| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * |
| 4 | * Copyright (c) 2014 Samsung Electronics Co., Ltd. |
| 5 | * Author: Andrey Ryabinin <a.ryabinin@samsung.com> |
| 6 | */ |
| 7 | |
| 8 | #define pr_fmt(fmt) "kasan: test: " fmt |
| 9 | |
| 10 | #include <kunit/test.h> |
| 11 | #include <linux/bitops.h> |
| 12 | #include <linux/delay.h> |
| 13 | #include <linux/io.h> |
| 14 | #include <linux/kasan.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/mempool.h> |
| 17 | #include <linux/mm.h> |
| 18 | #include <linux/mman.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/printk.h> |
| 21 | #include <linux/random.h> |
| 22 | #include <linux/set_memory.h> |
| 23 | #include <linux/slab.h> |
| 24 | #include <linux/string.h> |
| 25 | #include <linux/tracepoint.h> |
| 26 | #include <linux/uaccess.h> |
| 27 | #include <linux/vmalloc.h> |
| 28 | #include <trace/events/printk.h> |
| 29 | |
| 30 | #include <asm/page.h> |
| 31 | |
| 32 | #include "kasan.h" |
| 33 | |
| 34 | #define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE) |
| 35 | |
| 36 | MODULE_IMPORT_NS("EXPORTED_FOR_KUNIT_TESTING" ); |
| 37 | |
| 38 | static bool multishot; |
| 39 | |
| 40 | /* Fields set based on lines observed in the console. */ |
| 41 | static struct { |
| 42 | bool report_found; |
| 43 | bool async_fault; |
| 44 | } test_status; |
| 45 | |
| 46 | /* |
| 47 | * Some tests use these global variables to store return values from function |
| 48 | * calls that could otherwise be eliminated by the compiler as dead code. |
| 49 | */ |
| 50 | static void *volatile kasan_ptr_result; |
| 51 | static volatile int kasan_int_result; |
| 52 | |
| 53 | /* Probe for console output: obtains test_status lines of interest. */ |
| 54 | static void probe_console(void *ignore, const char *buf, size_t len) |
| 55 | { |
| 56 | if (strnstr(buf, "BUG: KASAN: " , len)) |
| 57 | WRITE_ONCE(test_status.report_found, true); |
| 58 | else if (strnstr(buf, "Asynchronous fault: " , len)) |
| 59 | WRITE_ONCE(test_status.async_fault, true); |
| 60 | } |
| 61 | |
| 62 | static int kasan_suite_init(struct kunit_suite *suite) |
| 63 | { |
| 64 | if (!kasan_enabled()) { |
| 65 | pr_err("Can't run KASAN tests with KASAN disabled" ); |
| 66 | return -1; |
| 67 | } |
| 68 | |
| 69 | /* Stop failing KUnit tests on KASAN reports. */ |
| 70 | kasan_kunit_test_suite_start(); |
| 71 | |
| 72 | /* |
| 73 | * Temporarily enable multi-shot mode. Otherwise, KASAN would only |
| 74 | * report the first detected bug and panic the kernel if panic_on_warn |
| 75 | * is enabled. |
| 76 | */ |
| 77 | multishot = kasan_save_enable_multi_shot(); |
| 78 | |
| 79 | register_trace_console(probe: probe_console, NULL); |
| 80 | return 0; |
| 81 | } |
| 82 | |
| 83 | static void kasan_suite_exit(struct kunit_suite *suite) |
| 84 | { |
| 85 | kasan_kunit_test_suite_end(); |
| 86 | kasan_restore_multi_shot(enabled: multishot); |
| 87 | unregister_trace_console(probe: probe_console, NULL); |
| 88 | tracepoint_synchronize_unregister(); |
| 89 | } |
| 90 | |
| 91 | static void kasan_test_exit(struct kunit *test) |
| 92 | { |
| 93 | KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found)); |
| 94 | } |
| 95 | |
| 96 | /** |
| 97 | * KUNIT_EXPECT_KASAN_RESULT - checks whether the executed expression |
| 98 | * produces a KASAN report; causes a KUnit test failure when the result |
| 99 | * is different from @fail. |
| 100 | * |
| 101 | * @test: Currently executing KUnit test. |
| 102 | * @expr: Expression to be tested. |
| 103 | * @expr_str: Expression to be tested encoded as a string. |
| 104 | * @fail: Whether expression should produce a KASAN report. |
| 105 | * |
| 106 | * For hardware tag-based KASAN, when a synchronous tag fault happens, tag |
| 107 | * checking is auto-disabled. When this happens, this test handler reenables |
| 108 | * tag checking. As tag checking can be only disabled or enabled per CPU, |
| 109 | * this handler disables migration (preemption). |
| 110 | * |
| 111 | * Since the compiler doesn't see that the expression can change the test_status |
| 112 | * fields, it can reorder or optimize away the accesses to those fields. |
| 113 | * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the |
| 114 | * expression to prevent that. |
| 115 | * |
| 116 | * In between KUNIT_EXPECT_KASAN_RESULT checks, test_status.report_found is kept |
| 117 | * as false. This allows detecting KASAN reports that happen outside of the |
| 118 | * checks by asserting !test_status.report_found at the start of |
| 119 | * KUNIT_EXPECT_KASAN_RESULT and in kasan_test_exit. |
| 120 | */ |
| 121 | #define KUNIT_EXPECT_KASAN_RESULT(test, expr, expr_str, fail) \ |
| 122 | do { \ |
| 123 | if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \ |
| 124 | kasan_sync_fault_possible()) \ |
| 125 | migrate_disable(); \ |
| 126 | KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found)); \ |
| 127 | barrier(); \ |
| 128 | expr; \ |
| 129 | barrier(); \ |
| 130 | if (kasan_async_fault_possible()) \ |
| 131 | kasan_force_async_fault(); \ |
| 132 | if (READ_ONCE(test_status.report_found) != fail) { \ |
| 133 | KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure" \ |
| 134 | "%sexpected in \"" expr_str \ |
| 135 | "\", but %soccurred", \ |
| 136 | (fail ? " " : " not "), \ |
| 137 | (test_status.report_found ? \ |
| 138 | "" : "none ")); \ |
| 139 | } \ |
| 140 | if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \ |
| 141 | kasan_sync_fault_possible()) { \ |
| 142 | if (READ_ONCE(test_status.report_found) && \ |
| 143 | !READ_ONCE(test_status.async_fault)) \ |
| 144 | kasan_enable_hw_tags(); \ |
| 145 | migrate_enable(); \ |
| 146 | } \ |
| 147 | WRITE_ONCE(test_status.report_found, false); \ |
| 148 | WRITE_ONCE(test_status.async_fault, false); \ |
| 149 | } while (0) |
| 150 | |
| 151 | /* |
| 152 | * KUNIT_EXPECT_KASAN_FAIL - check that the executed expression produces a |
| 153 | * KASAN report; causes a KUnit test failure otherwise. |
| 154 | * |
| 155 | * @test: Currently executing KUnit test. |
| 156 | * @expr: Expression that must produce a KASAN report. |
| 157 | */ |
| 158 | #define KUNIT_EXPECT_KASAN_FAIL(test, expr) \ |
| 159 | KUNIT_EXPECT_KASAN_RESULT(test, expr, #expr, true) |
| 160 | |
| 161 | /* |
| 162 | * KUNIT_EXPECT_KASAN_FAIL_READ - check that the executed expression |
| 163 | * produces a KASAN report when the write-only mode is not enabled; |
| 164 | * causes a KUnit test failure otherwise. |
| 165 | * |
| 166 | * Note: At the moment, this macro does not check whether the produced |
| 167 | * KASAN report is a report about a bad read access. It is only intended |
| 168 | * for checking the write-only KASAN mode functionality without failing |
| 169 | * KASAN tests. |
| 170 | * |
| 171 | * @test: Currently executing KUnit test. |
| 172 | * @expr: Expression that must only produce a KASAN report |
| 173 | * when the write-only mode is not enabled. |
| 174 | */ |
| 175 | #define KUNIT_EXPECT_KASAN_FAIL_READ(test, expr) \ |
| 176 | KUNIT_EXPECT_KASAN_RESULT(test, expr, #expr, \ |
| 177 | !kasan_write_only_enabled()) \ |
| 178 | |
| 179 | #define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do { \ |
| 180 | if (!IS_ENABLED(config)) \ |
| 181 | kunit_skip((test), "Test requires " #config "=y"); \ |
| 182 | } while (0) |
| 183 | |
| 184 | #define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do { \ |
| 185 | if (IS_ENABLED(config)) \ |
| 186 | kunit_skip((test), "Test requires " #config "=n"); \ |
| 187 | } while (0) |
| 188 | |
| 189 | #define KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test) do { \ |
| 190 | if (IS_ENABLED(CONFIG_KASAN_HW_TAGS)) \ |
| 191 | break; /* No compiler instrumentation. */ \ |
| 192 | if (IS_ENABLED(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX)) \ |
| 193 | break; /* Should always be instrumented! */ \ |
| 194 | if (IS_ENABLED(CONFIG_GENERIC_ENTRY)) \ |
| 195 | kunit_skip((test), "Test requires checked mem*()"); \ |
| 196 | } while (0) |
| 197 | |
| 198 | static void kmalloc_oob_right(struct kunit *test) |
| 199 | { |
| 200 | char *ptr; |
| 201 | size_t size = 128 - KASAN_GRANULE_SIZE - 5; |
| 202 | |
| 203 | ptr = kmalloc(size, GFP_KERNEL); |
| 204 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 205 | |
| 206 | OPTIMIZER_HIDE_VAR(ptr); |
| 207 | /* |
| 208 | * An unaligned access past the requested kmalloc size. |
| 209 | * Only generic KASAN can precisely detect these. |
| 210 | */ |
| 211 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| 212 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x'); |
| 213 | |
| 214 | /* |
| 215 | * An aligned access into the first out-of-bounds granule that falls |
| 216 | * within the aligned kmalloc object. |
| 217 | */ |
| 218 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y'); |
| 219 | |
| 220 | /* Out-of-bounds access past the aligned kmalloc object. */ |
| 221 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ptr[0] = |
| 222 | ptr[size + KASAN_GRANULE_SIZE + 5]); |
| 223 | |
| 224 | kfree(objp: ptr); |
| 225 | } |
| 226 | |
| 227 | static void kmalloc_oob_left(struct kunit *test) |
| 228 | { |
| 229 | char *ptr; |
| 230 | size_t size = 15; |
| 231 | |
| 232 | ptr = kmalloc(size, GFP_KERNEL); |
| 233 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 234 | |
| 235 | OPTIMIZER_HIDE_VAR(ptr); |
| 236 | KUNIT_EXPECT_KASAN_FAIL_READ(test, *ptr = *(ptr - 1)); |
| 237 | kfree(objp: ptr); |
| 238 | } |
| 239 | |
| 240 | static void kmalloc_node_oob_right(struct kunit *test) |
| 241 | { |
| 242 | char *ptr; |
| 243 | size_t size = 4096; |
| 244 | |
| 245 | ptr = kmalloc_node(size, GFP_KERNEL, 0); |
| 246 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 247 | |
| 248 | OPTIMIZER_HIDE_VAR(ptr); |
| 249 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ptr[0] = ptr[size]); |
| 250 | kfree(objp: ptr); |
| 251 | } |
| 252 | |
| 253 | static void kmalloc_track_caller_oob_right(struct kunit *test) |
| 254 | { |
| 255 | char *ptr; |
| 256 | size_t size = 128 - KASAN_GRANULE_SIZE; |
| 257 | |
| 258 | /* |
| 259 | * Check that KASAN detects out-of-bounds access for object allocated via |
| 260 | * kmalloc_track_caller(). |
| 261 | */ |
| 262 | ptr = kmalloc_track_caller(size, GFP_KERNEL); |
| 263 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 264 | |
| 265 | OPTIMIZER_HIDE_VAR(ptr); |
| 266 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'y'); |
| 267 | |
| 268 | kfree(objp: ptr); |
| 269 | |
| 270 | /* |
| 271 | * Check that KASAN detects out-of-bounds access for object allocated via |
| 272 | * kmalloc_node_track_caller(). |
| 273 | */ |
| 274 | ptr = kmalloc_node_track_caller(size, GFP_KERNEL, 0); |
| 275 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 276 | |
| 277 | OPTIMIZER_HIDE_VAR(ptr); |
| 278 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'y'); |
| 279 | |
| 280 | kfree(objp: ptr); |
| 281 | } |
| 282 | |
| 283 | /* |
| 284 | * Check that KASAN detects an out-of-bounds access for a big object allocated |
| 285 | * via kmalloc(). But not as big as to trigger the page_alloc fallback. |
| 286 | */ |
| 287 | static void kmalloc_big_oob_right(struct kunit *test) |
| 288 | { |
| 289 | char *ptr; |
| 290 | size_t size = KMALLOC_MAX_CACHE_SIZE - 256; |
| 291 | |
| 292 | ptr = kmalloc(size, GFP_KERNEL); |
| 293 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 294 | |
| 295 | OPTIMIZER_HIDE_VAR(ptr); |
| 296 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0); |
| 297 | kfree(objp: ptr); |
| 298 | } |
| 299 | |
| 300 | /* |
| 301 | * The kmalloc_large_* tests below use kmalloc() to allocate a memory chunk |
| 302 | * that does not fit into the largest slab cache and therefore is allocated via |
| 303 | * the page_alloc fallback. |
| 304 | */ |
| 305 | |
| 306 | static void kmalloc_large_oob_right(struct kunit *test) |
| 307 | { |
| 308 | char *ptr; |
| 309 | size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
| 310 | |
| 311 | ptr = kmalloc(size, GFP_KERNEL); |
| 312 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 313 | |
| 314 | OPTIMIZER_HIDE_VAR(ptr); |
| 315 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0); |
| 316 | |
| 317 | kfree(objp: ptr); |
| 318 | } |
| 319 | |
| 320 | static void kmalloc_large_uaf(struct kunit *test) |
| 321 | { |
| 322 | char *ptr; |
| 323 | size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
| 324 | |
| 325 | ptr = kmalloc(size, GFP_KERNEL); |
| 326 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 327 | kfree(objp: ptr); |
| 328 | |
| 329 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ((volatile char *)ptr)[0]); |
| 330 | } |
| 331 | |
| 332 | static void kmalloc_large_invalid_free(struct kunit *test) |
| 333 | { |
| 334 | char *ptr; |
| 335 | size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
| 336 | |
| 337 | ptr = kmalloc(size, GFP_KERNEL); |
| 338 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 339 | |
| 340 | KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1)); |
| 341 | } |
| 342 | |
| 343 | static void page_alloc_oob_right(struct kunit *test) |
| 344 | { |
| 345 | char *ptr; |
| 346 | struct page *pages; |
| 347 | size_t order = 4; |
| 348 | size_t size = (1UL << (PAGE_SHIFT + order)); |
| 349 | |
| 350 | /* |
| 351 | * With generic KASAN page allocations have no redzones, thus |
| 352 | * out-of-bounds detection is not guaranteed. |
| 353 | * See https://bugzilla.kernel.org/show_bug.cgi?id=210503. |
| 354 | */ |
| 355 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| 356 | |
| 357 | pages = alloc_pages(GFP_KERNEL, order); |
| 358 | ptr = page_address(pages); |
| 359 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 360 | |
| 361 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ptr[0] = ptr[size]); |
| 362 | free_pages(addr: (unsigned long)ptr, order); |
| 363 | } |
| 364 | |
| 365 | static void page_alloc_uaf(struct kunit *test) |
| 366 | { |
| 367 | char *ptr; |
| 368 | struct page *pages; |
| 369 | size_t order = 4; |
| 370 | |
| 371 | pages = alloc_pages(GFP_KERNEL, order); |
| 372 | ptr = page_address(pages); |
| 373 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 374 | free_pages(addr: (unsigned long)ptr, order); |
| 375 | |
| 376 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ((volatile char *)ptr)[0]); |
| 377 | } |
| 378 | |
| 379 | static void krealloc_more_oob_helper(struct kunit *test, |
| 380 | size_t size1, size_t size2) |
| 381 | { |
| 382 | char *ptr1, *ptr2; |
| 383 | size_t middle; |
| 384 | |
| 385 | KUNIT_ASSERT_LT(test, size1, size2); |
| 386 | middle = size1 + (size2 - size1) / 2; |
| 387 | |
| 388 | ptr1 = kmalloc(size1, GFP_KERNEL); |
| 389 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| 390 | |
| 391 | ptr2 = krealloc(ptr1, size2, GFP_KERNEL); |
| 392 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
| 393 | |
| 394 | /* Suppress -Warray-bounds warnings. */ |
| 395 | OPTIMIZER_HIDE_VAR(ptr2); |
| 396 | |
| 397 | /* All offsets up to size2 must be accessible. */ |
| 398 | ptr2[size1 - 1] = 'x'; |
| 399 | ptr2[size1] = 'x'; |
| 400 | ptr2[middle] = 'x'; |
| 401 | ptr2[size2 - 1] = 'x'; |
| 402 | |
| 403 | /* Generic mode is precise, so unaligned size2 must be inaccessible. */ |
| 404 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| 405 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x'); |
| 406 | |
| 407 | /* For all modes first aligned offset after size2 must be inaccessible. */ |
| 408 | KUNIT_EXPECT_KASAN_FAIL(test, |
| 409 | ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x'); |
| 410 | |
| 411 | kfree(objp: ptr2); |
| 412 | } |
| 413 | |
| 414 | static void krealloc_less_oob_helper(struct kunit *test, |
| 415 | size_t size1, size_t size2) |
| 416 | { |
| 417 | char *ptr1, *ptr2; |
| 418 | size_t middle; |
| 419 | |
| 420 | KUNIT_ASSERT_LT(test, size2, size1); |
| 421 | middle = size2 + (size1 - size2) / 2; |
| 422 | |
| 423 | ptr1 = kmalloc(size1, GFP_KERNEL); |
| 424 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| 425 | |
| 426 | ptr2 = krealloc(ptr1, size2, GFP_KERNEL); |
| 427 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
| 428 | |
| 429 | /* Suppress -Warray-bounds warnings. */ |
| 430 | OPTIMIZER_HIDE_VAR(ptr2); |
| 431 | |
| 432 | /* Must be accessible for all modes. */ |
| 433 | ptr2[size2 - 1] = 'x'; |
| 434 | |
| 435 | /* Generic mode is precise, so unaligned size2 must be inaccessible. */ |
| 436 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| 437 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x'); |
| 438 | |
| 439 | /* For all modes first aligned offset after size2 must be inaccessible. */ |
| 440 | KUNIT_EXPECT_KASAN_FAIL(test, |
| 441 | ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x'); |
| 442 | |
| 443 | /* |
| 444 | * For all modes all size2, middle, and size1 should land in separate |
| 445 | * granules and thus the latter two offsets should be inaccessible. |
| 446 | */ |
| 447 | KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE), |
| 448 | round_down(middle, KASAN_GRANULE_SIZE)); |
| 449 | KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE), |
| 450 | round_down(size1, KASAN_GRANULE_SIZE)); |
| 451 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x'); |
| 452 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x'); |
| 453 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x'); |
| 454 | |
| 455 | kfree(objp: ptr2); |
| 456 | } |
| 457 | |
| 458 | static void krealloc_more_oob(struct kunit *test) |
| 459 | { |
| 460 | krealloc_more_oob_helper(test, size1: 201, size2: 235); |
| 461 | } |
| 462 | |
| 463 | static void krealloc_less_oob(struct kunit *test) |
| 464 | { |
| 465 | krealloc_less_oob_helper(test, size1: 235, size2: 201); |
| 466 | } |
| 467 | |
| 468 | static void krealloc_large_more_oob(struct kunit *test) |
| 469 | { |
| 470 | krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201, |
| 471 | KMALLOC_MAX_CACHE_SIZE + 235); |
| 472 | } |
| 473 | |
| 474 | static void krealloc_large_less_oob(struct kunit *test) |
| 475 | { |
| 476 | krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235, |
| 477 | KMALLOC_MAX_CACHE_SIZE + 201); |
| 478 | } |
| 479 | |
| 480 | /* |
| 481 | * Check that krealloc() detects a use-after-free, returns NULL, |
| 482 | * and doesn't unpoison the freed object. |
| 483 | */ |
| 484 | static void krealloc_uaf(struct kunit *test) |
| 485 | { |
| 486 | char *ptr1, *ptr2; |
| 487 | int size1 = 201; |
| 488 | int size2 = 235; |
| 489 | |
| 490 | ptr1 = kmalloc(size1, GFP_KERNEL); |
| 491 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| 492 | kfree(objp: ptr1); |
| 493 | |
| 494 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL)); |
| 495 | KUNIT_ASSERT_NULL(test, ptr2); |
| 496 | KUNIT_EXPECT_KASAN_FAIL_READ(test, *(volatile char *)ptr1); |
| 497 | } |
| 498 | |
| 499 | static void kmalloc_oob_16(struct kunit *test) |
| 500 | { |
| 501 | struct { |
| 502 | u64 words[2]; |
| 503 | } *ptr1, *ptr2; |
| 504 | |
| 505 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| 506 | |
| 507 | /* This test is specifically crafted for the generic mode. */ |
| 508 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| 509 | |
| 510 | /* RELOC_HIDE to prevent gcc from warning about short alloc */ |
| 511 | ptr1 = RELOC_HIDE(kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL), 0); |
| 512 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| 513 | |
| 514 | ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL); |
| 515 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
| 516 | |
| 517 | OPTIMIZER_HIDE_VAR(ptr1); |
| 518 | OPTIMIZER_HIDE_VAR(ptr2); |
| 519 | KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2); |
| 520 | kfree(objp: ptr1); |
| 521 | kfree(objp: ptr2); |
| 522 | } |
| 523 | |
| 524 | static void kmalloc_uaf_16(struct kunit *test) |
| 525 | { |
| 526 | struct { |
| 527 | u64 words[2]; |
| 528 | } *ptr1, *ptr2; |
| 529 | |
| 530 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| 531 | |
| 532 | ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL); |
| 533 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| 534 | |
| 535 | ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL); |
| 536 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
| 537 | kfree(objp: ptr2); |
| 538 | |
| 539 | KUNIT_EXPECT_KASAN_FAIL_READ(test, *ptr1 = *ptr2); |
| 540 | kfree(objp: ptr1); |
| 541 | } |
| 542 | |
| 543 | /* |
| 544 | * Note: in the memset tests below, the written range touches both valid and |
| 545 | * invalid memory. This makes sure that the instrumentation does not only check |
| 546 | * the starting address but the whole range. |
| 547 | */ |
| 548 | |
| 549 | static void kmalloc_oob_memset_2(struct kunit *test) |
| 550 | { |
| 551 | char *ptr; |
| 552 | size_t size = 128 - KASAN_GRANULE_SIZE; |
| 553 | size_t memset_size = 2; |
| 554 | |
| 555 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| 556 | |
| 557 | ptr = kmalloc(size, GFP_KERNEL); |
| 558 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 559 | |
| 560 | OPTIMIZER_HIDE_VAR(ptr); |
| 561 | OPTIMIZER_HIDE_VAR(size); |
| 562 | OPTIMIZER_HIDE_VAR(memset_size); |
| 563 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, memset_size)); |
| 564 | kfree(objp: ptr); |
| 565 | } |
| 566 | |
| 567 | static void kmalloc_oob_memset_4(struct kunit *test) |
| 568 | { |
| 569 | char *ptr; |
| 570 | size_t size = 128 - KASAN_GRANULE_SIZE; |
| 571 | size_t memset_size = 4; |
| 572 | |
| 573 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| 574 | |
| 575 | ptr = kmalloc(size, GFP_KERNEL); |
| 576 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 577 | |
| 578 | OPTIMIZER_HIDE_VAR(ptr); |
| 579 | OPTIMIZER_HIDE_VAR(size); |
| 580 | OPTIMIZER_HIDE_VAR(memset_size); |
| 581 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, memset_size)); |
| 582 | kfree(objp: ptr); |
| 583 | } |
| 584 | |
| 585 | static void kmalloc_oob_memset_8(struct kunit *test) |
| 586 | { |
| 587 | char *ptr; |
| 588 | size_t size = 128 - KASAN_GRANULE_SIZE; |
| 589 | size_t memset_size = 8; |
| 590 | |
| 591 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| 592 | |
| 593 | ptr = kmalloc(size, GFP_KERNEL); |
| 594 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 595 | |
| 596 | OPTIMIZER_HIDE_VAR(ptr); |
| 597 | OPTIMIZER_HIDE_VAR(size); |
| 598 | OPTIMIZER_HIDE_VAR(memset_size); |
| 599 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, memset_size)); |
| 600 | kfree(objp: ptr); |
| 601 | } |
| 602 | |
| 603 | static void kmalloc_oob_memset_16(struct kunit *test) |
| 604 | { |
| 605 | char *ptr; |
| 606 | size_t size = 128 - KASAN_GRANULE_SIZE; |
| 607 | size_t memset_size = 16; |
| 608 | |
| 609 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| 610 | |
| 611 | ptr = kmalloc(size, GFP_KERNEL); |
| 612 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 613 | |
| 614 | OPTIMIZER_HIDE_VAR(ptr); |
| 615 | OPTIMIZER_HIDE_VAR(size); |
| 616 | OPTIMIZER_HIDE_VAR(memset_size); |
| 617 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, memset_size)); |
| 618 | kfree(objp: ptr); |
| 619 | } |
| 620 | |
| 621 | static void kmalloc_oob_in_memset(struct kunit *test) |
| 622 | { |
| 623 | char *ptr; |
| 624 | size_t size = 128 - KASAN_GRANULE_SIZE; |
| 625 | |
| 626 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| 627 | |
| 628 | ptr = kmalloc(size, GFP_KERNEL); |
| 629 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 630 | |
| 631 | OPTIMIZER_HIDE_VAR(ptr); |
| 632 | OPTIMIZER_HIDE_VAR(size); |
| 633 | KUNIT_EXPECT_KASAN_FAIL(test, |
| 634 | memset(ptr, 0, size + KASAN_GRANULE_SIZE)); |
| 635 | kfree(objp: ptr); |
| 636 | } |
| 637 | |
| 638 | static void kmalloc_memmove_negative_size(struct kunit *test) |
| 639 | { |
| 640 | char *ptr; |
| 641 | size_t size = 64; |
| 642 | size_t invalid_size = -2; |
| 643 | |
| 644 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| 645 | |
| 646 | /* |
| 647 | * Hardware tag-based mode doesn't check memmove for negative size. |
| 648 | * As a result, this test introduces a side-effect memory corruption, |
| 649 | * which can result in a crash. |
| 650 | */ |
| 651 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS); |
| 652 | |
| 653 | ptr = kmalloc(size, GFP_KERNEL); |
| 654 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 655 | |
| 656 | memset((char *)ptr, 0, 64); |
| 657 | OPTIMIZER_HIDE_VAR(ptr); |
| 658 | OPTIMIZER_HIDE_VAR(invalid_size); |
| 659 | KUNIT_EXPECT_KASAN_FAIL(test, |
| 660 | memmove((char *)ptr, (char *)ptr + 4, invalid_size)); |
| 661 | kfree(objp: ptr); |
| 662 | } |
| 663 | |
| 664 | static void kmalloc_memmove_invalid_size(struct kunit *test) |
| 665 | { |
| 666 | char *ptr; |
| 667 | size_t size = 64; |
| 668 | size_t invalid_size = size; |
| 669 | |
| 670 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| 671 | |
| 672 | ptr = kmalloc(size, GFP_KERNEL); |
| 673 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 674 | |
| 675 | memset((char *)ptr, 0, 64); |
| 676 | OPTIMIZER_HIDE_VAR(ptr); |
| 677 | OPTIMIZER_HIDE_VAR(invalid_size); |
| 678 | KUNIT_EXPECT_KASAN_FAIL_READ(test, |
| 679 | memmove((char *)ptr, (char *)ptr + 4, invalid_size)); |
| 680 | kfree(objp: ptr); |
| 681 | } |
| 682 | |
| 683 | static void kmalloc_uaf(struct kunit *test) |
| 684 | { |
| 685 | char *ptr; |
| 686 | size_t size = 10; |
| 687 | |
| 688 | ptr = kmalloc(size, GFP_KERNEL); |
| 689 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 690 | |
| 691 | kfree(objp: ptr); |
| 692 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ((volatile char *)ptr)[8]); |
| 693 | } |
| 694 | |
| 695 | static void kmalloc_uaf_memset(struct kunit *test) |
| 696 | { |
| 697 | char *ptr; |
| 698 | size_t size = 33; |
| 699 | |
| 700 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
| 701 | |
| 702 | /* |
| 703 | * Only generic KASAN uses quarantine, which is required to avoid a |
| 704 | * kernel memory corruption this test causes. |
| 705 | */ |
| 706 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| 707 | |
| 708 | ptr = kmalloc(size, GFP_KERNEL); |
| 709 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 710 | |
| 711 | kfree(objp: ptr); |
| 712 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size)); |
| 713 | } |
| 714 | |
| 715 | static void kmalloc_uaf2(struct kunit *test) |
| 716 | { |
| 717 | char *ptr1, *ptr2; |
| 718 | size_t size = 43; |
| 719 | int counter = 0; |
| 720 | |
| 721 | again: |
| 722 | ptr1 = kmalloc(size, GFP_KERNEL); |
| 723 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| 724 | |
| 725 | kfree(objp: ptr1); |
| 726 | |
| 727 | ptr2 = kmalloc(size, GFP_KERNEL); |
| 728 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
| 729 | |
| 730 | /* |
| 731 | * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same. |
| 732 | * Allow up to 16 attempts at generating different tags. |
| 733 | */ |
| 734 | if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) { |
| 735 | kfree(objp: ptr2); |
| 736 | goto again; |
| 737 | } |
| 738 | |
| 739 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ((volatile char *)ptr1)[40]); |
| 740 | KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2); |
| 741 | |
| 742 | kfree(objp: ptr2); |
| 743 | } |
| 744 | |
| 745 | /* |
| 746 | * Check that KASAN detects use-after-free when another object was allocated in |
| 747 | * the same slot. Relevant for the tag-based modes, which do not use quarantine. |
| 748 | */ |
| 749 | static void kmalloc_uaf3(struct kunit *test) |
| 750 | { |
| 751 | char *ptr1, *ptr2; |
| 752 | size_t size = 100; |
| 753 | |
| 754 | /* This test is specifically crafted for tag-based modes. */ |
| 755 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| 756 | |
| 757 | ptr1 = kmalloc(size, GFP_KERNEL); |
| 758 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
| 759 | kfree(objp: ptr1); |
| 760 | |
| 761 | ptr2 = kmalloc(size, GFP_KERNEL); |
| 762 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
| 763 | kfree(objp: ptr2); |
| 764 | |
| 765 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ((volatile char *)ptr1)[8]); |
| 766 | } |
| 767 | |
| 768 | static void kasan_atomics_helper(struct kunit *test, void *unsafe, void *safe) |
| 769 | { |
| 770 | int *i_unsafe = unsafe; |
| 771 | |
| 772 | KUNIT_EXPECT_KASAN_FAIL_READ(test, READ_ONCE(*i_unsafe)); |
| 773 | KUNIT_EXPECT_KASAN_FAIL(test, WRITE_ONCE(*i_unsafe, 42)); |
| 774 | KUNIT_EXPECT_KASAN_FAIL_READ(test, smp_load_acquire(i_unsafe)); |
| 775 | KUNIT_EXPECT_KASAN_FAIL(test, smp_store_release(i_unsafe, 42)); |
| 776 | |
| 777 | KUNIT_EXPECT_KASAN_FAIL_READ(test, atomic_read(unsafe)); |
| 778 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_set(unsafe, 42)); |
| 779 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_add(42, unsafe)); |
| 780 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub(42, unsafe)); |
| 781 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc(unsafe)); |
| 782 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec(unsafe)); |
| 783 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_and(42, unsafe)); |
| 784 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_andnot(42, unsafe)); |
| 785 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_or(42, unsafe)); |
| 786 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_xor(42, unsafe)); |
| 787 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_xchg(unsafe, 42)); |
| 788 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_cmpxchg(unsafe, 21, 42)); |
| 789 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(unsafe, safe, 42)); |
| 790 | /* |
| 791 | * The result of the test below may vary due to garbage values of |
| 792 | * unsafe in write-only mode. |
| 793 | * Therefore, skip this test when KASAN is configured in write-only mode. |
| 794 | */ |
| 795 | if (!kasan_write_only_enabled()) |
| 796 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(safe, unsafe, 42)); |
| 797 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub_and_test(42, unsafe)); |
| 798 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_and_test(unsafe)); |
| 799 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_and_test(unsafe)); |
| 800 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_negative(42, unsafe)); |
| 801 | /* |
| 802 | * The result of the test below may vary due to garbage values of |
| 803 | * unsafe in write-only mode. |
| 804 | * Therefore, skip this test when KASAN is configured in write-only mode. |
| 805 | */ |
| 806 | if (!kasan_write_only_enabled()) { |
| 807 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_unless(unsafe, 21, 42)); |
| 808 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_not_zero(unsafe)); |
| 809 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_unless_negative(unsafe)); |
| 810 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_unless_positive(unsafe)); |
| 811 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_if_positive(unsafe)); |
| 812 | } |
| 813 | |
| 814 | KUNIT_EXPECT_KASAN_FAIL_READ(test, atomic_long_read(unsafe)); |
| 815 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_set(unsafe, 42)); |
| 816 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add(42, unsafe)); |
| 817 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub(42, unsafe)); |
| 818 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc(unsafe)); |
| 819 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec(unsafe)); |
| 820 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_and(42, unsafe)); |
| 821 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_andnot(42, unsafe)); |
| 822 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_or(42, unsafe)); |
| 823 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xor(42, unsafe)); |
| 824 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xchg(unsafe, 42)); |
| 825 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_cmpxchg(unsafe, 21, 42)); |
| 826 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(unsafe, safe, 42)); |
| 827 | /* |
| 828 | * The result of the test below may vary due to garbage values of |
| 829 | * unsafe in write-only mode. |
| 830 | * Therefore, skip this test when KASAN is configured in write-only mode. |
| 831 | */ |
| 832 | if (!kasan_write_only_enabled()) |
| 833 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(safe, unsafe, 42)); |
| 834 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub_and_test(42, unsafe)); |
| 835 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_and_test(unsafe)); |
| 836 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_and_test(unsafe)); |
| 837 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_negative(42, unsafe)); |
| 838 | /* |
| 839 | * The result of the test below may vary due to garbage values of |
| 840 | * unsafe in write-only mode. |
| 841 | * Therefore, skip this test when KASAN is configured in write-only mode. |
| 842 | */ |
| 843 | if (!kasan_write_only_enabled()) { |
| 844 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_unless(unsafe, 21, 42)); |
| 845 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_not_zero(unsafe)); |
| 846 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_unless_negative(unsafe)); |
| 847 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_unless_positive(unsafe)); |
| 848 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_if_positive(unsafe)); |
| 849 | } |
| 850 | } |
| 851 | |
| 852 | static void kasan_atomics(struct kunit *test) |
| 853 | { |
| 854 | void *a1, *a2; |
| 855 | |
| 856 | /* |
| 857 | * Just as with kasan_bitops_tags(), we allocate 48 bytes of memory such |
| 858 | * that the following 16 bytes will make up the redzone. |
| 859 | */ |
| 860 | a1 = kzalloc(48, GFP_KERNEL); |
| 861 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a1); |
| 862 | a2 = kzalloc(sizeof(atomic_long_t), GFP_KERNEL); |
| 863 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a2); |
| 864 | |
| 865 | /* Use atomics to access the redzone. */ |
| 866 | kasan_atomics_helper(test, unsafe: a1 + 48, safe: a2); |
| 867 | |
| 868 | kfree(objp: a1); |
| 869 | kfree(objp: a2); |
| 870 | } |
| 871 | |
| 872 | static void kmalloc_double_kzfree(struct kunit *test) |
| 873 | { |
| 874 | char *ptr; |
| 875 | size_t size = 16; |
| 876 | |
| 877 | ptr = kmalloc(size, GFP_KERNEL); |
| 878 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 879 | |
| 880 | kfree_sensitive(objp: ptr); |
| 881 | KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr)); |
| 882 | } |
| 883 | |
| 884 | /* Check that ksize() does NOT unpoison whole object. */ |
| 885 | static void ksize_unpoisons_memory(struct kunit *test) |
| 886 | { |
| 887 | char *ptr; |
| 888 | size_t size = 128 - KASAN_GRANULE_SIZE - 5; |
| 889 | size_t real_size; |
| 890 | |
| 891 | ptr = kmalloc(size, GFP_KERNEL); |
| 892 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 893 | |
| 894 | real_size = ksize(objp: ptr); |
| 895 | KUNIT_EXPECT_GT(test, real_size, size); |
| 896 | |
| 897 | OPTIMIZER_HIDE_VAR(ptr); |
| 898 | |
| 899 | /* These accesses shouldn't trigger a KASAN report. */ |
| 900 | ptr[0] = 'x'; |
| 901 | ptr[size - 1] = 'x'; |
| 902 | |
| 903 | /* These must trigger a KASAN report. */ |
| 904 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| 905 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]); |
| 906 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ((volatile char *)ptr)[size + 5]); |
| 907 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ((volatile char *)ptr)[real_size - 1]); |
| 908 | |
| 909 | kfree(objp: ptr); |
| 910 | } |
| 911 | |
| 912 | /* |
| 913 | * Check that a use-after-free is detected by ksize() and via normal accesses |
| 914 | * after it. |
| 915 | */ |
| 916 | static void ksize_uaf(struct kunit *test) |
| 917 | { |
| 918 | char *ptr; |
| 919 | int size = 128 - KASAN_GRANULE_SIZE; |
| 920 | |
| 921 | ptr = kmalloc(size, GFP_KERNEL); |
| 922 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 923 | kfree(objp: ptr); |
| 924 | |
| 925 | OPTIMIZER_HIDE_VAR(ptr); |
| 926 | KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr)); |
| 927 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ((volatile char *)ptr)[0]); |
| 928 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ((volatile char *)ptr)[size]); |
| 929 | } |
| 930 | |
| 931 | /* |
| 932 | * The two tests below check that Generic KASAN prints auxiliary stack traces |
| 933 | * for RCU callbacks and workqueues. The reports need to be inspected manually. |
| 934 | * |
| 935 | * These tests are still enabled for other KASAN modes to make sure that all |
| 936 | * modes report bad accesses in tested scenarios. |
| 937 | */ |
| 938 | |
| 939 | static struct kasan_rcu_info { |
| 940 | int i; |
| 941 | struct rcu_head rcu; |
| 942 | } *global_rcu_ptr; |
| 943 | |
| 944 | static void rcu_uaf_reclaim(struct rcu_head *rp) |
| 945 | { |
| 946 | struct kasan_rcu_info *fp = |
| 947 | container_of(rp, struct kasan_rcu_info, rcu); |
| 948 | |
| 949 | kfree(objp: fp); |
| 950 | ((volatile struct kasan_rcu_info *)fp)->i; |
| 951 | } |
| 952 | |
| 953 | static void rcu_uaf(struct kunit *test) |
| 954 | { |
| 955 | struct kasan_rcu_info *ptr; |
| 956 | |
| 957 | ptr = kmalloc(sizeof(struct kasan_rcu_info), GFP_KERNEL); |
| 958 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 959 | |
| 960 | global_rcu_ptr = rcu_dereference_protected( |
| 961 | (struct kasan_rcu_info __rcu *)ptr, NULL); |
| 962 | |
| 963 | KUNIT_EXPECT_KASAN_FAIL_READ(test, |
| 964 | call_rcu(&global_rcu_ptr->rcu, rcu_uaf_reclaim); |
| 965 | rcu_barrier()); |
| 966 | } |
| 967 | |
| 968 | static void workqueue_uaf_work(struct work_struct *work) |
| 969 | { |
| 970 | kfree(objp: work); |
| 971 | } |
| 972 | |
| 973 | static void workqueue_uaf(struct kunit *test) |
| 974 | { |
| 975 | struct workqueue_struct *workqueue; |
| 976 | struct work_struct *work; |
| 977 | |
| 978 | workqueue = create_workqueue("kasan_workqueue_test" ); |
| 979 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, workqueue); |
| 980 | |
| 981 | work = kmalloc(sizeof(struct work_struct), GFP_KERNEL); |
| 982 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, work); |
| 983 | |
| 984 | INIT_WORK(work, workqueue_uaf_work); |
| 985 | queue_work(wq: workqueue, work); |
| 986 | destroy_workqueue(wq: workqueue); |
| 987 | |
| 988 | KUNIT_EXPECT_KASAN_FAIL_READ(test, |
| 989 | ((volatile struct work_struct *)work)->data); |
| 990 | } |
| 991 | |
| 992 | static void kfree_via_page(struct kunit *test) |
| 993 | { |
| 994 | char *ptr; |
| 995 | size_t size = 8; |
| 996 | struct page *page; |
| 997 | unsigned long offset; |
| 998 | |
| 999 | ptr = kmalloc(size, GFP_KERNEL); |
| 1000 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 1001 | |
| 1002 | page = virt_to_page(ptr); |
| 1003 | offset = offset_in_page(ptr); |
| 1004 | kfree(page_address(page) + offset); |
| 1005 | } |
| 1006 | |
| 1007 | static void kfree_via_phys(struct kunit *test) |
| 1008 | { |
| 1009 | char *ptr; |
| 1010 | size_t size = 8; |
| 1011 | phys_addr_t phys; |
| 1012 | |
| 1013 | ptr = kmalloc(size, GFP_KERNEL); |
| 1014 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 1015 | |
| 1016 | phys = virt_to_phys(address: ptr); |
| 1017 | kfree(phys_to_virt(address: phys)); |
| 1018 | } |
| 1019 | |
| 1020 | static void kmem_cache_oob(struct kunit *test) |
| 1021 | { |
| 1022 | char *p; |
| 1023 | size_t size = 200; |
| 1024 | struct kmem_cache *cache; |
| 1025 | |
| 1026 | cache = kmem_cache_create("test_cache" , size, 0, 0, NULL); |
| 1027 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| 1028 | |
| 1029 | p = kmem_cache_alloc(cache, GFP_KERNEL); |
| 1030 | if (!p) { |
| 1031 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
| 1032 | kmem_cache_destroy(s: cache); |
| 1033 | return; |
| 1034 | } |
| 1035 | |
| 1036 | KUNIT_EXPECT_KASAN_FAIL_READ(test, *p = p[size + OOB_TAG_OFF]); |
| 1037 | |
| 1038 | kmem_cache_free(s: cache, objp: p); |
| 1039 | kmem_cache_destroy(s: cache); |
| 1040 | } |
| 1041 | |
| 1042 | static void kmem_cache_double_free(struct kunit *test) |
| 1043 | { |
| 1044 | char *p; |
| 1045 | size_t size = 200; |
| 1046 | struct kmem_cache *cache; |
| 1047 | |
| 1048 | cache = kmem_cache_create("test_cache" , size, 0, 0, NULL); |
| 1049 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| 1050 | |
| 1051 | p = kmem_cache_alloc(cache, GFP_KERNEL); |
| 1052 | if (!p) { |
| 1053 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
| 1054 | kmem_cache_destroy(s: cache); |
| 1055 | return; |
| 1056 | } |
| 1057 | |
| 1058 | kmem_cache_free(s: cache, objp: p); |
| 1059 | KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p)); |
| 1060 | kmem_cache_destroy(s: cache); |
| 1061 | } |
| 1062 | |
| 1063 | static void kmem_cache_invalid_free(struct kunit *test) |
| 1064 | { |
| 1065 | char *p; |
| 1066 | size_t size = 200; |
| 1067 | struct kmem_cache *cache; |
| 1068 | |
| 1069 | cache = kmem_cache_create("test_cache" , size, 0, SLAB_TYPESAFE_BY_RCU, |
| 1070 | NULL); |
| 1071 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| 1072 | |
| 1073 | p = kmem_cache_alloc(cache, GFP_KERNEL); |
| 1074 | if (!p) { |
| 1075 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
| 1076 | kmem_cache_destroy(s: cache); |
| 1077 | return; |
| 1078 | } |
| 1079 | |
| 1080 | /* Trigger invalid free, the object doesn't get freed. */ |
| 1081 | KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1)); |
| 1082 | |
| 1083 | /* |
| 1084 | * Properly free the object to prevent the "Objects remaining in |
| 1085 | * test_cache on __kmem_cache_shutdown" BUG failure. |
| 1086 | */ |
| 1087 | kmem_cache_free(s: cache, objp: p); |
| 1088 | |
| 1089 | kmem_cache_destroy(s: cache); |
| 1090 | } |
| 1091 | |
| 1092 | static void kmem_cache_rcu_uaf(struct kunit *test) |
| 1093 | { |
| 1094 | char *p; |
| 1095 | size_t size = 200; |
| 1096 | struct kmem_cache *cache; |
| 1097 | |
| 1098 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB_RCU_DEBUG); |
| 1099 | |
| 1100 | cache = kmem_cache_create("test_cache" , size, 0, SLAB_TYPESAFE_BY_RCU, |
| 1101 | NULL); |
| 1102 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| 1103 | |
| 1104 | p = kmem_cache_alloc(cache, GFP_KERNEL); |
| 1105 | if (!p) { |
| 1106 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
| 1107 | kmem_cache_destroy(s: cache); |
| 1108 | return; |
| 1109 | } |
| 1110 | *p = 1; |
| 1111 | |
| 1112 | rcu_read_lock(); |
| 1113 | |
| 1114 | /* Free the object - this will internally schedule an RCU callback. */ |
| 1115 | kmem_cache_free(s: cache, objp: p); |
| 1116 | |
| 1117 | /* |
| 1118 | * We should still be allowed to access the object at this point because |
| 1119 | * the cache is SLAB_TYPESAFE_BY_RCU and we've been in an RCU read-side |
| 1120 | * critical section since before the kmem_cache_free(). |
| 1121 | */ |
| 1122 | READ_ONCE(*p); |
| 1123 | |
| 1124 | rcu_read_unlock(); |
| 1125 | |
| 1126 | /* |
| 1127 | * Wait for the RCU callback to execute; after this, the object should |
| 1128 | * have actually been freed from KASAN's perspective. |
| 1129 | */ |
| 1130 | rcu_barrier(); |
| 1131 | |
| 1132 | KUNIT_EXPECT_KASAN_FAIL_READ(test, READ_ONCE(*p)); |
| 1133 | |
| 1134 | kmem_cache_destroy(s: cache); |
| 1135 | } |
| 1136 | |
| 1137 | /* |
| 1138 | * Check that SLAB_TYPESAFE_BY_RCU objects are immediately reused when |
| 1139 | * CONFIG_SLUB_RCU_DEBUG is off, and stay at the same address. |
| 1140 | * Without this, KASAN builds would be unable to trigger bugs caused by |
| 1141 | * SLAB_TYPESAFE_BY_RCU users handling reycled objects improperly. |
| 1142 | */ |
| 1143 | static void kmem_cache_rcu_reuse(struct kunit *test) |
| 1144 | { |
| 1145 | char *p, *p2; |
| 1146 | struct kmem_cache *cache; |
| 1147 | |
| 1148 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_SLUB_RCU_DEBUG); |
| 1149 | |
| 1150 | cache = kmem_cache_create("test_cache" , 16, 0, SLAB_TYPESAFE_BY_RCU, |
| 1151 | NULL); |
| 1152 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| 1153 | |
| 1154 | migrate_disable(); |
| 1155 | p = kmem_cache_alloc(cache, GFP_KERNEL); |
| 1156 | if (!p) { |
| 1157 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
| 1158 | goto out; |
| 1159 | } |
| 1160 | |
| 1161 | kmem_cache_free(s: cache, objp: p); |
| 1162 | p2 = kmem_cache_alloc(cache, GFP_KERNEL); |
| 1163 | if (!p2) { |
| 1164 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
| 1165 | goto out; |
| 1166 | } |
| 1167 | KUNIT_EXPECT_PTR_EQ(test, p, p2); |
| 1168 | |
| 1169 | kmem_cache_free(s: cache, objp: p2); |
| 1170 | |
| 1171 | out: |
| 1172 | migrate_enable(); |
| 1173 | kmem_cache_destroy(s: cache); |
| 1174 | } |
| 1175 | |
| 1176 | static void kmem_cache_double_destroy(struct kunit *test) |
| 1177 | { |
| 1178 | struct kmem_cache *cache; |
| 1179 | |
| 1180 | cache = kmem_cache_create("test_cache" , 200, 0, SLAB_NO_MERGE, NULL); |
| 1181 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| 1182 | kmem_cache_destroy(s: cache); |
| 1183 | KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache)); |
| 1184 | } |
| 1185 | |
| 1186 | static void kmem_cache_accounted(struct kunit *test) |
| 1187 | { |
| 1188 | int i; |
| 1189 | char *p; |
| 1190 | size_t size = 200; |
| 1191 | struct kmem_cache *cache; |
| 1192 | |
| 1193 | cache = kmem_cache_create("test_cache" , size, 0, SLAB_ACCOUNT, NULL); |
| 1194 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| 1195 | |
| 1196 | /* |
| 1197 | * Several allocations with a delay to allow for lazy per memcg kmem |
| 1198 | * cache creation. |
| 1199 | */ |
| 1200 | for (i = 0; i < 5; i++) { |
| 1201 | p = kmem_cache_alloc(cache, GFP_KERNEL); |
| 1202 | if (!p) |
| 1203 | goto free_cache; |
| 1204 | |
| 1205 | kmem_cache_free(s: cache, objp: p); |
| 1206 | msleep(msecs: 100); |
| 1207 | } |
| 1208 | |
| 1209 | free_cache: |
| 1210 | kmem_cache_destroy(s: cache); |
| 1211 | } |
| 1212 | |
| 1213 | static void kmem_cache_bulk(struct kunit *test) |
| 1214 | { |
| 1215 | struct kmem_cache *cache; |
| 1216 | size_t size = 200; |
| 1217 | char *p[10]; |
| 1218 | bool ret; |
| 1219 | int i; |
| 1220 | |
| 1221 | cache = kmem_cache_create("test_cache" , size, 0, 0, NULL); |
| 1222 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| 1223 | |
| 1224 | ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p); |
| 1225 | if (!ret) { |
| 1226 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
| 1227 | kmem_cache_destroy(s: cache); |
| 1228 | return; |
| 1229 | } |
| 1230 | |
| 1231 | for (i = 0; i < ARRAY_SIZE(p); i++) |
| 1232 | p[i][0] = p[i][size - 1] = 42; |
| 1233 | |
| 1234 | kmem_cache_free_bulk(s: cache, ARRAY_SIZE(p), p: (void **)&p); |
| 1235 | kmem_cache_destroy(s: cache); |
| 1236 | } |
| 1237 | |
| 1238 | static void *mempool_prepare_kmalloc(struct kunit *test, mempool_t *pool, size_t size) |
| 1239 | { |
| 1240 | int pool_size = 4; |
| 1241 | int ret; |
| 1242 | void *elem; |
| 1243 | |
| 1244 | memset(pool, 0, sizeof(*pool)); |
| 1245 | ret = mempool_init_kmalloc_pool(pool, pool_size, size); |
| 1246 | KUNIT_ASSERT_EQ(test, ret, 0); |
| 1247 | |
| 1248 | /* |
| 1249 | * Allocate one element to prevent mempool from freeing elements to the |
| 1250 | * underlying allocator and instead make it add them to the element |
| 1251 | * list when the tests trigger double-free and invalid-free bugs. |
| 1252 | * This allows testing KASAN annotations in add_element(). |
| 1253 | */ |
| 1254 | elem = mempool_alloc_preallocated(pool); |
| 1255 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
| 1256 | |
| 1257 | return elem; |
| 1258 | } |
| 1259 | |
| 1260 | static struct kmem_cache *mempool_prepare_slab(struct kunit *test, mempool_t *pool, size_t size) |
| 1261 | { |
| 1262 | struct kmem_cache *cache; |
| 1263 | int pool_size = 4; |
| 1264 | int ret; |
| 1265 | |
| 1266 | cache = kmem_cache_create("test_cache" , size, 0, 0, NULL); |
| 1267 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
| 1268 | |
| 1269 | memset(pool, 0, sizeof(*pool)); |
| 1270 | ret = mempool_init_slab_pool(pool, pool_size, cache); |
| 1271 | KUNIT_ASSERT_EQ(test, ret, 0); |
| 1272 | |
| 1273 | /* |
| 1274 | * Do not allocate one preallocated element, as we skip the double-free |
| 1275 | * and invalid-free tests for slab mempool for simplicity. |
| 1276 | */ |
| 1277 | |
| 1278 | return cache; |
| 1279 | } |
| 1280 | |
| 1281 | static void *mempool_prepare_page(struct kunit *test, mempool_t *pool, int order) |
| 1282 | { |
| 1283 | int pool_size = 4; |
| 1284 | int ret; |
| 1285 | void *elem; |
| 1286 | |
| 1287 | memset(pool, 0, sizeof(*pool)); |
| 1288 | ret = mempool_init_page_pool(pool, pool_size, order); |
| 1289 | KUNIT_ASSERT_EQ(test, ret, 0); |
| 1290 | |
| 1291 | elem = mempool_alloc_preallocated(pool); |
| 1292 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
| 1293 | |
| 1294 | return elem; |
| 1295 | } |
| 1296 | |
| 1297 | static void mempool_oob_right_helper(struct kunit *test, mempool_t *pool, size_t size) |
| 1298 | { |
| 1299 | char *elem; |
| 1300 | |
| 1301 | elem = mempool_alloc_preallocated(pool); |
| 1302 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
| 1303 | |
| 1304 | OPTIMIZER_HIDE_VAR(elem); |
| 1305 | |
| 1306 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| 1307 | KUNIT_EXPECT_KASAN_FAIL(test, |
| 1308 | ((volatile char *)&elem[size])[0]); |
| 1309 | else |
| 1310 | KUNIT_EXPECT_KASAN_FAIL_READ(test, |
| 1311 | ((volatile char *)&elem[round_up(size, KASAN_GRANULE_SIZE)])[0]); |
| 1312 | |
| 1313 | mempool_free(element: elem, pool); |
| 1314 | } |
| 1315 | |
| 1316 | static void mempool_kmalloc_oob_right(struct kunit *test) |
| 1317 | { |
| 1318 | mempool_t pool; |
| 1319 | size_t size = 128 - KASAN_GRANULE_SIZE - 5; |
| 1320 | void *; |
| 1321 | |
| 1322 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
| 1323 | |
| 1324 | mempool_oob_right_helper(test, pool: &pool, size); |
| 1325 | |
| 1326 | mempool_free(element: extra_elem, pool: &pool); |
| 1327 | mempool_exit(pool: &pool); |
| 1328 | } |
| 1329 | |
| 1330 | static void mempool_kmalloc_large_oob_right(struct kunit *test) |
| 1331 | { |
| 1332 | mempool_t pool; |
| 1333 | size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
| 1334 | void *; |
| 1335 | |
| 1336 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
| 1337 | |
| 1338 | mempool_oob_right_helper(test, pool: &pool, size); |
| 1339 | |
| 1340 | mempool_free(element: extra_elem, pool: &pool); |
| 1341 | mempool_exit(pool: &pool); |
| 1342 | } |
| 1343 | |
| 1344 | static void mempool_slab_oob_right(struct kunit *test) |
| 1345 | { |
| 1346 | mempool_t pool; |
| 1347 | size_t size = 123; |
| 1348 | struct kmem_cache *cache; |
| 1349 | |
| 1350 | cache = mempool_prepare_slab(test, pool: &pool, size); |
| 1351 | |
| 1352 | mempool_oob_right_helper(test, pool: &pool, size); |
| 1353 | |
| 1354 | mempool_exit(pool: &pool); |
| 1355 | kmem_cache_destroy(s: cache); |
| 1356 | } |
| 1357 | |
| 1358 | /* |
| 1359 | * Skip the out-of-bounds test for page mempool. With Generic KASAN, page |
| 1360 | * allocations have no redzones, and thus the out-of-bounds detection is not |
| 1361 | * guaranteed; see https://bugzilla.kernel.org/show_bug.cgi?id=210503. With |
| 1362 | * the tag-based KASAN modes, the neighboring allocation might have the same |
| 1363 | * tag; see https://bugzilla.kernel.org/show_bug.cgi?id=203505. |
| 1364 | */ |
| 1365 | |
| 1366 | static void mempool_uaf_helper(struct kunit *test, mempool_t *pool, bool page) |
| 1367 | { |
| 1368 | char *elem, *ptr; |
| 1369 | |
| 1370 | elem = mempool_alloc_preallocated(pool); |
| 1371 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
| 1372 | |
| 1373 | mempool_free(element: elem, pool); |
| 1374 | |
| 1375 | ptr = page ? page_address((struct page *)elem) : elem; |
| 1376 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ((volatile char *)ptr)[0]); |
| 1377 | } |
| 1378 | |
| 1379 | static void mempool_kmalloc_uaf(struct kunit *test) |
| 1380 | { |
| 1381 | mempool_t pool; |
| 1382 | size_t size = 128; |
| 1383 | void *; |
| 1384 | |
| 1385 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
| 1386 | |
| 1387 | mempool_uaf_helper(test, pool: &pool, page: false); |
| 1388 | |
| 1389 | mempool_free(element: extra_elem, pool: &pool); |
| 1390 | mempool_exit(pool: &pool); |
| 1391 | } |
| 1392 | |
| 1393 | static void mempool_kmalloc_large_uaf(struct kunit *test) |
| 1394 | { |
| 1395 | mempool_t pool; |
| 1396 | size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
| 1397 | void *; |
| 1398 | |
| 1399 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
| 1400 | |
| 1401 | mempool_uaf_helper(test, pool: &pool, page: false); |
| 1402 | |
| 1403 | mempool_free(element: extra_elem, pool: &pool); |
| 1404 | mempool_exit(pool: &pool); |
| 1405 | } |
| 1406 | |
| 1407 | static void mempool_slab_uaf(struct kunit *test) |
| 1408 | { |
| 1409 | mempool_t pool; |
| 1410 | size_t size = 123; |
| 1411 | struct kmem_cache *cache; |
| 1412 | |
| 1413 | cache = mempool_prepare_slab(test, pool: &pool, size); |
| 1414 | |
| 1415 | mempool_uaf_helper(test, pool: &pool, page: false); |
| 1416 | |
| 1417 | mempool_exit(pool: &pool); |
| 1418 | kmem_cache_destroy(s: cache); |
| 1419 | } |
| 1420 | |
| 1421 | static void mempool_page_alloc_uaf(struct kunit *test) |
| 1422 | { |
| 1423 | mempool_t pool; |
| 1424 | int order = 2; |
| 1425 | void *; |
| 1426 | |
| 1427 | extra_elem = mempool_prepare_page(test, pool: &pool, order); |
| 1428 | |
| 1429 | mempool_uaf_helper(test, pool: &pool, page: true); |
| 1430 | |
| 1431 | mempool_free(element: extra_elem, pool: &pool); |
| 1432 | mempool_exit(pool: &pool); |
| 1433 | } |
| 1434 | |
| 1435 | static void mempool_double_free_helper(struct kunit *test, mempool_t *pool) |
| 1436 | { |
| 1437 | char *elem; |
| 1438 | |
| 1439 | elem = mempool_alloc_preallocated(pool); |
| 1440 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
| 1441 | |
| 1442 | mempool_free(element: elem, pool); |
| 1443 | |
| 1444 | KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem, pool)); |
| 1445 | } |
| 1446 | |
| 1447 | static void mempool_kmalloc_double_free(struct kunit *test) |
| 1448 | { |
| 1449 | mempool_t pool; |
| 1450 | size_t size = 128; |
| 1451 | char *; |
| 1452 | |
| 1453 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
| 1454 | |
| 1455 | mempool_double_free_helper(test, pool: &pool); |
| 1456 | |
| 1457 | mempool_free(element: extra_elem, pool: &pool); |
| 1458 | mempool_exit(pool: &pool); |
| 1459 | } |
| 1460 | |
| 1461 | static void mempool_kmalloc_large_double_free(struct kunit *test) |
| 1462 | { |
| 1463 | mempool_t pool; |
| 1464 | size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
| 1465 | char *; |
| 1466 | |
| 1467 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
| 1468 | |
| 1469 | mempool_double_free_helper(test, pool: &pool); |
| 1470 | |
| 1471 | mempool_free(element: extra_elem, pool: &pool); |
| 1472 | mempool_exit(pool: &pool); |
| 1473 | } |
| 1474 | |
| 1475 | static void mempool_page_alloc_double_free(struct kunit *test) |
| 1476 | { |
| 1477 | mempool_t pool; |
| 1478 | int order = 2; |
| 1479 | char *; |
| 1480 | |
| 1481 | extra_elem = mempool_prepare_page(test, pool: &pool, order); |
| 1482 | |
| 1483 | mempool_double_free_helper(test, pool: &pool); |
| 1484 | |
| 1485 | mempool_free(element: extra_elem, pool: &pool); |
| 1486 | mempool_exit(pool: &pool); |
| 1487 | } |
| 1488 | |
| 1489 | static void mempool_kmalloc_invalid_free_helper(struct kunit *test, mempool_t *pool) |
| 1490 | { |
| 1491 | char *elem; |
| 1492 | |
| 1493 | elem = mempool_alloc_preallocated(pool); |
| 1494 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
| 1495 | |
| 1496 | KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem + 1, pool)); |
| 1497 | |
| 1498 | mempool_free(element: elem, pool); |
| 1499 | } |
| 1500 | |
| 1501 | static void mempool_kmalloc_invalid_free(struct kunit *test) |
| 1502 | { |
| 1503 | mempool_t pool; |
| 1504 | size_t size = 128; |
| 1505 | char *; |
| 1506 | |
| 1507 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
| 1508 | |
| 1509 | mempool_kmalloc_invalid_free_helper(test, pool: &pool); |
| 1510 | |
| 1511 | mempool_free(element: extra_elem, pool: &pool); |
| 1512 | mempool_exit(pool: &pool); |
| 1513 | } |
| 1514 | |
| 1515 | static void mempool_kmalloc_large_invalid_free(struct kunit *test) |
| 1516 | { |
| 1517 | mempool_t pool; |
| 1518 | size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
| 1519 | char *; |
| 1520 | |
| 1521 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
| 1522 | |
| 1523 | mempool_kmalloc_invalid_free_helper(test, pool: &pool); |
| 1524 | |
| 1525 | mempool_free(element: extra_elem, pool: &pool); |
| 1526 | mempool_exit(pool: &pool); |
| 1527 | } |
| 1528 | |
| 1529 | /* |
| 1530 | * Skip the invalid-free test for page mempool. The invalid-free detection only |
| 1531 | * works for compound pages and mempool preallocates all page elements without |
| 1532 | * the __GFP_COMP flag. |
| 1533 | */ |
| 1534 | |
| 1535 | static char global_array[10]; |
| 1536 | |
| 1537 | static void kasan_global_oob_right(struct kunit *test) |
| 1538 | { |
| 1539 | /* |
| 1540 | * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS |
| 1541 | * from failing here and panicking the kernel, access the array via a |
| 1542 | * volatile pointer, which will prevent the compiler from being able to |
| 1543 | * determine the array bounds. |
| 1544 | * |
| 1545 | * This access uses a volatile pointer to char (char *volatile) rather |
| 1546 | * than the more conventional pointer to volatile char (volatile char *) |
| 1547 | * because we want to prevent the compiler from making inferences about |
| 1548 | * the pointer itself (i.e. its array bounds), not the data that it |
| 1549 | * refers to. |
| 1550 | */ |
| 1551 | char *volatile array = global_array; |
| 1552 | char *p = &array[ARRAY_SIZE(global_array) + 3]; |
| 1553 | |
| 1554 | /* Only generic mode instruments globals. */ |
| 1555 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| 1556 | |
| 1557 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
| 1558 | } |
| 1559 | |
| 1560 | static void kasan_global_oob_left(struct kunit *test) |
| 1561 | { |
| 1562 | char *volatile array = global_array; |
| 1563 | char *p = array - 3; |
| 1564 | |
| 1565 | /* |
| 1566 | * GCC is known to fail this test, skip it. |
| 1567 | * See https://bugzilla.kernel.org/show_bug.cgi?id=215051. |
| 1568 | */ |
| 1569 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG); |
| 1570 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| 1571 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
| 1572 | } |
| 1573 | |
| 1574 | static void kasan_stack_oob(struct kunit *test) |
| 1575 | { |
| 1576 | char stack_array[10]; |
| 1577 | /* See comment in kasan_global_oob_right. */ |
| 1578 | char *volatile array = stack_array; |
| 1579 | char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF]; |
| 1580 | |
| 1581 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK); |
| 1582 | |
| 1583 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
| 1584 | } |
| 1585 | |
| 1586 | static void kasan_alloca_oob_left(struct kunit *test) |
| 1587 | { |
| 1588 | volatile int i = 10; |
| 1589 | char alloca_array[i]; |
| 1590 | /* See comment in kasan_global_oob_right. */ |
| 1591 | char *volatile array = alloca_array; |
| 1592 | char *p = array - 1; |
| 1593 | |
| 1594 | /* Only generic mode instruments dynamic allocas. */ |
| 1595 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| 1596 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK); |
| 1597 | |
| 1598 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
| 1599 | } |
| 1600 | |
| 1601 | static void kasan_alloca_oob_right(struct kunit *test) |
| 1602 | { |
| 1603 | volatile int i = 10; |
| 1604 | char alloca_array[i]; |
| 1605 | /* See comment in kasan_global_oob_right. */ |
| 1606 | char *volatile array = alloca_array; |
| 1607 | char *p = array + i; |
| 1608 | |
| 1609 | /* Only generic mode instruments dynamic allocas. */ |
| 1610 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| 1611 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK); |
| 1612 | |
| 1613 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
| 1614 | } |
| 1615 | |
| 1616 | static void kasan_memchr(struct kunit *test) |
| 1617 | { |
| 1618 | char *ptr; |
| 1619 | size_t size = 24; |
| 1620 | |
| 1621 | /* |
| 1622 | * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT. |
| 1623 | * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details. |
| 1624 | */ |
| 1625 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT); |
| 1626 | |
| 1627 | if (OOB_TAG_OFF) |
| 1628 | size = round_up(size, OOB_TAG_OFF); |
| 1629 | |
| 1630 | ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
| 1631 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 1632 | |
| 1633 | OPTIMIZER_HIDE_VAR(ptr); |
| 1634 | OPTIMIZER_HIDE_VAR(size); |
| 1635 | KUNIT_EXPECT_KASAN_FAIL_READ(test, |
| 1636 | kasan_ptr_result = memchr(ptr, '1', size + 1)); |
| 1637 | |
| 1638 | kfree(objp: ptr); |
| 1639 | } |
| 1640 | |
| 1641 | static void kasan_memcmp(struct kunit *test) |
| 1642 | { |
| 1643 | char *ptr; |
| 1644 | size_t size = 24; |
| 1645 | int arr[9]; |
| 1646 | |
| 1647 | /* |
| 1648 | * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT. |
| 1649 | * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details. |
| 1650 | */ |
| 1651 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT); |
| 1652 | |
| 1653 | if (OOB_TAG_OFF) |
| 1654 | size = round_up(size, OOB_TAG_OFF); |
| 1655 | |
| 1656 | ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
| 1657 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 1658 | memset(arr, 0, sizeof(arr)); |
| 1659 | |
| 1660 | OPTIMIZER_HIDE_VAR(ptr); |
| 1661 | OPTIMIZER_HIDE_VAR(size); |
| 1662 | KUNIT_EXPECT_KASAN_FAIL_READ(test, |
| 1663 | kasan_int_result = memcmp(ptr, arr, size+1)); |
| 1664 | kfree(objp: ptr); |
| 1665 | } |
| 1666 | |
| 1667 | static void kasan_strings(struct kunit *test) |
| 1668 | { |
| 1669 | char *ptr; |
| 1670 | char *src; |
| 1671 | size_t size = 24; |
| 1672 | |
| 1673 | /* |
| 1674 | * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT. |
| 1675 | * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details. |
| 1676 | */ |
| 1677 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT); |
| 1678 | |
| 1679 | ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
| 1680 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 1681 | OPTIMIZER_HIDE_VAR(ptr); |
| 1682 | |
| 1683 | src = kmalloc(KASAN_GRANULE_SIZE, GFP_KERNEL | __GFP_ZERO); |
| 1684 | strscpy(src, "f0cacc1a0000000" , KASAN_GRANULE_SIZE); |
| 1685 | OPTIMIZER_HIDE_VAR(src); |
| 1686 | |
| 1687 | /* |
| 1688 | * Make sure that strscpy() does not trigger KASAN if it overreads into |
| 1689 | * poisoned memory. |
| 1690 | * |
| 1691 | * The expected size does not include the terminator '\0' |
| 1692 | * so it is (KASAN_GRANULE_SIZE - 2) == |
| 1693 | * KASAN_GRANULE_SIZE - ("initial removed character" + "\0"). |
| 1694 | */ |
| 1695 | KUNIT_EXPECT_EQ(test, KASAN_GRANULE_SIZE - 2, |
| 1696 | strscpy(ptr, src + 1, KASAN_GRANULE_SIZE)); |
| 1697 | |
| 1698 | /* strscpy should fail if the first byte is unreadable. */ |
| 1699 | KUNIT_EXPECT_KASAN_FAIL_READ(test, strscpy(ptr, src + KASAN_GRANULE_SIZE, |
| 1700 | KASAN_GRANULE_SIZE)); |
| 1701 | |
| 1702 | kfree(objp: src); |
| 1703 | kfree(objp: ptr); |
| 1704 | |
| 1705 | /* |
| 1706 | * Try to cause only 1 invalid access (less spam in dmesg). |
| 1707 | * For that we need ptr to point to zeroed byte. |
| 1708 | * Skip metadata that could be stored in freed object so ptr |
| 1709 | * will likely point to zeroed byte. |
| 1710 | */ |
| 1711 | ptr += 16; |
| 1712 | KUNIT_EXPECT_KASAN_FAIL_READ(test, kasan_ptr_result = strchr(ptr, '1')); |
| 1713 | |
| 1714 | KUNIT_EXPECT_KASAN_FAIL_READ(test, kasan_ptr_result = strrchr(ptr, '1')); |
| 1715 | |
| 1716 | KUNIT_EXPECT_KASAN_FAIL_READ(test, kasan_int_result = strcmp(ptr, "2" )); |
| 1717 | |
| 1718 | KUNIT_EXPECT_KASAN_FAIL_READ(test, kasan_int_result = strncmp(ptr, "2" , 1)); |
| 1719 | |
| 1720 | KUNIT_EXPECT_KASAN_FAIL_READ(test, kasan_int_result = strlen(ptr)); |
| 1721 | |
| 1722 | KUNIT_EXPECT_KASAN_FAIL_READ(test, kasan_int_result = strnlen(ptr, 1)); |
| 1723 | } |
| 1724 | |
| 1725 | static void kasan_bitops_modify(struct kunit *test, int nr, void *addr) |
| 1726 | { |
| 1727 | KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr)); |
| 1728 | KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr)); |
| 1729 | KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr)); |
| 1730 | KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr)); |
| 1731 | KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr)); |
| 1732 | KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr)); |
| 1733 | KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr)); |
| 1734 | KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr)); |
| 1735 | } |
| 1736 | |
| 1737 | static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr) |
| 1738 | { |
| 1739 | KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr)); |
| 1740 | KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr)); |
| 1741 | /* |
| 1742 | * When KASAN is running in write-only mode, |
| 1743 | * a fault won't occur when the bit is set. |
| 1744 | * Therefore, skip the test_and_set_bit_lock test in write-only mode. |
| 1745 | */ |
| 1746 | if (!kasan_write_only_enabled()) |
| 1747 | KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr)); |
| 1748 | KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr)); |
| 1749 | KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr)); |
| 1750 | KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr)); |
| 1751 | KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr)); |
| 1752 | KUNIT_EXPECT_KASAN_FAIL_READ(test, kasan_int_result = test_bit(nr, addr)); |
| 1753 | if (nr < 7) |
| 1754 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = |
| 1755 | xor_unlock_is_negative_byte(1 << nr, addr)); |
| 1756 | } |
| 1757 | |
| 1758 | static void kasan_bitops_generic(struct kunit *test) |
| 1759 | { |
| 1760 | long *bits; |
| 1761 | |
| 1762 | /* This test is specifically crafted for the generic mode. */ |
| 1763 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
| 1764 | |
| 1765 | /* |
| 1766 | * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes; |
| 1767 | * this way we do not actually corrupt other memory. |
| 1768 | */ |
| 1769 | bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL); |
| 1770 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits); |
| 1771 | |
| 1772 | /* |
| 1773 | * Below calls try to access bit within allocated memory; however, the |
| 1774 | * below accesses are still out-of-bounds, since bitops are defined to |
| 1775 | * operate on the whole long the bit is in. |
| 1776 | */ |
| 1777 | kasan_bitops_modify(test, BITS_PER_LONG, addr: bits); |
| 1778 | |
| 1779 | /* |
| 1780 | * Below calls try to access bit beyond allocated memory. |
| 1781 | */ |
| 1782 | kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, addr: bits); |
| 1783 | |
| 1784 | kfree(objp: bits); |
| 1785 | } |
| 1786 | |
| 1787 | static void kasan_bitops_tags(struct kunit *test) |
| 1788 | { |
| 1789 | long *bits; |
| 1790 | |
| 1791 | /* This test is specifically crafted for tag-based modes. */ |
| 1792 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| 1793 | |
| 1794 | /* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */ |
| 1795 | bits = kzalloc(48, GFP_KERNEL); |
| 1796 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits); |
| 1797 | |
| 1798 | /* Do the accesses past the 48 allocated bytes, but within the redone. */ |
| 1799 | kasan_bitops_modify(test, BITS_PER_LONG, addr: (void *)bits + 48); |
| 1800 | kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, addr: (void *)bits + 48); |
| 1801 | |
| 1802 | kfree(objp: bits); |
| 1803 | } |
| 1804 | |
| 1805 | static void vmalloc_helpers_tags(struct kunit *test) |
| 1806 | { |
| 1807 | void *ptr; |
| 1808 | |
| 1809 | /* This test is intended for tag-based modes. */ |
| 1810 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| 1811 | |
| 1812 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC); |
| 1813 | |
| 1814 | if (!kasan_vmalloc_enabled()) |
| 1815 | kunit_skip(test, "Test requires kasan.vmalloc=on" ); |
| 1816 | |
| 1817 | ptr = vmalloc(PAGE_SIZE); |
| 1818 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 1819 | |
| 1820 | /* Check that the returned pointer is tagged. */ |
| 1821 | KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
| 1822 | KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
| 1823 | |
| 1824 | /* Make sure exported vmalloc helpers handle tagged pointers. */ |
| 1825 | KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr)); |
| 1826 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr)); |
| 1827 | |
| 1828 | #if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST) |
| 1829 | { |
| 1830 | int rv; |
| 1831 | |
| 1832 | /* Make sure vmalloc'ed memory permissions can be changed. */ |
| 1833 | rv = set_memory_ro(addr: (unsigned long)ptr, numpages: 1); |
| 1834 | KUNIT_ASSERT_GE(test, rv, 0); |
| 1835 | rv = set_memory_rw(addr: (unsigned long)ptr, numpages: 1); |
| 1836 | KUNIT_ASSERT_GE(test, rv, 0); |
| 1837 | } |
| 1838 | #endif |
| 1839 | |
| 1840 | vfree(addr: ptr); |
| 1841 | } |
| 1842 | |
| 1843 | static void vmalloc_oob(struct kunit *test) |
| 1844 | { |
| 1845 | char *v_ptr, *p_ptr; |
| 1846 | struct page *page; |
| 1847 | size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5; |
| 1848 | |
| 1849 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC); |
| 1850 | |
| 1851 | if (!kasan_vmalloc_enabled()) |
| 1852 | kunit_skip(test, "Test requires kasan.vmalloc=on" ); |
| 1853 | |
| 1854 | v_ptr = vmalloc(size); |
| 1855 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr); |
| 1856 | |
| 1857 | OPTIMIZER_HIDE_VAR(v_ptr); |
| 1858 | |
| 1859 | /* |
| 1860 | * We have to be careful not to hit the guard page in vmalloc tests. |
| 1861 | * The MMU will catch that and crash us. |
| 1862 | */ |
| 1863 | |
| 1864 | /* Make sure in-bounds accesses are valid. */ |
| 1865 | v_ptr[0] = 0; |
| 1866 | v_ptr[size - 1] = 0; |
| 1867 | |
| 1868 | /* |
| 1869 | * An unaligned access past the requested vmalloc size. |
| 1870 | * Only generic KASAN can precisely detect these. |
| 1871 | */ |
| 1872 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| 1873 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]); |
| 1874 | |
| 1875 | /* An aligned access into the first out-of-bounds granule. */ |
| 1876 | KUNIT_EXPECT_KASAN_FAIL_READ(test, ((volatile char *)v_ptr)[size + 5]); |
| 1877 | |
| 1878 | /* Check that in-bounds accesses to the physical page are valid. */ |
| 1879 | page = vmalloc_to_page(addr: v_ptr); |
| 1880 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page); |
| 1881 | p_ptr = page_address(page); |
| 1882 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr); |
| 1883 | p_ptr[0] = 0; |
| 1884 | |
| 1885 | vfree(addr: v_ptr); |
| 1886 | |
| 1887 | /* |
| 1888 | * We can't check for use-after-unmap bugs in this nor in the following |
| 1889 | * vmalloc tests, as the page might be fully unmapped and accessing it |
| 1890 | * will crash the kernel. |
| 1891 | */ |
| 1892 | } |
| 1893 | |
| 1894 | static void vmap_tags(struct kunit *test) |
| 1895 | { |
| 1896 | char *p_ptr, *v_ptr; |
| 1897 | struct page *p_page, *v_page; |
| 1898 | |
| 1899 | /* |
| 1900 | * This test is specifically crafted for the software tag-based mode, |
| 1901 | * the only tag-based mode that poisons vmap mappings. |
| 1902 | */ |
| 1903 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS); |
| 1904 | |
| 1905 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC); |
| 1906 | |
| 1907 | if (!kasan_vmalloc_enabled()) |
| 1908 | kunit_skip(test, "Test requires kasan.vmalloc=on" ); |
| 1909 | |
| 1910 | p_page = alloc_pages(GFP_KERNEL, 1); |
| 1911 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page); |
| 1912 | p_ptr = page_address(p_page); |
| 1913 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr); |
| 1914 | |
| 1915 | v_ptr = vmap(pages: &p_page, count: 1, VM_MAP, PAGE_KERNEL); |
| 1916 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr); |
| 1917 | |
| 1918 | /* |
| 1919 | * We can't check for out-of-bounds bugs in this nor in the following |
| 1920 | * vmalloc tests, as allocations have page granularity and accessing |
| 1921 | * the guard page will crash the kernel. |
| 1922 | */ |
| 1923 | |
| 1924 | KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN); |
| 1925 | KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL); |
| 1926 | |
| 1927 | /* Make sure that in-bounds accesses through both pointers work. */ |
| 1928 | *p_ptr = 0; |
| 1929 | *v_ptr = 0; |
| 1930 | |
| 1931 | /* Make sure vmalloc_to_page() correctly recovers the page pointer. */ |
| 1932 | v_page = vmalloc_to_page(addr: v_ptr); |
| 1933 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page); |
| 1934 | KUNIT_EXPECT_PTR_EQ(test, p_page, v_page); |
| 1935 | |
| 1936 | vunmap(addr: v_ptr); |
| 1937 | free_pages(addr: (unsigned long)p_ptr, order: 1); |
| 1938 | } |
| 1939 | |
| 1940 | static void vm_map_ram_tags(struct kunit *test) |
| 1941 | { |
| 1942 | char *p_ptr, *v_ptr; |
| 1943 | struct page *page; |
| 1944 | |
| 1945 | /* |
| 1946 | * This test is specifically crafted for the software tag-based mode, |
| 1947 | * the only tag-based mode that poisons vm_map_ram mappings. |
| 1948 | */ |
| 1949 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS); |
| 1950 | |
| 1951 | page = alloc_pages(GFP_KERNEL, 1); |
| 1952 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page); |
| 1953 | p_ptr = page_address(page); |
| 1954 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr); |
| 1955 | |
| 1956 | v_ptr = vm_map_ram(pages: &page, count: 1, node: -1); |
| 1957 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr); |
| 1958 | |
| 1959 | KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN); |
| 1960 | KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL); |
| 1961 | |
| 1962 | /* Make sure that in-bounds accesses through both pointers work. */ |
| 1963 | *p_ptr = 0; |
| 1964 | *v_ptr = 0; |
| 1965 | |
| 1966 | vm_unmap_ram(mem: v_ptr, count: 1); |
| 1967 | free_pages(addr: (unsigned long)p_ptr, order: 1); |
| 1968 | } |
| 1969 | |
| 1970 | /* |
| 1971 | * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN, |
| 1972 | * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based |
| 1973 | * modes. |
| 1974 | */ |
| 1975 | static void match_all_not_assigned(struct kunit *test) |
| 1976 | { |
| 1977 | char *ptr; |
| 1978 | struct page *pages; |
| 1979 | int i, size, order; |
| 1980 | |
| 1981 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| 1982 | |
| 1983 | for (i = 0; i < 256; i++) { |
| 1984 | size = get_random_u32_inclusive(floor: 1, ceil: 1024); |
| 1985 | ptr = kmalloc(size, GFP_KERNEL); |
| 1986 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 1987 | KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
| 1988 | KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
| 1989 | kfree(objp: ptr); |
| 1990 | } |
| 1991 | |
| 1992 | for (i = 0; i < 256; i++) { |
| 1993 | order = get_random_u32_inclusive(floor: 1, ceil: 4); |
| 1994 | pages = alloc_pages(GFP_KERNEL, order); |
| 1995 | ptr = page_address(pages); |
| 1996 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 1997 | KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
| 1998 | KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
| 1999 | free_pages(addr: (unsigned long)ptr, order); |
| 2000 | } |
| 2001 | |
| 2002 | if (!kasan_vmalloc_enabled()) |
| 2003 | return; |
| 2004 | |
| 2005 | for (i = 0; i < 256; i++) { |
| 2006 | size = get_random_u32_inclusive(floor: 1, ceil: 1024); |
| 2007 | ptr = vmalloc(size); |
| 2008 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 2009 | KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
| 2010 | KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
| 2011 | vfree(addr: ptr); |
| 2012 | } |
| 2013 | } |
| 2014 | |
| 2015 | /* Check that 0xff works as a match-all pointer tag for tag-based modes. */ |
| 2016 | static void match_all_ptr_tag(struct kunit *test) |
| 2017 | { |
| 2018 | char *ptr; |
| 2019 | u8 tag; |
| 2020 | |
| 2021 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| 2022 | |
| 2023 | ptr = kmalloc(128, GFP_KERNEL); |
| 2024 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 2025 | |
| 2026 | /* Backup the assigned tag. */ |
| 2027 | tag = get_tag(ptr); |
| 2028 | KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL); |
| 2029 | |
| 2030 | /* Reset the tag to 0xff.*/ |
| 2031 | ptr = set_tag(ptr, KASAN_TAG_KERNEL); |
| 2032 | |
| 2033 | /* This access shouldn't trigger a KASAN report. */ |
| 2034 | *ptr = 0; |
| 2035 | |
| 2036 | /* Recover the pointer tag and free. */ |
| 2037 | ptr = set_tag(ptr, tag); |
| 2038 | kfree(objp: ptr); |
| 2039 | } |
| 2040 | |
| 2041 | /* Check that there are no match-all memory tags for tag-based modes. */ |
| 2042 | static void match_all_mem_tag(struct kunit *test) |
| 2043 | { |
| 2044 | char *ptr; |
| 2045 | int tag; |
| 2046 | |
| 2047 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
| 2048 | |
| 2049 | ptr = kmalloc(128, GFP_KERNEL); |
| 2050 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 2051 | KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
| 2052 | |
| 2053 | /* For each possible tag value not matching the pointer tag. */ |
| 2054 | for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) { |
| 2055 | /* |
| 2056 | * For Software Tag-Based KASAN, skip the majority of tag |
| 2057 | * values to avoid the test printing too many reports. |
| 2058 | */ |
| 2059 | if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) && |
| 2060 | tag >= KASAN_TAG_MIN + 8 && tag <= KASAN_TAG_KERNEL - 8) |
| 2061 | continue; |
| 2062 | |
| 2063 | if (tag == get_tag(ptr)) |
| 2064 | continue; |
| 2065 | |
| 2066 | /* Mark the first memory granule with the chosen memory tag. */ |
| 2067 | kasan_poison(addr: ptr, KASAN_GRANULE_SIZE, value: (u8)tag, init: false); |
| 2068 | |
| 2069 | /* This access must cause a KASAN report. */ |
| 2070 | KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0); |
| 2071 | } |
| 2072 | |
| 2073 | /* Recover the memory tag and free. */ |
| 2074 | kasan_poison(addr: ptr, KASAN_GRANULE_SIZE, get_tag(ptr), init: false); |
| 2075 | kfree(objp: ptr); |
| 2076 | } |
| 2077 | |
| 2078 | /* |
| 2079 | * Check that Rust performing a use-after-free using `unsafe` is detected. |
| 2080 | * This is a smoke test to make sure that Rust is being sanitized properly. |
| 2081 | */ |
| 2082 | static void rust_uaf(struct kunit *test) |
| 2083 | { |
| 2084 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_RUST); |
| 2085 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_test_rust_uaf()); |
| 2086 | } |
| 2087 | |
| 2088 | /* |
| 2089 | * copy_to_kernel_nofault() is an internal helper available when |
| 2090 | * kasan_test is built-in, so it must not be visible to loadable modules. |
| 2091 | */ |
| 2092 | #ifndef MODULE |
| 2093 | static void copy_to_kernel_nofault_oob(struct kunit *test) |
| 2094 | { |
| 2095 | char *ptr; |
| 2096 | char buf[128]; |
| 2097 | size_t size = sizeof(buf); |
| 2098 | |
| 2099 | /* |
| 2100 | * This test currently fails with the HW_TAGS mode. The reason is |
| 2101 | * unknown and needs to be investigated. |
| 2102 | */ |
| 2103 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS); |
| 2104 | |
| 2105 | ptr = kmalloc(size - KASAN_GRANULE_SIZE, GFP_KERNEL); |
| 2106 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
| 2107 | OPTIMIZER_HIDE_VAR(ptr); |
| 2108 | |
| 2109 | /* |
| 2110 | * We test copy_to_kernel_nofault() to detect corrupted memory that is |
| 2111 | * being written into the kernel. In contrast, |
| 2112 | * copy_from_kernel_nofault() is primarily used in kernel helper |
| 2113 | * functions where the source address might be random or uninitialized. |
| 2114 | * Applying KASAN instrumentation to copy_from_kernel_nofault() could |
| 2115 | * lead to false positives. By focusing KASAN checks only on |
| 2116 | * copy_to_kernel_nofault(), we ensure that only valid memory is |
| 2117 | * written to the kernel, minimizing the risk of kernel corruption |
| 2118 | * while avoiding false positives in the reverse case. |
| 2119 | */ |
| 2120 | KUNIT_EXPECT_KASAN_FAIL(test, |
| 2121 | copy_to_kernel_nofault(&buf[0], ptr, size)); |
| 2122 | KUNIT_EXPECT_KASAN_FAIL(test, |
| 2123 | copy_to_kernel_nofault(ptr, &buf[0], size)); |
| 2124 | |
| 2125 | kfree(objp: ptr); |
| 2126 | } |
| 2127 | #endif /* !MODULE */ |
| 2128 | |
| 2129 | static void copy_user_test_oob(struct kunit *test) |
| 2130 | { |
| 2131 | char *kmem; |
| 2132 | char __user *usermem; |
| 2133 | unsigned long useraddr; |
| 2134 | size_t size = 128 - KASAN_GRANULE_SIZE; |
| 2135 | int __maybe_unused unused; |
| 2136 | |
| 2137 | kmem = kunit_kmalloc(test, size, GFP_KERNEL); |
| 2138 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, kmem); |
| 2139 | |
| 2140 | useraddr = kunit_vm_mmap(test, NULL, addr: 0, PAGE_SIZE, |
| 2141 | PROT_READ | PROT_WRITE | PROT_EXEC, |
| 2142 | MAP_ANONYMOUS | MAP_PRIVATE, offset: 0); |
| 2143 | KUNIT_ASSERT_NE_MSG(test, useraddr, 0, |
| 2144 | "Could not create userspace mm" ); |
| 2145 | KUNIT_ASSERT_LT_MSG(test, useraddr, (unsigned long)TASK_SIZE, |
| 2146 | "Failed to allocate user memory" ); |
| 2147 | |
| 2148 | OPTIMIZER_HIDE_VAR(size); |
| 2149 | usermem = (char __user *)useraddr; |
| 2150 | |
| 2151 | KUNIT_EXPECT_KASAN_FAIL(test, |
| 2152 | unused = copy_from_user(kmem, usermem, size + 1)); |
| 2153 | KUNIT_EXPECT_KASAN_FAIL_READ(test, |
| 2154 | unused = copy_to_user(usermem, kmem, size + 1)); |
| 2155 | KUNIT_EXPECT_KASAN_FAIL(test, |
| 2156 | unused = __copy_from_user(kmem, usermem, size + 1)); |
| 2157 | KUNIT_EXPECT_KASAN_FAIL_READ(test, |
| 2158 | unused = __copy_to_user(usermem, kmem, size + 1)); |
| 2159 | KUNIT_EXPECT_KASAN_FAIL(test, |
| 2160 | unused = __copy_from_user_inatomic(kmem, usermem, size + 1)); |
| 2161 | KUNIT_EXPECT_KASAN_FAIL_READ(test, |
| 2162 | unused = __copy_to_user_inatomic(usermem, kmem, size + 1)); |
| 2163 | |
| 2164 | /* |
| 2165 | * Prepare a long string in usermem to avoid the strncpy_from_user test |
| 2166 | * bailing out on '\0' before it reaches out-of-bounds. |
| 2167 | */ |
| 2168 | memset(kmem, 'a', size); |
| 2169 | KUNIT_EXPECT_EQ(test, copy_to_user(usermem, kmem, size), 0); |
| 2170 | |
| 2171 | KUNIT_EXPECT_KASAN_FAIL(test, |
| 2172 | unused = strncpy_from_user(kmem, usermem, size + 1)); |
| 2173 | } |
| 2174 | |
| 2175 | static struct kunit_case kasan_kunit_test_cases[] = { |
| 2176 | KUNIT_CASE(kmalloc_oob_right), |
| 2177 | KUNIT_CASE(kmalloc_oob_left), |
| 2178 | KUNIT_CASE(kmalloc_node_oob_right), |
| 2179 | KUNIT_CASE(kmalloc_track_caller_oob_right), |
| 2180 | KUNIT_CASE(kmalloc_big_oob_right), |
| 2181 | KUNIT_CASE(kmalloc_large_oob_right), |
| 2182 | KUNIT_CASE(kmalloc_large_uaf), |
| 2183 | KUNIT_CASE(kmalloc_large_invalid_free), |
| 2184 | KUNIT_CASE(page_alloc_oob_right), |
| 2185 | KUNIT_CASE(page_alloc_uaf), |
| 2186 | KUNIT_CASE(krealloc_more_oob), |
| 2187 | KUNIT_CASE(krealloc_less_oob), |
| 2188 | KUNIT_CASE(krealloc_large_more_oob), |
| 2189 | KUNIT_CASE(krealloc_large_less_oob), |
| 2190 | KUNIT_CASE(krealloc_uaf), |
| 2191 | KUNIT_CASE(kmalloc_oob_16), |
| 2192 | KUNIT_CASE(kmalloc_uaf_16), |
| 2193 | KUNIT_CASE(kmalloc_oob_in_memset), |
| 2194 | KUNIT_CASE(kmalloc_oob_memset_2), |
| 2195 | KUNIT_CASE(kmalloc_oob_memset_4), |
| 2196 | KUNIT_CASE(kmalloc_oob_memset_8), |
| 2197 | KUNIT_CASE(kmalloc_oob_memset_16), |
| 2198 | KUNIT_CASE(kmalloc_memmove_negative_size), |
| 2199 | KUNIT_CASE(kmalloc_memmove_invalid_size), |
| 2200 | KUNIT_CASE(kmalloc_uaf), |
| 2201 | KUNIT_CASE(kmalloc_uaf_memset), |
| 2202 | KUNIT_CASE(kmalloc_uaf2), |
| 2203 | KUNIT_CASE(kmalloc_uaf3), |
| 2204 | KUNIT_CASE(kmalloc_double_kzfree), |
| 2205 | KUNIT_CASE(ksize_unpoisons_memory), |
| 2206 | KUNIT_CASE(ksize_uaf), |
| 2207 | KUNIT_CASE(rcu_uaf), |
| 2208 | KUNIT_CASE(workqueue_uaf), |
| 2209 | KUNIT_CASE(kfree_via_page), |
| 2210 | KUNIT_CASE(kfree_via_phys), |
| 2211 | KUNIT_CASE(kmem_cache_oob), |
| 2212 | KUNIT_CASE(kmem_cache_double_free), |
| 2213 | KUNIT_CASE(kmem_cache_invalid_free), |
| 2214 | KUNIT_CASE(kmem_cache_rcu_uaf), |
| 2215 | KUNIT_CASE(kmem_cache_rcu_reuse), |
| 2216 | KUNIT_CASE(kmem_cache_double_destroy), |
| 2217 | KUNIT_CASE(kmem_cache_accounted), |
| 2218 | KUNIT_CASE(kmem_cache_bulk), |
| 2219 | KUNIT_CASE(mempool_kmalloc_oob_right), |
| 2220 | KUNIT_CASE(mempool_kmalloc_large_oob_right), |
| 2221 | KUNIT_CASE(mempool_slab_oob_right), |
| 2222 | KUNIT_CASE(mempool_kmalloc_uaf), |
| 2223 | KUNIT_CASE(mempool_kmalloc_large_uaf), |
| 2224 | KUNIT_CASE(mempool_slab_uaf), |
| 2225 | KUNIT_CASE(mempool_page_alloc_uaf), |
| 2226 | KUNIT_CASE(mempool_kmalloc_double_free), |
| 2227 | KUNIT_CASE(mempool_kmalloc_large_double_free), |
| 2228 | KUNIT_CASE(mempool_page_alloc_double_free), |
| 2229 | KUNIT_CASE(mempool_kmalloc_invalid_free), |
| 2230 | KUNIT_CASE(mempool_kmalloc_large_invalid_free), |
| 2231 | KUNIT_CASE(kasan_global_oob_right), |
| 2232 | KUNIT_CASE(kasan_global_oob_left), |
| 2233 | KUNIT_CASE(kasan_stack_oob), |
| 2234 | KUNIT_CASE(kasan_alloca_oob_left), |
| 2235 | KUNIT_CASE(kasan_alloca_oob_right), |
| 2236 | KUNIT_CASE(kasan_memchr), |
| 2237 | KUNIT_CASE(kasan_memcmp), |
| 2238 | KUNIT_CASE(kasan_strings), |
| 2239 | KUNIT_CASE(kasan_bitops_generic), |
| 2240 | KUNIT_CASE(kasan_bitops_tags), |
| 2241 | KUNIT_CASE_SLOW(kasan_atomics), |
| 2242 | KUNIT_CASE(vmalloc_helpers_tags), |
| 2243 | KUNIT_CASE(vmalloc_oob), |
| 2244 | KUNIT_CASE(vmap_tags), |
| 2245 | KUNIT_CASE(vm_map_ram_tags), |
| 2246 | KUNIT_CASE(match_all_not_assigned), |
| 2247 | KUNIT_CASE(match_all_ptr_tag), |
| 2248 | KUNIT_CASE(match_all_mem_tag), |
| 2249 | #ifndef MODULE |
| 2250 | KUNIT_CASE(copy_to_kernel_nofault_oob), |
| 2251 | #endif |
| 2252 | KUNIT_CASE(rust_uaf), |
| 2253 | KUNIT_CASE(copy_user_test_oob), |
| 2254 | {} |
| 2255 | }; |
| 2256 | |
| 2257 | static struct kunit_suite kasan_kunit_test_suite = { |
| 2258 | .name = "kasan" , |
| 2259 | .test_cases = kasan_kunit_test_cases, |
| 2260 | .exit = kasan_test_exit, |
| 2261 | .suite_init = kasan_suite_init, |
| 2262 | .suite_exit = kasan_suite_exit, |
| 2263 | }; |
| 2264 | |
| 2265 | kunit_test_suite(kasan_kunit_test_suite); |
| 2266 | |
| 2267 | MODULE_DESCRIPTION("KUnit tests for checking KASAN bug-detection capabilities" ); |
| 2268 | MODULE_LICENSE("GPL" ); |
| 2269 | |