait_q[0].list);
318 INIT_LIST_HEAD(list: &info->e_wait_q[1].list);
319 info->notify_owner = NULL;
320 info->notify_user_ns = NULL;
321 info->qsize = 0;
322 info->ucounts = NULL; /* set when all is ok */
323 info->msg_tree = RB_ROOT;
324 info->msg_tree_rightmost = NULL;
325 info->node_cache = NULL;
326 memset(&info->attr, 0, sizeof(info->attr));
327 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
328 ipc_ns->mq_msg_default);
329 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
330 ipc_ns->mq_msgsize_default);
331 if (attr) {
332 info->attr.mq_maxmsg = attr->mq_maxmsg;
333 info->attr.mq_msgsize = attr->mq_msgsize;
334 }
335 /*
336 * We used to allocate a static array of pointers and account
337 * the size of that array as well as one msg_msg struct per
338 * possible message into the queue size. That's no longer
339 * accurate as the queue is now an rbtree and will grow and
340 * shrink depending on usage patterns. We can, however, still
341 * account one msg_msg struct per message, but the nodes are
342 * allocated depending on priority usage, and most programs
343 * only use one, or a handful, of priorities. However, since
344 * this is pinned memory, we need to assume worst case, so
345 * that means the min(mq_maxmsg, max_priorities) * struct
346 * posix_msg_tree_node.
347 */
348
349 ret = -EINVAL;
350 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
351 goto out_inode;
352 if (capable(CAP_SYS_RESOURCE)) {
353 if (info->attr.mq_maxmsg > HARD_MSGMAX ||
354 info->attr.mq_msgsize > HARD_MSGSIZEMAX)
355 goto out_inode;
356 } else {
357 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
358 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
359 goto out_inode;
360 }
361 ret = -EOVERFLOW;
362 /* check for overflow */
363 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
364 goto out_inode;
365 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
366 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
367 sizeof(struct posix_msg_tree_node);
368 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
369 if (mq_bytes + mq_treesize < mq_bytes)
370 goto out_inode;
371 mq_bytes += mq_treesize;
372 info->ucounts = get_ucounts(current_ucounts());
373 if (info->ucounts) {
374 long msgqueue;
375
376 spin_lock(lock: &mq_lock);
377 msgqueue = inc_rlimit_ucounts(ucounts: info->ucounts, type: UCOUNT_RLIMIT_MSGQUEUE, v: mq_bytes);
378 if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
379 dec_rlimit_ucounts(ucounts: info->ucounts, type: UCOUNT_RLIMIT_MSGQUEUE, v: mq_bytes);
380 spin_unlock(lock: &mq_lock);
381 put_ucounts(ucounts: info->ucounts);
382 info->ucounts = NULL;
383 /* mqueue_evict_inode() releases info->messages */
384 ret = -EMFILE;
385 goto out_inode;
386 }
387 spin_unlock(lock: &mq_lock);
388 }
389 } else if (S_ISDIR(mode)) {
390 inc_nlink(inode);
391 /* Some things misbehave if size == 0 on a directory */
392 inode->i_size = 2 * DIRENT_SIZE;
393 inode->i_op = &mqueue_dir_inode_operations;
394 inode->i_fop = &simple_dir_operations;
395 }
396
397 return inode;
398out_inode:
399 iput(inode);
400err:
401 return ERR_PTR(error: ret);
402}
403
404static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
405{
406 struct inode *inode;
407 struct ipc_namespace *ns = sb->s_fs_info;
408
409 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
410 sb->s_blocksize = PAGE_SIZE;
411 sb->s_blocksize_bits = PAGE_SHIFT;
412 sb->s_magic = MQUEUE_MAGIC;
413 sb->s_op = &mqueue_super_ops;
414
415 inode = mqueue_get_inode(sb, ipc_ns: ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
416 if (IS_ERR(ptr: inode))
417 return PTR_ERR(ptr: inode);
418
419 sb->s_root = d_make_root(inode);
420 if (!sb->s_root)
421 return -ENOMEM;
422 return 0;
423}
424
425static int mqueue_get_tree(struct fs_context *fc)
426{
427 struct mqueue_fs_context *ctx = fc->fs_private;
428
429 /*
430 * With a newly created ipc namespace, we don't need to do a search
431 * for an ipc namespace match, but we still need to set s_fs_info.
432 */
433 if (ctx->newns) {
434 fc->s_fs_info = ctx->ipc_ns;
435 return get_tree_nodev(fc, fill_super: mqueue_fill_super);
436 }
437 return get_tree_keyed(fc, fill_super: mqueue_fill_super, key: ctx->ipc_ns);
438}
439
440static void mqueue_fs_context_free(struct fs_context *fc)
441{
442 struct mqueue_fs_context *ctx = fc->fs_private;
443
444 put_ipc_ns(ns: ctx->ipc_ns);
445 kfree(objp: ctx);
446}
447
448static int mqueue_init_fs_context(struct fs_context *fc)
449{
450 struct mqueue_fs_context *ctx;
451
452 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
453 if (!ctx)
454 return -ENOMEM;
455
456 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
457 put_user_ns(ns: fc->user_ns);
458 fc->user_ns = get_user_ns(ns: ctx->ipc_ns->user_ns);
459 fc->fs_private = ctx;
460 fc->ops = &mqueue_fs_context_ops;
461 return 0;
462}
463
464/*
465 * mq_init_ns() is currently the only caller of mq_create_mount().
466 * So the ns parameter is always a newly created ipc namespace.
467 */
468static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
469{
470 struct mqueue_fs_context *ctx;
471 struct fs_context *fc;
472 struct vfsmount *mnt;
473
474 fc = fs_context_for_mount(fs_type: &mqueue_fs_type, SB_KERNMOUNT);
475 if (IS_ERR(ptr: fc))
476 return ERR_CAST(ptr: fc);
477
478 ctx = fc->fs_private;
479 ctx->newns = true;
480 put_ipc_ns(ns: ctx->ipc_ns);
481 ctx->ipc_ns = get_ipc_ns(ns);
482 put_user_ns(ns: fc->user_ns);
483 fc->user_ns = get_user_ns(ns: ctx->ipc_ns->user_ns);
484
485 mnt = fc_mount(fc);
486 put_fs_context(fc);
487 return mnt;
488}
489
490static void init_once(void *foo)
491{
492 struct mqueue_inode_info *p = foo;
493
494 inode_init_once(&p->vfs_inode);
495}
496
497static struct inode *mqueue_alloc_inode(struct super_block *sb)
498{
499 struct mqueue_inode_info *ei;
500
501 ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL);
502 if (!ei)
503 return NULL;
504 return &ei->vfs_inode;
505}
506
507static void mqueue_free_inode(struct inode *inode)
508{
509 kmem_cache_free(s: mqueue_inode_cachep, objp: MQUEUE_I(inode));
510}
511
512static void mqueue_evict_inode(struct inode *inode)
513{
514 struct mqueue_inode_info *info;
515 struct ipc_namespace *ipc_ns;
516 struct msg_msg *msg, *nmsg;
517 LIST_HEAD(tmp_msg);
518
519 clear_inode(inode);
520
521 if (S_ISDIR(inode->i_mode))
522 return;
523
524 ipc_ns = get_ns_from_inode(inode);
525 info = MQUEUE_I(inode);
526 spin_lock(lock: &info->lock);
527 while ((msg = msg_get(info)) != NULL)
528 list_add_tail(new: &msg->m_list, head: &tmp_msg);
529 kfree(objp: info->node_cache);
530 spin_unlock(lock: &info->lock);
531
532 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
533 list_del(entry: &msg->m_list);
534 free_msg(msg);
535 }
536
537 if (info->ucounts) {
538 unsigned long mq_bytes, mq_treesize;
539
540 /* Total amount of bytes accounted for the mqueue */
541 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
542 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
543 sizeof(struct posix_msg_tree_node);
544
545 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
546 info->attr.mq_msgsize);
547
548 spin_lock(lock: &mq_lock);
549 dec_rlimit_ucounts(ucounts: info->ucounts, type: UCOUNT_RLIMIT_MSGQUEUE, v: mq_bytes);
550 /*
551 * get_ns_from_inode() ensures that the
552 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
553 * to which we now hold a reference, or it is NULL.
554 * We can't put it here under mq_lock, though.
555 */
556 if (ipc_ns)
557 ipc_ns->mq_queues_count--;
558 spin_unlock(lock: &mq_lock);
559 put_ucounts(ucounts: info->ucounts);
560 info->ucounts = NULL;
561 }
562 if (ipc_ns)
563 put_ipc_ns(ns: ipc_ns);
564}
565
566static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
567{
568 struct inode *dir = dentry->d_parent->d_inode;
569 struct inode *inode;
570 struct mq_attr *attr = arg;
571 int error;
572 struct ipc_namespace *ipc_ns;
573
574 spin_lock(lock: &mq_lock);
575 ipc_ns = __get_ns_from_inode(inode: dir);
576 if (!ipc_ns) {
577 error = -EACCES;
578 goto out_unlock;
579 }
580
581 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
582 !capable(CAP_SYS_RESOURCE)) {
583 error = -ENOSPC;
584 goto out_unlock;
585 }
586 ipc_ns->mq_queues_count++;
587 spin_unlock(lock: &mq_lock);
588
589 inode = mqueue_get_inode(sb: dir->i_sb, ipc_ns, mode, attr);
590 if (IS_ERR(ptr: inode)) {
591 error = PTR_ERR(ptr: inode);
592 spin_lock(lock: &mq_lock);
593 ipc_ns->mq_queues_count--;
594 goto out_unlock;
595 }
596
597 put_ipc_ns(ns: ipc_ns);
598 dir->i_size += DIRENT_SIZE;
599 simple_inode_init_ts(inode: dir);
600
601 d_instantiate(dentry, inode);
602 dget(dentry);
603 return 0;
604out_unlock:
605 spin_unlock(lock: &mq_lock);
606 if (ipc_ns)
607 put_ipc_ns(ns: ipc_ns);
608 return error;
609}
610
611static int mqueue_create(struct mnt_idmap *idmap, struct inode *dir,
612 struct dentry *dentry, umode_t mode, bool excl)
613{
614 return mqueue_create_attr(dentry, mode, NULL);
615}
616
617static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
618{
619 struct inode *inode = d_inode(dentry);
620
621 simple_inode_init_ts(inode: dir);
622 dir->i_size -= DIRENT_SIZE;
623 drop_nlink(inode);
624 dput(dentry);
625 return 0;
626}
627
628/*
629* This is routine for system read from queue file.
630* To avoid mess with doing here some sort of mq_receive we allow
631* to read only queue size & notification info (the only values
632* that are interesting from user point of view and aren't accessible
633* through std routines)
634*/
635static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
636 size_t count, loff_t *off)
637{
638 struct inode *inode = file_inode(f: filp);
639 struct mqueue_inode_info *info = MQUEUE_I(inode);
640 char buffer[FILENT_SIZE];
641 ssize_t ret;
642
643 spin_lock(lock: &info->lock);
644 snprintf(buf: buffer, size: sizeof(buffer),
645 fmt: "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
646 info->qsize,
647 info->notify_owner ? info->notify.sigev_notify : 0,
648 (info->notify_owner &&
649 info->notify.sigev_notify == SIGEV_SIGNAL) ?
650 info->notify.sigev_signo : 0,
651 pid_vnr(pid: info->notify_owner));
652 spin_unlock(lock: &info->lock);
653 buffer[sizeof(buffer)-1] = '\0';
654
655 ret = simple_read_from_buffer(to: u_data, count, ppos: off, from: buffer,
656 strlen(buffer));
657 if (ret <= 0)
658 return ret;
659
660 inode_set_atime_to_ts(inode, ts: inode_set_ctime_current(inode));
661 return ret;
662}
663
664static int mqueue_flush_file(struct file *filp, fl_owner_t id)
665{
666 struct mqueue_inode_info *info = MQUEUE_I(inode: file_inode(f: filp));
667
668 spin_lock(lock: &info->lock);
669 if (task_tgid(current) == info->notify_owner)
670 remove_notification(info);
671
672 spin_unlock(lock: &info->lock);
673 return 0;
674}
675
676static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
677{
678 struct mqueue_inode_info *info = MQUEUE_I(inode: file_inode(f: filp));
679 __poll_t retval = 0;
680
681 poll_wait(filp, wait_address: &info->wait_q, p: poll_tab);
682
683 spin_lock(lock: &info->lock);
684 if (info->attr.mq_curmsgs)
685 retval = EPOLLIN | EPOLLRDNORM;
686
687 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
688 retval |= EPOLLOUT | EPOLLWRNORM;
689 spin_unlock(lock: &info->lock);
690
691 return retval;
692}
693
694/* Adds current to info->e_wait_q[sr] before element with smaller prio */
695static void wq_add(struct mqueue_inode_info *info, int sr,
696 struct ext_wait_queue *ewp)
697{
698 struct ext_wait_queue *walk;
699
700 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
701 if (walk->task->prio <= current->prio) {
702 list_add_tail(new: &ewp->list, head: &walk->list);
703 return;
704 }
705 }
706 list_add_tail(new: &ewp->list, head: &info->e_wait_q[sr].list);
707}
708
709/*
710 * Puts current task to sleep. Caller must hold queue lock. After return
711 * lock isn't held.
712 * sr: SEND or RECV
713 */
714static int wq_sleep(struct mqueue_inode_info *info, int sr,
715 ktime_t *timeout, struct ext_wait_queue *ewp)
716 __releases(&info->lock)
717{
718 int retval;
719 signed long time;
720
721 wq_add(info, sr, ewp);
722
723 for (;;) {
724 /* memory barrier not required, we hold info->lock */
725 __set_current_state(TASK_INTERRUPTIBLE);
726
727 spin_unlock(lock: &info->lock);
728 time = schedule_hrtimeout_range_clock(expires: timeout, delta: 0,
729 mode: HRTIMER_MODE_ABS, CLOCK_REALTIME);
730
731 if (READ_ONCE(ewp->state) == STATE_READY) {
732 /* see MQ_BARRIER for purpose/pairing */
733 smp_acquire__after_ctrl_dep();
734 retval = 0;
735 goto out;
736 }
737 spin_lock(lock: &info->lock);
738
739 /* we hold info->lock, so no memory barrier required */
740 if (READ_ONCE(ewp->state) == STATE_READY) {
741 retval = 0;
742 goto out_unlock;
743 }
744 if (signal_pending(current)) {
745 retval = -ERESTARTSYS;
746 break;
747 }
748 if (time == 0) {
749 retval = -ETIMEDOUT;
750 break;
751 }
752 }
753 list_del(entry: &ewp->list);
754out_unlock:
755 spin_unlock(lock: &info->lock);
756out:
757 return retval;
758}
759
760/*
761 * Returns waiting task that should be serviced first or NULL if none exists
762 */
763static struct ext_wait_queue *wq_get_first_waiter(
764 struct mqueue_inode_info *info, int sr)
765{
766 struct list_head *ptr;
767
768 ptr = info->e_wait_q[sr].list.prev;
769 if (ptr == &info->e_wait_q[sr].list)
770 return NULL;
771 return list_entry(ptr, struct ext_wait_queue, list);
772}
773
774
775static inline void set_cookie(struct sk_buff *skb, char code)
776{
777 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
778}
779
780/*
781 * The next function is only to split too long sys_mq_timedsend
782 */
783static void __do_notify(struct mqueue_inode_info *info)
784{
785 /* notification
786 * invoked when there is registered process and there isn't process
787 * waiting synchronously for message AND state of queue changed from
788 * empty to not empty. Here we are sure that no one is waiting
789 * synchronously. */
790 if (info->notify_owner &&
791 info->attr.mq_curmsgs == 1) {
792 switch (info->notify.sigev_notify) {
793 case SIGEV_NONE:
794 break;
795 case SIGEV_SIGNAL: {
796 struct kernel_siginfo sig_i;
797 struct task_struct *task;
798
799 /* do_mq_notify() accepts sigev_signo == 0, why?? */
800 if (!info->notify.sigev_signo)
801 break;
802
803 clear_siginfo(info: &sig_i);
804 sig_i.si_signo = info->notify.sigev_signo;
805 sig_i.si_errno = 0;
806 sig_i.si_code = SI_MESGQ;
807 sig_i.si_value = info->notify.sigev_value;
808 rcu_read_lock();
809 /* map current pid/uid into info->owner's namespaces */
810 sig_i.si_pid = task_tgid_nr_ns(current,
811 ns: ns_of_pid(pid: info->notify_owner));
812 sig_i.si_uid = from_kuid_munged(to: info->notify_user_ns,
813 current_uid());
814 /*
815 * We can't use kill_pid_info(), this signal should
816 * bypass check_kill_permission(). It is from kernel
817 * but si_fromuser() can't know this.
818 * We do check the self_exec_id, to avoid sending
819 * signals to programs that don't expect them.
820 */
821 task = pid_task(pid: info->notify_owner, PIDTYPE_TGID);
822 if (task && task->self_exec_id ==
823 info->notify_self_exec_id) {
824 do_send_sig_info(sig: info->notify.sigev_signo,
825 info: &sig_i, p: task, type: PIDTYPE_TGID);
826 }
827 rcu_read_unlock();
828 break;
829 }
830 case SIGEV_THREAD:
831 set_cookie(skb: info->notify_cookie, NOTIFY_WOKENUP);
832 netlink_sendskb(sk: info->notify_sock, skb: info->notify_cookie);
833 break;
834 }
835 /* after notification unregisters process */
836 put_pid(pid: info->notify_owner);
837 put_user_ns(ns: info->notify_user_ns);
838 info->notify_owner = NULL;
839 info->notify_user_ns = NULL;
840 }
841 wake_up(&info->wait_q);
842}
843
844static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
845 struct timespec64 *ts)
846{
847 if (get_timespec64(ts, uts: u_abs_timeout))
848 return -EFAULT;
849 if (!timespec64_valid(ts))
850 return -EINVAL;
851 return 0;
852}
853
854static void remove_notification(struct mqueue_inode_info *info)
855{
856 if (info->notify_owner != NULL &&
857 info->notify.sigev_notify == SIGEV_THREAD) {
858 set_cookie(skb: info->notify_cookie, NOTIFY_REMOVED);
859 netlink_sendskb(sk: info->notify_sock, skb: info->notify_cookie);
860 }
861 put_pid(pid: info->notify_owner);
862 put_user_ns(ns: info->notify_user_ns);
863 info->notify_owner = NULL;
864 info->notify_user_ns = NULL;
865}
866
867static int prepare_open(struct dentry *dentry, int oflag, int ro,
868 umode_t mode, struct filename *name,
869 struct mq_attr *attr)
870{
871 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
872 MAY_READ | MAY_WRITE };
873 int acc;
874
875 if (d_really_is_negative(dentry)) {
876 if (!(oflag & O_CREAT))
877 return -ENOENT;
878 if (ro)
879 return ro;
880 audit_inode_parent_hidden(name, dentry: dentry->d_parent);
881 return vfs_mkobj(dentry, mode & ~current_umask(),
882 f: mqueue_create_attr, attr);
883 }
884 /* it already existed */
885 audit_inode(name, dentry, aflags: 0);
886 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
887 return -EEXIST;
888 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
889 return -EINVAL;
890 acc = oflag2acc[oflag & O_ACCMODE];
891 return inode_permission(&nop_mnt_idmap, d_inode(dentry), acc);
892}
893
894static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
895 struct mq_attr *attr)
896{
897 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
898 struct dentry *root = mnt->mnt_root;
899 struct filename *name;
900 struct path path;
901 int fd, error;
902 int ro;
903
904 audit_mq_open(oflag, mode, attr);
905
906 name = getname(name: u_name);
907 if (IS_ERR(ptr: name))
908 return PTR_ERR(ptr: name);
909
910 fd = get_unused_fd_flags(O_CLOEXEC);
911 if (fd < 0)
912 goto out_putname;
913
914 ro = mnt_want_write(mnt); /* we'll drop it in any case */
915 inode_lock(inode: d_inode(dentry: root));
916 path.dentry = lookup_noperm(&QSTR(name->name), root);
917 if (IS_ERR(ptr: path.dentry)) {
918 error = PTR_ERR(ptr: path.dentry);
919 goto out_putfd;
920 }
921 path.mnt = mntget(mnt);
922 error = prepare_open(dentry: path.dentry, oflag, ro, mode, name, attr);
923 if (!error) {
924 struct file *file = dentry_open(path: &path, flags: oflag, current_cred());
925 if (!IS_ERR(ptr: file))
926 fd_install(fd, file);
927 else
928 error = PTR_ERR(ptr: file);
929 }
930 path_put(&path);
931out_putfd:
932 if (error) {
933 put_unused_fd(fd);
934 fd = error;
935 }
936 inode_unlock(inode: d_inode(dentry: root));
937 if (!ro)
938 mnt_drop_write(mnt);
939out_putname:
940 putname(name);
941 return fd;
942}
943
944SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
945 struct mq_attr __user *, u_attr)
946{
947 struct mq_attr attr;
948 if (u_attr && copy_from_user(to: &attr, from: u_attr, n: sizeof(struct mq_attr)))
949 return -EFAULT;
950
951 return do_mq_open(u_name, oflag, mode, attr: u_attr ? &attr : NULL);
952}
953
954SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
955{
956 int err;
957 struct filename *name;
958 struct dentry *dentry;
959 struct inode *inode = NULL;
960 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
961 struct vfsmount *mnt = ipc_ns->mq_mnt;
962
963 name = getname(name: u_name);
964 if (IS_ERR(ptr: name))
965 return PTR_ERR(ptr: name);
966
967 audit_inode_parent_hidden(name, dentry: mnt->mnt_root);
968 err = mnt_want_write(mnt);
969 if (err)
970 goto out_name;
971 inode_lock_nested(inode: d_inode(dentry: mnt->mnt_root), subclass: I_MUTEX_PARENT);
972 dentry = lookup_noperm(&QSTR(name->name), mnt->mnt_root);
973 if (IS_ERR(ptr: dentry)) {
974 err = PTR_ERR(ptr: dentry);
975 goto out_unlock;
976 }
977
978 inode = d_inode(dentry);
979 if (!inode) {
980 err = -ENOENT;
981 } else {
982 ihold(inode);
983 err = vfs_unlink(&nop_mnt_idmap, d_inode(dentry: dentry->d_parent),
984 dentry, NULL);
985 }
986 dput(dentry);
987
988out_unlock:
989 inode_unlock(inode: d_inode(dentry: mnt->mnt_root));
990 iput(inode);
991 mnt_drop_write(mnt);
992out_name:
993 putname(name);
994
995 return err;
996}
997
998/* Pipelined send and receive functions.
999 *
1000 * If a receiver finds no waiting message, then it registers itself in the
1001 * list of waiting receivers. A sender checks that list before adding the new
1002 * message into the message array. If there is a waiting receiver, then it
1003 * bypasses the message array and directly hands the message over to the
1004 * receiver. The receiver accepts the message and returns without grabbing the
1005 * queue spinlock:
1006 *
1007 * - Set pointer to message.
1008 * - Queue the receiver task for later wakeup (without the info->lock).
1009 * - Update its state to STATE_READY. Now the receiver can continue.
1010 * - Wake up the process after the lock is dropped. Should the process wake up
1011 * before this wakeup (due to a timeout or a signal) it will either see
1012 * STATE_READY and continue or acquire the lock to check the state again.
1013 *
1014 * The same algorithm is used for senders.
1015 */
1016
1017static inline void __pipelined_op(struct wake_q_head *wake_q,
1018 struct mqueue_inode_info *info,
1019 struct ext_wait_queue *this)
1020{
1021 struct task_struct *task;
1022
1023 list_del(entry: &this->list);
1024 task = get_task_struct(t: this->task);
1025
1026 /* see MQ_BARRIER for purpose/pairing */
1027 smp_store_release(&this->state, STATE_READY);
1028 wake_q_add_safe(head: wake_q, task);
1029}
1030
1031/* pipelined_send() - send a message directly to the task waiting in
1032 * sys_mq_timedreceive() (without inserting message into a queue).
1033 */
1034static inline void pipelined_send(struct wake_q_head *wake_q,
1035 struct mqueue_inode_info *info,
1036 struct msg_msg *message,
1037 struct ext_wait_queue *receiver)
1038{
1039 receiver->msg = message;
1040 __pipelined_op(wake_q, info, this: receiver);
1041}
1042
1043/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1044 * gets its message and put to the queue (we have one free place for sure). */
1045static inline void pipelined_receive(struct wake_q_head *wake_q,
1046 struct mqueue_inode_info *info)
1047{
1048 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1049
1050 if (!sender) {
1051 /* for poll */
1052 wake_up_interruptible(&info->wait_q);
1053 return;
1054 }
1055 if (msg_insert(msg: sender->msg, info))
1056 return;
1057
1058 __pipelined_op(wake_q, info, this: sender);
1059}
1060
1061static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1062 size_t msg_len, unsigned int msg_prio,
1063 struct timespec64 *ts)
1064{
1065 struct inode *inode;
1066 struct ext_wait_queue wait;
1067 struct ext_wait_queue *receiver;
1068 struct msg_msg *msg_ptr;
1069 struct mqueue_inode_info *info;
1070 ktime_t expires, *timeout = NULL;
1071 struct posix_msg_tree_node *new_leaf = NULL;
1072 int ret = 0;
1073 DEFINE_WAKE_Q(wake_q);
1074
1075 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1076 return -EINVAL;
1077
1078 if (ts) {
1079 expires = timespec64_to_ktime(ts: *ts);
1080 timeout = &expires;
1081 }
1082
1083 audit_mq_sendrecv(mqdes, msg_len, msg_prio, abs_timeout: ts);
1084
1085 CLASS(fd, f)(fd: mqdes);
1086 if (fd_empty(f))
1087 return -EBADF;
1088
1089 inode = file_inode(fd_file(f));
1090 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations))
1091 return -EBADF;
1092 info = MQUEUE_I(inode);
1093 audit_file(fd_file(f));
1094
1095 if (unlikely(!(fd_file(f)->f_mode & FMODE_WRITE)))
1096 return -EBADF;
1097
1098 if (unlikely(msg_len > info->attr.mq_msgsize))
1099 return -EMSGSIZE;
1100
1101 /* First try to allocate memory, before doing anything with
1102 * existing queues. */
1103 msg_ptr = load_msg(src: u_msg_ptr, len: msg_len);
1104 if (IS_ERR(ptr: msg_ptr))
1105 return PTR_ERR(ptr: msg_ptr);
1106 msg_ptr->m_ts = msg_len;
1107 msg_ptr->m_type = msg_prio;
1108
1109 /*
1110 * msg_insert really wants us to have a valid, spare node struct so
1111 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1112 * fall back to that if necessary.
1113 */
1114 if (!info->node_cache)
1115 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1116
1117 spin_lock(lock: &info->lock);
1118
1119 if (!info->node_cache && new_leaf) {
1120 /* Save our speculative allocation into the cache */
1121 INIT_LIST_HEAD(list: &new_leaf->msg_list);
1122 info->node_cache = new_leaf;
1123 new_leaf = NULL;
1124 } else {
1125 kfree(objp: new_leaf);
1126 }
1127
1128 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1129 if (fd_file(f)->f_flags & O_NONBLOCK) {
1130 ret = -EAGAIN;
1131 } else {
1132 wait.task = current;
1133 wait.msg = (void *) msg_ptr;
1134
1135 /* memory barrier not required, we hold info->lock */
1136 WRITE_ONCE(wait.state, STATE_NONE);
1137 ret = wq_sleep(info, SEND, timeout, ewp: &wait);
1138 /*
1139 * wq_sleep must be called with info->lock held, and
1140 * returns with the lock released
1141 */
1142 goto out_free;
1143 }
1144 } else {
1145 receiver = wq_get_first_waiter(info, RECV);
1146 if (receiver) {
1147 pipelined_send(wake_q: &wake_q, info, message: msg_ptr, receiver);
1148 } else {
1149 /* adds message to the queue */
1150 ret = msg_insert(msg: msg_ptr, info);
1151 if (ret)
1152 goto out_unlock;
1153 __do_notify(info);
1154 }
1155 simple_inode_init_ts(inode);
1156 }
1157out_unlock:
1158 spin_unlock(lock: &info->lock);
1159 wake_up_q(head: &wake_q);
1160out_free:
1161 if (ret)
1162 free_msg(msg: msg_ptr);
1163 return ret;
1164}
1165
1166static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1167 size_t msg_len, unsigned int __user *u_msg_prio,
1168 struct timespec64 *ts)
1169{
1170 ssize_t ret;
1171 struct msg_msg *msg_ptr;
1172 struct inode *inode;
1173 struct mqueue_inode_info *info;
1174 struct ext_wait_queue wait;
1175 ktime_t expires, *timeout = NULL;
1176 struct posix_msg_tree_node *new_leaf = NULL;
1177
1178 if (ts) {
1179 expires = timespec64_to_ktime(ts: *ts);
1180 timeout = &expires;
1181 }
1182
1183 audit_mq_sendrecv(mqdes, msg_len, msg_prio: 0, abs_timeout: ts);
1184
1185 CLASS(fd, f)(fd: mqdes);
1186 if (fd_empty(f))
1187 return -EBADF;
1188
1189 inode = file_inode(fd_file(f));
1190 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations))
1191 return -EBADF;
1192 info = MQUEUE_I(inode);
1193 audit_file(fd_file(f));
1194
1195 if (unlikely(!(fd_file(f)->f_mode & FMODE_READ)))
1196 return -EBADF;
1197
1198 /* checks if buffer is big enough */
1199 if (unlikely(msg_len < info->attr.mq_msgsize))
1200 return -EMSGSIZE;
1201
1202 /*
1203 * msg_insert really wants us to have a valid, spare node struct so
1204 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1205 * fall back to that if necessary.
1206 */
1207 if (!info->node_cache)
1208 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1209
1210 spin_lock(lock: &info->lock);
1211
1212 if (!info->node_cache && new_leaf) {
1213 /* Save our speculative allocation into the cache */
1214 INIT_LIST_HEAD(list: &new_leaf->msg_list);
1215 info->node_cache = new_leaf;
1216 } else {
1217 kfree(objp: new_leaf);
1218 }
1219
1220 if (info->attr.mq_curmsgs == 0) {
1221 if (fd_file(f)->f_flags & O_NONBLOCK) {
1222 spin_unlock(lock: &info->lock);
1223 ret = -EAGAIN;
1224 } else {
1225 wait.task = current;
1226
1227 /* memory barrier not required, we hold info->lock */
1228 WRITE_ONCE(wait.state, STATE_NONE);
1229 ret = wq_sleep(info, RECV, timeout, ewp: &wait);
1230 msg_ptr = wait.msg;
1231 }
1232 } else {
1233 DEFINE_WAKE_Q(wake_q);
1234
1235 msg_ptr = msg_get(info);
1236
1237 simple_inode_init_ts(inode);
1238
1239 /* There is now free space in queue. */
1240 pipelined_receive(wake_q: &wake_q, info);
1241 spin_unlock(lock: &info->lock);
1242 wake_up_q(head: &wake_q);
1243 ret = 0;
1244 }
1245 if (ret == 0) {
1246 ret = msg_ptr->m_ts;
1247
1248 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1249 store_msg(dest: u_msg_ptr, msg: msg_ptr, len: msg_ptr->m_ts)) {
1250 ret = -EFAULT;
1251 }
1252 free_msg(msg: msg_ptr);
1253 }
1254 return ret;
1255}
1256
1257SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1258 size_t, msg_len, unsigned int, msg_prio,
1259 const struct __kernel_timespec __user *, u_abs_timeout)
1260{
1261 struct timespec64 ts, *p = NULL;
1262 if (u_abs_timeout) {
1263 int res = prepare_timeout(u_abs_timeout, ts: &ts);
1264 if (res)
1265 return res;
1266 p = &ts;
1267 }
1268 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, ts: p);
1269}
1270
1271SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1272 size_t, msg_len, unsigned int __user *, u_msg_prio,
1273 const struct __kernel_timespec __user *, u_abs_timeout)
1274{
1275 struct timespec64 ts, *p = NULL;
1276 if (u_abs_timeout) {
1277 int res = prepare_timeout(u_abs_timeout, ts: &ts);
1278 if (res)
1279 return res;
1280 p = &ts;
1281 }
1282 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, ts: p);
1283}
1284
1285/*
1286 * Notes: the case when user wants us to deregister (with NULL as pointer)
1287 * and he isn't currently owner of notification, will be silently discarded.
1288 * It isn't explicitly defined in the POSIX.
1289 */
1290static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1291{
1292 int ret;
1293 struct sock *sock;
1294 struct inode *inode;
1295 struct mqueue_inode_info *info;
1296 struct sk_buff *nc;
1297
1298 audit_mq_notify(mqdes, notification);
1299
1300 nc = NULL;
1301 sock = NULL;
1302 if (notification != NULL) {
1303 if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1304 notification->sigev_notify != SIGEV_SIGNAL &&
1305 notification->sigev_notify != SIGEV_THREAD))
1306 return -EINVAL;
1307 if (notification->sigev_notify == SIGEV_SIGNAL &&
1308 !valid_signal(sig: notification->sigev_signo)) {
1309 return -EINVAL;
1310 }
1311 if (notification->sigev_notify == SIGEV_THREAD) {
1312 long timeo;
1313
1314 /* create the notify skb */
1315 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1316 if (!nc)
1317 return -ENOMEM;
1318
1319 if (copy_from_user(to: nc->data,
1320 from: notification->sigev_value.sival_ptr,
1321 NOTIFY_COOKIE_LEN)) {
1322 kfree_skb(skb: nc);
1323 return -EFAULT;
1324 }
1325
1326 /* TODO: add a header? */
1327 skb_put(skb: nc, NOTIFY_COOKIE_LEN);
1328 /* and attach it to the socket */
1329retry:
1330 sock = netlink_getsockbyfd(fd: notification->sigev_signo);
1331 if (IS_ERR(ptr: sock)) {
1332 kfree_skb(skb: nc);
1333 return PTR_ERR(ptr: sock);
1334 }
1335
1336 timeo = MAX_SCHEDULE_TIMEOUT;
1337 ret = netlink_attachskb(sk: sock, skb: nc, timeo: &timeo, NULL);
1338 if (ret == 1)
1339 goto retry;
1340 if (ret)
1341 return ret;
1342 }
1343 }
1344
1345 CLASS(fd, f)(fd: mqdes);
1346 if (fd_empty(f)) {
1347 ret = -EBADF;
1348 goto out;
1349 }
1350
1351 inode = file_inode(fd_file(f));
1352 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) {
1353 ret = -EBADF;
1354 goto out;
1355 }
1356 info = MQUEUE_I(inode);
1357
1358 ret = 0;
1359 spin_lock(lock: &info->lock);
1360 if (notification == NULL) {
1361 if (info->notify_owner == task_tgid(current)) {
1362 remove_notification(info);
1363 inode_set_atime_to_ts(inode,
1364 ts: inode_set_ctime_current(inode));
1365 }
1366 } else if (info->notify_owner != NULL) {
1367 ret = -EBUSY;
1368 } else {
1369 switch (notification->sigev_notify) {
1370 case SIGEV_NONE:
1371 info->notify.sigev_notify = SIGEV_NONE;
1372 break;
1373 case SIGEV_THREAD:
1374 info->notify_sock = sock;
1375 info->notify_cookie = nc;
1376 sock = NULL;
1377 nc = NULL;
1378 info->notify.sigev_notify = SIGEV_THREAD;
1379 break;
1380 case SIGEV_SIGNAL:
1381 info->notify.sigev_signo = notification->sigev_signo;
1382 info->notify.sigev_value = notification->sigev_value;
1383 info->notify.sigev_notify = SIGEV_SIGNAL;
1384 info->notify_self_exec_id = current->self_exec_id;
1385 break;
1386 }
1387
1388 info->notify_owner = get_pid(pid: task_tgid(current));
1389 info->notify_user_ns = get_user_ns(current_user_ns());
1390 inode_set_atime_to_ts(inode, ts: inode_set_ctime_current(inode));
1391 }
1392 spin_unlock(lock: &info->lock);
1393out:
1394 if (sock)
1395 netlink_detachskb(sk: sock, skb: nc);
1396 return ret;
1397}
1398
1399SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1400 const struct sigevent __user *, u_notification)
1401{
1402 struct sigevent n, *p = NULL;
1403 if (u_notification) {
1404 if (copy_from_user(to: &n, from: u_notification, n: sizeof(struct sigevent)))
1405 return -EFAULT;
1406 p = &n;
1407 }
1408 return do_mq_notify(mqdes, notification: p);
1409}
1410
1411static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1412{
1413 struct inode *inode;
1414 struct mqueue_inode_info *info;
1415
1416 if (new && (new->mq_flags & (~O_NONBLOCK)))
1417 return -EINVAL;
1418
1419 CLASS(fd, f)(fd: mqdes);
1420 if (fd_empty(f))
1421 return -EBADF;
1422
1423 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations))
1424 return -EBADF;
1425
1426 inode = file_inode(fd_file(f));
1427 info = MQUEUE_I(inode);
1428
1429 spin_lock(lock: &info->lock);
1430
1431 if (old) {
1432 *old = info->attr;
1433 old->mq_flags = fd_file(f)->f_flags & O_NONBLOCK;
1434 }
1435 if (new) {
1436 audit_mq_getsetattr(mqdes, mqstat: new);
1437 spin_lock(lock: &fd_file(f)->f_lock);
1438 if (new->mq_flags & O_NONBLOCK)
1439 fd_file(f)->f_flags |= O_NONBLOCK;
1440 else
1441 fd_file(f)->f_flags &= ~O_NONBLOCK;
1442 spin_unlock(lock: &fd_file(f)->f_lock);
1443
1444 inode_set_atime_to_ts(inode, ts: inode_set_ctime_current(inode));
1445 }
1446
1447 spin_unlock(lock: &info->lock);
1448 return 0;
1449}
1450
1451SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1452 const struct mq_attr __user *, u_mqstat,
1453 struct mq_attr __user *, u_omqstat)
1454{
1455 int ret;
1456 struct mq_attr mqstat, omqstat;
1457 struct mq_attr *new = NULL, *old = NULL;
1458
1459 if (u_mqstat) {
1460 new = &mqstat;
1461 if (copy_from_user(to: new, from: u_mqstat, n: sizeof(struct mq_attr)))
1462 return -EFAULT;
1463 }
1464 if (u_omqstat)
1465 old = &omqstat;
1466
1467 ret = do_mq_getsetattr(mqdes, new, old);
1468 if (ret || !old)
1469 return ret;
1470
1471 if (copy_to_user(to: u_omqstat, from: old, n: sizeof(struct mq_attr)))
1472 return -EFAULT;
1473 return 0;
1474}
1475
1476#ifdef CONFIG_COMPAT
1477
1478struct compat_mq_attr {
1479 compat_long_t mq_flags; /* message queue flags */
1480 compat_long_t mq_maxmsg; /* maximum number of messages */
1481 compat_long_t mq_msgsize; /* maximum message size */
1482 compat_long_t mq_curmsgs; /* number of messages currently queued */
1483 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1484};
1485
1486static inline int get_compat_mq_attr(struct mq_attr *attr,
1487 const struct compat_mq_attr __user *uattr)
1488{
1489 struct compat_mq_attr v;
1490
1491 if (copy_from_user(to: &v, from: uattr, n: sizeof(*uattr)))
1492 return -EFAULT;
1493
1494 memset(attr, 0, sizeof(*attr));
1495 attr->mq_flags = v.mq_flags;
1496 attr->mq_maxmsg = v.mq_maxmsg;
1497 attr->mq_msgsize = v.mq_msgsize;
1498 attr->mq_curmsgs = v.mq_curmsgs;
1499 return 0;
1500}
1501
1502static inline int put_compat_mq_attr(const struct mq_attr *attr,
1503 struct compat_mq_attr __user *uattr)
1504{
1505 struct compat_mq_attr v;
1506
1507 memset(&v, 0, sizeof(v));
1508 v.mq_flags = attr->mq_flags;
1509 v.mq_maxmsg = attr->mq_maxmsg;
1510 v.mq_msgsize = attr->mq_msgsize;
1511 v.mq_curmsgs = attr->mq_curmsgs;
1512 if (copy_to_user(to: uattr, from: &v, n: sizeof(*uattr)))
1513 return -EFAULT;
1514 return 0;
1515}
1516
1517COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1518 int, oflag, compat_mode_t, mode,
1519 struct compat_mq_attr __user *, u_attr)
1520{
1521 struct mq_attr attr, *p = NULL;
1522 if (u_attr && oflag & O_CREAT) {
1523 p = &attr;
1524 if (get_compat_mq_attr(attr: &attr, uattr: u_attr))
1525 return -EFAULT;
1526 }
1527 return do_mq_open(u_name, oflag, mode, attr: p);
1528}
1529
1530COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1531 const struct compat_sigevent __user *, u_notification)
1532{
1533 struct sigevent n, *p = NULL;
1534 if (u_notification) {
1535 if (get_compat_sigevent(event: &n, u_event: u_notification))
1536 return -EFAULT;
1537 if (n.sigev_notify == SIGEV_THREAD)
1538 n.sigev_value.sival_ptr = compat_ptr(uptr: n.sigev_value.sival_int);
1539 p = &n;
1540 }
1541 return do_mq_notify(mqdes, notification: p);
1542}
1543
1544COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1545 const struct compat_mq_attr __user *, u_mqstat,
1546 struct compat_mq_attr __user *, u_omqstat)
1547{
1548 int ret;
1549 struct mq_attr mqstat, omqstat;
1550 struct mq_attr *new = NULL, *old = NULL;
1551
1552 if (u_mqstat) {
1553 new = &mqstat;
1554 if (get_compat_mq_attr(attr: new, uattr: u_mqstat))
1555 return -EFAULT;
1556 }
1557 if (u_omqstat)
1558 old = &omqstat;
1559
1560 ret = do_mq_getsetattr(mqdes, new, old);
1561 if (ret || !old)
1562 return ret;
1563
1564 if (put_compat_mq_attr(attr: old, uattr: u_omqstat))
1565 return -EFAULT;
1566 return 0;
1567}
1568#endif
1569
1570#ifdef CONFIG_COMPAT_32BIT_TIME
1571static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1572 struct timespec64 *ts)
1573{
1574 if (get_old_timespec32(ts, p))
1575 return -EFAULT;
1576 if (!timespec64_valid(ts))
1577 return -EINVAL;
1578 return 0;
1579}
1580
1581SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1582 const char __user *, u_msg_ptr,
1583 unsigned int, msg_len, unsigned int, msg_prio,
1584 const struct old_timespec32 __user *, u_abs_timeout)
1585{
1586 struct timespec64 ts, *p = NULL;
1587 if (u_abs_timeout) {
1588 int res = compat_prepare_timeout(p: u_abs_timeout, ts: &ts);
1589 if (res)
1590 return res;
1591 p = &ts;
1592 }
1593 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, ts: p);
1594}
1595
1596SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1597 char __user *, u_msg_ptr,
1598 unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1599 const struct old_timespec32 __user *, u_abs_timeout)
1600{
1601 struct timespec64 ts, *p = NULL;
1602 if (u_abs_timeout) {
1603 int res = compat_prepare_timeout(p: u_abs_timeout, ts: &ts);
1604 if (res)
1605 return res;
1606 p = &ts;
1607 }
1608 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, ts: p);
1609}
1610#endif
1611
1612static const struct inode_operations mqueue_dir_inode_operations = {
1613 .lookup = simple_lookup,
1614 .create = mqueue_create,
1615 .unlink = mqueue_unlink,
1616};
1617
1618static const struct file_operations mqueue_file_operations = {
1619 .flush = mqueue_flush_file,
1620 .poll = mqueue_poll_file,
1621 .read = mqueue_read_file,
1622 .llseek = default_llseek,
1623};
1624
1625static const struct super_operations mqueue_super_ops = {
1626 .alloc_inode = mqueue_alloc_inode,
1627 .free_inode = mqueue_free_inode,
1628 .evict_inode = mqueue_evict_inode,
1629 .statfs = simple_statfs,
1630};
1631
1632static const struct fs_context_operations mqueue_fs_context_ops = {
1633 .free = mqueue_fs_context_free,
1634 .get_tree = mqueue_get_tree,
1635};
1636
1637static struct file_system_type mqueue_fs_type = {
1638 .name = "mqueue",
1639 .init_fs_context = mqueue_init_fs_context,
1640 .kill_sb = kill_litter_super,
1641 .fs_flags = FS_USERNS_MOUNT,
1642};
1643
1644int mq_init_ns(struct ipc_namespace *ns)
1645{
1646 struct vfsmount *m;
1647
1648 ns->mq_queues_count = 0;
1649 ns->mq_queues_max = DFLT_QUEUESMAX;
1650 ns->mq_msg_max = DFLT_MSGMAX;
1651 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1652 ns->mq_msg_default = DFLT_MSG;
1653 ns->mq_msgsize_default = DFLT_MSGSIZE;
1654
1655 m = mq_create_mount(ns);
1656 if (IS_ERR(ptr: m))
1657 return PTR_ERR(ptr: m);
1658 ns->mq_mnt = m;
1659 return 0;
1660}
1661
1662void mq_clear_sbinfo(struct ipc_namespace *ns)
1663{
1664 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1665}
1666
1667static int __init init_mqueue_fs(void)
1668{
1669 int error;
1670
1671 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1672 sizeof(struct mqueue_inode_info), 0,
1673 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1674 if (mqueue_inode_cachep == NULL)
1675 return -ENOMEM;
1676
1677 if (!setup_mq_sysctls(&init_ipc_ns)) {
1678 pr_warn("sysctl registration failed\n");
1679 error = -ENOMEM;
1680 goto out_kmem;
1681 }
1682
1683 error = register_filesystem(&mqueue_fs_type);
1684 if (error)
1685 goto out_sysctl;
1686
1687 spin_lock_init(&mq_lock);
1688
1689 error = mq_init_ns(ns: &init_ipc_ns);
1690 if (error)
1691 goto out_filesystem;
1692
1693 return 0;
1694
1695out_filesystem:
1696 unregister_filesystem(&mqueue_fs_type);
1697out_sysctl:
1698 retire_mq_sysctls(ns: &init_ipc_ns);
1699out_kmem:
1700 kmem_cache_destroy(s: mqueue_inode_cachep);
1701 return error;
1702}
1703
1704device_initcall(init_mqueue_fs);
1705

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/ipc/mqueue.c