1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | /* |
3 | * |
4 | * Copyright (c) 2014 Samsung Electronics Co., Ltd. |
5 | * Author: Andrey Ryabinin <a.ryabinin@samsung.com> |
6 | */ |
7 | |
8 | #define pr_fmt(fmt) "kasan: test: " fmt |
9 | |
10 | #include <kunit/test.h> |
11 | #include <linux/bitops.h> |
12 | #include <linux/delay.h> |
13 | #include <linux/io.h> |
14 | #include <linux/kasan.h> |
15 | #include <linux/kernel.h> |
16 | #include <linux/mempool.h> |
17 | #include <linux/mm.h> |
18 | #include <linux/mman.h> |
19 | #include <linux/module.h> |
20 | #include <linux/printk.h> |
21 | #include <linux/random.h> |
22 | #include <linux/set_memory.h> |
23 | #include <linux/slab.h> |
24 | #include <linux/string.h> |
25 | #include <linux/tracepoint.h> |
26 | #include <linux/uaccess.h> |
27 | #include <linux/vmalloc.h> |
28 | #include <trace/events/printk.h> |
29 | |
30 | #include <asm/page.h> |
31 | |
32 | #include "kasan.h" |
33 | |
34 | #define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE) |
35 | |
36 | MODULE_IMPORT_NS("EXPORTED_FOR_KUNIT_TESTING" ); |
37 | |
38 | static bool multishot; |
39 | |
40 | /* Fields set based on lines observed in the console. */ |
41 | static struct { |
42 | bool report_found; |
43 | bool async_fault; |
44 | } test_status; |
45 | |
46 | /* |
47 | * Some tests use these global variables to store return values from function |
48 | * calls that could otherwise be eliminated by the compiler as dead code. |
49 | */ |
50 | static volatile void *kasan_ptr_result; |
51 | static volatile int kasan_int_result; |
52 | |
53 | /* Probe for console output: obtains test_status lines of interest. */ |
54 | static void probe_console(void *ignore, const char *buf, size_t len) |
55 | { |
56 | if (strnstr(buf, "BUG: KASAN: " , len)) |
57 | WRITE_ONCE(test_status.report_found, true); |
58 | else if (strnstr(buf, "Asynchronous fault: " , len)) |
59 | WRITE_ONCE(test_status.async_fault, true); |
60 | } |
61 | |
62 | static int kasan_suite_init(struct kunit_suite *suite) |
63 | { |
64 | if (!kasan_enabled()) { |
65 | pr_err("Can't run KASAN tests with KASAN disabled" ); |
66 | return -1; |
67 | } |
68 | |
69 | /* Stop failing KUnit tests on KASAN reports. */ |
70 | kasan_kunit_test_suite_start(); |
71 | |
72 | /* |
73 | * Temporarily enable multi-shot mode. Otherwise, KASAN would only |
74 | * report the first detected bug and panic the kernel if panic_on_warn |
75 | * is enabled. |
76 | */ |
77 | multishot = kasan_save_enable_multi_shot(); |
78 | |
79 | register_trace_console(probe: probe_console, NULL); |
80 | return 0; |
81 | } |
82 | |
83 | static void kasan_suite_exit(struct kunit_suite *suite) |
84 | { |
85 | kasan_kunit_test_suite_end(); |
86 | kasan_restore_multi_shot(enabled: multishot); |
87 | unregister_trace_console(probe: probe_console, NULL); |
88 | tracepoint_synchronize_unregister(); |
89 | } |
90 | |
91 | static void kasan_test_exit(struct kunit *test) |
92 | { |
93 | KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found)); |
94 | } |
95 | |
96 | /** |
97 | * KUNIT_EXPECT_KASAN_FAIL - check that the executed expression produces a |
98 | * KASAN report; causes a KUnit test failure otherwise. |
99 | * |
100 | * @test: Currently executing KUnit test. |
101 | * @expression: Expression that must produce a KASAN report. |
102 | * |
103 | * For hardware tag-based KASAN, when a synchronous tag fault happens, tag |
104 | * checking is auto-disabled. When this happens, this test handler reenables |
105 | * tag checking. As tag checking can be only disabled or enabled per CPU, |
106 | * this handler disables migration (preemption). |
107 | * |
108 | * Since the compiler doesn't see that the expression can change the test_status |
109 | * fields, it can reorder or optimize away the accesses to those fields. |
110 | * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the |
111 | * expression to prevent that. |
112 | * |
113 | * In between KUNIT_EXPECT_KASAN_FAIL checks, test_status.report_found is kept |
114 | * as false. This allows detecting KASAN reports that happen outside of the |
115 | * checks by asserting !test_status.report_found at the start of |
116 | * KUNIT_EXPECT_KASAN_FAIL and in kasan_test_exit. |
117 | */ |
118 | #define KUNIT_EXPECT_KASAN_FAIL(test, expression) do { \ |
119 | if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \ |
120 | kasan_sync_fault_possible()) \ |
121 | migrate_disable(); \ |
122 | KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found)); \ |
123 | barrier(); \ |
124 | expression; \ |
125 | barrier(); \ |
126 | if (kasan_async_fault_possible()) \ |
127 | kasan_force_async_fault(); \ |
128 | if (!READ_ONCE(test_status.report_found)) { \ |
129 | KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure " \ |
130 | "expected in \"" #expression \ |
131 | "\", but none occurred"); \ |
132 | } \ |
133 | if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \ |
134 | kasan_sync_fault_possible()) { \ |
135 | if (READ_ONCE(test_status.report_found) && \ |
136 | !READ_ONCE(test_status.async_fault)) \ |
137 | kasan_enable_hw_tags(); \ |
138 | migrate_enable(); \ |
139 | } \ |
140 | WRITE_ONCE(test_status.report_found, false); \ |
141 | WRITE_ONCE(test_status.async_fault, false); \ |
142 | } while (0) |
143 | |
144 | #define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do { \ |
145 | if (!IS_ENABLED(config)) \ |
146 | kunit_skip((test), "Test requires " #config "=y"); \ |
147 | } while (0) |
148 | |
149 | #define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do { \ |
150 | if (IS_ENABLED(config)) \ |
151 | kunit_skip((test), "Test requires " #config "=n"); \ |
152 | } while (0) |
153 | |
154 | #define KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test) do { \ |
155 | if (IS_ENABLED(CONFIG_KASAN_HW_TAGS)) \ |
156 | break; /* No compiler instrumentation. */ \ |
157 | if (IS_ENABLED(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX)) \ |
158 | break; /* Should always be instrumented! */ \ |
159 | if (IS_ENABLED(CONFIG_GENERIC_ENTRY)) \ |
160 | kunit_skip((test), "Test requires checked mem*()"); \ |
161 | } while (0) |
162 | |
163 | static void kmalloc_oob_right(struct kunit *test) |
164 | { |
165 | char *ptr; |
166 | size_t size = 128 - KASAN_GRANULE_SIZE - 5; |
167 | |
168 | ptr = kmalloc(size, GFP_KERNEL); |
169 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
170 | |
171 | OPTIMIZER_HIDE_VAR(ptr); |
172 | /* |
173 | * An unaligned access past the requested kmalloc size. |
174 | * Only generic KASAN can precisely detect these. |
175 | */ |
176 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
177 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x'); |
178 | |
179 | /* |
180 | * An aligned access into the first out-of-bounds granule that falls |
181 | * within the aligned kmalloc object. |
182 | */ |
183 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y'); |
184 | |
185 | /* Out-of-bounds access past the aligned kmalloc object. */ |
186 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = |
187 | ptr[size + KASAN_GRANULE_SIZE + 5]); |
188 | |
189 | kfree(objp: ptr); |
190 | } |
191 | |
192 | static void kmalloc_oob_left(struct kunit *test) |
193 | { |
194 | char *ptr; |
195 | size_t size = 15; |
196 | |
197 | ptr = kmalloc(size, GFP_KERNEL); |
198 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
199 | |
200 | OPTIMIZER_HIDE_VAR(ptr); |
201 | KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1)); |
202 | kfree(objp: ptr); |
203 | } |
204 | |
205 | static void kmalloc_node_oob_right(struct kunit *test) |
206 | { |
207 | char *ptr; |
208 | size_t size = 4096; |
209 | |
210 | ptr = kmalloc_node(size, GFP_KERNEL, 0); |
211 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
212 | |
213 | OPTIMIZER_HIDE_VAR(ptr); |
214 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]); |
215 | kfree(objp: ptr); |
216 | } |
217 | |
218 | static void kmalloc_track_caller_oob_right(struct kunit *test) |
219 | { |
220 | char *ptr; |
221 | size_t size = 128 - KASAN_GRANULE_SIZE; |
222 | |
223 | /* |
224 | * Check that KASAN detects out-of-bounds access for object allocated via |
225 | * kmalloc_track_caller(). |
226 | */ |
227 | ptr = kmalloc_track_caller(size, GFP_KERNEL); |
228 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
229 | |
230 | OPTIMIZER_HIDE_VAR(ptr); |
231 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'y'); |
232 | |
233 | kfree(objp: ptr); |
234 | |
235 | /* |
236 | * Check that KASAN detects out-of-bounds access for object allocated via |
237 | * kmalloc_node_track_caller(). |
238 | */ |
239 | ptr = kmalloc_node_track_caller(size, GFP_KERNEL, 0); |
240 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
241 | |
242 | OPTIMIZER_HIDE_VAR(ptr); |
243 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'y'); |
244 | |
245 | kfree(objp: ptr); |
246 | } |
247 | |
248 | /* |
249 | * Check that KASAN detects an out-of-bounds access for a big object allocated |
250 | * via kmalloc(). But not as big as to trigger the page_alloc fallback. |
251 | */ |
252 | static void kmalloc_big_oob_right(struct kunit *test) |
253 | { |
254 | char *ptr; |
255 | size_t size = KMALLOC_MAX_CACHE_SIZE - 256; |
256 | |
257 | ptr = kmalloc(size, GFP_KERNEL); |
258 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
259 | |
260 | OPTIMIZER_HIDE_VAR(ptr); |
261 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0); |
262 | kfree(objp: ptr); |
263 | } |
264 | |
265 | /* |
266 | * The kmalloc_large_* tests below use kmalloc() to allocate a memory chunk |
267 | * that does not fit into the largest slab cache and therefore is allocated via |
268 | * the page_alloc fallback. |
269 | */ |
270 | |
271 | static void kmalloc_large_oob_right(struct kunit *test) |
272 | { |
273 | char *ptr; |
274 | size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
275 | |
276 | ptr = kmalloc(size, GFP_KERNEL); |
277 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
278 | |
279 | OPTIMIZER_HIDE_VAR(ptr); |
280 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0); |
281 | |
282 | kfree(objp: ptr); |
283 | } |
284 | |
285 | static void kmalloc_large_uaf(struct kunit *test) |
286 | { |
287 | char *ptr; |
288 | size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
289 | |
290 | ptr = kmalloc(size, GFP_KERNEL); |
291 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
292 | kfree(objp: ptr); |
293 | |
294 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]); |
295 | } |
296 | |
297 | static void kmalloc_large_invalid_free(struct kunit *test) |
298 | { |
299 | char *ptr; |
300 | size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
301 | |
302 | ptr = kmalloc(size, GFP_KERNEL); |
303 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
304 | |
305 | KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1)); |
306 | } |
307 | |
308 | static void page_alloc_oob_right(struct kunit *test) |
309 | { |
310 | char *ptr; |
311 | struct page *pages; |
312 | size_t order = 4; |
313 | size_t size = (1UL << (PAGE_SHIFT + order)); |
314 | |
315 | /* |
316 | * With generic KASAN page allocations have no redzones, thus |
317 | * out-of-bounds detection is not guaranteed. |
318 | * See https://bugzilla.kernel.org/show_bug.cgi?id=210503. |
319 | */ |
320 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
321 | |
322 | pages = alloc_pages(GFP_KERNEL, order); |
323 | ptr = page_address(pages); |
324 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
325 | |
326 | KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]); |
327 | free_pages(addr: (unsigned long)ptr, order); |
328 | } |
329 | |
330 | static void page_alloc_uaf(struct kunit *test) |
331 | { |
332 | char *ptr; |
333 | struct page *pages; |
334 | size_t order = 4; |
335 | |
336 | pages = alloc_pages(GFP_KERNEL, order); |
337 | ptr = page_address(pages); |
338 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
339 | free_pages(addr: (unsigned long)ptr, order); |
340 | |
341 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]); |
342 | } |
343 | |
344 | static void krealloc_more_oob_helper(struct kunit *test, |
345 | size_t size1, size_t size2) |
346 | { |
347 | char *ptr1, *ptr2; |
348 | size_t middle; |
349 | |
350 | KUNIT_ASSERT_LT(test, size1, size2); |
351 | middle = size1 + (size2 - size1) / 2; |
352 | |
353 | ptr1 = kmalloc(size1, GFP_KERNEL); |
354 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
355 | |
356 | ptr2 = krealloc(ptr1, size2, GFP_KERNEL); |
357 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
358 | |
359 | /* Suppress -Warray-bounds warnings. */ |
360 | OPTIMIZER_HIDE_VAR(ptr2); |
361 | |
362 | /* All offsets up to size2 must be accessible. */ |
363 | ptr2[size1 - 1] = 'x'; |
364 | ptr2[size1] = 'x'; |
365 | ptr2[middle] = 'x'; |
366 | ptr2[size2 - 1] = 'x'; |
367 | |
368 | /* Generic mode is precise, so unaligned size2 must be inaccessible. */ |
369 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
370 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x'); |
371 | |
372 | /* For all modes first aligned offset after size2 must be inaccessible. */ |
373 | KUNIT_EXPECT_KASAN_FAIL(test, |
374 | ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x'); |
375 | |
376 | kfree(objp: ptr2); |
377 | } |
378 | |
379 | static void krealloc_less_oob_helper(struct kunit *test, |
380 | size_t size1, size_t size2) |
381 | { |
382 | char *ptr1, *ptr2; |
383 | size_t middle; |
384 | |
385 | KUNIT_ASSERT_LT(test, size2, size1); |
386 | middle = size2 + (size1 - size2) / 2; |
387 | |
388 | ptr1 = kmalloc(size1, GFP_KERNEL); |
389 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
390 | |
391 | ptr2 = krealloc(ptr1, size2, GFP_KERNEL); |
392 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
393 | |
394 | /* Suppress -Warray-bounds warnings. */ |
395 | OPTIMIZER_HIDE_VAR(ptr2); |
396 | |
397 | /* Must be accessible for all modes. */ |
398 | ptr2[size2 - 1] = 'x'; |
399 | |
400 | /* Generic mode is precise, so unaligned size2 must be inaccessible. */ |
401 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
402 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x'); |
403 | |
404 | /* For all modes first aligned offset after size2 must be inaccessible. */ |
405 | KUNIT_EXPECT_KASAN_FAIL(test, |
406 | ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x'); |
407 | |
408 | /* |
409 | * For all modes all size2, middle, and size1 should land in separate |
410 | * granules and thus the latter two offsets should be inaccessible. |
411 | */ |
412 | KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE), |
413 | round_down(middle, KASAN_GRANULE_SIZE)); |
414 | KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE), |
415 | round_down(size1, KASAN_GRANULE_SIZE)); |
416 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x'); |
417 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x'); |
418 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x'); |
419 | |
420 | kfree(objp: ptr2); |
421 | } |
422 | |
423 | static void krealloc_more_oob(struct kunit *test) |
424 | { |
425 | krealloc_more_oob_helper(test, size1: 201, size2: 235); |
426 | } |
427 | |
428 | static void krealloc_less_oob(struct kunit *test) |
429 | { |
430 | krealloc_less_oob_helper(test, size1: 235, size2: 201); |
431 | } |
432 | |
433 | static void krealloc_large_more_oob(struct kunit *test) |
434 | { |
435 | krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201, |
436 | KMALLOC_MAX_CACHE_SIZE + 235); |
437 | } |
438 | |
439 | static void krealloc_large_less_oob(struct kunit *test) |
440 | { |
441 | krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235, |
442 | KMALLOC_MAX_CACHE_SIZE + 201); |
443 | } |
444 | |
445 | /* |
446 | * Check that krealloc() detects a use-after-free, returns NULL, |
447 | * and doesn't unpoison the freed object. |
448 | */ |
449 | static void krealloc_uaf(struct kunit *test) |
450 | { |
451 | char *ptr1, *ptr2; |
452 | int size1 = 201; |
453 | int size2 = 235; |
454 | |
455 | ptr1 = kmalloc(size1, GFP_KERNEL); |
456 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
457 | kfree(objp: ptr1); |
458 | |
459 | KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL)); |
460 | KUNIT_ASSERT_NULL(test, ptr2); |
461 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1); |
462 | } |
463 | |
464 | static void kmalloc_oob_16(struct kunit *test) |
465 | { |
466 | struct { |
467 | u64 words[2]; |
468 | } *ptr1, *ptr2; |
469 | |
470 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
471 | |
472 | /* This test is specifically crafted for the generic mode. */ |
473 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
474 | |
475 | /* RELOC_HIDE to prevent gcc from warning about short alloc */ |
476 | ptr1 = RELOC_HIDE(kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL), 0); |
477 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
478 | |
479 | ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL); |
480 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
481 | |
482 | OPTIMIZER_HIDE_VAR(ptr1); |
483 | OPTIMIZER_HIDE_VAR(ptr2); |
484 | KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2); |
485 | kfree(objp: ptr1); |
486 | kfree(objp: ptr2); |
487 | } |
488 | |
489 | static void kmalloc_uaf_16(struct kunit *test) |
490 | { |
491 | struct { |
492 | u64 words[2]; |
493 | } *ptr1, *ptr2; |
494 | |
495 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
496 | |
497 | ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL); |
498 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
499 | |
500 | ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL); |
501 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
502 | kfree(objp: ptr2); |
503 | |
504 | KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2); |
505 | kfree(objp: ptr1); |
506 | } |
507 | |
508 | /* |
509 | * Note: in the memset tests below, the written range touches both valid and |
510 | * invalid memory. This makes sure that the instrumentation does not only check |
511 | * the starting address but the whole range. |
512 | */ |
513 | |
514 | static void kmalloc_oob_memset_2(struct kunit *test) |
515 | { |
516 | char *ptr; |
517 | size_t size = 128 - KASAN_GRANULE_SIZE; |
518 | size_t memset_size = 2; |
519 | |
520 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
521 | |
522 | ptr = kmalloc(size, GFP_KERNEL); |
523 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
524 | |
525 | OPTIMIZER_HIDE_VAR(ptr); |
526 | OPTIMIZER_HIDE_VAR(size); |
527 | OPTIMIZER_HIDE_VAR(memset_size); |
528 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, memset_size)); |
529 | kfree(objp: ptr); |
530 | } |
531 | |
532 | static void kmalloc_oob_memset_4(struct kunit *test) |
533 | { |
534 | char *ptr; |
535 | size_t size = 128 - KASAN_GRANULE_SIZE; |
536 | size_t memset_size = 4; |
537 | |
538 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
539 | |
540 | ptr = kmalloc(size, GFP_KERNEL); |
541 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
542 | |
543 | OPTIMIZER_HIDE_VAR(ptr); |
544 | OPTIMIZER_HIDE_VAR(size); |
545 | OPTIMIZER_HIDE_VAR(memset_size); |
546 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, memset_size)); |
547 | kfree(objp: ptr); |
548 | } |
549 | |
550 | static void kmalloc_oob_memset_8(struct kunit *test) |
551 | { |
552 | char *ptr; |
553 | size_t size = 128 - KASAN_GRANULE_SIZE; |
554 | size_t memset_size = 8; |
555 | |
556 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
557 | |
558 | ptr = kmalloc(size, GFP_KERNEL); |
559 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
560 | |
561 | OPTIMIZER_HIDE_VAR(ptr); |
562 | OPTIMIZER_HIDE_VAR(size); |
563 | OPTIMIZER_HIDE_VAR(memset_size); |
564 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, memset_size)); |
565 | kfree(objp: ptr); |
566 | } |
567 | |
568 | static void kmalloc_oob_memset_16(struct kunit *test) |
569 | { |
570 | char *ptr; |
571 | size_t size = 128 - KASAN_GRANULE_SIZE; |
572 | size_t memset_size = 16; |
573 | |
574 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
575 | |
576 | ptr = kmalloc(size, GFP_KERNEL); |
577 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
578 | |
579 | OPTIMIZER_HIDE_VAR(ptr); |
580 | OPTIMIZER_HIDE_VAR(size); |
581 | OPTIMIZER_HIDE_VAR(memset_size); |
582 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, memset_size)); |
583 | kfree(objp: ptr); |
584 | } |
585 | |
586 | static void kmalloc_oob_in_memset(struct kunit *test) |
587 | { |
588 | char *ptr; |
589 | size_t size = 128 - KASAN_GRANULE_SIZE; |
590 | |
591 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
592 | |
593 | ptr = kmalloc(size, GFP_KERNEL); |
594 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
595 | |
596 | OPTIMIZER_HIDE_VAR(ptr); |
597 | OPTIMIZER_HIDE_VAR(size); |
598 | KUNIT_EXPECT_KASAN_FAIL(test, |
599 | memset(ptr, 0, size + KASAN_GRANULE_SIZE)); |
600 | kfree(objp: ptr); |
601 | } |
602 | |
603 | static void kmalloc_memmove_negative_size(struct kunit *test) |
604 | { |
605 | char *ptr; |
606 | size_t size = 64; |
607 | size_t invalid_size = -2; |
608 | |
609 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
610 | |
611 | /* |
612 | * Hardware tag-based mode doesn't check memmove for negative size. |
613 | * As a result, this test introduces a side-effect memory corruption, |
614 | * which can result in a crash. |
615 | */ |
616 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS); |
617 | |
618 | ptr = kmalloc(size, GFP_KERNEL); |
619 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
620 | |
621 | memset((char *)ptr, 0, 64); |
622 | OPTIMIZER_HIDE_VAR(ptr); |
623 | OPTIMIZER_HIDE_VAR(invalid_size); |
624 | KUNIT_EXPECT_KASAN_FAIL(test, |
625 | memmove((char *)ptr, (char *)ptr + 4, invalid_size)); |
626 | kfree(objp: ptr); |
627 | } |
628 | |
629 | static void kmalloc_memmove_invalid_size(struct kunit *test) |
630 | { |
631 | char *ptr; |
632 | size_t size = 64; |
633 | size_t invalid_size = size; |
634 | |
635 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
636 | |
637 | ptr = kmalloc(size, GFP_KERNEL); |
638 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
639 | |
640 | memset((char *)ptr, 0, 64); |
641 | OPTIMIZER_HIDE_VAR(ptr); |
642 | OPTIMIZER_HIDE_VAR(invalid_size); |
643 | KUNIT_EXPECT_KASAN_FAIL(test, |
644 | memmove((char *)ptr, (char *)ptr + 4, invalid_size)); |
645 | kfree(objp: ptr); |
646 | } |
647 | |
648 | static void kmalloc_uaf(struct kunit *test) |
649 | { |
650 | char *ptr; |
651 | size_t size = 10; |
652 | |
653 | ptr = kmalloc(size, GFP_KERNEL); |
654 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
655 | |
656 | kfree(objp: ptr); |
657 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]); |
658 | } |
659 | |
660 | static void kmalloc_uaf_memset(struct kunit *test) |
661 | { |
662 | char *ptr; |
663 | size_t size = 33; |
664 | |
665 | KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test); |
666 | |
667 | /* |
668 | * Only generic KASAN uses quarantine, which is required to avoid a |
669 | * kernel memory corruption this test causes. |
670 | */ |
671 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
672 | |
673 | ptr = kmalloc(size, GFP_KERNEL); |
674 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
675 | |
676 | kfree(objp: ptr); |
677 | KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size)); |
678 | } |
679 | |
680 | static void kmalloc_uaf2(struct kunit *test) |
681 | { |
682 | char *ptr1, *ptr2; |
683 | size_t size = 43; |
684 | int counter = 0; |
685 | |
686 | again: |
687 | ptr1 = kmalloc(size, GFP_KERNEL); |
688 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
689 | |
690 | kfree(objp: ptr1); |
691 | |
692 | ptr2 = kmalloc(size, GFP_KERNEL); |
693 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
694 | |
695 | /* |
696 | * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same. |
697 | * Allow up to 16 attempts at generating different tags. |
698 | */ |
699 | if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) { |
700 | kfree(objp: ptr2); |
701 | goto again; |
702 | } |
703 | |
704 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]); |
705 | KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2); |
706 | |
707 | kfree(objp: ptr2); |
708 | } |
709 | |
710 | /* |
711 | * Check that KASAN detects use-after-free when another object was allocated in |
712 | * the same slot. Relevant for the tag-based modes, which do not use quarantine. |
713 | */ |
714 | static void kmalloc_uaf3(struct kunit *test) |
715 | { |
716 | char *ptr1, *ptr2; |
717 | size_t size = 100; |
718 | |
719 | /* This test is specifically crafted for tag-based modes. */ |
720 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
721 | |
722 | ptr1 = kmalloc(size, GFP_KERNEL); |
723 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1); |
724 | kfree(objp: ptr1); |
725 | |
726 | ptr2 = kmalloc(size, GFP_KERNEL); |
727 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2); |
728 | kfree(objp: ptr2); |
729 | |
730 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[8]); |
731 | } |
732 | |
733 | static void kasan_atomics_helper(struct kunit *test, void *unsafe, void *safe) |
734 | { |
735 | int *i_unsafe = unsafe; |
736 | |
737 | KUNIT_EXPECT_KASAN_FAIL(test, READ_ONCE(*i_unsafe)); |
738 | KUNIT_EXPECT_KASAN_FAIL(test, WRITE_ONCE(*i_unsafe, 42)); |
739 | KUNIT_EXPECT_KASAN_FAIL(test, smp_load_acquire(i_unsafe)); |
740 | KUNIT_EXPECT_KASAN_FAIL(test, smp_store_release(i_unsafe, 42)); |
741 | |
742 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_read(unsafe)); |
743 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_set(unsafe, 42)); |
744 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_add(42, unsafe)); |
745 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub(42, unsafe)); |
746 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc(unsafe)); |
747 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec(unsafe)); |
748 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_and(42, unsafe)); |
749 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_andnot(42, unsafe)); |
750 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_or(42, unsafe)); |
751 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_xor(42, unsafe)); |
752 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_xchg(unsafe, 42)); |
753 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_cmpxchg(unsafe, 21, 42)); |
754 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(unsafe, safe, 42)); |
755 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(safe, unsafe, 42)); |
756 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub_and_test(42, unsafe)); |
757 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_and_test(unsafe)); |
758 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_and_test(unsafe)); |
759 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_negative(42, unsafe)); |
760 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_unless(unsafe, 21, 42)); |
761 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_not_zero(unsafe)); |
762 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_unless_negative(unsafe)); |
763 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_unless_positive(unsafe)); |
764 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_if_positive(unsafe)); |
765 | |
766 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_read(unsafe)); |
767 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_set(unsafe, 42)); |
768 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add(42, unsafe)); |
769 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub(42, unsafe)); |
770 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc(unsafe)); |
771 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec(unsafe)); |
772 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_and(42, unsafe)); |
773 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_andnot(42, unsafe)); |
774 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_or(42, unsafe)); |
775 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xor(42, unsafe)); |
776 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xchg(unsafe, 42)); |
777 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_cmpxchg(unsafe, 21, 42)); |
778 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(unsafe, safe, 42)); |
779 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(safe, unsafe, 42)); |
780 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub_and_test(42, unsafe)); |
781 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_and_test(unsafe)); |
782 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_and_test(unsafe)); |
783 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_negative(42, unsafe)); |
784 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_unless(unsafe, 21, 42)); |
785 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_not_zero(unsafe)); |
786 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_unless_negative(unsafe)); |
787 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_unless_positive(unsafe)); |
788 | KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_if_positive(unsafe)); |
789 | } |
790 | |
791 | static void kasan_atomics(struct kunit *test) |
792 | { |
793 | void *a1, *a2; |
794 | |
795 | /* |
796 | * Just as with kasan_bitops_tags(), we allocate 48 bytes of memory such |
797 | * that the following 16 bytes will make up the redzone. |
798 | */ |
799 | a1 = kzalloc(48, GFP_KERNEL); |
800 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a1); |
801 | a2 = kzalloc(sizeof(atomic_long_t), GFP_KERNEL); |
802 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a2); |
803 | |
804 | /* Use atomics to access the redzone. */ |
805 | kasan_atomics_helper(test, unsafe: a1 + 48, safe: a2); |
806 | |
807 | kfree(objp: a1); |
808 | kfree(objp: a2); |
809 | } |
810 | |
811 | static void kmalloc_double_kzfree(struct kunit *test) |
812 | { |
813 | char *ptr; |
814 | size_t size = 16; |
815 | |
816 | ptr = kmalloc(size, GFP_KERNEL); |
817 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
818 | |
819 | kfree_sensitive(objp: ptr); |
820 | KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr)); |
821 | } |
822 | |
823 | /* Check that ksize() does NOT unpoison whole object. */ |
824 | static void ksize_unpoisons_memory(struct kunit *test) |
825 | { |
826 | char *ptr; |
827 | size_t size = 128 - KASAN_GRANULE_SIZE - 5; |
828 | size_t real_size; |
829 | |
830 | ptr = kmalloc(size, GFP_KERNEL); |
831 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
832 | |
833 | real_size = ksize(objp: ptr); |
834 | KUNIT_EXPECT_GT(test, real_size, size); |
835 | |
836 | OPTIMIZER_HIDE_VAR(ptr); |
837 | |
838 | /* These accesses shouldn't trigger a KASAN report. */ |
839 | ptr[0] = 'x'; |
840 | ptr[size - 1] = 'x'; |
841 | |
842 | /* These must trigger a KASAN report. */ |
843 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
844 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]); |
845 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size + 5]); |
846 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size - 1]); |
847 | |
848 | kfree(objp: ptr); |
849 | } |
850 | |
851 | /* |
852 | * Check that a use-after-free is detected by ksize() and via normal accesses |
853 | * after it. |
854 | */ |
855 | static void ksize_uaf(struct kunit *test) |
856 | { |
857 | char *ptr; |
858 | int size = 128 - KASAN_GRANULE_SIZE; |
859 | |
860 | ptr = kmalloc(size, GFP_KERNEL); |
861 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
862 | kfree(objp: ptr); |
863 | |
864 | OPTIMIZER_HIDE_VAR(ptr); |
865 | KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr)); |
866 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]); |
867 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]); |
868 | } |
869 | |
870 | /* |
871 | * The two tests below check that Generic KASAN prints auxiliary stack traces |
872 | * for RCU callbacks and workqueues. The reports need to be inspected manually. |
873 | * |
874 | * These tests are still enabled for other KASAN modes to make sure that all |
875 | * modes report bad accesses in tested scenarios. |
876 | */ |
877 | |
878 | static struct kasan_rcu_info { |
879 | int i; |
880 | struct rcu_head rcu; |
881 | } *global_rcu_ptr; |
882 | |
883 | static void rcu_uaf_reclaim(struct rcu_head *rp) |
884 | { |
885 | struct kasan_rcu_info *fp = |
886 | container_of(rp, struct kasan_rcu_info, rcu); |
887 | |
888 | kfree(objp: fp); |
889 | ((volatile struct kasan_rcu_info *)fp)->i; |
890 | } |
891 | |
892 | static void rcu_uaf(struct kunit *test) |
893 | { |
894 | struct kasan_rcu_info *ptr; |
895 | |
896 | ptr = kmalloc(sizeof(struct kasan_rcu_info), GFP_KERNEL); |
897 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
898 | |
899 | global_rcu_ptr = rcu_dereference_protected( |
900 | (struct kasan_rcu_info __rcu *)ptr, NULL); |
901 | |
902 | KUNIT_EXPECT_KASAN_FAIL(test, |
903 | call_rcu(&global_rcu_ptr->rcu, rcu_uaf_reclaim); |
904 | rcu_barrier()); |
905 | } |
906 | |
907 | static void workqueue_uaf_work(struct work_struct *work) |
908 | { |
909 | kfree(objp: work); |
910 | } |
911 | |
912 | static void workqueue_uaf(struct kunit *test) |
913 | { |
914 | struct workqueue_struct *workqueue; |
915 | struct work_struct *work; |
916 | |
917 | workqueue = create_workqueue("kasan_workqueue_test" ); |
918 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, workqueue); |
919 | |
920 | work = kmalloc(sizeof(struct work_struct), GFP_KERNEL); |
921 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, work); |
922 | |
923 | INIT_WORK(work, workqueue_uaf_work); |
924 | queue_work(wq: workqueue, work); |
925 | destroy_workqueue(wq: workqueue); |
926 | |
927 | KUNIT_EXPECT_KASAN_FAIL(test, |
928 | ((volatile struct work_struct *)work)->data); |
929 | } |
930 | |
931 | static void kfree_via_page(struct kunit *test) |
932 | { |
933 | char *ptr; |
934 | size_t size = 8; |
935 | struct page *page; |
936 | unsigned long offset; |
937 | |
938 | ptr = kmalloc(size, GFP_KERNEL); |
939 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
940 | |
941 | page = virt_to_page(ptr); |
942 | offset = offset_in_page(ptr); |
943 | kfree(page_address(page) + offset); |
944 | } |
945 | |
946 | static void kfree_via_phys(struct kunit *test) |
947 | { |
948 | char *ptr; |
949 | size_t size = 8; |
950 | phys_addr_t phys; |
951 | |
952 | ptr = kmalloc(size, GFP_KERNEL); |
953 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
954 | |
955 | phys = virt_to_phys(address: ptr); |
956 | kfree(phys_to_virt(address: phys)); |
957 | } |
958 | |
959 | static void kmem_cache_oob(struct kunit *test) |
960 | { |
961 | char *p; |
962 | size_t size = 200; |
963 | struct kmem_cache *cache; |
964 | |
965 | cache = kmem_cache_create("test_cache" , size, 0, 0, NULL); |
966 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
967 | |
968 | p = kmem_cache_alloc(cache, GFP_KERNEL); |
969 | if (!p) { |
970 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
971 | kmem_cache_destroy(s: cache); |
972 | return; |
973 | } |
974 | |
975 | KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]); |
976 | |
977 | kmem_cache_free(s: cache, objp: p); |
978 | kmem_cache_destroy(s: cache); |
979 | } |
980 | |
981 | static void kmem_cache_double_free(struct kunit *test) |
982 | { |
983 | char *p; |
984 | size_t size = 200; |
985 | struct kmem_cache *cache; |
986 | |
987 | cache = kmem_cache_create("test_cache" , size, 0, 0, NULL); |
988 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
989 | |
990 | p = kmem_cache_alloc(cache, GFP_KERNEL); |
991 | if (!p) { |
992 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
993 | kmem_cache_destroy(s: cache); |
994 | return; |
995 | } |
996 | |
997 | kmem_cache_free(s: cache, objp: p); |
998 | KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p)); |
999 | kmem_cache_destroy(s: cache); |
1000 | } |
1001 | |
1002 | static void kmem_cache_invalid_free(struct kunit *test) |
1003 | { |
1004 | char *p; |
1005 | size_t size = 200; |
1006 | struct kmem_cache *cache; |
1007 | |
1008 | cache = kmem_cache_create("test_cache" , size, 0, SLAB_TYPESAFE_BY_RCU, |
1009 | NULL); |
1010 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
1011 | |
1012 | p = kmem_cache_alloc(cache, GFP_KERNEL); |
1013 | if (!p) { |
1014 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
1015 | kmem_cache_destroy(s: cache); |
1016 | return; |
1017 | } |
1018 | |
1019 | /* Trigger invalid free, the object doesn't get freed. */ |
1020 | KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1)); |
1021 | |
1022 | /* |
1023 | * Properly free the object to prevent the "Objects remaining in |
1024 | * test_cache on __kmem_cache_shutdown" BUG failure. |
1025 | */ |
1026 | kmem_cache_free(s: cache, objp: p); |
1027 | |
1028 | kmem_cache_destroy(s: cache); |
1029 | } |
1030 | |
1031 | static void kmem_cache_rcu_uaf(struct kunit *test) |
1032 | { |
1033 | char *p; |
1034 | size_t size = 200; |
1035 | struct kmem_cache *cache; |
1036 | |
1037 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB_RCU_DEBUG); |
1038 | |
1039 | cache = kmem_cache_create("test_cache" , size, 0, SLAB_TYPESAFE_BY_RCU, |
1040 | NULL); |
1041 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
1042 | |
1043 | p = kmem_cache_alloc(cache, GFP_KERNEL); |
1044 | if (!p) { |
1045 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
1046 | kmem_cache_destroy(s: cache); |
1047 | return; |
1048 | } |
1049 | *p = 1; |
1050 | |
1051 | rcu_read_lock(); |
1052 | |
1053 | /* Free the object - this will internally schedule an RCU callback. */ |
1054 | kmem_cache_free(s: cache, objp: p); |
1055 | |
1056 | /* |
1057 | * We should still be allowed to access the object at this point because |
1058 | * the cache is SLAB_TYPESAFE_BY_RCU and we've been in an RCU read-side |
1059 | * critical section since before the kmem_cache_free(). |
1060 | */ |
1061 | READ_ONCE(*p); |
1062 | |
1063 | rcu_read_unlock(); |
1064 | |
1065 | /* |
1066 | * Wait for the RCU callback to execute; after this, the object should |
1067 | * have actually been freed from KASAN's perspective. |
1068 | */ |
1069 | rcu_barrier(); |
1070 | |
1071 | KUNIT_EXPECT_KASAN_FAIL(test, READ_ONCE(*p)); |
1072 | |
1073 | kmem_cache_destroy(s: cache); |
1074 | } |
1075 | |
1076 | static void kmem_cache_double_destroy(struct kunit *test) |
1077 | { |
1078 | struct kmem_cache *cache; |
1079 | |
1080 | cache = kmem_cache_create("test_cache" , 200, 0, SLAB_NO_MERGE, NULL); |
1081 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
1082 | kmem_cache_destroy(s: cache); |
1083 | KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache)); |
1084 | } |
1085 | |
1086 | static void kmem_cache_accounted(struct kunit *test) |
1087 | { |
1088 | int i; |
1089 | char *p; |
1090 | size_t size = 200; |
1091 | struct kmem_cache *cache; |
1092 | |
1093 | cache = kmem_cache_create("test_cache" , size, 0, SLAB_ACCOUNT, NULL); |
1094 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
1095 | |
1096 | /* |
1097 | * Several allocations with a delay to allow for lazy per memcg kmem |
1098 | * cache creation. |
1099 | */ |
1100 | for (i = 0; i < 5; i++) { |
1101 | p = kmem_cache_alloc(cache, GFP_KERNEL); |
1102 | if (!p) |
1103 | goto free_cache; |
1104 | |
1105 | kmem_cache_free(s: cache, objp: p); |
1106 | msleep(msecs: 100); |
1107 | } |
1108 | |
1109 | free_cache: |
1110 | kmem_cache_destroy(s: cache); |
1111 | } |
1112 | |
1113 | static void kmem_cache_bulk(struct kunit *test) |
1114 | { |
1115 | struct kmem_cache *cache; |
1116 | size_t size = 200; |
1117 | char *p[10]; |
1118 | bool ret; |
1119 | int i; |
1120 | |
1121 | cache = kmem_cache_create("test_cache" , size, 0, 0, NULL); |
1122 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
1123 | |
1124 | ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p); |
1125 | if (!ret) { |
1126 | kunit_err(test, "Allocation failed: %s\n" , __func__); |
1127 | kmem_cache_destroy(s: cache); |
1128 | return; |
1129 | } |
1130 | |
1131 | for (i = 0; i < ARRAY_SIZE(p); i++) |
1132 | p[i][0] = p[i][size - 1] = 42; |
1133 | |
1134 | kmem_cache_free_bulk(s: cache, ARRAY_SIZE(p), p: (void **)&p); |
1135 | kmem_cache_destroy(s: cache); |
1136 | } |
1137 | |
1138 | static void *mempool_prepare_kmalloc(struct kunit *test, mempool_t *pool, size_t size) |
1139 | { |
1140 | int pool_size = 4; |
1141 | int ret; |
1142 | void *elem; |
1143 | |
1144 | memset(pool, 0, sizeof(*pool)); |
1145 | ret = mempool_init_kmalloc_pool(pool, pool_size, size); |
1146 | KUNIT_ASSERT_EQ(test, ret, 0); |
1147 | |
1148 | /* |
1149 | * Allocate one element to prevent mempool from freeing elements to the |
1150 | * underlying allocator and instead make it add them to the element |
1151 | * list when the tests trigger double-free and invalid-free bugs. |
1152 | * This allows testing KASAN annotations in add_element(). |
1153 | */ |
1154 | elem = mempool_alloc_preallocated(pool); |
1155 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
1156 | |
1157 | return elem; |
1158 | } |
1159 | |
1160 | static struct kmem_cache *mempool_prepare_slab(struct kunit *test, mempool_t *pool, size_t size) |
1161 | { |
1162 | struct kmem_cache *cache; |
1163 | int pool_size = 4; |
1164 | int ret; |
1165 | |
1166 | cache = kmem_cache_create("test_cache" , size, 0, 0, NULL); |
1167 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache); |
1168 | |
1169 | memset(pool, 0, sizeof(*pool)); |
1170 | ret = mempool_init_slab_pool(pool, pool_size, cache); |
1171 | KUNIT_ASSERT_EQ(test, ret, 0); |
1172 | |
1173 | /* |
1174 | * Do not allocate one preallocated element, as we skip the double-free |
1175 | * and invalid-free tests for slab mempool for simplicity. |
1176 | */ |
1177 | |
1178 | return cache; |
1179 | } |
1180 | |
1181 | static void *mempool_prepare_page(struct kunit *test, mempool_t *pool, int order) |
1182 | { |
1183 | int pool_size = 4; |
1184 | int ret; |
1185 | void *elem; |
1186 | |
1187 | memset(pool, 0, sizeof(*pool)); |
1188 | ret = mempool_init_page_pool(pool, pool_size, order); |
1189 | KUNIT_ASSERT_EQ(test, ret, 0); |
1190 | |
1191 | elem = mempool_alloc_preallocated(pool); |
1192 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
1193 | |
1194 | return elem; |
1195 | } |
1196 | |
1197 | static void mempool_oob_right_helper(struct kunit *test, mempool_t *pool, size_t size) |
1198 | { |
1199 | char *elem; |
1200 | |
1201 | elem = mempool_alloc_preallocated(pool); |
1202 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
1203 | |
1204 | OPTIMIZER_HIDE_VAR(elem); |
1205 | |
1206 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
1207 | KUNIT_EXPECT_KASAN_FAIL(test, |
1208 | ((volatile char *)&elem[size])[0]); |
1209 | else |
1210 | KUNIT_EXPECT_KASAN_FAIL(test, |
1211 | ((volatile char *)&elem[round_up(size, KASAN_GRANULE_SIZE)])[0]); |
1212 | |
1213 | mempool_free(element: elem, pool); |
1214 | } |
1215 | |
1216 | static void mempool_kmalloc_oob_right(struct kunit *test) |
1217 | { |
1218 | mempool_t pool; |
1219 | size_t size = 128 - KASAN_GRANULE_SIZE - 5; |
1220 | void *; |
1221 | |
1222 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1223 | |
1224 | mempool_oob_right_helper(test, pool: &pool, size); |
1225 | |
1226 | mempool_free(element: extra_elem, pool: &pool); |
1227 | mempool_exit(pool: &pool); |
1228 | } |
1229 | |
1230 | static void mempool_kmalloc_large_oob_right(struct kunit *test) |
1231 | { |
1232 | mempool_t pool; |
1233 | size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
1234 | void *; |
1235 | |
1236 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1237 | |
1238 | mempool_oob_right_helper(test, pool: &pool, size); |
1239 | |
1240 | mempool_free(element: extra_elem, pool: &pool); |
1241 | mempool_exit(pool: &pool); |
1242 | } |
1243 | |
1244 | static void mempool_slab_oob_right(struct kunit *test) |
1245 | { |
1246 | mempool_t pool; |
1247 | size_t size = 123; |
1248 | struct kmem_cache *cache; |
1249 | |
1250 | cache = mempool_prepare_slab(test, pool: &pool, size); |
1251 | |
1252 | mempool_oob_right_helper(test, pool: &pool, size); |
1253 | |
1254 | mempool_exit(pool: &pool); |
1255 | kmem_cache_destroy(s: cache); |
1256 | } |
1257 | |
1258 | /* |
1259 | * Skip the out-of-bounds test for page mempool. With Generic KASAN, page |
1260 | * allocations have no redzones, and thus the out-of-bounds detection is not |
1261 | * guaranteed; see https://bugzilla.kernel.org/show_bug.cgi?id=210503. With |
1262 | * the tag-based KASAN modes, the neighboring allocation might have the same |
1263 | * tag; see https://bugzilla.kernel.org/show_bug.cgi?id=203505. |
1264 | */ |
1265 | |
1266 | static void mempool_uaf_helper(struct kunit *test, mempool_t *pool, bool page) |
1267 | { |
1268 | char *elem, *ptr; |
1269 | |
1270 | elem = mempool_alloc_preallocated(pool); |
1271 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
1272 | |
1273 | mempool_free(element: elem, pool); |
1274 | |
1275 | ptr = page ? page_address((struct page *)elem) : elem; |
1276 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]); |
1277 | } |
1278 | |
1279 | static void mempool_kmalloc_uaf(struct kunit *test) |
1280 | { |
1281 | mempool_t pool; |
1282 | size_t size = 128; |
1283 | void *; |
1284 | |
1285 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1286 | |
1287 | mempool_uaf_helper(test, pool: &pool, page: false); |
1288 | |
1289 | mempool_free(element: extra_elem, pool: &pool); |
1290 | mempool_exit(pool: &pool); |
1291 | } |
1292 | |
1293 | static void mempool_kmalloc_large_uaf(struct kunit *test) |
1294 | { |
1295 | mempool_t pool; |
1296 | size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
1297 | void *; |
1298 | |
1299 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1300 | |
1301 | mempool_uaf_helper(test, pool: &pool, page: false); |
1302 | |
1303 | mempool_free(element: extra_elem, pool: &pool); |
1304 | mempool_exit(pool: &pool); |
1305 | } |
1306 | |
1307 | static void mempool_slab_uaf(struct kunit *test) |
1308 | { |
1309 | mempool_t pool; |
1310 | size_t size = 123; |
1311 | struct kmem_cache *cache; |
1312 | |
1313 | cache = mempool_prepare_slab(test, pool: &pool, size); |
1314 | |
1315 | mempool_uaf_helper(test, pool: &pool, page: false); |
1316 | |
1317 | mempool_exit(pool: &pool); |
1318 | kmem_cache_destroy(s: cache); |
1319 | } |
1320 | |
1321 | static void mempool_page_alloc_uaf(struct kunit *test) |
1322 | { |
1323 | mempool_t pool; |
1324 | int order = 2; |
1325 | void *; |
1326 | |
1327 | extra_elem = mempool_prepare_page(test, pool: &pool, order); |
1328 | |
1329 | mempool_uaf_helper(test, pool: &pool, page: true); |
1330 | |
1331 | mempool_free(element: extra_elem, pool: &pool); |
1332 | mempool_exit(pool: &pool); |
1333 | } |
1334 | |
1335 | static void mempool_double_free_helper(struct kunit *test, mempool_t *pool) |
1336 | { |
1337 | char *elem; |
1338 | |
1339 | elem = mempool_alloc_preallocated(pool); |
1340 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
1341 | |
1342 | mempool_free(element: elem, pool); |
1343 | |
1344 | KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem, pool)); |
1345 | } |
1346 | |
1347 | static void mempool_kmalloc_double_free(struct kunit *test) |
1348 | { |
1349 | mempool_t pool; |
1350 | size_t size = 128; |
1351 | char *; |
1352 | |
1353 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1354 | |
1355 | mempool_double_free_helper(test, pool: &pool); |
1356 | |
1357 | mempool_free(element: extra_elem, pool: &pool); |
1358 | mempool_exit(pool: &pool); |
1359 | } |
1360 | |
1361 | static void mempool_kmalloc_large_double_free(struct kunit *test) |
1362 | { |
1363 | mempool_t pool; |
1364 | size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
1365 | char *; |
1366 | |
1367 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1368 | |
1369 | mempool_double_free_helper(test, pool: &pool); |
1370 | |
1371 | mempool_free(element: extra_elem, pool: &pool); |
1372 | mempool_exit(pool: &pool); |
1373 | } |
1374 | |
1375 | static void mempool_page_alloc_double_free(struct kunit *test) |
1376 | { |
1377 | mempool_t pool; |
1378 | int order = 2; |
1379 | char *; |
1380 | |
1381 | extra_elem = mempool_prepare_page(test, pool: &pool, order); |
1382 | |
1383 | mempool_double_free_helper(test, pool: &pool); |
1384 | |
1385 | mempool_free(element: extra_elem, pool: &pool); |
1386 | mempool_exit(pool: &pool); |
1387 | } |
1388 | |
1389 | static void mempool_kmalloc_invalid_free_helper(struct kunit *test, mempool_t *pool) |
1390 | { |
1391 | char *elem; |
1392 | |
1393 | elem = mempool_alloc_preallocated(pool); |
1394 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem); |
1395 | |
1396 | KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem + 1, pool)); |
1397 | |
1398 | mempool_free(element: elem, pool); |
1399 | } |
1400 | |
1401 | static void mempool_kmalloc_invalid_free(struct kunit *test) |
1402 | { |
1403 | mempool_t pool; |
1404 | size_t size = 128; |
1405 | char *; |
1406 | |
1407 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1408 | |
1409 | mempool_kmalloc_invalid_free_helper(test, pool: &pool); |
1410 | |
1411 | mempool_free(element: extra_elem, pool: &pool); |
1412 | mempool_exit(pool: &pool); |
1413 | } |
1414 | |
1415 | static void mempool_kmalloc_large_invalid_free(struct kunit *test) |
1416 | { |
1417 | mempool_t pool; |
1418 | size_t size = KMALLOC_MAX_CACHE_SIZE + 1; |
1419 | char *; |
1420 | |
1421 | extra_elem = mempool_prepare_kmalloc(test, pool: &pool, size); |
1422 | |
1423 | mempool_kmalloc_invalid_free_helper(test, pool: &pool); |
1424 | |
1425 | mempool_free(element: extra_elem, pool: &pool); |
1426 | mempool_exit(pool: &pool); |
1427 | } |
1428 | |
1429 | /* |
1430 | * Skip the invalid-free test for page mempool. The invalid-free detection only |
1431 | * works for compound pages and mempool preallocates all page elements without |
1432 | * the __GFP_COMP flag. |
1433 | */ |
1434 | |
1435 | static char global_array[10]; |
1436 | |
1437 | static void kasan_global_oob_right(struct kunit *test) |
1438 | { |
1439 | /* |
1440 | * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS |
1441 | * from failing here and panicking the kernel, access the array via a |
1442 | * volatile pointer, which will prevent the compiler from being able to |
1443 | * determine the array bounds. |
1444 | * |
1445 | * This access uses a volatile pointer to char (char *volatile) rather |
1446 | * than the more conventional pointer to volatile char (volatile char *) |
1447 | * because we want to prevent the compiler from making inferences about |
1448 | * the pointer itself (i.e. its array bounds), not the data that it |
1449 | * refers to. |
1450 | */ |
1451 | char *volatile array = global_array; |
1452 | char *p = &array[ARRAY_SIZE(global_array) + 3]; |
1453 | |
1454 | /* Only generic mode instruments globals. */ |
1455 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
1456 | |
1457 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
1458 | } |
1459 | |
1460 | static void kasan_global_oob_left(struct kunit *test) |
1461 | { |
1462 | char *volatile array = global_array; |
1463 | char *p = array - 3; |
1464 | |
1465 | /* |
1466 | * GCC is known to fail this test, skip it. |
1467 | * See https://bugzilla.kernel.org/show_bug.cgi?id=215051. |
1468 | */ |
1469 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG); |
1470 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
1471 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
1472 | } |
1473 | |
1474 | static void kasan_stack_oob(struct kunit *test) |
1475 | { |
1476 | char stack_array[10]; |
1477 | /* See comment in kasan_global_oob_right. */ |
1478 | char *volatile array = stack_array; |
1479 | char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF]; |
1480 | |
1481 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK); |
1482 | |
1483 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
1484 | } |
1485 | |
1486 | static void kasan_alloca_oob_left(struct kunit *test) |
1487 | { |
1488 | volatile int i = 10; |
1489 | char alloca_array[i]; |
1490 | /* See comment in kasan_global_oob_right. */ |
1491 | char *volatile array = alloca_array; |
1492 | char *p = array - 1; |
1493 | |
1494 | /* Only generic mode instruments dynamic allocas. */ |
1495 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
1496 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK); |
1497 | |
1498 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
1499 | } |
1500 | |
1501 | static void kasan_alloca_oob_right(struct kunit *test) |
1502 | { |
1503 | volatile int i = 10; |
1504 | char alloca_array[i]; |
1505 | /* See comment in kasan_global_oob_right. */ |
1506 | char *volatile array = alloca_array; |
1507 | char *p = array + i; |
1508 | |
1509 | /* Only generic mode instruments dynamic allocas. */ |
1510 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
1511 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK); |
1512 | |
1513 | KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p); |
1514 | } |
1515 | |
1516 | static void kasan_memchr(struct kunit *test) |
1517 | { |
1518 | char *ptr; |
1519 | size_t size = 24; |
1520 | |
1521 | /* |
1522 | * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT. |
1523 | * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details. |
1524 | */ |
1525 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT); |
1526 | |
1527 | if (OOB_TAG_OFF) |
1528 | size = round_up(size, OOB_TAG_OFF); |
1529 | |
1530 | ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
1531 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1532 | |
1533 | OPTIMIZER_HIDE_VAR(ptr); |
1534 | OPTIMIZER_HIDE_VAR(size); |
1535 | KUNIT_EXPECT_KASAN_FAIL(test, |
1536 | kasan_ptr_result = memchr(ptr, '1', size + 1)); |
1537 | |
1538 | kfree(objp: ptr); |
1539 | } |
1540 | |
1541 | static void kasan_memcmp(struct kunit *test) |
1542 | { |
1543 | char *ptr; |
1544 | size_t size = 24; |
1545 | int arr[9]; |
1546 | |
1547 | /* |
1548 | * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT. |
1549 | * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details. |
1550 | */ |
1551 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT); |
1552 | |
1553 | if (OOB_TAG_OFF) |
1554 | size = round_up(size, OOB_TAG_OFF); |
1555 | |
1556 | ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
1557 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1558 | memset(arr, 0, sizeof(arr)); |
1559 | |
1560 | OPTIMIZER_HIDE_VAR(ptr); |
1561 | OPTIMIZER_HIDE_VAR(size); |
1562 | KUNIT_EXPECT_KASAN_FAIL(test, |
1563 | kasan_int_result = memcmp(ptr, arr, size+1)); |
1564 | kfree(objp: ptr); |
1565 | } |
1566 | |
1567 | static void kasan_strings(struct kunit *test) |
1568 | { |
1569 | char *ptr; |
1570 | char *src; |
1571 | size_t size = 24; |
1572 | |
1573 | /* |
1574 | * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT. |
1575 | * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details. |
1576 | */ |
1577 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT); |
1578 | |
1579 | ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
1580 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1581 | |
1582 | src = kmalloc(KASAN_GRANULE_SIZE, GFP_KERNEL | __GFP_ZERO); |
1583 | strscpy(src, "f0cacc1a0000000" , KASAN_GRANULE_SIZE); |
1584 | |
1585 | /* |
1586 | * Make sure that strscpy() does not trigger KASAN if it overreads into |
1587 | * poisoned memory. |
1588 | * |
1589 | * The expected size does not include the terminator '\0' |
1590 | * so it is (KASAN_GRANULE_SIZE - 2) == |
1591 | * KASAN_GRANULE_SIZE - ("initial removed character" + "\0"). |
1592 | */ |
1593 | KUNIT_EXPECT_EQ(test, KASAN_GRANULE_SIZE - 2, |
1594 | strscpy(ptr, src + 1, KASAN_GRANULE_SIZE)); |
1595 | |
1596 | /* strscpy should fail if the first byte is unreadable. */ |
1597 | KUNIT_EXPECT_KASAN_FAIL(test, strscpy(ptr, src + KASAN_GRANULE_SIZE, |
1598 | KASAN_GRANULE_SIZE)); |
1599 | |
1600 | kfree(objp: src); |
1601 | kfree(objp: ptr); |
1602 | |
1603 | /* |
1604 | * Try to cause only 1 invalid access (less spam in dmesg). |
1605 | * For that we need ptr to point to zeroed byte. |
1606 | * Skip metadata that could be stored in freed object so ptr |
1607 | * will likely point to zeroed byte. |
1608 | */ |
1609 | ptr += 16; |
1610 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1')); |
1611 | |
1612 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1')); |
1613 | |
1614 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2" )); |
1615 | |
1616 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2" , 1)); |
1617 | |
1618 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr)); |
1619 | |
1620 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1)); |
1621 | } |
1622 | |
1623 | static void kasan_bitops_modify(struct kunit *test, int nr, void *addr) |
1624 | { |
1625 | KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr)); |
1626 | KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr)); |
1627 | KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr)); |
1628 | KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr)); |
1629 | KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr)); |
1630 | KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr)); |
1631 | KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr)); |
1632 | KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr)); |
1633 | } |
1634 | |
1635 | static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr) |
1636 | { |
1637 | KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr)); |
1638 | KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr)); |
1639 | KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr)); |
1640 | KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr)); |
1641 | KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr)); |
1642 | KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr)); |
1643 | KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr)); |
1644 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr)); |
1645 | if (nr < 7) |
1646 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = |
1647 | xor_unlock_is_negative_byte(1 << nr, addr)); |
1648 | } |
1649 | |
1650 | static void kasan_bitops_generic(struct kunit *test) |
1651 | { |
1652 | long *bits; |
1653 | |
1654 | /* This test is specifically crafted for the generic mode. */ |
1655 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC); |
1656 | |
1657 | /* |
1658 | * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes; |
1659 | * this way we do not actually corrupt other memory. |
1660 | */ |
1661 | bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL); |
1662 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits); |
1663 | |
1664 | /* |
1665 | * Below calls try to access bit within allocated memory; however, the |
1666 | * below accesses are still out-of-bounds, since bitops are defined to |
1667 | * operate on the whole long the bit is in. |
1668 | */ |
1669 | kasan_bitops_modify(test, BITS_PER_LONG, addr: bits); |
1670 | |
1671 | /* |
1672 | * Below calls try to access bit beyond allocated memory. |
1673 | */ |
1674 | kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, addr: bits); |
1675 | |
1676 | kfree(objp: bits); |
1677 | } |
1678 | |
1679 | static void kasan_bitops_tags(struct kunit *test) |
1680 | { |
1681 | long *bits; |
1682 | |
1683 | /* This test is specifically crafted for tag-based modes. */ |
1684 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
1685 | |
1686 | /* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */ |
1687 | bits = kzalloc(48, GFP_KERNEL); |
1688 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits); |
1689 | |
1690 | /* Do the accesses past the 48 allocated bytes, but within the redone. */ |
1691 | kasan_bitops_modify(test, BITS_PER_LONG, addr: (void *)bits + 48); |
1692 | kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, addr: (void *)bits + 48); |
1693 | |
1694 | kfree(objp: bits); |
1695 | } |
1696 | |
1697 | static void vmalloc_helpers_tags(struct kunit *test) |
1698 | { |
1699 | void *ptr; |
1700 | |
1701 | /* This test is intended for tag-based modes. */ |
1702 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
1703 | |
1704 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC); |
1705 | |
1706 | if (!kasan_vmalloc_enabled()) |
1707 | kunit_skip(test, "Test requires kasan.vmalloc=on" ); |
1708 | |
1709 | ptr = vmalloc(PAGE_SIZE); |
1710 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1711 | |
1712 | /* Check that the returned pointer is tagged. */ |
1713 | KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
1714 | KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
1715 | |
1716 | /* Make sure exported vmalloc helpers handle tagged pointers. */ |
1717 | KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr)); |
1718 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr)); |
1719 | |
1720 | #if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST) |
1721 | { |
1722 | int rv; |
1723 | |
1724 | /* Make sure vmalloc'ed memory permissions can be changed. */ |
1725 | rv = set_memory_ro(addr: (unsigned long)ptr, numpages: 1); |
1726 | KUNIT_ASSERT_GE(test, rv, 0); |
1727 | rv = set_memory_rw(addr: (unsigned long)ptr, numpages: 1); |
1728 | KUNIT_ASSERT_GE(test, rv, 0); |
1729 | } |
1730 | #endif |
1731 | |
1732 | vfree(addr: ptr); |
1733 | } |
1734 | |
1735 | static void vmalloc_oob(struct kunit *test) |
1736 | { |
1737 | char *v_ptr, *p_ptr; |
1738 | struct page *page; |
1739 | size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5; |
1740 | |
1741 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC); |
1742 | |
1743 | if (!kasan_vmalloc_enabled()) |
1744 | kunit_skip(test, "Test requires kasan.vmalloc=on" ); |
1745 | |
1746 | v_ptr = vmalloc(size); |
1747 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr); |
1748 | |
1749 | OPTIMIZER_HIDE_VAR(v_ptr); |
1750 | |
1751 | /* |
1752 | * We have to be careful not to hit the guard page in vmalloc tests. |
1753 | * The MMU will catch that and crash us. |
1754 | */ |
1755 | |
1756 | /* Make sure in-bounds accesses are valid. */ |
1757 | v_ptr[0] = 0; |
1758 | v_ptr[size - 1] = 0; |
1759 | |
1760 | /* |
1761 | * An unaligned access past the requested vmalloc size. |
1762 | * Only generic KASAN can precisely detect these. |
1763 | */ |
1764 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
1765 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]); |
1766 | |
1767 | /* An aligned access into the first out-of-bounds granule. */ |
1768 | KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size + 5]); |
1769 | |
1770 | /* Check that in-bounds accesses to the physical page are valid. */ |
1771 | page = vmalloc_to_page(addr: v_ptr); |
1772 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page); |
1773 | p_ptr = page_address(page); |
1774 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr); |
1775 | p_ptr[0] = 0; |
1776 | |
1777 | vfree(addr: v_ptr); |
1778 | |
1779 | /* |
1780 | * We can't check for use-after-unmap bugs in this nor in the following |
1781 | * vmalloc tests, as the page might be fully unmapped and accessing it |
1782 | * will crash the kernel. |
1783 | */ |
1784 | } |
1785 | |
1786 | static void vmap_tags(struct kunit *test) |
1787 | { |
1788 | char *p_ptr, *v_ptr; |
1789 | struct page *p_page, *v_page; |
1790 | |
1791 | /* |
1792 | * This test is specifically crafted for the software tag-based mode, |
1793 | * the only tag-based mode that poisons vmap mappings. |
1794 | */ |
1795 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS); |
1796 | |
1797 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC); |
1798 | |
1799 | if (!kasan_vmalloc_enabled()) |
1800 | kunit_skip(test, "Test requires kasan.vmalloc=on" ); |
1801 | |
1802 | p_page = alloc_pages(GFP_KERNEL, 1); |
1803 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page); |
1804 | p_ptr = page_address(p_page); |
1805 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr); |
1806 | |
1807 | v_ptr = vmap(pages: &p_page, count: 1, VM_MAP, PAGE_KERNEL); |
1808 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr); |
1809 | |
1810 | /* |
1811 | * We can't check for out-of-bounds bugs in this nor in the following |
1812 | * vmalloc tests, as allocations have page granularity and accessing |
1813 | * the guard page will crash the kernel. |
1814 | */ |
1815 | |
1816 | KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN); |
1817 | KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL); |
1818 | |
1819 | /* Make sure that in-bounds accesses through both pointers work. */ |
1820 | *p_ptr = 0; |
1821 | *v_ptr = 0; |
1822 | |
1823 | /* Make sure vmalloc_to_page() correctly recovers the page pointer. */ |
1824 | v_page = vmalloc_to_page(addr: v_ptr); |
1825 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page); |
1826 | KUNIT_EXPECT_PTR_EQ(test, p_page, v_page); |
1827 | |
1828 | vunmap(addr: v_ptr); |
1829 | free_pages(addr: (unsigned long)p_ptr, order: 1); |
1830 | } |
1831 | |
1832 | static void vm_map_ram_tags(struct kunit *test) |
1833 | { |
1834 | char *p_ptr, *v_ptr; |
1835 | struct page *page; |
1836 | |
1837 | /* |
1838 | * This test is specifically crafted for the software tag-based mode, |
1839 | * the only tag-based mode that poisons vm_map_ram mappings. |
1840 | */ |
1841 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS); |
1842 | |
1843 | page = alloc_pages(GFP_KERNEL, 1); |
1844 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page); |
1845 | p_ptr = page_address(page); |
1846 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr); |
1847 | |
1848 | v_ptr = vm_map_ram(pages: &page, count: 1, node: -1); |
1849 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr); |
1850 | |
1851 | KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN); |
1852 | KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL); |
1853 | |
1854 | /* Make sure that in-bounds accesses through both pointers work. */ |
1855 | *p_ptr = 0; |
1856 | *v_ptr = 0; |
1857 | |
1858 | vm_unmap_ram(mem: v_ptr, count: 1); |
1859 | free_pages(addr: (unsigned long)p_ptr, order: 1); |
1860 | } |
1861 | |
1862 | /* |
1863 | * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN, |
1864 | * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based |
1865 | * modes. |
1866 | */ |
1867 | static void match_all_not_assigned(struct kunit *test) |
1868 | { |
1869 | char *ptr; |
1870 | struct page *pages; |
1871 | int i, size, order; |
1872 | |
1873 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
1874 | |
1875 | for (i = 0; i < 256; i++) { |
1876 | size = get_random_u32_inclusive(floor: 1, ceil: 1024); |
1877 | ptr = kmalloc(size, GFP_KERNEL); |
1878 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1879 | KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
1880 | KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
1881 | kfree(objp: ptr); |
1882 | } |
1883 | |
1884 | for (i = 0; i < 256; i++) { |
1885 | order = get_random_u32_inclusive(floor: 1, ceil: 4); |
1886 | pages = alloc_pages(GFP_KERNEL, order); |
1887 | ptr = page_address(pages); |
1888 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1889 | KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
1890 | KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
1891 | free_pages(addr: (unsigned long)ptr, order); |
1892 | } |
1893 | |
1894 | if (!kasan_vmalloc_enabled()) |
1895 | return; |
1896 | |
1897 | for (i = 0; i < 256; i++) { |
1898 | size = get_random_u32_inclusive(floor: 1, ceil: 1024); |
1899 | ptr = vmalloc(size); |
1900 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1901 | KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN); |
1902 | KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
1903 | vfree(addr: ptr); |
1904 | } |
1905 | } |
1906 | |
1907 | /* Check that 0xff works as a match-all pointer tag for tag-based modes. */ |
1908 | static void match_all_ptr_tag(struct kunit *test) |
1909 | { |
1910 | char *ptr; |
1911 | u8 tag; |
1912 | |
1913 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
1914 | |
1915 | ptr = kmalloc(128, GFP_KERNEL); |
1916 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1917 | |
1918 | /* Backup the assigned tag. */ |
1919 | tag = get_tag(ptr); |
1920 | KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL); |
1921 | |
1922 | /* Reset the tag to 0xff.*/ |
1923 | ptr = set_tag(ptr, KASAN_TAG_KERNEL); |
1924 | |
1925 | /* This access shouldn't trigger a KASAN report. */ |
1926 | *ptr = 0; |
1927 | |
1928 | /* Recover the pointer tag and free. */ |
1929 | ptr = set_tag(ptr, tag); |
1930 | kfree(objp: ptr); |
1931 | } |
1932 | |
1933 | /* Check that there are no match-all memory tags for tag-based modes. */ |
1934 | static void match_all_mem_tag(struct kunit *test) |
1935 | { |
1936 | char *ptr; |
1937 | int tag; |
1938 | |
1939 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC); |
1940 | |
1941 | ptr = kmalloc(128, GFP_KERNEL); |
1942 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1943 | KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL); |
1944 | |
1945 | /* For each possible tag value not matching the pointer tag. */ |
1946 | for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) { |
1947 | /* |
1948 | * For Software Tag-Based KASAN, skip the majority of tag |
1949 | * values to avoid the test printing too many reports. |
1950 | */ |
1951 | if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) && |
1952 | tag >= KASAN_TAG_MIN + 8 && tag <= KASAN_TAG_KERNEL - 8) |
1953 | continue; |
1954 | |
1955 | if (tag == get_tag(ptr)) |
1956 | continue; |
1957 | |
1958 | /* Mark the first memory granule with the chosen memory tag. */ |
1959 | kasan_poison(addr: ptr, KASAN_GRANULE_SIZE, value: (u8)tag, init: false); |
1960 | |
1961 | /* This access must cause a KASAN report. */ |
1962 | KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0); |
1963 | } |
1964 | |
1965 | /* Recover the memory tag and free. */ |
1966 | kasan_poison(addr: ptr, KASAN_GRANULE_SIZE, get_tag(ptr), init: false); |
1967 | kfree(objp: ptr); |
1968 | } |
1969 | |
1970 | /* |
1971 | * Check that Rust performing a use-after-free using `unsafe` is detected. |
1972 | * This is a smoke test to make sure that Rust is being sanitized properly. |
1973 | */ |
1974 | static void rust_uaf(struct kunit *test) |
1975 | { |
1976 | KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_RUST); |
1977 | KUNIT_EXPECT_KASAN_FAIL(test, kasan_test_rust_uaf()); |
1978 | } |
1979 | |
1980 | static void copy_to_kernel_nofault_oob(struct kunit *test) |
1981 | { |
1982 | char *ptr; |
1983 | char buf[128]; |
1984 | size_t size = sizeof(buf); |
1985 | |
1986 | /* |
1987 | * This test currently fails with the HW_TAGS mode. The reason is |
1988 | * unknown and needs to be investigated. |
1989 | */ |
1990 | KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS); |
1991 | |
1992 | ptr = kmalloc(size - KASAN_GRANULE_SIZE, GFP_KERNEL); |
1993 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr); |
1994 | OPTIMIZER_HIDE_VAR(ptr); |
1995 | |
1996 | /* |
1997 | * We test copy_to_kernel_nofault() to detect corrupted memory that is |
1998 | * being written into the kernel. In contrast, |
1999 | * copy_from_kernel_nofault() is primarily used in kernel helper |
2000 | * functions where the source address might be random or uninitialized. |
2001 | * Applying KASAN instrumentation to copy_from_kernel_nofault() could |
2002 | * lead to false positives. By focusing KASAN checks only on |
2003 | * copy_to_kernel_nofault(), we ensure that only valid memory is |
2004 | * written to the kernel, minimizing the risk of kernel corruption |
2005 | * while avoiding false positives in the reverse case. |
2006 | */ |
2007 | KUNIT_EXPECT_KASAN_FAIL(test, |
2008 | copy_to_kernel_nofault(&buf[0], ptr, size)); |
2009 | KUNIT_EXPECT_KASAN_FAIL(test, |
2010 | copy_to_kernel_nofault(ptr, &buf[0], size)); |
2011 | |
2012 | kfree(objp: ptr); |
2013 | } |
2014 | |
2015 | static void copy_user_test_oob(struct kunit *test) |
2016 | { |
2017 | char *kmem; |
2018 | char __user *usermem; |
2019 | unsigned long useraddr; |
2020 | size_t size = 128 - KASAN_GRANULE_SIZE; |
2021 | int __maybe_unused unused; |
2022 | |
2023 | kmem = kunit_kmalloc(test, size, GFP_KERNEL); |
2024 | KUNIT_ASSERT_NOT_ERR_OR_NULL(test, kmem); |
2025 | |
2026 | useraddr = kunit_vm_mmap(test, NULL, addr: 0, PAGE_SIZE, |
2027 | PROT_READ | PROT_WRITE | PROT_EXEC, |
2028 | MAP_ANONYMOUS | MAP_PRIVATE, offset: 0); |
2029 | KUNIT_ASSERT_NE_MSG(test, useraddr, 0, |
2030 | "Could not create userspace mm" ); |
2031 | KUNIT_ASSERT_LT_MSG(test, useraddr, (unsigned long)TASK_SIZE, |
2032 | "Failed to allocate user memory" ); |
2033 | |
2034 | OPTIMIZER_HIDE_VAR(size); |
2035 | usermem = (char __user *)useraddr; |
2036 | |
2037 | KUNIT_EXPECT_KASAN_FAIL(test, |
2038 | unused = copy_from_user(kmem, usermem, size + 1)); |
2039 | KUNIT_EXPECT_KASAN_FAIL(test, |
2040 | unused = copy_to_user(usermem, kmem, size + 1)); |
2041 | KUNIT_EXPECT_KASAN_FAIL(test, |
2042 | unused = __copy_from_user(kmem, usermem, size + 1)); |
2043 | KUNIT_EXPECT_KASAN_FAIL(test, |
2044 | unused = __copy_to_user(usermem, kmem, size + 1)); |
2045 | KUNIT_EXPECT_KASAN_FAIL(test, |
2046 | unused = __copy_from_user_inatomic(kmem, usermem, size + 1)); |
2047 | KUNIT_EXPECT_KASAN_FAIL(test, |
2048 | unused = __copy_to_user_inatomic(usermem, kmem, size + 1)); |
2049 | |
2050 | /* |
2051 | * Prepare a long string in usermem to avoid the strncpy_from_user test |
2052 | * bailing out on '\0' before it reaches out-of-bounds. |
2053 | */ |
2054 | memset(kmem, 'a', size); |
2055 | KUNIT_EXPECT_EQ(test, copy_to_user(usermem, kmem, size), 0); |
2056 | |
2057 | KUNIT_EXPECT_KASAN_FAIL(test, |
2058 | unused = strncpy_from_user(kmem, usermem, size + 1)); |
2059 | } |
2060 | |
2061 | static struct kunit_case kasan_kunit_test_cases[] = { |
2062 | KUNIT_CASE(kmalloc_oob_right), |
2063 | KUNIT_CASE(kmalloc_oob_left), |
2064 | KUNIT_CASE(kmalloc_node_oob_right), |
2065 | KUNIT_CASE(kmalloc_track_caller_oob_right), |
2066 | KUNIT_CASE(kmalloc_big_oob_right), |
2067 | KUNIT_CASE(kmalloc_large_oob_right), |
2068 | KUNIT_CASE(kmalloc_large_uaf), |
2069 | KUNIT_CASE(kmalloc_large_invalid_free), |
2070 | KUNIT_CASE(page_alloc_oob_right), |
2071 | KUNIT_CASE(page_alloc_uaf), |
2072 | KUNIT_CASE(krealloc_more_oob), |
2073 | KUNIT_CASE(krealloc_less_oob), |
2074 | KUNIT_CASE(krealloc_large_more_oob), |
2075 | KUNIT_CASE(krealloc_large_less_oob), |
2076 | KUNIT_CASE(krealloc_uaf), |
2077 | KUNIT_CASE(kmalloc_oob_16), |
2078 | KUNIT_CASE(kmalloc_uaf_16), |
2079 | KUNIT_CASE(kmalloc_oob_in_memset), |
2080 | KUNIT_CASE(kmalloc_oob_memset_2), |
2081 | KUNIT_CASE(kmalloc_oob_memset_4), |
2082 | KUNIT_CASE(kmalloc_oob_memset_8), |
2083 | KUNIT_CASE(kmalloc_oob_memset_16), |
2084 | KUNIT_CASE(kmalloc_memmove_negative_size), |
2085 | KUNIT_CASE(kmalloc_memmove_invalid_size), |
2086 | KUNIT_CASE(kmalloc_uaf), |
2087 | KUNIT_CASE(kmalloc_uaf_memset), |
2088 | KUNIT_CASE(kmalloc_uaf2), |
2089 | KUNIT_CASE(kmalloc_uaf3), |
2090 | KUNIT_CASE(kmalloc_double_kzfree), |
2091 | KUNIT_CASE(ksize_unpoisons_memory), |
2092 | KUNIT_CASE(ksize_uaf), |
2093 | KUNIT_CASE(rcu_uaf), |
2094 | KUNIT_CASE(workqueue_uaf), |
2095 | KUNIT_CASE(kfree_via_page), |
2096 | KUNIT_CASE(kfree_via_phys), |
2097 | KUNIT_CASE(kmem_cache_oob), |
2098 | KUNIT_CASE(kmem_cache_double_free), |
2099 | KUNIT_CASE(kmem_cache_invalid_free), |
2100 | KUNIT_CASE(kmem_cache_rcu_uaf), |
2101 | KUNIT_CASE(kmem_cache_double_destroy), |
2102 | KUNIT_CASE(kmem_cache_accounted), |
2103 | KUNIT_CASE(kmem_cache_bulk), |
2104 | KUNIT_CASE(mempool_kmalloc_oob_right), |
2105 | KUNIT_CASE(mempool_kmalloc_large_oob_right), |
2106 | KUNIT_CASE(mempool_slab_oob_right), |
2107 | KUNIT_CASE(mempool_kmalloc_uaf), |
2108 | KUNIT_CASE(mempool_kmalloc_large_uaf), |
2109 | KUNIT_CASE(mempool_slab_uaf), |
2110 | KUNIT_CASE(mempool_page_alloc_uaf), |
2111 | KUNIT_CASE(mempool_kmalloc_double_free), |
2112 | KUNIT_CASE(mempool_kmalloc_large_double_free), |
2113 | KUNIT_CASE(mempool_page_alloc_double_free), |
2114 | KUNIT_CASE(mempool_kmalloc_invalid_free), |
2115 | KUNIT_CASE(mempool_kmalloc_large_invalid_free), |
2116 | KUNIT_CASE(kasan_global_oob_right), |
2117 | KUNIT_CASE(kasan_global_oob_left), |
2118 | KUNIT_CASE(kasan_stack_oob), |
2119 | KUNIT_CASE(kasan_alloca_oob_left), |
2120 | KUNIT_CASE(kasan_alloca_oob_right), |
2121 | KUNIT_CASE(kasan_memchr), |
2122 | KUNIT_CASE(kasan_memcmp), |
2123 | KUNIT_CASE(kasan_strings), |
2124 | KUNIT_CASE(kasan_bitops_generic), |
2125 | KUNIT_CASE(kasan_bitops_tags), |
2126 | KUNIT_CASE_SLOW(kasan_atomics), |
2127 | KUNIT_CASE(vmalloc_helpers_tags), |
2128 | KUNIT_CASE(vmalloc_oob), |
2129 | KUNIT_CASE(vmap_tags), |
2130 | KUNIT_CASE(vm_map_ram_tags), |
2131 | KUNIT_CASE(match_all_not_assigned), |
2132 | KUNIT_CASE(match_all_ptr_tag), |
2133 | KUNIT_CASE(match_all_mem_tag), |
2134 | KUNIT_CASE(copy_to_kernel_nofault_oob), |
2135 | KUNIT_CASE(rust_uaf), |
2136 | KUNIT_CASE(copy_user_test_oob), |
2137 | {} |
2138 | }; |
2139 | |
2140 | static struct kunit_suite kasan_kunit_test_suite = { |
2141 | .name = "kasan" , |
2142 | .test_cases = kasan_kunit_test_cases, |
2143 | .exit = kasan_test_exit, |
2144 | .suite_init = kasan_suite_init, |
2145 | .suite_exit = kasan_suite_exit, |
2146 | }; |
2147 | |
2148 | kunit_test_suite(kasan_kunit_test_suite); |
2149 | |
2150 | MODULE_DESCRIPTION("KUnit tests for checking KASAN bug-detection capabilities" ); |
2151 | MODULE_LICENSE("GPL" ); |
2152 | |