1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | /* |
3 | * linux/mm/oom_kill.c |
4 | * |
5 | * Copyright (C) 1998,2000 Rik van Riel |
6 | * Thanks go out to Claus Fischer for some serious inspiration and |
7 | * for goading me into coding this file... |
8 | * Copyright (C) 2010 Google, Inc. |
9 | * Rewritten by David Rientjes |
10 | * |
11 | * The routines in this file are used to kill a process when |
12 | * we're seriously out of memory. This gets called from __alloc_pages() |
13 | * in mm/page_alloc.c when we really run out of memory. |
14 | * |
15 | * Since we won't call these routines often (on a well-configured |
16 | * machine) this file will double as a 'coding guide' and a signpost |
17 | * for newbie kernel hackers. It features several pointers to major |
18 | * kernel subsystems and hints as to where to find out what things do. |
19 | */ |
20 | |
21 | #include <linux/oom.h> |
22 | #include <linux/mm.h> |
23 | #include <linux/err.h> |
24 | #include <linux/gfp.h> |
25 | #include <linux/sched.h> |
26 | #include <linux/sched/mm.h> |
27 | #include <linux/sched/task.h> |
28 | #include <linux/sched/debug.h> |
29 | #include <linux/swap.h> |
30 | #include <linux/syscalls.h> |
31 | #include <linux/timex.h> |
32 | #include <linux/jiffies.h> |
33 | #include <linux/cpuset.h> |
34 | #include <linux/export.h> |
35 | #include <linux/notifier.h> |
36 | #include <linux/memcontrol.h> |
37 | #include <linux/mempolicy.h> |
38 | #include <linux/security.h> |
39 | #include <linux/ptrace.h> |
40 | #include <linux/freezer.h> |
41 | #include <linux/ftrace.h> |
42 | #include <linux/ratelimit.h> |
43 | #include <linux/kthread.h> |
44 | #include <linux/init.h> |
45 | #include <linux/mmu_notifier.h> |
46 | #include <linux/cred.h> |
47 | #include <linux/nmi.h> |
48 | |
49 | #include <asm/tlb.h> |
50 | #include "internal.h" |
51 | #include "slab.h" |
52 | |
53 | #define CREATE_TRACE_POINTS |
54 | #include <trace/events/oom.h> |
55 | |
56 | static int sysctl_panic_on_oom; |
57 | static int sysctl_oom_kill_allocating_task; |
58 | static int sysctl_oom_dump_tasks = 1; |
59 | |
60 | /* |
61 | * Serializes oom killer invocations (out_of_memory()) from all contexts to |
62 | * prevent from over eager oom killing (e.g. when the oom killer is invoked |
63 | * from different domains). |
64 | * |
65 | * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled |
66 | * and mark_oom_victim |
67 | */ |
68 | DEFINE_MUTEX(oom_lock); |
69 | /* Serializes oom_score_adj and oom_score_adj_min updates */ |
70 | DEFINE_MUTEX(oom_adj_mutex); |
71 | |
72 | static inline bool is_memcg_oom(struct oom_control *oc) |
73 | { |
74 | return oc->memcg != NULL; |
75 | } |
76 | |
77 | #ifdef CONFIG_NUMA |
78 | /** |
79 | * oom_cpuset_eligible() - check task eligibility for kill |
80 | * @start: task struct of which task to consider |
81 | * @oc: pointer to struct oom_control |
82 | * |
83 | * Task eligibility is determined by whether or not a candidate task, @tsk, |
84 | * shares the same mempolicy nodes as current if it is bound by such a policy |
85 | * and whether or not it has the same set of allowed cpuset nodes. |
86 | * |
87 | * This function is assuming oom-killer context and 'current' has triggered |
88 | * the oom-killer. |
89 | */ |
90 | static bool oom_cpuset_eligible(struct task_struct *start, |
91 | struct oom_control *oc) |
92 | { |
93 | struct task_struct *tsk; |
94 | bool ret = false; |
95 | const nodemask_t *mask = oc->nodemask; |
96 | |
97 | rcu_read_lock(); |
98 | for_each_thread(start, tsk) { |
99 | if (mask) { |
100 | /* |
101 | * If this is a mempolicy constrained oom, tsk's |
102 | * cpuset is irrelevant. Only return true if its |
103 | * mempolicy intersects current, otherwise it may be |
104 | * needlessly killed. |
105 | */ |
106 | ret = mempolicy_in_oom_domain(tsk, mask); |
107 | } else { |
108 | /* |
109 | * This is not a mempolicy constrained oom, so only |
110 | * check the mems of tsk's cpuset. |
111 | */ |
112 | ret = cpuset_mems_allowed_intersects(current, tsk2: tsk); |
113 | } |
114 | if (ret) |
115 | break; |
116 | } |
117 | rcu_read_unlock(); |
118 | |
119 | return ret; |
120 | } |
121 | #else |
122 | static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) |
123 | { |
124 | return true; |
125 | } |
126 | #endif /* CONFIG_NUMA */ |
127 | |
128 | /* |
129 | * The process p may have detached its own ->mm while exiting or through |
130 | * kthread_use_mm(), but one or more of its subthreads may still have a valid |
131 | * pointer. Return p, or any of its subthreads with a valid ->mm, with |
132 | * task_lock() held. |
133 | */ |
134 | struct task_struct *find_lock_task_mm(struct task_struct *p) |
135 | { |
136 | struct task_struct *t; |
137 | |
138 | rcu_read_lock(); |
139 | |
140 | for_each_thread(p, t) { |
141 | task_lock(p: t); |
142 | if (likely(t->mm)) |
143 | goto found; |
144 | task_unlock(p: t); |
145 | } |
146 | t = NULL; |
147 | found: |
148 | rcu_read_unlock(); |
149 | |
150 | return t; |
151 | } |
152 | |
153 | /* |
154 | * order == -1 means the oom kill is required by sysrq, otherwise only |
155 | * for display purposes. |
156 | */ |
157 | static inline bool is_sysrq_oom(struct oom_control *oc) |
158 | { |
159 | return oc->order == -1; |
160 | } |
161 | |
162 | /* return true if the task is not adequate as candidate victim task. */ |
163 | static bool oom_unkillable_task(struct task_struct *p) |
164 | { |
165 | if (is_global_init(tsk: p)) |
166 | return true; |
167 | if (p->flags & PF_KTHREAD) |
168 | return true; |
169 | return false; |
170 | } |
171 | |
172 | /* |
173 | * Check whether unreclaimable slab amount is greater than |
174 | * all user memory(LRU pages). |
175 | * dump_unreclaimable_slab() could help in the case that |
176 | * oom due to too much unreclaimable slab used by kernel. |
177 | */ |
178 | static bool should_dump_unreclaim_slab(void) |
179 | { |
180 | unsigned long nr_lru; |
181 | |
182 | nr_lru = global_node_page_state(item: NR_ACTIVE_ANON) + |
183 | global_node_page_state(item: NR_INACTIVE_ANON) + |
184 | global_node_page_state(item: NR_ACTIVE_FILE) + |
185 | global_node_page_state(item: NR_INACTIVE_FILE) + |
186 | global_node_page_state(item: NR_ISOLATED_ANON) + |
187 | global_node_page_state(item: NR_ISOLATED_FILE) + |
188 | global_node_page_state(item: NR_UNEVICTABLE); |
189 | |
190 | return (global_node_page_state_pages(item: NR_SLAB_UNRECLAIMABLE_B) > nr_lru); |
191 | } |
192 | |
193 | /** |
194 | * oom_badness - heuristic function to determine which candidate task to kill |
195 | * @p: task struct of which task we should calculate |
196 | * @totalpages: total present RAM allowed for page allocation |
197 | * |
198 | * The heuristic for determining which task to kill is made to be as simple and |
199 | * predictable as possible. The goal is to return the highest value for the |
200 | * task consuming the most memory to avoid subsequent oom failures. |
201 | */ |
202 | long oom_badness(struct task_struct *p, unsigned long totalpages) |
203 | { |
204 | long points; |
205 | long adj; |
206 | |
207 | if (oom_unkillable_task(p)) |
208 | return LONG_MIN; |
209 | |
210 | p = find_lock_task_mm(p); |
211 | if (!p) |
212 | return LONG_MIN; |
213 | |
214 | /* |
215 | * Do not even consider tasks which are explicitly marked oom |
216 | * unkillable or have been already oom reaped or the are in |
217 | * the middle of vfork |
218 | */ |
219 | adj = (long)p->signal->oom_score_adj; |
220 | if (adj == OOM_SCORE_ADJ_MIN || |
221 | test_bit(MMF_OOM_SKIP, &p->mm->flags) || |
222 | in_vfork(tsk: p)) { |
223 | task_unlock(p); |
224 | return LONG_MIN; |
225 | } |
226 | |
227 | /* |
228 | * The baseline for the badness score is the proportion of RAM that each |
229 | * task's rss, pagetable and swap space use. |
230 | */ |
231 | points = get_mm_rss(mm: p->mm) + get_mm_counter(mm: p->mm, member: MM_SWAPENTS) + |
232 | mm_pgtables_bytes(mm: p->mm) / PAGE_SIZE; |
233 | task_unlock(p); |
234 | |
235 | /* Normalize to oom_score_adj units */ |
236 | adj *= totalpages / 1000; |
237 | points += adj; |
238 | |
239 | return points; |
240 | } |
241 | |
242 | static const char * const oom_constraint_text[] = { |
243 | [CONSTRAINT_NONE] = "CONSTRAINT_NONE", |
244 | [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", |
245 | [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", |
246 | [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", |
247 | }; |
248 | |
249 | /* |
250 | * Determine the type of allocation constraint. |
251 | */ |
252 | static enum oom_constraint constrained_alloc(struct oom_control *oc) |
253 | { |
254 | struct zone *zone; |
255 | struct zoneref *z; |
256 | enum zone_type highest_zoneidx = gfp_zone(flags: oc->gfp_mask); |
257 | bool cpuset_limited = false; |
258 | int nid; |
259 | |
260 | if (is_memcg_oom(oc)) { |
261 | oc->totalpages = mem_cgroup_get_max(memcg: oc->memcg) ?: 1; |
262 | return CONSTRAINT_MEMCG; |
263 | } |
264 | |
265 | /* Default to all available memory */ |
266 | oc->totalpages = totalram_pages() + total_swap_pages; |
267 | |
268 | if (!IS_ENABLED(CONFIG_NUMA)) |
269 | return CONSTRAINT_NONE; |
270 | |
271 | if (!oc->zonelist) |
272 | return CONSTRAINT_NONE; |
273 | /* |
274 | * Reach here only when __GFP_NOFAIL is used. So, we should avoid |
275 | * to kill current.We have to random task kill in this case. |
276 | * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. |
277 | */ |
278 | if (oc->gfp_mask & __GFP_THISNODE) |
279 | return CONSTRAINT_NONE; |
280 | |
281 | /* |
282 | * This is not a __GFP_THISNODE allocation, so a truncated nodemask in |
283 | * the page allocator means a mempolicy is in effect. Cpuset policy |
284 | * is enforced in get_page_from_freelist(). |
285 | */ |
286 | if (oc->nodemask && |
287 | !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { |
288 | oc->totalpages = total_swap_pages; |
289 | for_each_node_mask(nid, *oc->nodemask) |
290 | oc->totalpages += node_present_pages(nid); |
291 | return CONSTRAINT_MEMORY_POLICY; |
292 | } |
293 | |
294 | /* Check this allocation failure is caused by cpuset's wall function */ |
295 | for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, |
296 | highest_zoneidx, oc->nodemask) |
297 | if (!cpuset_zone_allowed(z: zone, gfp_mask: oc->gfp_mask)) |
298 | cpuset_limited = true; |
299 | |
300 | if (cpuset_limited) { |
301 | oc->totalpages = total_swap_pages; |
302 | for_each_node_mask(nid, cpuset_current_mems_allowed) |
303 | oc->totalpages += node_present_pages(nid); |
304 | return CONSTRAINT_CPUSET; |
305 | } |
306 | return CONSTRAINT_NONE; |
307 | } |
308 | |
309 | static int oom_evaluate_task(struct task_struct *task, void *arg) |
310 | { |
311 | struct oom_control *oc = arg; |
312 | long points; |
313 | |
314 | if (oom_unkillable_task(p: task)) |
315 | goto next; |
316 | |
317 | /* p may not have freeable memory in nodemask */ |
318 | if (!is_memcg_oom(oc) && !oom_cpuset_eligible(start: task, oc)) |
319 | goto next; |
320 | |
321 | /* |
322 | * This task already has access to memory reserves and is being killed. |
323 | * Don't allow any other task to have access to the reserves unless |
324 | * the task has MMF_OOM_SKIP because chances that it would release |
325 | * any memory is quite low. |
326 | */ |
327 | if (!is_sysrq_oom(oc) && tsk_is_oom_victim(tsk: task)) { |
328 | if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) |
329 | goto next; |
330 | goto abort; |
331 | } |
332 | |
333 | /* |
334 | * If task is allocating a lot of memory and has been marked to be |
335 | * killed first if it triggers an oom, then select it. |
336 | */ |
337 | if (oom_task_origin(p: task)) { |
338 | points = LONG_MAX; |
339 | goto select; |
340 | } |
341 | |
342 | points = oom_badness(p: task, totalpages: oc->totalpages); |
343 | if (points == LONG_MIN || points < oc->chosen_points) |
344 | goto next; |
345 | |
346 | select: |
347 | if (oc->chosen) |
348 | put_task_struct(t: oc->chosen); |
349 | get_task_struct(t: task); |
350 | oc->chosen = task; |
351 | oc->chosen_points = points; |
352 | next: |
353 | return 0; |
354 | abort: |
355 | if (oc->chosen) |
356 | put_task_struct(t: oc->chosen); |
357 | oc->chosen = (void *)-1UL; |
358 | return 1; |
359 | } |
360 | |
361 | /* |
362 | * Simple selection loop. We choose the process with the highest number of |
363 | * 'points'. In case scan was aborted, oc->chosen is set to -1. |
364 | */ |
365 | static void select_bad_process(struct oom_control *oc) |
366 | { |
367 | oc->chosen_points = LONG_MIN; |
368 | |
369 | if (is_memcg_oom(oc)) |
370 | mem_cgroup_scan_tasks(memcg: oc->memcg, oom_evaluate_task, arg: oc); |
371 | else { |
372 | struct task_struct *p; |
373 | |
374 | rcu_read_lock(); |
375 | for_each_process(p) |
376 | if (oom_evaluate_task(task: p, arg: oc)) |
377 | break; |
378 | rcu_read_unlock(); |
379 | } |
380 | } |
381 | |
382 | static int dump_task(struct task_struct *p, void *arg) |
383 | { |
384 | struct oom_control *oc = arg; |
385 | struct task_struct *task; |
386 | |
387 | if (oom_unkillable_task(p)) |
388 | return 0; |
389 | |
390 | /* p may not have freeable memory in nodemask */ |
391 | if (!is_memcg_oom(oc) && !oom_cpuset_eligible(start: p, oc)) |
392 | return 0; |
393 | |
394 | task = find_lock_task_mm(p); |
395 | if (!task) { |
396 | /* |
397 | * All of p's threads have already detached their mm's. There's |
398 | * no need to report them; they can't be oom killed anyway. |
399 | */ |
400 | return 0; |
401 | } |
402 | |
403 | pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n", |
404 | task->pid, from_kuid(&init_user_ns, task_uid(task)), |
405 | task->tgid, task->mm->total_vm, get_mm_rss(task->mm), |
406 | get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES), |
407 | get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm), |
408 | get_mm_counter(task->mm, MM_SWAPENTS), |
409 | task->signal->oom_score_adj, task->comm); |
410 | task_unlock(p: task); |
411 | |
412 | return 0; |
413 | } |
414 | |
415 | /** |
416 | * dump_tasks - dump current memory state of all system tasks |
417 | * @oc: pointer to struct oom_control |
418 | * |
419 | * Dumps the current memory state of all eligible tasks. Tasks not in the same |
420 | * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes |
421 | * are not shown. |
422 | * State information includes task's pid, uid, tgid, vm size, rss, |
423 | * pgtables_bytes, swapents, oom_score_adj value, and name. |
424 | */ |
425 | static void dump_tasks(struct oom_control *oc) |
426 | { |
427 | pr_info("Tasks state (memory values in pages):\n"); |
428 | pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n"); |
429 | |
430 | if (is_memcg_oom(oc)) |
431 | mem_cgroup_scan_tasks(memcg: oc->memcg, dump_task, arg: oc); |
432 | else { |
433 | struct task_struct *p; |
434 | int i = 0; |
435 | |
436 | rcu_read_lock(); |
437 | for_each_process(p) { |
438 | /* Avoid potential softlockup warning */ |
439 | if ((++i & 1023) == 0) |
440 | touch_softlockup_watchdog(); |
441 | dump_task(p, arg: oc); |
442 | } |
443 | rcu_read_unlock(); |
444 | } |
445 | } |
446 | |
447 | static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim) |
448 | { |
449 | /* one line summary of the oom killer context. */ |
450 | pr_info("oom-kill:constraint=%s,nodemask=%*pbl", |
451 | oom_constraint_text[oc->constraint], |
452 | nodemask_pr_args(oc->nodemask)); |
453 | cpuset_print_current_mems_allowed(); |
454 | mem_cgroup_print_oom_context(memcg: oc->memcg, p: victim); |
455 | pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, |
456 | from_kuid(&init_user_ns, task_uid(victim))); |
457 | } |
458 | |
459 | static void dump_header(struct oom_control *oc) |
460 | { |
461 | pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", |
462 | current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, |
463 | current->signal->oom_score_adj); |
464 | if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) |
465 | pr_warn("COMPACTION is disabled!!!\n"); |
466 | |
467 | dump_stack(); |
468 | if (is_memcg_oom(oc)) |
469 | mem_cgroup_print_oom_meminfo(memcg: oc->memcg); |
470 | else { |
471 | __show_mem(SHOW_MEM_FILTER_NODES, nodemask: oc->nodemask, max_zone_idx: gfp_zone(flags: oc->gfp_mask)); |
472 | if (should_dump_unreclaim_slab()) |
473 | dump_unreclaimable_slab(); |
474 | } |
475 | if (sysctl_oom_dump_tasks) |
476 | dump_tasks(oc); |
477 | } |
478 | |
479 | /* |
480 | * Number of OOM victims in flight |
481 | */ |
482 | static atomic_t oom_victims = ATOMIC_INIT(0); |
483 | static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); |
484 | |
485 | static bool oom_killer_disabled __read_mostly; |
486 | |
487 | /* |
488 | * task->mm can be NULL if the task is the exited group leader. So to |
489 | * determine whether the task is using a particular mm, we examine all the |
490 | * task's threads: if one of those is using this mm then this task was also |
491 | * using it. |
492 | */ |
493 | bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) |
494 | { |
495 | struct task_struct *t; |
496 | |
497 | for_each_thread(p, t) { |
498 | struct mm_struct *t_mm = READ_ONCE(t->mm); |
499 | if (t_mm) |
500 | return t_mm == mm; |
501 | } |
502 | return false; |
503 | } |
504 | |
505 | #ifdef CONFIG_MMU |
506 | /* |
507 | * OOM Reaper kernel thread which tries to reap the memory used by the OOM |
508 | * victim (if that is possible) to help the OOM killer to move on. |
509 | */ |
510 | static struct task_struct *oom_reaper_th; |
511 | static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); |
512 | static struct task_struct *oom_reaper_list; |
513 | static DEFINE_SPINLOCK(oom_reaper_lock); |
514 | |
515 | static bool __oom_reap_task_mm(struct mm_struct *mm) |
516 | { |
517 | struct vm_area_struct *vma; |
518 | bool ret = true; |
519 | VMA_ITERATOR(vmi, mm, 0); |
520 | |
521 | /* |
522 | * Tell all users of get_user/copy_from_user etc... that the content |
523 | * is no longer stable. No barriers really needed because unmapping |
524 | * should imply barriers already and the reader would hit a page fault |
525 | * if it stumbled over a reaped memory. |
526 | */ |
527 | set_bit(MMF_UNSTABLE, addr: &mm->flags); |
528 | |
529 | for_each_vma(vmi, vma) { |
530 | if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP)) |
531 | continue; |
532 | |
533 | /* |
534 | * Only anonymous pages have a good chance to be dropped |
535 | * without additional steps which we cannot afford as we |
536 | * are OOM already. |
537 | * |
538 | * We do not even care about fs backed pages because all |
539 | * which are reclaimable have already been reclaimed and |
540 | * we do not want to block exit_mmap by keeping mm ref |
541 | * count elevated without a good reason. |
542 | */ |
543 | if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { |
544 | struct mmu_notifier_range range; |
545 | struct mmu_gather tlb; |
546 | |
547 | mmu_notifier_range_init(range: &range, event: MMU_NOTIFY_UNMAP, flags: 0, |
548 | mm, start: vma->vm_start, |
549 | end: vma->vm_end); |
550 | tlb_gather_mmu(tlb: &tlb, mm); |
551 | if (mmu_notifier_invalidate_range_start_nonblock(range: &range)) { |
552 | tlb_finish_mmu(tlb: &tlb); |
553 | ret = false; |
554 | continue; |
555 | } |
556 | unmap_page_range(tlb: &tlb, vma, addr: range.start, end: range.end, NULL); |
557 | mmu_notifier_invalidate_range_end(range: &range); |
558 | tlb_finish_mmu(tlb: &tlb); |
559 | } |
560 | } |
561 | |
562 | return ret; |
563 | } |
564 | |
565 | /* |
566 | * Reaps the address space of the given task. |
567 | * |
568 | * Returns true on success and false if none or part of the address space |
569 | * has been reclaimed and the caller should retry later. |
570 | */ |
571 | static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) |
572 | { |
573 | bool ret = true; |
574 | |
575 | if (!mmap_read_trylock(mm)) { |
576 | trace_skip_task_reaping(pid: tsk->pid); |
577 | return false; |
578 | } |
579 | |
580 | /* |
581 | * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't |
582 | * work on the mm anymore. The check for MMF_OOM_SKIP must run |
583 | * under mmap_lock for reading because it serializes against the |
584 | * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). |
585 | */ |
586 | if (test_bit(MMF_OOM_SKIP, &mm->flags)) { |
587 | trace_skip_task_reaping(pid: tsk->pid); |
588 | goto out_unlock; |
589 | } |
590 | |
591 | trace_start_task_reaping(pid: tsk->pid); |
592 | |
593 | /* failed to reap part of the address space. Try again later */ |
594 | ret = __oom_reap_task_mm(mm); |
595 | if (!ret) |
596 | goto out_finish; |
597 | |
598 | pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", |
599 | task_pid_nr(tsk), tsk->comm, |
600 | K(get_mm_counter(mm, MM_ANONPAGES)), |
601 | K(get_mm_counter(mm, MM_FILEPAGES)), |
602 | K(get_mm_counter(mm, MM_SHMEMPAGES))); |
603 | out_finish: |
604 | trace_finish_task_reaping(pid: tsk->pid); |
605 | out_unlock: |
606 | mmap_read_unlock(mm); |
607 | |
608 | return ret; |
609 | } |
610 | |
611 | #define MAX_OOM_REAP_RETRIES 10 |
612 | static void oom_reap_task(struct task_struct *tsk) |
613 | { |
614 | int attempts = 0; |
615 | struct mm_struct *mm = tsk->signal->oom_mm; |
616 | |
617 | /* Retry the mmap_read_trylock(mm) a few times */ |
618 | while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) |
619 | schedule_timeout_idle(HZ/10); |
620 | |
621 | if (attempts <= MAX_OOM_REAP_RETRIES || |
622 | test_bit(MMF_OOM_SKIP, &mm->flags)) |
623 | goto done; |
624 | |
625 | pr_info("oom_reaper: unable to reap pid:%d (%s)\n", |
626 | task_pid_nr(tsk), tsk->comm); |
627 | sched_show_task(p: tsk); |
628 | debug_show_all_locks(); |
629 | |
630 | done: |
631 | tsk->oom_reaper_list = NULL; |
632 | |
633 | /* |
634 | * Hide this mm from OOM killer because it has been either reaped or |
635 | * somebody can't call mmap_write_unlock(mm). |
636 | */ |
637 | set_bit(MMF_OOM_SKIP, addr: &mm->flags); |
638 | |
639 | /* Drop a reference taken by queue_oom_reaper */ |
640 | put_task_struct(t: tsk); |
641 | } |
642 | |
643 | static int oom_reaper(void *unused) |
644 | { |
645 | set_freezable(); |
646 | |
647 | while (true) { |
648 | struct task_struct *tsk = NULL; |
649 | |
650 | wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); |
651 | spin_lock_irq(lock: &oom_reaper_lock); |
652 | if (oom_reaper_list != NULL) { |
653 | tsk = oom_reaper_list; |
654 | oom_reaper_list = tsk->oom_reaper_list; |
655 | } |
656 | spin_unlock_irq(lock: &oom_reaper_lock); |
657 | |
658 | if (tsk) |
659 | oom_reap_task(tsk); |
660 | } |
661 | |
662 | return 0; |
663 | } |
664 | |
665 | static void wake_oom_reaper(struct timer_list *timer) |
666 | { |
667 | struct task_struct *tsk = container_of(timer, struct task_struct, |
668 | oom_reaper_timer); |
669 | struct mm_struct *mm = tsk->signal->oom_mm; |
670 | unsigned long flags; |
671 | |
672 | /* The victim managed to terminate on its own - see exit_mmap */ |
673 | if (test_bit(MMF_OOM_SKIP, &mm->flags)) { |
674 | put_task_struct(t: tsk); |
675 | return; |
676 | } |
677 | |
678 | spin_lock_irqsave(&oom_reaper_lock, flags); |
679 | tsk->oom_reaper_list = oom_reaper_list; |
680 | oom_reaper_list = tsk; |
681 | spin_unlock_irqrestore(lock: &oom_reaper_lock, flags); |
682 | trace_wake_reaper(pid: tsk->pid); |
683 | wake_up(&oom_reaper_wait); |
684 | } |
685 | |
686 | /* |
687 | * Give the OOM victim time to exit naturally before invoking the oom_reaping. |
688 | * The timers timeout is arbitrary... the longer it is, the longer the worst |
689 | * case scenario for the OOM can take. If it is too small, the oom_reaper can |
690 | * get in the way and release resources needed by the process exit path. |
691 | * e.g. The futex robust list can sit in Anon|Private memory that gets reaped |
692 | * before the exit path is able to wake the futex waiters. |
693 | */ |
694 | #define OOM_REAPER_DELAY (2*HZ) |
695 | static void queue_oom_reaper(struct task_struct *tsk) |
696 | { |
697 | /* mm is already queued? */ |
698 | if (test_and_set_bit(MMF_OOM_REAP_QUEUED, addr: &tsk->signal->oom_mm->flags)) |
699 | return; |
700 | |
701 | get_task_struct(t: tsk); |
702 | timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0); |
703 | tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY; |
704 | add_timer(timer: &tsk->oom_reaper_timer); |
705 | } |
706 | |
707 | #ifdef CONFIG_SYSCTL |
708 | static const struct ctl_table vm_oom_kill_table[] = { |
709 | { |
710 | .procname = "panic_on_oom", |
711 | .data = &sysctl_panic_on_oom, |
712 | .maxlen = sizeof(sysctl_panic_on_oom), |
713 | .mode = 0644, |
714 | .proc_handler = proc_dointvec_minmax, |
715 | .extra1 = SYSCTL_ZERO, |
716 | .extra2 = SYSCTL_TWO, |
717 | }, |
718 | { |
719 | .procname = "oom_kill_allocating_task", |
720 | .data = &sysctl_oom_kill_allocating_task, |
721 | .maxlen = sizeof(sysctl_oom_kill_allocating_task), |
722 | .mode = 0644, |
723 | .proc_handler = proc_dointvec, |
724 | }, |
725 | { |
726 | .procname = "oom_dump_tasks", |
727 | .data = &sysctl_oom_dump_tasks, |
728 | .maxlen = sizeof(sysctl_oom_dump_tasks), |
729 | .mode = 0644, |
730 | .proc_handler = proc_dointvec, |
731 | }, |
732 | }; |
733 | #endif |
734 | |
735 | static int __init oom_init(void) |
736 | { |
737 | oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); |
738 | #ifdef CONFIG_SYSCTL |
739 | register_sysctl_init("vm", vm_oom_kill_table); |
740 | #endif |
741 | return 0; |
742 | } |
743 | subsys_initcall(oom_init) |
744 | #else |
745 | static inline void queue_oom_reaper(struct task_struct *tsk) |
746 | { |
747 | } |
748 | #endif /* CONFIG_MMU */ |
749 | |
750 | /** |
751 | * mark_oom_victim - mark the given task as OOM victim |
752 | * @tsk: task to mark |
753 | * |
754 | * Has to be called with oom_lock held and never after |
755 | * oom has been disabled already. |
756 | * |
757 | * tsk->mm has to be non NULL and caller has to guarantee it is stable (either |
758 | * under task_lock or operate on the current). |
759 | */ |
760 | static void mark_oom_victim(struct task_struct *tsk) |
761 | { |
762 | const struct cred *cred; |
763 | struct mm_struct *mm = tsk->mm; |
764 | |
765 | WARN_ON(oom_killer_disabled); |
766 | /* OOM killer might race with memcg OOM */ |
767 | if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) |
768 | return; |
769 | |
770 | /* oom_mm is bound to the signal struct life time. */ |
771 | if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) |
772 | mmgrab(mm: tsk->signal->oom_mm); |
773 | |
774 | /* |
775 | * Make sure that the task is woken up from uninterruptible sleep |
776 | * if it is frozen because OOM killer wouldn't be able to free |
777 | * any memory and livelock. freezing_slow_path will tell the freezer |
778 | * that TIF_MEMDIE tasks should be ignored. |
779 | */ |
780 | __thaw_task(t: tsk); |
781 | atomic_inc(v: &oom_victims); |
782 | cred = get_task_cred(tsk); |
783 | trace_mark_victim(task: tsk, uid: cred->uid.val); |
784 | put_cred(cred); |
785 | } |
786 | |
787 | /** |
788 | * exit_oom_victim - note the exit of an OOM victim |
789 | */ |
790 | void exit_oom_victim(void) |
791 | { |
792 | clear_thread_flag(TIF_MEMDIE); |
793 | |
794 | if (!atomic_dec_return(v: &oom_victims)) |
795 | wake_up_all(&oom_victims_wait); |
796 | } |
797 | |
798 | /** |
799 | * oom_killer_enable - enable OOM killer |
800 | */ |
801 | void oom_killer_enable(void) |
802 | { |
803 | oom_killer_disabled = false; |
804 | pr_info("OOM killer enabled.\n"); |
805 | } |
806 | |
807 | /** |
808 | * oom_killer_disable - disable OOM killer |
809 | * @timeout: maximum timeout to wait for oom victims in jiffies |
810 | * |
811 | * Forces all page allocations to fail rather than trigger OOM killer. |
812 | * Will block and wait until all OOM victims are killed or the given |
813 | * timeout expires. |
814 | * |
815 | * The function cannot be called when there are runnable user tasks because |
816 | * the userspace would see unexpected allocation failures as a result. Any |
817 | * new usage of this function should be consulted with MM people. |
818 | * |
819 | * Returns true if successful and false if the OOM killer cannot be |
820 | * disabled. |
821 | */ |
822 | bool oom_killer_disable(signed long timeout) |
823 | { |
824 | signed long ret; |
825 | |
826 | /* |
827 | * Make sure to not race with an ongoing OOM killer. Check that the |
828 | * current is not killed (possibly due to sharing the victim's memory). |
829 | */ |
830 | if (mutex_lock_killable(&oom_lock)) |
831 | return false; |
832 | oom_killer_disabled = true; |
833 | mutex_unlock(lock: &oom_lock); |
834 | |
835 | ret = wait_event_interruptible_timeout(oom_victims_wait, |
836 | !atomic_read(&oom_victims), timeout); |
837 | if (ret <= 0) { |
838 | oom_killer_enable(); |
839 | return false; |
840 | } |
841 | pr_info("OOM killer disabled.\n"); |
842 | |
843 | return true; |
844 | } |
845 | |
846 | static inline bool __task_will_free_mem(struct task_struct *task) |
847 | { |
848 | struct signal_struct *sig = task->signal; |
849 | |
850 | /* |
851 | * A coredumping process may sleep for an extended period in |
852 | * coredump_task_exit(), so the oom killer cannot assume that |
853 | * the process will promptly exit and release memory. |
854 | */ |
855 | if (sig->core_state) |
856 | return false; |
857 | |
858 | if (sig->flags & SIGNAL_GROUP_EXIT) |
859 | return true; |
860 | |
861 | if (thread_group_empty(p: task) && (task->flags & PF_EXITING)) |
862 | return true; |
863 | |
864 | return false; |
865 | } |
866 | |
867 | /* |
868 | * Checks whether the given task is dying or exiting and likely to |
869 | * release its address space. This means that all threads and processes |
870 | * sharing the same mm have to be killed or exiting. |
871 | * Caller has to make sure that task->mm is stable (hold task_lock or |
872 | * it operates on the current). |
873 | */ |
874 | static bool task_will_free_mem(struct task_struct *task) |
875 | { |
876 | struct mm_struct *mm = task->mm; |
877 | struct task_struct *p; |
878 | bool ret = true; |
879 | |
880 | /* |
881 | * Skip tasks without mm because it might have passed its exit_mm and |
882 | * exit_oom_victim. oom_reaper could have rescued that but do not rely |
883 | * on that for now. We can consider find_lock_task_mm in future. |
884 | */ |
885 | if (!mm) |
886 | return false; |
887 | |
888 | if (!__task_will_free_mem(task)) |
889 | return false; |
890 | |
891 | /* |
892 | * This task has already been drained by the oom reaper so there are |
893 | * only small chances it will free some more |
894 | */ |
895 | if (test_bit(MMF_OOM_SKIP, &mm->flags)) |
896 | return false; |
897 | |
898 | if (atomic_read(v: &mm->mm_users) <= 1) |
899 | return true; |
900 | |
901 | /* |
902 | * Make sure that all tasks which share the mm with the given tasks |
903 | * are dying as well to make sure that a) nobody pins its mm and |
904 | * b) the task is also reapable by the oom reaper. |
905 | */ |
906 | rcu_read_lock(); |
907 | for_each_process(p) { |
908 | if (!process_shares_mm(p, mm)) |
909 | continue; |
910 | if (same_thread_group(p1: task, p2: p)) |
911 | continue; |
912 | ret = __task_will_free_mem(task: p); |
913 | if (!ret) |
914 | break; |
915 | } |
916 | rcu_read_unlock(); |
917 | |
918 | return ret; |
919 | } |
920 | |
921 | static void __oom_kill_process(struct task_struct *victim, const char *message) |
922 | { |
923 | struct task_struct *p; |
924 | struct mm_struct *mm; |
925 | bool can_oom_reap = true; |
926 | |
927 | p = find_lock_task_mm(p: victim); |
928 | if (!p) { |
929 | pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", |
930 | message, task_pid_nr(victim), victim->comm); |
931 | put_task_struct(t: victim); |
932 | return; |
933 | } else if (victim != p) { |
934 | get_task_struct(t: p); |
935 | put_task_struct(t: victim); |
936 | victim = p; |
937 | } |
938 | |
939 | /* Get a reference to safely compare mm after task_unlock(victim) */ |
940 | mm = victim->mm; |
941 | mmgrab(mm); |
942 | |
943 | /* Raise event before sending signal: task reaper must see this */ |
944 | count_vm_event(item: OOM_KILL); |
945 | memcg_memory_event_mm(mm, event: MEMCG_OOM_KILL); |
946 | |
947 | /* |
948 | * We should send SIGKILL before granting access to memory reserves |
949 | * in order to prevent the OOM victim from depleting the memory |
950 | * reserves from the user space under its control. |
951 | */ |
952 | do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p: victim, type: PIDTYPE_TGID); |
953 | mark_oom_victim(tsk: victim); |
954 | pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", |
955 | message, task_pid_nr(victim), victim->comm, K(mm->total_vm), |
956 | K(get_mm_counter(mm, MM_ANONPAGES)), |
957 | K(get_mm_counter(mm, MM_FILEPAGES)), |
958 | K(get_mm_counter(mm, MM_SHMEMPAGES)), |
959 | from_kuid(&init_user_ns, task_uid(victim)), |
960 | mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); |
961 | task_unlock(p: victim); |
962 | |
963 | /* |
964 | * Kill all user processes sharing victim->mm in other thread groups, if |
965 | * any. They don't get access to memory reserves, though, to avoid |
966 | * depletion of all memory. This prevents mm->mmap_lock livelock when an |
967 | * oom killed thread cannot exit because it requires the semaphore and |
968 | * its contended by another thread trying to allocate memory itself. |
969 | * That thread will now get access to memory reserves since it has a |
970 | * pending fatal signal. |
971 | */ |
972 | rcu_read_lock(); |
973 | for_each_process(p) { |
974 | if (!process_shares_mm(p, mm)) |
975 | continue; |
976 | if (same_thread_group(p1: p, p2: victim)) |
977 | continue; |
978 | if (is_global_init(tsk: p)) { |
979 | can_oom_reap = false; |
980 | set_bit(MMF_OOM_SKIP, addr: &mm->flags); |
981 | pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", |
982 | task_pid_nr(victim), victim->comm, |
983 | task_pid_nr(p), p->comm); |
984 | continue; |
985 | } |
986 | /* |
987 | * No kthread_use_mm() user needs to read from the userspace so |
988 | * we are ok to reap it. |
989 | */ |
990 | if (unlikely(p->flags & PF_KTHREAD)) |
991 | continue; |
992 | do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, type: PIDTYPE_TGID); |
993 | } |
994 | rcu_read_unlock(); |
995 | |
996 | if (can_oom_reap) |
997 | queue_oom_reaper(tsk: victim); |
998 | |
999 | mmdrop(mm); |
1000 | put_task_struct(t: victim); |
1001 | } |
1002 | |
1003 | /* |
1004 | * Kill provided task unless it's secured by setting |
1005 | * oom_score_adj to OOM_SCORE_ADJ_MIN. |
1006 | */ |
1007 | static int oom_kill_memcg_member(struct task_struct *task, void *message) |
1008 | { |
1009 | if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && |
1010 | !is_global_init(tsk: task)) { |
1011 | get_task_struct(t: task); |
1012 | __oom_kill_process(victim: task, message); |
1013 | } |
1014 | return 0; |
1015 | } |
1016 | |
1017 | static void oom_kill_process(struct oom_control *oc, const char *message) |
1018 | { |
1019 | struct task_struct *victim = oc->chosen; |
1020 | struct mem_cgroup *oom_group; |
1021 | static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
1022 | DEFAULT_RATELIMIT_BURST); |
1023 | |
1024 | /* |
1025 | * If the task is already exiting, don't alarm the sysadmin or kill |
1026 | * its children or threads, just give it access to memory reserves |
1027 | * so it can die quickly |
1028 | */ |
1029 | task_lock(p: victim); |
1030 | if (task_will_free_mem(task: victim)) { |
1031 | mark_oom_victim(tsk: victim); |
1032 | queue_oom_reaper(tsk: victim); |
1033 | task_unlock(p: victim); |
1034 | put_task_struct(t: victim); |
1035 | return; |
1036 | } |
1037 | task_unlock(p: victim); |
1038 | |
1039 | if (__ratelimit(&oom_rs)) { |
1040 | dump_header(oc); |
1041 | dump_oom_victim(oc, victim); |
1042 | } |
1043 | |
1044 | /* |
1045 | * Do we need to kill the entire memory cgroup? |
1046 | * Or even one of the ancestor memory cgroups? |
1047 | * Check this out before killing the victim task. |
1048 | */ |
1049 | oom_group = mem_cgroup_get_oom_group(victim, oom_domain: oc->memcg); |
1050 | |
1051 | __oom_kill_process(victim, message); |
1052 | |
1053 | /* |
1054 | * If necessary, kill all tasks in the selected memory cgroup. |
1055 | */ |
1056 | if (oom_group) { |
1057 | memcg_memory_event(memcg: oom_group, event: MEMCG_OOM_GROUP_KILL); |
1058 | mem_cgroup_print_oom_group(memcg: oom_group); |
1059 | mem_cgroup_scan_tasks(memcg: oom_group, oom_kill_memcg_member, |
1060 | arg: (void *)message); |
1061 | mem_cgroup_put(memcg: oom_group); |
1062 | } |
1063 | } |
1064 | |
1065 | /* |
1066 | * Determines whether the kernel must panic because of the panic_on_oom sysctl. |
1067 | */ |
1068 | static void check_panic_on_oom(struct oom_control *oc) |
1069 | { |
1070 | if (likely(!sysctl_panic_on_oom)) |
1071 | return; |
1072 | if (sysctl_panic_on_oom != 2) { |
1073 | /* |
1074 | * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel |
1075 | * does not panic for cpuset, mempolicy, or memcg allocation |
1076 | * failures. |
1077 | */ |
1078 | if (oc->constraint != CONSTRAINT_NONE) |
1079 | return; |
1080 | } |
1081 | /* Do not panic for oom kills triggered by sysrq */ |
1082 | if (is_sysrq_oom(oc)) |
1083 | return; |
1084 | dump_header(oc); |
1085 | panic(fmt: "Out of memory: %s panic_on_oom is enabled\n", |
1086 | sysctl_panic_on_oom == 2 ? "compulsory": "system-wide"); |
1087 | } |
1088 | |
1089 | static BLOCKING_NOTIFIER_HEAD(oom_notify_list); |
1090 | |
1091 | int register_oom_notifier(struct notifier_block *nb) |
1092 | { |
1093 | return blocking_notifier_chain_register(nh: &oom_notify_list, nb); |
1094 | } |
1095 | EXPORT_SYMBOL_GPL(register_oom_notifier); |
1096 | |
1097 | int unregister_oom_notifier(struct notifier_block *nb) |
1098 | { |
1099 | return blocking_notifier_chain_unregister(nh: &oom_notify_list, nb); |
1100 | } |
1101 | EXPORT_SYMBOL_GPL(unregister_oom_notifier); |
1102 | |
1103 | /** |
1104 | * out_of_memory - kill the "best" process when we run out of memory |
1105 | * @oc: pointer to struct oom_control |
1106 | * |
1107 | * If we run out of memory, we have the choice between either |
1108 | * killing a random task (bad), letting the system crash (worse) |
1109 | * OR try to be smart about which process to kill. Note that we |
1110 | * don't have to be perfect here, we just have to be good. |
1111 | */ |
1112 | bool out_of_memory(struct oom_control *oc) |
1113 | { |
1114 | unsigned long freed = 0; |
1115 | |
1116 | if (oom_killer_disabled) |
1117 | return false; |
1118 | |
1119 | if (!is_memcg_oom(oc)) { |
1120 | blocking_notifier_call_chain(nh: &oom_notify_list, val: 0, v: &freed); |
1121 | if (freed > 0 && !is_sysrq_oom(oc)) |
1122 | /* Got some memory back in the last second. */ |
1123 | return true; |
1124 | } |
1125 | |
1126 | /* |
1127 | * If current has a pending SIGKILL or is exiting, then automatically |
1128 | * select it. The goal is to allow it to allocate so that it may |
1129 | * quickly exit and free its memory. |
1130 | */ |
1131 | if (task_will_free_mem(current)) { |
1132 | mark_oom_victim(current); |
1133 | queue_oom_reaper(current); |
1134 | return true; |
1135 | } |
1136 | |
1137 | /* |
1138 | * The OOM killer does not compensate for IO-less reclaim. |
1139 | * But mem_cgroup_oom() has to invoke the OOM killer even |
1140 | * if it is a GFP_NOFS allocation. |
1141 | */ |
1142 | if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) |
1143 | return true; |
1144 | |
1145 | /* |
1146 | * Check if there were limitations on the allocation (only relevant for |
1147 | * NUMA and memcg) that may require different handling. |
1148 | */ |
1149 | oc->constraint = constrained_alloc(oc); |
1150 | if (oc->constraint != CONSTRAINT_MEMORY_POLICY) |
1151 | oc->nodemask = NULL; |
1152 | check_panic_on_oom(oc); |
1153 | |
1154 | if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && |
1155 | current->mm && !oom_unkillable_task(current) && |
1156 | oom_cpuset_eligible(current, oc) && |
1157 | current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { |
1158 | get_task_struct(current); |
1159 | oc->chosen = current; |
1160 | oom_kill_process(oc, message: "Out of memory (oom_kill_allocating_task)"); |
1161 | return true; |
1162 | } |
1163 | |
1164 | select_bad_process(oc); |
1165 | /* Found nothing?!?! */ |
1166 | if (!oc->chosen) { |
1167 | dump_header(oc); |
1168 | pr_warn("Out of memory and no killable processes...\n"); |
1169 | /* |
1170 | * If we got here due to an actual allocation at the |
1171 | * system level, we cannot survive this and will enter |
1172 | * an endless loop in the allocator. Bail out now. |
1173 | */ |
1174 | if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) |
1175 | panic(fmt: "System is deadlocked on memory\n"); |
1176 | } |
1177 | if (oc->chosen && oc->chosen != (void *)-1UL) |
1178 | oom_kill_process(oc, message: !is_memcg_oom(oc) ? "Out of memory": |
1179 | "Memory cgroup out of memory"); |
1180 | return !!oc->chosen; |
1181 | } |
1182 | |
1183 | /* |
1184 | * The pagefault handler calls here because some allocation has failed. We have |
1185 | * to take care of the memcg OOM here because this is the only safe context without |
1186 | * any locks held but let the oom killer triggered from the allocation context care |
1187 | * about the global OOM. |
1188 | */ |
1189 | void pagefault_out_of_memory(void) |
1190 | { |
1191 | static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL, |
1192 | DEFAULT_RATELIMIT_BURST); |
1193 | |
1194 | if (mem_cgroup_oom_synchronize(wait: true)) |
1195 | return; |
1196 | |
1197 | if (fatal_signal_pending(current)) |
1198 | return; |
1199 | |
1200 | if (__ratelimit(&pfoom_rs)) |
1201 | pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n"); |
1202 | } |
1203 | |
1204 | SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags) |
1205 | { |
1206 | #ifdef CONFIG_MMU |
1207 | struct mm_struct *mm = NULL; |
1208 | struct task_struct *task; |
1209 | struct task_struct *p; |
1210 | unsigned int f_flags; |
1211 | bool reap = false; |
1212 | long ret = 0; |
1213 | |
1214 | if (flags) |
1215 | return -EINVAL; |
1216 | |
1217 | task = pidfd_get_task(pidfd, flags: &f_flags); |
1218 | if (IS_ERR(ptr: task)) |
1219 | return PTR_ERR(ptr: task); |
1220 | |
1221 | /* |
1222 | * Make sure to choose a thread which still has a reference to mm |
1223 | * during the group exit |
1224 | */ |
1225 | p = find_lock_task_mm(p: task); |
1226 | if (!p) { |
1227 | ret = -ESRCH; |
1228 | goto put_task; |
1229 | } |
1230 | |
1231 | mm = p->mm; |
1232 | mmgrab(mm); |
1233 | |
1234 | if (task_will_free_mem(task: p)) |
1235 | reap = true; |
1236 | else { |
1237 | /* Error only if the work has not been done already */ |
1238 | if (!test_bit(MMF_OOM_SKIP, &mm->flags)) |
1239 | ret = -EINVAL; |
1240 | } |
1241 | task_unlock(p); |
1242 | |
1243 | if (!reap) |
1244 | goto drop_mm; |
1245 | |
1246 | if (mmap_read_lock_killable(mm)) { |
1247 | ret = -EINTR; |
1248 | goto drop_mm; |
1249 | } |
1250 | /* |
1251 | * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure |
1252 | * possible change in exit_mmap is seen |
1253 | */ |
1254 | if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm)) |
1255 | ret = -EAGAIN; |
1256 | mmap_read_unlock(mm); |
1257 | |
1258 | drop_mm: |
1259 | mmdrop(mm); |
1260 | put_task: |
1261 | put_task_struct(t: task); |
1262 | return ret; |
1263 | #else |
1264 | return -ENOSYS; |
1265 | #endif /* CONFIG_MMU */ |
1266 | } |
1267 |
Definitions
- sysctl_panic_on_oom
- sysctl_oom_kill_allocating_task
- sysctl_oom_dump_tasks
- oom_lock
- oom_adj_mutex
- is_memcg_oom
- oom_cpuset_eligible
- find_lock_task_mm
- is_sysrq_oom
- oom_unkillable_task
- should_dump_unreclaim_slab
- oom_badness
- oom_constraint_text
- constrained_alloc
- oom_evaluate_task
- select_bad_process
- dump_task
- dump_tasks
- dump_oom_victim
- dump_header
- oom_victims
- oom_victims_wait
- oom_killer_disabled
- process_shares_mm
- oom_reaper_th
- oom_reaper_wait
- oom_reaper_list
- oom_reaper_lock
- __oom_reap_task_mm
- oom_reap_task_mm
- oom_reap_task
- oom_reaper
- wake_oom_reaper
- queue_oom_reaper
- vm_oom_kill_table
- oom_init
- mark_oom_victim
- exit_oom_victim
- oom_killer_enable
- oom_killer_disable
- __task_will_free_mem
- task_will_free_mem
- __oom_kill_process
- oom_kill_memcg_member
- oom_kill_process
- check_panic_on_oom
- oom_notify_list
- register_oom_notifier
- unregister_oom_notifier
- out_of_memory
Improve your Profiling and Debugging skills
Find out more