1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "ABIInfo.h"
14#include "CGCUDARuntime.h"
15#include "CGCXXABI.h"
16#include "CGObjCRuntime.h"
17#include "CGOpenCLRuntime.h"
18#include "CGRecordLayout.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "ConstantEmitter.h"
22#include "PatternInit.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/Attr.h"
26#include "clang/AST/Decl.h"
27#include "clang/AST/OSLog.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/CodeGen/CGFunctionInfo.h"
31#include "clang/Frontend/FrontendDiagnostic.h"
32#include "llvm/ADT/APFloat.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/StringExtras.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/IR/DataLayout.h"
38#include "llvm/IR/InlineAsm.h"
39#include "llvm/IR/Intrinsics.h"
40#include "llvm/IR/IntrinsicsAArch64.h"
41#include "llvm/IR/IntrinsicsAMDGPU.h"
42#include "llvm/IR/IntrinsicsARM.h"
43#include "llvm/IR/IntrinsicsBPF.h"
44#include "llvm/IR/IntrinsicsHexagon.h"
45#include "llvm/IR/IntrinsicsLoongArch.h"
46#include "llvm/IR/IntrinsicsNVPTX.h"
47#include "llvm/IR/IntrinsicsPowerPC.h"
48#include "llvm/IR/IntrinsicsR600.h"
49#include "llvm/IR/IntrinsicsRISCV.h"
50#include "llvm/IR/IntrinsicsS390.h"
51#include "llvm/IR/IntrinsicsVE.h"
52#include "llvm/IR/IntrinsicsWebAssembly.h"
53#include "llvm/IR/IntrinsicsX86.h"
54#include "llvm/IR/MDBuilder.h"
55#include "llvm/IR/MatrixBuilder.h"
56#include "llvm/Support/ConvertUTF.h"
57#include "llvm/Support/ScopedPrinter.h"
58#include "llvm/TargetParser/AArch64TargetParser.h"
59#include "llvm/TargetParser/X86TargetParser.h"
60#include <optional>
61#include <sstream>
62
63using namespace clang;
64using namespace CodeGen;
65using namespace llvm;
66
67static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
68 Align AlignmentInBytes) {
69 ConstantInt *Byte;
70 switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
71 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
72 // Nothing to initialize.
73 return;
74 case LangOptions::TrivialAutoVarInitKind::Zero:
75 Byte = CGF.Builder.getInt8(C: 0x00);
76 break;
77 case LangOptions::TrivialAutoVarInitKind::Pattern: {
78 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(C&: CGF.CGM.getLLVMContext());
79 Byte = llvm::dyn_cast<llvm::ConstantInt>(
80 Val: initializationPatternFor(CGF.CGM, Int8));
81 break;
82 }
83 }
84 if (CGF.CGM.stopAutoInit())
85 return;
86 auto *I = CGF.Builder.CreateMemSet(Ptr: AI, Val: Byte, Size, Align: AlignmentInBytes);
87 I->addAnnotationMetadata(Annotation: "auto-init");
88}
89
90/// getBuiltinLibFunction - Given a builtin id for a function like
91/// "__builtin_fabsf", return a Function* for "fabsf".
92llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
93 unsigned BuiltinID) {
94 assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
95
96 // Get the name, skip over the __builtin_ prefix (if necessary).
97 StringRef Name;
98 GlobalDecl D(FD);
99
100 // TODO: This list should be expanded or refactored after all GCC-compatible
101 // std libcall builtins are implemented.
102 static SmallDenseMap<unsigned, StringRef, 8> F128Builtins{
103 {Builtin::BI__builtin_printf, "__printfieee128"},
104 {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
105 {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
106 {Builtin::BI__builtin_sprintf, "__sprintfieee128"},
107 {Builtin::BI__builtin_snprintf, "__snprintfieee128"},
108 {Builtin::BI__builtin_fprintf, "__fprintfieee128"},
109 {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
110 };
111
112 // The AIX library functions frexpl, ldexpl, and modfl are for 128-bit
113 // IBM 'long double' (i.e. __ibm128). Map to the 'double' versions
114 // if it is 64-bit 'long double' mode.
115 static SmallDenseMap<unsigned, StringRef, 4> AIXLongDouble64Builtins{
116 {Builtin::BI__builtin_frexpl, "frexp"},
117 {Builtin::BI__builtin_ldexpl, "ldexp"},
118 {Builtin::BI__builtin_modfl, "modf"},
119 };
120
121 // If the builtin has been declared explicitly with an assembler label,
122 // use the mangled name. This differs from the plain label on platforms
123 // that prefix labels.
124 if (FD->hasAttr<AsmLabelAttr>())
125 Name = getMangledName(D);
126 else {
127 // TODO: This mutation should also be applied to other targets other than
128 // PPC, after backend supports IEEE 128-bit style libcalls.
129 if (getTriple().isPPC64() &&
130 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
131 F128Builtins.find(Val: BuiltinID) != F128Builtins.end())
132 Name = F128Builtins[BuiltinID];
133 else if (getTriple().isOSAIX() &&
134 &getTarget().getLongDoubleFormat() ==
135 &llvm::APFloat::IEEEdouble() &&
136 AIXLongDouble64Builtins.find(Val: BuiltinID) !=
137 AIXLongDouble64Builtins.end())
138 Name = AIXLongDouble64Builtins[BuiltinID];
139 else
140 Name = Context.BuiltinInfo.getName(BuiltinID).substr(10);
141 }
142
143 llvm::FunctionType *Ty =
144 cast<llvm::FunctionType>(getTypes().ConvertType(T: FD->getType()));
145
146 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
147}
148
149/// Emit the conversions required to turn the given value into an
150/// integer of the given size.
151static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
152 QualType T, llvm::IntegerType *IntType) {
153 V = CGF.EmitToMemory(V, T);
154
155 if (V->getType()->isPointerTy())
156 return CGF.Builder.CreatePtrToInt(V, DestTy: IntType);
157
158 assert(V->getType() == IntType);
159 return V;
160}
161
162static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
163 QualType T, llvm::Type *ResultType) {
164 V = CGF.EmitFromMemory(V, T);
165
166 if (ResultType->isPointerTy())
167 return CGF.Builder.CreateIntToPtr(V, DestTy: ResultType);
168
169 assert(V->getType() == ResultType);
170 return V;
171}
172
173static llvm::Value *CheckAtomicAlignment(CodeGenFunction &CGF,
174 const CallExpr *E) {
175 ASTContext &Ctx = CGF.getContext();
176 Address Ptr = CGF.EmitPointerWithAlignment(E->getArg(0));
177 unsigned Bytes = Ptr.getElementType()->isPointerTy()
178 ? Ctx.getTypeSizeInChars(Ctx.VoidPtrTy).getQuantity()
179 : Ptr.getElementType()->getScalarSizeInBits() / 8;
180 unsigned Align = Ptr.getAlignment().getQuantity();
181 if (Align % Bytes != 0) {
182 DiagnosticsEngine &Diags = CGF.CGM.getDiags();
183 Diags.Report(E->getBeginLoc(), diag::warn_sync_op_misaligned);
184 }
185 return Ptr.getPointer();
186}
187
188/// Utility to insert an atomic instruction based on Intrinsic::ID
189/// and the expression node.
190static Value *MakeBinaryAtomicValue(
191 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
192 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
193
194 QualType T = E->getType();
195 assert(E->getArg(0)->getType()->isPointerType());
196 assert(CGF.getContext().hasSameUnqualifiedType(T,
197 E->getArg(0)->getType()->getPointeeType()));
198 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
199
200 llvm::Value *DestPtr = CheckAtomicAlignment(CGF, E);
201 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
202
203 llvm::IntegerType *IntType =
204 llvm::IntegerType::get(CGF.getLLVMContext(),
205 CGF.getContext().getTypeSize(T));
206 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
207
208 llvm::Value *Args[2];
209 Args[0] = CGF.Builder.CreateBitCast(V: DestPtr, DestTy: IntPtrType);
210 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
211 llvm::Type *ValueType = Args[1]->getType();
212 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
213
214 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
215 Op: Kind, Ptr: Args[0], Val: Args[1], Ordering);
216 return EmitFromInt(CGF, Result, T, ValueType);
217}
218
219static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
220 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
221 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
222
223 // Convert the type of the pointer to a pointer to the stored type.
224 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
225 unsigned SrcAddrSpace = Address->getType()->getPointerAddressSpace();
226 Value *BC = CGF.Builder.CreateBitCast(
227 V: Address, DestTy: llvm::PointerType::get(ElementType: Val->getType(), AddressSpace: SrcAddrSpace), Name: "cast");
228 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
229 LV.setNontemporal(true);
230 CGF.EmitStoreOfScalar(value: Val, lvalue: LV, isInit: false);
231 return nullptr;
232}
233
234static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
235 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
236
237 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
238 LV.setNontemporal(true);
239 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
240}
241
242static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
243 llvm::AtomicRMWInst::BinOp Kind,
244 const CallExpr *E) {
245 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
246}
247
248/// Utility to insert an atomic instruction based Intrinsic::ID and
249/// the expression node, where the return value is the result of the
250/// operation.
251static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
252 llvm::AtomicRMWInst::BinOp Kind,
253 const CallExpr *E,
254 Instruction::BinaryOps Op,
255 bool Invert = false) {
256 QualType T = E->getType();
257 assert(E->getArg(0)->getType()->isPointerType());
258 assert(CGF.getContext().hasSameUnqualifiedType(T,
259 E->getArg(0)->getType()->getPointeeType()));
260 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
261
262 llvm::Value *DestPtr = CheckAtomicAlignment(CGF, E);
263 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
264
265 llvm::IntegerType *IntType =
266 llvm::IntegerType::get(CGF.getLLVMContext(),
267 CGF.getContext().getTypeSize(T));
268 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
269
270 llvm::Value *Args[2];
271 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
272 llvm::Type *ValueType = Args[1]->getType();
273 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
274 Args[0] = CGF.Builder.CreateBitCast(V: DestPtr, DestTy: IntPtrType);
275
276 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
277 Op: Kind, Ptr: Args[0], Val: Args[1], Ordering: llvm::AtomicOrdering::SequentiallyConsistent);
278 Result = CGF.Builder.CreateBinOp(Opc: Op, LHS: Result, RHS: Args[1]);
279 if (Invert)
280 Result =
281 CGF.Builder.CreateBinOp(Opc: llvm::Instruction::Xor, LHS: Result,
282 RHS: llvm::ConstantInt::getAllOnesValue(Ty: IntType));
283 Result = EmitFromInt(CGF, Result, T, ValueType);
284 return RValue::get(V: Result);
285}
286
287/// Utility to insert an atomic cmpxchg instruction.
288///
289/// @param CGF The current codegen function.
290/// @param E Builtin call expression to convert to cmpxchg.
291/// arg0 - address to operate on
292/// arg1 - value to compare with
293/// arg2 - new value
294/// @param ReturnBool Specifies whether to return success flag of
295/// cmpxchg result or the old value.
296///
297/// @returns result of cmpxchg, according to ReturnBool
298///
299/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
300/// invoke the function EmitAtomicCmpXchgForMSIntrin.
301static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
302 bool ReturnBool) {
303 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
304 llvm::Value *DestPtr = CheckAtomicAlignment(CGF, E);
305 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
306
307 llvm::IntegerType *IntType = llvm::IntegerType::get(
308 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
309 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
310
311 Value *Args[3];
312 Args[0] = CGF.Builder.CreateBitCast(V: DestPtr, DestTy: IntPtrType);
313 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
314 llvm::Type *ValueType = Args[1]->getType();
315 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
316 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
317
318 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
319 Ptr: Args[0], Cmp: Args[1], New: Args[2], SuccessOrdering: llvm::AtomicOrdering::SequentiallyConsistent,
320 FailureOrdering: llvm::AtomicOrdering::SequentiallyConsistent);
321 if (ReturnBool)
322 // Extract boolean success flag and zext it to int.
323 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
324 CGF.ConvertType(E->getType()));
325 else
326 // Extract old value and emit it using the same type as compare value.
327 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
328 ValueType);
329}
330
331/// This function should be invoked to emit atomic cmpxchg for Microsoft's
332/// _InterlockedCompareExchange* intrinsics which have the following signature:
333/// T _InterlockedCompareExchange(T volatile *Destination,
334/// T Exchange,
335/// T Comparand);
336///
337/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
338/// cmpxchg *Destination, Comparand, Exchange.
339/// So we need to swap Comparand and Exchange when invoking
340/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
341/// function MakeAtomicCmpXchgValue since it expects the arguments to be
342/// already swapped.
343
344static
345Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
346 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
347 assert(E->getArg(0)->getType()->isPointerType());
348 assert(CGF.getContext().hasSameUnqualifiedType(
349 E->getType(), E->getArg(0)->getType()->getPointeeType()));
350 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
351 E->getArg(1)->getType()));
352 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
353 E->getArg(2)->getType()));
354
355 auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
356 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
357 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
358
359 // For Release ordering, the failure ordering should be Monotonic.
360 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
361 AtomicOrdering::Monotonic :
362 SuccessOrdering;
363
364 // The atomic instruction is marked volatile for consistency with MSVC. This
365 // blocks the few atomics optimizations that LLVM has. If we want to optimize
366 // _Interlocked* operations in the future, we will have to remove the volatile
367 // marker.
368 auto *Result = CGF.Builder.CreateAtomicCmpXchg(
369 Destination, Comparand, Exchange,
370 SuccessOrdering, FailureOrdering);
371 Result->setVolatile(true);
372 return CGF.Builder.CreateExtractValue(Result, 0);
373}
374
375// 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
376// prototyped like this:
377//
378// unsigned char _InterlockedCompareExchange128...(
379// __int64 volatile * _Destination,
380// __int64 _ExchangeHigh,
381// __int64 _ExchangeLow,
382// __int64 * _ComparandResult);
383static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
384 const CallExpr *E,
385 AtomicOrdering SuccessOrdering) {
386 assert(E->getNumArgs() == 4);
387 llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
388 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
389 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
390 llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
391
392 assert(Destination->getType()->isPointerTy());
393 assert(!ExchangeHigh->getType()->isPointerTy());
394 assert(!ExchangeLow->getType()->isPointerTy());
395 assert(ComparandPtr->getType()->isPointerTy());
396
397 // For Release ordering, the failure ordering should be Monotonic.
398 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
399 ? AtomicOrdering::Monotonic
400 : SuccessOrdering;
401
402 // Convert to i128 pointers and values.
403 llvm::Type *Int128Ty = llvm::IntegerType::get(C&: CGF.getLLVMContext(), NumBits: 128);
404 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
405 Destination = CGF.Builder.CreateBitCast(V: Destination, DestTy: Int128PtrTy);
406 Address ComparandResult(CGF.Builder.CreateBitCast(V: ComparandPtr, DestTy: Int128PtrTy),
407 Int128Ty, CGF.getContext().toCharUnitsFromBits(128));
408
409 // (((i128)hi) << 64) | ((i128)lo)
410 ExchangeHigh = CGF.Builder.CreateZExt(V: ExchangeHigh, DestTy: Int128Ty);
411 ExchangeLow = CGF.Builder.CreateZExt(V: ExchangeLow, DestTy: Int128Ty);
412 ExchangeHigh =
413 CGF.Builder.CreateShl(LHS: ExchangeHigh, RHS: llvm::ConstantInt::get(Ty: Int128Ty, V: 64));
414 llvm::Value *Exchange = CGF.Builder.CreateOr(LHS: ExchangeHigh, RHS: ExchangeLow);
415
416 // Load the comparand for the instruction.
417 llvm::Value *Comparand = CGF.Builder.CreateLoad(Addr: ComparandResult);
418
419 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Ptr: Destination, Cmp: Comparand, New: Exchange,
420 SuccessOrdering, FailureOrdering);
421
422 // The atomic instruction is marked volatile for consistency with MSVC. This
423 // blocks the few atomics optimizations that LLVM has. If we want to optimize
424 // _Interlocked* operations in the future, we will have to remove the volatile
425 // marker.
426 CXI->setVolatile(true);
427
428 // Store the result as an outparameter.
429 CGF.Builder.CreateStore(Val: CGF.Builder.CreateExtractValue(Agg: CXI, Idxs: 0),
430 Addr: ComparandResult);
431
432 // Get the success boolean and zero extend it to i8.
433 Value *Success = CGF.Builder.CreateExtractValue(Agg: CXI, Idxs: 1);
434 return CGF.Builder.CreateZExt(V: Success, DestTy: CGF.Int8Ty);
435}
436
437static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
438 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
439 assert(E->getArg(0)->getType()->isPointerType());
440
441 auto *IntTy = CGF.ConvertType(E->getType());
442 auto *Result = CGF.Builder.CreateAtomicRMW(
443 AtomicRMWInst::Add,
444 CGF.EmitScalarExpr(E->getArg(0)),
445 ConstantInt::get(IntTy, 1),
446 Ordering);
447 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
448}
449
450static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
451 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
452 assert(E->getArg(0)->getType()->isPointerType());
453
454 auto *IntTy = CGF.ConvertType(E->getType());
455 auto *Result = CGF.Builder.CreateAtomicRMW(
456 AtomicRMWInst::Sub,
457 CGF.EmitScalarExpr(E->getArg(0)),
458 ConstantInt::get(IntTy, 1),
459 Ordering);
460 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
461}
462
463// Build a plain volatile load.
464static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
465 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
466 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
467 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
468 llvm::Type *ITy =
469 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
470 Ptr = CGF.Builder.CreateBitCast(V: Ptr, DestTy: ITy->getPointerTo());
471 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
472 Load->setVolatile(true);
473 return Load;
474}
475
476// Build a plain volatile store.
477static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
478 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
479 Value *Value = CGF.EmitScalarExpr(E->getArg(1));
480 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
481 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
482 llvm::Type *ITy =
483 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
484 Ptr = CGF.Builder.CreateBitCast(V: Ptr, DestTy: ITy->getPointerTo());
485 llvm::StoreInst *Store =
486 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
487 Store->setVolatile(true);
488 return Store;
489}
490
491// Emit a simple mangled intrinsic that has 1 argument and a return type
492// matching the argument type. Depending on mode, this may be a constrained
493// floating-point intrinsic.
494static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
495 const CallExpr *E, unsigned IntrinsicID,
496 unsigned ConstrainedIntrinsicID) {
497 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
498
499 if (CGF.Builder.getIsFPConstrained()) {
500 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
501 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
502 return CGF.Builder.CreateConstrainedFPCall(Callee: F, Args: { Src0 });
503 } else {
504 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
505 return CGF.Builder.CreateCall(Callee: F, Args: Src0);
506 }
507}
508
509// Emit an intrinsic that has 2 operands of the same type as its result.
510// Depending on mode, this may be a constrained floating-point intrinsic.
511static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
512 const CallExpr *E, unsigned IntrinsicID,
513 unsigned ConstrainedIntrinsicID) {
514 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
515 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
516
517 if (CGF.Builder.getIsFPConstrained()) {
518 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
519 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
520 return CGF.Builder.CreateConstrainedFPCall(Callee: F, Args: { Src0, Src1 });
521 } else {
522 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
523 return CGF.Builder.CreateCall(Callee: F, Args: { Src0, Src1 });
524 }
525}
526
527// Emit an intrinsic that has 3 operands of the same type as its result.
528// Depending on mode, this may be a constrained floating-point intrinsic.
529static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
530 const CallExpr *E, unsigned IntrinsicID,
531 unsigned ConstrainedIntrinsicID) {
532 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
533 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
534 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
535
536 if (CGF.Builder.getIsFPConstrained()) {
537 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
538 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
539 return CGF.Builder.CreateConstrainedFPCall(Callee: F, Args: { Src0, Src1, Src2 });
540 } else {
541 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
542 return CGF.Builder.CreateCall(Callee: F, Args: { Src0, Src1, Src2 });
543 }
544}
545
546// Emit an intrinsic where all operands are of the same type as the result.
547// Depending on mode, this may be a constrained floating-point intrinsic.
548static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
549 unsigned IntrinsicID,
550 unsigned ConstrainedIntrinsicID,
551 llvm::Type *Ty,
552 ArrayRef<Value *> Args) {
553 Function *F;
554 if (CGF.Builder.getIsFPConstrained())
555 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
556 else
557 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
558
559 if (CGF.Builder.getIsFPConstrained())
560 return CGF.Builder.CreateConstrainedFPCall(Callee: F, Args);
561 else
562 return CGF.Builder.CreateCall(Callee: F, Args);
563}
564
565// Emit a simple mangled intrinsic that has 1 argument and a return type
566// matching the argument type.
567static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E,
568 unsigned IntrinsicID,
569 llvm::StringRef Name = "") {
570 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
571
572 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
573 return CGF.Builder.CreateCall(Callee: F, Args: Src0, Name);
574}
575
576// Emit an intrinsic that has 2 operands of the same type as its result.
577static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
578 const CallExpr *E,
579 unsigned IntrinsicID) {
580 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
581 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
582
583 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
584 return CGF.Builder.CreateCall(Callee: F, Args: { Src0, Src1 });
585}
586
587// Emit an intrinsic that has 3 operands of the same type as its result.
588static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
589 const CallExpr *E,
590 unsigned IntrinsicID) {
591 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
592 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
593 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
594
595 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
596 return CGF.Builder.CreateCall(Callee: F, Args: { Src0, Src1, Src2 });
597}
598
599// Emit an intrinsic that has 1 float or double operand, and 1 integer.
600static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
601 const CallExpr *E,
602 unsigned IntrinsicID) {
603 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
604 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
605
606 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
607 return CGF.Builder.CreateCall(Callee: F, Args: {Src0, Src1});
608}
609
610// Emit an intrinsic that has overloaded integer result and fp operand.
611static Value *
612emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
613 unsigned IntrinsicID,
614 unsigned ConstrainedIntrinsicID) {
615 llvm::Type *ResultType = CGF.ConvertType(E->getType());
616 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
617
618 if (CGF.Builder.getIsFPConstrained()) {
619 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
620 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
621 {ResultType, Src0->getType()});
622 return CGF.Builder.CreateConstrainedFPCall(Callee: F, Args: {Src0});
623 } else {
624 Function *F =
625 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
626 return CGF.Builder.CreateCall(Callee: F, Args: Src0);
627 }
628}
629
630/// EmitFAbs - Emit a call to @llvm.fabs().
631static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
632 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
633 llvm::CallInst *Call = CGF.Builder.CreateCall(Callee: F, Args: V);
634 Call->setDoesNotAccessMemory();
635 return Call;
636}
637
638/// Emit the computation of the sign bit for a floating point value. Returns
639/// the i1 sign bit value.
640static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
641 LLVMContext &C = CGF.CGM.getLLVMContext();
642
643 llvm::Type *Ty = V->getType();
644 int Width = Ty->getPrimitiveSizeInBits();
645 llvm::Type *IntTy = llvm::IntegerType::get(C, NumBits: Width);
646 V = CGF.Builder.CreateBitCast(V, DestTy: IntTy);
647 if (Ty->isPPC_FP128Ty()) {
648 // We want the sign bit of the higher-order double. The bitcast we just
649 // did works as if the double-double was stored to memory and then
650 // read as an i128. The "store" will put the higher-order double in the
651 // lower address in both little- and big-Endian modes, but the "load"
652 // will treat those bits as a different part of the i128: the low bits in
653 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
654 // we need to shift the high bits down to the low before truncating.
655 Width >>= 1;
656 if (CGF.getTarget().isBigEndian()) {
657 Value *ShiftCst = llvm::ConstantInt::get(Ty: IntTy, V: Width);
658 V = CGF.Builder.CreateLShr(LHS: V, RHS: ShiftCst);
659 }
660 // We are truncating value in order to extract the higher-order
661 // double, which we will be using to extract the sign from.
662 IntTy = llvm::IntegerType::get(C, NumBits: Width);
663 V = CGF.Builder.CreateTrunc(V, DestTy: IntTy);
664 }
665 Value *Zero = llvm::Constant::getNullValue(Ty: IntTy);
666 return CGF.Builder.CreateICmpSLT(LHS: V, RHS: Zero);
667}
668
669static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
670 const CallExpr *E, llvm::Constant *calleeValue) {
671 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
672 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
673}
674
675/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
676/// depending on IntrinsicID.
677///
678/// \arg CGF The current codegen function.
679/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
680/// \arg X The first argument to the llvm.*.with.overflow.*.
681/// \arg Y The second argument to the llvm.*.with.overflow.*.
682/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
683/// \returns The result (i.e. sum/product) returned by the intrinsic.
684static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
685 const llvm::Intrinsic::ID IntrinsicID,
686 llvm::Value *X, llvm::Value *Y,
687 llvm::Value *&Carry) {
688 // Make sure we have integers of the same width.
689 assert(X->getType() == Y->getType() &&
690 "Arguments must be the same type. (Did you forget to make sure both "
691 "arguments have the same integer width?)");
692
693 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
694 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, Args: {X, Y});
695 Carry = CGF.Builder.CreateExtractValue(Agg: Tmp, Idxs: 1);
696 return CGF.Builder.CreateExtractValue(Agg: Tmp, Idxs: 0);
697}
698
699static Value *emitRangedBuiltin(CodeGenFunction &CGF,
700 unsigned IntrinsicID,
701 int low, int high) {
702 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
703 llvm::MDNode *RNode = MDHelper.createRange(Lo: APInt(32, low), Hi: APInt(32, high));
704 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
705 llvm::Instruction *Call = CGF.Builder.CreateCall(Callee: F);
706 Call->setMetadata(KindID: llvm::LLVMContext::MD_range, Node: RNode);
707 Call->setMetadata(KindID: llvm::LLVMContext::MD_noundef,
708 Node: llvm::MDNode::get(Context&: CGF.getLLVMContext(), MDs: std::nullopt));
709 return Call;
710}
711
712namespace {
713 struct WidthAndSignedness {
714 unsigned Width;
715 bool Signed;
716 };
717}
718
719static WidthAndSignedness
720getIntegerWidthAndSignedness(const clang::ASTContext &context,
721 const clang::QualType Type) {
722 assert(Type->isIntegerType() && "Given type is not an integer.");
723 unsigned Width = Type->isBooleanType() ? 1
724 : Type->isBitIntType() ? context.getIntWidth(Type)
725 : context.getTypeInfo(Type).Width;
726 bool Signed = Type->isSignedIntegerType();
727 return {.Width: Width, .Signed: Signed};
728}
729
730// Given one or more integer types, this function produces an integer type that
731// encompasses them: any value in one of the given types could be expressed in
732// the encompassing type.
733static struct WidthAndSignedness
734EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
735 assert(Types.size() > 0 && "Empty list of types.");
736
737 // If any of the given types is signed, we must return a signed type.
738 bool Signed = false;
739 for (const auto &Type : Types) {
740 Signed |= Type.Signed;
741 }
742
743 // The encompassing type must have a width greater than or equal to the width
744 // of the specified types. Additionally, if the encompassing type is signed,
745 // its width must be strictly greater than the width of any unsigned types
746 // given.
747 unsigned Width = 0;
748 for (const auto &Type : Types) {
749 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
750 if (Width < MinWidth) {
751 Width = MinWidth;
752 }
753 }
754
755 return {.Width: Width, .Signed: Signed};
756}
757
758Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
759 llvm::Type *DestType = Int8PtrTy;
760 if (ArgValue->getType() != DestType)
761 ArgValue =
762 Builder.CreateBitCast(V: ArgValue, DestTy: DestType, Name: ArgValue->getName().data());
763
764 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
765 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
766}
767
768/// Checks if using the result of __builtin_object_size(p, @p From) in place of
769/// __builtin_object_size(p, @p To) is correct
770static bool areBOSTypesCompatible(int From, int To) {
771 // Note: Our __builtin_object_size implementation currently treats Type=0 and
772 // Type=2 identically. Encoding this implementation detail here may make
773 // improving __builtin_object_size difficult in the future, so it's omitted.
774 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
775}
776
777static llvm::Value *
778getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
779 return ConstantInt::get(Ty: ResType, V: (Type & 2) ? 0 : -1, /*isSigned=*/IsSigned: true);
780}
781
782llvm::Value *
783CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
784 llvm::IntegerType *ResType,
785 llvm::Value *EmittedE,
786 bool IsDynamic) {
787 uint64_t ObjectSize;
788 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
789 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
790 return ConstantInt::get(Ty: ResType, V: ObjectSize, /*isSigned=*/IsSigned: true);
791}
792
793/// Returns a Value corresponding to the size of the given expression.
794/// This Value may be either of the following:
795/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
796/// it)
797/// - A call to the @llvm.objectsize intrinsic
798///
799/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
800/// and we wouldn't otherwise try to reference a pass_object_size parameter,
801/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
802llvm::Value *
803CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
804 llvm::IntegerType *ResType,
805 llvm::Value *EmittedE, bool IsDynamic) {
806 // We need to reference an argument if the pointer is a parameter with the
807 // pass_object_size attribute.
808 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
809 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
810 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
811 if (Param != nullptr && PS != nullptr &&
812 areBOSTypesCompatible(PS->getType(), Type)) {
813 auto Iter = SizeArguments.find(Param);
814 assert(Iter != SizeArguments.end());
815
816 const ImplicitParamDecl *D = Iter->second;
817 auto DIter = LocalDeclMap.find(D);
818 assert(DIter != LocalDeclMap.end());
819
820 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
821 getContext().getSizeType(), E->getBeginLoc());
822 }
823 }
824
825 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
826 // evaluate E for side-effects. In either case, we shouldn't lower to
827 // @llvm.objectsize.
828 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
829 return getDefaultBuiltinObjectSizeResult(Type, ResType);
830
831 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
832 assert(Ptr->getType()->isPointerTy() &&
833 "Non-pointer passed to __builtin_object_size?");
834
835 Function *F =
836 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
837
838 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
839 Value *Min = Builder.getInt1(V: (Type & 2) != 0);
840 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
841 Value *NullIsUnknown = Builder.getTrue();
842 Value *Dynamic = Builder.getInt1(V: IsDynamic);
843 return Builder.CreateCall(Callee: F, Args: {Ptr, Min, NullIsUnknown, Dynamic});
844}
845
846namespace {
847/// A struct to generically describe a bit test intrinsic.
848struct BitTest {
849 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
850 enum InterlockingKind : uint8_t {
851 Unlocked,
852 Sequential,
853 Acquire,
854 Release,
855 NoFence
856 };
857
858 ActionKind Action;
859 InterlockingKind Interlocking;
860 bool Is64Bit;
861
862 static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
863};
864} // namespace
865
866BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
867 switch (BuiltinID) {
868 // Main portable variants.
869 case Builtin::BI_bittest:
870 return {.Action: TestOnly, .Interlocking: Unlocked, .Is64Bit: false};
871 case Builtin::BI_bittestandcomplement:
872 return {.Action: Complement, .Interlocking: Unlocked, .Is64Bit: false};
873 case Builtin::BI_bittestandreset:
874 return {.Action: Reset, .Interlocking: Unlocked, .Is64Bit: false};
875 case Builtin::BI_bittestandset:
876 return {.Action: Set, .Interlocking: Unlocked, .Is64Bit: false};
877 case Builtin::BI_interlockedbittestandreset:
878 return {.Action: Reset, .Interlocking: Sequential, .Is64Bit: false};
879 case Builtin::BI_interlockedbittestandset:
880 return {.Action: Set, .Interlocking: Sequential, .Is64Bit: false};
881
882 // X86-specific 64-bit variants.
883 case Builtin::BI_bittest64:
884 return {.Action: TestOnly, .Interlocking: Unlocked, .Is64Bit: true};
885 case Builtin::BI_bittestandcomplement64:
886 return {.Action: Complement, .Interlocking: Unlocked, .Is64Bit: true};
887 case Builtin::BI_bittestandreset64:
888 return {.Action: Reset, .Interlocking: Unlocked, .Is64Bit: true};
889 case Builtin::BI_bittestandset64:
890 return {.Action: Set, .Interlocking: Unlocked, .Is64Bit: true};
891 case Builtin::BI_interlockedbittestandreset64:
892 return {.Action: Reset, .Interlocking: Sequential, .Is64Bit: true};
893 case Builtin::BI_interlockedbittestandset64:
894 return {.Action: Set, .Interlocking: Sequential, .Is64Bit: true};
895
896 // ARM/AArch64-specific ordering variants.
897 case Builtin::BI_interlockedbittestandset_acq:
898 return {.Action: Set, .Interlocking: Acquire, .Is64Bit: false};
899 case Builtin::BI_interlockedbittestandset_rel:
900 return {.Action: Set, .Interlocking: Release, .Is64Bit: false};
901 case Builtin::BI_interlockedbittestandset_nf:
902 return {.Action: Set, .Interlocking: NoFence, .Is64Bit: false};
903 case Builtin::BI_interlockedbittestandreset_acq:
904 return {.Action: Reset, .Interlocking: Acquire, .Is64Bit: false};
905 case Builtin::BI_interlockedbittestandreset_rel:
906 return {.Action: Reset, .Interlocking: Release, .Is64Bit: false};
907 case Builtin::BI_interlockedbittestandreset_nf:
908 return {.Action: Reset, .Interlocking: NoFence, .Is64Bit: false};
909 }
910 llvm_unreachable("expected only bittest intrinsics");
911}
912
913static char bitActionToX86BTCode(BitTest::ActionKind A) {
914 switch (A) {
915 case BitTest::TestOnly: return '\0';
916 case BitTest::Complement: return 'c';
917 case BitTest::Reset: return 'r';
918 case BitTest::Set: return 's';
919 }
920 llvm_unreachable("invalid action");
921}
922
923static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
924 BitTest BT,
925 const CallExpr *E, Value *BitBase,
926 Value *BitPos) {
927 char Action = bitActionToX86BTCode(A: BT.Action);
928 char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
929
930 // Build the assembly.
931 SmallString<64> Asm;
932 raw_svector_ostream AsmOS(Asm);
933 if (BT.Interlocking != BitTest::Unlocked)
934 AsmOS << "lock ";
935 AsmOS << "bt";
936 if (Action)
937 AsmOS << Action;
938 AsmOS << SizeSuffix << " $2, ($1)";
939
940 // Build the constraints. FIXME: We should support immediates when possible.
941 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
942 std::string_view MachineClobbers = CGF.getTarget().getClobbers();
943 if (!MachineClobbers.empty()) {
944 Constraints += ',';
945 Constraints += MachineClobbers;
946 }
947 llvm::IntegerType *IntType = llvm::IntegerType::get(
948 CGF.getLLVMContext(),
949 CGF.getContext().getTypeSize(E->getArg(1)->getType()));
950 llvm::Type *IntPtrType = IntType->getPointerTo();
951 llvm::FunctionType *FTy =
952 llvm::FunctionType::get(Result: CGF.Int8Ty, Params: {IntPtrType, IntType}, isVarArg: false);
953
954 llvm::InlineAsm *IA =
955 llvm::InlineAsm::get(Ty: FTy, AsmString: Asm, Constraints, /*hasSideEffects=*/true);
956 return CGF.Builder.CreateCall(Callee: IA, Args: {BitBase, BitPos});
957}
958
959static llvm::AtomicOrdering
960getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
961 switch (I) {
962 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
963 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
964 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
965 case BitTest::Release: return llvm::AtomicOrdering::Release;
966 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
967 }
968 llvm_unreachable("invalid interlocking");
969}
970
971/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
972/// bits and a bit position and read and optionally modify the bit at that
973/// position. The position index can be arbitrarily large, i.e. it can be larger
974/// than 31 or 63, so we need an indexed load in the general case.
975static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
976 unsigned BuiltinID,
977 const CallExpr *E) {
978 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
979 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
980
981 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
982
983 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
984 // indexing operation internally. Use them if possible.
985 if (CGF.getTarget().getTriple().isX86())
986 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
987
988 // Otherwise, use generic code to load one byte and test the bit. Use all but
989 // the bottom three bits as the array index, and the bottom three bits to form
990 // a mask.
991 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
992 Value *ByteIndex = CGF.Builder.CreateAShr(
993 LHS: BitPos, RHS: llvm::ConstantInt::get(Ty: BitPos->getType(), V: 3), Name: "bittest.byteidx");
994 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(V: BitBase, DestTy: CGF.Int8PtrTy);
995 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
996 ByteIndex, "bittest.byteaddr"),
997 CGF.Int8Ty, CharUnits::One());
998 Value *PosLow =
999 CGF.Builder.CreateAnd(LHS: CGF.Builder.CreateTrunc(V: BitPos, DestTy: CGF.Int8Ty),
1000 RHS: llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: 0x7));
1001
1002 // The updating instructions will need a mask.
1003 Value *Mask = nullptr;
1004 if (BT.Action != BitTest::TestOnly) {
1005 Mask = CGF.Builder.CreateShl(LHS: llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: 1), RHS: PosLow,
1006 Name: "bittest.mask");
1007 }
1008
1009 // Check the action and ordering of the interlocked intrinsics.
1010 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(I: BT.Interlocking);
1011
1012 Value *OldByte = nullptr;
1013 if (Ordering != llvm::AtomicOrdering::NotAtomic) {
1014 // Emit a combined atomicrmw load/store operation for the interlocked
1015 // intrinsics.
1016 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
1017 if (BT.Action == BitTest::Reset) {
1018 Mask = CGF.Builder.CreateNot(V: Mask);
1019 RMWOp = llvm::AtomicRMWInst::And;
1020 }
1021 OldByte = CGF.Builder.CreateAtomicRMW(Op: RMWOp, Ptr: ByteAddr.getPointer(), Val: Mask,
1022 Ordering);
1023 } else {
1024 // Emit a plain load for the non-interlocked intrinsics.
1025 OldByte = CGF.Builder.CreateLoad(Addr: ByteAddr, Name: "bittest.byte");
1026 Value *NewByte = nullptr;
1027 switch (BT.Action) {
1028 case BitTest::TestOnly:
1029 // Don't store anything.
1030 break;
1031 case BitTest::Complement:
1032 NewByte = CGF.Builder.CreateXor(LHS: OldByte, RHS: Mask);
1033 break;
1034 case BitTest::Reset:
1035 NewByte = CGF.Builder.CreateAnd(LHS: OldByte, RHS: CGF.Builder.CreateNot(V: Mask));
1036 break;
1037 case BitTest::Set:
1038 NewByte = CGF.Builder.CreateOr(LHS: OldByte, RHS: Mask);
1039 break;
1040 }
1041 if (NewByte)
1042 CGF.Builder.CreateStore(Val: NewByte, Addr: ByteAddr);
1043 }
1044
1045 // However we loaded the old byte, either by plain load or atomicrmw, shift
1046 // the bit into the low position and mask it to 0 or 1.
1047 Value *ShiftedByte = CGF.Builder.CreateLShr(LHS: OldByte, RHS: PosLow, Name: "bittest.shr");
1048 return CGF.Builder.CreateAnd(
1049 LHS: ShiftedByte, RHS: llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: 1), Name: "bittest.res");
1050}
1051
1052static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
1053 unsigned BuiltinID,
1054 const CallExpr *E) {
1055 Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1056
1057 SmallString<64> Asm;
1058 raw_svector_ostream AsmOS(Asm);
1059 llvm::IntegerType *RetType = CGF.Int32Ty;
1060
1061 switch (BuiltinID) {
1062 case clang::PPC::BI__builtin_ppc_ldarx:
1063 AsmOS << "ldarx ";
1064 RetType = CGF.Int64Ty;
1065 break;
1066 case clang::PPC::BI__builtin_ppc_lwarx:
1067 AsmOS << "lwarx ";
1068 RetType = CGF.Int32Ty;
1069 break;
1070 case clang::PPC::BI__builtin_ppc_lharx:
1071 AsmOS << "lharx ";
1072 RetType = CGF.Int16Ty;
1073 break;
1074 case clang::PPC::BI__builtin_ppc_lbarx:
1075 AsmOS << "lbarx ";
1076 RetType = CGF.Int8Ty;
1077 break;
1078 default:
1079 llvm_unreachable("Expected only PowerPC load reserve intrinsics");
1080 }
1081
1082 AsmOS << "$0, ${1:y}";
1083
1084 std::string Constraints = "=r,*Z,~{memory}";
1085 std::string_view MachineClobbers = CGF.getTarget().getClobbers();
1086 if (!MachineClobbers.empty()) {
1087 Constraints += ',';
1088 Constraints += MachineClobbers;
1089 }
1090
1091 llvm::Type *IntPtrType = RetType->getPointerTo();
1092 llvm::FunctionType *FTy =
1093 llvm::FunctionType::get(Result: RetType, Params: {IntPtrType}, isVarArg: false);
1094
1095 llvm::InlineAsm *IA =
1096 llvm::InlineAsm::get(Ty: FTy, AsmString: Asm, Constraints, /*hasSideEffects=*/true);
1097 llvm::CallInst *CI = CGF.Builder.CreateCall(Callee: IA, Args: {Addr});
1098 CI->addParamAttr(
1099 0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
1100 return CI;
1101}
1102
1103namespace {
1104enum class MSVCSetJmpKind {
1105 _setjmpex,
1106 _setjmp3,
1107 _setjmp
1108};
1109}
1110
1111/// MSVC handles setjmp a bit differently on different platforms. On every
1112/// architecture except 32-bit x86, the frame address is passed. On x86, extra
1113/// parameters can be passed as variadic arguments, but we always pass none.
1114static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1115 const CallExpr *E) {
1116 llvm::Value *Arg1 = nullptr;
1117 llvm::Type *Arg1Ty = nullptr;
1118 StringRef Name;
1119 bool IsVarArg = false;
1120 if (SJKind == MSVCSetJmpKind::_setjmp3) {
1121 Name = "_setjmp3";
1122 Arg1Ty = CGF.Int32Ty;
1123 Arg1 = llvm::ConstantInt::get(Ty: CGF.IntTy, V: 0);
1124 IsVarArg = true;
1125 } else {
1126 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1127 Arg1Ty = CGF.Int8PtrTy;
1128 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1129 Arg1 = CGF.Builder.CreateCall(
1130 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1131 } else
1132 Arg1 = CGF.Builder.CreateCall(
1133 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1134 llvm::ConstantInt::get(CGF.Int32Ty, 0));
1135 }
1136
1137 // Mark the call site and declaration with ReturnsTwice.
1138 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1139 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1140 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1141 llvm::Attribute::ReturnsTwice);
1142 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1143 llvm::FunctionType::get(Result: CGF.IntTy, Params: ArgTypes, isVarArg: IsVarArg), Name,
1144 ReturnsTwiceAttr, /*Local=*/true);
1145
1146 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1147 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1148 llvm::Value *Args[] = {Buf, Arg1};
1149 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1150 CB->setAttributes(ReturnsTwiceAttr);
1151 return RValue::get(V: CB);
1152}
1153
1154// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1155// we handle them here.
1156enum class CodeGenFunction::MSVCIntrin {
1157 _BitScanForward,
1158 _BitScanReverse,
1159 _InterlockedAnd,
1160 _InterlockedDecrement,
1161 _InterlockedExchange,
1162 _InterlockedExchangeAdd,
1163 _InterlockedExchangeSub,
1164 _InterlockedIncrement,
1165 _InterlockedOr,
1166 _InterlockedXor,
1167 _InterlockedExchangeAdd_acq,
1168 _InterlockedExchangeAdd_rel,
1169 _InterlockedExchangeAdd_nf,
1170 _InterlockedExchange_acq,
1171 _InterlockedExchange_rel,
1172 _InterlockedExchange_nf,
1173 _InterlockedCompareExchange_acq,
1174 _InterlockedCompareExchange_rel,
1175 _InterlockedCompareExchange_nf,
1176 _InterlockedCompareExchange128,
1177 _InterlockedCompareExchange128_acq,
1178 _InterlockedCompareExchange128_rel,
1179 _InterlockedCompareExchange128_nf,
1180 _InterlockedOr_acq,
1181 _InterlockedOr_rel,
1182 _InterlockedOr_nf,
1183 _InterlockedXor_acq,
1184 _InterlockedXor_rel,
1185 _InterlockedXor_nf,
1186 _InterlockedAnd_acq,
1187 _InterlockedAnd_rel,
1188 _InterlockedAnd_nf,
1189 _InterlockedIncrement_acq,
1190 _InterlockedIncrement_rel,
1191 _InterlockedIncrement_nf,
1192 _InterlockedDecrement_acq,
1193 _InterlockedDecrement_rel,
1194 _InterlockedDecrement_nf,
1195 __fastfail,
1196};
1197
1198static std::optional<CodeGenFunction::MSVCIntrin>
1199translateArmToMsvcIntrin(unsigned BuiltinID) {
1200 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1201 switch (BuiltinID) {
1202 default:
1203 return std::nullopt;
1204 case clang::ARM::BI_BitScanForward:
1205 case clang::ARM::BI_BitScanForward64:
1206 return MSVCIntrin::_BitScanForward;
1207 case clang::ARM::BI_BitScanReverse:
1208 case clang::ARM::BI_BitScanReverse64:
1209 return MSVCIntrin::_BitScanReverse;
1210 case clang::ARM::BI_InterlockedAnd64:
1211 return MSVCIntrin::_InterlockedAnd;
1212 case clang::ARM::BI_InterlockedExchange64:
1213 return MSVCIntrin::_InterlockedExchange;
1214 case clang::ARM::BI_InterlockedExchangeAdd64:
1215 return MSVCIntrin::_InterlockedExchangeAdd;
1216 case clang::ARM::BI_InterlockedExchangeSub64:
1217 return MSVCIntrin::_InterlockedExchangeSub;
1218 case clang::ARM::BI_InterlockedOr64:
1219 return MSVCIntrin::_InterlockedOr;
1220 case clang::ARM::BI_InterlockedXor64:
1221 return MSVCIntrin::_InterlockedXor;
1222 case clang::ARM::BI_InterlockedDecrement64:
1223 return MSVCIntrin::_InterlockedDecrement;
1224 case clang::ARM::BI_InterlockedIncrement64:
1225 return MSVCIntrin::_InterlockedIncrement;
1226 case clang::ARM::BI_InterlockedExchangeAdd8_acq:
1227 case clang::ARM::BI_InterlockedExchangeAdd16_acq:
1228 case clang::ARM::BI_InterlockedExchangeAdd_acq:
1229 case clang::ARM::BI_InterlockedExchangeAdd64_acq:
1230 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1231 case clang::ARM::BI_InterlockedExchangeAdd8_rel:
1232 case clang::ARM::BI_InterlockedExchangeAdd16_rel:
1233 case clang::ARM::BI_InterlockedExchangeAdd_rel:
1234 case clang::ARM::BI_InterlockedExchangeAdd64_rel:
1235 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1236 case clang::ARM::BI_InterlockedExchangeAdd8_nf:
1237 case clang::ARM::BI_InterlockedExchangeAdd16_nf:
1238 case clang::ARM::BI_InterlockedExchangeAdd_nf:
1239 case clang::ARM::BI_InterlockedExchangeAdd64_nf:
1240 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1241 case clang::ARM::BI_InterlockedExchange8_acq:
1242 case clang::ARM::BI_InterlockedExchange16_acq:
1243 case clang::ARM::BI_InterlockedExchange_acq:
1244 case clang::ARM::BI_InterlockedExchange64_acq:
1245 return MSVCIntrin::_InterlockedExchange_acq;
1246 case clang::ARM::BI_InterlockedExchange8_rel:
1247 case clang::ARM::BI_InterlockedExchange16_rel:
1248 case clang::ARM::BI_InterlockedExchange_rel:
1249 case clang::ARM::BI_InterlockedExchange64_rel:
1250 return MSVCIntrin::_InterlockedExchange_rel;
1251 case clang::ARM::BI_InterlockedExchange8_nf:
1252 case clang::ARM::BI_InterlockedExchange16_nf:
1253 case clang::ARM::BI_InterlockedExchange_nf:
1254 case clang::ARM::BI_InterlockedExchange64_nf:
1255 return MSVCIntrin::_InterlockedExchange_nf;
1256 case clang::ARM::BI_InterlockedCompareExchange8_acq:
1257 case clang::ARM::BI_InterlockedCompareExchange16_acq:
1258 case clang::ARM::BI_InterlockedCompareExchange_acq:
1259 case clang::ARM::BI_InterlockedCompareExchange64_acq:
1260 return MSVCIntrin::_InterlockedCompareExchange_acq;
1261 case clang::ARM::BI_InterlockedCompareExchange8_rel:
1262 case clang::ARM::BI_InterlockedCompareExchange16_rel:
1263 case clang::ARM::BI_InterlockedCompareExchange_rel:
1264 case clang::ARM::BI_InterlockedCompareExchange64_rel:
1265 return MSVCIntrin::_InterlockedCompareExchange_rel;
1266 case clang::ARM::BI_InterlockedCompareExchange8_nf:
1267 case clang::ARM::BI_InterlockedCompareExchange16_nf:
1268 case clang::ARM::BI_InterlockedCompareExchange_nf:
1269 case clang::ARM::BI_InterlockedCompareExchange64_nf:
1270 return MSVCIntrin::_InterlockedCompareExchange_nf;
1271 case clang::ARM::BI_InterlockedOr8_acq:
1272 case clang::ARM::BI_InterlockedOr16_acq:
1273 case clang::ARM::BI_InterlockedOr_acq:
1274 case clang::ARM::BI_InterlockedOr64_acq:
1275 return MSVCIntrin::_InterlockedOr_acq;
1276 case clang::ARM::BI_InterlockedOr8_rel:
1277 case clang::ARM::BI_InterlockedOr16_rel:
1278 case clang::ARM::BI_InterlockedOr_rel:
1279 case clang::ARM::BI_InterlockedOr64_rel:
1280 return MSVCIntrin::_InterlockedOr_rel;
1281 case clang::ARM::BI_InterlockedOr8_nf:
1282 case clang::ARM::BI_InterlockedOr16_nf:
1283 case clang::ARM::BI_InterlockedOr_nf:
1284 case clang::ARM::BI_InterlockedOr64_nf:
1285 return MSVCIntrin::_InterlockedOr_nf;
1286 case clang::ARM::BI_InterlockedXor8_acq:
1287 case clang::ARM::BI_InterlockedXor16_acq:
1288 case clang::ARM::BI_InterlockedXor_acq:
1289 case clang::ARM::BI_InterlockedXor64_acq:
1290 return MSVCIntrin::_InterlockedXor_acq;
1291 case clang::ARM::BI_InterlockedXor8_rel:
1292 case clang::ARM::BI_InterlockedXor16_rel:
1293 case clang::ARM::BI_InterlockedXor_rel:
1294 case clang::ARM::BI_InterlockedXor64_rel:
1295 return MSVCIntrin::_InterlockedXor_rel;
1296 case clang::ARM::BI_InterlockedXor8_nf:
1297 case clang::ARM::BI_InterlockedXor16_nf:
1298 case clang::ARM::BI_InterlockedXor_nf:
1299 case clang::ARM::BI_InterlockedXor64_nf:
1300 return MSVCIntrin::_InterlockedXor_nf;
1301 case clang::ARM::BI_InterlockedAnd8_acq:
1302 case clang::ARM::BI_InterlockedAnd16_acq:
1303 case clang::ARM::BI_InterlockedAnd_acq:
1304 case clang::ARM::BI_InterlockedAnd64_acq:
1305 return MSVCIntrin::_InterlockedAnd_acq;
1306 case clang::ARM::BI_InterlockedAnd8_rel:
1307 case clang::ARM::BI_InterlockedAnd16_rel:
1308 case clang::ARM::BI_InterlockedAnd_rel:
1309 case clang::ARM::BI_InterlockedAnd64_rel:
1310 return MSVCIntrin::_InterlockedAnd_rel;
1311 case clang::ARM::BI_InterlockedAnd8_nf:
1312 case clang::ARM::BI_InterlockedAnd16_nf:
1313 case clang::ARM::BI_InterlockedAnd_nf:
1314 case clang::ARM::BI_InterlockedAnd64_nf:
1315 return MSVCIntrin::_InterlockedAnd_nf;
1316 case clang::ARM::BI_InterlockedIncrement16_acq:
1317 case clang::ARM::BI_InterlockedIncrement_acq:
1318 case clang::ARM::BI_InterlockedIncrement64_acq:
1319 return MSVCIntrin::_InterlockedIncrement_acq;
1320 case clang::ARM::BI_InterlockedIncrement16_rel:
1321 case clang::ARM::BI_InterlockedIncrement_rel:
1322 case clang::ARM::BI_InterlockedIncrement64_rel:
1323 return MSVCIntrin::_InterlockedIncrement_rel;
1324 case clang::ARM::BI_InterlockedIncrement16_nf:
1325 case clang::ARM::BI_InterlockedIncrement_nf:
1326 case clang::ARM::BI_InterlockedIncrement64_nf:
1327 return MSVCIntrin::_InterlockedIncrement_nf;
1328 case clang::ARM::BI_InterlockedDecrement16_acq:
1329 case clang::ARM::BI_InterlockedDecrement_acq:
1330 case clang::ARM::BI_InterlockedDecrement64_acq:
1331 return MSVCIntrin::_InterlockedDecrement_acq;
1332 case clang::ARM::BI_InterlockedDecrement16_rel:
1333 case clang::ARM::BI_InterlockedDecrement_rel:
1334 case clang::ARM::BI_InterlockedDecrement64_rel:
1335 return MSVCIntrin::_InterlockedDecrement_rel;
1336 case clang::ARM::BI_InterlockedDecrement16_nf:
1337 case clang::ARM::BI_InterlockedDecrement_nf:
1338 case clang::ARM::BI_InterlockedDecrement64_nf:
1339 return MSVCIntrin::_InterlockedDecrement_nf;
1340 }
1341 llvm_unreachable("must return from switch");
1342}
1343
1344static std::optional<CodeGenFunction::MSVCIntrin>
1345translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1346 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1347 switch (BuiltinID) {
1348 default:
1349 return std::nullopt;
1350 case clang::AArch64::BI_BitScanForward:
1351 case clang::AArch64::BI_BitScanForward64:
1352 return MSVCIntrin::_BitScanForward;
1353 case clang::AArch64::BI_BitScanReverse:
1354 case clang::AArch64::BI_BitScanReverse64:
1355 return MSVCIntrin::_BitScanReverse;
1356 case clang::AArch64::BI_InterlockedAnd64:
1357 return MSVCIntrin::_InterlockedAnd;
1358 case clang::AArch64::BI_InterlockedExchange64:
1359 return MSVCIntrin::_InterlockedExchange;
1360 case clang::AArch64::BI_InterlockedExchangeAdd64:
1361 return MSVCIntrin::_InterlockedExchangeAdd;
1362 case clang::AArch64::BI_InterlockedExchangeSub64:
1363 return MSVCIntrin::_InterlockedExchangeSub;
1364 case clang::AArch64::BI_InterlockedOr64:
1365 return MSVCIntrin::_InterlockedOr;
1366 case clang::AArch64::BI_InterlockedXor64:
1367 return MSVCIntrin::_InterlockedXor;
1368 case clang::AArch64::BI_InterlockedDecrement64:
1369 return MSVCIntrin::_InterlockedDecrement;
1370 case clang::AArch64::BI_InterlockedIncrement64:
1371 return MSVCIntrin::_InterlockedIncrement;
1372 case clang::AArch64::BI_InterlockedExchangeAdd8_acq:
1373 case clang::AArch64::BI_InterlockedExchangeAdd16_acq:
1374 case clang::AArch64::BI_InterlockedExchangeAdd_acq:
1375 case clang::AArch64::BI_InterlockedExchangeAdd64_acq:
1376 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1377 case clang::AArch64::BI_InterlockedExchangeAdd8_rel:
1378 case clang::AArch64::BI_InterlockedExchangeAdd16_rel:
1379 case clang::AArch64::BI_InterlockedExchangeAdd_rel:
1380 case clang::AArch64::BI_InterlockedExchangeAdd64_rel:
1381 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1382 case clang::AArch64::BI_InterlockedExchangeAdd8_nf:
1383 case clang::AArch64::BI_InterlockedExchangeAdd16_nf:
1384 case clang::AArch64::BI_InterlockedExchangeAdd_nf:
1385 case clang::AArch64::BI_InterlockedExchangeAdd64_nf:
1386 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1387 case clang::AArch64::BI_InterlockedExchange8_acq:
1388 case clang::AArch64::BI_InterlockedExchange16_acq:
1389 case clang::AArch64::BI_InterlockedExchange_acq:
1390 case clang::AArch64::BI_InterlockedExchange64_acq:
1391 return MSVCIntrin::_InterlockedExchange_acq;
1392 case clang::AArch64::BI_InterlockedExchange8_rel:
1393 case clang::AArch64::BI_InterlockedExchange16_rel:
1394 case clang::AArch64::BI_InterlockedExchange_rel:
1395 case clang::AArch64::BI_InterlockedExchange64_rel:
1396 return MSVCIntrin::_InterlockedExchange_rel;
1397 case clang::AArch64::BI_InterlockedExchange8_nf:
1398 case clang::AArch64::BI_InterlockedExchange16_nf:
1399 case clang::AArch64::BI_InterlockedExchange_nf:
1400 case clang::AArch64::BI_InterlockedExchange64_nf:
1401 return MSVCIntrin::_InterlockedExchange_nf;
1402 case clang::AArch64::BI_InterlockedCompareExchange8_acq:
1403 case clang::AArch64::BI_InterlockedCompareExchange16_acq:
1404 case clang::AArch64::BI_InterlockedCompareExchange_acq:
1405 case clang::AArch64::BI_InterlockedCompareExchange64_acq:
1406 return MSVCIntrin::_InterlockedCompareExchange_acq;
1407 case clang::AArch64::BI_InterlockedCompareExchange8_rel:
1408 case clang::AArch64::BI_InterlockedCompareExchange16_rel:
1409 case clang::AArch64::BI_InterlockedCompareExchange_rel:
1410 case clang::AArch64::BI_InterlockedCompareExchange64_rel:
1411 return MSVCIntrin::_InterlockedCompareExchange_rel;
1412 case clang::AArch64::BI_InterlockedCompareExchange8_nf:
1413 case clang::AArch64::BI_InterlockedCompareExchange16_nf:
1414 case clang::AArch64::BI_InterlockedCompareExchange_nf:
1415 case clang::AArch64::BI_InterlockedCompareExchange64_nf:
1416 return MSVCIntrin::_InterlockedCompareExchange_nf;
1417 case clang::AArch64::BI_InterlockedCompareExchange128:
1418 return MSVCIntrin::_InterlockedCompareExchange128;
1419 case clang::AArch64::BI_InterlockedCompareExchange128_acq:
1420 return MSVCIntrin::_InterlockedCompareExchange128_acq;
1421 case clang::AArch64::BI_InterlockedCompareExchange128_nf:
1422 return MSVCIntrin::_InterlockedCompareExchange128_nf;
1423 case clang::AArch64::BI_InterlockedCompareExchange128_rel:
1424 return MSVCIntrin::_InterlockedCompareExchange128_rel;
1425 case clang::AArch64::BI_InterlockedOr8_acq:
1426 case clang::AArch64::BI_InterlockedOr16_acq:
1427 case clang::AArch64::BI_InterlockedOr_acq:
1428 case clang::AArch64::BI_InterlockedOr64_acq:
1429 return MSVCIntrin::_InterlockedOr_acq;
1430 case clang::AArch64::BI_InterlockedOr8_rel:
1431 case clang::AArch64::BI_InterlockedOr16_rel:
1432 case clang::AArch64::BI_InterlockedOr_rel:
1433 case clang::AArch64::BI_InterlockedOr64_rel:
1434 return MSVCIntrin::_InterlockedOr_rel;
1435 case clang::AArch64::BI_InterlockedOr8_nf:
1436 case clang::AArch64::BI_InterlockedOr16_nf:
1437 case clang::AArch64::BI_InterlockedOr_nf:
1438 case clang::AArch64::BI_InterlockedOr64_nf:
1439 return MSVCIntrin::_InterlockedOr_nf;
1440 case clang::AArch64::BI_InterlockedXor8_acq:
1441 case clang::AArch64::BI_InterlockedXor16_acq:
1442 case clang::AArch64::BI_InterlockedXor_acq:
1443 case clang::AArch64::BI_InterlockedXor64_acq:
1444 return MSVCIntrin::_InterlockedXor_acq;
1445 case clang::AArch64::BI_InterlockedXor8_rel:
1446 case clang::AArch64::BI_InterlockedXor16_rel:
1447 case clang::AArch64::BI_InterlockedXor_rel:
1448 case clang::AArch64::BI_InterlockedXor64_rel:
1449 return MSVCIntrin::_InterlockedXor_rel;
1450 case clang::AArch64::BI_InterlockedXor8_nf:
1451 case clang::AArch64::BI_InterlockedXor16_nf:
1452 case clang::AArch64::BI_InterlockedXor_nf:
1453 case clang::AArch64::BI_InterlockedXor64_nf:
1454 return MSVCIntrin::_InterlockedXor_nf;
1455 case clang::AArch64::BI_InterlockedAnd8_acq:
1456 case clang::AArch64::BI_InterlockedAnd16_acq:
1457 case clang::AArch64::BI_InterlockedAnd_acq:
1458 case clang::AArch64::BI_InterlockedAnd64_acq:
1459 return MSVCIntrin::_InterlockedAnd_acq;
1460 case clang::AArch64::BI_InterlockedAnd8_rel:
1461 case clang::AArch64::BI_InterlockedAnd16_rel:
1462 case clang::AArch64::BI_InterlockedAnd_rel:
1463 case clang::AArch64::BI_InterlockedAnd64_rel:
1464 return MSVCIntrin::_InterlockedAnd_rel;
1465 case clang::AArch64::BI_InterlockedAnd8_nf:
1466 case clang::AArch64::BI_InterlockedAnd16_nf:
1467 case clang::AArch64::BI_InterlockedAnd_nf:
1468 case clang::AArch64::BI_InterlockedAnd64_nf:
1469 return MSVCIntrin::_InterlockedAnd_nf;
1470 case clang::AArch64::BI_InterlockedIncrement16_acq:
1471 case clang::AArch64::BI_InterlockedIncrement_acq:
1472 case clang::AArch64::BI_InterlockedIncrement64_acq:
1473 return MSVCIntrin::_InterlockedIncrement_acq;
1474 case clang::AArch64::BI_InterlockedIncrement16_rel:
1475 case clang::AArch64::BI_InterlockedIncrement_rel:
1476 case clang::AArch64::BI_InterlockedIncrement64_rel:
1477 return MSVCIntrin::_InterlockedIncrement_rel;
1478 case clang::AArch64::BI_InterlockedIncrement16_nf:
1479 case clang::AArch64::BI_InterlockedIncrement_nf:
1480 case clang::AArch64::BI_InterlockedIncrement64_nf:
1481 return MSVCIntrin::_InterlockedIncrement_nf;
1482 case clang::AArch64::BI_InterlockedDecrement16_acq:
1483 case clang::AArch64::BI_InterlockedDecrement_acq:
1484 case clang::AArch64::BI_InterlockedDecrement64_acq:
1485 return MSVCIntrin::_InterlockedDecrement_acq;
1486 case clang::AArch64::BI_InterlockedDecrement16_rel:
1487 case clang::AArch64::BI_InterlockedDecrement_rel:
1488 case clang::AArch64::BI_InterlockedDecrement64_rel:
1489 return MSVCIntrin::_InterlockedDecrement_rel;
1490 case clang::AArch64::BI_InterlockedDecrement16_nf:
1491 case clang::AArch64::BI_InterlockedDecrement_nf:
1492 case clang::AArch64::BI_InterlockedDecrement64_nf:
1493 return MSVCIntrin::_InterlockedDecrement_nf;
1494 }
1495 llvm_unreachable("must return from switch");
1496}
1497
1498static std::optional<CodeGenFunction::MSVCIntrin>
1499translateX86ToMsvcIntrin(unsigned BuiltinID) {
1500 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1501 switch (BuiltinID) {
1502 default:
1503 return std::nullopt;
1504 case clang::X86::BI_BitScanForward:
1505 case clang::X86::BI_BitScanForward64:
1506 return MSVCIntrin::_BitScanForward;
1507 case clang::X86::BI_BitScanReverse:
1508 case clang::X86::BI_BitScanReverse64:
1509 return MSVCIntrin::_BitScanReverse;
1510 case clang::X86::BI_InterlockedAnd64:
1511 return MSVCIntrin::_InterlockedAnd;
1512 case clang::X86::BI_InterlockedCompareExchange128:
1513 return MSVCIntrin::_InterlockedCompareExchange128;
1514 case clang::X86::BI_InterlockedExchange64:
1515 return MSVCIntrin::_InterlockedExchange;
1516 case clang::X86::BI_InterlockedExchangeAdd64:
1517 return MSVCIntrin::_InterlockedExchangeAdd;
1518 case clang::X86::BI_InterlockedExchangeSub64:
1519 return MSVCIntrin::_InterlockedExchangeSub;
1520 case clang::X86::BI_InterlockedOr64:
1521 return MSVCIntrin::_InterlockedOr;
1522 case clang::X86::BI_InterlockedXor64:
1523 return MSVCIntrin::_InterlockedXor;
1524 case clang::X86::BI_InterlockedDecrement64:
1525 return MSVCIntrin::_InterlockedDecrement;
1526 case clang::X86::BI_InterlockedIncrement64:
1527 return MSVCIntrin::_InterlockedIncrement;
1528 }
1529 llvm_unreachable("must return from switch");
1530}
1531
1532// Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1533Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1534 const CallExpr *E) {
1535 switch (BuiltinID) {
1536 case MSVCIntrin::_BitScanForward:
1537 case MSVCIntrin::_BitScanReverse: {
1538 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1539 Value *ArgValue = EmitScalarExpr(E->getArg(1));
1540
1541 llvm::Type *ArgType = ArgValue->getType();
1542 llvm::Type *IndexType = IndexAddress.getElementType();
1543 llvm::Type *ResultType = ConvertType(E->getType());
1544
1545 Value *ArgZero = llvm::Constant::getNullValue(Ty: ArgType);
1546 Value *ResZero = llvm::Constant::getNullValue(Ty: ResultType);
1547 Value *ResOne = llvm::ConstantInt::get(Ty: ResultType, V: 1);
1548
1549 BasicBlock *Begin = Builder.GetInsertBlock();
1550 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1551 Builder.SetInsertPoint(End);
1552 PHINode *Result = Builder.CreatePHI(Ty: ResultType, NumReservedValues: 2, Name: "bitscan_result");
1553
1554 Builder.SetInsertPoint(Begin);
1555 Value *IsZero = Builder.CreateICmpEQ(LHS: ArgValue, RHS: ArgZero);
1556 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1557 Builder.CreateCondBr(Cond: IsZero, True: End, False: NotZero);
1558 Result->addIncoming(V: ResZero, BB: Begin);
1559
1560 Builder.SetInsertPoint(NotZero);
1561
1562 if (BuiltinID == MSVCIntrin::_BitScanForward) {
1563 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1564 Value *ZeroCount = Builder.CreateCall(Callee: F, Args: {ArgValue, Builder.getTrue()});
1565 ZeroCount = Builder.CreateIntCast(V: ZeroCount, DestTy: IndexType, isSigned: false);
1566 Builder.CreateStore(Val: ZeroCount, Addr: IndexAddress, IsVolatile: false);
1567 } else {
1568 unsigned ArgWidth = cast<llvm::IntegerType>(Val: ArgType)->getBitWidth();
1569 Value *ArgTypeLastIndex = llvm::ConstantInt::get(Ty: IndexType, V: ArgWidth - 1);
1570
1571 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1572 Value *ZeroCount = Builder.CreateCall(Callee: F, Args: {ArgValue, Builder.getTrue()});
1573 ZeroCount = Builder.CreateIntCast(V: ZeroCount, DestTy: IndexType, isSigned: false);
1574 Value *Index = Builder.CreateNSWSub(LHS: ArgTypeLastIndex, RHS: ZeroCount);
1575 Builder.CreateStore(Val: Index, Addr: IndexAddress, IsVolatile: false);
1576 }
1577 Builder.CreateBr(Dest: End);
1578 Result->addIncoming(V: ResOne, BB: NotZero);
1579
1580 Builder.SetInsertPoint(End);
1581 return Result;
1582 }
1583 case MSVCIntrin::_InterlockedAnd:
1584 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1585 case MSVCIntrin::_InterlockedExchange:
1586 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1587 case MSVCIntrin::_InterlockedExchangeAdd:
1588 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1589 case MSVCIntrin::_InterlockedExchangeSub:
1590 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1591 case MSVCIntrin::_InterlockedOr:
1592 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1593 case MSVCIntrin::_InterlockedXor:
1594 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1595 case MSVCIntrin::_InterlockedExchangeAdd_acq:
1596 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1597 AtomicOrdering::Acquire);
1598 case MSVCIntrin::_InterlockedExchangeAdd_rel:
1599 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1600 AtomicOrdering::Release);
1601 case MSVCIntrin::_InterlockedExchangeAdd_nf:
1602 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1603 AtomicOrdering::Monotonic);
1604 case MSVCIntrin::_InterlockedExchange_acq:
1605 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1606 AtomicOrdering::Acquire);
1607 case MSVCIntrin::_InterlockedExchange_rel:
1608 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1609 AtomicOrdering::Release);
1610 case MSVCIntrin::_InterlockedExchange_nf:
1611 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1612 AtomicOrdering::Monotonic);
1613 case MSVCIntrin::_InterlockedCompareExchange_acq:
1614 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1615 case MSVCIntrin::_InterlockedCompareExchange_rel:
1616 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1617 case MSVCIntrin::_InterlockedCompareExchange_nf:
1618 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1619 case MSVCIntrin::_InterlockedCompareExchange128:
1620 return EmitAtomicCmpXchg128ForMSIntrin(
1621 *this, E, AtomicOrdering::SequentiallyConsistent);
1622 case MSVCIntrin::_InterlockedCompareExchange128_acq:
1623 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1624 case MSVCIntrin::_InterlockedCompareExchange128_rel:
1625 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1626 case MSVCIntrin::_InterlockedCompareExchange128_nf:
1627 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1628 case MSVCIntrin::_InterlockedOr_acq:
1629 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1630 AtomicOrdering::Acquire);
1631 case MSVCIntrin::_InterlockedOr_rel:
1632 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1633 AtomicOrdering::Release);
1634 case MSVCIntrin::_InterlockedOr_nf:
1635 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1636 AtomicOrdering::Monotonic);
1637 case MSVCIntrin::_InterlockedXor_acq:
1638 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1639 AtomicOrdering::Acquire);
1640 case MSVCIntrin::_InterlockedXor_rel:
1641 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1642 AtomicOrdering::Release);
1643 case MSVCIntrin::_InterlockedXor_nf:
1644 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1645 AtomicOrdering::Monotonic);
1646 case MSVCIntrin::_InterlockedAnd_acq:
1647 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1648 AtomicOrdering::Acquire);
1649 case MSVCIntrin::_InterlockedAnd_rel:
1650 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1651 AtomicOrdering::Release);
1652 case MSVCIntrin::_InterlockedAnd_nf:
1653 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1654 AtomicOrdering::Monotonic);
1655 case MSVCIntrin::_InterlockedIncrement_acq:
1656 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1657 case MSVCIntrin::_InterlockedIncrement_rel:
1658 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1659 case MSVCIntrin::_InterlockedIncrement_nf:
1660 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1661 case MSVCIntrin::_InterlockedDecrement_acq:
1662 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1663 case MSVCIntrin::_InterlockedDecrement_rel:
1664 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1665 case MSVCIntrin::_InterlockedDecrement_nf:
1666 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1667
1668 case MSVCIntrin::_InterlockedDecrement:
1669 return EmitAtomicDecrementValue(*this, E);
1670 case MSVCIntrin::_InterlockedIncrement:
1671 return EmitAtomicIncrementValue(*this, E);
1672
1673 case MSVCIntrin::__fastfail: {
1674 // Request immediate process termination from the kernel. The instruction
1675 // sequences to do this are documented on MSDN:
1676 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1677 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1678 StringRef Asm, Constraints;
1679 switch (ISA) {
1680 default:
1681 ErrorUnsupported(E, "__fastfail call for this architecture");
1682 break;
1683 case llvm::Triple::x86:
1684 case llvm::Triple::x86_64:
1685 Asm = "int $$0x29";
1686 Constraints = "{cx}";
1687 break;
1688 case llvm::Triple::thumb:
1689 Asm = "udf #251";
1690 Constraints = "{r0}";
1691 break;
1692 case llvm::Triple::aarch64:
1693 Asm = "brk #0xF003";
1694 Constraints = "{w0}";
1695 }
1696 llvm::FunctionType *FTy = llvm::FunctionType::get(Result: VoidTy, Params: {Int32Ty}, isVarArg: false);
1697 llvm::InlineAsm *IA =
1698 llvm::InlineAsm::get(Ty: FTy, AsmString: Asm, Constraints, /*hasSideEffects=*/true);
1699 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1700 getLLVMContext(), llvm::AttributeList::FunctionIndex,
1701 llvm::Attribute::NoReturn);
1702 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1703 CI->setAttributes(NoReturnAttr);
1704 return CI;
1705 }
1706 }
1707 llvm_unreachable("Incorrect MSVC intrinsic!");
1708}
1709
1710namespace {
1711// ARC cleanup for __builtin_os_log_format
1712struct CallObjCArcUse final : EHScopeStack::Cleanup {
1713 CallObjCArcUse(llvm::Value *object) : object(object) {}
1714 llvm::Value *object;
1715
1716 void Emit(CodeGenFunction &CGF, Flags flags) override {
1717 CGF.EmitARCIntrinsicUse(object);
1718 }
1719};
1720}
1721
1722Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1723 BuiltinCheckKind Kind) {
1724 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1725 && "Unsupported builtin check kind");
1726
1727 Value *ArgValue = EmitScalarExpr(E);
1728 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1729 return ArgValue;
1730
1731 SanitizerScope SanScope(this);
1732 Value *Cond = Builder.CreateICmpNE(
1733 LHS: ArgValue, RHS: llvm::Constant::getNullValue(Ty: ArgValue->getType()));
1734 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1735 SanitizerHandler::InvalidBuiltin,
1736 {EmitCheckSourceLocation(E->getExprLoc()),
1737 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1738 std::nullopt);
1739 return ArgValue;
1740}
1741
1742/// Get the argument type for arguments to os_log_helper.
1743static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1744 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1745 return C.getCanonicalType(UnsignedTy);
1746}
1747
1748llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1749 const analyze_os_log::OSLogBufferLayout &Layout,
1750 CharUnits BufferAlignment) {
1751 ASTContext &Ctx = getContext();
1752
1753 llvm::SmallString<64> Name;
1754 {
1755 raw_svector_ostream OS(Name);
1756 OS << "__os_log_helper";
1757 OS << "_" << BufferAlignment.getQuantity();
1758 OS << "_" << int(Layout.getSummaryByte());
1759 OS << "_" << int(Layout.getNumArgsByte());
1760 for (const auto &Item : Layout.Items)
1761 OS << "_" << int(Item.getSizeByte()) << "_"
1762 << int(Item.getDescriptorByte());
1763 }
1764
1765 if (llvm::Function *F = CGM.getModule().getFunction(Name))
1766 return F;
1767
1768 llvm::SmallVector<QualType, 4> ArgTys;
1769 FunctionArgList Args;
1770 Args.push_back(ImplicitParamDecl::Create(
1771 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1772 ImplicitParamDecl::Other));
1773 ArgTys.emplace_back(Ctx.VoidPtrTy);
1774
1775 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1776 char Size = Layout.Items[I].getSizeByte();
1777 if (!Size)
1778 continue;
1779
1780 QualType ArgTy = getOSLogArgType(Ctx, Size);
1781 Args.push_back(ImplicitParamDecl::Create(
1782 Ctx, nullptr, SourceLocation(),
1783 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1784 ImplicitParamDecl::Other));
1785 ArgTys.emplace_back(ArgTy);
1786 }
1787
1788 QualType ReturnTy = Ctx.VoidTy;
1789
1790 // The helper function has linkonce_odr linkage to enable the linker to merge
1791 // identical functions. To ensure the merging always happens, 'noinline' is
1792 // attached to the function when compiling with -Oz.
1793 const CGFunctionInfo &FI =
1794 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1795 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(Info: FI);
1796 llvm::Function *Fn = llvm::Function::Create(
1797 Ty: FuncTy, Linkage: llvm::GlobalValue::LinkOnceODRLinkage, N: Name, M: &CGM.getModule());
1798 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1799 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1800 CGM.SetLLVMFunctionAttributesForDefinition(D: nullptr, F: Fn);
1801 Fn->setDoesNotThrow();
1802
1803 // Attach 'noinline' at -Oz.
1804 if (CGM.getCodeGenOpts().OptimizeSize == 2)
1805 Fn->addFnAttr(llvm::Attribute::NoInline);
1806
1807 auto NL = ApplyDebugLocation::CreateEmpty(CGF&: *this);
1808 StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
1809
1810 // Create a scope with an artificial location for the body of this function.
1811 auto AL = ApplyDebugLocation::CreateArtificial(CGF&: *this);
1812
1813 CharUnits Offset;
1814 Address BufAddr =
1815 Address(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Int8Ty,
1816 BufferAlignment);
1817 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1818 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1819 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1820 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1821
1822 unsigned I = 1;
1823 for (const auto &Item : Layout.Items) {
1824 Builder.CreateStore(
1825 Builder.getInt8(Item.getDescriptorByte()),
1826 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1827 Builder.CreateStore(
1828 Builder.getInt8(Item.getSizeByte()),
1829 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1830
1831 CharUnits Size = Item.size();
1832 if (!Size.getQuantity())
1833 continue;
1834
1835 Address Arg = GetAddrOfLocalVar(Args[I]);
1836 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1837 Addr =
1838 Builder.CreateElementBitCast(Addr, Arg.getElementType(), "argDataCast");
1839 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1840 Offset += Size;
1841 ++I;
1842 }
1843
1844 FinishFunction();
1845
1846 return Fn;
1847}
1848
1849RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1850 assert(E.getNumArgs() >= 2 &&
1851 "__builtin_os_log_format takes at least 2 arguments");
1852 ASTContext &Ctx = getContext();
1853 analyze_os_log::OSLogBufferLayout Layout;
1854 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1855 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1856 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1857
1858 // Ignore argument 1, the format string. It is not currently used.
1859 CallArgList Args;
1860 Args.add(rvalue: RValue::get(V: BufAddr.getPointer()), type: Ctx.VoidPtrTy);
1861
1862 for (const auto &Item : Layout.Items) {
1863 int Size = Item.getSizeByte();
1864 if (!Size)
1865 continue;
1866
1867 llvm::Value *ArgVal;
1868
1869 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1870 uint64_t Val = 0;
1871 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1872 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1873 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1874 } else if (const Expr *TheExpr = Item.getExpr()) {
1875 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1876
1877 // If a temporary object that requires destruction after the full
1878 // expression is passed, push a lifetime-extended cleanup to extend its
1879 // lifetime to the end of the enclosing block scope.
1880 auto LifetimeExtendObject = [&](const Expr *E) {
1881 E = E->IgnoreParenCasts();
1882 // Extend lifetimes of objects returned by function calls and message
1883 // sends.
1884
1885 // FIXME: We should do this in other cases in which temporaries are
1886 // created including arguments of non-ARC types (e.g., C++
1887 // temporaries).
1888 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1889 return true;
1890 return false;
1891 };
1892
1893 if (TheExpr->getType()->isObjCRetainableType() &&
1894 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1895 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1896 "Only scalar can be a ObjC retainable type");
1897 if (!isa<Constant>(ArgVal)) {
1898 CleanupKind Cleanup = getARCCleanupKind();
1899 QualType Ty = TheExpr->getType();
1900 Address Alloca = Address::invalid();
1901 Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1902 ArgVal = EmitARCRetain(Ty, ArgVal);
1903 Builder.CreateStore(ArgVal, Addr);
1904 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1905 CodeGenFunction::destroyARCStrongPrecise,
1906 Cleanup & EHCleanup);
1907
1908 // Push a clang.arc.use call to ensure ARC optimizer knows that the
1909 // argument has to be alive.
1910 if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1911 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1912 }
1913 }
1914 } else {
1915 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1916 }
1917
1918 unsigned ArgValSize =
1919 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1920 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1921 ArgValSize);
1922 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1923 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1924 // If ArgVal has type x86_fp80, zero-extend ArgVal.
1925 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1926 Args.add(RValue::get(ArgVal), ArgTy);
1927 }
1928
1929 const CGFunctionInfo &FI =
1930 CGM.getTypes().arrangeBuiltinFunctionCall(resultType: Ctx.VoidTy, args: Args);
1931 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1932 Layout, BufAddr.getAlignment());
1933 EmitCall(CallInfo: FI, Callee: CGCallee::forDirect(functionPtr: F), ReturnValue: ReturnValueSlot(), Args);
1934 return RValue::get(V: BufAddr.getPointer());
1935}
1936
1937static bool isSpecialUnsignedMultiplySignedResult(
1938 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1939 WidthAndSignedness ResultInfo) {
1940 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1941 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1942 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1943}
1944
1945static RValue EmitCheckedUnsignedMultiplySignedResult(
1946 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1947 const clang::Expr *Op2, WidthAndSignedness Op2Info,
1948 const clang::Expr *ResultArg, QualType ResultQTy,
1949 WidthAndSignedness ResultInfo) {
1950 assert(isSpecialUnsignedMultiplySignedResult(
1951 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
1952 "Cannot specialize this multiply");
1953
1954 llvm::Value *V1 = CGF.EmitScalarExpr(E: Op1);
1955 llvm::Value *V2 = CGF.EmitScalarExpr(E: Op2);
1956
1957 llvm::Value *HasOverflow;
1958 llvm::Value *Result = EmitOverflowIntrinsic(
1959 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1960
1961 // The intrinsic call will detect overflow when the value is > UINT_MAX,
1962 // however, since the original builtin had a signed result, we need to report
1963 // an overflow when the result is greater than INT_MAX.
1964 auto IntMax = llvm::APInt::getSignedMaxValue(numBits: ResultInfo.Width);
1965 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Ty: Result->getType(), V: IntMax);
1966
1967 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(LHS: Result, RHS: IntMaxValue);
1968 HasOverflow = CGF.Builder.CreateOr(LHS: HasOverflow, RHS: IntMaxOverflow);
1969
1970 bool isVolatile =
1971 ResultArg->getType()->getPointeeType().isVolatileQualified();
1972 Address ResultPtr = CGF.EmitPointerWithAlignment(Addr: ResultArg);
1973 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1974 isVolatile);
1975 return RValue::get(V: HasOverflow);
1976}
1977
1978/// Determine if a binop is a checked mixed-sign multiply we can specialize.
1979static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1980 WidthAndSignedness Op1Info,
1981 WidthAndSignedness Op2Info,
1982 WidthAndSignedness ResultInfo) {
1983 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1984 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1985 Op1Info.Signed != Op2Info.Signed;
1986}
1987
1988/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1989/// the generic checked-binop irgen.
1990static RValue
1991EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1992 WidthAndSignedness Op1Info, const clang::Expr *Op2,
1993 WidthAndSignedness Op2Info,
1994 const clang::Expr *ResultArg, QualType ResultQTy,
1995 WidthAndSignedness ResultInfo) {
1996 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1997 Op2Info, ResultInfo) &&
1998 "Not a mixed-sign multipliction we can specialize");
1999
2000 // Emit the signed and unsigned operands.
2001 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
2002 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
2003 llvm::Value *Signed = CGF.EmitScalarExpr(E: SignedOp);
2004 llvm::Value *Unsigned = CGF.EmitScalarExpr(E: UnsignedOp);
2005 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
2006 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
2007
2008 // One of the operands may be smaller than the other. If so, [s|z]ext it.
2009 if (SignedOpWidth < UnsignedOpWidth)
2010 Signed = CGF.Builder.CreateSExt(V: Signed, DestTy: Unsigned->getType(), Name: "op.sext");
2011 if (UnsignedOpWidth < SignedOpWidth)
2012 Unsigned = CGF.Builder.CreateZExt(V: Unsigned, DestTy: Signed->getType(), Name: "op.zext");
2013
2014 llvm::Type *OpTy = Signed->getType();
2015 llvm::Value *Zero = llvm::Constant::getNullValue(Ty: OpTy);
2016 Address ResultPtr = CGF.EmitPointerWithAlignment(Addr: ResultArg);
2017 llvm::Type *ResTy = ResultPtr.getElementType();
2018 unsigned OpWidth = std::max(a: Op1Info.Width, b: Op2Info.Width);
2019
2020 // Take the absolute value of the signed operand.
2021 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(LHS: Signed, RHS: Zero);
2022 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(LHS: Zero, RHS: Signed);
2023 llvm::Value *AbsSigned =
2024 CGF.Builder.CreateSelect(C: IsNegative, True: AbsOfNegative, False: Signed);
2025
2026 // Perform a checked unsigned multiplication.
2027 llvm::Value *UnsignedOverflow;
2028 llvm::Value *UnsignedResult =
2029 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
2030 Unsigned, UnsignedOverflow);
2031
2032 llvm::Value *Overflow, *Result;
2033 if (ResultInfo.Signed) {
2034 // Signed overflow occurs if the result is greater than INT_MAX or lesser
2035 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2036 auto IntMax =
2037 llvm::APInt::getSignedMaxValue(numBits: ResultInfo.Width).zext(width: OpWidth);
2038 llvm::Value *MaxResult =
2039 CGF.Builder.CreateAdd(LHS: llvm::ConstantInt::get(Ty: OpTy, V: IntMax),
2040 RHS: CGF.Builder.CreateZExt(V: IsNegative, DestTy: OpTy));
2041 llvm::Value *SignedOverflow =
2042 CGF.Builder.CreateICmpUGT(LHS: UnsignedResult, RHS: MaxResult);
2043 Overflow = CGF.Builder.CreateOr(LHS: UnsignedOverflow, RHS: SignedOverflow);
2044
2045 // Prepare the signed result (possibly by negating it).
2046 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(V: UnsignedResult);
2047 llvm::Value *SignedResult =
2048 CGF.Builder.CreateSelect(C: IsNegative, True: NegativeResult, False: UnsignedResult);
2049 Result = CGF.Builder.CreateTrunc(V: SignedResult, DestTy: ResTy);
2050 } else {
2051 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2052 llvm::Value *Underflow = CGF.Builder.CreateAnd(
2053 LHS: IsNegative, RHS: CGF.Builder.CreateIsNotNull(Arg: UnsignedResult));
2054 Overflow = CGF.Builder.CreateOr(LHS: UnsignedOverflow, RHS: Underflow);
2055 if (ResultInfo.Width < OpWidth) {
2056 auto IntMax =
2057 llvm::APInt::getMaxValue(numBits: ResultInfo.Width).zext(width: OpWidth);
2058 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2059 LHS: UnsignedResult, RHS: llvm::ConstantInt::get(Ty: OpTy, V: IntMax));
2060 Overflow = CGF.Builder.CreateOr(LHS: Overflow, RHS: TruncOverflow);
2061 }
2062
2063 // Negate the product if it would be negative in infinite precision.
2064 Result = CGF.Builder.CreateSelect(
2065 C: IsNegative, True: CGF.Builder.CreateNeg(V: UnsignedResult), False: UnsignedResult);
2066
2067 Result = CGF.Builder.CreateTrunc(V: Result, DestTy: ResTy);
2068 }
2069 assert(Overflow && Result && "Missing overflow or result");
2070
2071 bool isVolatile =
2072 ResultArg->getType()->getPointeeType().isVolatileQualified();
2073 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2074 isVolatile);
2075 return RValue::get(V: Overflow);
2076}
2077
2078static bool
2079TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2080 llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2081 if (const auto *Arr = Ctx.getAsArrayType(Ty))
2082 Ty = Ctx.getBaseElementType(Arr);
2083
2084 const auto *Record = Ty->getAsCXXRecordDecl();
2085 if (!Record)
2086 return false;
2087
2088 // We've already checked this type, or are in the process of checking it.
2089 if (!Seen.insert(Record).second)
2090 return false;
2091
2092 assert(Record->hasDefinition() &&
2093 "Incomplete types should already be diagnosed");
2094
2095 if (Record->isDynamicClass())
2096 return true;
2097
2098 for (FieldDecl *F : Record->fields()) {
2099 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2100 return true;
2101 }
2102 return false;
2103}
2104
2105/// Determine if the specified type requires laundering by checking if it is a
2106/// dynamic class type or contains a subobject which is a dynamic class type.
2107static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2108 if (!CGM.getCodeGenOpts().StrictVTablePointers)
2109 return false;
2110 llvm::SmallPtrSet<const Decl *, 16> Seen;
2111 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2112}
2113
2114RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2115 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2116 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2117
2118 // The builtin's shift arg may have a different type than the source arg and
2119 // result, but the LLVM intrinsic uses the same type for all values.
2120 llvm::Type *Ty = Src->getType();
2121 ShiftAmt = Builder.CreateIntCast(V: ShiftAmt, DestTy: Ty, isSigned: false);
2122
2123 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2124 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2125 Function *F = CGM.getIntrinsic(IID, Ty);
2126 return RValue::get(V: Builder.CreateCall(Callee: F, Args: { Src, Src, ShiftAmt }));
2127}
2128
2129// Map math builtins for long-double to f128 version.
2130static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2131 switch (BuiltinID) {
2132#define MUTATE_LDBL(func) \
2133 case Builtin::BI__builtin_##func##l: \
2134 return Builtin::BI__builtin_##func##f128;
2135 MUTATE_LDBL(sqrt)
2136 MUTATE_LDBL(cbrt)
2137 MUTATE_LDBL(fabs)
2138 MUTATE_LDBL(log)
2139 MUTATE_LDBL(log2)
2140 MUTATE_LDBL(log10)
2141 MUTATE_LDBL(log1p)
2142 MUTATE_LDBL(logb)
2143 MUTATE_LDBL(exp)
2144 MUTATE_LDBL(exp2)
2145 MUTATE_LDBL(expm1)
2146 MUTATE_LDBL(fdim)
2147 MUTATE_LDBL(hypot)
2148 MUTATE_LDBL(ilogb)
2149 MUTATE_LDBL(pow)
2150 MUTATE_LDBL(fmin)
2151 MUTATE_LDBL(fmax)
2152 MUTATE_LDBL(ceil)
2153 MUTATE_LDBL(trunc)
2154 MUTATE_LDBL(rint)
2155 MUTATE_LDBL(nearbyint)
2156 MUTATE_LDBL(round)
2157 MUTATE_LDBL(floor)
2158 MUTATE_LDBL(lround)
2159 MUTATE_LDBL(llround)
2160 MUTATE_LDBL(lrint)
2161 MUTATE_LDBL(llrint)
2162 MUTATE_LDBL(fmod)
2163 MUTATE_LDBL(modf)
2164 MUTATE_LDBL(nan)
2165 MUTATE_LDBL(nans)
2166 MUTATE_LDBL(inf)
2167 MUTATE_LDBL(fma)
2168 MUTATE_LDBL(sin)
2169 MUTATE_LDBL(cos)
2170 MUTATE_LDBL(tan)
2171 MUTATE_LDBL(sinh)
2172 MUTATE_LDBL(cosh)
2173 MUTATE_LDBL(tanh)
2174 MUTATE_LDBL(asin)
2175 MUTATE_LDBL(acos)
2176 MUTATE_LDBL(atan)
2177 MUTATE_LDBL(asinh)
2178 MUTATE_LDBL(acosh)
2179 MUTATE_LDBL(atanh)
2180 MUTATE_LDBL(atan2)
2181 MUTATE_LDBL(erf)
2182 MUTATE_LDBL(erfc)
2183 MUTATE_LDBL(ldexp)
2184 MUTATE_LDBL(frexp)
2185 MUTATE_LDBL(huge_val)
2186 MUTATE_LDBL(copysign)
2187 MUTATE_LDBL(nextafter)
2188 MUTATE_LDBL(nexttoward)
2189 MUTATE_LDBL(remainder)
2190 MUTATE_LDBL(remquo)
2191 MUTATE_LDBL(scalbln)
2192 MUTATE_LDBL(scalbn)
2193 MUTATE_LDBL(tgamma)
2194 MUTATE_LDBL(lgamma)
2195#undef MUTATE_LDBL
2196 default:
2197 return BuiltinID;
2198 }
2199}
2200
2201RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2202 const CallExpr *E,
2203 ReturnValueSlot ReturnValue) {
2204 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2205 // See if we can constant fold this builtin. If so, don't emit it at all.
2206 // TODO: Extend this handling to all builtin calls that we can constant-fold.
2207 Expr::EvalResult Result;
2208 if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext()) &&
2209 !Result.hasSideEffects()) {
2210 if (Result.Val.isInt())
2211 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2212 Result.Val.getInt()));
2213 if (Result.Val.isFloat())
2214 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2215 Result.Val.getFloat()));
2216 }
2217
2218 // If current long-double semantics is IEEE 128-bit, replace math builtins
2219 // of long-double with f128 equivalent.
2220 // TODO: This mutation should also be applied to other targets other than PPC,
2221 // after backend supports IEEE 128-bit style libcalls.
2222 if (getTarget().getTriple().isPPC64() &&
2223 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2224 BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2225
2226 // If the builtin has been declared explicitly with an assembler label,
2227 // disable the specialized emitting below. Ideally we should communicate the
2228 // rename in IR, or at least avoid generating the intrinsic calls that are
2229 // likely to get lowered to the renamed library functions.
2230 const unsigned BuiltinIDIfNoAsmLabel =
2231 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2232
2233 // There are LLVM math intrinsics/instructions corresponding to math library
2234 // functions except the LLVM op will never set errno while the math library
2235 // might. Also, math builtins have the same semantics as their math library
2236 // twins. Thus, we can transform math library and builtin calls to their
2237 // LLVM counterparts if the call is marked 'const' (known to never set errno).
2238 // In case FP exceptions are enabled, the experimental versions of the
2239 // intrinsics model those.
2240 bool ConstWithoutErrnoAndExceptions =
2241 getContext().BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
2242 bool ConstWithoutExceptions =
2243 getContext().BuiltinInfo.isConstWithoutExceptions(BuiltinID);
2244 if (FD->hasAttr<ConstAttr>() ||
2245 ((ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) &&
2246 (!ConstWithoutErrnoAndExceptions || (!getLangOpts().MathErrno)))) {
2247 switch (BuiltinIDIfNoAsmLabel) {
2248 case Builtin::BIceil:
2249 case Builtin::BIceilf:
2250 case Builtin::BIceill:
2251 case Builtin::BI__builtin_ceil:
2252 case Builtin::BI__builtin_ceilf:
2253 case Builtin::BI__builtin_ceilf16:
2254 case Builtin::BI__builtin_ceill:
2255 case Builtin::BI__builtin_ceilf128:
2256 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2257 Intrinsic::ceil,
2258 Intrinsic::experimental_constrained_ceil));
2259
2260 case Builtin::BIcopysign:
2261 case Builtin::BIcopysignf:
2262 case Builtin::BIcopysignl:
2263 case Builtin::BI__builtin_copysign:
2264 case Builtin::BI__builtin_copysignf:
2265 case Builtin::BI__builtin_copysignf16:
2266 case Builtin::BI__builtin_copysignl:
2267 case Builtin::BI__builtin_copysignf128:
2268 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2269
2270 case Builtin::BIcos:
2271 case Builtin::BIcosf:
2272 case Builtin::BIcosl:
2273 case Builtin::BI__builtin_cos:
2274 case Builtin::BI__builtin_cosf:
2275 case Builtin::BI__builtin_cosf16:
2276 case Builtin::BI__builtin_cosl:
2277 case Builtin::BI__builtin_cosf128:
2278 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2279 Intrinsic::cos,
2280 Intrinsic::experimental_constrained_cos));
2281
2282 case Builtin::BIexp:
2283 case Builtin::BIexpf:
2284 case Builtin::BIexpl:
2285 case Builtin::BI__builtin_exp:
2286 case Builtin::BI__builtin_expf:
2287 case Builtin::BI__builtin_expf16:
2288 case Builtin::BI__builtin_expl:
2289 case Builtin::BI__builtin_expf128:
2290 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2291 Intrinsic::exp,
2292 Intrinsic::experimental_constrained_exp));
2293
2294 case Builtin::BIexp2:
2295 case Builtin::BIexp2f:
2296 case Builtin::BIexp2l:
2297 case Builtin::BI__builtin_exp2:
2298 case Builtin::BI__builtin_exp2f:
2299 case Builtin::BI__builtin_exp2f16:
2300 case Builtin::BI__builtin_exp2l:
2301 case Builtin::BI__builtin_exp2f128:
2302 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2303 Intrinsic::exp2,
2304 Intrinsic::experimental_constrained_exp2));
2305
2306 case Builtin::BIfabs:
2307 case Builtin::BIfabsf:
2308 case Builtin::BIfabsl:
2309 case Builtin::BI__builtin_fabs:
2310 case Builtin::BI__builtin_fabsf:
2311 case Builtin::BI__builtin_fabsf16:
2312 case Builtin::BI__builtin_fabsl:
2313 case Builtin::BI__builtin_fabsf128:
2314 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2315
2316 case Builtin::BIfloor:
2317 case Builtin::BIfloorf:
2318 case Builtin::BIfloorl:
2319 case Builtin::BI__builtin_floor:
2320 case Builtin::BI__builtin_floorf:
2321 case Builtin::BI__builtin_floorf16:
2322 case Builtin::BI__builtin_floorl:
2323 case Builtin::BI__builtin_floorf128:
2324 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2325 Intrinsic::floor,
2326 Intrinsic::experimental_constrained_floor));
2327
2328 case Builtin::BIfma:
2329 case Builtin::BIfmaf:
2330 case Builtin::BIfmal:
2331 case Builtin::BI__builtin_fma:
2332 case Builtin::BI__builtin_fmaf:
2333 case Builtin::BI__builtin_fmaf16:
2334 case Builtin::BI__builtin_fmal:
2335 case Builtin::BI__builtin_fmaf128:
2336 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2337 Intrinsic::fma,
2338 Intrinsic::experimental_constrained_fma));
2339
2340 case Builtin::BIfmax:
2341 case Builtin::BIfmaxf:
2342 case Builtin::BIfmaxl:
2343 case Builtin::BI__builtin_fmax:
2344 case Builtin::BI__builtin_fmaxf:
2345 case Builtin::BI__builtin_fmaxf16:
2346 case Builtin::BI__builtin_fmaxl:
2347 case Builtin::BI__builtin_fmaxf128:
2348 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2349 Intrinsic::maxnum,
2350 Intrinsic::experimental_constrained_maxnum));
2351
2352 case Builtin::BIfmin:
2353 case Builtin::BIfminf:
2354 case Builtin::BIfminl:
2355 case Builtin::BI__builtin_fmin:
2356 case Builtin::BI__builtin_fminf:
2357 case Builtin::BI__builtin_fminf16:
2358 case Builtin::BI__builtin_fminl:
2359 case Builtin::BI__builtin_fminf128:
2360 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2361 Intrinsic::minnum,
2362 Intrinsic::experimental_constrained_minnum));
2363
2364 // fmod() is a special-case. It maps to the frem instruction rather than an
2365 // LLVM intrinsic.
2366 case Builtin::BIfmod:
2367 case Builtin::BIfmodf:
2368 case Builtin::BIfmodl:
2369 case Builtin::BI__builtin_fmod:
2370 case Builtin::BI__builtin_fmodf:
2371 case Builtin::BI__builtin_fmodf16:
2372 case Builtin::BI__builtin_fmodl:
2373 case Builtin::BI__builtin_fmodf128: {
2374 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2375 Value *Arg1 = EmitScalarExpr(E->getArg(0));
2376 Value *Arg2 = EmitScalarExpr(E->getArg(1));
2377 return RValue::get(V: Builder.CreateFRem(L: Arg1, R: Arg2, Name: "fmod"));
2378 }
2379
2380 case Builtin::BIlog:
2381 case Builtin::BIlogf:
2382 case Builtin::BIlogl:
2383 case Builtin::BI__builtin_log:
2384 case Builtin::BI__builtin_logf:
2385 case Builtin::BI__builtin_logf16:
2386 case Builtin::BI__builtin_logl:
2387 case Builtin::BI__builtin_logf128:
2388 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2389 Intrinsic::log,
2390 Intrinsic::experimental_constrained_log));
2391
2392 case Builtin::BIlog10:
2393 case Builtin::BIlog10f:
2394 case Builtin::BIlog10l:
2395 case Builtin::BI__builtin_log10:
2396 case Builtin::BI__builtin_log10f:
2397 case Builtin::BI__builtin_log10f16:
2398 case Builtin::BI__builtin_log10l:
2399 case Builtin::BI__builtin_log10f128:
2400 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2401 Intrinsic::log10,
2402 Intrinsic::experimental_constrained_log10));
2403
2404 case Builtin::BIlog2:
2405 case Builtin::BIlog2f:
2406 case Builtin::BIlog2l:
2407 case Builtin::BI__builtin_log2:
2408 case Builtin::BI__builtin_log2f:
2409 case Builtin::BI__builtin_log2f16:
2410 case Builtin::BI__builtin_log2l:
2411 case Builtin::BI__builtin_log2f128:
2412 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2413 Intrinsic::log2,
2414 Intrinsic::experimental_constrained_log2));
2415
2416 case Builtin::BInearbyint:
2417 case Builtin::BInearbyintf:
2418 case Builtin::BInearbyintl:
2419 case Builtin::BI__builtin_nearbyint:
2420 case Builtin::BI__builtin_nearbyintf:
2421 case Builtin::BI__builtin_nearbyintl:
2422 case Builtin::BI__builtin_nearbyintf128:
2423 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2424 Intrinsic::nearbyint,
2425 Intrinsic::experimental_constrained_nearbyint));
2426
2427 case Builtin::BIpow:
2428 case Builtin::BIpowf:
2429 case Builtin::BIpowl:
2430 case Builtin::BI__builtin_pow:
2431 case Builtin::BI__builtin_powf:
2432 case Builtin::BI__builtin_powf16:
2433 case Builtin::BI__builtin_powl:
2434 case Builtin::BI__builtin_powf128:
2435 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2436 Intrinsic::pow,
2437 Intrinsic::experimental_constrained_pow));
2438
2439 case Builtin::BIrint:
2440 case Builtin::BIrintf:
2441 case Builtin::BIrintl:
2442 case Builtin::BI__builtin_rint:
2443 case Builtin::BI__builtin_rintf:
2444 case Builtin::BI__builtin_rintf16:
2445 case Builtin::BI__builtin_rintl:
2446 case Builtin::BI__builtin_rintf128:
2447 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2448 Intrinsic::rint,
2449 Intrinsic::experimental_constrained_rint));
2450
2451 case Builtin::BIround:
2452 case Builtin::BIroundf:
2453 case Builtin::BIroundl:
2454 case Builtin::BI__builtin_round:
2455 case Builtin::BI__builtin_roundf:
2456 case Builtin::BI__builtin_roundf16:
2457 case Builtin::BI__builtin_roundl:
2458 case Builtin::BI__builtin_roundf128:
2459 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2460 Intrinsic::round,
2461 Intrinsic::experimental_constrained_round));
2462
2463 case Builtin::BIroundeven:
2464 case Builtin::BIroundevenf:
2465 case Builtin::BIroundevenl:
2466 case Builtin::BI__builtin_roundeven:
2467 case Builtin::BI__builtin_roundevenf:
2468 case Builtin::BI__builtin_roundevenf16:
2469 case Builtin::BI__builtin_roundevenl:
2470 case Builtin::BI__builtin_roundevenf128:
2471 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2472 Intrinsic::roundeven,
2473 Intrinsic::experimental_constrained_roundeven));
2474
2475 case Builtin::BIsin:
2476 case Builtin::BIsinf:
2477 case Builtin::BIsinl:
2478 case Builtin::BI__builtin_sin:
2479 case Builtin::BI__builtin_sinf:
2480 case Builtin::BI__builtin_sinf16:
2481 case Builtin::BI__builtin_sinl:
2482 case Builtin::BI__builtin_sinf128:
2483 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2484 Intrinsic::sin,
2485 Intrinsic::experimental_constrained_sin));
2486
2487 case Builtin::BIsqrt:
2488 case Builtin::BIsqrtf:
2489 case Builtin::BIsqrtl:
2490 case Builtin::BI__builtin_sqrt:
2491 case Builtin::BI__builtin_sqrtf:
2492 case Builtin::BI__builtin_sqrtf16:
2493 case Builtin::BI__builtin_sqrtl:
2494 case Builtin::BI__builtin_sqrtf128:
2495 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2496 Intrinsic::sqrt,
2497 Intrinsic::experimental_constrained_sqrt));
2498
2499 case Builtin::BItrunc:
2500 case Builtin::BItruncf:
2501 case Builtin::BItruncl:
2502 case Builtin::BI__builtin_trunc:
2503 case Builtin::BI__builtin_truncf:
2504 case Builtin::BI__builtin_truncf16:
2505 case Builtin::BI__builtin_truncl:
2506 case Builtin::BI__builtin_truncf128:
2507 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2508 Intrinsic::trunc,
2509 Intrinsic::experimental_constrained_trunc));
2510
2511 case Builtin::BIlround:
2512 case Builtin::BIlroundf:
2513 case Builtin::BIlroundl:
2514 case Builtin::BI__builtin_lround:
2515 case Builtin::BI__builtin_lroundf:
2516 case Builtin::BI__builtin_lroundl:
2517 case Builtin::BI__builtin_lroundf128:
2518 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2519 *this, E, Intrinsic::lround,
2520 Intrinsic::experimental_constrained_lround));
2521
2522 case Builtin::BIllround:
2523 case Builtin::BIllroundf:
2524 case Builtin::BIllroundl:
2525 case Builtin::BI__builtin_llround:
2526 case Builtin::BI__builtin_llroundf:
2527 case Builtin::BI__builtin_llroundl:
2528 case Builtin::BI__builtin_llroundf128:
2529 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2530 *this, E, Intrinsic::llround,
2531 Intrinsic::experimental_constrained_llround));
2532
2533 case Builtin::BIlrint:
2534 case Builtin::BIlrintf:
2535 case Builtin::BIlrintl:
2536 case Builtin::BI__builtin_lrint:
2537 case Builtin::BI__builtin_lrintf:
2538 case Builtin::BI__builtin_lrintl:
2539 case Builtin::BI__builtin_lrintf128:
2540 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2541 *this, E, Intrinsic::lrint,
2542 Intrinsic::experimental_constrained_lrint));
2543
2544 case Builtin::BIllrint:
2545 case Builtin::BIllrintf:
2546 case Builtin::BIllrintl:
2547 case Builtin::BI__builtin_llrint:
2548 case Builtin::BI__builtin_llrintf:
2549 case Builtin::BI__builtin_llrintl:
2550 case Builtin::BI__builtin_llrintf128:
2551 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2552 *this, E, Intrinsic::llrint,
2553 Intrinsic::experimental_constrained_llrint));
2554
2555 default:
2556 break;
2557 }
2558 }
2559
2560 switch (BuiltinIDIfNoAsmLabel) {
2561 default: break;
2562 case Builtin::BI__builtin___CFStringMakeConstantString:
2563 case Builtin::BI__builtin___NSStringMakeConstantString:
2564 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2565 case Builtin::BI__builtin_stdarg_start:
2566 case Builtin::BI__builtin_va_start:
2567 case Builtin::BI__va_start:
2568 case Builtin::BI__builtin_va_end:
2569 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2570 ? EmitScalarExpr(E->getArg(0))
2571 : EmitVAListRef(E->getArg(0)).getPointer(),
2572 BuiltinID != Builtin::BI__builtin_va_end);
2573 return RValue::get(V: nullptr);
2574 case Builtin::BI__builtin_va_copy: {
2575 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2576 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2577
2578 llvm::Type *Type = Int8PtrTy;
2579
2580 DstPtr = Builder.CreateBitCast(V: DstPtr, DestTy: Type);
2581 SrcPtr = Builder.CreateBitCast(V: SrcPtr, DestTy: Type);
2582 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), {DstPtr, SrcPtr});
2583 return RValue::get(V: nullptr);
2584 }
2585 case Builtin::BI__builtin_abs:
2586 case Builtin::BI__builtin_labs:
2587 case Builtin::BI__builtin_llabs: {
2588 // X < 0 ? -X : X
2589 // The negation has 'nsw' because abs of INT_MIN is undefined.
2590 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2591 Value *NegOp = Builder.CreateNSWNeg(V: ArgValue, Name: "neg");
2592 Constant *Zero = llvm::Constant::getNullValue(Ty: ArgValue->getType());
2593 Value *CmpResult = Builder.CreateICmpSLT(LHS: ArgValue, RHS: Zero, Name: "abscond");
2594 Value *Result = Builder.CreateSelect(C: CmpResult, True: NegOp, False: ArgValue, Name: "abs");
2595 return RValue::get(V: Result);
2596 }
2597 case Builtin::BI__builtin_complex: {
2598 Value *Real = EmitScalarExpr(E->getArg(0));
2599 Value *Imag = EmitScalarExpr(E->getArg(1));
2600 return RValue::getComplex(C: {Real, Imag});
2601 }
2602 case Builtin::BI__builtin_conj:
2603 case Builtin::BI__builtin_conjf:
2604 case Builtin::BI__builtin_conjl:
2605 case Builtin::BIconj:
2606 case Builtin::BIconjf:
2607 case Builtin::BIconjl: {
2608 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2609 Value *Real = ComplexVal.first;
2610 Value *Imag = ComplexVal.second;
2611 Imag = Builder.CreateFNeg(V: Imag, Name: "neg");
2612 return RValue::getComplex(C: std::make_pair(x&: Real, y&: Imag));
2613 }
2614 case Builtin::BI__builtin_creal:
2615 case Builtin::BI__builtin_crealf:
2616 case Builtin::BI__builtin_creall:
2617 case Builtin::BIcreal:
2618 case Builtin::BIcrealf:
2619 case Builtin::BIcreall: {
2620 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2621 return RValue::get(V: ComplexVal.first);
2622 }
2623
2624 case Builtin::BI__builtin_preserve_access_index: {
2625 // Only enabled preserved access index region when debuginfo
2626 // is available as debuginfo is needed to preserve user-level
2627 // access pattern.
2628 if (!getDebugInfo()) {
2629 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2630 return RValue::get(EmitScalarExpr(E->getArg(0)));
2631 }
2632
2633 // Nested builtin_preserve_access_index() not supported
2634 if (IsInPreservedAIRegion) {
2635 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2636 return RValue::get(EmitScalarExpr(E->getArg(0)));
2637 }
2638
2639 IsInPreservedAIRegion = true;
2640 Value *Res = EmitScalarExpr(E->getArg(0));
2641 IsInPreservedAIRegion = false;
2642 return RValue::get(V: Res);
2643 }
2644
2645 case Builtin::BI__builtin_cimag:
2646 case Builtin::BI__builtin_cimagf:
2647 case Builtin::BI__builtin_cimagl:
2648 case Builtin::BIcimag:
2649 case Builtin::BIcimagf:
2650 case Builtin::BIcimagl: {
2651 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2652 return RValue::get(V: ComplexVal.second);
2653 }
2654
2655 case Builtin::BI__builtin_clrsb:
2656 case Builtin::BI__builtin_clrsbl:
2657 case Builtin::BI__builtin_clrsbll: {
2658 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2659 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2660
2661 llvm::Type *ArgType = ArgValue->getType();
2662 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2663
2664 llvm::Type *ResultType = ConvertType(E->getType());
2665 Value *Zero = llvm::Constant::getNullValue(Ty: ArgType);
2666 Value *IsNeg = Builder.CreateICmpSLT(LHS: ArgValue, RHS: Zero, Name: "isneg");
2667 Value *Inverse = Builder.CreateNot(V: ArgValue, Name: "not");
2668 Value *Tmp = Builder.CreateSelect(C: IsNeg, True: Inverse, False: ArgValue);
2669 Value *Ctlz = Builder.CreateCall(Callee: F, Args: {Tmp, Builder.getFalse()});
2670 Value *Result = Builder.CreateSub(LHS: Ctlz, RHS: llvm::ConstantInt::get(Ty: ArgType, V: 1));
2671 Result = Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/true,
2672 Name: "cast");
2673 return RValue::get(V: Result);
2674 }
2675 case Builtin::BI__builtin_ctzs:
2676 case Builtin::BI__builtin_ctz:
2677 case Builtin::BI__builtin_ctzl:
2678 case Builtin::BI__builtin_ctzll: {
2679 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2680
2681 llvm::Type *ArgType = ArgValue->getType();
2682 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2683
2684 llvm::Type *ResultType = ConvertType(E->getType());
2685 Value *ZeroUndef = Builder.getInt1(V: getTarget().isCLZForZeroUndef());
2686 Value *Result = Builder.CreateCall(Callee: F, Args: {ArgValue, ZeroUndef});
2687 if (Result->getType() != ResultType)
2688 Result = Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/true,
2689 Name: "cast");
2690 return RValue::get(V: Result);
2691 }
2692 case Builtin::BI__builtin_clzs:
2693 case Builtin::BI__builtin_clz:
2694 case Builtin::BI__builtin_clzl:
2695 case Builtin::BI__builtin_clzll: {
2696 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2697
2698 llvm::Type *ArgType = ArgValue->getType();
2699 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2700
2701 llvm::Type *ResultType = ConvertType(E->getType());
2702 Value *ZeroUndef = Builder.getInt1(V: getTarget().isCLZForZeroUndef());
2703 Value *Result = Builder.CreateCall(Callee: F, Args: {ArgValue, ZeroUndef});
2704 if (Result->getType() != ResultType)
2705 Result = Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/true,
2706 Name: "cast");
2707 return RValue::get(V: Result);
2708 }
2709 case Builtin::BI__builtin_ffs:
2710 case Builtin::BI__builtin_ffsl:
2711 case Builtin::BI__builtin_ffsll: {
2712 // ffs(x) -> x ? cttz(x) + 1 : 0
2713 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2714
2715 llvm::Type *ArgType = ArgValue->getType();
2716 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2717
2718 llvm::Type *ResultType = ConvertType(E->getType());
2719 Value *Tmp =
2720 Builder.CreateAdd(LHS: Builder.CreateCall(Callee: F, Args: {ArgValue, Builder.getTrue()}),
2721 RHS: llvm::ConstantInt::get(Ty: ArgType, V: 1));
2722 Value *Zero = llvm::Constant::getNullValue(Ty: ArgType);
2723 Value *IsZero = Builder.CreateICmpEQ(LHS: ArgValue, RHS: Zero, Name: "iszero");
2724 Value *Result = Builder.CreateSelect(C: IsZero, True: Zero, False: Tmp, Name: "ffs");
2725 if (Result->getType() != ResultType)
2726 Result = Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/true,
2727 Name: "cast");
2728 return RValue::get(V: Result);
2729 }
2730 case Builtin::BI__builtin_parity:
2731 case Builtin::BI__builtin_parityl:
2732 case Builtin::BI__builtin_parityll: {
2733 // parity(x) -> ctpop(x) & 1
2734 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2735
2736 llvm::Type *ArgType = ArgValue->getType();
2737 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2738
2739 llvm::Type *ResultType = ConvertType(E->getType());
2740 Value *Tmp =