1// SPDX-License-Identifier: GPL-2.0-only
2/* Connection state tracking for netfilter. This is separated from,
3 but required by, the NAT layer; it can also be used by an iptables
4 extension. */
5
6/* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#include <linux/types.h>
15#include <linux/netfilter.h>
16#include <linux/module.h>
17#include <linux/sched.h>
18#include <linux/skbuff.h>
19#include <linux/proc_fs.h>
20#include <linux/vmalloc.h>
21#include <linux/stddef.h>
22#include <linux/slab.h>
23#include <linux/random.h>
24#include <linux/siphash.h>
25#include <linux/err.h>
26#include <linux/percpu.h>
27#include <linux/moduleparam.h>
28#include <linux/notifier.h>
29#include <linux/kernel.h>
30#include <linux/netdevice.h>
31#include <linux/socket.h>
32#include <linux/mm.h>
33#include <linux/nsproxy.h>
34#include <linux/rculist_nulls.h>
35
36#include <net/netfilter/nf_conntrack.h>
37#include <net/netfilter/nf_conntrack_bpf.h>
38#include <net/netfilter/nf_conntrack_l4proto.h>
39#include <net/netfilter/nf_conntrack_expect.h>
40#include <net/netfilter/nf_conntrack_helper.h>
41#include <net/netfilter/nf_conntrack_core.h>
42#include <net/netfilter/nf_conntrack_extend.h>
43#include <net/netfilter/nf_conntrack_acct.h>
44#include <net/netfilter/nf_conntrack_ecache.h>
45#include <net/netfilter/nf_conntrack_zones.h>
46#include <net/netfilter/nf_conntrack_timestamp.h>
47#include <net/netfilter/nf_conntrack_timeout.h>
48#include <net/netfilter/nf_conntrack_labels.h>
49#include <net/netfilter/nf_conntrack_synproxy.h>
50#include <net/netfilter/nf_nat.h>
51#include <net/netfilter/nf_nat_helper.h>
52#include <net/netns/hash.h>
53#include <net/ip.h>
54
55#include "nf_internals.h"
56
57__cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59
60__cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62
63struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65
66struct conntrack_gc_work {
67 struct delayed_work dwork;
68 u32 next_bucket;
69 u32 avg_timeout;
70 u32 count;
71 u32 start_time;
72 bool exiting;
73 bool early_drop;
74};
75
76static __read_mostly struct kmem_cache *nf_conntrack_cachep;
77static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
78static __read_mostly bool nf_conntrack_locks_all;
79
80/* serialize hash resizes and nf_ct_iterate_cleanup */
81static DEFINE_MUTEX(nf_conntrack_mutex);
82
83#define GC_SCAN_INTERVAL_MAX (60ul * HZ)
84#define GC_SCAN_INTERVAL_MIN (1ul * HZ)
85
86/* clamp timeouts to this value (TCP unacked) */
87#define GC_SCAN_INTERVAL_CLAMP (300ul * HZ)
88
89/* Initial bias pretending we have 100 entries at the upper bound so we don't
90 * wakeup often just because we have three entries with a 1s timeout while still
91 * allowing non-idle machines to wakeup more often when needed.
92 */
93#define GC_SCAN_INITIAL_COUNT 100
94#define GC_SCAN_INTERVAL_INIT GC_SCAN_INTERVAL_MAX
95
96#define GC_SCAN_MAX_DURATION msecs_to_jiffies(10)
97#define GC_SCAN_EXPIRED_MAX (64000u / HZ)
98
99#define MIN_CHAINLEN 50u
100#define MAX_CHAINLEN (80u - MIN_CHAINLEN)
101
102static struct conntrack_gc_work conntrack_gc_work;
103
104void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
105{
106 /* 1) Acquire the lock */
107 spin_lock(lock);
108
109 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
110 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
111 */
112 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
113 return;
114
115 /* fast path failed, unlock */
116 spin_unlock(lock);
117
118 /* Slow path 1) get global lock */
119 spin_lock(lock: &nf_conntrack_locks_all_lock);
120
121 /* Slow path 2) get the lock we want */
122 spin_lock(lock);
123
124 /* Slow path 3) release the global lock */
125 spin_unlock(lock: &nf_conntrack_locks_all_lock);
126}
127EXPORT_SYMBOL_GPL(nf_conntrack_lock);
128
129static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
130{
131 h1 %= CONNTRACK_LOCKS;
132 h2 %= CONNTRACK_LOCKS;
133 spin_unlock(lock: &nf_conntrack_locks[h1]);
134 if (h1 != h2)
135 spin_unlock(lock: &nf_conntrack_locks[h2]);
136}
137
138/* return true if we need to recompute hashes (in case hash table was resized) */
139static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
140 unsigned int h2, unsigned int sequence)
141{
142 h1 %= CONNTRACK_LOCKS;
143 h2 %= CONNTRACK_LOCKS;
144 if (h1 <= h2) {
145 nf_conntrack_lock(&nf_conntrack_locks[h1]);
146 if (h1 != h2)
147 spin_lock_nested(&nf_conntrack_locks[h2],
148 SINGLE_DEPTH_NESTING);
149 } else {
150 nf_conntrack_lock(&nf_conntrack_locks[h2]);
151 spin_lock_nested(&nf_conntrack_locks[h1],
152 SINGLE_DEPTH_NESTING);
153 }
154 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
155 nf_conntrack_double_unlock(h1, h2);
156 return true;
157 }
158 return false;
159}
160
161static void nf_conntrack_all_lock(void)
162 __acquires(&nf_conntrack_locks_all_lock)
163{
164 int i;
165
166 spin_lock(lock: &nf_conntrack_locks_all_lock);
167
168 /* For nf_contrack_locks_all, only the latest time when another
169 * CPU will see an update is controlled, by the "release" of the
170 * spin_lock below.
171 * The earliest time is not controlled, an thus KCSAN could detect
172 * a race when nf_conntract_lock() reads the variable.
173 * WRITE_ONCE() is used to ensure the compiler will not
174 * optimize the write.
175 */
176 WRITE_ONCE(nf_conntrack_locks_all, true);
177
178 for (i = 0; i < CONNTRACK_LOCKS; i++) {
179 spin_lock(lock: &nf_conntrack_locks[i]);
180
181 /* This spin_unlock provides the "release" to ensure that
182 * nf_conntrack_locks_all==true is visible to everyone that
183 * acquired spin_lock(&nf_conntrack_locks[]).
184 */
185 spin_unlock(lock: &nf_conntrack_locks[i]);
186 }
187}
188
189static void nf_conntrack_all_unlock(void)
190 __releases(&nf_conntrack_locks_all_lock)
191{
192 /* All prior stores must be complete before we clear
193 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
194 * might observe the false value but not the entire
195 * critical section.
196 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
197 */
198 smp_store_release(&nf_conntrack_locks_all, false);
199 spin_unlock(lock: &nf_conntrack_locks_all_lock);
200}
201
202unsigned int nf_conntrack_htable_size __read_mostly;
203EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
204
205unsigned int nf_conntrack_max __read_mostly;
206EXPORT_SYMBOL_GPL(nf_conntrack_max);
207seqcount_spinlock_t nf_conntrack_generation __read_mostly;
208static siphash_aligned_key_t nf_conntrack_hash_rnd;
209
210static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
211 unsigned int zoneid,
212 const struct net *net)
213{
214 siphash_key_t key;
215
216 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
217
218 key = nf_conntrack_hash_rnd;
219
220 key.key[0] ^= zoneid;
221 key.key[1] ^= net_hash_mix(net);
222
223 return siphash(data: (void *)tuple,
224 offsetofend(struct nf_conntrack_tuple, dst.__nfct_hash_offsetend),
225 key: &key);
226}
227
228static u32 scale_hash(u32 hash)
229{
230 return reciprocal_scale(val: hash, ep_ro: nf_conntrack_htable_size);
231}
232
233static u32 __hash_conntrack(const struct net *net,
234 const struct nf_conntrack_tuple *tuple,
235 unsigned int zoneid,
236 unsigned int size)
237{
238 return reciprocal_scale(val: hash_conntrack_raw(tuple, zoneid, net), ep_ro: size);
239}
240
241static u32 hash_conntrack(const struct net *net,
242 const struct nf_conntrack_tuple *tuple,
243 unsigned int zoneid)
244{
245 return scale_hash(hash: hash_conntrack_raw(tuple, zoneid, net));
246}
247
248static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
249 unsigned int dataoff,
250 struct nf_conntrack_tuple *tuple)
251{ struct {
252 __be16 sport;
253 __be16 dport;
254 } _inet_hdr, *inet_hdr;
255
256 /* Actually only need first 4 bytes to get ports. */
257 inet_hdr = skb_header_pointer(skb, offset: dataoff, len: sizeof(_inet_hdr), buffer: &_inet_hdr);
258 if (!inet_hdr)
259 return false;
260
261 tuple->src.u.udp.port = inet_hdr->sport;
262 tuple->dst.u.udp.port = inet_hdr->dport;
263 return true;
264}
265
266static bool
267nf_ct_get_tuple(const struct sk_buff *skb,
268 unsigned int nhoff,
269 unsigned int dataoff,
270 u_int16_t l3num,
271 u_int8_t protonum,
272 struct net *net,
273 struct nf_conntrack_tuple *tuple)
274{
275 unsigned int size;
276 const __be32 *ap;
277 __be32 _addrs[8];
278
279 memset(tuple, 0, sizeof(*tuple));
280
281 tuple->src.l3num = l3num;
282 switch (l3num) {
283 case NFPROTO_IPV4:
284 nhoff += offsetof(struct iphdr, saddr);
285 size = 2 * sizeof(__be32);
286 break;
287 case NFPROTO_IPV6:
288 nhoff += offsetof(struct ipv6hdr, saddr);
289 size = sizeof(_addrs);
290 break;
291 default:
292 return true;
293 }
294
295 ap = skb_header_pointer(skb, offset: nhoff, len: size, buffer: _addrs);
296 if (!ap)
297 return false;
298
299 switch (l3num) {
300 case NFPROTO_IPV4:
301 tuple->src.u3.ip = ap[0];
302 tuple->dst.u3.ip = ap[1];
303 break;
304 case NFPROTO_IPV6:
305 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
306 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
307 break;
308 }
309
310 tuple->dst.protonum = protonum;
311 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
312
313 switch (protonum) {
314#if IS_ENABLED(CONFIG_IPV6)
315 case IPPROTO_ICMPV6:
316 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
317#endif
318 case IPPROTO_ICMP:
319 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
320#ifdef CONFIG_NF_CT_PROTO_GRE
321 case IPPROTO_GRE:
322 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
323#endif
324 case IPPROTO_TCP:
325 case IPPROTO_UDP:
326#ifdef CONFIG_NF_CT_PROTO_UDPLITE
327 case IPPROTO_UDPLITE:
328#endif
329#ifdef CONFIG_NF_CT_PROTO_SCTP
330 case IPPROTO_SCTP:
331#endif
332#ifdef CONFIG_NF_CT_PROTO_DCCP
333 case IPPROTO_DCCP:
334#endif
335 /* fallthrough */
336 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
337 default:
338 break;
339 }
340
341 return true;
342}
343
344static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
345 u_int8_t *protonum)
346{
347 int dataoff = -1;
348 const struct iphdr *iph;
349 struct iphdr _iph;
350
351 iph = skb_header_pointer(skb, offset: nhoff, len: sizeof(_iph), buffer: &_iph);
352 if (!iph)
353 return -1;
354
355 /* Conntrack defragments packets, we might still see fragments
356 * inside ICMP packets though.
357 */
358 if (iph->frag_off & htons(IP_OFFSET))
359 return -1;
360
361 dataoff = nhoff + (iph->ihl << 2);
362 *protonum = iph->protocol;
363
364 /* Check bogus IP headers */
365 if (dataoff > skb->len) {
366 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
367 nhoff, iph->ihl << 2, skb->len);
368 return -1;
369 }
370 return dataoff;
371}
372
373#if IS_ENABLED(CONFIG_IPV6)
374static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
375 u8 *protonum)
376{
377 int protoff = -1;
378 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
379 __be16 frag_off;
380 u8 nexthdr;
381
382 if (skb_copy_bits(skb, offset: nhoff + offsetof(struct ipv6hdr, nexthdr),
383 to: &nexthdr, len: sizeof(nexthdr)) != 0) {
384 pr_debug("can't get nexthdr\n");
385 return -1;
386 }
387 protoff = ipv6_skip_exthdr(skb, start: extoff, nexthdrp: &nexthdr, frag_offp: &frag_off);
388 /*
389 * (protoff == skb->len) means the packet has not data, just
390 * IPv6 and possibly extensions headers, but it is tracked anyway
391 */
392 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
393 pr_debug("can't find proto in pkt\n");
394 return -1;
395 }
396
397 *protonum = nexthdr;
398 return protoff;
399}
400#endif
401
402static int get_l4proto(const struct sk_buff *skb,
403 unsigned int nhoff, u8 pf, u8 *l4num)
404{
405 switch (pf) {
406 case NFPROTO_IPV4:
407 return ipv4_get_l4proto(skb, nhoff, protonum: l4num);
408#if IS_ENABLED(CONFIG_IPV6)
409 case NFPROTO_IPV6:
410 return ipv6_get_l4proto(skb, nhoff, protonum: l4num);
411#endif
412 default:
413 *l4num = 0;
414 break;
415 }
416 return -1;
417}
418
419bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
420 u_int16_t l3num,
421 struct net *net, struct nf_conntrack_tuple *tuple)
422{
423 u8 protonum;
424 int protoff;
425
426 protoff = get_l4proto(skb, nhoff, pf: l3num, l4num: &protonum);
427 if (protoff <= 0)
428 return false;
429
430 return nf_ct_get_tuple(skb, nhoff, dataoff: protoff, l3num, protonum, net, tuple);
431}
432EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
433
434bool
435nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
436 const struct nf_conntrack_tuple *orig)
437{
438 memset(inverse, 0, sizeof(*inverse));
439
440 inverse->src.l3num = orig->src.l3num;
441
442 switch (orig->src.l3num) {
443 case NFPROTO_IPV4:
444 inverse->src.u3.ip = orig->dst.u3.ip;
445 inverse->dst.u3.ip = orig->src.u3.ip;
446 break;
447 case NFPROTO_IPV6:
448 inverse->src.u3.in6 = orig->dst.u3.in6;
449 inverse->dst.u3.in6 = orig->src.u3.in6;
450 break;
451 default:
452 break;
453 }
454
455 inverse->dst.dir = !orig->dst.dir;
456
457 inverse->dst.protonum = orig->dst.protonum;
458
459 switch (orig->dst.protonum) {
460 case IPPROTO_ICMP:
461 return nf_conntrack_invert_icmp_tuple(tuple: inverse, orig);
462#if IS_ENABLED(CONFIG_IPV6)
463 case IPPROTO_ICMPV6:
464 return nf_conntrack_invert_icmpv6_tuple(tuple: inverse, orig);
465#endif
466 }
467
468 inverse->src.u.all = orig->dst.u.all;
469 inverse->dst.u.all = orig->src.u.all;
470 return true;
471}
472EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
473
474/* Generate a almost-unique pseudo-id for a given conntrack.
475 *
476 * intentionally doesn't re-use any of the seeds used for hash
477 * table location, we assume id gets exposed to userspace.
478 *
479 * Following nf_conn items do not change throughout lifetime
480 * of the nf_conn:
481 *
482 * 1. nf_conn address
483 * 2. nf_conn->master address (normally NULL)
484 * 3. the associated net namespace
485 * 4. the original direction tuple
486 */
487u32 nf_ct_get_id(const struct nf_conn *ct)
488{
489 static siphash_aligned_key_t ct_id_seed;
490 unsigned long a, b, c, d;
491
492 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
493
494 a = (unsigned long)ct;
495 b = (unsigned long)ct->master;
496 c = (unsigned long)nf_ct_net(ct);
497 d = (unsigned long)siphash(data: &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
498 len: sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
499 key: &ct_id_seed);
500#ifdef CONFIG_64BIT
501 return siphash_4u64(a: (u64)a, b: (u64)b, c: (u64)c, d: (u64)d, key: &ct_id_seed);
502#else
503 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
504#endif
505}
506EXPORT_SYMBOL_GPL(nf_ct_get_id);
507
508static void
509clean_from_lists(struct nf_conn *ct)
510{
511 hlist_nulls_del_rcu(n: &ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
512 hlist_nulls_del_rcu(n: &ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
513
514 /* Destroy all pending expectations */
515 nf_ct_remove_expectations(ct);
516}
517
518#define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
519
520/* Released via nf_ct_destroy() */
521struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
522 const struct nf_conntrack_zone *zone,
523 gfp_t flags)
524{
525 struct nf_conn *tmpl, *p;
526
527 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
528 tmpl = kzalloc(size: sizeof(*tmpl) + NFCT_INFOMASK, flags);
529 if (!tmpl)
530 return NULL;
531
532 p = tmpl;
533 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
534 if (tmpl != p) {
535 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
536 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
537 }
538 } else {
539 tmpl = kzalloc(size: sizeof(*tmpl), flags);
540 if (!tmpl)
541 return NULL;
542 }
543
544 tmpl->status = IPS_TEMPLATE;
545 write_pnet(pnet: &tmpl->ct_net, net);
546 nf_ct_zone_add(ct: tmpl, zone);
547 refcount_set(r: &tmpl->ct_general.use, n: 1);
548
549 return tmpl;
550}
551EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
552
553void nf_ct_tmpl_free(struct nf_conn *tmpl)
554{
555 kfree(objp: tmpl->ext);
556
557 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
558 kfree(objp: (char *)tmpl - tmpl->proto.tmpl_padto);
559 else
560 kfree(objp: tmpl);
561}
562EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
563
564static void destroy_gre_conntrack(struct nf_conn *ct)
565{
566#ifdef CONFIG_NF_CT_PROTO_GRE
567 struct nf_conn *master = ct->master;
568
569 if (master)
570 nf_ct_gre_keymap_destroy(ct: master);
571#endif
572}
573
574void nf_ct_destroy(struct nf_conntrack *nfct)
575{
576 struct nf_conn *ct = (struct nf_conn *)nfct;
577
578 WARN_ON(refcount_read(&nfct->use) != 0);
579
580 if (unlikely(nf_ct_is_template(ct))) {
581 nf_ct_tmpl_free(ct);
582 return;
583 }
584
585 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
586 destroy_gre_conntrack(ct);
587
588 /* Expectations will have been removed in clean_from_lists,
589 * except TFTP can create an expectation on the first packet,
590 * before connection is in the list, so we need to clean here,
591 * too.
592 */
593 nf_ct_remove_expectations(ct);
594
595 if (ct->master)
596 nf_ct_put(ct: ct->master);
597
598 nf_conntrack_free(ct);
599}
600EXPORT_SYMBOL(nf_ct_destroy);
601
602static void __nf_ct_delete_from_lists(struct nf_conn *ct)
603{
604 struct net *net = nf_ct_net(ct);
605 unsigned int hash, reply_hash;
606 unsigned int sequence;
607
608 do {
609 sequence = read_seqcount_begin(&nf_conntrack_generation);
610 hash = hash_conntrack(net,
611 tuple: &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
612 zoneid: nf_ct_zone_id(zone: nf_ct_zone(ct), dir: IP_CT_DIR_ORIGINAL));
613 reply_hash = hash_conntrack(net,
614 tuple: &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
615 zoneid: nf_ct_zone_id(zone: nf_ct_zone(ct), dir: IP_CT_DIR_REPLY));
616 } while (nf_conntrack_double_lock(net, h1: hash, h2: reply_hash, sequence));
617
618 clean_from_lists(ct);
619 nf_conntrack_double_unlock(h1: hash, h2: reply_hash);
620}
621
622static void nf_ct_delete_from_lists(struct nf_conn *ct)
623{
624 nf_ct_helper_destroy(ct);
625 local_bh_disable();
626
627 __nf_ct_delete_from_lists(ct);
628
629 local_bh_enable();
630}
631
632static void nf_ct_add_to_ecache_list(struct nf_conn *ct)
633{
634#ifdef CONFIG_NF_CONNTRACK_EVENTS
635 struct nf_conntrack_net *cnet = nf_ct_pernet(net: nf_ct_net(ct));
636
637 spin_lock(lock: &cnet->ecache.dying_lock);
638 hlist_nulls_add_head_rcu(n: &ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
639 h: &cnet->ecache.dying_list);
640 spin_unlock(lock: &cnet->ecache.dying_lock);
641#endif
642}
643
644bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
645{
646 struct nf_conn_tstamp *tstamp;
647 struct net *net;
648
649 if (test_and_set_bit(nr: IPS_DYING_BIT, addr: &ct->status))
650 return false;
651
652 tstamp = nf_conn_tstamp_find(ct);
653 if (tstamp) {
654 s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
655
656 tstamp->stop = ktime_get_real_ns();
657 if (timeout < 0)
658 tstamp->stop -= jiffies_to_nsecs(j: -timeout);
659 }
660
661 if (nf_conntrack_event_report(event: IPCT_DESTROY, ct,
662 portid, report) < 0) {
663 /* destroy event was not delivered. nf_ct_put will
664 * be done by event cache worker on redelivery.
665 */
666 nf_ct_helper_destroy(ct);
667 local_bh_disable();
668 __nf_ct_delete_from_lists(ct);
669 nf_ct_add_to_ecache_list(ct);
670 local_bh_enable();
671
672 nf_conntrack_ecache_work(net: nf_ct_net(ct), state: NFCT_ECACHE_DESTROY_FAIL);
673 return false;
674 }
675
676 net = nf_ct_net(ct);
677 if (nf_conntrack_ecache_dwork_pending(net))
678 nf_conntrack_ecache_work(net, state: NFCT_ECACHE_DESTROY_SENT);
679 nf_ct_delete_from_lists(ct);
680 nf_ct_put(ct);
681 return true;
682}
683EXPORT_SYMBOL_GPL(nf_ct_delete);
684
685static inline bool
686nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
687 const struct nf_conntrack_tuple *tuple,
688 const struct nf_conntrack_zone *zone,
689 const struct net *net)
690{
691 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(hash: h);
692
693 /* A conntrack can be recreated with the equal tuple,
694 * so we need to check that the conntrack is confirmed
695 */
696 return nf_ct_tuple_equal(t1: tuple, t2: &h->tuple) &&
697 nf_ct_zone_equal(a: ct, b: zone, NF_CT_DIRECTION(h)) &&
698 nf_ct_is_confirmed(ct) &&
699 net_eq(net1: net, net2: nf_ct_net(ct));
700}
701
702static inline bool
703nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
704{
705 return nf_ct_tuple_equal(t1: &ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
706 t2: &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
707 nf_ct_tuple_equal(t1: &ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
708 t2: &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
709 nf_ct_zone_equal(a: ct1, b: nf_ct_zone(ct: ct2), dir: IP_CT_DIR_ORIGINAL) &&
710 nf_ct_zone_equal(a: ct1, b: nf_ct_zone(ct: ct2), dir: IP_CT_DIR_REPLY) &&
711 net_eq(net1: nf_ct_net(ct: ct1), net2: nf_ct_net(ct: ct2));
712}
713
714/* caller must hold rcu readlock and none of the nf_conntrack_locks */
715static void nf_ct_gc_expired(struct nf_conn *ct)
716{
717 if (!refcount_inc_not_zero(r: &ct->ct_general.use))
718 return;
719
720 /* load ->status after refcount increase */
721 smp_acquire__after_ctrl_dep();
722
723 if (nf_ct_should_gc(ct))
724 nf_ct_kill(ct);
725
726 nf_ct_put(ct);
727}
728
729/*
730 * Warning :
731 * - Caller must take a reference on returned object
732 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
733 */
734static struct nf_conntrack_tuple_hash *
735____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
736 const struct nf_conntrack_tuple *tuple, u32 hash)
737{
738 struct nf_conntrack_tuple_hash *h;
739 struct hlist_nulls_head *ct_hash;
740 struct hlist_nulls_node *n;
741 unsigned int bucket, hsize;
742
743begin:
744 nf_conntrack_get_ht(hash: &ct_hash, hsize: &hsize);
745 bucket = reciprocal_scale(val: hash, ep_ro: hsize);
746
747 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
748 struct nf_conn *ct;
749
750 ct = nf_ct_tuplehash_to_ctrack(hash: h);
751 if (nf_ct_is_expired(ct)) {
752 nf_ct_gc_expired(ct);
753 continue;
754 }
755
756 if (nf_ct_key_equal(h, tuple, zone, net))
757 return h;
758 }
759 /*
760 * if the nulls value we got at the end of this lookup is
761 * not the expected one, we must restart lookup.
762 * We probably met an item that was moved to another chain.
763 */
764 if (get_nulls_value(ptr: n) != bucket) {
765 NF_CT_STAT_INC_ATOMIC(net, search_restart);
766 goto begin;
767 }
768
769 return NULL;
770}
771
772/* Find a connection corresponding to a tuple. */
773static struct nf_conntrack_tuple_hash *
774__nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
775 const struct nf_conntrack_tuple *tuple, u32 hash)
776{
777 struct nf_conntrack_tuple_hash *h;
778 struct nf_conn *ct;
779
780 h = ____nf_conntrack_find(net, zone, tuple, hash);
781 if (h) {
782 /* We have a candidate that matches the tuple we're interested
783 * in, try to obtain a reference and re-check tuple
784 */
785 ct = nf_ct_tuplehash_to_ctrack(hash: h);
786 if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
787 /* re-check key after refcount */
788 smp_acquire__after_ctrl_dep();
789
790 if (likely(nf_ct_key_equal(h, tuple, zone, net)))
791 return h;
792
793 /* TYPESAFE_BY_RCU recycled the candidate */
794 nf_ct_put(ct);
795 }
796
797 h = NULL;
798 }
799
800 return h;
801}
802
803struct nf_conntrack_tuple_hash *
804nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
805 const struct nf_conntrack_tuple *tuple)
806{
807 unsigned int rid, zone_id = nf_ct_zone_id(zone, dir: IP_CT_DIR_ORIGINAL);
808 struct nf_conntrack_tuple_hash *thash;
809
810 rcu_read_lock();
811
812 thash = __nf_conntrack_find_get(net, zone, tuple,
813 hash: hash_conntrack_raw(tuple, zoneid: zone_id, net));
814
815 if (thash)
816 goto out_unlock;
817
818 rid = nf_ct_zone_id(zone, dir: IP_CT_DIR_REPLY);
819 if (rid != zone_id)
820 thash = __nf_conntrack_find_get(net, zone, tuple,
821 hash: hash_conntrack_raw(tuple, zoneid: rid, net));
822
823out_unlock:
824 rcu_read_unlock();
825 return thash;
826}
827EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
828
829static void __nf_conntrack_hash_insert(struct nf_conn *ct,
830 unsigned int hash,
831 unsigned int reply_hash)
832{
833 hlist_nulls_add_head_rcu(n: &ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
834 h: &nf_conntrack_hash[hash]);
835 hlist_nulls_add_head_rcu(n: &ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
836 h: &nf_conntrack_hash[reply_hash]);
837}
838
839static bool nf_ct_ext_valid_pre(const struct nf_ct_ext *ext)
840{
841 /* if ext->gen_id is not equal to nf_conntrack_ext_genid, some extensions
842 * may contain stale pointers to e.g. helper that has been removed.
843 *
844 * The helper can't clear this because the nf_conn object isn't in
845 * any hash and synchronize_rcu() isn't enough because associated skb
846 * might sit in a queue.
847 */
848 return !ext || ext->gen_id == atomic_read(v: &nf_conntrack_ext_genid);
849}
850
851static bool nf_ct_ext_valid_post(struct nf_ct_ext *ext)
852{
853 if (!ext)
854 return true;
855
856 if (ext->gen_id != atomic_read(v: &nf_conntrack_ext_genid))
857 return false;
858
859 /* inserted into conntrack table, nf_ct_iterate_cleanup()
860 * will find it. Disable nf_ct_ext_find() id check.
861 */
862 WRITE_ONCE(ext->gen_id, 0);
863 return true;
864}
865
866int
867nf_conntrack_hash_check_insert(struct nf_conn *ct)
868{
869 const struct nf_conntrack_zone *zone;
870 struct net *net = nf_ct_net(ct);
871 unsigned int hash, reply_hash;
872 struct nf_conntrack_tuple_hash *h;
873 struct hlist_nulls_node *n;
874 unsigned int max_chainlen;
875 unsigned int chainlen = 0;
876 unsigned int sequence;
877 int err = -EEXIST;
878
879 zone = nf_ct_zone(ct);
880
881 if (!nf_ct_ext_valid_pre(ext: ct->ext))
882 return -EAGAIN;
883
884 local_bh_disable();
885 do {
886 sequence = read_seqcount_begin(&nf_conntrack_generation);
887 hash = hash_conntrack(net,
888 tuple: &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
889 zoneid: nf_ct_zone_id(zone: nf_ct_zone(ct), dir: IP_CT_DIR_ORIGINAL));
890 reply_hash = hash_conntrack(net,
891 tuple: &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
892 zoneid: nf_ct_zone_id(zone: nf_ct_zone(ct), dir: IP_CT_DIR_REPLY));
893 } while (nf_conntrack_double_lock(net, h1: hash, h2: reply_hash, sequence));
894
895 max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
896
897 /* See if there's one in the list already, including reverse */
898 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
899 if (nf_ct_key_equal(h, tuple: &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
900 zone, net))
901 goto out;
902
903 if (chainlen++ > max_chainlen)
904 goto chaintoolong;
905 }
906
907 chainlen = 0;
908
909 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
910 if (nf_ct_key_equal(h, tuple: &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
911 zone, net))
912 goto out;
913 if (chainlen++ > max_chainlen)
914 goto chaintoolong;
915 }
916
917 /* If genid has changed, we can't insert anymore because ct
918 * extensions could have stale pointers and nf_ct_iterate_destroy
919 * might have completed its table scan already.
920 *
921 * Increment of the ext genid right after this check is fine:
922 * nf_ct_iterate_destroy blocks until locks are released.
923 */
924 if (!nf_ct_ext_valid_post(ext: ct->ext)) {
925 err = -EAGAIN;
926 goto out;
927 }
928
929 smp_wmb();
930 /* The caller holds a reference to this object */
931 refcount_set(r: &ct->ct_general.use, n: 2);
932 __nf_conntrack_hash_insert(ct, hash, reply_hash);
933 nf_conntrack_double_unlock(h1: hash, h2: reply_hash);
934 NF_CT_STAT_INC(net, insert);
935 local_bh_enable();
936
937 return 0;
938chaintoolong:
939 NF_CT_STAT_INC(net, chaintoolong);
940 err = -ENOSPC;
941out:
942 nf_conntrack_double_unlock(h1: hash, h2: reply_hash);
943 local_bh_enable();
944 return err;
945}
946EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
947
948void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
949 unsigned int bytes)
950{
951 struct nf_conn_acct *acct;
952
953 acct = nf_conn_acct_find(ct);
954 if (acct) {
955 struct nf_conn_counter *counter = acct->counter;
956
957 atomic64_add(i: packets, v: &counter[dir].packets);
958 atomic64_add(i: bytes, v: &counter[dir].bytes);
959 }
960}
961EXPORT_SYMBOL_GPL(nf_ct_acct_add);
962
963static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
964 const struct nf_conn *loser_ct)
965{
966 struct nf_conn_acct *acct;
967
968 acct = nf_conn_acct_find(ct: loser_ct);
969 if (acct) {
970 struct nf_conn_counter *counter = acct->counter;
971 unsigned int bytes;
972
973 /* u32 should be fine since we must have seen one packet. */
974 bytes = atomic64_read(v: &counter[CTINFO2DIR(ctinfo)].bytes);
975 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
976 }
977}
978
979static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
980{
981 struct nf_conn_tstamp *tstamp;
982
983 refcount_inc(r: &ct->ct_general.use);
984
985 /* set conntrack timestamp, if enabled. */
986 tstamp = nf_conn_tstamp_find(ct);
987 if (tstamp)
988 tstamp->start = ktime_get_real_ns();
989}
990
991/* caller must hold locks to prevent concurrent changes */
992static int __nf_ct_resolve_clash(struct sk_buff *skb,
993 struct nf_conntrack_tuple_hash *h)
994{
995 /* This is the conntrack entry already in hashes that won race. */
996 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(hash: h);
997 enum ip_conntrack_info ctinfo;
998 struct nf_conn *loser_ct;
999
1000 loser_ct = nf_ct_get(skb, ctinfo: &ctinfo);
1001
1002 if (nf_ct_is_dying(ct))
1003 return NF_DROP;
1004
1005 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
1006 nf_ct_match(ct1: ct, ct2: loser_ct)) {
1007 struct net *net = nf_ct_net(ct);
1008
1009 nf_conntrack_get(nfct: &ct->ct_general);
1010
1011 nf_ct_acct_merge(ct, ctinfo, loser_ct);
1012 nf_ct_put(ct: loser_ct);
1013 nf_ct_set(skb, ct, info: ctinfo);
1014
1015 NF_CT_STAT_INC(net, clash_resolve);
1016 return NF_ACCEPT;
1017 }
1018
1019 return NF_DROP;
1020}
1021
1022/**
1023 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1024 *
1025 * @skb: skb that causes the collision
1026 * @repl_idx: hash slot for reply direction
1027 *
1028 * Called when origin or reply direction had a clash.
1029 * The skb can be handled without packet drop provided the reply direction
1030 * is unique or there the existing entry has the identical tuple in both
1031 * directions.
1032 *
1033 * Caller must hold conntrack table locks to prevent concurrent updates.
1034 *
1035 * Returns NF_DROP if the clash could not be handled.
1036 */
1037static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1038{
1039 struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1040 const struct nf_conntrack_zone *zone;
1041 struct nf_conntrack_tuple_hash *h;
1042 struct hlist_nulls_node *n;
1043 struct net *net;
1044
1045 zone = nf_ct_zone(ct: loser_ct);
1046 net = nf_ct_net(ct: loser_ct);
1047
1048 /* Reply direction must never result in a clash, unless both origin
1049 * and reply tuples are identical.
1050 */
1051 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1052 if (nf_ct_key_equal(h,
1053 tuple: &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1054 zone, net))
1055 return __nf_ct_resolve_clash(skb, h);
1056 }
1057
1058 /* We want the clashing entry to go away real soon: 1 second timeout. */
1059 WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1060
1061 /* IPS_NAT_CLASH removes the entry automatically on the first
1062 * reply. Also prevents UDP tracker from moving the entry to
1063 * ASSURED state, i.e. the entry can always be evicted under
1064 * pressure.
1065 */
1066 loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1067
1068 __nf_conntrack_insert_prepare(ct: loser_ct);
1069
1070 /* fake add for ORIGINAL dir: we want lookups to only find the entry
1071 * already in the table. This also hides the clashing entry from
1072 * ctnetlink iteration, i.e. conntrack -L won't show them.
1073 */
1074 hlist_nulls_add_fake(n: &loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1075
1076 hlist_nulls_add_head_rcu(n: &loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1077 h: &nf_conntrack_hash[repl_idx]);
1078
1079 NF_CT_STAT_INC(net, clash_resolve);
1080 return NF_ACCEPT;
1081}
1082
1083/**
1084 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1085 *
1086 * @skb: skb that causes the clash
1087 * @h: tuplehash of the clashing entry already in table
1088 * @reply_hash: hash slot for reply direction
1089 *
1090 * A conntrack entry can be inserted to the connection tracking table
1091 * if there is no existing entry with an identical tuple.
1092 *
1093 * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1094 * to be dropped. In case @skb is retransmitted, next conntrack lookup
1095 * will find the already-existing entry.
1096 *
1097 * The major problem with such packet drop is the extra delay added by
1098 * the packet loss -- it will take some time for a retransmit to occur
1099 * (or the sender to time out when waiting for a reply).
1100 *
1101 * This function attempts to handle the situation without packet drop.
1102 *
1103 * If @skb has no NAT transformation or if the colliding entries are
1104 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1105 * and @skb is associated with the conntrack entry already in the table.
1106 *
1107 * Failing that, the new, unconfirmed conntrack is still added to the table
1108 * provided that the collision only occurs in the ORIGINAL direction.
1109 * The new entry will be added only in the non-clashing REPLY direction,
1110 * so packets in the ORIGINAL direction will continue to match the existing
1111 * entry. The new entry will also have a fixed timeout so it expires --
1112 * due to the collision, it will only see reply traffic.
1113 *
1114 * Returns NF_DROP if the clash could not be resolved.
1115 */
1116static __cold noinline int
1117nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1118 u32 reply_hash)
1119{
1120 /* This is the conntrack entry already in hashes that won race. */
1121 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(hash: h);
1122 const struct nf_conntrack_l4proto *l4proto;
1123 enum ip_conntrack_info ctinfo;
1124 struct nf_conn *loser_ct;
1125 struct net *net;
1126 int ret;
1127
1128 loser_ct = nf_ct_get(skb, ctinfo: &ctinfo);
1129 net = nf_ct_net(ct: loser_ct);
1130
1131 l4proto = nf_ct_l4proto_find(l4proto: nf_ct_protonum(ct));
1132 if (!l4proto->allow_clash)
1133 goto drop;
1134
1135 ret = __nf_ct_resolve_clash(skb, h);
1136 if (ret == NF_ACCEPT)
1137 return ret;
1138
1139 ret = nf_ct_resolve_clash_harder(skb, repl_idx: reply_hash);
1140 if (ret == NF_ACCEPT)
1141 return ret;
1142
1143drop:
1144 NF_CT_STAT_INC(net, drop);
1145 NF_CT_STAT_INC(net, insert_failed);
1146 return NF_DROP;
1147}
1148
1149/* Confirm a connection given skb; places it in hash table */
1150int
1151__nf_conntrack_confirm(struct sk_buff *skb)
1152{
1153 unsigned int chainlen = 0, sequence, max_chainlen;
1154 const struct nf_conntrack_zone *zone;
1155 unsigned int hash, reply_hash;
1156 struct nf_conntrack_tuple_hash *h;
1157 struct nf_conn *ct;
1158 struct nf_conn_help *help;
1159 struct hlist_nulls_node *n;
1160 enum ip_conntrack_info ctinfo;
1161 struct net *net;
1162 int ret = NF_DROP;
1163
1164 ct = nf_ct_get(skb, ctinfo: &ctinfo);
1165 net = nf_ct_net(ct);
1166
1167 /* ipt_REJECT uses nf_conntrack_attach to attach related
1168 ICMP/TCP RST packets in other direction. Actual packet
1169 which created connection will be IP_CT_NEW or for an
1170 expected connection, IP_CT_RELATED. */
1171 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1172 return NF_ACCEPT;
1173
1174 zone = nf_ct_zone(ct);
1175 local_bh_disable();
1176
1177 do {
1178 sequence = read_seqcount_begin(&nf_conntrack_generation);
1179 /* reuse the hash saved before */
1180 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1181 hash = scale_hash(hash);
1182 reply_hash = hash_conntrack(net,
1183 tuple: &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1184 zoneid: nf_ct_zone_id(zone: nf_ct_zone(ct), dir: IP_CT_DIR_REPLY));
1185 } while (nf_conntrack_double_lock(net, h1: hash, h2: reply_hash, sequence));
1186
1187 /* We're not in hash table, and we refuse to set up related
1188 * connections for unconfirmed conns. But packet copies and
1189 * REJECT will give spurious warnings here.
1190 */
1191
1192 /* Another skb with the same unconfirmed conntrack may
1193 * win the race. This may happen for bridge(br_flood)
1194 * or broadcast/multicast packets do skb_clone with
1195 * unconfirmed conntrack.
1196 */
1197 if (unlikely(nf_ct_is_confirmed(ct))) {
1198 WARN_ON_ONCE(1);
1199 nf_conntrack_double_unlock(h1: hash, h2: reply_hash);
1200 local_bh_enable();
1201 return NF_DROP;
1202 }
1203
1204 if (!nf_ct_ext_valid_pre(ext: ct->ext)) {
1205 NF_CT_STAT_INC(net, insert_failed);
1206 goto dying;
1207 }
1208
1209 /* We have to check the DYING flag after unlink to prevent
1210 * a race against nf_ct_get_next_corpse() possibly called from
1211 * user context, else we insert an already 'dead' hash, blocking
1212 * further use of that particular connection -JM.
1213 */
1214 ct->status |= IPS_CONFIRMED;
1215
1216 if (unlikely(nf_ct_is_dying(ct))) {
1217 NF_CT_STAT_INC(net, insert_failed);
1218 goto dying;
1219 }
1220
1221 max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
1222 /* See if there's one in the list already, including reverse:
1223 NAT could have grabbed it without realizing, since we're
1224 not in the hash. If there is, we lost race. */
1225 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1226 if (nf_ct_key_equal(h, tuple: &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1227 zone, net))
1228 goto out;
1229 if (chainlen++ > max_chainlen)
1230 goto chaintoolong;
1231 }
1232
1233 chainlen = 0;
1234 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1235 if (nf_ct_key_equal(h, tuple: &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1236 zone, net))
1237 goto out;
1238 if (chainlen++ > max_chainlen) {
1239chaintoolong:
1240 NF_CT_STAT_INC(net, chaintoolong);
1241 NF_CT_STAT_INC(net, insert_failed);
1242 ret = NF_DROP;
1243 goto dying;
1244 }
1245 }
1246
1247 /* Timer relative to confirmation time, not original
1248 setting time, otherwise we'd get timer wrap in
1249 weird delay cases. */
1250 ct->timeout += nfct_time_stamp;
1251
1252 __nf_conntrack_insert_prepare(ct);
1253
1254 /* Since the lookup is lockless, hash insertion must be done after
1255 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1256 * guarantee that no other CPU can find the conntrack before the above
1257 * stores are visible.
1258 */
1259 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1260 nf_conntrack_double_unlock(h1: hash, h2: reply_hash);
1261 local_bh_enable();
1262
1263 /* ext area is still valid (rcu read lock is held,
1264 * but will go out of scope soon, we need to remove
1265 * this conntrack again.
1266 */
1267 if (!nf_ct_ext_valid_post(ext: ct->ext)) {
1268 nf_ct_kill(ct);
1269 NF_CT_STAT_INC_ATOMIC(net, drop);
1270 return NF_DROP;
1271 }
1272
1273 help = nfct_help(ct);
1274 if (help && help->helper)
1275 nf_conntrack_event_cache(event: IPCT_HELPER, ct);
1276
1277 nf_conntrack_event_cache(master_ct(ct) ?
1278 IPCT_RELATED : IPCT_NEW, ct);
1279 return NF_ACCEPT;
1280
1281out:
1282 ret = nf_ct_resolve_clash(skb, h, reply_hash);
1283dying:
1284 nf_conntrack_double_unlock(h1: hash, h2: reply_hash);
1285 local_bh_enable();
1286 return ret;
1287}
1288EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1289
1290/* Returns true if a connection corresponds to the tuple (required
1291 for NAT). */
1292int
1293nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1294 const struct nf_conn *ignored_conntrack)
1295{
1296 struct net *net = nf_ct_net(ct: ignored_conntrack);
1297 const struct nf_conntrack_zone *zone;
1298 struct nf_conntrack_tuple_hash *h;
1299 struct hlist_nulls_head *ct_hash;
1300 unsigned int hash, hsize;
1301 struct hlist_nulls_node *n;
1302 struct nf_conn *ct;
1303
1304 zone = nf_ct_zone(ct: ignored_conntrack);
1305
1306 rcu_read_lock();
1307 begin:
1308 nf_conntrack_get_ht(hash: &ct_hash, hsize: &hsize);
1309 hash = __hash_conntrack(net, tuple, zoneid: nf_ct_zone_id(zone, dir: IP_CT_DIR_REPLY), size: hsize);
1310
1311 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1312 ct = nf_ct_tuplehash_to_ctrack(hash: h);
1313
1314 if (ct == ignored_conntrack)
1315 continue;
1316
1317 if (nf_ct_is_expired(ct)) {
1318 nf_ct_gc_expired(ct);
1319 continue;
1320 }
1321
1322 if (nf_ct_key_equal(h, tuple, zone, net)) {
1323 /* Tuple is taken already, so caller will need to find
1324 * a new source port to use.
1325 *
1326 * Only exception:
1327 * If the *original tuples* are identical, then both
1328 * conntracks refer to the same flow.
1329 * This is a rare situation, it can occur e.g. when
1330 * more than one UDP packet is sent from same socket
1331 * in different threads.
1332 *
1333 * Let nf_ct_resolve_clash() deal with this later.
1334 */
1335 if (nf_ct_tuple_equal(t1: &ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1336 t2: &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1337 nf_ct_zone_equal(a: ct, b: zone, dir: IP_CT_DIR_ORIGINAL))
1338 continue;
1339
1340 NF_CT_STAT_INC_ATOMIC(net, found);
1341 rcu_read_unlock();
1342 return 1;
1343 }
1344 }
1345
1346 if (get_nulls_value(ptr: n) != hash) {
1347 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1348 goto begin;
1349 }
1350
1351 rcu_read_unlock();
1352
1353 return 0;
1354}
1355EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1356
1357#define NF_CT_EVICTION_RANGE 8
1358
1359/* There's a small race here where we may free a just-assured
1360 connection. Too bad: we're in trouble anyway. */
1361static unsigned int early_drop_list(struct net *net,
1362 struct hlist_nulls_head *head)
1363{
1364 struct nf_conntrack_tuple_hash *h;
1365 struct hlist_nulls_node *n;
1366 unsigned int drops = 0;
1367 struct nf_conn *tmp;
1368
1369 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1370 tmp = nf_ct_tuplehash_to_ctrack(hash: h);
1371
1372 if (nf_ct_is_expired(ct: tmp)) {
1373 nf_ct_gc_expired(ct: tmp);
1374 continue;
1375 }
1376
1377 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1378 !net_eq(net1: nf_ct_net(ct: tmp), net2: net) ||
1379 nf_ct_is_dying(ct: tmp))
1380 continue;
1381
1382 if (!refcount_inc_not_zero(r: &tmp->ct_general.use))
1383 continue;
1384
1385 /* load ->ct_net and ->status after refcount increase */
1386 smp_acquire__after_ctrl_dep();
1387
1388 /* kill only if still in same netns -- might have moved due to
1389 * SLAB_TYPESAFE_BY_RCU rules.
1390 *
1391 * We steal the timer reference. If that fails timer has
1392 * already fired or someone else deleted it. Just drop ref
1393 * and move to next entry.
1394 */
1395 if (net_eq(net1: nf_ct_net(ct: tmp), net2: net) &&
1396 nf_ct_is_confirmed(ct: tmp) &&
1397 nf_ct_delete(tmp, 0, 0))
1398 drops++;
1399
1400 nf_ct_put(ct: tmp);
1401 }
1402
1403 return drops;
1404}
1405
1406static noinline int early_drop(struct net *net, unsigned int hash)
1407{
1408 unsigned int i, bucket;
1409
1410 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1411 struct hlist_nulls_head *ct_hash;
1412 unsigned int hsize, drops;
1413
1414 rcu_read_lock();
1415 nf_conntrack_get_ht(hash: &ct_hash, hsize: &hsize);
1416 if (!i)
1417 bucket = reciprocal_scale(val: hash, ep_ro: hsize);
1418 else
1419 bucket = (bucket + 1) % hsize;
1420
1421 drops = early_drop_list(net, head: &ct_hash[bucket]);
1422 rcu_read_unlock();
1423
1424 if (drops) {
1425 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1426 return true;
1427 }
1428 }
1429
1430 return false;
1431}
1432
1433static bool gc_worker_skip_ct(const struct nf_conn *ct)
1434{
1435 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1436}
1437
1438static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1439{
1440 const struct nf_conntrack_l4proto *l4proto;
1441 u8 protonum = nf_ct_protonum(ct);
1442
1443 if (test_bit(IPS_OFFLOAD_BIT, &ct->status) && protonum != IPPROTO_UDP)
1444 return false;
1445 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1446 return true;
1447
1448 l4proto = nf_ct_l4proto_find(l4proto: protonum);
1449 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1450 return true;
1451
1452 return false;
1453}
1454
1455static void gc_worker(struct work_struct *work)
1456{
1457 unsigned int i, hashsz, nf_conntrack_max95 = 0;
1458 u32 end_time, start_time = nfct_time_stamp;
1459 struct conntrack_gc_work *gc_work;
1460 unsigned int expired_count = 0;
1461 unsigned long next_run;
1462 s32 delta_time;
1463 long count;
1464
1465 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1466
1467 i = gc_work->next_bucket;
1468 if (gc_work->early_drop)
1469 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1470
1471 if (i == 0) {
1472 gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1473 gc_work->count = GC_SCAN_INITIAL_COUNT;
1474 gc_work->start_time = start_time;
1475 }
1476
1477 next_run = gc_work->avg_timeout;
1478 count = gc_work->count;
1479
1480 end_time = start_time + GC_SCAN_MAX_DURATION;
1481
1482 do {
1483 struct nf_conntrack_tuple_hash *h;
1484 struct hlist_nulls_head *ct_hash;
1485 struct hlist_nulls_node *n;
1486 struct nf_conn *tmp;
1487
1488 rcu_read_lock();
1489
1490 nf_conntrack_get_ht(hash: &ct_hash, hsize: &hashsz);
1491 if (i >= hashsz) {
1492 rcu_read_unlock();
1493 break;
1494 }
1495
1496 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1497 struct nf_conntrack_net *cnet;
1498 struct net *net;
1499 long expires;
1500
1501 tmp = nf_ct_tuplehash_to_ctrack(hash: h);
1502
1503 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1504 nf_ct_offload_timeout(ct: tmp);
1505 if (!nf_conntrack_max95)
1506 continue;
1507 }
1508
1509 if (expired_count > GC_SCAN_EXPIRED_MAX) {
1510 rcu_read_unlock();
1511
1512 gc_work->next_bucket = i;
1513 gc_work->avg_timeout = next_run;
1514 gc_work->count = count;
1515
1516 delta_time = nfct_time_stamp - gc_work->start_time;
1517
1518 /* re-sched immediately if total cycle time is exceeded */
1519 next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1520 goto early_exit;
1521 }
1522
1523 if (nf_ct_is_expired(ct: tmp)) {
1524 nf_ct_gc_expired(ct: tmp);
1525 expired_count++;
1526 continue;
1527 }
1528
1529 expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1530 expires = (expires - (long)next_run) / ++count;
1531 next_run += expires;
1532
1533 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(ct: tmp))
1534 continue;
1535
1536 net = nf_ct_net(ct: tmp);
1537 cnet = nf_ct_pernet(net);
1538 if (atomic_read(v: &cnet->count) < nf_conntrack_max95)
1539 continue;
1540
1541 /* need to take reference to avoid possible races */
1542 if (!refcount_inc_not_zero(r: &tmp->ct_general.use))
1543 continue;
1544
1545 /* load ->status after refcount increase */
1546 smp_acquire__after_ctrl_dep();
1547
1548 if (gc_worker_skip_ct(ct: tmp)) {
1549 nf_ct_put(ct: tmp);
1550 continue;
1551 }
1552
1553 if (gc_worker_can_early_drop(ct: tmp)) {
1554 nf_ct_kill(ct: tmp);
1555 expired_count++;
1556 }
1557
1558 nf_ct_put(ct: tmp);
1559 }
1560
1561 /* could check get_nulls_value() here and restart if ct
1562 * was moved to another chain. But given gc is best-effort
1563 * we will just continue with next hash slot.
1564 */
1565 rcu_read_unlock();
1566 cond_resched();
1567 i++;
1568
1569 delta_time = nfct_time_stamp - end_time;
1570 if (delta_time > 0 && i < hashsz) {
1571 gc_work->avg_timeout = next_run;
1572 gc_work->count = count;
1573 gc_work->next_bucket = i;
1574 next_run = 0;
1575 goto early_exit;
1576 }
1577 } while (i < hashsz);
1578
1579 gc_work->next_bucket = 0;
1580
1581 next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1582
1583 delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1584 if (next_run > (unsigned long)delta_time)
1585 next_run -= delta_time;
1586 else
1587 next_run = 1;
1588
1589early_exit:
1590 if (gc_work->exiting)
1591 return;
1592
1593 if (next_run)
1594 gc_work->early_drop = false;
1595
1596 queue_delayed_work(wq: system_power_efficient_wq, dwork: &gc_work->dwork, delay: next_run);
1597}
1598
1599static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1600{
1601 INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1602 gc_work->exiting = false;
1603}
1604
1605static struct nf_conn *
1606__nf_conntrack_alloc(struct net *net,
1607 const struct nf_conntrack_zone *zone,
1608 const struct nf_conntrack_tuple *orig,
1609 const struct nf_conntrack_tuple *repl,
1610 gfp_t gfp, u32 hash)
1611{
1612 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1613 unsigned int ct_count;
1614 struct nf_conn *ct;
1615
1616 /* We don't want any race condition at early drop stage */
1617 ct_count = atomic_inc_return(v: &cnet->count);
1618
1619 if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1620 if (!early_drop(net, hash)) {
1621 if (!conntrack_gc_work.early_drop)
1622 conntrack_gc_work.early_drop = true;
1623 atomic_dec(v: &cnet->count);
1624 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1625 return ERR_PTR(error: -ENOMEM);
1626 }
1627 }
1628
1629 /*
1630 * Do not use kmem_cache_zalloc(), as this cache uses
1631 * SLAB_TYPESAFE_BY_RCU.
1632 */
1633 ct = kmem_cache_alloc(cachep: nf_conntrack_cachep, flags: gfp);
1634 if (ct == NULL)
1635 goto out;
1636
1637 spin_lock_init(&ct->lock);
1638 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1639 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1640 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1641 /* save hash for reusing when confirming */
1642 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1643 ct->status = 0;
1644 WRITE_ONCE(ct->timeout, 0);
1645 write_pnet(pnet: &ct->ct_net, net);
1646 memset_after(ct, 0, __nfct_init_offset);
1647
1648 nf_ct_zone_add(ct, zone);
1649
1650 /* Because we use RCU lookups, we set ct_general.use to zero before
1651 * this is inserted in any list.
1652 */
1653 refcount_set(r: &ct->ct_general.use, n: 0);
1654 return ct;
1655out:
1656 atomic_dec(v: &cnet->count);
1657 return ERR_PTR(error: -ENOMEM);
1658}
1659
1660struct nf_conn *nf_conntrack_alloc(struct net *net,
1661 const struct nf_conntrack_zone *zone,
1662 const struct nf_conntrack_tuple *orig,
1663 const struct nf_conntrack_tuple *repl,
1664 gfp_t gfp)
1665{
1666 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, hash: 0);
1667}
1668EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1669
1670void nf_conntrack_free(struct nf_conn *ct)
1671{
1672 struct net *net = nf_ct_net(ct);
1673 struct nf_conntrack_net *cnet;
1674
1675 /* A freed object has refcnt == 0, that's
1676 * the golden rule for SLAB_TYPESAFE_BY_RCU
1677 */
1678 WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1679
1680 if (ct->status & IPS_SRC_NAT_DONE) {
1681 const struct nf_nat_hook *nat_hook;
1682
1683 rcu_read_lock();
1684 nat_hook = rcu_dereference(nf_nat_hook);
1685 if (nat_hook)
1686 nat_hook->remove_nat_bysrc(ct);
1687 rcu_read_unlock();
1688 }
1689
1690 kfree(objp: ct->ext);
1691 kmem_cache_free(s: nf_conntrack_cachep, objp: ct);
1692 cnet = nf_ct_pernet(net);
1693
1694 smp_mb__before_atomic();
1695 atomic_dec(v: &cnet->count);
1696}
1697EXPORT_SYMBOL_GPL(nf_conntrack_free);
1698
1699
1700/* Allocate a new conntrack: we return -ENOMEM if classification
1701 failed due to stress. Otherwise it really is unclassifiable. */
1702static noinline struct nf_conntrack_tuple_hash *
1703init_conntrack(struct net *net, struct nf_conn *tmpl,
1704 const struct nf_conntrack_tuple *tuple,
1705 struct sk_buff *skb,
1706 unsigned int dataoff, u32 hash)
1707{
1708 struct nf_conn *ct;
1709 struct nf_conn_help *help;
1710 struct nf_conntrack_tuple repl_tuple;
1711#ifdef CONFIG_NF_CONNTRACK_EVENTS
1712 struct nf_conntrack_ecache *ecache;
1713#endif
1714 struct nf_conntrack_expect *exp = NULL;
1715 const struct nf_conntrack_zone *zone;
1716 struct nf_conn_timeout *timeout_ext;
1717 struct nf_conntrack_zone tmp;
1718 struct nf_conntrack_net *cnet;
1719
1720 if (!nf_ct_invert_tuple(&repl_tuple, tuple))
1721 return NULL;
1722
1723 zone = nf_ct_zone_tmpl(tmpl, skb, tmp: &tmp);
1724 ct = __nf_conntrack_alloc(net, zone, orig: tuple, repl: &repl_tuple, GFP_ATOMIC,
1725 hash);
1726 if (IS_ERR(ptr: ct))
1727 return (struct nf_conntrack_tuple_hash *)ct;
1728
1729 if (!nf_ct_add_synproxy(ct, tmpl)) {
1730 nf_conntrack_free(ct);
1731 return ERR_PTR(error: -ENOMEM);
1732 }
1733
1734 timeout_ext = tmpl ? nf_ct_timeout_find(ct: tmpl) : NULL;
1735
1736 if (timeout_ext)
1737 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1738 GFP_ATOMIC);
1739
1740 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1741 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1742 nf_ct_labels_ext_add(ct);
1743
1744#ifdef CONFIG_NF_CONNTRACK_EVENTS
1745 ecache = tmpl ? nf_ct_ecache_find(ct: tmpl) : NULL;
1746
1747 if ((ecache || net->ct.sysctl_events) &&
1748 !nf_ct_ecache_ext_add(ct, ctmask: ecache ? ecache->ctmask : 0,
1749 expmask: ecache ? ecache->expmask : 0,
1750 GFP_ATOMIC)) {
1751 nf_conntrack_free(ct);
1752 return ERR_PTR(error: -ENOMEM);
1753 }
1754#endif
1755
1756 cnet = nf_ct_pernet(net);
1757 if (cnet->expect_count) {
1758 spin_lock_bh(lock: &nf_conntrack_expect_lock);
1759 exp = nf_ct_find_expectation(net, zone, tuple, unlink: !tmpl || nf_ct_is_confirmed(ct: tmpl));
1760 if (exp) {
1761 /* Welcome, Mr. Bond. We've been expecting you... */
1762 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1763 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1764 ct->master = exp->master;
1765 if (exp->helper) {
1766 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1767 if (help)
1768 rcu_assign_pointer(help->helper, exp->helper);
1769 }
1770
1771#ifdef CONFIG_NF_CONNTRACK_MARK
1772 ct->mark = READ_ONCE(exp->master->mark);
1773#endif
1774#ifdef CONFIG_NF_CONNTRACK_SECMARK
1775 ct->secmark = exp->master->secmark;
1776#endif
1777 NF_CT_STAT_INC(net, expect_new);
1778 }
1779 spin_unlock_bh(lock: &nf_conntrack_expect_lock);
1780 }
1781 if (!exp && tmpl)
1782 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1783
1784 /* Other CPU might have obtained a pointer to this object before it was
1785 * released. Because refcount is 0, refcount_inc_not_zero() will fail.
1786 *
1787 * After refcount_set(1) it will succeed; ensure that zeroing of
1788 * ct->status and the correct ct->net pointer are visible; else other
1789 * core might observe CONFIRMED bit which means the entry is valid and
1790 * in the hash table, but its not (anymore).
1791 */
1792 smp_wmb();
1793
1794 /* Now it is going to be associated with an sk_buff, set refcount to 1. */
1795 refcount_set(r: &ct->ct_general.use, n: 1);
1796
1797 if (exp) {
1798 if (exp->expectfn)
1799 exp->expectfn(ct, exp);
1800 nf_ct_expect_put(exp);
1801 }
1802
1803 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1804}
1805
1806/* On success, returns 0, sets skb->_nfct | ctinfo */
1807static int
1808resolve_normal_ct(struct nf_conn *tmpl,
1809 struct sk_buff *skb,
1810 unsigned int dataoff,
1811 u_int8_t protonum,
1812 const struct nf_hook_state *state)
1813{
1814 const struct nf_conntrack_zone *zone;
1815 struct nf_conntrack_tuple tuple;
1816 struct nf_conntrack_tuple_hash *h;
1817 enum ip_conntrack_info ctinfo;
1818 struct nf_conntrack_zone tmp;
1819 u32 hash, zone_id, rid;
1820 struct nf_conn *ct;
1821
1822 if (!nf_ct_get_tuple(skb, nhoff: skb_network_offset(skb),
1823 dataoff, l3num: state->pf, protonum, net: state->net,
1824 tuple: &tuple))
1825 return 0;
1826
1827 /* look for tuple match */
1828 zone = nf_ct_zone_tmpl(tmpl, skb, tmp: &tmp);
1829
1830 zone_id = nf_ct_zone_id(zone, dir: IP_CT_DIR_ORIGINAL);
1831 hash = hash_conntrack_raw(tuple: &tuple, zoneid: zone_id, net: state->net);
1832 h = __nf_conntrack_find_get(net: state->net, zone, tuple: &tuple, hash);
1833
1834 if (!h) {
1835 rid = nf_ct_zone_id(zone, dir: IP_CT_DIR_REPLY);
1836 if (zone_id != rid) {
1837 u32 tmp = hash_conntrack_raw(tuple: &tuple, zoneid: rid, net: state->net);
1838
1839 h = __nf_conntrack_find_get(net: state->net, zone, tuple: &tuple, hash: tmp);
1840 }
1841 }
1842
1843 if (!h) {
1844 h = init_conntrack(net: state->net, tmpl, tuple: &tuple,
1845 skb, dataoff, hash);
1846 if (!h)
1847 return 0;
1848 if (IS_ERR(ptr: h))
1849 return PTR_ERR(ptr: h);
1850 }
1851 ct = nf_ct_tuplehash_to_ctrack(hash: h);
1852
1853 /* It exists; we have (non-exclusive) reference. */
1854 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1855 ctinfo = IP_CT_ESTABLISHED_REPLY;
1856 } else {
1857 unsigned long status = READ_ONCE(ct->status);
1858
1859 /* Once we've had two way comms, always ESTABLISHED. */
1860 if (likely(status & IPS_SEEN_REPLY))
1861 ctinfo = IP_CT_ESTABLISHED;
1862 else if (status & IPS_EXPECTED)
1863 ctinfo = IP_CT_RELATED;
1864 else
1865 ctinfo = IP_CT_NEW;
1866 }
1867 nf_ct_set(skb, ct, info: ctinfo);
1868 return 0;
1869}
1870
1871/*
1872 * icmp packets need special treatment to handle error messages that are
1873 * related to a connection.
1874 *
1875 * Callers need to check if skb has a conntrack assigned when this
1876 * helper returns; in such case skb belongs to an already known connection.
1877 */
1878static unsigned int __cold
1879nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1880 struct sk_buff *skb,
1881 unsigned int dataoff,
1882 u8 protonum,
1883 const struct nf_hook_state *state)
1884{
1885 int ret;
1886
1887 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1888 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1889#if IS_ENABLED(CONFIG_IPV6)
1890 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1891 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1892#endif
1893 else
1894 return NF_ACCEPT;
1895
1896 if (ret <= 0)
1897 NF_CT_STAT_INC_ATOMIC(state->net, error);
1898
1899 return ret;
1900}
1901
1902static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1903 enum ip_conntrack_info ctinfo)
1904{
1905 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1906
1907 if (!timeout)
1908 timeout = &nf_generic_pernet(net: nf_ct_net(ct))->timeout;
1909
1910 nf_ct_refresh_acct(ct, ctinfo, skb, extra_jiffies: *timeout);
1911 return NF_ACCEPT;
1912}
1913
1914/* Returns verdict for packet, or -1 for invalid. */
1915static int nf_conntrack_handle_packet(struct nf_conn *ct,
1916 struct sk_buff *skb,
1917 unsigned int dataoff,
1918 enum ip_conntrack_info ctinfo,
1919 const struct nf_hook_state *state)
1920{
1921 switch (nf_ct_protonum(ct)) {
1922 case IPPROTO_TCP:
1923 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1924 ctinfo, state);
1925 case IPPROTO_UDP:
1926 return nf_conntrack_udp_packet(ct, skb, dataoff,
1927 ctinfo, state);
1928 case IPPROTO_ICMP:
1929 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1930#if IS_ENABLED(CONFIG_IPV6)
1931 case IPPROTO_ICMPV6:
1932 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1933#endif
1934#ifdef CONFIG_NF_CT_PROTO_UDPLITE
1935 case IPPROTO_UDPLITE:
1936 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1937 ctinfo, state);
1938#endif
1939#ifdef CONFIG_NF_CT_PROTO_SCTP
1940 case IPPROTO_SCTP:
1941 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1942 ctinfo, state);
1943#endif
1944#ifdef CONFIG_NF_CT_PROTO_DCCP
1945 case IPPROTO_DCCP:
1946 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1947 ctinfo, state);
1948#endif
1949#ifdef CONFIG_NF_CT_PROTO_GRE
1950 case IPPROTO_GRE:
1951 return nf_conntrack_gre_packet(ct, skb, dataoff,
1952 ctinfo, state);
1953#endif
1954 }
1955
1956 return generic_packet(ct, skb, ctinfo);
1957}
1958
1959unsigned int
1960nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1961{
1962 enum ip_conntrack_info ctinfo;
1963 struct nf_conn *ct, *tmpl;
1964 u_int8_t protonum;
1965 int dataoff, ret;
1966
1967 tmpl = nf_ct_get(skb, ctinfo: &ctinfo);
1968 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1969 /* Previously seen (loopback or untracked)? Ignore. */
1970 if ((tmpl && !nf_ct_is_template(ct: tmpl)) ||
1971 ctinfo == IP_CT_UNTRACKED)
1972 return NF_ACCEPT;
1973 skb->_nfct = 0;
1974 }
1975
1976 /* rcu_read_lock()ed by nf_hook_thresh */
1977 dataoff = get_l4proto(skb, nhoff: skb_network_offset(skb), pf: state->pf, l4num: &protonum);
1978 if (dataoff <= 0) {
1979 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1980 ret = NF_ACCEPT;
1981 goto out;
1982 }
1983
1984 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1985 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1986 protonum, state);
1987 if (ret <= 0) {
1988 ret = -ret;
1989 goto out;
1990 }
1991 /* ICMP[v6] protocol trackers may assign one conntrack. */
1992 if (skb->_nfct)
1993 goto out;
1994 }
1995repeat:
1996 ret = resolve_normal_ct(tmpl, skb, dataoff,
1997 protonum, state);
1998 if (ret < 0) {
1999 /* Too stressed to deal. */
2000 NF_CT_STAT_INC_ATOMIC(state->net, drop);
2001 ret = NF_DROP;
2002 goto out;
2003 }
2004
2005 ct = nf_ct_get(skb, ctinfo: &ctinfo);
2006 if (!ct) {
2007 /* Not valid part of a connection */
2008 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2009 ret = NF_ACCEPT;
2010 goto out;
2011 }
2012
2013 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
2014 if (ret <= 0) {
2015 /* Invalid: inverse of the return code tells
2016 * the netfilter core what to do */
2017 nf_ct_put(ct);
2018 skb->_nfct = 0;
2019 /* Special case: TCP tracker reports an attempt to reopen a
2020 * closed/aborted connection. We have to go back and create a
2021 * fresh conntrack.
2022 */
2023 if (ret == -NF_REPEAT)
2024 goto repeat;
2025
2026 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2027 if (ret == -NF_DROP)
2028 NF_CT_STAT_INC_ATOMIC(state->net, drop);
2029
2030 ret = -ret;
2031 goto out;
2032 }
2033
2034 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2035 !test_and_set_bit(nr: IPS_SEEN_REPLY_BIT, addr: &ct->status))
2036 nf_conntrack_event_cache(event: IPCT_REPLY, ct);
2037out:
2038 if (tmpl)
2039 nf_ct_put(ct: tmpl);
2040
2041 return ret;
2042}
2043EXPORT_SYMBOL_GPL(nf_conntrack_in);
2044
2045/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
2046void __nf_ct_refresh_acct(struct nf_conn *ct,
2047 enum ip_conntrack_info ctinfo,
2048 const struct sk_buff *skb,
2049 u32 extra_jiffies,
2050 bool do_acct)
2051{
2052 /* Only update if this is not a fixed timeout */
2053 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2054 goto acct;
2055
2056 /* If not in hash table, timer will not be active yet */
2057 if (nf_ct_is_confirmed(ct))
2058 extra_jiffies += nfct_time_stamp;
2059
2060 if (READ_ONCE(ct->timeout) != extra_jiffies)
2061 WRITE_ONCE(ct->timeout, extra_jiffies);
2062acct:
2063 if (do_acct)
2064 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes: skb->len);
2065}
2066EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2067
2068bool nf_ct_kill_acct(struct nf_conn *ct,
2069 enum ip_conntrack_info ctinfo,
2070 const struct sk_buff *skb)
2071{
2072 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes: skb->len);
2073
2074 return nf_ct_delete(ct, 0, 0);
2075}
2076EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2077
2078#if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2079
2080#include <linux/netfilter/nfnetlink.h>
2081#include <linux/netfilter/nfnetlink_conntrack.h>
2082#include <linux/mutex.h>
2083
2084/* Generic function for tcp/udp/sctp/dccp and alike. */
2085int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2086 const struct nf_conntrack_tuple *tuple)
2087{
2088 if (nla_put_be16(skb, attrtype: CTA_PROTO_SRC_PORT, value: tuple->src.u.tcp.port) ||
2089 nla_put_be16(skb, attrtype: CTA_PROTO_DST_PORT, value: tuple->dst.u.tcp.port))
2090 goto nla_put_failure;
2091 return 0;
2092
2093nla_put_failure:
2094 return -1;
2095}
2096EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2097
2098const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2099 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
2100 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
2101};
2102EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2103
2104int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2105 struct nf_conntrack_tuple *t,
2106 u_int32_t flags)
2107{
2108 if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2109 if (!tb[CTA_PROTO_SRC_PORT])
2110 return -EINVAL;
2111
2112 t->src.u.tcp.port = nla_get_be16(nla: tb[CTA_PROTO_SRC_PORT]);
2113 }
2114
2115 if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2116 if (!tb[CTA_PROTO_DST_PORT])
2117 return -EINVAL;
2118
2119 t->dst.u.tcp.port = nla_get_be16(nla: tb[CTA_PROTO_DST_PORT]);
2120 }
2121
2122 return 0;
2123}
2124EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2125
2126unsigned int nf_ct_port_nlattr_tuple_size(void)
2127{
2128 static unsigned int size __read_mostly;
2129
2130 if (!size)
2131 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2132
2133 return size;
2134}
2135EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2136#endif
2137
2138/* Used by ipt_REJECT and ip6t_REJECT. */
2139static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2140{
2141 struct nf_conn *ct;
2142 enum ip_conntrack_info ctinfo;
2143
2144 /* This ICMP is in reverse direction to the packet which caused it */
2145 ct = nf_ct_get(skb, ctinfo: &ctinfo);
2146 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2147 ctinfo = IP_CT_RELATED_REPLY;
2148 else
2149 ctinfo = IP_CT_RELATED;
2150
2151 /* Attach to new skbuff, and increment count */
2152 nf_ct_set(skb: nskb, ct, info: ctinfo);
2153 nf_conntrack_get(nfct: skb_nfct(skb: nskb));
2154}
2155
2156static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2157 struct nf_conn *ct,
2158 enum ip_conntrack_info ctinfo)
2159{
2160 const struct nf_nat_hook *nat_hook;
2161 struct nf_conntrack_tuple_hash *h;
2162 struct nf_conntrack_tuple tuple;
2163 unsigned int status;
2164 int dataoff;
2165 u16 l3num;
2166 u8 l4num;
2167
2168 l3num = nf_ct_l3num(ct);
2169
2170 dataoff = get_l4proto(skb, nhoff: skb_network_offset(skb), pf: l3num, l4num: &l4num);
2171 if (dataoff <= 0)
2172 return NF_DROP;
2173
2174 if (!nf_ct_get_tuple(skb, nhoff: skb_network_offset(skb), dataoff, l3num,
2175 protonum: l4num, net, tuple: &tuple))
2176 return NF_DROP;
2177
2178 if (ct->status & IPS_SRC_NAT) {
2179 memcpy(tuple.src.u3.all,
2180 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2181 sizeof(tuple.src.u3.all));
2182 tuple.src.u.all =
2183 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2184 }
2185
2186 if (ct->status & IPS_DST_NAT) {
2187 memcpy(tuple.dst.u3.all,
2188 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2189 sizeof(tuple.dst.u3.all));
2190 tuple.dst.u.all =
2191 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2192 }
2193
2194 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2195 if (!h)
2196 return NF_ACCEPT;
2197
2198 /* Store status bits of the conntrack that is clashing to re-do NAT
2199 * mangling according to what it has been done already to this packet.
2200 */
2201 status = ct->status;
2202
2203 nf_ct_put(ct);
2204 ct = nf_ct_tuplehash_to_ctrack(hash: h);
2205 nf_ct_set(skb, ct, info: ctinfo);
2206
2207 nat_hook = rcu_dereference(nf_nat_hook);
2208 if (!nat_hook)
2209 return NF_ACCEPT;
2210
2211 if (status & IPS_SRC_NAT) {
2212 unsigned int verdict = nat_hook->manip_pkt(skb, ct,
2213 NF_NAT_MANIP_SRC,
2214 IP_CT_DIR_ORIGINAL);
2215 if (verdict != NF_ACCEPT)
2216 return verdict;
2217 }
2218
2219 if (status & IPS_DST_NAT) {
2220 unsigned int verdict = nat_hook->manip_pkt(skb, ct,
2221 NF_NAT_MANIP_DST,
2222 IP_CT_DIR_ORIGINAL);
2223 if (verdict != NF_ACCEPT)
2224 return verdict;
2225 }
2226
2227 return NF_ACCEPT;
2228}
2229
2230/* This packet is coming from userspace via nf_queue, complete the packet
2231 * processing after the helper invocation in nf_confirm().
2232 */
2233static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2234 enum ip_conntrack_info ctinfo)
2235{
2236 const struct nf_conntrack_helper *helper;
2237 const struct nf_conn_help *help;
2238 int protoff;
2239
2240 help = nfct_help(ct);
2241 if (!help)
2242 return NF_ACCEPT;
2243
2244 helper = rcu_dereference(help->helper);
2245 if (!helper)
2246 return NF_ACCEPT;
2247
2248 if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2249 return NF_ACCEPT;
2250
2251 switch (nf_ct_l3num(ct)) {
2252 case NFPROTO_IPV4:
2253 protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2254 break;
2255#if IS_ENABLED(CONFIG_IPV6)
2256 case NFPROTO_IPV6: {
2257 __be16 frag_off;
2258 u8 pnum;
2259
2260 pnum = ipv6_hdr(skb)->nexthdr;
2261 protoff = ipv6_skip_exthdr(skb, start: sizeof(struct ipv6hdr), nexthdrp: &pnum,
2262 frag_offp: &frag_off);
2263 if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2264 return NF_ACCEPT;
2265 break;
2266 }
2267#endif
2268 default:
2269 return NF_ACCEPT;
2270 }
2271
2272 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2273 !nf_is_loopback_packet(skb)) {
2274 if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2275 NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2276 return NF_DROP;
2277 }
2278 }
2279
2280 /* We've seen it coming out the other side: confirm it */
2281 return nf_conntrack_confirm(skb);
2282}
2283
2284static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2285{
2286 enum ip_conntrack_info ctinfo;
2287 struct nf_conn *ct;
2288
2289 ct = nf_ct_get(skb, ctinfo: &ctinfo);
2290 if (!ct)
2291 return NF_ACCEPT;
2292
2293 if (!nf_ct_is_confirmed(ct)) {
2294 int ret = __nf_conntrack_update(net, skb, ct, ctinfo);
2295
2296 if (ret != NF_ACCEPT)
2297 return ret;
2298
2299 ct = nf_ct_get(skb, ctinfo: &ctinfo);
2300 if (!ct)
2301 return NF_ACCEPT;
2302 }
2303
2304 return nf_confirm_cthelper(skb, ct, ctinfo);
2305}
2306
2307static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2308 const struct sk_buff *skb)
2309{
2310 const struct nf_conntrack_tuple *src_tuple;
2311 const struct nf_conntrack_tuple_hash *hash;
2312 struct nf_conntrack_tuple srctuple;
2313 enum ip_conntrack_info ctinfo;
2314 struct nf_conn *ct;
2315
2316 ct = nf_ct_get(skb, ctinfo: &ctinfo);
2317 if (ct) {
2318 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2319 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2320 return true;
2321 }
2322
2323 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2324 NFPROTO_IPV4, dev_net(dev: skb->dev),
2325 &srctuple))
2326 return false;
2327
2328 hash = nf_conntrack_find_get(dev_net(dev: skb->dev),
2329 &nf_ct_zone_dflt,
2330 &srctuple);
2331 if (!hash)
2332 return false;
2333
2334 ct = nf_ct_tuplehash_to_ctrack(hash);
2335 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2336 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2337 nf_ct_put(ct);
2338
2339 return true;
2340}
2341
2342/* Bring out ya dead! */
2343static struct nf_conn *
2344get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2345 const struct nf_ct_iter_data *iter_data, unsigned int *bucket)
2346{
2347 struct nf_conntrack_tuple_hash *h;
2348 struct nf_conn *ct;
2349 struct hlist_nulls_node *n;
2350 spinlock_t *lockp;
2351
2352 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2353 struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2354
2355 if (hlist_nulls_empty(h: hslot))
2356 continue;
2357
2358 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2359 local_bh_disable();
2360 nf_conntrack_lock(lockp);
2361 hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2362 if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2363 continue;
2364 /* All nf_conn objects are added to hash table twice, one
2365 * for original direction tuple, once for the reply tuple.
2366 *
2367 * Exception: In the IPS_NAT_CLASH case, only the reply
2368 * tuple is added (the original tuple already existed for
2369 * a different object).
2370 *
2371 * We only need to call the iterator once for each
2372 * conntrack, so we just use the 'reply' direction
2373 * tuple while iterating.
2374 */
2375 ct = nf_ct_tuplehash_to_ctrack(hash: h);
2376
2377 if (iter_data->net &&
2378 !net_eq(net1: iter_data->net, net2: nf_ct_net(ct)))
2379 continue;
2380
2381 if (iter(ct, iter_data->data))
2382 goto found;
2383 }
2384 spin_unlock(lock: lockp);
2385 local_bh_enable();
2386 cond_resched();
2387 }
2388
2389 return NULL;
2390found:
2391 refcount_inc(r: &ct->ct_general.use);
2392 spin_unlock(lock: lockp);
2393 local_bh_enable();
2394 return ct;
2395}
2396
2397static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2398 const struct nf_ct_iter_data *iter_data)
2399{
2400 unsigned int bucket = 0;
2401 struct nf_conn *ct;
2402
2403 might_sleep();
2404
2405 mutex_lock(&nf_conntrack_mutex);
2406 while ((ct = get_next_corpse(iter, iter_data, bucket: &bucket)) != NULL) {
2407 /* Time to push up daises... */
2408
2409 nf_ct_delete(ct, iter_data->portid, iter_data->report);
2410 nf_ct_put(ct);
2411 cond_resched();
2412 }
2413 mutex_unlock(lock: &nf_conntrack_mutex);
2414}
2415
2416void nf_ct_iterate_cleanup_net(int (*iter)(struct nf_conn *i, void *data),
2417 const struct nf_ct_iter_data *iter_data)
2418{
2419 struct net *net = iter_data->net;
2420 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2421
2422 might_sleep();
2423
2424 if (atomic_read(v: &cnet->count) == 0)
2425 return;
2426
2427 nf_ct_iterate_cleanup(iter, iter_data);
2428}
2429EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2430
2431/**
2432 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2433 * @iter: callback to invoke for each conntrack
2434 * @data: data to pass to @iter
2435 *
2436 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2437 * unconfirmed list as dying (so they will not be inserted into
2438 * main table).
2439 *
2440 * Can only be called in module exit path.
2441 */
2442void
2443nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2444{
2445 struct nf_ct_iter_data iter_data = {};
2446 struct net *net;
2447
2448 down_read(sem: &net_rwsem);
2449 for_each_net(net) {
2450 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2451
2452 if (atomic_read(v: &cnet->count) == 0)
2453 continue;
2454 nf_queue_nf_hook_drop(net);
2455 }
2456 up_read(sem: &net_rwsem);
2457
2458 /* Need to wait for netns cleanup worker to finish, if its
2459 * running -- it might have deleted a net namespace from
2460 * the global list, so hook drop above might not have
2461 * affected all namespaces.
2462 */
2463 net_ns_barrier();
2464
2465 /* a skb w. unconfirmed conntrack could have been reinjected just
2466 * before we called nf_queue_nf_hook_drop().
2467 *
2468 * This makes sure its inserted into conntrack table.
2469 */
2470 synchronize_net();
2471
2472 nf_ct_ext_bump_genid();
2473 iter_data.data = data;
2474 nf_ct_iterate_cleanup(iter, iter_data: &iter_data);
2475
2476 /* Another cpu might be in a rcu read section with
2477 * rcu protected pointer cleared in iter callback
2478 * or hidden via nf_ct_ext_bump_genid() above.
2479 *
2480 * Wait until those are done.
2481 */
2482 synchronize_rcu();
2483}
2484EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2485
2486static int kill_all(struct nf_conn *i, void *data)
2487{
2488 return 1;
2489}
2490
2491void nf_conntrack_cleanup_start(void)
2492{
2493 cleanup_nf_conntrack_bpf();
2494 conntrack_gc_work.exiting = true;
2495}
2496
2497void nf_conntrack_cleanup_end(void)
2498{
2499 RCU_INIT_POINTER(nf_ct_hook, NULL);
2500 cancel_delayed_work_sync(dwork: &conntrack_gc_work.dwork);
2501 kvfree(addr: nf_conntrack_hash);
2502
2503 nf_conntrack_proto_fini();
2504 nf_conntrack_helper_fini();
2505 nf_conntrack_expect_fini();
2506
2507 kmem_cache_destroy(s: nf_conntrack_cachep);
2508}
2509
2510/*
2511 * Mishearing the voices in his head, our hero wonders how he's
2512 * supposed to kill the mall.
2513 */
2514void nf_conntrack_cleanup_net(struct net *net)
2515{
2516 LIST_HEAD(single);
2517
2518 list_add(new: &net->exit_list, head: &single);
2519 nf_conntrack_cleanup_net_list(net_exit_list: &single);
2520}
2521
2522void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2523{
2524 struct nf_ct_iter_data iter_data = {};
2525 struct net *net;
2526 int busy;
2527
2528 /*
2529 * This makes sure all current packets have passed through
2530 * netfilter framework. Roll on, two-stage module
2531 * delete...
2532 */
2533 synchronize_rcu_expedited();
2534i_see_dead_people:
2535 busy = 0;
2536 list_for_each_entry(net, net_exit_list, exit_list) {
2537 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2538
2539 iter_data.net = net;
2540 nf_ct_iterate_cleanup_net(kill_all, &iter_data);
2541 if (atomic_read(v: &cnet->count) != 0)
2542 busy = 1;
2543 }
2544 if (busy) {
2545 schedule();
2546 goto i_see_dead_people;
2547 }
2548
2549 list_for_each_entry(net, net_exit_list, exit_list) {
2550 nf_conntrack_ecache_pernet_fini(net);
2551 nf_conntrack_expect_pernet_fini(net);
2552 free_percpu(pdata: net->ct.stat);
2553 }
2554}
2555
2556void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2557{
2558 struct hlist_nulls_head *hash;
2559 unsigned int nr_slots, i;
2560
2561 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2562 return NULL;
2563
2564 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2565 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2566
2567 hash = kvcalloc(n: nr_slots, size: sizeof(struct hlist_nulls_head), GFP_KERNEL);
2568
2569 if (hash && nulls)
2570 for (i = 0; i < nr_slots; i++)
2571 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2572
2573 return hash;
2574}
2575EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2576
2577int nf_conntrack_hash_resize(unsigned int hashsize)
2578{
2579 int i, bucket;
2580 unsigned int old_size;
2581 struct hlist_nulls_head *hash, *old_hash;
2582 struct nf_conntrack_tuple_hash *h;
2583 struct nf_conn *ct;
2584
2585 if (!hashsize)
2586 return -EINVAL;
2587
2588 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2589 if (!hash)
2590 return -ENOMEM;
2591
2592 mutex_lock(&nf_conntrack_mutex);
2593 old_size = nf_conntrack_htable_size;
2594 if (old_size == hashsize) {
2595 mutex_unlock(lock: &nf_conntrack_mutex);
2596 kvfree(addr: hash);
2597 return 0;
2598 }
2599
2600 local_bh_disable();
2601 nf_conntrack_all_lock();
2602 write_seqcount_begin(&nf_conntrack_generation);
2603
2604 /* Lookups in the old hash might happen in parallel, which means we
2605 * might get false negatives during connection lookup. New connections
2606 * created because of a false negative won't make it into the hash
2607 * though since that required taking the locks.
2608 */
2609
2610 for (i = 0; i < nf_conntrack_htable_size; i++) {
2611 while (!hlist_nulls_empty(h: &nf_conntrack_hash[i])) {
2612 unsigned int zone_id;
2613
2614 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2615 struct nf_conntrack_tuple_hash, hnnode);
2616 ct = nf_ct_tuplehash_to_ctrack(hash: h);
2617 hlist_nulls_del_rcu(n: &h->hnnode);
2618
2619 zone_id = nf_ct_zone_id(zone: nf_ct_zone(ct), NF_CT_DIRECTION(h));
2620 bucket = __hash_conntrack(net: nf_ct_net(ct),
2621 tuple: &h->tuple, zoneid: zone_id, size: hashsize);
2622 hlist_nulls_add_head_rcu(n: &h->hnnode, h: &hash[bucket]);
2623 }
2624 }
2625 old_hash = nf_conntrack_hash;
2626
2627 nf_conntrack_hash = hash;
2628 nf_conntrack_htable_size = hashsize;
2629
2630 write_seqcount_end(&nf_conntrack_generation);
2631 nf_conntrack_all_unlock();
2632 local_bh_enable();
2633
2634 mutex_unlock(lock: &nf_conntrack_mutex);
2635
2636 synchronize_net();
2637 kvfree(addr: old_hash);
2638 return 0;
2639}
2640
2641int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2642{
2643 unsigned int hashsize;
2644 int rc;
2645
2646 if (current->nsproxy->net_ns != &init_net)
2647 return -EOPNOTSUPP;
2648
2649 /* On boot, we can set this without any fancy locking. */
2650 if (!nf_conntrack_hash)
2651 return param_set_uint(val, kp);
2652
2653 rc = kstrtouint(s: val, base: 0, res: &hashsize);
2654 if (rc)
2655 return rc;
2656
2657 return nf_conntrack_hash_resize(hashsize);
2658}
2659
2660int nf_conntrack_init_start(void)
2661{
2662 unsigned long nr_pages = totalram_pages();
2663 int max_factor = 8;
2664 int ret = -ENOMEM;
2665 int i;
2666
2667 seqcount_spinlock_init(&nf_conntrack_generation,
2668 &nf_conntrack_locks_all_lock);
2669
2670 for (i = 0; i < CONNTRACK_LOCKS; i++)
2671 spin_lock_init(&nf_conntrack_locks[i]);
2672
2673 if (!nf_conntrack_htable_size) {
2674 nf_conntrack_htable_size
2675 = (((nr_pages << PAGE_SHIFT) / 16384)
2676 / sizeof(struct hlist_head));
2677 if (BITS_PER_LONG >= 64 &&
2678 nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2679 nf_conntrack_htable_size = 262144;
2680 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2681 nf_conntrack_htable_size = 65536;
2682
2683 if (nf_conntrack_htable_size < 1024)
2684 nf_conntrack_htable_size = 1024;
2685 /* Use a max. factor of one by default to keep the average
2686 * hash chain length at 2 entries. Each entry has to be added
2687 * twice (once for original direction, once for reply).
2688 * When a table size is given we use the old value of 8 to
2689 * avoid implicit reduction of the max entries setting.
2690 */
2691 max_factor = 1;
2692 }
2693
2694 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2695 if (!nf_conntrack_hash)
2696 return -ENOMEM;
2697
2698 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2699
2700 nf_conntrack_cachep = kmem_cache_create(name: "nf_conntrack",
2701 size: sizeof(struct nf_conn),
2702 NFCT_INFOMASK + 1,
2703 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2704 if (!nf_conntrack_cachep)
2705 goto err_cachep;
2706
2707 ret = nf_conntrack_expect_init();
2708 if (ret < 0)
2709 goto err_expect;
2710
2711 ret = nf_conntrack_helper_init();
2712 if (ret < 0)
2713 goto err_helper;
2714
2715 ret = nf_conntrack_proto_init();
2716 if (ret < 0)
2717 goto err_proto;
2718
2719 conntrack_gc_work_init(gc_work: &conntrack_gc_work);
2720 queue_delayed_work(wq: system_power_efficient_wq, dwork: &conntrack_gc_work.dwork, HZ);
2721
2722 ret = register_nf_conntrack_bpf();
2723 if (ret < 0)
2724 goto err_kfunc;
2725
2726 return 0;
2727
2728err_kfunc:
2729 cancel_delayed_work_sync(dwork: &conntrack_gc_work.dwork);
2730 nf_conntrack_proto_fini();
2731err_proto:
2732 nf_conntrack_helper_fini();
2733err_helper:
2734 nf_conntrack_expect_fini();
2735err_expect:
2736 kmem_cache_destroy(s: nf_conntrack_cachep);
2737err_cachep:
2738 kvfree(addr: nf_conntrack_hash);
2739 return ret;
2740}
2741
2742static void nf_conntrack_set_closing(struct nf_conntrack *nfct)
2743{
2744 struct nf_conn *ct = nf_ct_to_nf_conn(nfct);
2745
2746 switch (nf_ct_protonum(ct)) {
2747 case IPPROTO_TCP:
2748 nf_conntrack_tcp_set_closing(ct);
2749 break;
2750 }
2751}
2752
2753static const struct nf_ct_hook nf_conntrack_hook = {
2754 .update = nf_conntrack_update,
2755 .destroy = nf_ct_destroy,
2756 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2757 .attach = nf_conntrack_attach,
2758 .set_closing = nf_conntrack_set_closing,
2759 .confirm = __nf_conntrack_confirm,
2760};
2761
2762void nf_conntrack_init_end(void)
2763{
2764 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2765}
2766
2767/*
2768 * We need to use special "null" values, not used in hash table
2769 */
2770#define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2771
2772int nf_conntrack_init_net(struct net *net)
2773{
2774 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2775 int ret = -ENOMEM;
2776
2777 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2778 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2779 atomic_set(v: &cnet->count, i: 0);
2780
2781 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2782 if (!net->ct.stat)
2783 return ret;
2784
2785 ret = nf_conntrack_expect_pernet_init(net);
2786 if (ret < 0)
2787 goto err_expect;
2788
2789 nf_conntrack_acct_pernet_init(net);
2790 nf_conntrack_tstamp_pernet_init(net);
2791 nf_conntrack_ecache_pernet_init(net);
2792 nf_conntrack_proto_pernet_init(net);
2793
2794 return 0;
2795
2796err_expect:
2797 free_percpu(pdata: net->ct.stat);
2798 return ret;
2799}
2800
2801/* ctnetlink code shared by both ctnetlink and nf_conntrack_bpf */
2802
2803int __nf_ct_change_timeout(struct nf_conn *ct, u64 timeout)
2804{
2805 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2806 return -EPERM;
2807
2808 __nf_ct_set_timeout(ct, timeout);
2809
2810 if (test_bit(IPS_DYING_BIT, &ct->status))
2811 return -ETIME;
2812
2813 return 0;
2814}
2815EXPORT_SYMBOL_GPL(__nf_ct_change_timeout);
2816
2817void __nf_ct_change_status(struct nf_conn *ct, unsigned long on, unsigned long off)
2818{
2819 unsigned int bit;
2820
2821 /* Ignore these unchangable bits */
2822 on &= ~IPS_UNCHANGEABLE_MASK;
2823 off &= ~IPS_UNCHANGEABLE_MASK;
2824
2825 for (bit = 0; bit < __IPS_MAX_BIT; bit++) {
2826 if (on & (1 << bit))
2827 set_bit(nr: bit, addr: &ct->status);
2828 else if (off & (1 << bit))
2829 clear_bit(nr: bit, addr: &ct->status);
2830 }
2831}
2832EXPORT_SYMBOL_GPL(__nf_ct_change_status);
2833
2834int nf_ct_change_status_common(struct nf_conn *ct, unsigned int status)
2835{
2836 unsigned long d;
2837
2838 d = ct->status ^ status;
2839
2840 if (d & (IPS_EXPECTED|IPS_CONFIRMED|IPS_DYING))
2841 /* unchangeable */
2842 return -EBUSY;
2843
2844 if (d & IPS_SEEN_REPLY && !(status & IPS_SEEN_REPLY))
2845 /* SEEN_REPLY bit can only be set */
2846 return -EBUSY;
2847
2848 if (d & IPS_ASSURED && !(status & IPS_ASSURED))
2849 /* ASSURED bit can only be set */
2850 return -EBUSY;
2851
2852 __nf_ct_change_status(ct, status, 0);
2853 return 0;
2854}
2855EXPORT_SYMBOL_GPL(nf_ct_change_status_common);
2856

source code of linux/net/netfilter/nf_conntrack_core.c