1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | /* |
3 | * |
4 | * Copyright (c) 2014 Samsung Electronics Co., Ltd. |
5 | * Author: Andrey Ryabinin <a.ryabinin@samsung.com> |
6 | */ |
7 | |
8 | #define pr_fmt(fmt) "kasan: test: " fmt |
9 | |
10 | #include <kunit/test.h> |
11 | #include <linux/bitops.h> |
12 | #include <linux/delay.h> |
13 | #include <linux/io.h> |
14 | #include <linux/kasan.h> |
15 | #include <linux/kernel.h> |
16 | #include <linux/mempool.h> |
17 | #include <linux/mm.h> |
18 | #include <linux/mman.h> |
19 | #include <linux/module.h> |
20 | #include <linux/printk.h> |
21 | #include <linux/random.h> |
22 | #include <linux/set_memory.h> |
23 | #include <linux/slab.h> |
24 | #include <linux/string.h> |
25 | #include <linux/tracepoint.h> |
26 | #include <linux/uaccess.h> |
27 | #include <linux/vmalloc.h> |
28 | #include <trace/events/printk.h> |
29 | |
30 | #include <asm/page.h> |
31 | |
32 | #include "kasan.h" |
33 | |
34 | #define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE) |
35 | |
36 | static bool multishot; |
37 | |
38 | /* Fields set based on lines observed in the console. */ |
39 | static struct { |
40 | bool report_found; |
41 | bool async_fault; |
42 | } test_status; |
43 | |
44 | /* |
45 | * Some tests use these global variables to store return values from function |
46 | * calls that could otherwise be eliminated by the compiler as dead code. |
47 | */ |
48 | void *kasan_ptr_result; |
49 | int kasan_int_result; |
50 | |
51 | /* Probe for console output: obtains test_status lines of interest. */ |
52 | static void probe_console(void *ignore, const char *buf, size_t len) |
53 | { |
54 | if (strnstr(buf, "BUG: KASAN: " , len)) |
55 | WRITE_ONCE(test_status.report_found, true); |
56 | else if (strnstr(buf, "Asynchronous fault: " , len)) |
57 | WRITE_ONCE(test_status.async_fault, true); |
58 | } |
59 | |
60 | static int kasan_suite_init(struct kunit_suite *suite) |
61 | { |
62 | if (!kasan_enabled()) { |
63 | pr_err("Can't run KASAN tests with KASAN disabled" ); |
64 | return -1; |
65 | } |
66 | |
67 | /* Stop failing KUnit tests on KASAN reports. */ |
68 | kasan_kunit_test_suite_start(); |
69 | |
70 | /* |
71 | * Temporarily enable multi-shot mode. Otherwise, KASAN would only |
72 | * report the first detected bug and panic the kernel if panic_on_warn |
73 | * is enabled. |
74 | */ |
75 | multishot = kasan_save_enable_multi_shot(); |
76 | |
77 | register_trace_console(probe: probe_console, NULL); |
78 | return 0; |
79 | } |
80 | |
81 | static void kasan_suite_exit(struct kunit_suite *suite) |
82 | { |
83 | kasan_kunit_test_suite_end(); |
84 | kasan_restore_multi_shot(multishot); |
85 | unregister_trace_console(probe: probe_console, NULL); |
86 | tracepoint_synchronize_unregister(); |
87 | } |
88 | |
89 | static void kasan_test_exit(struct kunit *test) |
90 | { |
91 | KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found)); |
92 | } |
93 | |
94 | /** |
95 | * KUNIT_EXPECT_KASAN_FAIL - check that the executed expression produces a |
96 | * KASAN report; causes a KUnit test failure otherwise. |
97 | * |
98 | * @test: Currently executing KUnit test. |
99 | * @expression: Expression that must produce a KASAN report. |
100 | * |
101 | * For hardware tag-based KASAN, when a synchronous tag fault happens, tag |
102 | * checking is auto-disabled. When this happens, this test handler reenables |
103 | * tag checking. As tag checking can be only disabled or enabled per CPU, |
104 | * this handler disables migration (preemption). |
105 | * |
106 | * Since the compiler doesn't see that the expression can change the test_status |
107 | * fields, it can reorder or optimize away the accesses to those fields. |
108 | * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the |
109 | * expression to prevent that. |
110 | * |
111 | * In between KUNIT_EXPECT_KASAN_FAIL checks, test_status.report_found is kept |
112 | * as false. This allows detecting KASAN reports that happen outside of the |
113 | * checks by asserting !test_status.report_found at the start of |
114 | * KUNIT_EXPECT_KASAN_FAIL and in kasan_test_exit. |
115 | */ |
116 | #define KUNIT_EXPECT_KASAN_FAIL(test, expression) do { \ |
117 | if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \ |
118 | kasan_sync_fault_possible()) \ |
119 | migrate_disable(); \ |
120 | KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found)); \ |
121 | barrier(); \ |
122 | expression; \ |
123 | barrier(); \ |
124 | if (kasan_async_fault_possible()) \ |
125 | kasan_force_async_fault(); \ |
126 | if (!READ_ONCE(test_status.report_found)) { \ |
127 | KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure " \ |
128 | "expected in \"" #expression \ |
129 | "\", but none occurred"); \ |
130 | } \ |
131 | if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \ |
132 | kasan_sync_fault_possible()) { \ |
133 | if (READ_ONCE(test_status.report_found) && \ |
134 | !READ_ONCE(test_status.async_fault)) \ |
135 | kasan_enable_hw_tags(); \ |
136 | migrate_enable(); \ |
137 | } \ |
138 | WRITE_ONCE(test_status.report_found, false); \ |
139 | WRITE_ONCE(test_status.async_fault, false); \ |
140 | } while (0) |
141 | |
142 | #define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do { \ |
143 | if (!IS_ENABLED(config)) \ |
144 | kunit_skip((test), "Test requires " #config "=y"); \ |
145 | } while (0) |
146 | |
147 | #define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do { \ |
148 | if (IS_ENABLED(config)) \ |
149 | kunit_skip((test), "Test requires " #config "=n"); \ |
150 | } while (0) |
151 | |
152 | #define KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test) do { \ |
153 | if (IS_ENABLED(CONFIG_KASAN_HW_TAGS)) \ |
154 | break; /* No compiler instrumentation. */ \ |
155 | if (IS_ENABLED(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX)) \ |
156 | break; /* Should always be instrumented! */ \ |
157 | if (IS_ENABLED(CONFIG_GENERIC_ENTRY)) \ |
158 | kunit_skip((test), "Test requires checked mem*()"); \ |
159 | } while (0) |
160 | |
161 | static void kmalloc_oob_right(struct kunit *test) |
162 | { |
163 | char *ptr; |
164 | size_t size = 128 - KASAN_GRANULE_SIZE - 5; |
165 | |
166 | ptr = kmalloc(size, GFP_KERNEL); |
167 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
168 | |
169 | OPTIMIZER_HIDE_VAR(ptr); |
170 | /* |
171 | * An unaligned access past the requested kmalloc size. |
172 | * Only generic KASAN can precisely detect these. |
173 | */ |
174 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
175 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x'); |
176 | |
177 | /* |
178 | * An aligned access into the first out-of-bounds granule that falls |
179 | * within the aligned kmalloc object. |
180 | */ |
181 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y'); |
182 | |
183 | /* Out-of-bounds access past the aligned kmalloc object. */ |
184 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = |
185 | ptr[size + KASAN_GRANULE_SIZE + 5]); |
186 | |
187 | kfree(objp: ptr); |
188 | } |
189 | |
190 | static void kmalloc_oob_left(struct kunit *test) |
191 | { |
192 | char *ptr; |
193 | size_t size = 15; |
194 | |
195 | ptr = kmalloc(size, GFP_KERNEL); |
196 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
197 | |
198 | OPTIMIZER_HIDE_VAR(ptr); |
199 | KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1)); |
200 | kfree(objp: ptr); |
201 | } |
202 | |
203 | static void kmalloc_node_oob_right(struct kunit *test) |
204 | { |
205 | char *ptr; |
206 | size_t size = 4096; |
207 | |
208 | ptr = kmalloc_node(size, GFP_KERNEL, node: 0); |
209 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
210 | |
211 | OPTIMIZER_HIDE_VAR(ptr); |
212 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]); |
213 | kfree(objp: ptr); |
214 | } |
215 | |
216 | /* |
217 | * Check that KASAN detects an out-of-bounds access for a big object allocated |
218 | * via kmalloc(). But not as big as to trigger the page_alloc fallback. |
219 | */ |
220 | static void kmalloc_big_oob_right(struct kunit *test) |
221 | { |
222 | char *ptr; |
223 | size_t size = KMALLOC_MAX_CACHE_SIZE - 256; |
224 | |
225 | ptr = kmalloc(size, GFP_KERNEL); |
226 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
227 | |
228 | OPTIMIZER_HIDE_VAR(ptr); |
229 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0); |
230 | kfree(objp: ptr); |
231 | } |
232 | |
233 | /* |
234 | * The kmalloc_large_* tests below use kmalloc() to allocate a memory chunk |
235 | * that does not fit into the largest slab cache and therefore is allocated via |
236 | * the page_alloc fallback. |
237 | */ |
238 | |
239 | static void kmalloc_large_oob_right(struct kunit *test) |
240 | { |
241 | char *ptr; |
242 | size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
243 | |
244 | ptr = kmalloc(size, GFP_KERNEL); |
245 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
246 | |
247 | OPTIMIZER_HIDE_VAR(ptr); |
248 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0); |
249 | |
250 | kfree(objp: ptr); |
251 | } |
252 | |
253 | static void kmalloc_large_uaf(struct kunit *test) |
254 | { |
255 | char *ptr; |
256 | size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
257 | |
258 | ptr = kmalloc(size, GFP_KERNEL); |
259 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
260 | kfree(objp: ptr); |
261 | |
262 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]); |
263 | } |
264 | |
265 | static void kmalloc_large_invalid_free(struct kunit *test) |
266 | { |
267 | char *ptr; |
268 | size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
269 | |
270 | ptr = kmalloc(size, GFP_KERNEL); |
271 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
272 | |
273 | KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1)); |
274 | } |
275 | |
276 | static void page_alloc_oob_right(struct kunit *test) |
277 | { |
278 | char *ptr; |
279 | struct page *pages; |
280 | size_t order = 4; |
281 | size_t size = (1UL << (PAGE_SHIFT + order)); |
282 | |
283 | /* |
284 | * With generic KASAN page allocations have no redzones, thus |
285 | * out-of-bounds detection is not guaranteed. |
286 | * See https://bugzilla.kernel.org/show_bug.cgi?id=210503. |
287 | */ |
288 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
289 | |
290 | pages = alloc_pages(GFP_KERNEL, order); |
291 | ptr = page_address(pages); |
292 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
293 | |
294 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]); |
295 | free_pages(addr: (unsigned long)ptr, order); |
296 | } |
297 | |
298 | static void page_alloc_uaf(struct kunit *test) |
299 | { |
300 | char *ptr; |
301 | struct page *pages; |
302 | size_t order = 4; |
303 | |
304 | pages = alloc_pages(GFP_KERNEL, order); |
305 | ptr = page_address(pages); |
306 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
307 | free_pages(addr: (unsigned long)ptr, order); |
308 | |
309 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]); |
310 | } |
311 | |
312 | static void krealloc_more_oob_helper(struct kunit *test, |
313 | size_t size1, size_t size2) |
314 | { |
315 | char *ptr1, *ptr2; |
316 | size_t middle; |
317 | |
318 | KUNIT_ASSERT_LT(test, size1, size2); |
319 | middle = size1 + (size2 - size1) / 2; |
320 | |
321 | ptr1 = kmalloc(size: size1, GFP_KERNEL); |
322 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
323 | |
324 | ptr2 = krealloc(objp: ptr1, new_size: size2, GFP_KERNEL); |
325 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
326 | |
327 | /* Suppress -Warray-bounds warnings. */ |
328 | OPTIMIZER_HIDE_VAR(ptr2); |
329 | |
330 | /* All offsets up to size2 must be accessible. */ |
331 | ptr2[size1 - 1] = 'x'; |
332 | ptr2[size1] = 'x'; |
333 | ptr2[middle] = 'x'; |
334 | ptr2[size2 - 1] = 'x'; |
335 | |
336 | /* Generic mode is precise, so unaligned size2 must be inaccessible. */ |
337 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
338 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x'); |
339 | |
340 | /* For all modes first aligned offset after size2 must be inaccessible. */ |
341 | KUNIT_EXPECT_KASAN_FAIL(test, |
342 | ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x'); |
343 | |
344 | kfree(objp: ptr2); |
345 | } |
346 | |
347 | static void krealloc_less_oob_helper(struct kunit *test, |
348 | size_t size1, size_t size2) |
349 | { |
350 | char *ptr1, *ptr2; |
351 | size_t middle; |
352 | |
353 | KUNIT_ASSERT_LT(test, size2, size1); |
354 | middle = size2 + (size1 - size2) / 2; |
355 | |
356 | ptr1 = kmalloc(size: size1, GFP_KERNEL); |
357 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
358 | |
359 | ptr2 = krealloc(objp: ptr1, new_size: size2, GFP_KERNEL); |
360 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
361 | |
362 | /* Suppress -Warray-bounds warnings. */ |
363 | OPTIMIZER_HIDE_VAR(ptr2); |
364 | |
365 | /* Must be accessible for all modes. */ |
366 | ptr2[size2 - 1] = 'x'; |
367 | |
368 | /* Generic mode is precise, so unaligned size2 must be inaccessible. */ |
369 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
370 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x'); |
371 | |
372 | /* For all modes first aligned offset after size2 must be inaccessible. */ |
373 | KUNIT_EXPECT_KASAN_FAIL(test, |
374 | ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x'); |
375 | |
376 | /* |
377 | * For all modes all size2, middle, and size1 should land in separate |
378 | * granules and thus the latter two offsets should be inaccessible. |
379 | */ |
380 | KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE), |
381 | round_down(middle, KASAN_GRANULE_SIZE)); |
382 | KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE), |
383 | round_down(size1, KASAN_GRANULE_SIZE)); |
384 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x'); |
385 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x'); |
386 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x'); |
387 | |
388 | kfree(objp: ptr2); |
389 | } |
390 | |
391 | static void krealloc_more_oob(struct kunit *test) |
392 | { |
393 | krealloc_more_oob_helper(test, size1: 201, size2: 235); |
394 | } |
395 | |
396 | static void krealloc_less_oob(struct kunit *test) |
397 | { |
398 | krealloc_less_oob_helper(test, size1: 235, size2: 201); |
399 | } |
400 | |
401 | static void krealloc_large_more_oob(struct kunit *test) |
402 | { |
403 | krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201, |
404 | KMALLOC_MAX_CACHE_SIZE + 235); |
405 | } |
406 | |
407 | static void krealloc_large_less_oob(struct kunit *test) |
408 | { |
409 | krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235, |
410 | KMALLOC_MAX_CACHE_SIZE + 201); |
411 | } |
412 | |
413 | /* |
414 | * Check that krealloc() detects a use-after-free, returns NULL, |
415 | * and doesn't unpoison the freed object. |
416 | */ |
417 | static void krealloc_uaf(struct kunit *test) |
418 | { |
419 | char *ptr1, *ptr2; |
420 | int size1 = 201; |
421 | int size2 = 235; |
422 | |
423 | ptr1 = kmalloc(size: size1, GFP_KERNEL); |
424 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
425 | kfree(objp: ptr1); |
426 | |
427 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL)); |
428 | KUNIT_ASSERT_NULL(test, ptr2); |
429 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1); |
430 | } |
431 | |
432 | static void kmalloc_oob_16(struct kunit *test) |
433 | { |
434 | struct { |
435 | u64 words[2]; |
436 | } *ptr1, *ptr2; |
437 | |
438 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
439 | |
440 | /* This test is specifically crafted for the generic mode. */ |
441 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
442 | |
443 | /* RELOC_HIDE to prevent gcc from warning about short alloc */ |
444 | ptr1 = RELOC_HIDE(kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL), 0); |
445 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
446 | |
447 | ptr2 = kmalloc(size: sizeof(*ptr2), GFP_KERNEL); |
448 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
449 | |
450 | OPTIMIZER_HIDE_VAR(ptr1); |
451 | OPTIMIZER_HIDE_VAR(ptr2); |
452 | KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2); |
453 | kfree(objp: ptr1); |
454 | kfree(objp: ptr2); |
455 | } |
456 | |
457 | static void kmalloc_uaf_16(struct kunit *test) |
458 | { |
459 | struct { |
460 | u64 words[2]; |
461 | } *ptr1, *ptr2; |
462 | |
463 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
464 | |
465 | ptr1 = kmalloc(size: sizeof(*ptr1), GFP_KERNEL); |
466 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
467 | |
468 | ptr2 = kmalloc(size: sizeof(*ptr2), GFP_KERNEL); |
469 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
470 | kfree(objp: ptr2); |
471 | |
472 | KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2); |
473 | kfree(objp: ptr1); |
474 | } |
475 | |
476 | /* |
477 | * Note: in the memset tests below, the written range touches both valid and |
478 | * invalid memory. This makes sure that the instrumentation does not only check |
479 | * the starting address but the whole range. |
480 | */ |
481 | |
482 | static void kmalloc_oob_memset_2(struct kunit *test) |
483 | { |
484 | char *ptr; |
485 | size_t size = 128 - KASAN_GRANULE_SIZE; |
486 | size_t memset_size = 2; |
487 | |
488 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
489 | |
490 | ptr = kmalloc(size, GFP_KERNEL); |
491 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
492 | |
493 | OPTIMIZER_HIDE_VAR(ptr); |
494 | OPTIMIZER_HIDE_VAR(size); |
495 | OPTIMIZER_HIDE_VAR(memset_size); |
496 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, memset_size)); |
497 | kfree(objp: ptr); |
498 | } |
499 | |
500 | static void kmalloc_oob_memset_4(struct kunit *test) |
501 | { |
502 | char *ptr; |
503 | size_t size = 128 - KASAN_GRANULE_SIZE; |
504 | size_t memset_size = 4; |
505 | |
506 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
507 | |
508 | ptr = kmalloc(size, GFP_KERNEL); |
509 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
510 | |
511 | OPTIMIZER_HIDE_VAR(ptr); |
512 | OPTIMIZER_HIDE_VAR(size); |
513 | OPTIMIZER_HIDE_VAR(memset_size); |
514 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, memset_size)); |
515 | kfree(objp: ptr); |
516 | } |
517 | |
518 | static void kmalloc_oob_memset_8(struct kunit *test) |
519 | { |
520 | char *ptr; |
521 | size_t size = 128 - KASAN_GRANULE_SIZE; |
522 | size_t memset_size = 8; |
523 | |
524 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
525 | |
526 | ptr = kmalloc(size, GFP_KERNEL); |
527 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
528 | |
529 | OPTIMIZER_HIDE_VAR(ptr); |
530 | OPTIMIZER_HIDE_VAR(size); |
531 | OPTIMIZER_HIDE_VAR(memset_size); |
532 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, memset_size)); |
533 | kfree(objp: ptr); |
534 | } |
535 | |
536 | static void kmalloc_oob_memset_16(struct kunit *test) |
537 | { |
538 | char *ptr; |
539 | size_t size = 128 - KASAN_GRANULE_SIZE; |
540 | size_t memset_size = 16; |
541 | |
542 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
543 | |
544 | ptr = kmalloc(size, GFP_KERNEL); |
545 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
546 | |
547 | OPTIMIZER_HIDE_VAR(ptr); |
548 | OPTIMIZER_HIDE_VAR(size); |
549 | OPTIMIZER_HIDE_VAR(memset_size); |
550 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, memset_size)); |
551 | kfree(objp: ptr); |
552 | } |
553 | |
554 | static void kmalloc_oob_in_memset(struct kunit *test) |
555 | { |
556 | char *ptr; |
557 | size_t size = 128 - KASAN_GRANULE_SIZE; |
558 | |
559 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
560 | |
561 | ptr = kmalloc(size, GFP_KERNEL); |
562 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
563 | |
564 | OPTIMIZER_HIDE_VAR(ptr); |
565 | OPTIMIZER_HIDE_VAR(size); |
566 | KUNIT_EXPECT_KASAN_FAIL(test, |
567 | memset(ptr, 0, size + KASAN_GRANULE_SIZE)); |
568 | kfree(objp: ptr); |
569 | } |
570 | |
571 | static void kmalloc_memmove_negative_size(struct kunit *test) |
572 | { |
573 | char *ptr; |
574 | size_t size = 64; |
575 | size_t invalid_size = -2; |
576 | |
577 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
578 | |
579 | /* |
580 | * Hardware tag-based mode doesn't check memmove for negative size. |
581 | * As a result, this test introduces a side-effect memory corruption, |
582 | * which can result in a crash. |
583 | */ |
584 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS); |
585 | |
586 | ptr = kmalloc(size, GFP_KERNEL); |
587 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
588 | |
589 | memset((char *)ptr, 0, 64); |
590 | OPTIMIZER_HIDE_VAR(ptr); |
591 | OPTIMIZER_HIDE_VAR(invalid_size); |
592 | KUNIT_EXPECT_KASAN_FAIL(test, |
593 | memmove((char *)ptr, (char *)ptr + 4, invalid_size)); |
594 | kfree(objp: ptr); |
595 | } |
596 | |
597 | static void kmalloc_memmove_invalid_size(struct kunit *test) |
598 | { |
599 | char *ptr; |
600 | size_t size = 64; |
601 | size_t invalid_size = size; |
602 | |
603 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
604 | |
605 | ptr = kmalloc(size, GFP_KERNEL); |
606 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
607 | |
608 | memset((char *)ptr, 0, 64); |
609 | OPTIMIZER_HIDE_VAR(ptr); |
610 | OPTIMIZER_HIDE_VAR(invalid_size); |
611 | KUNIT_EXPECT_KASAN_FAIL(test, |
612 | memmove((char *)ptr, (char *)ptr + 4, invalid_size)); |
613 | kfree(objp: ptr); |
614 | } |
615 | |
616 | static void kmalloc_uaf(struct kunit *test) |
617 | { |
618 | char *ptr; |
619 | size_t size = 10; |
620 | |
621 | ptr = kmalloc(size, GFP_KERNEL); |
622 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
623 | |
624 | kfree(objp: ptr); |
625 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]); |
626 | } |
627 | |
628 | static void kmalloc_uaf_memset(struct kunit *test) |
629 | { |
630 | char *ptr; |
631 | size_t size = 33; |
632 | |
633 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
634 | |
635 | /* |
636 | * Only generic KASAN uses quarantine, which is required to avoid a |
637 | * kernel memory corruption this test causes. |
638 | */ |
639 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
640 | |
641 | ptr = kmalloc(size, GFP_KERNEL); |
642 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
643 | |
644 | kfree(objp: ptr); |
645 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size)); |
646 | } |
647 | |
648 | static void kmalloc_uaf2(struct kunit *test) |
649 | { |
650 | char *ptr1, *ptr2; |
651 | size_t size = 43; |
652 | int counter = 0; |
653 | |
654 | again: |
655 | ptr1 = kmalloc(size, GFP_KERNEL); |
656 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
657 | |
658 | kfree(objp: ptr1); |
659 | |
660 | ptr2 = kmalloc(size, GFP_KERNEL); |
661 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
662 | |
663 | /* |
664 | * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same. |
665 | * Allow up to 16 attempts at generating different tags. |
666 | */ |
667 | if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) { |
668 | kfree(objp: ptr2); |
669 | goto again; |
670 | } |
671 | |
672 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]); |
673 | KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2); |
674 | |
675 | kfree(objp: ptr2); |
676 | } |
677 | |
678 | /* |
679 | * Check that KASAN detects use-after-free when another object was allocated in |
680 | * the same slot. Relevant for the tag-based modes, which do not use quarantine. |
681 | */ |
682 | static void kmalloc_uaf3(struct kunit *test) |
683 | { |
684 | char *ptr1, *ptr2; |
685 | size_t size = 100; |
686 | |
687 | /* This test is specifically crafted for tag-based modes. */ |
688 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
689 | |
690 | ptr1 = kmalloc(size, GFP_KERNEL); |
691 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
692 | kfree(objp: ptr1); |
693 | |
694 | ptr2 = kmalloc(size, GFP_KERNEL); |
695 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
696 | kfree(objp: ptr2); |
697 | |
698 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[8]); |
699 | } |
700 | |
701 | static void kasan_atomics_helper(struct kunit *test, void *unsafe, void *safe) |
702 | { |
703 | int *i_unsafe = unsafe; |
704 | |
705 | KUNIT_EXPECT_KASAN_FAIL(test, READ_ONCE(*i_unsafe)); |
706 | KUNIT_EXPECT_KASAN_FAIL(test, WRITE_ONCE(*i_unsafe, 42)); |
707 | KUNIT_EXPECT_KASAN_FAIL(test, smp_load_acquire(i_unsafe)); |
708 | KUNIT_EXPECT_KASAN_FAIL(test, smp_store_release(i_unsafe, 42)); |
709 | |
710 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_read(unsafe)); |
711 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_set(unsafe, 42)); |
712 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_add(42, unsafe)); |
713 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub(42, unsafe)); |
714 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc(unsafe)); |
715 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec(unsafe)); |
716 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_and(42, unsafe)); |
717 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_andnot(42, unsafe)); |
718 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_or(42, unsafe)); |
719 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_xor(42, unsafe)); |
720 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_xchg(unsafe, 42)); |
721 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_cmpxchg(unsafe, 21, 42)); |
722 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(unsafe, safe, 42)); |
723 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(safe, unsafe, 42)); |
724 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub_and_test(42, unsafe)); |
725 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_and_test(unsafe)); |
726 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_and_test(unsafe)); |
727 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_negative(42, unsafe)); |
728 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_unless(unsafe, 21, 42)); |
729 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_not_zero(unsafe)); |
730 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_unless_negative(unsafe)); |
731 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_unless_positive(unsafe)); |
732 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_if_positive(unsafe)); |
733 | |
734 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_read(unsafe)); |
735 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_set(unsafe, 42)); |
736 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add(42, unsafe)); |
737 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub(42, unsafe)); |
738 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc(unsafe)); |
739 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec(unsafe)); |
740 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_and(42, unsafe)); |
741 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_andnot(42, unsafe)); |
742 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_or(42, unsafe)); |
743 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xor(42, unsafe)); |
744 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xchg(unsafe, 42)); |
745 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_cmpxchg(unsafe, 21, 42)); |
746 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(unsafe, safe, 42)); |
747 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(safe, unsafe, 42)); |
748 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub_and_test(42, unsafe)); |
749 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_and_test(unsafe)); |
750 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_and_test(unsafe)); |
751 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_negative(42, unsafe)); |
752 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_unless(unsafe, 21, 42)); |
753 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_not_zero(unsafe)); |
754 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_unless_negative(unsafe)); |
755 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_unless_positive(unsafe)); |
756 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_if_positive(unsafe)); |
757 | } |
758 | |
759 | static void kasan_atomics(struct kunit *test) |
760 | { |
761 | void *a1, *a2; |
762 | |
763 | /* |
764 | * Just as with kasan_bitops_tags(), we allocate 48 bytes of memory such |
765 | * that the following 16 bytes will make up the redzone. |
766 | */ |
767 | a1 = kzalloc(size: 48, GFP_KERNEL); |
768 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a1); |
769 | a2 = kzalloc(size: sizeof(atomic_long_t), GFP_KERNEL); |
770 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a2); |
771 | |
772 | /* Use atomics to access the redzone. */ |
773 | kasan_atomics_helper(test, unsafe: a1 + 48, safe: a2); |
774 | |
775 | kfree(objp: a1); |
776 | kfree(objp: a2); |
777 | } |
778 | |
779 | static void kmalloc_double_kzfree(struct kunit *test) |
780 | { |
781 | char *ptr; |
782 | size_t size = 16; |
783 | |
784 | ptr = kmalloc(size, GFP_KERNEL); |
785 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
786 | |
787 | kfree_sensitive(objp: ptr); |
788 | KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr)); |
789 | } |
790 | |
791 | /* Check that ksize() does NOT unpoison whole object. */ |
792 | static void ksize_unpoisons_memory(struct kunit *test) |
793 | { |
794 | char *ptr; |
795 | size_t size = 128 - KASAN_GRANULE_SIZE - 5; |
796 | size_t real_size; |
797 | |
798 | ptr = kmalloc(size, GFP_KERNEL); |
799 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
800 | |
801 | real_size = ksize(objp: ptr); |
802 | KUNIT_EXPECT_GT(test, real_size, size); |
803 | |
804 | OPTIMIZER_HIDE_VAR(ptr); |
805 | |
806 | /* These accesses shouldn't trigger a KASAN report. */ |
807 | ptr[0] = 'x'; |
808 | ptr[size - 1] = 'x'; |
809 | |
810 | /* These must trigger a KASAN report. */ |
811 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
812 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]); |
813 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size + 5]); |
814 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size - 1]); |
815 | |
816 | kfree(objp: ptr); |
817 | } |
818 | |
819 | /* |
820 | * Check that a use-after-free is detected by ksize() and via normal accesses |
821 | * after it. |
822 | */ |
823 | static void ksize_uaf(struct kunit *test) |
824 | { |
825 | char *ptr; |
826 | int size = 128 - KASAN_GRANULE_SIZE; |
827 | |
828 | ptr = kmalloc(size, GFP_KERNEL); |
829 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
830 | kfree(objp: ptr); |
831 | |
832 | OPTIMIZER_HIDE_VAR(ptr); |
833 | KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr)); |
834 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]); |
835 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]); |
836 | } |
837 | |
838 | /* |
839 | * The two tests below check that Generic KASAN prints auxiliary stack traces |
840 | * for RCU callbacks and workqueues. The reports need to be inspected manually. |
841 | * |
842 | * These tests are still enabled for other KASAN modes to make sure that all |
843 | * modes report bad accesses in tested scenarios. |
844 | */ |
845 | |
846 | static struct kasan_rcu_info { |
847 | int i; |
848 | struct rcu_head rcu; |
849 | } *global_rcu_ptr; |
850 | |
851 | static void rcu_uaf_reclaim(struct rcu_head *rp) |
852 | { |
853 | struct kasan_rcu_info *fp = |
854 | container_of(rp, struct kasan_rcu_info, rcu); |
855 | |
856 | kfree(objp: fp); |
857 | ((volatile struct kasan_rcu_info *)fp)->i; |
858 | } |
859 | |
860 | static void rcu_uaf(struct kunit *test) |
861 | { |
862 | struct kasan_rcu_info *ptr; |
863 | |
864 | ptr = kmalloc(size: sizeof(struct kasan_rcu_info), GFP_KERNEL); |
865 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
866 | |
867 | global_rcu_ptr = rcu_dereference_protected( |
868 | (struct kasan_rcu_info __rcu *)ptr, NULL); |
869 | |
870 | KUNIT_EXPECT_KASAN_FAIL(test, |
871 | call_rcu(&global_rcu_ptr->rcu, rcu_uaf_reclaim); |
872 | rcu_barrier()); |
873 | } |
874 | |
875 | static void workqueue_uaf_work(struct work_struct *work) |
876 | { |
877 | kfree(objp: work); |
878 | } |
879 | |
880 | static void workqueue_uaf(struct kunit *test) |
881 | { |
882 | struct workqueue_struct *workqueue; |
883 | struct work_struct *work; |
884 | |
885 | workqueue = create_workqueue("kasan_workqueue_test" ); |
886 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, workqueue); |
887 | |
888 | work = kmalloc(size: sizeof(struct work_struct), GFP_KERNEL); |
889 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, work); |
890 | |
891 | INIT_WORK(work, workqueue_uaf_work); |
892 | queue_work(wq: workqueue, work); |
893 | destroy_workqueue(wq: workqueue); |
894 | |
895 | KUNIT_EXPECT_KASAN_FAIL(test, |
896 | ((volatile struct work_struct *)work)->data); |
897 | } |
898 | |
899 | static void kfree_via_page(struct kunit *test) |
900 | { |
901 | char *ptr; |
902 | size_t size = 8; |
903 | struct page *page; |
904 | unsigned long offset; |
905 | |
906 | ptr = kmalloc(size, GFP_KERNEL); |
907 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
908 | |
909 | page = virt_to_page(ptr); |
910 | offset = offset_in_page(ptr); |
911 | kfree(page_address(page) + offset); |
912 | } |
913 | |
914 | static void kfree_via_phys(struct kunit *test) |
915 | { |
916 | char *ptr; |
917 | size_t size = 8; |
918 | phys_addr_t phys; |
919 | |
920 | ptr = kmalloc(size, GFP_KERNEL); |
921 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
922 | |
923 | phys = virt_to_phys(address: ptr); |
924 | kfree(phys_to_virt(address: phys)); |
925 | } |
926 | |
927 | static void kmem_cache_oob(struct kunit *test) |
928 | { |
929 | char *p; |
930 | size_t size = 200; |
931 | struct kmem_cache *cache; |
932 | |
933 | cache = kmem_cache_create(name: "test_cache" , size, align: 0, flags: 0, NULL); |
934 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
935 | |
936 | p = kmem_cache_alloc(cachep: cache, GFP_KERNEL); |
937 | if (!p) { |
938 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
939 | kmem_cache_destroy(s: cache); |
940 | return; |
941 | } |
942 | |
943 | KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]); |
944 | |
945 | kmem_cache_free(s: cache, objp: p); |
946 | kmem_cache_destroy(s: cache); |
947 | } |
948 | |
949 | static void kmem_cache_double_free(struct kunit *test) |
950 | { |
951 | char *p; |
952 | size_t size = 200; |
953 | struct kmem_cache *cache; |
954 | |
955 | cache = kmem_cache_create(name: "test_cache" , size, align: 0, flags: 0, NULL); |
956 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
957 | |
958 | p = kmem_cache_alloc(cachep: cache, GFP_KERNEL); |
959 | if (!p) { |
960 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
961 | kmem_cache_destroy(s: cache); |
962 | return; |
963 | } |
964 | |
965 | kmem_cache_free(s: cache, objp: p); |
966 | KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p)); |
967 | kmem_cache_destroy(s: cache); |
968 | } |
969 | |
970 | static void kmem_cache_invalid_free(struct kunit *test) |
971 | { |
972 | char *p; |
973 | size_t size = 200; |
974 | struct kmem_cache *cache; |
975 | |
976 | cache = kmem_cache_create(name: "test_cache" , size, align: 0, SLAB_TYPESAFE_BY_RCU, |
977 | NULL); |
978 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
979 | |
980 | p = kmem_cache_alloc(cachep: cache, GFP_KERNEL); |
981 | if (!p) { |
982 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
983 | kmem_cache_destroy(s: cache); |
984 | return; |
985 | } |
986 | |
987 | /* Trigger invalid free, the object doesn't get freed. */ |
988 | KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1)); |
989 | |
990 | /* |
991 | * Properly free the object to prevent the "Objects remaining in |
992 | * test_cache on __kmem_cache_shutdown" BUG failure. |
993 | */ |
994 | kmem_cache_free(s: cache, objp: p); |
995 | |
996 | kmem_cache_destroy(s: cache); |
997 | } |
998 | |
999 | static void empty_cache_ctor(void *object) { } |
1000 | |
1001 | static void kmem_cache_double_destroy(struct kunit *test) |
1002 | { |
1003 | struct kmem_cache *cache; |
1004 | |
1005 | /* Provide a constructor to prevent cache merging. */ |
1006 | cache = kmem_cache_create(name: "test_cache" , size: 200, align: 0, flags: 0, ctor: empty_cache_ctor); |
1007 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
1008 | kmem_cache_destroy(s: cache); |
1009 | KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache)); |
1010 | } |
1011 | |
1012 | static void kmem_cache_accounted(struct kunit *test) |
1013 | { |
1014 | int i; |
1015 | char *p; |
1016 | size_t size = 200; |
1017 | struct kmem_cache *cache; |
1018 | |
1019 | cache = kmem_cache_create(name: "test_cache" , size, align: 0, SLAB_ACCOUNT, NULL); |
1020 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
1021 | |
1022 | /* |
1023 | * Several allocations with a delay to allow for lazy per memcg kmem |
1024 | * cache creation. |
1025 | */ |
1026 | for (i = 0; i < 5; i++) { |
1027 | p = kmem_cache_alloc(cachep: cache, GFP_KERNEL); |
1028 | if (!p) |
1029 | goto free_cache; |
1030 | |
1031 | kmem_cache_free(s: cache, objp: p); |
1032 | msleep(msecs: 100); |
1033 | } |
1034 | |
1035 | free_cache: |
1036 | kmem_cache_destroy(s: cache); |
1037 | } |
1038 | |
1039 | static void kmem_cache_bulk(struct kunit *test) |
1040 | { |
1041 | struct kmem_cache *cache; |
1042 | size_t size = 200; |
1043 | char *p[10]; |
1044 | bool ret; |
1045 | int i; |
1046 | |
1047 | cache = kmem_cache_create(name: "test_cache" , size, align: 0, flags: 0, NULL); |
1048 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
1049 | |
1050 | ret = kmem_cache_alloc_bulk(s: cache, GFP_KERNEL, ARRAY_SIZE(p), p: (void **)&p); |
1051 | if (!ret) { |
1052 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
1053 | kmem_cache_destroy(s: cache); |
1054 | return; |
1055 | } |
1056 | |
1057 | for (i = 0; i < ARRAY_SIZE(p); i++) |
1058 | p[i][0] = p[i][size - 1] = 42; |
1059 | |
1060 | kmem_cache_free_bulk(s: cache, ARRAY_SIZE(p), p: (void **)&p); |
1061 | kmem_cache_destroy(s: cache); |
1062 | } |
1063 | |
1064 | static void *mempool_prepare_kmalloc(struct kunit *test, mempool_t *pool, size_t size) |
1065 | { |
1066 | int pool_size = 4; |
1067 | int ret; |
1068 | void *elem; |
1069 | |
1070 | memset(pool, 0, sizeof(*pool)); |
1071 | ret = mempool_init_kmalloc_pool(pool, min_nr: pool_size, size); |
1072 | KUNIT_ASSERT_EQ(test, ret, 0); |
1073 | |
1074 | /* |
1075 | * Allocate one element to prevent mempool from freeing elements to the |
1076 | * underlying allocator and instead make it add them to the element |
1077 | * list when the tests trigger double-free and invalid-free bugs. |
1078 | * This allows testing KASAN annotations in add_element(). |
1079 | */ |
1080 | elem = mempool_alloc_preallocated(pool); |
1081 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
1082 | |
1083 | return elem; |
1084 | } |
1085 | |
1086 | static struct kmem_cache *mempool_prepare_slab(struct kunit *test, mempool_t *pool, size_t size) |
1087 | { |
1088 | struct kmem_cache *cache; |
1089 | int pool_size = 4; |
1090 | int ret; |
1091 | |
1092 | cache = kmem_cache_create(name: "test_cache" , size, align: 0, flags: 0, NULL); |
1093 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
1094 | |
1095 | memset(pool, 0, sizeof(*pool)); |
1096 | ret = mempool_init_slab_pool(pool, min_nr: pool_size, kc: cache); |
1097 | KUNIT_ASSERT_EQ(test, ret, 0); |
1098 | |
1099 | /* |
1100 | * Do not allocate one preallocated element, as we skip the double-free |
1101 | * and invalid-free tests for slab mempool for simplicity. |
1102 | */ |
1103 | |
1104 | return cache; |
1105 | } |
1106 | |
1107 | static void *mempool_prepare_page(struct kunit *test, mempool_t *pool, int order) |
1108 | { |
1109 | int pool_size = 4; |
1110 | int ret; |
1111 | void *elem; |
1112 | |
1113 | memset(pool, 0, sizeof(*pool)); |
1114 | ret = mempool_init_page_pool(pool, min_nr: pool_size, order); |
1115 | KUNIT_ASSERT_EQ(test, ret, 0); |
1116 | |
1117 | elem = mempool_alloc_preallocated(pool); |
1118 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
1119 | |
1120 | return elem; |
1121 | } |
1122 | |
1123 | static void mempool_oob_right_helper(struct kunit *test, mempool_t *pool, size_t size) |
1124 | { |
1125 | char *elem; |
1126 | |
1127 | elem = mempool_alloc_preallocated(pool); |
1128 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
1129 | |
1130 | OPTIMIZER_HIDE_VAR(elem); |
1131 | |
1132 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
1133 | KUNIT_EXPECT_KASAN_FAIL(test, |
1134 | ((volatile char *)&elem[size])[0]); |
1135 | else |
1136 | KUNIT_EXPECT_KASAN_FAIL(test, |
1137 | ((volatile char *)&elem[round_up(size, KASAN_GRANULE_SIZE)])[0]); |
1138 | |
1139 | mempool_free(element: elem, pool); |
1140 | } |
1141 | |
1142 | static void mempool_kmalloc_oob_right(struct kunit *test) |
1143 | { |
1144 | mempool_t pool; |
1145 | size_t size = 128 - KASAN_GRANULE_SIZE - 5; |
1146 | void *; |
1147 | |
1148 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1149 | |
1150 | mempool_oob_right_helper(test, pool: &pool, size); |
1151 | |
1152 | mempool_free(element: extra_elem, pool: &pool); |
1153 | mempool_exit(pool: &pool); |
1154 | } |
1155 | |
1156 | static void mempool_kmalloc_large_oob_right(struct kunit *test) |
1157 | { |
1158 | mempool_t pool; |
1159 | size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
1160 | void *; |
1161 | |
1162 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1163 | |
1164 | mempool_oob_right_helper(test, pool: &pool, size); |
1165 | |
1166 | mempool_free(element: extra_elem, pool: &pool); |
1167 | mempool_exit(pool: &pool); |
1168 | } |
1169 | |
1170 | static void mempool_slab_oob_right(struct kunit *test) |
1171 | { |
1172 | mempool_t pool; |
1173 | size_t size = 123; |
1174 | struct kmem_cache *cache; |
1175 | |
1176 | cache = mempool_prepare_slab(test, pool: &pool, size); |
1177 | |
1178 | mempool_oob_right_helper(test, pool: &pool, size); |
1179 | |
1180 | mempool_exit(pool: &pool); |
1181 | kmem_cache_destroy(s: cache); |
1182 | } |
1183 | |
1184 | /* |
1185 | * Skip the out-of-bounds test for page mempool. With Generic KASAN, page |
1186 | * allocations have no redzones, and thus the out-of-bounds detection is not |
1187 | * guaranteed; see https://bugzilla.kernel.org/show_bug.cgi?id=210503. With |
1188 | * the tag-based KASAN modes, the neighboring allocation might have the same |
1189 | * tag; see https://bugzilla.kernel.org/show_bug.cgi?id=203505. |
1190 | */ |
1191 | |
1192 | static void mempool_uaf_helper(struct kunit *test, mempool_t *pool, bool page) |
1193 | { |
1194 | char *elem, *ptr; |
1195 | |
1196 | elem = mempool_alloc_preallocated(pool); |
1197 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
1198 | |
1199 | mempool_free(element: elem, pool); |
1200 | |
1201 | ptr = page ? page_address((struct page *)elem) : elem; |
1202 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]); |
1203 | } |
1204 | |
1205 | static void mempool_kmalloc_uaf(struct kunit *test) |
1206 | { |
1207 | mempool_t pool; |
1208 | size_t size = 128; |
1209 | void *; |
1210 | |
1211 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1212 | |
1213 | mempool_uaf_helper(test, pool: &pool, page: false); |
1214 | |
1215 | mempool_free(element: extra_elem, pool: &pool); |
1216 | mempool_exit(pool: &pool); |
1217 | } |
1218 | |
1219 | static void mempool_kmalloc_large_uaf(struct kunit *test) |
1220 | { |
1221 | mempool_t pool; |
1222 | size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
1223 | void *; |
1224 | |
1225 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1226 | |
1227 | mempool_uaf_helper(test, pool: &pool, page: false); |
1228 | |
1229 | mempool_free(element: extra_elem, pool: &pool); |
1230 | mempool_exit(pool: &pool); |
1231 | } |
1232 | |
1233 | static void mempool_slab_uaf(struct kunit *test) |
1234 | { |
1235 | mempool_t pool; |
1236 | size_t size = 123; |
1237 | struct kmem_cache *cache; |
1238 | |
1239 | cache = mempool_prepare_slab(test, pool: &pool, size); |
1240 | |
1241 | mempool_uaf_helper(test, pool: &pool, page: false); |
1242 | |
1243 | mempool_exit(pool: &pool); |
1244 | kmem_cache_destroy(s: cache); |
1245 | } |
1246 | |
1247 | static void mempool_page_alloc_uaf(struct kunit *test) |
1248 | { |
1249 | mempool_t pool; |
1250 | int order = 2; |
1251 | void *; |
1252 | |
1253 | extra_elem = mempool_prepare_page(test, pool: &pool, order); |
1254 | |
1255 | mempool_uaf_helper(test, pool: &pool, page: true); |
1256 | |
1257 | mempool_free(element: extra_elem, pool: &pool); |
1258 | mempool_exit(pool: &pool); |
1259 | } |
1260 | |
1261 | static void mempool_double_free_helper(struct kunit *test, mempool_t *pool) |
1262 | { |
1263 | char *elem; |
1264 | |
1265 | elem = mempool_alloc_preallocated(pool); |
1266 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
1267 | |
1268 | mempool_free(element: elem, pool); |
1269 | |
1270 | KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem, pool)); |
1271 | } |
1272 | |
1273 | static void mempool_kmalloc_double_free(struct kunit *test) |
1274 | { |
1275 | mempool_t pool; |
1276 | size_t size = 128; |
1277 | char *; |
1278 | |
1279 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1280 | |
1281 | mempool_double_free_helper(test, pool: &pool); |
1282 | |
1283 | mempool_free(element: extra_elem, pool: &pool); |
1284 | mempool_exit(pool: &pool); |
1285 | } |
1286 | |
1287 | static void mempool_kmalloc_large_double_free(struct kunit *test) |
1288 | { |
1289 | mempool_t pool; |
1290 | size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
1291 | char *; |
1292 | |
1293 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1294 | |
1295 | mempool_double_free_helper(test, pool: &pool); |
1296 | |
1297 | mempool_free(element: extra_elem, pool: &pool); |
1298 | mempool_exit(pool: &pool); |
1299 | } |
1300 | |
1301 | static void mempool_page_alloc_double_free(struct kunit *test) |
1302 | { |
1303 | mempool_t pool; |
1304 | int order = 2; |
1305 | char *; |
1306 | |
1307 | extra_elem = mempool_prepare_page(test, pool: &pool, order); |
1308 | |
1309 | mempool_double_free_helper(test, pool: &pool); |
1310 | |
1311 | mempool_free(element: extra_elem, pool: &pool); |
1312 | mempool_exit(pool: &pool); |
1313 | } |
1314 | |
1315 | static void mempool_kmalloc_invalid_free_helper(struct kunit *test, mempool_t *pool) |
1316 | { |
1317 | char *elem; |
1318 | |
1319 | elem = mempool_alloc_preallocated(pool); |
1320 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
1321 | |
1322 | KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem + 1, pool)); |
1323 | |
1324 | mempool_free(element: elem, pool); |
1325 | } |
1326 | |
1327 | static void mempool_kmalloc_invalid_free(struct kunit *test) |
1328 | { |
1329 | mempool_t pool; |
1330 | size_t size = 128; |
1331 | char *; |
1332 | |
1333 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1334 | |
1335 | mempool_kmalloc_invalid_free_helper(test, pool: &pool); |
1336 | |
1337 | mempool_free(element: extra_elem, pool: &pool); |
1338 | mempool_exit(pool: &pool); |
1339 | } |
1340 | |
1341 | static void mempool_kmalloc_large_invalid_free(struct kunit *test) |
1342 | { |
1343 | mempool_t pool; |
1344 | size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
1345 | char *; |
1346 | |
1347 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1348 | |
1349 | mempool_kmalloc_invalid_free_helper(test, pool: &pool); |
1350 | |
1351 | mempool_free(element: extra_elem, pool: &pool); |
1352 | mempool_exit(pool: &pool); |
1353 | } |
1354 | |
1355 | /* |
1356 | * Skip the invalid-free test for page mempool. The invalid-free detection only |
1357 | * works for compound pages and mempool preallocates all page elements without |
1358 | * the __GFP_COMP flag. |
1359 | */ |
1360 | |
1361 | static char global_array[10]; |
1362 | |
1363 | static void kasan_global_oob_right(struct kunit *test) |
1364 | { |
1365 | /* |
1366 | * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS |
1367 | * from failing here and panicking the kernel, access the array via a |
1368 | * volatile pointer, which will prevent the compiler from being able to |
1369 | * determine the array bounds. |
1370 | * |
1371 | * This access uses a volatile pointer to char (char *volatile) rather |
1372 | * than the more conventional pointer to volatile char (volatile char *) |
1373 | * because we want to prevent the compiler from making inferences about |
1374 | * the pointer itself (i.e. its array bounds), not the data that it |
1375 | * refers to. |
1376 | */ |
1377 | char *volatile array = global_array; |
1378 | char *p = &array[ARRAY_SIZE(global_array) + 3]; |
1379 | |
1380 | /* Only generic mode instruments globals. */ |
1381 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
1382 | |
1383 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
1384 | } |
1385 | |
1386 | static void kasan_global_oob_left(struct kunit *test) |
1387 | { |
1388 | char *volatile array = global_array; |
1389 | char *p = array - 3; |
1390 | |
1391 | /* |
1392 | * GCC is known to fail this test, skip it. |
1393 | * See https://bugzilla.kernel.org/show_bug.cgi?id=215051. |
1394 | */ |
1395 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG); |
1396 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
1397 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
1398 | } |
1399 | |
1400 | static void kasan_stack_oob(struct kunit *test) |
1401 | { |
1402 | char stack_array[10]; |
1403 | /* See comment in kasan_global_oob_right. */ |
1404 | char *volatile array = stack_array; |
1405 | char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF]; |
1406 | |
1407 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK); |
1408 | |
1409 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
1410 | } |
1411 | |
1412 | static void kasan_alloca_oob_left(struct kunit *test) |
1413 | { |
1414 | volatile int i = 10; |
1415 | char alloca_array[i]; |
1416 | /* See comment in kasan_global_oob_right. */ |
1417 | char *volatile array = alloca_array; |
1418 | char *p = array - 1; |
1419 | |
1420 | /* Only generic mode instruments dynamic allocas. */ |
1421 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
1422 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK); |
1423 | |
1424 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
1425 | } |
1426 | |
1427 | static void kasan_alloca_oob_right(struct kunit *test) |
1428 | { |
1429 | volatile int i = 10; |
1430 | char alloca_array[i]; |
1431 | /* See comment in kasan_global_oob_right. */ |
1432 | char *volatile array = alloca_array; |
1433 | char *p = array + i; |
1434 | |
1435 | /* Only generic mode instruments dynamic allocas. */ |
1436 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
1437 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK); |
1438 | |
1439 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
1440 | } |
1441 | |
1442 | static void kasan_memchr(struct kunit *test) |
1443 | { |
1444 | char *ptr; |
1445 | size_t size = 24; |
1446 | |
1447 | /* |
1448 | * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT. |
1449 | * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details. |
1450 | */ |
1451 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT); |
1452 | |
1453 | if (OOB_TAG_OFF) |
1454 | size = round_up(size, OOB_TAG_OFF); |
1455 | |
1456 | ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
1457 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1458 | |
1459 | OPTIMIZER_HIDE_VAR(ptr); |
1460 | OPTIMIZER_HIDE_VAR(size); |
1461 | KUNIT_EXPECT_KASAN_FAIL(test, |
1462 | kasan_ptr_result = memchr(ptr, '1', size + 1)); |
1463 | |
1464 | kfree(objp: ptr); |
1465 | } |
1466 | |
1467 | static void kasan_memcmp(struct kunit *test) |
1468 | { |
1469 | char *ptr; |
1470 | size_t size = 24; |
1471 | int arr[9]; |
1472 | |
1473 | /* |
1474 | * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT. |
1475 | * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details. |
1476 | */ |
1477 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT); |
1478 | |
1479 | if (OOB_TAG_OFF) |
1480 | size = round_up(size, OOB_TAG_OFF); |
1481 | |
1482 | ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
1483 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1484 | memset(arr, 0, sizeof(arr)); |
1485 | |
1486 | OPTIMIZER_HIDE_VAR(ptr); |
1487 | OPTIMIZER_HIDE_VAR(size); |
1488 | KUNIT_EXPECT_KASAN_FAIL(test, |
1489 | kasan_int_result = memcmp(ptr, arr, size+1)); |
1490 | kfree(objp: ptr); |
1491 | } |
1492 | |
1493 | static void kasan_strings(struct kunit *test) |
1494 | { |
1495 | char *ptr; |
1496 | size_t size = 24; |
1497 | |
1498 | /* |
1499 | * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT. |
1500 | * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details. |
1501 | */ |
1502 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT); |
1503 | |
1504 | ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
1505 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1506 | |
1507 | kfree(objp: ptr); |
1508 | |
1509 | /* |
1510 | * Try to cause only 1 invalid access (less spam in dmesg). |
1511 | * For that we need ptr to point to zeroed byte. |
1512 | * Skip metadata that could be stored in freed object so ptr |
1513 | * will likely point to zeroed byte. |
1514 | */ |
1515 | ptr += 16; |
1516 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1')); |
1517 | |
1518 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1')); |
1519 | |
1520 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2" )); |
1521 | |
1522 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2" , 1)); |
1523 | |
1524 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr)); |
1525 | |
1526 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1)); |
1527 | } |
1528 | |
1529 | static void kasan_bitops_modify(struct kunit *test, int nr, void *addr) |
1530 | { |
1531 | KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr)); |
1532 | KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr)); |
1533 | KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr)); |
1534 | KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr)); |
1535 | KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr)); |
1536 | KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr)); |
1537 | KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr)); |
1538 | KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr)); |
1539 | } |
1540 | |
1541 | static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr) |
1542 | { |
1543 | KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr)); |
1544 | KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr)); |
1545 | KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr)); |
1546 | KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr)); |
1547 | KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr)); |
1548 | KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr)); |
1549 | KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr)); |
1550 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr)); |
1551 | if (nr < 7) |
1552 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = |
1553 | xor_unlock_is_negative_byte(1 << nr, addr)); |
1554 | } |
1555 | |
1556 | static void kasan_bitops_generic(struct kunit *test) |
1557 | { |
1558 | long *bits; |
1559 | |
1560 | /* This test is specifically crafted for the generic mode. */ |
1561 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
1562 | |
1563 | /* |
1564 | * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes; |
1565 | * this way we do not actually corrupt other memory. |
1566 | */ |
1567 | bits = kzalloc(size: sizeof(*bits) + 1, GFP_KERNEL); |
1568 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits); |
1569 | |
1570 | /* |
1571 | * Below calls try to access bit within allocated memory; however, the |
1572 | * below accesses are still out-of-bounds, since bitops are defined to |
1573 | * operate on the whole long the bit is in. |
1574 | */ |
1575 | kasan_bitops_modify(test, BITS_PER_LONG, addr: bits); |
1576 | |
1577 | /* |
1578 | * Below calls try to access bit beyond allocated memory. |
1579 | */ |
1580 | kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, addr: bits); |
1581 | |
1582 | kfree(objp: bits); |
1583 | } |
1584 | |
1585 | static void kasan_bitops_tags(struct kunit *test) |
1586 | { |
1587 | long *bits; |
1588 | |
1589 | /* This test is specifically crafted for tag-based modes. */ |
1590 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
1591 | |
1592 | /* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */ |
1593 | bits = kzalloc(size: 48, GFP_KERNEL); |
1594 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits); |
1595 | |
1596 | /* Do the accesses past the 48 allocated bytes, but within the redone. */ |
1597 | kasan_bitops_modify(test, BITS_PER_LONG, addr: (void *)bits + 48); |
1598 | kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, addr: (void *)bits + 48); |
1599 | |
1600 | kfree(objp: bits); |
1601 | } |
1602 | |
1603 | static void vmalloc_helpers_tags(struct kunit *test) |
1604 | { |
1605 | void *ptr; |
1606 | |
1607 | /* This test is intended for tag-based modes. */ |
1608 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
1609 | |
1610 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC); |
1611 | |
1612 | if (!kasan_vmalloc_enabled()) |
1613 | kunit_skip(test, "Test requires kasan.vmalloc=on" ); |
1614 | |
1615 | ptr = vmalloc(PAGE_SIZE); |
1616 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1617 | |
1618 | /* Check that the returned pointer is tagged. */ |
1619 | KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
1620 | KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
1621 | |
1622 | /* Make sure exported vmalloc helpers handle tagged pointers. */ |
1623 | KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr)); |
1624 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr)); |
1625 | |
1626 | #if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST) |
1627 | { |
1628 | int rv; |
1629 | |
1630 | /* Make sure vmalloc'ed memory permissions can be changed. */ |
1631 | rv = set_memory_ro(addr: (unsigned long)ptr, numpages: 1); |
1632 | KUNIT_ASSERT_GE(test, rv, 0); |
1633 | rv = set_memory_rw(addr: (unsigned long)ptr, numpages: 1); |
1634 | KUNIT_ASSERT_GE(test, rv, 0); |
1635 | } |
1636 | #endif |
1637 | |
1638 | vfree(addr: ptr); |
1639 | } |
1640 | |
1641 | static void vmalloc_oob(struct kunit *test) |
1642 | { |
1643 | char *v_ptr, *p_ptr; |
1644 | struct page *page; |
1645 | size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5; |
1646 | |
1647 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC); |
1648 | |
1649 | if (!kasan_vmalloc_enabled()) |
1650 | kunit_skip(test, "Test requires kasan.vmalloc=on" ); |
1651 | |
1652 | v_ptr = vmalloc(size); |
1653 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr); |
1654 | |
1655 | OPTIMIZER_HIDE_VAR(v_ptr); |
1656 | |
1657 | /* |
1658 | * We have to be careful not to hit the guard page in vmalloc tests. |
1659 | * The MMU will catch that and crash us. |
1660 | */ |
1661 | |
1662 | /* Make sure in-bounds accesses are valid. */ |
1663 | v_ptr[0] = 0; |
1664 | v_ptr[size - 1] = 0; |
1665 | |
1666 | /* |
1667 | * An unaligned access past the requested vmalloc size. |
1668 | * Only generic KASAN can precisely detect these. |
1669 | */ |
1670 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
1671 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]); |
1672 | |
1673 | /* An aligned access into the first out-of-bounds granule. */ |
1674 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size + 5]); |
1675 | |
1676 | /* Check that in-bounds accesses to the physical page are valid. */ |
1677 | page = vmalloc_to_page(addr: v_ptr); |
1678 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page); |
1679 | p_ptr = page_address(page); |
1680 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr); |
1681 | p_ptr[0] = 0; |
1682 | |
1683 | vfree(addr: v_ptr); |
1684 | |
1685 | /* |
1686 | * We can't check for use-after-unmap bugs in this nor in the following |
1687 | * vmalloc tests, as the page might be fully unmapped and accessing it |
1688 | * will crash the kernel. |
1689 | */ |
1690 | } |
1691 | |
1692 | static void vmap_tags(struct kunit *test) |
1693 | { |
1694 | char *p_ptr, *v_ptr; |
1695 | struct page *p_page, *v_page; |
1696 | |
1697 | /* |
1698 | * This test is specifically crafted for the software tag-based mode, |
1699 | * the only tag-based mode that poisons vmap mappings. |
1700 | */ |
1701 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS); |
1702 | |
1703 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC); |
1704 | |
1705 | if (!kasan_vmalloc_enabled()) |
1706 | kunit_skip(test, "Test requires kasan.vmalloc=on" ); |
1707 | |
1708 | p_page = alloc_pages(GFP_KERNEL, order: 1); |
1709 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page); |
1710 | p_ptr = page_address(p_page); |
1711 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr); |
1712 | |
1713 | v_ptr = vmap(pages: &p_page, count: 1, VM_MAP, PAGE_KERNEL); |
1714 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr); |
1715 | |
1716 | /* |
1717 | * We can't check for out-of-bounds bugs in this nor in the following |
1718 | * vmalloc tests, as allocations have page granularity and accessing |
1719 | * the guard page will crash the kernel. |
1720 | */ |
1721 | |
1722 | KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN); |
1723 | KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL); |
1724 | |
1725 | /* Make sure that in-bounds accesses through both pointers work. */ |
1726 | *p_ptr = 0; |
1727 | *v_ptr = 0; |
1728 | |
1729 | /* Make sure vmalloc_to_page() correctly recovers the page pointer. */ |
1730 | v_page = vmalloc_to_page(addr: v_ptr); |
1731 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page); |
1732 | KUNIT_EXPECT_PTR_EQ(test, p_page, v_page); |
1733 | |
1734 | vunmap(addr: v_ptr); |
1735 | free_pages(addr: (unsigned long)p_ptr, order: 1); |
1736 | } |
1737 | |
1738 | static void vm_map_ram_tags(struct kunit *test) |
1739 | { |
1740 | char *p_ptr, *v_ptr; |
1741 | struct page *page; |
1742 | |
1743 | /* |
1744 | * This test is specifically crafted for the software tag-based mode, |
1745 | * the only tag-based mode that poisons vm_map_ram mappings. |
1746 | */ |
1747 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS); |
1748 | |
1749 | page = alloc_pages(GFP_KERNEL, order: 1); |
1750 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page); |
1751 | p_ptr = page_address(page); |
1752 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr); |
1753 | |
1754 | v_ptr = vm_map_ram(pages: &page, count: 1, node: -1); |
1755 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr); |
1756 | |
1757 | KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN); |
1758 | KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL); |
1759 | |
1760 | /* Make sure that in-bounds accesses through both pointers work. */ |
1761 | *p_ptr = 0; |
1762 | *v_ptr = 0; |
1763 | |
1764 | vm_unmap_ram(mem: v_ptr, count: 1); |
1765 | free_pages(addr: (unsigned long)p_ptr, order: 1); |
1766 | } |
1767 | |
1768 | static void vmalloc_percpu(struct kunit *test) |
1769 | { |
1770 | char __percpu *ptr; |
1771 | int cpu; |
1772 | |
1773 | /* |
1774 | * This test is specifically crafted for the software tag-based mode, |
1775 | * the only tag-based mode that poisons percpu mappings. |
1776 | */ |
1777 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS); |
1778 | |
1779 | ptr = __alloc_percpu(PAGE_SIZE, PAGE_SIZE); |
1780 | |
1781 | for_each_possible_cpu(cpu) { |
1782 | char *c_ptr = per_cpu_ptr(ptr, cpu); |
1783 | |
1784 | KUNIT_EXPECT_GE(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_MIN); |
1785 | KUNIT_EXPECT_LT(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_KERNEL); |
1786 | |
1787 | /* Make sure that in-bounds accesses don't crash the kernel. */ |
1788 | *c_ptr = 0; |
1789 | } |
1790 | |
1791 | free_percpu(pdata: ptr); |
1792 | } |
1793 | |
1794 | /* |
1795 | * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN, |
1796 | * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based |
1797 | * modes. |
1798 | */ |
1799 | static void match_all_not_assigned(struct kunit *test) |
1800 | { |
1801 | char *ptr; |
1802 | struct page *pages; |
1803 | int i, size, order; |
1804 | |
1805 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
1806 | |
1807 | for (i = 0; i < 256; i++) { |
1808 | size = get_random_u32_inclusive(floor: 1, ceil: 1024); |
1809 | ptr = kmalloc(size, GFP_KERNEL); |
1810 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1811 | KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
1812 | KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
1813 | kfree(objp: ptr); |
1814 | } |
1815 | |
1816 | for (i = 0; i < 256; i++) { |
1817 | order = get_random_u32_inclusive(floor: 1, ceil: 4); |
1818 | pages = alloc_pages(GFP_KERNEL, order); |
1819 | ptr = page_address(pages); |
1820 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1821 | KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
1822 | KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
1823 | free_pages(addr: (unsigned long)ptr, order); |
1824 | } |
1825 | |
1826 | if (!kasan_vmalloc_enabled()) |
1827 | return; |
1828 | |
1829 | for (i = 0; i < 256; i++) { |
1830 | size = get_random_u32_inclusive(floor: 1, ceil: 1024); |
1831 | ptr = vmalloc(size); |
1832 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1833 | KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
1834 | KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
1835 | vfree(addr: ptr); |
1836 | } |
1837 | } |
1838 | |
1839 | /* Check that 0xff works as a match-all pointer tag for tag-based modes. */ |
1840 | static void match_all_ptr_tag(struct kunit *test) |
1841 | { |
1842 | char *ptr; |
1843 | u8 tag; |
1844 | |
1845 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
1846 | |
1847 | ptr = kmalloc(size: 128, GFP_KERNEL); |
1848 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1849 | |
1850 | /* Backup the assigned tag. */ |
1851 | tag = get_tag(ptr); |
1852 | KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL); |
1853 | |
1854 | /* Reset the tag to 0xff.*/ |
1855 | ptr = set_tag(ptr, KASAN_TAG_KERNEL); |
1856 | |
1857 | /* This access shouldn't trigger a KASAN report. */ |
1858 | *ptr = 0; |
1859 | |
1860 | /* Recover the pointer tag and free. */ |
1861 | ptr = set_tag(ptr, tag); |
1862 | kfree(objp: ptr); |
1863 | } |
1864 | |
1865 | /* Check that there are no match-all memory tags for tag-based modes. */ |
1866 | static void match_all_mem_tag(struct kunit *test) |
1867 | { |
1868 | char *ptr; |
1869 | int tag; |
1870 | |
1871 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
1872 | |
1873 | ptr = kmalloc(size: 128, GFP_KERNEL); |
1874 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1875 | KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
1876 | |
1877 | /* For each possible tag value not matching the pointer tag. */ |
1878 | for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) { |
1879 | /* |
1880 | * For Software Tag-Based KASAN, skip the majority of tag |
1881 | * values to avoid the test printing too many reports. |
1882 | */ |
1883 | if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) && |
1884 | tag >= KASAN_TAG_MIN + 8 && tag <= KASAN_TAG_KERNEL - 8) |
1885 | continue; |
1886 | |
1887 | if (tag == get_tag(ptr)) |
1888 | continue; |
1889 | |
1890 | /* Mark the first memory granule with the chosen memory tag. */ |
1891 | kasan_poison(addr: ptr, KASAN_GRANULE_SIZE, value: (u8)tag, init: false); |
1892 | |
1893 | /* This access must cause a KASAN report. */ |
1894 | KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0); |
1895 | } |
1896 | |
1897 | /* Recover the memory tag and free. */ |
1898 | kasan_poison(addr: ptr, KASAN_GRANULE_SIZE, get_tag(ptr), init: false); |
1899 | kfree(objp: ptr); |
1900 | } |
1901 | |
1902 | static struct kunit_case kasan_kunit_test_cases[] = { |
1903 | KUNIT_CASE(kmalloc_oob_right), |
1904 | KUNIT_CASE(kmalloc_oob_left), |
1905 | KUNIT_CASE(kmalloc_node_oob_right), |
1906 | KUNIT_CASE(kmalloc_big_oob_right), |
1907 | KUNIT_CASE(kmalloc_large_oob_right), |
1908 | KUNIT_CASE(kmalloc_large_uaf), |
1909 | KUNIT_CASE(kmalloc_large_invalid_free), |
1910 | KUNIT_CASE(page_alloc_oob_right), |
1911 | KUNIT_CASE(page_alloc_uaf), |
1912 | KUNIT_CASE(krealloc_more_oob), |
1913 | KUNIT_CASE(krealloc_less_oob), |
1914 | KUNIT_CASE(krealloc_large_more_oob), |
1915 | KUNIT_CASE(krealloc_large_less_oob), |
1916 | KUNIT_CASE(krealloc_uaf), |
1917 | KUNIT_CASE(kmalloc_oob_16), |
1918 | KUNIT_CASE(kmalloc_uaf_16), |
1919 | KUNIT_CASE(kmalloc_oob_in_memset), |
1920 | KUNIT_CASE(kmalloc_oob_memset_2), |
1921 | KUNIT_CASE(kmalloc_oob_memset_4), |
1922 | KUNIT_CASE(kmalloc_oob_memset_8), |
1923 | KUNIT_CASE(kmalloc_oob_memset_16), |
1924 | KUNIT_CASE(kmalloc_memmove_negative_size), |
1925 | KUNIT_CASE(kmalloc_memmove_invalid_size), |
1926 | KUNIT_CASE(kmalloc_uaf), |
1927 | KUNIT_CASE(kmalloc_uaf_memset), |
1928 | KUNIT_CASE(kmalloc_uaf2), |
1929 | KUNIT_CASE(kmalloc_uaf3), |
1930 | KUNIT_CASE(kmalloc_double_kzfree), |
1931 | KUNIT_CASE(ksize_unpoisons_memory), |
1932 | KUNIT_CASE(ksize_uaf), |
1933 | KUNIT_CASE(rcu_uaf), |
1934 | KUNIT_CASE(workqueue_uaf), |
1935 | KUNIT_CASE(kfree_via_page), |
1936 | KUNIT_CASE(kfree_via_phys), |
1937 | KUNIT_CASE(kmem_cache_oob), |
1938 | KUNIT_CASE(kmem_cache_double_free), |
1939 | KUNIT_CASE(kmem_cache_invalid_free), |
1940 | KUNIT_CASE(kmem_cache_double_destroy), |
1941 | KUNIT_CASE(kmem_cache_accounted), |
1942 | KUNIT_CASE(kmem_cache_bulk), |
1943 | KUNIT_CASE(mempool_kmalloc_oob_right), |
1944 | KUNIT_CASE(mempool_kmalloc_large_oob_right), |
1945 | KUNIT_CASE(mempool_slab_oob_right), |
1946 | KUNIT_CASE(mempool_kmalloc_uaf), |
1947 | KUNIT_CASE(mempool_kmalloc_large_uaf), |
1948 | KUNIT_CASE(mempool_slab_uaf), |
1949 | KUNIT_CASE(mempool_page_alloc_uaf), |
1950 | KUNIT_CASE(mempool_kmalloc_double_free), |
1951 | KUNIT_CASE(mempool_kmalloc_large_double_free), |
1952 | KUNIT_CASE(mempool_page_alloc_double_free), |
1953 | KUNIT_CASE(mempool_kmalloc_invalid_free), |
1954 | KUNIT_CASE(mempool_kmalloc_large_invalid_free), |
1955 | KUNIT_CASE(kasan_global_oob_right), |
1956 | KUNIT_CASE(kasan_global_oob_left), |
1957 | KUNIT_CASE(kasan_stack_oob), |
1958 | KUNIT_CASE(kasan_alloca_oob_left), |
1959 | KUNIT_CASE(kasan_alloca_oob_right), |
1960 | KUNIT_CASE(kasan_memchr), |
1961 | KUNIT_CASE(kasan_memcmp), |
1962 | KUNIT_CASE(kasan_strings), |
1963 | KUNIT_CASE(kasan_bitops_generic), |
1964 | KUNIT_CASE(kasan_bitops_tags), |
1965 | KUNIT_CASE(kasan_atomics), |
1966 | KUNIT_CASE(vmalloc_helpers_tags), |
1967 | KUNIT_CASE(vmalloc_oob), |
1968 | KUNIT_CASE(vmap_tags), |
1969 | KUNIT_CASE(vm_map_ram_tags), |
1970 | KUNIT_CASE(vmalloc_percpu), |
1971 | KUNIT_CASE(match_all_not_assigned), |
1972 | KUNIT_CASE(match_all_ptr_tag), |
1973 | KUNIT_CASE(match_all_mem_tag), |
1974 | {} |
1975 | }; |
1976 | |
1977 | static struct kunit_suite kasan_kunit_test_suite = { |
1978 | .name = "kasan" , |
1979 | .test_cases = kasan_kunit_test_cases, |
1980 | .exit = kasan_test_exit, |
1981 | .suite_init = kasan_suite_init, |
1982 | .suite_exit = kasan_suite_exit, |
1983 | }; |
1984 | |
1985 | kunit_test_suite(kasan_kunit_test_suite); |
1986 | |
1987 | MODULE_LICENSE("GPL" ); |
1988 | |