| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/mm/oom_kill.c |
| 4 | * |
| 5 | * Copyright (C) 1998,2000 Rik van Riel |
| 6 | * Thanks go out to Claus Fischer for some serious inspiration and |
| 7 | * for goading me into coding this file... |
| 8 | * Copyright (C) 2010 Google, Inc. |
| 9 | * Rewritten by David Rientjes |
| 10 | * |
| 11 | * The routines in this file are used to kill a process when |
| 12 | * we're seriously out of memory. This gets called from __alloc_pages() |
| 13 | * in mm/page_alloc.c when we really run out of memory. |
| 14 | * |
| 15 | * Since we won't call these routines often (on a well-configured |
| 16 | * machine) this file will double as a 'coding guide' and a signpost |
| 17 | * for newbie kernel hackers. It features several pointers to major |
| 18 | * kernel subsystems and hints as to where to find out what things do. |
| 19 | */ |
| 20 | |
| 21 | #include <linux/oom.h> |
| 22 | #include <linux/mm.h> |
| 23 | #include <linux/err.h> |
| 24 | #include <linux/gfp.h> |
| 25 | #include <linux/sched.h> |
| 26 | #include <linux/sched/mm.h> |
| 27 | #include <linux/sched/task.h> |
| 28 | #include <linux/sched/debug.h> |
| 29 | #include <linux/swap.h> |
| 30 | #include <linux/syscalls.h> |
| 31 | #include <linux/timex.h> |
| 32 | #include <linux/jiffies.h> |
| 33 | #include <linux/cpuset.h> |
| 34 | #include <linux/export.h> |
| 35 | #include <linux/notifier.h> |
| 36 | #include <linux/memcontrol.h> |
| 37 | #include <linux/mempolicy.h> |
| 38 | #include <linux/security.h> |
| 39 | #include <linux/ptrace.h> |
| 40 | #include <linux/freezer.h> |
| 41 | #include <linux/ftrace.h> |
| 42 | #include <linux/ratelimit.h> |
| 43 | #include <linux/kthread.h> |
| 44 | #include <linux/init.h> |
| 45 | #include <linux/mmu_notifier.h> |
| 46 | #include <linux/cred.h> |
| 47 | #include <linux/nmi.h> |
| 48 | |
| 49 | #include <asm/tlb.h> |
| 50 | #include "internal.h" |
| 51 | #include "slab.h" |
| 52 | |
| 53 | #define CREATE_TRACE_POINTS |
| 54 | #include <trace/events/oom.h> |
| 55 | |
| 56 | static int sysctl_panic_on_oom; |
| 57 | static int sysctl_oom_kill_allocating_task; |
| 58 | static int sysctl_oom_dump_tasks = 1; |
| 59 | |
| 60 | /* |
| 61 | * Serializes oom killer invocations (out_of_memory()) from all contexts to |
| 62 | * prevent from over eager oom killing (e.g. when the oom killer is invoked |
| 63 | * from different domains). |
| 64 | * |
| 65 | * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled |
| 66 | * and mark_oom_victim |
| 67 | */ |
| 68 | DEFINE_MUTEX(oom_lock); |
| 69 | /* Serializes oom_score_adj and oom_score_adj_min updates */ |
| 70 | DEFINE_MUTEX(oom_adj_mutex); |
| 71 | |
| 72 | static inline bool is_memcg_oom(struct oom_control *oc) |
| 73 | { |
| 74 | return oc->memcg != NULL; |
| 75 | } |
| 76 | |
| 77 | #ifdef CONFIG_NUMA |
| 78 | /** |
| 79 | * oom_cpuset_eligible() - check task eligibility for kill |
| 80 | * @start: task struct of which task to consider |
| 81 | * @oc: pointer to struct oom_control |
| 82 | * |
| 83 | * Task eligibility is determined by whether or not a candidate task, @tsk, |
| 84 | * shares the same mempolicy nodes as current if it is bound by such a policy |
| 85 | * and whether or not it has the same set of allowed cpuset nodes. |
| 86 | * |
| 87 | * This function is assuming oom-killer context and 'current' has triggered |
| 88 | * the oom-killer. |
| 89 | */ |
| 90 | static bool oom_cpuset_eligible(struct task_struct *start, |
| 91 | struct oom_control *oc) |
| 92 | { |
| 93 | struct task_struct *tsk; |
| 94 | bool ret = false; |
| 95 | const nodemask_t *mask = oc->nodemask; |
| 96 | |
| 97 | rcu_read_lock(); |
| 98 | for_each_thread(start, tsk) { |
| 99 | if (mask) { |
| 100 | /* |
| 101 | * If this is a mempolicy constrained oom, tsk's |
| 102 | * cpuset is irrelevant. Only return true if its |
| 103 | * mempolicy intersects current, otherwise it may be |
| 104 | * needlessly killed. |
| 105 | */ |
| 106 | ret = mempolicy_in_oom_domain(tsk, mask); |
| 107 | } else { |
| 108 | /* |
| 109 | * This is not a mempolicy constrained oom, so only |
| 110 | * check the mems of tsk's cpuset. |
| 111 | */ |
| 112 | ret = cpuset_mems_allowed_intersects(current, tsk2: tsk); |
| 113 | } |
| 114 | if (ret) |
| 115 | break; |
| 116 | } |
| 117 | rcu_read_unlock(); |
| 118 | |
| 119 | return ret; |
| 120 | } |
| 121 | #else |
| 122 | static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) |
| 123 | { |
| 124 | return true; |
| 125 | } |
| 126 | #endif /* CONFIG_NUMA */ |
| 127 | |
| 128 | /* |
| 129 | * The process p may have detached its own ->mm while exiting or through |
| 130 | * kthread_use_mm(), but one or more of its subthreads may still have a valid |
| 131 | * pointer. Return p, or any of its subthreads with a valid ->mm, with |
| 132 | * task_lock() held. |
| 133 | */ |
| 134 | struct task_struct *find_lock_task_mm(struct task_struct *p) |
| 135 | { |
| 136 | struct task_struct *t; |
| 137 | |
| 138 | rcu_read_lock(); |
| 139 | |
| 140 | for_each_thread(p, t) { |
| 141 | task_lock(p: t); |
| 142 | if (likely(t->mm)) |
| 143 | goto found; |
| 144 | task_unlock(p: t); |
| 145 | } |
| 146 | t = NULL; |
| 147 | found: |
| 148 | rcu_read_unlock(); |
| 149 | |
| 150 | return t; |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * order == -1 means the oom kill is required by sysrq, otherwise only |
| 155 | * for display purposes. |
| 156 | */ |
| 157 | static inline bool is_sysrq_oom(struct oom_control *oc) |
| 158 | { |
| 159 | return oc->order == -1; |
| 160 | } |
| 161 | |
| 162 | /* return true if the task is not adequate as candidate victim task. */ |
| 163 | static bool oom_unkillable_task(struct task_struct *p) |
| 164 | { |
| 165 | if (is_global_init(tsk: p)) |
| 166 | return true; |
| 167 | if (p->flags & PF_KTHREAD) |
| 168 | return true; |
| 169 | return false; |
| 170 | } |
| 171 | |
| 172 | /* |
| 173 | * Check whether unreclaimable slab amount is greater than |
| 174 | * all user memory(LRU pages). |
| 175 | * dump_unreclaimable_slab() could help in the case that |
| 176 | * oom due to too much unreclaimable slab used by kernel. |
| 177 | */ |
| 178 | static bool should_dump_unreclaim_slab(void) |
| 179 | { |
| 180 | unsigned long nr_lru; |
| 181 | |
| 182 | nr_lru = global_node_page_state(item: NR_ACTIVE_ANON) + |
| 183 | global_node_page_state(item: NR_INACTIVE_ANON) + |
| 184 | global_node_page_state(item: NR_ACTIVE_FILE) + |
| 185 | global_node_page_state(item: NR_INACTIVE_FILE) + |
| 186 | global_node_page_state(item: NR_ISOLATED_ANON) + |
| 187 | global_node_page_state(item: NR_ISOLATED_FILE) + |
| 188 | global_node_page_state(item: NR_UNEVICTABLE); |
| 189 | |
| 190 | return (global_node_page_state_pages(item: NR_SLAB_UNRECLAIMABLE_B) > nr_lru); |
| 191 | } |
| 192 | |
| 193 | /** |
| 194 | * oom_badness - heuristic function to determine which candidate task to kill |
| 195 | * @p: task struct of which task we should calculate |
| 196 | * @totalpages: total present RAM allowed for page allocation |
| 197 | * |
| 198 | * The heuristic for determining which task to kill is made to be as simple and |
| 199 | * predictable as possible. The goal is to return the highest value for the |
| 200 | * task consuming the most memory to avoid subsequent oom failures. |
| 201 | */ |
| 202 | long oom_badness(struct task_struct *p, unsigned long totalpages) |
| 203 | { |
| 204 | long points; |
| 205 | long adj; |
| 206 | |
| 207 | if (oom_unkillable_task(p)) |
| 208 | return LONG_MIN; |
| 209 | |
| 210 | p = find_lock_task_mm(p); |
| 211 | if (!p) |
| 212 | return LONG_MIN; |
| 213 | |
| 214 | /* |
| 215 | * Do not even consider tasks which are explicitly marked oom |
| 216 | * unkillable or have been already oom reaped or the are in |
| 217 | * the middle of vfork |
| 218 | */ |
| 219 | adj = (long)p->signal->oom_score_adj; |
| 220 | if (adj == OOM_SCORE_ADJ_MIN || |
| 221 | test_bit(MMF_OOM_SKIP, &p->mm->flags) || |
| 222 | in_vfork(tsk: p)) { |
| 223 | task_unlock(p); |
| 224 | return LONG_MIN; |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * The baseline for the badness score is the proportion of RAM that each |
| 229 | * task's rss, pagetable and swap space use. |
| 230 | */ |
| 231 | points = get_mm_rss(mm: p->mm) + get_mm_counter(mm: p->mm, member: MM_SWAPENTS) + |
| 232 | mm_pgtables_bytes(mm: p->mm) / PAGE_SIZE; |
| 233 | task_unlock(p); |
| 234 | |
| 235 | /* Normalize to oom_score_adj units */ |
| 236 | adj *= totalpages / 1000; |
| 237 | points += adj; |
| 238 | |
| 239 | return points; |
| 240 | } |
| 241 | |
| 242 | static const char * const oom_constraint_text[] = { |
| 243 | [CONSTRAINT_NONE] = "CONSTRAINT_NONE" , |
| 244 | [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET" , |
| 245 | [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY" , |
| 246 | [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG" , |
| 247 | }; |
| 248 | |
| 249 | /* |
| 250 | * Determine the type of allocation constraint. |
| 251 | */ |
| 252 | static enum oom_constraint constrained_alloc(struct oom_control *oc) |
| 253 | { |
| 254 | struct zone *zone; |
| 255 | struct zoneref *z; |
| 256 | enum zone_type highest_zoneidx = gfp_zone(flags: oc->gfp_mask); |
| 257 | bool cpuset_limited = false; |
| 258 | int nid; |
| 259 | |
| 260 | if (is_memcg_oom(oc)) { |
| 261 | oc->totalpages = mem_cgroup_get_max(memcg: oc->memcg) ?: 1; |
| 262 | return CONSTRAINT_MEMCG; |
| 263 | } |
| 264 | |
| 265 | /* Default to all available memory */ |
| 266 | oc->totalpages = totalram_pages() + total_swap_pages; |
| 267 | |
| 268 | if (!IS_ENABLED(CONFIG_NUMA)) |
| 269 | return CONSTRAINT_NONE; |
| 270 | |
| 271 | if (!oc->zonelist) |
| 272 | return CONSTRAINT_NONE; |
| 273 | /* |
| 274 | * Reach here only when __GFP_NOFAIL is used. So, we should avoid |
| 275 | * to kill current.We have to random task kill in this case. |
| 276 | * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. |
| 277 | */ |
| 278 | if (oc->gfp_mask & __GFP_THISNODE) |
| 279 | return CONSTRAINT_NONE; |
| 280 | |
| 281 | /* |
| 282 | * This is not a __GFP_THISNODE allocation, so a truncated nodemask in |
| 283 | * the page allocator means a mempolicy is in effect. Cpuset policy |
| 284 | * is enforced in get_page_from_freelist(). |
| 285 | */ |
| 286 | if (oc->nodemask && |
| 287 | !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { |
| 288 | oc->totalpages = total_swap_pages; |
| 289 | for_each_node_mask(nid, *oc->nodemask) |
| 290 | oc->totalpages += node_present_pages(nid); |
| 291 | return CONSTRAINT_MEMORY_POLICY; |
| 292 | } |
| 293 | |
| 294 | /* Check this allocation failure is caused by cpuset's wall function */ |
| 295 | for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, |
| 296 | highest_zoneidx, oc->nodemask) |
| 297 | if (!cpuset_zone_allowed(z: zone, gfp_mask: oc->gfp_mask)) |
| 298 | cpuset_limited = true; |
| 299 | |
| 300 | if (cpuset_limited) { |
| 301 | oc->totalpages = total_swap_pages; |
| 302 | for_each_node_mask(nid, cpuset_current_mems_allowed) |
| 303 | oc->totalpages += node_present_pages(nid); |
| 304 | return CONSTRAINT_CPUSET; |
| 305 | } |
| 306 | return CONSTRAINT_NONE; |
| 307 | } |
| 308 | |
| 309 | static int oom_evaluate_task(struct task_struct *task, void *arg) |
| 310 | { |
| 311 | struct oom_control *oc = arg; |
| 312 | long points; |
| 313 | |
| 314 | if (oom_unkillable_task(p: task)) |
| 315 | goto next; |
| 316 | |
| 317 | /* p may not have freeable memory in nodemask */ |
| 318 | if (!is_memcg_oom(oc) && !oom_cpuset_eligible(start: task, oc)) |
| 319 | goto next; |
| 320 | |
| 321 | /* |
| 322 | * This task already has access to memory reserves and is being killed. |
| 323 | * Don't allow any other task to have access to the reserves unless |
| 324 | * the task has MMF_OOM_SKIP because chances that it would release |
| 325 | * any memory is quite low. |
| 326 | */ |
| 327 | if (!is_sysrq_oom(oc) && tsk_is_oom_victim(tsk: task)) { |
| 328 | if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) |
| 329 | goto next; |
| 330 | goto abort; |
| 331 | } |
| 332 | |
| 333 | /* |
| 334 | * If task is allocating a lot of memory and has been marked to be |
| 335 | * killed first if it triggers an oom, then select it. |
| 336 | */ |
| 337 | if (oom_task_origin(p: task)) { |
| 338 | points = LONG_MAX; |
| 339 | goto select; |
| 340 | } |
| 341 | |
| 342 | points = oom_badness(p: task, totalpages: oc->totalpages); |
| 343 | if (points == LONG_MIN || points < oc->chosen_points) |
| 344 | goto next; |
| 345 | |
| 346 | select: |
| 347 | if (oc->chosen) |
| 348 | put_task_struct(t: oc->chosen); |
| 349 | get_task_struct(t: task); |
| 350 | oc->chosen = task; |
| 351 | oc->chosen_points = points; |
| 352 | next: |
| 353 | return 0; |
| 354 | abort: |
| 355 | if (oc->chosen) |
| 356 | put_task_struct(t: oc->chosen); |
| 357 | oc->chosen = (void *)-1UL; |
| 358 | return 1; |
| 359 | } |
| 360 | |
| 361 | /* |
| 362 | * Simple selection loop. We choose the process with the highest number of |
| 363 | * 'points'. In case scan was aborted, oc->chosen is set to -1. |
| 364 | */ |
| 365 | static void select_bad_process(struct oom_control *oc) |
| 366 | { |
| 367 | oc->chosen_points = LONG_MIN; |
| 368 | |
| 369 | if (is_memcg_oom(oc)) |
| 370 | mem_cgroup_scan_tasks(memcg: oc->memcg, oom_evaluate_task, arg: oc); |
| 371 | else { |
| 372 | struct task_struct *p; |
| 373 | |
| 374 | rcu_read_lock(); |
| 375 | for_each_process(p) |
| 376 | if (oom_evaluate_task(task: p, arg: oc)) |
| 377 | break; |
| 378 | rcu_read_unlock(); |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | static int dump_task(struct task_struct *p, void *arg) |
| 383 | { |
| 384 | struct oom_control *oc = arg; |
| 385 | struct task_struct *task; |
| 386 | |
| 387 | if (oom_unkillable_task(p)) |
| 388 | return 0; |
| 389 | |
| 390 | /* p may not have freeable memory in nodemask */ |
| 391 | if (!is_memcg_oom(oc) && !oom_cpuset_eligible(start: p, oc)) |
| 392 | return 0; |
| 393 | |
| 394 | task = find_lock_task_mm(p); |
| 395 | if (!task) { |
| 396 | /* |
| 397 | * All of p's threads have already detached their mm's. There's |
| 398 | * no need to report them; they can't be oom killed anyway. |
| 399 | */ |
| 400 | return 0; |
| 401 | } |
| 402 | |
| 403 | pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n" , |
| 404 | task->pid, from_kuid(&init_user_ns, task_uid(task)), |
| 405 | task->tgid, task->mm->total_vm, get_mm_rss(task->mm), |
| 406 | get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES), |
| 407 | get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm), |
| 408 | get_mm_counter(task->mm, MM_SWAPENTS), |
| 409 | task->signal->oom_score_adj, task->comm); |
| 410 | task_unlock(p: task); |
| 411 | |
| 412 | return 0; |
| 413 | } |
| 414 | |
| 415 | /** |
| 416 | * dump_tasks - dump current memory state of all system tasks |
| 417 | * @oc: pointer to struct oom_control |
| 418 | * |
| 419 | * Dumps the current memory state of all eligible tasks. Tasks not in the same |
| 420 | * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes |
| 421 | * are not shown. |
| 422 | * State information includes task's pid, uid, tgid, vm size, rss, |
| 423 | * pgtables_bytes, swapents, oom_score_adj value, and name. |
| 424 | */ |
| 425 | static void dump_tasks(struct oom_control *oc) |
| 426 | { |
| 427 | pr_info("Tasks state (memory values in pages):\n" ); |
| 428 | pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n" ); |
| 429 | |
| 430 | if (is_memcg_oom(oc)) |
| 431 | mem_cgroup_scan_tasks(memcg: oc->memcg, dump_task, arg: oc); |
| 432 | else { |
| 433 | struct task_struct *p; |
| 434 | int i = 0; |
| 435 | |
| 436 | rcu_read_lock(); |
| 437 | for_each_process(p) { |
| 438 | /* Avoid potential softlockup warning */ |
| 439 | if ((++i & 1023) == 0) |
| 440 | touch_softlockup_watchdog(); |
| 441 | dump_task(p, arg: oc); |
| 442 | } |
| 443 | rcu_read_unlock(); |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim) |
| 448 | { |
| 449 | /* one line summary of the oom killer context. */ |
| 450 | pr_info("oom-kill:constraint=%s,nodemask=%*pbl" , |
| 451 | oom_constraint_text[oc->constraint], |
| 452 | nodemask_pr_args(oc->nodemask)); |
| 453 | cpuset_print_current_mems_allowed(); |
| 454 | mem_cgroup_print_oom_context(memcg: oc->memcg, p: victim); |
| 455 | pr_cont(",task=%s,pid=%d,uid=%d\n" , victim->comm, victim->pid, |
| 456 | from_kuid(&init_user_ns, task_uid(victim))); |
| 457 | } |
| 458 | |
| 459 | static void (struct oom_control *oc) |
| 460 | { |
| 461 | pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n" , |
| 462 | current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, |
| 463 | current->signal->oom_score_adj); |
| 464 | if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) |
| 465 | pr_warn("COMPACTION is disabled!!!\n" ); |
| 466 | |
| 467 | dump_stack(); |
| 468 | if (is_memcg_oom(oc)) |
| 469 | mem_cgroup_print_oom_meminfo(memcg: oc->memcg); |
| 470 | else { |
| 471 | __show_mem(SHOW_MEM_FILTER_NODES, nodemask: oc->nodemask, max_zone_idx: gfp_zone(flags: oc->gfp_mask)); |
| 472 | if (should_dump_unreclaim_slab()) |
| 473 | dump_unreclaimable_slab(); |
| 474 | } |
| 475 | if (sysctl_oom_dump_tasks) |
| 476 | dump_tasks(oc); |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * Number of OOM victims in flight |
| 481 | */ |
| 482 | static atomic_t oom_victims = ATOMIC_INIT(0); |
| 483 | static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); |
| 484 | |
| 485 | static bool oom_killer_disabled __read_mostly; |
| 486 | |
| 487 | /* |
| 488 | * task->mm can be NULL if the task is the exited group leader. So to |
| 489 | * determine whether the task is using a particular mm, we examine all the |
| 490 | * task's threads: if one of those is using this mm then this task was also |
| 491 | * using it. |
| 492 | */ |
| 493 | bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) |
| 494 | { |
| 495 | struct task_struct *t; |
| 496 | |
| 497 | for_each_thread(p, t) { |
| 498 | struct mm_struct *t_mm = READ_ONCE(t->mm); |
| 499 | if (t_mm) |
| 500 | return t_mm == mm; |
| 501 | } |
| 502 | return false; |
| 503 | } |
| 504 | |
| 505 | #ifdef CONFIG_MMU |
| 506 | /* |
| 507 | * OOM Reaper kernel thread which tries to reap the memory used by the OOM |
| 508 | * victim (if that is possible) to help the OOM killer to move on. |
| 509 | */ |
| 510 | static struct task_struct *oom_reaper_th; |
| 511 | static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); |
| 512 | static struct task_struct *oom_reaper_list; |
| 513 | static DEFINE_SPINLOCK(oom_reaper_lock); |
| 514 | |
| 515 | static bool __oom_reap_task_mm(struct mm_struct *mm) |
| 516 | { |
| 517 | struct vm_area_struct *vma; |
| 518 | bool ret = true; |
| 519 | VMA_ITERATOR(vmi, mm, 0); |
| 520 | |
| 521 | /* |
| 522 | * Tell all users of get_user/copy_from_user etc... that the content |
| 523 | * is no longer stable. No barriers really needed because unmapping |
| 524 | * should imply barriers already and the reader would hit a page fault |
| 525 | * if it stumbled over a reaped memory. |
| 526 | */ |
| 527 | set_bit(MMF_UNSTABLE, addr: &mm->flags); |
| 528 | |
| 529 | for_each_vma(vmi, vma) { |
| 530 | if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP)) |
| 531 | continue; |
| 532 | |
| 533 | /* |
| 534 | * Only anonymous pages have a good chance to be dropped |
| 535 | * without additional steps which we cannot afford as we |
| 536 | * are OOM already. |
| 537 | * |
| 538 | * We do not even care about fs backed pages because all |
| 539 | * which are reclaimable have already been reclaimed and |
| 540 | * we do not want to block exit_mmap by keeping mm ref |
| 541 | * count elevated without a good reason. |
| 542 | */ |
| 543 | if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { |
| 544 | struct mmu_notifier_range range; |
| 545 | struct mmu_gather tlb; |
| 546 | |
| 547 | mmu_notifier_range_init(range: &range, event: MMU_NOTIFY_UNMAP, flags: 0, |
| 548 | mm, start: vma->vm_start, |
| 549 | end: vma->vm_end); |
| 550 | tlb_gather_mmu(tlb: &tlb, mm); |
| 551 | if (mmu_notifier_invalidate_range_start_nonblock(range: &range)) { |
| 552 | tlb_finish_mmu(tlb: &tlb); |
| 553 | ret = false; |
| 554 | continue; |
| 555 | } |
| 556 | unmap_page_range(tlb: &tlb, vma, addr: range.start, end: range.end, NULL); |
| 557 | mmu_notifier_invalidate_range_end(range: &range); |
| 558 | tlb_finish_mmu(tlb: &tlb); |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | return ret; |
| 563 | } |
| 564 | |
| 565 | /* |
| 566 | * Reaps the address space of the given task. |
| 567 | * |
| 568 | * Returns true on success and false if none or part of the address space |
| 569 | * has been reclaimed and the caller should retry later. |
| 570 | */ |
| 571 | static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) |
| 572 | { |
| 573 | bool ret = true; |
| 574 | |
| 575 | if (!mmap_read_trylock(mm)) { |
| 576 | trace_skip_task_reaping(pid: tsk->pid); |
| 577 | return false; |
| 578 | } |
| 579 | |
| 580 | /* |
| 581 | * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't |
| 582 | * work on the mm anymore. The check for MMF_OOM_SKIP must run |
| 583 | * under mmap_lock for reading because it serializes against the |
| 584 | * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). |
| 585 | */ |
| 586 | if (test_bit(MMF_OOM_SKIP, &mm->flags)) { |
| 587 | trace_skip_task_reaping(pid: tsk->pid); |
| 588 | goto out_unlock; |
| 589 | } |
| 590 | |
| 591 | trace_start_task_reaping(pid: tsk->pid); |
| 592 | |
| 593 | /* failed to reap part of the address space. Try again later */ |
| 594 | ret = __oom_reap_task_mm(mm); |
| 595 | if (!ret) |
| 596 | goto out_finish; |
| 597 | |
| 598 | pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n" , |
| 599 | task_pid_nr(tsk), tsk->comm, |
| 600 | K(get_mm_counter(mm, MM_ANONPAGES)), |
| 601 | K(get_mm_counter(mm, MM_FILEPAGES)), |
| 602 | K(get_mm_counter(mm, MM_SHMEMPAGES))); |
| 603 | out_finish: |
| 604 | trace_finish_task_reaping(pid: tsk->pid); |
| 605 | out_unlock: |
| 606 | mmap_read_unlock(mm); |
| 607 | |
| 608 | return ret; |
| 609 | } |
| 610 | |
| 611 | #define MAX_OOM_REAP_RETRIES 10 |
| 612 | static void oom_reap_task(struct task_struct *tsk) |
| 613 | { |
| 614 | int attempts = 0; |
| 615 | struct mm_struct *mm = tsk->signal->oom_mm; |
| 616 | |
| 617 | /* Retry the mmap_read_trylock(mm) a few times */ |
| 618 | while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) |
| 619 | schedule_timeout_idle(HZ/10); |
| 620 | |
| 621 | if (attempts <= MAX_OOM_REAP_RETRIES || |
| 622 | test_bit(MMF_OOM_SKIP, &mm->flags)) |
| 623 | goto done; |
| 624 | |
| 625 | pr_info("oom_reaper: unable to reap pid:%d (%s)\n" , |
| 626 | task_pid_nr(tsk), tsk->comm); |
| 627 | sched_show_task(p: tsk); |
| 628 | debug_show_all_locks(); |
| 629 | |
| 630 | done: |
| 631 | tsk->oom_reaper_list = NULL; |
| 632 | |
| 633 | /* |
| 634 | * Hide this mm from OOM killer because it has been either reaped or |
| 635 | * somebody can't call mmap_write_unlock(mm). |
| 636 | */ |
| 637 | set_bit(MMF_OOM_SKIP, addr: &mm->flags); |
| 638 | |
| 639 | /* Drop a reference taken by queue_oom_reaper */ |
| 640 | put_task_struct(t: tsk); |
| 641 | } |
| 642 | |
| 643 | static int oom_reaper(void *unused) |
| 644 | { |
| 645 | set_freezable(); |
| 646 | |
| 647 | while (true) { |
| 648 | struct task_struct *tsk = NULL; |
| 649 | |
| 650 | wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); |
| 651 | spin_lock_irq(lock: &oom_reaper_lock); |
| 652 | if (oom_reaper_list != NULL) { |
| 653 | tsk = oom_reaper_list; |
| 654 | oom_reaper_list = tsk->oom_reaper_list; |
| 655 | } |
| 656 | spin_unlock_irq(lock: &oom_reaper_lock); |
| 657 | |
| 658 | if (tsk) |
| 659 | oom_reap_task(tsk); |
| 660 | } |
| 661 | |
| 662 | return 0; |
| 663 | } |
| 664 | |
| 665 | static void wake_oom_reaper(struct timer_list *timer) |
| 666 | { |
| 667 | struct task_struct *tsk = container_of(timer, struct task_struct, |
| 668 | oom_reaper_timer); |
| 669 | struct mm_struct *mm = tsk->signal->oom_mm; |
| 670 | unsigned long flags; |
| 671 | |
| 672 | /* The victim managed to terminate on its own - see exit_mmap */ |
| 673 | if (test_bit(MMF_OOM_SKIP, &mm->flags)) { |
| 674 | put_task_struct(t: tsk); |
| 675 | return; |
| 676 | } |
| 677 | |
| 678 | spin_lock_irqsave(&oom_reaper_lock, flags); |
| 679 | tsk->oom_reaper_list = oom_reaper_list; |
| 680 | oom_reaper_list = tsk; |
| 681 | spin_unlock_irqrestore(lock: &oom_reaper_lock, flags); |
| 682 | trace_wake_reaper(pid: tsk->pid); |
| 683 | wake_up(&oom_reaper_wait); |
| 684 | } |
| 685 | |
| 686 | /* |
| 687 | * Give the OOM victim time to exit naturally before invoking the oom_reaping. |
| 688 | * The timers timeout is arbitrary... the longer it is, the longer the worst |
| 689 | * case scenario for the OOM can take. If it is too small, the oom_reaper can |
| 690 | * get in the way and release resources needed by the process exit path. |
| 691 | * e.g. The futex robust list can sit in Anon|Private memory that gets reaped |
| 692 | * before the exit path is able to wake the futex waiters. |
| 693 | */ |
| 694 | #define OOM_REAPER_DELAY (2*HZ) |
| 695 | static void queue_oom_reaper(struct task_struct *tsk) |
| 696 | { |
| 697 | /* mm is already queued? */ |
| 698 | if (test_and_set_bit(MMF_OOM_REAP_QUEUED, addr: &tsk->signal->oom_mm->flags)) |
| 699 | return; |
| 700 | |
| 701 | get_task_struct(t: tsk); |
| 702 | timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0); |
| 703 | tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY; |
| 704 | add_timer(timer: &tsk->oom_reaper_timer); |
| 705 | } |
| 706 | |
| 707 | #ifdef CONFIG_SYSCTL |
| 708 | static const struct ctl_table vm_oom_kill_table[] = { |
| 709 | { |
| 710 | .procname = "panic_on_oom" , |
| 711 | .data = &sysctl_panic_on_oom, |
| 712 | .maxlen = sizeof(sysctl_panic_on_oom), |
| 713 | .mode = 0644, |
| 714 | .proc_handler = proc_dointvec_minmax, |
| 715 | .extra1 = SYSCTL_ZERO, |
| 716 | .extra2 = SYSCTL_TWO, |
| 717 | }, |
| 718 | { |
| 719 | .procname = "oom_kill_allocating_task" , |
| 720 | .data = &sysctl_oom_kill_allocating_task, |
| 721 | .maxlen = sizeof(sysctl_oom_kill_allocating_task), |
| 722 | .mode = 0644, |
| 723 | .proc_handler = proc_dointvec, |
| 724 | }, |
| 725 | { |
| 726 | .procname = "oom_dump_tasks" , |
| 727 | .data = &sysctl_oom_dump_tasks, |
| 728 | .maxlen = sizeof(sysctl_oom_dump_tasks), |
| 729 | .mode = 0644, |
| 730 | .proc_handler = proc_dointvec, |
| 731 | }, |
| 732 | }; |
| 733 | #endif |
| 734 | |
| 735 | static int __init oom_init(void) |
| 736 | { |
| 737 | oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper" ); |
| 738 | #ifdef CONFIG_SYSCTL |
| 739 | register_sysctl_init("vm" , vm_oom_kill_table); |
| 740 | #endif |
| 741 | return 0; |
| 742 | } |
| 743 | subsys_initcall(oom_init) |
| 744 | #else |
| 745 | static inline void queue_oom_reaper(struct task_struct *tsk) |
| 746 | { |
| 747 | } |
| 748 | #endif /* CONFIG_MMU */ |
| 749 | |
| 750 | /** |
| 751 | * mark_oom_victim - mark the given task as OOM victim |
| 752 | * @tsk: task to mark |
| 753 | * |
| 754 | * Has to be called with oom_lock held and never after |
| 755 | * oom has been disabled already. |
| 756 | * |
| 757 | * tsk->mm has to be non NULL and caller has to guarantee it is stable (either |
| 758 | * under task_lock or operate on the current). |
| 759 | */ |
| 760 | static void mark_oom_victim(struct task_struct *tsk) |
| 761 | { |
| 762 | const struct cred *cred; |
| 763 | struct mm_struct *mm = tsk->mm; |
| 764 | |
| 765 | WARN_ON(oom_killer_disabled); |
| 766 | /* OOM killer might race with memcg OOM */ |
| 767 | if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) |
| 768 | return; |
| 769 | |
| 770 | /* oom_mm is bound to the signal struct life time. */ |
| 771 | if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) |
| 772 | mmgrab(mm: tsk->signal->oom_mm); |
| 773 | |
| 774 | /* |
| 775 | * Make sure that the task is woken up from uninterruptible sleep |
| 776 | * if it is frozen because OOM killer wouldn't be able to free |
| 777 | * any memory and livelock. freezing_slow_path will tell the freezer |
| 778 | * that TIF_MEMDIE tasks should be ignored. |
| 779 | */ |
| 780 | __thaw_task(t: tsk); |
| 781 | atomic_inc(v: &oom_victims); |
| 782 | cred = get_task_cred(tsk); |
| 783 | trace_mark_victim(task: tsk, uid: cred->uid.val); |
| 784 | put_cred(cred); |
| 785 | } |
| 786 | |
| 787 | /** |
| 788 | * exit_oom_victim - note the exit of an OOM victim |
| 789 | */ |
| 790 | void exit_oom_victim(void) |
| 791 | { |
| 792 | clear_thread_flag(TIF_MEMDIE); |
| 793 | |
| 794 | if (!atomic_dec_return(v: &oom_victims)) |
| 795 | wake_up_all(&oom_victims_wait); |
| 796 | } |
| 797 | |
| 798 | /** |
| 799 | * oom_killer_enable - enable OOM killer |
| 800 | */ |
| 801 | void oom_killer_enable(void) |
| 802 | { |
| 803 | oom_killer_disabled = false; |
| 804 | pr_info("OOM killer enabled.\n" ); |
| 805 | } |
| 806 | |
| 807 | /** |
| 808 | * oom_killer_disable - disable OOM killer |
| 809 | * @timeout: maximum timeout to wait for oom victims in jiffies |
| 810 | * |
| 811 | * Forces all page allocations to fail rather than trigger OOM killer. |
| 812 | * Will block and wait until all OOM victims are killed or the given |
| 813 | * timeout expires. |
| 814 | * |
| 815 | * The function cannot be called when there are runnable user tasks because |
| 816 | * the userspace would see unexpected allocation failures as a result. Any |
| 817 | * new usage of this function should be consulted with MM people. |
| 818 | * |
| 819 | * Returns true if successful and false if the OOM killer cannot be |
| 820 | * disabled. |
| 821 | */ |
| 822 | bool oom_killer_disable(signed long timeout) |
| 823 | { |
| 824 | signed long ret; |
| 825 | |
| 826 | /* |
| 827 | * Make sure to not race with an ongoing OOM killer. Check that the |
| 828 | * current is not killed (possibly due to sharing the victim's memory). |
| 829 | */ |
| 830 | if (mutex_lock_killable(&oom_lock)) |
| 831 | return false; |
| 832 | oom_killer_disabled = true; |
| 833 | mutex_unlock(lock: &oom_lock); |
| 834 | |
| 835 | ret = wait_event_interruptible_timeout(oom_victims_wait, |
| 836 | !atomic_read(&oom_victims), timeout); |
| 837 | if (ret <= 0) { |
| 838 | oom_killer_enable(); |
| 839 | return false; |
| 840 | } |
| 841 | pr_info("OOM killer disabled.\n" ); |
| 842 | |
| 843 | return true; |
| 844 | } |
| 845 | |
| 846 | static inline bool __task_will_free_mem(struct task_struct *task) |
| 847 | { |
| 848 | struct signal_struct *sig = task->signal; |
| 849 | |
| 850 | /* |
| 851 | * A coredumping process may sleep for an extended period in |
| 852 | * coredump_task_exit(), so the oom killer cannot assume that |
| 853 | * the process will promptly exit and release memory. |
| 854 | */ |
| 855 | if (sig->core_state) |
| 856 | return false; |
| 857 | |
| 858 | if (sig->flags & SIGNAL_GROUP_EXIT) |
| 859 | return true; |
| 860 | |
| 861 | if (thread_group_empty(p: task) && (task->flags & PF_EXITING)) |
| 862 | return true; |
| 863 | |
| 864 | return false; |
| 865 | } |
| 866 | |
| 867 | /* |
| 868 | * Checks whether the given task is dying or exiting and likely to |
| 869 | * release its address space. This means that all threads and processes |
| 870 | * sharing the same mm have to be killed or exiting. |
| 871 | * Caller has to make sure that task->mm is stable (hold task_lock or |
| 872 | * it operates on the current). |
| 873 | */ |
| 874 | static bool task_will_free_mem(struct task_struct *task) |
| 875 | { |
| 876 | struct mm_struct *mm = task->mm; |
| 877 | struct task_struct *p; |
| 878 | bool ret = true; |
| 879 | |
| 880 | /* |
| 881 | * Skip tasks without mm because it might have passed its exit_mm and |
| 882 | * exit_oom_victim. oom_reaper could have rescued that but do not rely |
| 883 | * on that for now. We can consider find_lock_task_mm in future. |
| 884 | */ |
| 885 | if (!mm) |
| 886 | return false; |
| 887 | |
| 888 | if (!__task_will_free_mem(task)) |
| 889 | return false; |
| 890 | |
| 891 | /* |
| 892 | * This task has already been drained by the oom reaper so there are |
| 893 | * only small chances it will free some more |
| 894 | */ |
| 895 | if (test_bit(MMF_OOM_SKIP, &mm->flags)) |
| 896 | return false; |
| 897 | |
| 898 | if (atomic_read(v: &mm->mm_users) <= 1) |
| 899 | return true; |
| 900 | |
| 901 | /* |
| 902 | * Make sure that all tasks which share the mm with the given tasks |
| 903 | * are dying as well to make sure that a) nobody pins its mm and |
| 904 | * b) the task is also reapable by the oom reaper. |
| 905 | */ |
| 906 | rcu_read_lock(); |
| 907 | for_each_process(p) { |
| 908 | if (!process_shares_mm(p, mm)) |
| 909 | continue; |
| 910 | if (same_thread_group(p1: task, p2: p)) |
| 911 | continue; |
| 912 | ret = __task_will_free_mem(task: p); |
| 913 | if (!ret) |
| 914 | break; |
| 915 | } |
| 916 | rcu_read_unlock(); |
| 917 | |
| 918 | return ret; |
| 919 | } |
| 920 | |
| 921 | static void __oom_kill_process(struct task_struct *victim, const char *message) |
| 922 | { |
| 923 | struct task_struct *p; |
| 924 | struct mm_struct *mm; |
| 925 | bool can_oom_reap = true; |
| 926 | |
| 927 | p = find_lock_task_mm(p: victim); |
| 928 | if (!p) { |
| 929 | pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n" , |
| 930 | message, task_pid_nr(victim), victim->comm); |
| 931 | put_task_struct(t: victim); |
| 932 | return; |
| 933 | } else if (victim != p) { |
| 934 | get_task_struct(t: p); |
| 935 | put_task_struct(t: victim); |
| 936 | victim = p; |
| 937 | } |
| 938 | |
| 939 | /* Get a reference to safely compare mm after task_unlock(victim) */ |
| 940 | mm = victim->mm; |
| 941 | mmgrab(mm); |
| 942 | |
| 943 | /* Raise event before sending signal: task reaper must see this */ |
| 944 | count_vm_event(item: OOM_KILL); |
| 945 | memcg_memory_event_mm(mm, event: MEMCG_OOM_KILL); |
| 946 | |
| 947 | /* |
| 948 | * We should send SIGKILL before granting access to memory reserves |
| 949 | * in order to prevent the OOM victim from depleting the memory |
| 950 | * reserves from the user space under its control. |
| 951 | */ |
| 952 | do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p: victim, type: PIDTYPE_TGID); |
| 953 | mark_oom_victim(tsk: victim); |
| 954 | pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n" , |
| 955 | message, task_pid_nr(victim), victim->comm, K(mm->total_vm), |
| 956 | K(get_mm_counter(mm, MM_ANONPAGES)), |
| 957 | K(get_mm_counter(mm, MM_FILEPAGES)), |
| 958 | K(get_mm_counter(mm, MM_SHMEMPAGES)), |
| 959 | from_kuid(&init_user_ns, task_uid(victim)), |
| 960 | mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); |
| 961 | task_unlock(p: victim); |
| 962 | |
| 963 | /* |
| 964 | * Kill all user processes sharing victim->mm in other thread groups, if |
| 965 | * any. They don't get access to memory reserves, though, to avoid |
| 966 | * depletion of all memory. This prevents mm->mmap_lock livelock when an |
| 967 | * oom killed thread cannot exit because it requires the semaphore and |
| 968 | * its contended by another thread trying to allocate memory itself. |
| 969 | * That thread will now get access to memory reserves since it has a |
| 970 | * pending fatal signal. |
| 971 | */ |
| 972 | rcu_read_lock(); |
| 973 | for_each_process(p) { |
| 974 | if (!process_shares_mm(p, mm)) |
| 975 | continue; |
| 976 | if (same_thread_group(p1: p, p2: victim)) |
| 977 | continue; |
| 978 | if (is_global_init(tsk: p)) { |
| 979 | can_oom_reap = false; |
| 980 | set_bit(MMF_OOM_SKIP, addr: &mm->flags); |
| 981 | pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n" , |
| 982 | task_pid_nr(victim), victim->comm, |
| 983 | task_pid_nr(p), p->comm); |
| 984 | continue; |
| 985 | } |
| 986 | /* |
| 987 | * No kthread_use_mm() user needs to read from the userspace so |
| 988 | * we are ok to reap it. |
| 989 | */ |
| 990 | if (unlikely(p->flags & PF_KTHREAD)) |
| 991 | continue; |
| 992 | do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, type: PIDTYPE_TGID); |
| 993 | } |
| 994 | rcu_read_unlock(); |
| 995 | |
| 996 | if (can_oom_reap) |
| 997 | queue_oom_reaper(tsk: victim); |
| 998 | |
| 999 | mmdrop(mm); |
| 1000 | put_task_struct(t: victim); |
| 1001 | } |
| 1002 | |
| 1003 | /* |
| 1004 | * Kill provided task unless it's secured by setting |
| 1005 | * oom_score_adj to OOM_SCORE_ADJ_MIN. |
| 1006 | */ |
| 1007 | static int oom_kill_memcg_member(struct task_struct *task, void *message) |
| 1008 | { |
| 1009 | if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && |
| 1010 | !is_global_init(tsk: task)) { |
| 1011 | get_task_struct(t: task); |
| 1012 | __oom_kill_process(victim: task, message); |
| 1013 | } |
| 1014 | return 0; |
| 1015 | } |
| 1016 | |
| 1017 | static void oom_kill_process(struct oom_control *oc, const char *message) |
| 1018 | { |
| 1019 | struct task_struct *victim = oc->chosen; |
| 1020 | struct mem_cgroup *oom_group; |
| 1021 | static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
| 1022 | DEFAULT_RATELIMIT_BURST); |
| 1023 | |
| 1024 | /* |
| 1025 | * If the task is already exiting, don't alarm the sysadmin or kill |
| 1026 | * its children or threads, just give it access to memory reserves |
| 1027 | * so it can die quickly |
| 1028 | */ |
| 1029 | task_lock(p: victim); |
| 1030 | if (task_will_free_mem(task: victim)) { |
| 1031 | mark_oom_victim(tsk: victim); |
| 1032 | queue_oom_reaper(tsk: victim); |
| 1033 | task_unlock(p: victim); |
| 1034 | put_task_struct(t: victim); |
| 1035 | return; |
| 1036 | } |
| 1037 | task_unlock(p: victim); |
| 1038 | |
| 1039 | if (__ratelimit(&oom_rs)) { |
| 1040 | dump_header(oc); |
| 1041 | dump_oom_victim(oc, victim); |
| 1042 | } |
| 1043 | |
| 1044 | /* |
| 1045 | * Do we need to kill the entire memory cgroup? |
| 1046 | * Or even one of the ancestor memory cgroups? |
| 1047 | * Check this out before killing the victim task. |
| 1048 | */ |
| 1049 | oom_group = mem_cgroup_get_oom_group(victim, oom_domain: oc->memcg); |
| 1050 | |
| 1051 | __oom_kill_process(victim, message); |
| 1052 | |
| 1053 | /* |
| 1054 | * If necessary, kill all tasks in the selected memory cgroup. |
| 1055 | */ |
| 1056 | if (oom_group) { |
| 1057 | memcg_memory_event(memcg: oom_group, event: MEMCG_OOM_GROUP_KILL); |
| 1058 | mem_cgroup_print_oom_group(memcg: oom_group); |
| 1059 | mem_cgroup_scan_tasks(memcg: oom_group, oom_kill_memcg_member, |
| 1060 | arg: (void *)message); |
| 1061 | mem_cgroup_put(memcg: oom_group); |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | /* |
| 1066 | * Determines whether the kernel must panic because of the panic_on_oom sysctl. |
| 1067 | */ |
| 1068 | static void check_panic_on_oom(struct oom_control *oc) |
| 1069 | { |
| 1070 | if (likely(!sysctl_panic_on_oom)) |
| 1071 | return; |
| 1072 | if (sysctl_panic_on_oom != 2) { |
| 1073 | /* |
| 1074 | * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel |
| 1075 | * does not panic for cpuset, mempolicy, or memcg allocation |
| 1076 | * failures. |
| 1077 | */ |
| 1078 | if (oc->constraint != CONSTRAINT_NONE) |
| 1079 | return; |
| 1080 | } |
| 1081 | /* Do not panic for oom kills triggered by sysrq */ |
| 1082 | if (is_sysrq_oom(oc)) |
| 1083 | return; |
| 1084 | dump_header(oc); |
| 1085 | panic(fmt: "Out of memory: %s panic_on_oom is enabled\n" , |
| 1086 | sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide" ); |
| 1087 | } |
| 1088 | |
| 1089 | static BLOCKING_NOTIFIER_HEAD(oom_notify_list); |
| 1090 | |
| 1091 | int register_oom_notifier(struct notifier_block *nb) |
| 1092 | { |
| 1093 | return blocking_notifier_chain_register(nh: &oom_notify_list, nb); |
| 1094 | } |
| 1095 | EXPORT_SYMBOL_GPL(register_oom_notifier); |
| 1096 | |
| 1097 | int unregister_oom_notifier(struct notifier_block *nb) |
| 1098 | { |
| 1099 | return blocking_notifier_chain_unregister(nh: &oom_notify_list, nb); |
| 1100 | } |
| 1101 | EXPORT_SYMBOL_GPL(unregister_oom_notifier); |
| 1102 | |
| 1103 | /** |
| 1104 | * out_of_memory - kill the "best" process when we run out of memory |
| 1105 | * @oc: pointer to struct oom_control |
| 1106 | * |
| 1107 | * If we run out of memory, we have the choice between either |
| 1108 | * killing a random task (bad), letting the system crash (worse) |
| 1109 | * OR try to be smart about which process to kill. Note that we |
| 1110 | * don't have to be perfect here, we just have to be good. |
| 1111 | */ |
| 1112 | bool out_of_memory(struct oom_control *oc) |
| 1113 | { |
| 1114 | unsigned long freed = 0; |
| 1115 | |
| 1116 | if (oom_killer_disabled) |
| 1117 | return false; |
| 1118 | |
| 1119 | if (!is_memcg_oom(oc)) { |
| 1120 | blocking_notifier_call_chain(nh: &oom_notify_list, val: 0, v: &freed); |
| 1121 | if (freed > 0 && !is_sysrq_oom(oc)) |
| 1122 | /* Got some memory back in the last second. */ |
| 1123 | return true; |
| 1124 | } |
| 1125 | |
| 1126 | /* |
| 1127 | * If current has a pending SIGKILL or is exiting, then automatically |
| 1128 | * select it. The goal is to allow it to allocate so that it may |
| 1129 | * quickly exit and free its memory. |
| 1130 | */ |
| 1131 | if (task_will_free_mem(current)) { |
| 1132 | mark_oom_victim(current); |
| 1133 | queue_oom_reaper(current); |
| 1134 | return true; |
| 1135 | } |
| 1136 | |
| 1137 | /* |
| 1138 | * The OOM killer does not compensate for IO-less reclaim. |
| 1139 | * But mem_cgroup_oom() has to invoke the OOM killer even |
| 1140 | * if it is a GFP_NOFS allocation. |
| 1141 | */ |
| 1142 | if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) |
| 1143 | return true; |
| 1144 | |
| 1145 | /* |
| 1146 | * Check if there were limitations on the allocation (only relevant for |
| 1147 | * NUMA and memcg) that may require different handling. |
| 1148 | */ |
| 1149 | oc->constraint = constrained_alloc(oc); |
| 1150 | if (oc->constraint != CONSTRAINT_MEMORY_POLICY) |
| 1151 | oc->nodemask = NULL; |
| 1152 | check_panic_on_oom(oc); |
| 1153 | |
| 1154 | if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && |
| 1155 | current->mm && !oom_unkillable_task(current) && |
| 1156 | oom_cpuset_eligible(current, oc) && |
| 1157 | current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { |
| 1158 | get_task_struct(current); |
| 1159 | oc->chosen = current; |
| 1160 | oom_kill_process(oc, message: "Out of memory (oom_kill_allocating_task)" ); |
| 1161 | return true; |
| 1162 | } |
| 1163 | |
| 1164 | select_bad_process(oc); |
| 1165 | /* Found nothing?!?! */ |
| 1166 | if (!oc->chosen) { |
| 1167 | dump_header(oc); |
| 1168 | pr_warn("Out of memory and no killable processes...\n" ); |
| 1169 | /* |
| 1170 | * If we got here due to an actual allocation at the |
| 1171 | * system level, we cannot survive this and will enter |
| 1172 | * an endless loop in the allocator. Bail out now. |
| 1173 | */ |
| 1174 | if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) |
| 1175 | panic(fmt: "System is deadlocked on memory\n" ); |
| 1176 | } |
| 1177 | if (oc->chosen && oc->chosen != (void *)-1UL) |
| 1178 | oom_kill_process(oc, message: !is_memcg_oom(oc) ? "Out of memory" : |
| 1179 | "Memory cgroup out of memory" ); |
| 1180 | return !!oc->chosen; |
| 1181 | } |
| 1182 | |
| 1183 | /* |
| 1184 | * The pagefault handler calls here because some allocation has failed. We have |
| 1185 | * to take care of the memcg OOM here because this is the only safe context without |
| 1186 | * any locks held but let the oom killer triggered from the allocation context care |
| 1187 | * about the global OOM. |
| 1188 | */ |
| 1189 | void pagefault_out_of_memory(void) |
| 1190 | { |
| 1191 | static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL, |
| 1192 | DEFAULT_RATELIMIT_BURST); |
| 1193 | |
| 1194 | if (mem_cgroup_oom_synchronize(wait: true)) |
| 1195 | return; |
| 1196 | |
| 1197 | if (fatal_signal_pending(current)) |
| 1198 | return; |
| 1199 | |
| 1200 | if (__ratelimit(&pfoom_rs)) |
| 1201 | pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n" ); |
| 1202 | } |
| 1203 | |
| 1204 | SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags) |
| 1205 | { |
| 1206 | #ifdef CONFIG_MMU |
| 1207 | struct mm_struct *mm = NULL; |
| 1208 | struct task_struct *task; |
| 1209 | struct task_struct *p; |
| 1210 | unsigned int f_flags; |
| 1211 | bool reap = false; |
| 1212 | long ret = 0; |
| 1213 | |
| 1214 | if (flags) |
| 1215 | return -EINVAL; |
| 1216 | |
| 1217 | task = pidfd_get_task(pidfd, flags: &f_flags); |
| 1218 | if (IS_ERR(ptr: task)) |
| 1219 | return PTR_ERR(ptr: task); |
| 1220 | |
| 1221 | /* |
| 1222 | * Make sure to choose a thread which still has a reference to mm |
| 1223 | * during the group exit |
| 1224 | */ |
| 1225 | p = find_lock_task_mm(p: task); |
| 1226 | if (!p) { |
| 1227 | ret = -ESRCH; |
| 1228 | goto put_task; |
| 1229 | } |
| 1230 | |
| 1231 | mm = p->mm; |
| 1232 | mmgrab(mm); |
| 1233 | |
| 1234 | if (task_will_free_mem(task: p)) |
| 1235 | reap = true; |
| 1236 | else { |
| 1237 | /* Error only if the work has not been done already */ |
| 1238 | if (!test_bit(MMF_OOM_SKIP, &mm->flags)) |
| 1239 | ret = -EINVAL; |
| 1240 | } |
| 1241 | task_unlock(p); |
| 1242 | |
| 1243 | if (!reap) |
| 1244 | goto drop_mm; |
| 1245 | |
| 1246 | if (mmap_read_lock_killable(mm)) { |
| 1247 | ret = -EINTR; |
| 1248 | goto drop_mm; |
| 1249 | } |
| 1250 | /* |
| 1251 | * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure |
| 1252 | * possible change in exit_mmap is seen |
| 1253 | */ |
| 1254 | if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm)) |
| 1255 | ret = -EAGAIN; |
| 1256 | mmap_read_unlock(mm); |
| 1257 | |
| 1258 | drop_mm: |
| 1259 | mmdrop(mm); |
| 1260 | put_task: |
| 1261 | put_task_struct(t: task); |
| 1262 | return ret; |
| 1263 | #else |
| 1264 | return -ENOSYS; |
| 1265 | #endif /* CONFIG_MMU */ |
| 1266 | } |
| 1267 | |