1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * mm/mremap.c |
4 | * |
5 | * (C) Copyright 1996 Linus Torvalds |
6 | * |
7 | * Address space accounting code <alan@lxorguk.ukuu.org.uk> |
8 | * (C) Copyright 2002 Red Hat Inc, All Rights Reserved |
9 | */ |
10 | |
11 | #include <linux/mm.h> |
12 | #include <linux/mm_inline.h> |
13 | #include <linux/hugetlb.h> |
14 | #include <linux/shm.h> |
15 | #include <linux/ksm.h> |
16 | #include <linux/mman.h> |
17 | #include <linux/swap.h> |
18 | #include <linux/capability.h> |
19 | #include <linux/fs.h> |
20 | #include <linux/swapops.h> |
21 | #include <linux/highmem.h> |
22 | #include <linux/security.h> |
23 | #include <linux/syscalls.h> |
24 | #include <linux/mmu_notifier.h> |
25 | #include <linux/uaccess.h> |
26 | #include <linux/userfaultfd_k.h> |
27 | #include <linux/mempolicy.h> |
28 | |
29 | #include <asm/cacheflush.h> |
30 | #include <asm/tlb.h> |
31 | #include <asm/pgalloc.h> |
32 | |
33 | #include "internal.h" |
34 | |
35 | /* Classify the kind of remap operation being performed. */ |
36 | enum mremap_type { |
37 | MREMAP_INVALID, /* Initial state. */ |
38 | MREMAP_NO_RESIZE, /* old_len == new_len, if not moved, do nothing. */ |
39 | MREMAP_SHRINK, /* old_len > new_len. */ |
40 | MREMAP_EXPAND, /* old_len < new_len. */ |
41 | }; |
42 | |
43 | /* |
44 | * Describes a VMA mremap() operation and is threaded throughout it. |
45 | * |
46 | * Any of the fields may be mutated by the operation, however these values will |
47 | * always accurately reflect the remap (for instance, we may adjust lengths and |
48 | * delta to account for hugetlb alignment). |
49 | */ |
50 | struct vma_remap_struct { |
51 | /* User-provided state. */ |
52 | unsigned long addr; /* User-specified address from which we remap. */ |
53 | unsigned long old_len; /* Length of range being remapped. */ |
54 | unsigned long new_len; /* Desired new length of mapping. */ |
55 | unsigned long flags; /* user-specified MREMAP_* flags. */ |
56 | unsigned long new_addr; /* Optionally, desired new address. */ |
57 | |
58 | /* uffd state. */ |
59 | struct vm_userfaultfd_ctx *uf; |
60 | struct list_head *uf_unmap_early; |
61 | struct list_head *uf_unmap; |
62 | |
63 | /* VMA state, determined in do_mremap(). */ |
64 | struct vm_area_struct *vma; |
65 | |
66 | /* Internal state, determined in do_mremap(). */ |
67 | unsigned long delta; /* Absolute delta of old_len,new_len. */ |
68 | bool mlocked; /* Was the VMA mlock()'d? */ |
69 | enum mremap_type remap_type; /* expand, shrink, etc. */ |
70 | bool mmap_locked; /* Is mm currently write-locked? */ |
71 | unsigned long charged; /* If VM_ACCOUNT, # pages to account. */ |
72 | }; |
73 | |
74 | static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr) |
75 | { |
76 | pgd_t *pgd; |
77 | p4d_t *p4d; |
78 | pud_t *pud; |
79 | |
80 | pgd = pgd_offset(mm, addr); |
81 | if (pgd_none_or_clear_bad(pgd)) |
82 | return NULL; |
83 | |
84 | p4d = p4d_offset(pgd, address: addr); |
85 | if (p4d_none_or_clear_bad(p4d)) |
86 | return NULL; |
87 | |
88 | pud = pud_offset(p4d, address: addr); |
89 | if (pud_none_or_clear_bad(pud)) |
90 | return NULL; |
91 | |
92 | return pud; |
93 | } |
94 | |
95 | static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) |
96 | { |
97 | pud_t *pud; |
98 | pmd_t *pmd; |
99 | |
100 | pud = get_old_pud(mm, addr); |
101 | if (!pud) |
102 | return NULL; |
103 | |
104 | pmd = pmd_offset(pud, address: addr); |
105 | if (pmd_none(pmd: *pmd)) |
106 | return NULL; |
107 | |
108 | return pmd; |
109 | } |
110 | |
111 | static pud_t *alloc_new_pud(struct mm_struct *mm, unsigned long addr) |
112 | { |
113 | pgd_t *pgd; |
114 | p4d_t *p4d; |
115 | |
116 | pgd = pgd_offset(mm, addr); |
117 | p4d = p4d_alloc(mm, pgd, address: addr); |
118 | if (!p4d) |
119 | return NULL; |
120 | |
121 | return pud_alloc(mm, p4d, address: addr); |
122 | } |
123 | |
124 | static pmd_t *alloc_new_pmd(struct mm_struct *mm, unsigned long addr) |
125 | { |
126 | pud_t *pud; |
127 | pmd_t *pmd; |
128 | |
129 | pud = alloc_new_pud(mm, addr); |
130 | if (!pud) |
131 | return NULL; |
132 | |
133 | pmd = pmd_alloc(mm, pud, address: addr); |
134 | if (!pmd) |
135 | return NULL; |
136 | |
137 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
138 | |
139 | return pmd; |
140 | } |
141 | |
142 | static void take_rmap_locks(struct vm_area_struct *vma) |
143 | { |
144 | if (vma->vm_file) |
145 | i_mmap_lock_write(mapping: vma->vm_file->f_mapping); |
146 | if (vma->anon_vma) |
147 | anon_vma_lock_write(anon_vma: vma->anon_vma); |
148 | } |
149 | |
150 | static void drop_rmap_locks(struct vm_area_struct *vma) |
151 | { |
152 | if (vma->anon_vma) |
153 | anon_vma_unlock_write(anon_vma: vma->anon_vma); |
154 | if (vma->vm_file) |
155 | i_mmap_unlock_write(mapping: vma->vm_file->f_mapping); |
156 | } |
157 | |
158 | static pte_t move_soft_dirty_pte(pte_t pte) |
159 | { |
160 | /* |
161 | * Set soft dirty bit so we can notice |
162 | * in userspace the ptes were moved. |
163 | */ |
164 | #ifdef CONFIG_MEM_SOFT_DIRTY |
165 | if (pte_present(a: pte)) |
166 | pte = pte_mksoft_dirty(pte); |
167 | else if (is_swap_pte(pte)) |
168 | pte = pte_swp_mksoft_dirty(pte); |
169 | #endif |
170 | return pte; |
171 | } |
172 | |
173 | static int move_ptes(struct pagetable_move_control *pmc, |
174 | unsigned long extent, pmd_t *old_pmd, pmd_t *new_pmd) |
175 | { |
176 | struct vm_area_struct *vma = pmc->old; |
177 | bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); |
178 | struct mm_struct *mm = vma->vm_mm; |
179 | pte_t *old_pte, *new_pte, pte; |
180 | pmd_t dummy_pmdval; |
181 | spinlock_t *old_ptl, *new_ptl; |
182 | bool force_flush = false; |
183 | unsigned long old_addr = pmc->old_addr; |
184 | unsigned long new_addr = pmc->new_addr; |
185 | unsigned long old_end = old_addr + extent; |
186 | unsigned long len = old_end - old_addr; |
187 | int err = 0; |
188 | |
189 | /* |
190 | * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma |
191 | * locks to ensure that rmap will always observe either the old or the |
192 | * new ptes. This is the easiest way to avoid races with |
193 | * truncate_pagecache(), page migration, etc... |
194 | * |
195 | * When need_rmap_locks is false, we use other ways to avoid |
196 | * such races: |
197 | * |
198 | * - During exec() shift_arg_pages(), we use a specially tagged vma |
199 | * which rmap call sites look for using vma_is_temporary_stack(). |
200 | * |
201 | * - During mremap(), new_vma is often known to be placed after vma |
202 | * in rmap traversal order. This ensures rmap will always observe |
203 | * either the old pte, or the new pte, or both (the page table locks |
204 | * serialize access to individual ptes, but only rmap traversal |
205 | * order guarantees that we won't miss both the old and new ptes). |
206 | */ |
207 | if (pmc->need_rmap_locks) |
208 | take_rmap_locks(vma); |
209 | |
210 | /* |
211 | * We don't have to worry about the ordering of src and dst |
212 | * pte locks because exclusive mmap_lock prevents deadlock. |
213 | */ |
214 | old_pte = pte_offset_map_lock(mm, pmd: old_pmd, addr: old_addr, ptlp: &old_ptl); |
215 | if (!old_pte) { |
216 | err = -EAGAIN; |
217 | goto out; |
218 | } |
219 | /* |
220 | * Now new_pte is none, so hpage_collapse_scan_file() path can not find |
221 | * this by traversing file->f_mapping, so there is no concurrency with |
222 | * retract_page_tables(). In addition, we already hold the exclusive |
223 | * mmap_lock, so this new_pte page is stable, so there is no need to get |
224 | * pmdval and do pmd_same() check. |
225 | */ |
226 | new_pte = pte_offset_map_rw_nolock(mm, pmd: new_pmd, addr: new_addr, pmdvalp: &dummy_pmdval, |
227 | ptlp: &new_ptl); |
228 | if (!new_pte) { |
229 | pte_unmap_unlock(old_pte, old_ptl); |
230 | err = -EAGAIN; |
231 | goto out; |
232 | } |
233 | if (new_ptl != old_ptl) |
234 | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); |
235 | flush_tlb_batched_pending(mm: vma->vm_mm); |
236 | arch_enter_lazy_mmu_mode(); |
237 | |
238 | for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, |
239 | new_pte++, new_addr += PAGE_SIZE) { |
240 | VM_WARN_ON_ONCE(!pte_none(*new_pte)); |
241 | |
242 | if (pte_none(pte: ptep_get(ptep: old_pte))) |
243 | continue; |
244 | |
245 | pte = ptep_get_and_clear(mm, addr: old_addr, ptep: old_pte); |
246 | /* |
247 | * If we are remapping a valid PTE, make sure |
248 | * to flush TLB before we drop the PTL for the |
249 | * PTE. |
250 | * |
251 | * NOTE! Both old and new PTL matter: the old one |
252 | * for racing with folio_mkclean(), the new one to |
253 | * make sure the physical page stays valid until |
254 | * the TLB entry for the old mapping has been |
255 | * flushed. |
256 | */ |
257 | if (pte_present(a: pte)) |
258 | force_flush = true; |
259 | pte = move_pte(pte, old_addr, new_addr); |
260 | pte = move_soft_dirty_pte(pte); |
261 | |
262 | if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) |
263 | pte_clear(mm, addr: new_addr, ptep: new_pte); |
264 | else { |
265 | if (need_clear_uffd_wp) { |
266 | if (pte_present(a: pte)) |
267 | pte = pte_clear_uffd_wp(pte); |
268 | else if (is_swap_pte(pte)) |
269 | pte = pte_swp_clear_uffd_wp(pte); |
270 | } |
271 | set_pte_at(mm, new_addr, new_pte, pte); |
272 | } |
273 | } |
274 | |
275 | arch_leave_lazy_mmu_mode(); |
276 | if (force_flush) |
277 | flush_tlb_range(vma, old_end - len, old_end); |
278 | if (new_ptl != old_ptl) |
279 | spin_unlock(lock: new_ptl); |
280 | pte_unmap(pte: new_pte - 1); |
281 | pte_unmap_unlock(old_pte - 1, old_ptl); |
282 | out: |
283 | if (pmc->need_rmap_locks) |
284 | drop_rmap_locks(vma); |
285 | return err; |
286 | } |
287 | |
288 | #ifndef arch_supports_page_table_move |
289 | #define arch_supports_page_table_move arch_supports_page_table_move |
290 | static inline bool arch_supports_page_table_move(void) |
291 | { |
292 | return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) || |
293 | IS_ENABLED(CONFIG_HAVE_MOVE_PUD); |
294 | } |
295 | #endif |
296 | |
297 | #ifdef CONFIG_HAVE_MOVE_PMD |
298 | static bool move_normal_pmd(struct pagetable_move_control *pmc, |
299 | pmd_t *old_pmd, pmd_t *new_pmd) |
300 | { |
301 | spinlock_t *old_ptl, *new_ptl; |
302 | struct vm_area_struct *vma = pmc->old; |
303 | struct mm_struct *mm = vma->vm_mm; |
304 | bool res = false; |
305 | pmd_t pmd; |
306 | |
307 | if (!arch_supports_page_table_move()) |
308 | return false; |
309 | /* |
310 | * The destination pmd shouldn't be established, free_pgtables() |
311 | * should have released it. |
312 | * |
313 | * However, there's a case during execve() where we use mremap |
314 | * to move the initial stack, and in that case the target area |
315 | * may overlap the source area (always moving down). |
316 | * |
317 | * If everything is PMD-aligned, that works fine, as moving |
318 | * each pmd down will clear the source pmd. But if we first |
319 | * have a few 4kB-only pages that get moved down, and then |
320 | * hit the "now the rest is PMD-aligned, let's do everything |
321 | * one pmd at a time", we will still have the old (now empty |
322 | * of any 4kB pages, but still there) PMD in the page table |
323 | * tree. |
324 | * |
325 | * Warn on it once - because we really should try to figure |
326 | * out how to do this better - but then say "I won't move |
327 | * this pmd". |
328 | * |
329 | * One alternative might be to just unmap the target pmd at |
330 | * this point, and verify that it really is empty. We'll see. |
331 | */ |
332 | if (WARN_ON_ONCE(!pmd_none(*new_pmd))) |
333 | return false; |
334 | |
335 | /* If this pmd belongs to a uffd vma with remap events disabled, we need |
336 | * to ensure that the uffd-wp state is cleared from all pgtables. This |
337 | * means recursing into lower page tables in move_page_tables(), and we |
338 | * can reuse the existing code if we simply treat the entry as "not |
339 | * moved". |
340 | */ |
341 | if (vma_has_uffd_without_event_remap(vma)) |
342 | return false; |
343 | |
344 | /* |
345 | * We don't have to worry about the ordering of src and dst |
346 | * ptlocks because exclusive mmap_lock prevents deadlock. |
347 | */ |
348 | old_ptl = pmd_lock(mm, pmd: old_pmd); |
349 | new_ptl = pmd_lockptr(mm, pmd: new_pmd); |
350 | if (new_ptl != old_ptl) |
351 | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); |
352 | |
353 | pmd = *old_pmd; |
354 | |
355 | /* Racing with collapse? */ |
356 | if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd))) |
357 | goto out_unlock; |
358 | /* Clear the pmd */ |
359 | pmd_clear(pmdp: old_pmd); |
360 | res = true; |
361 | |
362 | VM_BUG_ON(!pmd_none(*new_pmd)); |
363 | |
364 | pmd_populate(mm, pmd: new_pmd, pmd_pgtable(pmd)); |
365 | flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PMD_SIZE); |
366 | out_unlock: |
367 | if (new_ptl != old_ptl) |
368 | spin_unlock(lock: new_ptl); |
369 | spin_unlock(lock: old_ptl); |
370 | |
371 | return res; |
372 | } |
373 | #else |
374 | static inline bool move_normal_pmd(struct pagetable_move_control *pmc, |
375 | pmd_t *old_pmd, pmd_t *new_pmd) |
376 | { |
377 | return false; |
378 | } |
379 | #endif |
380 | |
381 | #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD) |
382 | static bool move_normal_pud(struct pagetable_move_control *pmc, |
383 | pud_t *old_pud, pud_t *new_pud) |
384 | { |
385 | spinlock_t *old_ptl, *new_ptl; |
386 | struct vm_area_struct *vma = pmc->old; |
387 | struct mm_struct *mm = vma->vm_mm; |
388 | pud_t pud; |
389 | |
390 | if (!arch_supports_page_table_move()) |
391 | return false; |
392 | /* |
393 | * The destination pud shouldn't be established, free_pgtables() |
394 | * should have released it. |
395 | */ |
396 | if (WARN_ON_ONCE(!pud_none(*new_pud))) |
397 | return false; |
398 | |
399 | /* If this pud belongs to a uffd vma with remap events disabled, we need |
400 | * to ensure that the uffd-wp state is cleared from all pgtables. This |
401 | * means recursing into lower page tables in move_page_tables(), and we |
402 | * can reuse the existing code if we simply treat the entry as "not |
403 | * moved". |
404 | */ |
405 | if (vma_has_uffd_without_event_remap(vma)) |
406 | return false; |
407 | |
408 | /* |
409 | * We don't have to worry about the ordering of src and dst |
410 | * ptlocks because exclusive mmap_lock prevents deadlock. |
411 | */ |
412 | old_ptl = pud_lock(mm, pud: old_pud); |
413 | new_ptl = pud_lockptr(mm, pud: new_pud); |
414 | if (new_ptl != old_ptl) |
415 | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); |
416 | |
417 | /* Clear the pud */ |
418 | pud = *old_pud; |
419 | pud_clear(pudp: old_pud); |
420 | |
421 | VM_BUG_ON(!pud_none(*new_pud)); |
422 | |
423 | pud_populate(mm, pud: new_pud, pmd: pud_pgtable(pud)); |
424 | flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PUD_SIZE); |
425 | if (new_ptl != old_ptl) |
426 | spin_unlock(lock: new_ptl); |
427 | spin_unlock(lock: old_ptl); |
428 | |
429 | return true; |
430 | } |
431 | #else |
432 | static inline bool move_normal_pud(struct pagetable_move_control *pmc, |
433 | pud_t *old_pud, pud_t *new_pud) |
434 | { |
435 | return false; |
436 | } |
437 | #endif |
438 | |
439 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) |
440 | static bool move_huge_pud(struct pagetable_move_control *pmc, |
441 | pud_t *old_pud, pud_t *new_pud) |
442 | { |
443 | spinlock_t *old_ptl, *new_ptl; |
444 | struct vm_area_struct *vma = pmc->old; |
445 | struct mm_struct *mm = vma->vm_mm; |
446 | pud_t pud; |
447 | |
448 | /* |
449 | * The destination pud shouldn't be established, free_pgtables() |
450 | * should have released it. |
451 | */ |
452 | if (WARN_ON_ONCE(!pud_none(*new_pud))) |
453 | return false; |
454 | |
455 | /* |
456 | * We don't have to worry about the ordering of src and dst |
457 | * ptlocks because exclusive mmap_lock prevents deadlock. |
458 | */ |
459 | old_ptl = pud_lock(mm, pud: old_pud); |
460 | new_ptl = pud_lockptr(mm, pud: new_pud); |
461 | if (new_ptl != old_ptl) |
462 | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); |
463 | |
464 | /* Clear the pud */ |
465 | pud = *old_pud; |
466 | pud_clear(pudp: old_pud); |
467 | |
468 | VM_BUG_ON(!pud_none(*new_pud)); |
469 | |
470 | /* Set the new pud */ |
471 | /* mark soft_ditry when we add pud level soft dirty support */ |
472 | set_pud_at(mm, addr: pmc->new_addr, pudp: new_pud, pud); |
473 | flush_pud_tlb_range(vma, pmc->old_addr, pmc->old_addr + HPAGE_PUD_SIZE); |
474 | if (new_ptl != old_ptl) |
475 | spin_unlock(lock: new_ptl); |
476 | spin_unlock(lock: old_ptl); |
477 | |
478 | return true; |
479 | } |
480 | #else |
481 | static bool move_huge_pud(struct pagetable_move_control *pmc, |
482 | pud_t *old_pud, pud_t *new_pud) |
483 | |
484 | { |
485 | WARN_ON_ONCE(1); |
486 | return false; |
487 | |
488 | } |
489 | #endif |
490 | |
491 | enum pgt_entry { |
492 | NORMAL_PMD, |
493 | HPAGE_PMD, |
494 | NORMAL_PUD, |
495 | HPAGE_PUD, |
496 | }; |
497 | |
498 | /* |
499 | * Returns an extent of the corresponding size for the pgt_entry specified if |
500 | * valid. Else returns a smaller extent bounded by the end of the source and |
501 | * destination pgt_entry. |
502 | */ |
503 | static __always_inline unsigned long get_extent(enum pgt_entry entry, |
504 | struct pagetable_move_control *pmc) |
505 | { |
506 | unsigned long next, extent, mask, size; |
507 | unsigned long old_addr = pmc->old_addr; |
508 | unsigned long old_end = pmc->old_end; |
509 | unsigned long new_addr = pmc->new_addr; |
510 | |
511 | switch (entry) { |
512 | case HPAGE_PMD: |
513 | case NORMAL_PMD: |
514 | mask = PMD_MASK; |
515 | size = PMD_SIZE; |
516 | break; |
517 | case HPAGE_PUD: |
518 | case NORMAL_PUD: |
519 | mask = PUD_MASK; |
520 | size = PUD_SIZE; |
521 | break; |
522 | default: |
523 | BUILD_BUG(); |
524 | break; |
525 | } |
526 | |
527 | next = (old_addr + size) & mask; |
528 | /* even if next overflowed, extent below will be ok */ |
529 | extent = next - old_addr; |
530 | if (extent > old_end - old_addr) |
531 | extent = old_end - old_addr; |
532 | next = (new_addr + size) & mask; |
533 | if (extent > next - new_addr) |
534 | extent = next - new_addr; |
535 | return extent; |
536 | } |
537 | |
538 | /* |
539 | * Should move_pgt_entry() acquire the rmap locks? This is either expressed in |
540 | * the PMC, or overridden in the case of normal, larger page tables. |
541 | */ |
542 | static bool should_take_rmap_locks(struct pagetable_move_control *pmc, |
543 | enum pgt_entry entry) |
544 | { |
545 | switch (entry) { |
546 | case NORMAL_PMD: |
547 | case NORMAL_PUD: |
548 | return true; |
549 | default: |
550 | return pmc->need_rmap_locks; |
551 | } |
552 | } |
553 | |
554 | /* |
555 | * Attempts to speedup the move by moving entry at the level corresponding to |
556 | * pgt_entry. Returns true if the move was successful, else false. |
557 | */ |
558 | static bool move_pgt_entry(struct pagetable_move_control *pmc, |
559 | enum pgt_entry entry, void *old_entry, void *new_entry) |
560 | { |
561 | bool moved = false; |
562 | bool need_rmap_locks = should_take_rmap_locks(pmc, entry); |
563 | |
564 | /* See comment in move_ptes() */ |
565 | if (need_rmap_locks) |
566 | take_rmap_locks(vma: pmc->old); |
567 | |
568 | switch (entry) { |
569 | case NORMAL_PMD: |
570 | moved = move_normal_pmd(pmc, old_pmd: old_entry, new_pmd: new_entry); |
571 | break; |
572 | case NORMAL_PUD: |
573 | moved = move_normal_pud(pmc, old_pud: old_entry, new_pud: new_entry); |
574 | break; |
575 | case HPAGE_PMD: |
576 | moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && |
577 | move_huge_pmd(vma: pmc->old, old_addr: pmc->old_addr, new_addr: pmc->new_addr, old_pmd: old_entry, |
578 | new_pmd: new_entry); |
579 | break; |
580 | case HPAGE_PUD: |
581 | moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && |
582 | move_huge_pud(pmc, old_pud: old_entry, new_pud: new_entry); |
583 | break; |
584 | |
585 | default: |
586 | WARN_ON_ONCE(1); |
587 | break; |
588 | } |
589 | |
590 | if (need_rmap_locks) |
591 | drop_rmap_locks(vma: pmc->old); |
592 | |
593 | return moved; |
594 | } |
595 | |
596 | /* |
597 | * A helper to check if aligning down is OK. The aligned address should fall |
598 | * on *no mapping*. For the stack moving down, that's a special move within |
599 | * the VMA that is created to span the source and destination of the move, |
600 | * so we make an exception for it. |
601 | */ |
602 | static bool can_align_down(struct pagetable_move_control *pmc, |
603 | struct vm_area_struct *vma, unsigned long addr_to_align, |
604 | unsigned long mask) |
605 | { |
606 | unsigned long addr_masked = addr_to_align & mask; |
607 | |
608 | /* |
609 | * If @addr_to_align of either source or destination is not the beginning |
610 | * of the corresponding VMA, we can't align down or we will destroy part |
611 | * of the current mapping. |
612 | */ |
613 | if (!pmc->for_stack && vma->vm_start != addr_to_align) |
614 | return false; |
615 | |
616 | /* In the stack case we explicitly permit in-VMA alignment. */ |
617 | if (pmc->for_stack && addr_masked >= vma->vm_start) |
618 | return true; |
619 | |
620 | /* |
621 | * Make sure the realignment doesn't cause the address to fall on an |
622 | * existing mapping. |
623 | */ |
624 | return find_vma_intersection(mm: vma->vm_mm, start_addr: addr_masked, end_addr: vma->vm_start) == NULL; |
625 | } |
626 | |
627 | /* |
628 | * Determine if are in fact able to realign for efficiency to a higher page |
629 | * table boundary. |
630 | */ |
631 | static bool can_realign_addr(struct pagetable_move_control *pmc, |
632 | unsigned long pagetable_mask) |
633 | { |
634 | unsigned long align_mask = ~pagetable_mask; |
635 | unsigned long old_align = pmc->old_addr & align_mask; |
636 | unsigned long new_align = pmc->new_addr & align_mask; |
637 | unsigned long pagetable_size = align_mask + 1; |
638 | unsigned long old_align_next = pagetable_size - old_align; |
639 | |
640 | /* |
641 | * We don't want to have to go hunting for VMAs from the end of the old |
642 | * VMA to the next page table boundary, also we want to make sure the |
643 | * operation is wortwhile. |
644 | * |
645 | * So ensure that we only perform this realignment if the end of the |
646 | * range being copied reaches or crosses the page table boundary. |
647 | * |
648 | * boundary boundary |
649 | * .<- old_align -> . |
650 | * . |----------------.-----------| |
651 | * . | vma . | |
652 | * . |----------------.-----------| |
653 | * . <----------------.-----------> |
654 | * . len_in |
655 | * <-------------------------------> |
656 | * . pagetable_size . |
657 | * . <----------------> |
658 | * . old_align_next . |
659 | */ |
660 | if (pmc->len_in < old_align_next) |
661 | return false; |
662 | |
663 | /* Skip if the addresses are already aligned. */ |
664 | if (old_align == 0) |
665 | return false; |
666 | |
667 | /* Only realign if the new and old addresses are mutually aligned. */ |
668 | if (old_align != new_align) |
669 | return false; |
670 | |
671 | /* Ensure realignment doesn't cause overlap with existing mappings. */ |
672 | if (!can_align_down(pmc, vma: pmc->old, addr_to_align: pmc->old_addr, mask: pagetable_mask) || |
673 | !can_align_down(pmc, vma: pmc->new, addr_to_align: pmc->new_addr, mask: pagetable_mask)) |
674 | return false; |
675 | |
676 | return true; |
677 | } |
678 | |
679 | /* |
680 | * Opportunistically realign to specified boundary for faster copy. |
681 | * |
682 | * Consider an mremap() of a VMA with page table boundaries as below, and no |
683 | * preceding VMAs from the lower page table boundary to the start of the VMA, |
684 | * with the end of the range reaching or crossing the page table boundary. |
685 | * |
686 | * boundary boundary |
687 | * . |----------------.-----------| |
688 | * . | vma . | |
689 | * . |----------------.-----------| |
690 | * . pmc->old_addr . pmc->old_end |
691 | * . <----------------------------> |
692 | * . move these page tables |
693 | * |
694 | * If we proceed with moving page tables in this scenario, we will have a lot of |
695 | * work to do traversing old page tables and establishing new ones in the |
696 | * destination across multiple lower level page tables. |
697 | * |
698 | * The idea here is simply to align pmc->old_addr, pmc->new_addr down to the |
699 | * page table boundary, so we can simply copy a single page table entry for the |
700 | * aligned portion of the VMA instead: |
701 | * |
702 | * boundary boundary |
703 | * . |----------------.-----------| |
704 | * . | vma . | |
705 | * . |----------------.-----------| |
706 | * pmc->old_addr . pmc->old_end |
707 | * <-------------------------------------------> |
708 | * . move these page tables |
709 | */ |
710 | static void try_realign_addr(struct pagetable_move_control *pmc, |
711 | unsigned long pagetable_mask) |
712 | { |
713 | |
714 | if (!can_realign_addr(pmc, pagetable_mask)) |
715 | return; |
716 | |
717 | /* |
718 | * Simply align to page table boundaries. Note that we do NOT update the |
719 | * pmc->old_end value, and since the move_page_tables() operation spans |
720 | * from [old_addr, old_end) (offsetting new_addr as it is performed), |
721 | * this simply changes the start of the copy, not the end. |
722 | */ |
723 | pmc->old_addr &= pagetable_mask; |
724 | pmc->new_addr &= pagetable_mask; |
725 | } |
726 | |
727 | /* Is the page table move operation done? */ |
728 | static bool pmc_done(struct pagetable_move_control *pmc) |
729 | { |
730 | return pmc->old_addr >= pmc->old_end; |
731 | } |
732 | |
733 | /* Advance to the next page table, offset by extent bytes. */ |
734 | static void pmc_next(struct pagetable_move_control *pmc, unsigned long extent) |
735 | { |
736 | pmc->old_addr += extent; |
737 | pmc->new_addr += extent; |
738 | } |
739 | |
740 | /* |
741 | * Determine how many bytes in the specified input range have had their page |
742 | * tables moved so far. |
743 | */ |
744 | static unsigned long pmc_progress(struct pagetable_move_control *pmc) |
745 | { |
746 | unsigned long orig_old_addr = pmc->old_end - pmc->len_in; |
747 | unsigned long old_addr = pmc->old_addr; |
748 | |
749 | /* |
750 | * Prevent negative return values when {old,new}_addr was realigned but |
751 | * we broke out of the loop in move_page_tables() for the first PMD |
752 | * itself. |
753 | */ |
754 | return old_addr < orig_old_addr ? 0 : old_addr - orig_old_addr; |
755 | } |
756 | |
757 | unsigned long move_page_tables(struct pagetable_move_control *pmc) |
758 | { |
759 | unsigned long extent; |
760 | struct mmu_notifier_range range; |
761 | pmd_t *old_pmd, *new_pmd; |
762 | pud_t *old_pud, *new_pud; |
763 | struct mm_struct *mm = pmc->old->vm_mm; |
764 | |
765 | if (!pmc->len_in) |
766 | return 0; |
767 | |
768 | if (is_vm_hugetlb_page(vma: pmc->old)) |
769 | return move_hugetlb_page_tables(vma: pmc->old, new_vma: pmc->new, old_addr: pmc->old_addr, |
770 | new_addr: pmc->new_addr, len: pmc->len_in); |
771 | |
772 | /* |
773 | * If possible, realign addresses to PMD boundary for faster copy. |
774 | * Only realign if the mremap copying hits a PMD boundary. |
775 | */ |
776 | try_realign_addr(pmc, PMD_MASK); |
777 | |
778 | flush_cache_range(vma: pmc->old, start: pmc->old_addr, end: pmc->old_end); |
779 | mmu_notifier_range_init(range: &range, event: MMU_NOTIFY_UNMAP, flags: 0, mm, |
780 | start: pmc->old_addr, end: pmc->old_end); |
781 | mmu_notifier_invalidate_range_start(range: &range); |
782 | |
783 | for (; !pmc_done(pmc); pmc_next(pmc, extent)) { |
784 | cond_resched(); |
785 | /* |
786 | * If extent is PUD-sized try to speed up the move by moving at the |
787 | * PUD level if possible. |
788 | */ |
789 | extent = get_extent(entry: NORMAL_PUD, pmc); |
790 | |
791 | old_pud = get_old_pud(mm, addr: pmc->old_addr); |
792 | if (!old_pud) |
793 | continue; |
794 | new_pud = alloc_new_pud(mm, addr: pmc->new_addr); |
795 | if (!new_pud) |
796 | break; |
797 | if (pud_trans_huge(pud: *old_pud) || pud_devmap(pud: *old_pud)) { |
798 | if (extent == HPAGE_PUD_SIZE) { |
799 | move_pgt_entry(pmc, entry: HPAGE_PUD, old_entry: old_pud, new_entry: new_pud); |
800 | /* We ignore and continue on error? */ |
801 | continue; |
802 | } |
803 | } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) { |
804 | if (move_pgt_entry(pmc, entry: NORMAL_PUD, old_entry: old_pud, new_entry: new_pud)) |
805 | continue; |
806 | } |
807 | |
808 | extent = get_extent(entry: NORMAL_PMD, pmc); |
809 | old_pmd = get_old_pmd(mm, addr: pmc->old_addr); |
810 | if (!old_pmd) |
811 | continue; |
812 | new_pmd = alloc_new_pmd(mm, addr: pmc->new_addr); |
813 | if (!new_pmd) |
814 | break; |
815 | again: |
816 | if (is_swap_pmd(pmd: *old_pmd) || pmd_trans_huge(pmd: *old_pmd) || |
817 | pmd_devmap(pmd: *old_pmd)) { |
818 | if (extent == HPAGE_PMD_SIZE && |
819 | move_pgt_entry(pmc, entry: HPAGE_PMD, old_entry: old_pmd, new_entry: new_pmd)) |
820 | continue; |
821 | split_huge_pmd(pmc->old, old_pmd, pmc->old_addr); |
822 | } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) && |
823 | extent == PMD_SIZE) { |
824 | /* |
825 | * If the extent is PMD-sized, try to speed the move by |
826 | * moving at the PMD level if possible. |
827 | */ |
828 | if (move_pgt_entry(pmc, entry: NORMAL_PMD, old_entry: old_pmd, new_entry: new_pmd)) |
829 | continue; |
830 | } |
831 | if (pmd_none(pmd: *old_pmd)) |
832 | continue; |
833 | if (pte_alloc(pmc->new->vm_mm, new_pmd)) |
834 | break; |
835 | if (move_ptes(pmc, extent, old_pmd, new_pmd) < 0) |
836 | goto again; |
837 | } |
838 | |
839 | mmu_notifier_invalidate_range_end(range: &range); |
840 | |
841 | return pmc_progress(pmc); |
842 | } |
843 | |
844 | /* Set vrm->delta to the difference in VMA size specified by user. */ |
845 | static void vrm_set_delta(struct vma_remap_struct *vrm) |
846 | { |
847 | vrm->delta = abs_diff(vrm->old_len, vrm->new_len); |
848 | } |
849 | |
850 | /* Determine what kind of remap this is - shrink, expand or no resize at all. */ |
851 | static enum mremap_type vrm_remap_type(struct vma_remap_struct *vrm) |
852 | { |
853 | if (vrm->delta == 0) |
854 | return MREMAP_NO_RESIZE; |
855 | |
856 | if (vrm->old_len > vrm->new_len) |
857 | return MREMAP_SHRINK; |
858 | |
859 | return MREMAP_EXPAND; |
860 | } |
861 | |
862 | /* |
863 | * When moving a VMA to vrm->new_adr, does this result in the new and old VMAs |
864 | * overlapping? |
865 | */ |
866 | static bool vrm_overlaps(struct vma_remap_struct *vrm) |
867 | { |
868 | unsigned long start_old = vrm->addr; |
869 | unsigned long start_new = vrm->new_addr; |
870 | unsigned long end_old = vrm->addr + vrm->old_len; |
871 | unsigned long end_new = vrm->new_addr + vrm->new_len; |
872 | |
873 | /* |
874 | * start_old end_old |
875 | * |-----------| |
876 | * | | |
877 | * |-----------| |
878 | * |-------------| |
879 | * | | |
880 | * |-------------| |
881 | * start_new end_new |
882 | */ |
883 | if (end_old > start_new && end_new > start_old) |
884 | return true; |
885 | |
886 | return false; |
887 | } |
888 | |
889 | /* Do the mremap() flags require that the new_addr parameter be specified? */ |
890 | static bool vrm_implies_new_addr(struct vma_remap_struct *vrm) |
891 | { |
892 | return vrm->flags & (MREMAP_FIXED | MREMAP_DONTUNMAP); |
893 | } |
894 | |
895 | /* |
896 | * Find an unmapped area for the requested vrm->new_addr. |
897 | * |
898 | * If MREMAP_FIXED then this is equivalent to a MAP_FIXED mmap() call. If only |
899 | * MREMAP_DONTUNMAP is set, then this is equivalent to providing a hint to |
900 | * mmap(), otherwise this is equivalent to mmap() specifying a NULL address. |
901 | * |
902 | * Returns 0 on success (with vrm->new_addr updated), or an error code upon |
903 | * failure. |
904 | */ |
905 | static unsigned long vrm_set_new_addr(struct vma_remap_struct *vrm) |
906 | { |
907 | struct vm_area_struct *vma = vrm->vma; |
908 | unsigned long map_flags = 0; |
909 | /* Page Offset _into_ the VMA. */ |
910 | pgoff_t internal_pgoff = (vrm->addr - vma->vm_start) >> PAGE_SHIFT; |
911 | pgoff_t pgoff = vma->vm_pgoff + internal_pgoff; |
912 | unsigned long new_addr = vrm_implies_new_addr(vrm) ? vrm->new_addr : 0; |
913 | unsigned long res; |
914 | |
915 | if (vrm->flags & MREMAP_FIXED) |
916 | map_flags |= MAP_FIXED; |
917 | if (vma->vm_flags & VM_MAYSHARE) |
918 | map_flags |= MAP_SHARED; |
919 | |
920 | res = get_unmapped_area(file: vma->vm_file, addr: new_addr, len: vrm->new_len, pgoff, |
921 | flags: map_flags); |
922 | if (IS_ERR_VALUE(res)) |
923 | return res; |
924 | |
925 | vrm->new_addr = res; |
926 | return 0; |
927 | } |
928 | |
929 | /* |
930 | * Keep track of pages which have been added to the memory mapping. If the VMA |
931 | * is accounted, also check to see if there is sufficient memory. |
932 | * |
933 | * Returns true on success, false if insufficient memory to charge. |
934 | */ |
935 | static bool vrm_charge(struct vma_remap_struct *vrm) |
936 | { |
937 | unsigned long charged; |
938 | |
939 | if (!(vrm->vma->vm_flags & VM_ACCOUNT)) |
940 | return true; |
941 | |
942 | /* |
943 | * If we don't unmap the old mapping, then we account the entirety of |
944 | * the length of the new one. Otherwise it's just the delta in size. |
945 | */ |
946 | if (vrm->flags & MREMAP_DONTUNMAP) |
947 | charged = vrm->new_len >> PAGE_SHIFT; |
948 | else |
949 | charged = vrm->delta >> PAGE_SHIFT; |
950 | |
951 | |
952 | /* This accounts 'charged' pages of memory. */ |
953 | if (security_vm_enough_memory_mm(current->mm, pages: charged)) |
954 | return false; |
955 | |
956 | vrm->charged = charged; |
957 | return true; |
958 | } |
959 | |
960 | /* |
961 | * an error has occurred so we will not be using vrm->charged memory. Unaccount |
962 | * this memory if the VMA is accounted. |
963 | */ |
964 | static void vrm_uncharge(struct vma_remap_struct *vrm) |
965 | { |
966 | if (!(vrm->vma->vm_flags & VM_ACCOUNT)) |
967 | return; |
968 | |
969 | vm_unacct_memory(pages: vrm->charged); |
970 | vrm->charged = 0; |
971 | } |
972 | |
973 | /* |
974 | * Update mm exec_vm, stack_vm, data_vm, and locked_vm fields as needed to |
975 | * account for 'bytes' memory used, and if locked, indicate this in the VRM so |
976 | * we can handle this correctly later. |
977 | */ |
978 | static void vrm_stat_account(struct vma_remap_struct *vrm, |
979 | unsigned long bytes) |
980 | { |
981 | unsigned long pages = bytes >> PAGE_SHIFT; |
982 | struct mm_struct *mm = current->mm; |
983 | struct vm_area_struct *vma = vrm->vma; |
984 | |
985 | vm_stat_account(mm, vma->vm_flags, npages: pages); |
986 | if (vma->vm_flags & VM_LOCKED) { |
987 | mm->locked_vm += pages; |
988 | vrm->mlocked = true; |
989 | } |
990 | } |
991 | |
992 | /* |
993 | * Perform checks before attempting to write a VMA prior to it being |
994 | * moved. |
995 | */ |
996 | static unsigned long prep_move_vma(struct vma_remap_struct *vrm) |
997 | { |
998 | unsigned long err = 0; |
999 | struct vm_area_struct *vma = vrm->vma; |
1000 | unsigned long old_addr = vrm->addr; |
1001 | unsigned long old_len = vrm->old_len; |
1002 | unsigned long dummy = vma->vm_flags; |
1003 | |
1004 | /* |
1005 | * We'd prefer to avoid failure later on in do_munmap: |
1006 | * which may split one vma into three before unmapping. |
1007 | */ |
1008 | if (current->mm->map_count >= sysctl_max_map_count - 3) |
1009 | return -ENOMEM; |
1010 | |
1011 | if (vma->vm_ops && vma->vm_ops->may_split) { |
1012 | if (vma->vm_start != old_addr) |
1013 | err = vma->vm_ops->may_split(vma, old_addr); |
1014 | if (!err && vma->vm_end != old_addr + old_len) |
1015 | err = vma->vm_ops->may_split(vma, old_addr + old_len); |
1016 | if (err) |
1017 | return err; |
1018 | } |
1019 | |
1020 | /* |
1021 | * Advise KSM to break any KSM pages in the area to be moved: |
1022 | * it would be confusing if they were to turn up at the new |
1023 | * location, where they happen to coincide with different KSM |
1024 | * pages recently unmapped. But leave vma->vm_flags as it was, |
1025 | * so KSM can come around to merge on vma and new_vma afterwards. |
1026 | */ |
1027 | err = ksm_madvise(vma, start: old_addr, end: old_addr + old_len, |
1028 | MADV_UNMERGEABLE, vm_flags: &dummy); |
1029 | if (err) |
1030 | return err; |
1031 | |
1032 | return 0; |
1033 | } |
1034 | |
1035 | /* |
1036 | * Unmap source VMA for VMA move, turning it from a copy to a move, being |
1037 | * careful to ensure we do not underflow memory account while doing so if an |
1038 | * accountable move. |
1039 | * |
1040 | * This is best effort, if we fail to unmap then we simply try to correct |
1041 | * accounting and exit. |
1042 | */ |
1043 | static void unmap_source_vma(struct vma_remap_struct *vrm) |
1044 | { |
1045 | struct mm_struct *mm = current->mm; |
1046 | unsigned long addr = vrm->addr; |
1047 | unsigned long len = vrm->old_len; |
1048 | struct vm_area_struct *vma = vrm->vma; |
1049 | VMA_ITERATOR(vmi, mm, addr); |
1050 | int err; |
1051 | unsigned long vm_start; |
1052 | unsigned long vm_end; |
1053 | /* |
1054 | * It might seem odd that we check for MREMAP_DONTUNMAP here, given this |
1055 | * function implies that we unmap the original VMA, which seems |
1056 | * contradictory. |
1057 | * |
1058 | * However, this occurs when this operation was attempted and an error |
1059 | * arose, in which case we _do_ wish to unmap the _new_ VMA, which means |
1060 | * we actually _do_ want it be unaccounted. |
1061 | */ |
1062 | bool accountable_move = (vma->vm_flags & VM_ACCOUNT) && |
1063 | !(vrm->flags & MREMAP_DONTUNMAP); |
1064 | |
1065 | /* |
1066 | * So we perform a trick here to prevent incorrect accounting. Any merge |
1067 | * or new VMA allocation performed in copy_vma() does not adjust |
1068 | * accounting, it is expected that callers handle this. |
1069 | * |
1070 | * And indeed we already have, accounting appropriately in the case of |
1071 | * both in vrm_charge(). |
1072 | * |
1073 | * However, when we unmap the existing VMA (to effect the move), this |
1074 | * code will, if the VMA has VM_ACCOUNT set, attempt to unaccount |
1075 | * removed pages. |
1076 | * |
1077 | * To avoid this we temporarily clear this flag, reinstating on any |
1078 | * portions of the original VMA that remain. |
1079 | */ |
1080 | if (accountable_move) { |
1081 | vm_flags_clear(vma, VM_ACCOUNT); |
1082 | /* We are about to split vma, so store the start/end. */ |
1083 | vm_start = vma->vm_start; |
1084 | vm_end = vma->vm_end; |
1085 | } |
1086 | |
1087 | err = do_vmi_munmap(vmi: &vmi, mm, start: addr, len, uf: vrm->uf_unmap, /* unlock= */false); |
1088 | vrm->vma = NULL; /* Invalidated. */ |
1089 | if (err) { |
1090 | /* OOM: unable to split vma, just get accounts right */ |
1091 | vm_acct_memory(pages: len >> PAGE_SHIFT); |
1092 | return; |
1093 | } |
1094 | |
1095 | /* |
1096 | * If we mremap() from a VMA like this: |
1097 | * |
1098 | * addr end |
1099 | * | | |
1100 | * v v |
1101 | * |-------------| |
1102 | * | | |
1103 | * |-------------| |
1104 | * |
1105 | * Having cleared VM_ACCOUNT from the whole VMA, after we unmap above |
1106 | * we'll end up with: |
1107 | * |
1108 | * addr end |
1109 | * | | |
1110 | * v v |
1111 | * |---| |---| |
1112 | * | A | | B | |
1113 | * |---| |---| |
1114 | * |
1115 | * The VMI is still pointing at addr, so vma_prev() will give us A, and |
1116 | * a subsequent or lone vma_next() will give as B. |
1117 | * |
1118 | * do_vmi_munmap() will have restored the VMI back to addr. |
1119 | */ |
1120 | if (accountable_move) { |
1121 | unsigned long end = addr + len; |
1122 | |
1123 | if (vm_start < addr) { |
1124 | struct vm_area_struct *prev = vma_prev(vmi: &vmi); |
1125 | |
1126 | vm_flags_set(vma: prev, VM_ACCOUNT); /* Acquires VMA lock. */ |
1127 | } |
1128 | |
1129 | if (vm_end > end) { |
1130 | struct vm_area_struct *next = vma_next(vmi: &vmi); |
1131 | |
1132 | vm_flags_set(vma: next, VM_ACCOUNT); /* Acquires VMA lock. */ |
1133 | } |
1134 | } |
1135 | } |
1136 | |
1137 | /* |
1138 | * Copy vrm->vma over to vrm->new_addr possibly adjusting size as part of the |
1139 | * process. Additionally handle an error occurring on moving of page tables, |
1140 | * where we reset vrm state to cause unmapping of the new VMA. |
1141 | * |
1142 | * Outputs the newly installed VMA to new_vma_ptr. Returns 0 on success or an |
1143 | * error code. |
1144 | */ |
1145 | static int copy_vma_and_data(struct vma_remap_struct *vrm, |
1146 | struct vm_area_struct **new_vma_ptr) |
1147 | { |
1148 | unsigned long internal_offset = vrm->addr - vrm->vma->vm_start; |
1149 | unsigned long internal_pgoff = internal_offset >> PAGE_SHIFT; |
1150 | unsigned long new_pgoff = vrm->vma->vm_pgoff + internal_pgoff; |
1151 | unsigned long moved_len; |
1152 | struct vm_area_struct *vma = vrm->vma; |
1153 | struct vm_area_struct *new_vma; |
1154 | int err = 0; |
1155 | PAGETABLE_MOVE(pmc, NULL, NULL, vrm->addr, vrm->new_addr, vrm->old_len); |
1156 | |
1157 | new_vma = copy_vma(vmap: &vma, addr: vrm->new_addr, len: vrm->new_len, pgoff: new_pgoff, |
1158 | need_rmap_locks: &pmc.need_rmap_locks); |
1159 | if (!new_vma) { |
1160 | vrm_uncharge(vrm); |
1161 | *new_vma_ptr = NULL; |
1162 | return -ENOMEM; |
1163 | } |
1164 | vrm->vma = vma; |
1165 | pmc.old = vma; |
1166 | pmc.new = new_vma; |
1167 | |
1168 | moved_len = move_page_tables(pmc: &pmc); |
1169 | if (moved_len < vrm->old_len) |
1170 | err = -ENOMEM; |
1171 | else if (vma->vm_ops && vma->vm_ops->mremap) |
1172 | err = vma->vm_ops->mremap(new_vma); |
1173 | |
1174 | if (unlikely(err)) { |
1175 | PAGETABLE_MOVE(pmc_revert, new_vma, vma, vrm->new_addr, |
1176 | vrm->addr, moved_len); |
1177 | |
1178 | /* |
1179 | * On error, move entries back from new area to old, |
1180 | * which will succeed since page tables still there, |
1181 | * and then proceed to unmap new area instead of old. |
1182 | */ |
1183 | pmc_revert.need_rmap_locks = true; |
1184 | move_page_tables(pmc: &pmc_revert); |
1185 | |
1186 | vrm->vma = new_vma; |
1187 | vrm->old_len = vrm->new_len; |
1188 | vrm->addr = vrm->new_addr; |
1189 | } else { |
1190 | mremap_userfaultfd_prep(new_vma, vrm->uf); |
1191 | } |
1192 | |
1193 | fixup_hugetlb_reservations(vma); |
1194 | |
1195 | *new_vma_ptr = new_vma; |
1196 | return err; |
1197 | } |
1198 | |
1199 | /* |
1200 | * Perform final tasks for MADV_DONTUNMAP operation, clearing mlock() and |
1201 | * account flags on remaining VMA by convention (it cannot be mlock()'d any |
1202 | * longer, as pages in range are no longer mapped), and removing anon_vma_chain |
1203 | * links from it (if the entire VMA was copied over). |
1204 | */ |
1205 | static void dontunmap_complete(struct vma_remap_struct *vrm, |
1206 | struct vm_area_struct *new_vma) |
1207 | { |
1208 | unsigned long start = vrm->addr; |
1209 | unsigned long end = vrm->addr + vrm->old_len; |
1210 | unsigned long old_start = vrm->vma->vm_start; |
1211 | unsigned long old_end = vrm->vma->vm_end; |
1212 | |
1213 | /* |
1214 | * We always clear VM_LOCKED[ONFAULT] | VM_ACCOUNT on the old |
1215 | * vma. |
1216 | */ |
1217 | vm_flags_clear(vma: vrm->vma, VM_LOCKED_MASK | VM_ACCOUNT); |
1218 | |
1219 | /* |
1220 | * anon_vma links of the old vma is no longer needed after its page |
1221 | * table has been moved. |
1222 | */ |
1223 | if (new_vma != vrm->vma && start == old_start && end == old_end) |
1224 | unlink_anon_vmas(vrm->vma); |
1225 | |
1226 | /* Because we won't unmap we don't need to touch locked_vm. */ |
1227 | } |
1228 | |
1229 | static unsigned long move_vma(struct vma_remap_struct *vrm) |
1230 | { |
1231 | struct mm_struct *mm = current->mm; |
1232 | struct vm_area_struct *new_vma; |
1233 | unsigned long hiwater_vm; |
1234 | int err; |
1235 | |
1236 | err = prep_move_vma(vrm); |
1237 | if (err) |
1238 | return err; |
1239 | |
1240 | /* If accounted, charge the number of bytes the operation will use. */ |
1241 | if (!vrm_charge(vrm)) |
1242 | return -ENOMEM; |
1243 | |
1244 | /* We don't want racing faults. */ |
1245 | vma_start_write(vma: vrm->vma); |
1246 | |
1247 | /* Perform copy step. */ |
1248 | err = copy_vma_and_data(vrm, new_vma_ptr: &new_vma); |
1249 | /* |
1250 | * If we established the copied-to VMA, we attempt to recover from the |
1251 | * error by setting the destination VMA to the source VMA and unmapping |
1252 | * it below. |
1253 | */ |
1254 | if (err && !new_vma) |
1255 | return err; |
1256 | |
1257 | /* |
1258 | * If we failed to move page tables we still do total_vm increment |
1259 | * since do_munmap() will decrement it by old_len == new_len. |
1260 | * |
1261 | * Since total_vm is about to be raised artificially high for a |
1262 | * moment, we need to restore high watermark afterwards: if stats |
1263 | * are taken meanwhile, total_vm and hiwater_vm appear too high. |
1264 | * If this were a serious issue, we'd add a flag to do_munmap(). |
1265 | */ |
1266 | hiwater_vm = mm->hiwater_vm; |
1267 | |
1268 | vrm_stat_account(vrm, bytes: vrm->new_len); |
1269 | if (unlikely(!err && (vrm->flags & MREMAP_DONTUNMAP))) |
1270 | dontunmap_complete(vrm, new_vma); |
1271 | else |
1272 | unmap_source_vma(vrm); |
1273 | |
1274 | mm->hiwater_vm = hiwater_vm; |
1275 | |
1276 | return err ? (unsigned long)err : vrm->new_addr; |
1277 | } |
1278 | |
1279 | /* |
1280 | * resize_is_valid() - Ensure the vma can be resized to the new length at the give |
1281 | * address. |
1282 | * |
1283 | * Return 0 on success, error otherwise. |
1284 | */ |
1285 | static int resize_is_valid(struct vma_remap_struct *vrm) |
1286 | { |
1287 | struct mm_struct *mm = current->mm; |
1288 | struct vm_area_struct *vma = vrm->vma; |
1289 | unsigned long addr = vrm->addr; |
1290 | unsigned long old_len = vrm->old_len; |
1291 | unsigned long new_len = vrm->new_len; |
1292 | unsigned long pgoff; |
1293 | |
1294 | /* |
1295 | * !old_len is a special case where an attempt is made to 'duplicate' |
1296 | * a mapping. This makes no sense for private mappings as it will |
1297 | * instead create a fresh/new mapping unrelated to the original. This |
1298 | * is contrary to the basic idea of mremap which creates new mappings |
1299 | * based on the original. There are no known use cases for this |
1300 | * behavior. As a result, fail such attempts. |
1301 | */ |
1302 | if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { |
1303 | pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", |
1304 | current->comm, current->pid); |
1305 | return -EINVAL; |
1306 | } |
1307 | |
1308 | if ((vrm->flags & MREMAP_DONTUNMAP) && |
1309 | (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))) |
1310 | return -EINVAL; |
1311 | |
1312 | /* We can't remap across vm area boundaries */ |
1313 | if (old_len > vma->vm_end - addr) |
1314 | return -EFAULT; |
1315 | |
1316 | if (new_len == old_len) |
1317 | return 0; |
1318 | |
1319 | /* Need to be careful about a growing mapping */ |
1320 | pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; |
1321 | pgoff += vma->vm_pgoff; |
1322 | if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) |
1323 | return -EINVAL; |
1324 | |
1325 | if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) |
1326 | return -EFAULT; |
1327 | |
1328 | if (!mlock_future_ok(mm, flags: vma->vm_flags, bytes: vrm->delta)) |
1329 | return -EAGAIN; |
1330 | |
1331 | if (!may_expand_vm(mm, vma->vm_flags, npages: vrm->delta >> PAGE_SHIFT)) |
1332 | return -ENOMEM; |
1333 | |
1334 | return 0; |
1335 | } |
1336 | |
1337 | /* |
1338 | * The user has requested that the VMA be shrunk (i.e., old_len > new_len), so |
1339 | * execute this, optionally dropping the mmap lock when we do so. |
1340 | * |
1341 | * In both cases this invalidates the VMA, however if we don't drop the lock, |
1342 | * then load the correct VMA into vrm->vma afterwards. |
1343 | */ |
1344 | static unsigned long shrink_vma(struct vma_remap_struct *vrm, |
1345 | bool drop_lock) |
1346 | { |
1347 | struct mm_struct *mm = current->mm; |
1348 | unsigned long unmap_start = vrm->addr + vrm->new_len; |
1349 | unsigned long unmap_bytes = vrm->delta; |
1350 | unsigned long res; |
1351 | VMA_ITERATOR(vmi, mm, unmap_start); |
1352 | |
1353 | VM_BUG_ON(vrm->remap_type != MREMAP_SHRINK); |
1354 | |
1355 | res = do_vmi_munmap(vmi: &vmi, mm, start: unmap_start, len: unmap_bytes, |
1356 | uf: vrm->uf_unmap, unlock: drop_lock); |
1357 | vrm->vma = NULL; /* Invalidated. */ |
1358 | if (res) |
1359 | return res; |
1360 | |
1361 | /* |
1362 | * If we've not dropped the lock, then we should reload the VMA to |
1363 | * replace the invalidated VMA with the one that may have now been |
1364 | * split. |
1365 | */ |
1366 | if (drop_lock) { |
1367 | vrm->mmap_locked = false; |
1368 | } else { |
1369 | vrm->vma = vma_lookup(mm, addr: vrm->addr); |
1370 | if (!vrm->vma) |
1371 | return -EFAULT; |
1372 | } |
1373 | |
1374 | return 0; |
1375 | } |
1376 | |
1377 | /* |
1378 | * mremap_to() - remap a vma to a new location. |
1379 | * Returns: The new address of the vma or an error. |
1380 | */ |
1381 | static unsigned long mremap_to(struct vma_remap_struct *vrm) |
1382 | { |
1383 | struct mm_struct *mm = current->mm; |
1384 | unsigned long err; |
1385 | |
1386 | /* Is the new length or address silly? */ |
1387 | if (vrm->new_len > TASK_SIZE || |
1388 | vrm->new_addr > TASK_SIZE - vrm->new_len) |
1389 | return -EINVAL; |
1390 | |
1391 | if (vrm_overlaps(vrm)) |
1392 | return -EINVAL; |
1393 | |
1394 | if (vrm->flags & MREMAP_FIXED) { |
1395 | /* |
1396 | * In mremap_to(). |
1397 | * VMA is moved to dst address, and munmap dst first. |
1398 | * do_munmap will check if dst is sealed. |
1399 | */ |
1400 | err = do_munmap(mm, vrm->new_addr, vrm->new_len, |
1401 | uf: vrm->uf_unmap_early); |
1402 | vrm->vma = NULL; /* Invalidated. */ |
1403 | if (err) |
1404 | return err; |
1405 | |
1406 | /* |
1407 | * If we remap a portion of a VMA elsewhere in the same VMA, |
1408 | * this can invalidate the old VMA. Reset. |
1409 | */ |
1410 | vrm->vma = vma_lookup(mm, addr: vrm->addr); |
1411 | if (!vrm->vma) |
1412 | return -EFAULT; |
1413 | } |
1414 | |
1415 | if (vrm->remap_type == MREMAP_SHRINK) { |
1416 | err = shrink_vma(vrm, /* drop_lock= */false); |
1417 | if (err) |
1418 | return err; |
1419 | |
1420 | /* Set up for the move now shrink has been executed. */ |
1421 | vrm->old_len = vrm->new_len; |
1422 | } |
1423 | |
1424 | err = resize_is_valid(vrm); |
1425 | if (err) |
1426 | return err; |
1427 | |
1428 | /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ |
1429 | if (vrm->flags & MREMAP_DONTUNMAP) { |
1430 | vm_flags_t vm_flags = vrm->vma->vm_flags; |
1431 | unsigned long pages = vrm->old_len >> PAGE_SHIFT; |
1432 | |
1433 | if (!may_expand_vm(mm, vm_flags, npages: pages)) |
1434 | return -ENOMEM; |
1435 | } |
1436 | |
1437 | err = vrm_set_new_addr(vrm); |
1438 | if (err) |
1439 | return err; |
1440 | |
1441 | return move_vma(vrm); |
1442 | } |
1443 | |
1444 | static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) |
1445 | { |
1446 | unsigned long end = vma->vm_end + delta; |
1447 | |
1448 | if (end < vma->vm_end) /* overflow */ |
1449 | return 0; |
1450 | if (find_vma_intersection(mm: vma->vm_mm, start_addr: vma->vm_end, end_addr: end)) |
1451 | return 0; |
1452 | if (get_unmapped_area(NULL, addr: vma->vm_start, len: end - vma->vm_start, |
1453 | pgoff: 0, MAP_FIXED) & ~PAGE_MASK) |
1454 | return 0; |
1455 | return 1; |
1456 | } |
1457 | |
1458 | /* Determine whether we are actually able to execute an in-place expansion. */ |
1459 | static bool vrm_can_expand_in_place(struct vma_remap_struct *vrm) |
1460 | { |
1461 | /* Number of bytes from vrm->addr to end of VMA. */ |
1462 | unsigned long suffix_bytes = vrm->vma->vm_end - vrm->addr; |
1463 | |
1464 | /* If end of range aligns to end of VMA, we can just expand in-place. */ |
1465 | if (suffix_bytes != vrm->old_len) |
1466 | return false; |
1467 | |
1468 | /* Check whether this is feasible. */ |
1469 | if (!vma_expandable(vma: vrm->vma, delta: vrm->delta)) |
1470 | return false; |
1471 | |
1472 | return true; |
1473 | } |
1474 | |
1475 | /* |
1476 | * Are the parameters passed to mremap() valid? If so return 0, otherwise return |
1477 | * error. |
1478 | */ |
1479 | static unsigned long check_mremap_params(struct vma_remap_struct *vrm) |
1480 | |
1481 | { |
1482 | unsigned long addr = vrm->addr; |
1483 | unsigned long flags = vrm->flags; |
1484 | |
1485 | /* Ensure no unexpected flag values. */ |
1486 | if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) |
1487 | return -EINVAL; |
1488 | |
1489 | /* Start address must be page-aligned. */ |
1490 | if (offset_in_page(addr)) |
1491 | return -EINVAL; |
1492 | |
1493 | /* |
1494 | * We allow a zero old-len as a special case |
1495 | * for DOS-emu "duplicate shm area" thing. But |
1496 | * a zero new-len is nonsensical. |
1497 | */ |
1498 | if (!PAGE_ALIGN(vrm->new_len)) |
1499 | return -EINVAL; |
1500 | |
1501 | /* Remainder of checks are for cases with specific new_addr. */ |
1502 | if (!vrm_implies_new_addr(vrm)) |
1503 | return 0; |
1504 | |
1505 | /* The new address must be page-aligned. */ |
1506 | if (offset_in_page(vrm->new_addr)) |
1507 | return -EINVAL; |
1508 | |
1509 | /* A fixed address implies a move. */ |
1510 | if (!(flags & MREMAP_MAYMOVE)) |
1511 | return -EINVAL; |
1512 | |
1513 | /* MREMAP_DONTUNMAP does not allow resizing in the process. */ |
1514 | if (flags & MREMAP_DONTUNMAP && vrm->old_len != vrm->new_len) |
1515 | return -EINVAL; |
1516 | |
1517 | /* |
1518 | * move_vma() need us to stay 4 maps below the threshold, otherwise |
1519 | * it will bail out at the very beginning. |
1520 | * That is a problem if we have already unmaped the regions here |
1521 | * (new_addr, and old_addr), because userspace will not know the |
1522 | * state of the vma's after it gets -ENOMEM. |
1523 | * So, to avoid such scenario we can pre-compute if the whole |
1524 | * operation has high chances to success map-wise. |
1525 | * Worst-scenario case is when both vma's (new_addr and old_addr) get |
1526 | * split in 3 before unmapping it. |
1527 | * That means 2 more maps (1 for each) to the ones we already hold. |
1528 | * Check whether current map count plus 2 still leads us to 4 maps below |
1529 | * the threshold, otherwise return -ENOMEM here to be more safe. |
1530 | */ |
1531 | if ((current->mm->map_count + 2) >= sysctl_max_map_count - 3) |
1532 | return -ENOMEM; |
1533 | |
1534 | return 0; |
1535 | } |
1536 | |
1537 | /* |
1538 | * We know we can expand the VMA in-place by delta pages, so do so. |
1539 | * |
1540 | * If we discover the VMA is locked, update mm_struct statistics accordingly and |
1541 | * indicate so to the caller. |
1542 | */ |
1543 | static unsigned long expand_vma_in_place(struct vma_remap_struct *vrm) |
1544 | { |
1545 | struct mm_struct *mm = current->mm; |
1546 | struct vm_area_struct *vma = vrm->vma; |
1547 | VMA_ITERATOR(vmi, mm, vma->vm_end); |
1548 | |
1549 | if (!vrm_charge(vrm)) |
1550 | return -ENOMEM; |
1551 | |
1552 | /* |
1553 | * Function vma_merge_extend() is called on the |
1554 | * extension we are adding to the already existing vma, |
1555 | * vma_merge_extend() will merge this extension with the |
1556 | * already existing vma (expand operation itself) and |
1557 | * possibly also with the next vma if it becomes |
1558 | * adjacent to the expanded vma and otherwise |
1559 | * compatible. |
1560 | */ |
1561 | vma = vma_merge_extend(vmi: &vmi, vma, delta: vrm->delta); |
1562 | if (!vma) { |
1563 | vrm_uncharge(vrm); |
1564 | return -ENOMEM; |
1565 | } |
1566 | vrm->vma = vma; |
1567 | |
1568 | vrm_stat_account(vrm, bytes: vrm->delta); |
1569 | |
1570 | return 0; |
1571 | } |
1572 | |
1573 | static bool align_hugetlb(struct vma_remap_struct *vrm) |
1574 | { |
1575 | struct hstate *h __maybe_unused = hstate_vma(vma: vrm->vma); |
1576 | |
1577 | vrm->old_len = ALIGN(vrm->old_len, huge_page_size(h)); |
1578 | vrm->new_len = ALIGN(vrm->new_len, huge_page_size(h)); |
1579 | |
1580 | /* addrs must be huge page aligned */ |
1581 | if (vrm->addr & ~huge_page_mask(h)) |
1582 | return false; |
1583 | if (vrm->new_addr & ~huge_page_mask(h)) |
1584 | return false; |
1585 | |
1586 | /* |
1587 | * Don't allow remap expansion, because the underlying hugetlb |
1588 | * reservation is not yet capable to handle split reservation. |
1589 | */ |
1590 | if (vrm->new_len > vrm->old_len) |
1591 | return false; |
1592 | |
1593 | vrm_set_delta(vrm); |
1594 | |
1595 | return true; |
1596 | } |
1597 | |
1598 | /* |
1599 | * We are mremap()'ing without specifying a fixed address to move to, but are |
1600 | * requesting that the VMA's size be increased. |
1601 | * |
1602 | * Try to do so in-place, if this fails, then move the VMA to a new location to |
1603 | * action the change. |
1604 | */ |
1605 | static unsigned long expand_vma(struct vma_remap_struct *vrm) |
1606 | { |
1607 | unsigned long err; |
1608 | unsigned long addr = vrm->addr; |
1609 | |
1610 | err = resize_is_valid(vrm); |
1611 | if (err) |
1612 | return err; |
1613 | |
1614 | /* |
1615 | * [addr, old_len) spans precisely to the end of the VMA, so try to |
1616 | * expand it in-place. |
1617 | */ |
1618 | if (vrm_can_expand_in_place(vrm)) { |
1619 | err = expand_vma_in_place(vrm); |
1620 | if (err) |
1621 | return err; |
1622 | |
1623 | /* |
1624 | * We want to populate the newly expanded portion of the VMA to |
1625 | * satisfy the expectation that mlock()'ing a VMA maintains all |
1626 | * of its pages in memory. |
1627 | */ |
1628 | if (vrm->mlocked) |
1629 | vrm->new_addr = addr; |
1630 | |
1631 | /* OK we're done! */ |
1632 | return addr; |
1633 | } |
1634 | |
1635 | /* |
1636 | * We weren't able to just expand or shrink the area, |
1637 | * we need to create a new one and move it. |
1638 | */ |
1639 | |
1640 | /* We're not allowed to move the VMA, so error out. */ |
1641 | if (!(vrm->flags & MREMAP_MAYMOVE)) |
1642 | return -ENOMEM; |
1643 | |
1644 | /* Find a new location to move the VMA to. */ |
1645 | err = vrm_set_new_addr(vrm); |
1646 | if (err) |
1647 | return err; |
1648 | |
1649 | return move_vma(vrm); |
1650 | } |
1651 | |
1652 | /* |
1653 | * Attempt to resize the VMA in-place, if we cannot, then move the VMA to the |
1654 | * first available address to perform the operation. |
1655 | */ |
1656 | static unsigned long mremap_at(struct vma_remap_struct *vrm) |
1657 | { |
1658 | unsigned long res; |
1659 | |
1660 | switch (vrm->remap_type) { |
1661 | case MREMAP_INVALID: |
1662 | break; |
1663 | case MREMAP_NO_RESIZE: |
1664 | /* NO-OP CASE - resizing to the same size. */ |
1665 | return vrm->addr; |
1666 | case MREMAP_SHRINK: |
1667 | /* |
1668 | * SHRINK CASE. Can always be done in-place. |
1669 | * |
1670 | * Simply unmap the shrunken portion of the VMA. This does all |
1671 | * the needed commit accounting, and we indicate that the mmap |
1672 | * lock should be dropped. |
1673 | */ |
1674 | res = shrink_vma(vrm, /* drop_lock= */true); |
1675 | if (res) |
1676 | return res; |
1677 | |
1678 | return vrm->addr; |
1679 | case MREMAP_EXPAND: |
1680 | return expand_vma(vrm); |
1681 | } |
1682 | |
1683 | BUG(); |
1684 | } |
1685 | |
1686 | static unsigned long do_mremap(struct vma_remap_struct *vrm) |
1687 | { |
1688 | struct mm_struct *mm = current->mm; |
1689 | struct vm_area_struct *vma; |
1690 | unsigned long ret; |
1691 | |
1692 | ret = check_mremap_params(vrm); |
1693 | if (ret) |
1694 | return ret; |
1695 | |
1696 | vrm->old_len = PAGE_ALIGN(vrm->old_len); |
1697 | vrm->new_len = PAGE_ALIGN(vrm->new_len); |
1698 | vrm_set_delta(vrm); |
1699 | |
1700 | if (mmap_write_lock_killable(mm)) |
1701 | return -EINTR; |
1702 | vrm->mmap_locked = true; |
1703 | |
1704 | vma = vrm->vma = vma_lookup(mm, addr: vrm->addr); |
1705 | if (!vma) { |
1706 | ret = -EFAULT; |
1707 | goto out; |
1708 | } |
1709 | |
1710 | /* If mseal()'d, mremap() is prohibited. */ |
1711 | if (!can_modify_vma(vma)) { |
1712 | ret = -EPERM; |
1713 | goto out; |
1714 | } |
1715 | |
1716 | /* Align to hugetlb page size, if required. */ |
1717 | if (is_vm_hugetlb_page(vma) && !align_hugetlb(vrm)) { |
1718 | ret = -EINVAL; |
1719 | goto out; |
1720 | } |
1721 | |
1722 | vrm->remap_type = vrm_remap_type(vrm); |
1723 | |
1724 | /* Actually execute mremap. */ |
1725 | ret = vrm_implies_new_addr(vrm) ? mremap_to(vrm) : mremap_at(vrm); |
1726 | |
1727 | out: |
1728 | if (vrm->mmap_locked) { |
1729 | mmap_write_unlock(mm); |
1730 | vrm->mmap_locked = false; |
1731 | |
1732 | if (!offset_in_page(ret) && vrm->mlocked && vrm->new_len > vrm->old_len) |
1733 | mm_populate(addr: vrm->new_addr + vrm->old_len, len: vrm->delta); |
1734 | } |
1735 | |
1736 | userfaultfd_unmap_complete(mm, uf: vrm->uf_unmap_early); |
1737 | mremap_userfaultfd_complete(vrm->uf, from: vrm->addr, to: ret, len: vrm->old_len); |
1738 | userfaultfd_unmap_complete(mm, uf: vrm->uf_unmap); |
1739 | |
1740 | return ret; |
1741 | } |
1742 | |
1743 | /* |
1744 | * Expand (or shrink) an existing mapping, potentially moving it at the |
1745 | * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) |
1746 | * |
1747 | * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise |
1748 | * This option implies MREMAP_MAYMOVE. |
1749 | */ |
1750 | SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, |
1751 | unsigned long, new_len, unsigned long, flags, |
1752 | unsigned long, new_addr) |
1753 | { |
1754 | struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; |
1755 | LIST_HEAD(uf_unmap_early); |
1756 | LIST_HEAD(uf_unmap); |
1757 | /* |
1758 | * There is a deliberate asymmetry here: we strip the pointer tag |
1759 | * from the old address but leave the new address alone. This is |
1760 | * for consistency with mmap(), where we prevent the creation of |
1761 | * aliasing mappings in userspace by leaving the tag bits of the |
1762 | * mapping address intact. A non-zero tag will cause the subsequent |
1763 | * range checks to reject the address as invalid. |
1764 | * |
1765 | * See Documentation/arch/arm64/tagged-address-abi.rst for more |
1766 | * information. |
1767 | */ |
1768 | struct vma_remap_struct vrm = { |
1769 | .addr = untagged_addr(addr), |
1770 | .old_len = old_len, |
1771 | .new_len = new_len, |
1772 | .flags = flags, |
1773 | .new_addr = new_addr, |
1774 | |
1775 | .uf = &uf, |
1776 | .uf_unmap_early = &uf_unmap_early, |
1777 | .uf_unmap = &uf_unmap, |
1778 | |
1779 | .remap_type = MREMAP_INVALID, /* We set later. */ |
1780 | }; |
1781 | |
1782 | return do_mremap(vrm: &vrm); |
1783 | } |
1784 |
Definitions
- mremap_type
- vma_remap_struct
- get_old_pud
- get_old_pmd
- alloc_new_pud
- alloc_new_pmd
- take_rmap_locks
- drop_rmap_locks
- move_soft_dirty_pte
- move_ptes
- arch_supports_page_table_move
- move_normal_pmd
- move_normal_pud
- move_huge_pud
- pgt_entry
- get_extent
- should_take_rmap_locks
- move_pgt_entry
- can_align_down
- can_realign_addr
- try_realign_addr
- pmc_done
- pmc_next
- pmc_progress
- move_page_tables
- vrm_set_delta
- vrm_remap_type
- vrm_overlaps
- vrm_implies_new_addr
- vrm_set_new_addr
- vrm_charge
- vrm_uncharge
- vrm_stat_account
- prep_move_vma
- unmap_source_vma
- copy_vma_and_data
- dontunmap_complete
- move_vma
- resize_is_valid
- shrink_vma
- mremap_to
- vma_expandable
- vrm_can_expand_in_place
- check_mremap_params
- expand_vma_in_place
- align_hugetlb
- expand_vma
- mremap_at
Improve your Profiling and Debugging skills
Find out more