1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-module state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenModule.h"
14#include "ABIInfo.h"
15#include "CGBlocks.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGCall.h"
19#include "CGDebugInfo.h"
20#include "CGHLSLRuntime.h"
21#include "CGObjCRuntime.h"
22#include "CGOpenCLRuntime.h"
23#include "CGOpenMPRuntime.h"
24#include "CGOpenMPRuntimeGPU.h"
25#include "CodeGenFunction.h"
26#include "CodeGenPGO.h"
27#include "ConstantEmitter.h"
28#include "CoverageMappingGen.h"
29#include "TargetInfo.h"
30#include "clang/AST/ASTContext.h"
31#include "clang/AST/ASTLambda.h"
32#include "clang/AST/CharUnits.h"
33#include "clang/AST/Decl.h"
34#include "clang/AST/DeclCXX.h"
35#include "clang/AST/DeclObjC.h"
36#include "clang/AST/DeclTemplate.h"
37#include "clang/AST/Mangle.h"
38#include "clang/AST/RecursiveASTVisitor.h"
39#include "clang/AST/StmtVisitor.h"
40#include "clang/Basic/Builtins.h"
41#include "clang/Basic/CharInfo.h"
42#include "clang/Basic/CodeGenOptions.h"
43#include "clang/Basic/Diagnostic.h"
44#include "clang/Basic/FileManager.h"
45#include "clang/Basic/Module.h"
46#include "clang/Basic/SourceManager.h"
47#include "clang/Basic/TargetInfo.h"
48#include "clang/Basic/Version.h"
49#include "clang/CodeGen/BackendUtil.h"
50#include "clang/CodeGen/ConstantInitBuilder.h"
51#include "clang/Frontend/FrontendDiagnostic.h"
52#include "llvm/ADT/STLExtras.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/ADT/StringSwitch.h"
55#include "llvm/Analysis/TargetLibraryInfo.h"
56#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
57#include "llvm/IR/AttributeMask.h"
58#include "llvm/IR/CallingConv.h"
59#include "llvm/IR/DataLayout.h"
60#include "llvm/IR/Intrinsics.h"
61#include "llvm/IR/LLVMContext.h"
62#include "llvm/IR/Module.h"
63#include "llvm/IR/ProfileSummary.h"
64#include "llvm/ProfileData/InstrProfReader.h"
65#include "llvm/ProfileData/SampleProf.h"
66#include "llvm/Support/CRC.h"
67#include "llvm/Support/CodeGen.h"
68#include "llvm/Support/CommandLine.h"
69#include "llvm/Support/ConvertUTF.h"
70#include "llvm/Support/ErrorHandling.h"
71#include "llvm/Support/TimeProfiler.h"
72#include "llvm/Support/xxhash.h"
73#include "llvm/TargetParser/RISCVISAInfo.h"
74#include "llvm/TargetParser/Triple.h"
75#include "llvm/TargetParser/X86TargetParser.h"
76#include <optional>
77
78using namespace clang;
79using namespace CodeGen;
80
81static llvm::cl::opt<bool> LimitedCoverage(
82 "limited-coverage-experimental", llvm::cl::Hidden,
83 llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
84
85static const char AnnotationSection[] = "llvm.metadata";
86
87static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
88 switch (CGM.getContext().getCXXABIKind()) {
89 case TargetCXXABI::AppleARM64:
90 case TargetCXXABI::Fuchsia:
91 case TargetCXXABI::GenericAArch64:
92 case TargetCXXABI::GenericARM:
93 case TargetCXXABI::iOS:
94 case TargetCXXABI::WatchOS:
95 case TargetCXXABI::GenericMIPS:
96 case TargetCXXABI::GenericItanium:
97 case TargetCXXABI::WebAssembly:
98 case TargetCXXABI::XL:
99 return CreateItaniumCXXABI(CGM);
100 case TargetCXXABI::Microsoft:
101 return CreateMicrosoftCXXABI(CGM);
102 }
103
104 llvm_unreachable("invalid C++ ABI kind");
105}
106
107static std::unique_ptr<TargetCodeGenInfo>
108createTargetCodeGenInfo(CodeGenModule &CGM) {
109 const TargetInfo &Target = CGM.getTarget();
110 const llvm::Triple &Triple = Target.getTriple();
111 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
112
113 switch (Triple.getArch()) {
114 default:
115 return createDefaultTargetCodeGenInfo(CGM);
116
117 case llvm::Triple::le32:
118 return createPNaClTargetCodeGenInfo(CGM);
119 case llvm::Triple::m68k:
120 return createM68kTargetCodeGenInfo(CGM);
121 case llvm::Triple::mips:
122 case llvm::Triple::mipsel:
123 if (Triple.getOS() == llvm::Triple::NaCl)
124 return createPNaClTargetCodeGenInfo(CGM);
125 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
126
127 case llvm::Triple::mips64:
128 case llvm::Triple::mips64el:
129 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
130
131 case llvm::Triple::avr: {
132 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
133 // on avrtiny. For passing return value, R18~R25 are used on avr, and
134 // R22~R25 are used on avrtiny.
135 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
136 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
137 return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
138 }
139
140 case llvm::Triple::aarch64:
141 case llvm::Triple::aarch64_32:
142 case llvm::Triple::aarch64_be: {
143 AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
144 if (Target.getABI() == "darwinpcs")
145 Kind = AArch64ABIKind::DarwinPCS;
146 else if (Triple.isOSWindows())
147 return createWindowsAArch64TargetCodeGenInfo(CGM, K: AArch64ABIKind::Win64);
148 else if (Target.getABI() == "aapcs-soft")
149 Kind = AArch64ABIKind::AAPCSSoft;
150
151 return createAArch64TargetCodeGenInfo(CGM, Kind);
152 }
153
154 case llvm::Triple::wasm32:
155 case llvm::Triple::wasm64: {
156 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
157 if (Target.getABI() == "experimental-mv")
158 Kind = WebAssemblyABIKind::ExperimentalMV;
159 return createWebAssemblyTargetCodeGenInfo(CGM, K: Kind);
160 }
161
162 case llvm::Triple::arm:
163 case llvm::Triple::armeb:
164 case llvm::Triple::thumb:
165 case llvm::Triple::thumbeb: {
166 if (Triple.getOS() == llvm::Triple::Win32)
167 return createWindowsARMTargetCodeGenInfo(CGM, K: ARMABIKind::AAPCS_VFP);
168
169 ARMABIKind Kind = ARMABIKind::AAPCS;
170 StringRef ABIStr = Target.getABI();
171 if (ABIStr == "apcs-gnu")
172 Kind = ARMABIKind::APCS;
173 else if (ABIStr == "aapcs16")
174 Kind = ARMABIKind::AAPCS16_VFP;
175 else if (CodeGenOpts.FloatABI == "hard" ||
176 (CodeGenOpts.FloatABI != "soft" &&
177 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
178 Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
179 Triple.getEnvironment() == llvm::Triple::EABIHF)))
180 Kind = ARMABIKind::AAPCS_VFP;
181
182 return createARMTargetCodeGenInfo(CGM, Kind);
183 }
184
185 case llvm::Triple::ppc: {
186 if (Triple.isOSAIX())
187 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
188
189 bool IsSoftFloat =
190 CodeGenOpts.FloatABI == "soft" || Target.hasFeature(Feature: "spe");
191 return createPPC32TargetCodeGenInfo(CGM, SoftFloatABI: IsSoftFloat);
192 }
193 case llvm::Triple::ppcle: {
194 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
195 return createPPC32TargetCodeGenInfo(CGM, SoftFloatABI: IsSoftFloat);
196 }
197 case llvm::Triple::ppc64:
198 if (Triple.isOSAIX())
199 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
200
201 if (Triple.isOSBinFormatELF()) {
202 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
203 if (Target.getABI() == "elfv2")
204 Kind = PPC64_SVR4_ABIKind::ELFv2;
205 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
206
207 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, SoftFloatABI: IsSoftFloat);
208 }
209 return createPPC64TargetCodeGenInfo(CGM);
210 case llvm::Triple::ppc64le: {
211 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
212 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
213 if (Target.getABI() == "elfv1")
214 Kind = PPC64_SVR4_ABIKind::ELFv1;
215 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
216
217 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, SoftFloatABI: IsSoftFloat);
218 }
219
220 case llvm::Triple::nvptx:
221 case llvm::Triple::nvptx64:
222 return createNVPTXTargetCodeGenInfo(CGM);
223
224 case llvm::Triple::msp430:
225 return createMSP430TargetCodeGenInfo(CGM);
226
227 case llvm::Triple::riscv32:
228 case llvm::Triple::riscv64: {
229 StringRef ABIStr = Target.getABI();
230 unsigned XLen = Target.getPointerWidth(AddrSpace: LangAS::Default);
231 unsigned ABIFLen = 0;
232 if (ABIStr.ends_with(Suffix: "f"))
233 ABIFLen = 32;
234 else if (ABIStr.ends_with(Suffix: "d"))
235 ABIFLen = 64;
236 bool EABI = ABIStr.ends_with(Suffix: "e");
237 return createRISCVTargetCodeGenInfo(CGM, XLen, FLen: ABIFLen, EABI);
238 }
239
240 case llvm::Triple::systemz: {
241 bool SoftFloat = CodeGenOpts.FloatABI == "soft";
242 bool HasVector = !SoftFloat && Target.getABI() == "vector";
243 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloatABI: SoftFloat);
244 }
245
246 case llvm::Triple::tce:
247 case llvm::Triple::tcele:
248 return createTCETargetCodeGenInfo(CGM);
249
250 case llvm::Triple::x86: {
251 bool IsDarwinVectorABI = Triple.isOSDarwin();
252 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
253
254 if (Triple.getOS() == llvm::Triple::Win32) {
255 return createWinX86_32TargetCodeGenInfo(
256 CGM, DarwinVectorABI: IsDarwinVectorABI, Win32StructABI: IsWin32FloatStructABI,
257 NumRegisterParameters: CodeGenOpts.NumRegisterParameters);
258 }
259 return createX86_32TargetCodeGenInfo(
260 CGM, DarwinVectorABI: IsDarwinVectorABI, Win32StructABI: IsWin32FloatStructABI,
261 NumRegisterParameters: CodeGenOpts.NumRegisterParameters, SoftFloatABI: CodeGenOpts.FloatABI == "soft");
262 }
263
264 case llvm::Triple::x86_64: {
265 StringRef ABI = Target.getABI();
266 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
267 : ABI == "avx" ? X86AVXABILevel::AVX
268 : X86AVXABILevel::None);
269
270 switch (Triple.getOS()) {
271 case llvm::Triple::Win32:
272 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
273 default:
274 return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
275 }
276 }
277 case llvm::Triple::hexagon:
278 return createHexagonTargetCodeGenInfo(CGM);
279 case llvm::Triple::lanai:
280 return createLanaiTargetCodeGenInfo(CGM);
281 case llvm::Triple::r600:
282 return createAMDGPUTargetCodeGenInfo(CGM);
283 case llvm::Triple::amdgcn:
284 return createAMDGPUTargetCodeGenInfo(CGM);
285 case llvm::Triple::sparc:
286 return createSparcV8TargetCodeGenInfo(CGM);
287 case llvm::Triple::sparcv9:
288 return createSparcV9TargetCodeGenInfo(CGM);
289 case llvm::Triple::xcore:
290 return createXCoreTargetCodeGenInfo(CGM);
291 case llvm::Triple::arc:
292 return createARCTargetCodeGenInfo(CGM);
293 case llvm::Triple::spir:
294 case llvm::Triple::spir64:
295 return createCommonSPIRTargetCodeGenInfo(CGM);
296 case llvm::Triple::spirv32:
297 case llvm::Triple::spirv64:
298 return createSPIRVTargetCodeGenInfo(CGM);
299 case llvm::Triple::ve:
300 return createVETargetCodeGenInfo(CGM);
301 case llvm::Triple::csky: {
302 bool IsSoftFloat = !Target.hasFeature(Feature: "hard-float-abi");
303 bool hasFP64 =
304 Target.hasFeature(Feature: "fpuv2_df") || Target.hasFeature(Feature: "fpuv3_df");
305 return createCSKYTargetCodeGenInfo(CGM, FLen: IsSoftFloat ? 0
306 : hasFP64 ? 64
307 : 32);
308 }
309 case llvm::Triple::bpfeb:
310 case llvm::Triple::bpfel:
311 return createBPFTargetCodeGenInfo(CGM);
312 case llvm::Triple::loongarch32:
313 case llvm::Triple::loongarch64: {
314 StringRef ABIStr = Target.getABI();
315 unsigned ABIFRLen = 0;
316 if (ABIStr.ends_with(Suffix: "f"))
317 ABIFRLen = 32;
318 else if (ABIStr.ends_with(Suffix: "d"))
319 ABIFRLen = 64;
320 return createLoongArchTargetCodeGenInfo(
321 CGM, GRLen: Target.getPointerWidth(AddrSpace: LangAS::Default), FLen: ABIFRLen);
322 }
323 }
324}
325
326const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
327 if (!TheTargetCodeGenInfo)
328 TheTargetCodeGenInfo = createTargetCodeGenInfo(CGM&: *this);
329 return *TheTargetCodeGenInfo;
330}
331
332CodeGenModule::CodeGenModule(ASTContext &C,
333 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
334 const HeaderSearchOptions &HSO,
335 const PreprocessorOptions &PPO,
336 const CodeGenOptions &CGO, llvm::Module &M,
337 DiagnosticsEngine &diags,
338 CoverageSourceInfo *CoverageInfo)
339 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
340 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
341 Target(C.getTargetInfo()), ABI(createCXXABI(CGM&: *this)),
342 VMContext(M.getContext()), Types(*this), VTables(*this),
343 SanitizerMD(new SanitizerMetadata(*this)) {
344
345 // Initialize the type cache.
346 llvm::LLVMContext &LLVMContext = M.getContext();
347 VoidTy = llvm::Type::getVoidTy(C&: LLVMContext);
348 Int8Ty = llvm::Type::getInt8Ty(C&: LLVMContext);
349 Int16Ty = llvm::Type::getInt16Ty(C&: LLVMContext);
350 Int32Ty = llvm::Type::getInt32Ty(C&: LLVMContext);
351 Int64Ty = llvm::Type::getInt64Ty(C&: LLVMContext);
352 HalfTy = llvm::Type::getHalfTy(C&: LLVMContext);
353 BFloatTy = llvm::Type::getBFloatTy(C&: LLVMContext);
354 FloatTy = llvm::Type::getFloatTy(C&: LLVMContext);
355 DoubleTy = llvm::Type::getDoubleTy(C&: LLVMContext);
356 PointerWidthInBits = C.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default);
357 PointerAlignInBytes =
358 C.toCharUnitsFromBits(BitSize: C.getTargetInfo().getPointerAlign(AddrSpace: LangAS::Default))
359 .getQuantity();
360 SizeSizeInBytes =
361 C.toCharUnitsFromBits(BitSize: C.getTargetInfo().getMaxPointerWidth()).getQuantity();
362 IntAlignInBytes =
363 C.toCharUnitsFromBits(BitSize: C.getTargetInfo().getIntAlign()).getQuantity();
364 CharTy =
365 llvm::IntegerType::get(C&: LLVMContext, NumBits: C.getTargetInfo().getCharWidth());
366 IntTy = llvm::IntegerType::get(C&: LLVMContext, NumBits: C.getTargetInfo().getIntWidth());
367 IntPtrTy = llvm::IntegerType::get(C&: LLVMContext,
368 NumBits: C.getTargetInfo().getMaxPointerWidth());
369 Int8PtrTy = llvm::PointerType::get(C&: LLVMContext, AddressSpace: 0);
370 const llvm::DataLayout &DL = M.getDataLayout();
371 AllocaInt8PtrTy =
372 llvm::PointerType::get(C&: LLVMContext, AddressSpace: DL.getAllocaAddrSpace());
373 GlobalsInt8PtrTy =
374 llvm::PointerType::get(C&: LLVMContext, AddressSpace: DL.getDefaultGlobalsAddressSpace());
375 ConstGlobalsPtrTy = llvm::PointerType::get(
376 C&: LLVMContext, AddressSpace: C.getTargetAddressSpace(AS: GetGlobalConstantAddressSpace()));
377 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
378
379 // Build C++20 Module initializers.
380 // TODO: Add Microsoft here once we know the mangling required for the
381 // initializers.
382 CXX20ModuleInits =
383 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
384 ItaniumMangleContext::MK_Itanium;
385
386 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
387
388 if (LangOpts.ObjC)
389 createObjCRuntime();
390 if (LangOpts.OpenCL)
391 createOpenCLRuntime();
392 if (LangOpts.OpenMP)
393 createOpenMPRuntime();
394 if (LangOpts.CUDA)
395 createCUDARuntime();
396 if (LangOpts.HLSL)
397 createHLSLRuntime();
398
399 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
400 if (LangOpts.Sanitize.has(K: SanitizerKind::Thread) ||
401 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
402 TBAA.reset(p: new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
403 getLangOpts(), getCXXABI().getMangleContext()));
404
405 // If debug info or coverage generation is enabled, create the CGDebugInfo
406 // object.
407 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
408 CodeGenOpts.CoverageNotesFile.size() ||
409 CodeGenOpts.CoverageDataFile.size())
410 DebugInfo.reset(p: new CGDebugInfo(*this));
411
412 Block.GlobalUniqueCount = 0;
413
414 if (C.getLangOpts().ObjC)
415 ObjCData.reset(p: new ObjCEntrypoints());
416
417 if (CodeGenOpts.hasProfileClangUse()) {
418 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
419 Path: CodeGenOpts.ProfileInstrumentUsePath, FS&: *FS,
420 RemappingPath: CodeGenOpts.ProfileRemappingFile);
421 // We're checking for profile read errors in CompilerInvocation, so if
422 // there was an error it should've already been caught. If it hasn't been
423 // somehow, trip an assertion.
424 assert(ReaderOrErr);
425 PGOReader = std::move(ReaderOrErr.get());
426 }
427
428 // If coverage mapping generation is enabled, create the
429 // CoverageMappingModuleGen object.
430 if (CodeGenOpts.CoverageMapping)
431 CoverageMapping.reset(p: new CoverageMappingModuleGen(*this, *CoverageInfo));
432
433 // Generate the module name hash here if needed.
434 if (CodeGenOpts.UniqueInternalLinkageNames &&
435 !getModule().getSourceFileName().empty()) {
436 std::string Path = getModule().getSourceFileName();
437 // Check if a path substitution is needed from the MacroPrefixMap.
438 for (const auto &Entry : LangOpts.MacroPrefixMap)
439 if (Path.rfind(str: Entry.first, pos: 0) != std::string::npos) {
440 Path = Entry.second + Path.substr(pos: Entry.first.size());
441 break;
442 }
443 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(FName: Path);
444 }
445}
446
447CodeGenModule::~CodeGenModule() {}
448
449void CodeGenModule::createObjCRuntime() {
450 // This is just isGNUFamily(), but we want to force implementors of
451 // new ABIs to decide how best to do this.
452 switch (LangOpts.ObjCRuntime.getKind()) {
453 case ObjCRuntime::GNUstep:
454 case ObjCRuntime::GCC:
455 case ObjCRuntime::ObjFW:
456 ObjCRuntime.reset(p: CreateGNUObjCRuntime(CGM&: *this));
457 return;
458
459 case ObjCRuntime::FragileMacOSX:
460 case ObjCRuntime::MacOSX:
461 case ObjCRuntime::iOS:
462 case ObjCRuntime::WatchOS:
463 ObjCRuntime.reset(p: CreateMacObjCRuntime(CGM&: *this));
464 return;
465 }
466 llvm_unreachable("bad runtime kind");
467}
468
469void CodeGenModule::createOpenCLRuntime() {
470 OpenCLRuntime.reset(p: new CGOpenCLRuntime(*this));
471}
472
473void CodeGenModule::createOpenMPRuntime() {
474 // Select a specialized code generation class based on the target, if any.
475 // If it does not exist use the default implementation.
476 switch (getTriple().getArch()) {
477 case llvm::Triple::nvptx:
478 case llvm::Triple::nvptx64:
479 case llvm::Triple::amdgcn:
480 assert(getLangOpts().OpenMPIsTargetDevice &&
481 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
482 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
483 break;
484 default:
485 if (LangOpts.OpenMPSimd)
486 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
487 else
488 OpenMPRuntime.reset(p: new CGOpenMPRuntime(*this));
489 break;
490 }
491}
492
493void CodeGenModule::createCUDARuntime() {
494 CUDARuntime.reset(p: CreateNVCUDARuntime(CGM&: *this));
495}
496
497void CodeGenModule::createHLSLRuntime() {
498 HLSLRuntime.reset(p: new CGHLSLRuntime(*this));
499}
500
501void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
502 Replacements[Name] = C;
503}
504
505void CodeGenModule::applyReplacements() {
506 for (auto &I : Replacements) {
507 StringRef MangledName = I.first;
508 llvm::Constant *Replacement = I.second;
509 llvm::GlobalValue *Entry = GetGlobalValue(Ref: MangledName);
510 if (!Entry)
511 continue;
512 auto *OldF = cast<llvm::Function>(Val: Entry);
513 auto *NewF = dyn_cast<llvm::Function>(Val: Replacement);
514 if (!NewF) {
515 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Val: Replacement)) {
516 NewF = dyn_cast<llvm::Function>(Val: Alias->getAliasee());
517 } else {
518 auto *CE = cast<llvm::ConstantExpr>(Val: Replacement);
519 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
520 CE->getOpcode() == llvm::Instruction::GetElementPtr);
521 NewF = dyn_cast<llvm::Function>(Val: CE->getOperand(i_nocapture: 0));
522 }
523 }
524
525 // Replace old with new, but keep the old order.
526 OldF->replaceAllUsesWith(V: Replacement);
527 if (NewF) {
528 NewF->removeFromParent();
529 OldF->getParent()->getFunctionList().insertAfter(where: OldF->getIterator(),
530 New: NewF);
531 }
532 OldF->eraseFromParent();
533 }
534}
535
536void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
537 GlobalValReplacements.push_back(Elt: std::make_pair(x&: GV, y&: C));
538}
539
540void CodeGenModule::applyGlobalValReplacements() {
541 for (auto &I : GlobalValReplacements) {
542 llvm::GlobalValue *GV = I.first;
543 llvm::Constant *C = I.second;
544
545 GV->replaceAllUsesWith(V: C);
546 GV->eraseFromParent();
547 }
548}
549
550// This is only used in aliases that we created and we know they have a
551// linear structure.
552static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
553 const llvm::Constant *C;
554 if (auto *GA = dyn_cast<llvm::GlobalAlias>(Val: GV))
555 C = GA->getAliasee();
556 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(Val: GV))
557 C = GI->getResolver();
558 else
559 return GV;
560
561 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(Val: C->stripPointerCasts());
562 if (!AliaseeGV)
563 return nullptr;
564
565 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
566 if (FinalGV == GV)
567 return nullptr;
568
569 return FinalGV;
570}
571
572static bool checkAliasedGlobal(
573 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
574 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
575 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
576 SourceRange AliasRange) {
577 GV = getAliasedGlobal(GV: Alias);
578 if (!GV) {
579 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
580 return false;
581 }
582
583 if (GV->hasCommonLinkage()) {
584 const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
585 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
586 Diags.Report(Location, diag::err_alias_to_common);
587 return false;
588 }
589 }
590
591 if (GV->isDeclaration()) {
592 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
593 Diags.Report(Location, diag::note_alias_requires_mangled_name)
594 << IsIFunc << IsIFunc;
595 // Provide a note if the given function is not found and exists as a
596 // mangled name.
597 for (const auto &[Decl, Name] : MangledDeclNames) {
598 if (const auto *ND = dyn_cast<NamedDecl>(Val: Decl.getDecl())) {
599 if (ND->getName() == GV->getName()) {
600 Diags.Report(Location, diag::note_alias_mangled_name_alternative)
601 << Name
602 << FixItHint::CreateReplacement(
603 AliasRange,
604 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
605 .str());
606 }
607 }
608 }
609 return false;
610 }
611
612 if (IsIFunc) {
613 // Check resolver function type.
614 const auto *F = dyn_cast<llvm::Function>(Val: GV);
615 if (!F) {
616 Diags.Report(Location, diag::err_alias_to_undefined)
617 << IsIFunc << IsIFunc;
618 return false;
619 }
620
621 llvm::FunctionType *FTy = F->getFunctionType();
622 if (!FTy->getReturnType()->isPointerTy()) {
623 Diags.Report(Location, diag::err_ifunc_resolver_return);
624 return false;
625 }
626 }
627
628 return true;
629}
630
631// Emit a warning if toc-data attribute is requested for global variables that
632// have aliases and remove the toc-data attribute.
633static void checkAliasForTocData(llvm::GlobalVariable *GVar,
634 const CodeGenOptions &CodeGenOpts,
635 DiagnosticsEngine &Diags,
636 SourceLocation Location) {
637 if (GVar->hasAttribute(Kind: "toc-data")) {
638 auto GVId = GVar->getName();
639 // Is this a global variable specified by the user as local?
640 if ((llvm::binary_search(Range: CodeGenOpts.TocDataVarsUserSpecified, Value&: GVId))) {
641 Diags.Report(Location, diag::warn_toc_unsupported_type)
642 << GVId << "the variable has an alias";
643 }
644 llvm::AttributeSet CurrAttributes = GVar->getAttributes();
645 llvm::AttributeSet NewAttributes =
646 CurrAttributes.removeAttribute(C&: GVar->getContext(), Kind: "toc-data");
647 GVar->setAttributes(NewAttributes);
648 }
649}
650
651void CodeGenModule::checkAliases() {
652 // Check if the constructed aliases are well formed. It is really unfortunate
653 // that we have to do this in CodeGen, but we only construct mangled names
654 // and aliases during codegen.
655 bool Error = false;
656 DiagnosticsEngine &Diags = getDiags();
657 for (const GlobalDecl &GD : Aliases) {
658 const auto *D = cast<ValueDecl>(Val: GD.getDecl());
659 SourceLocation Location;
660 SourceRange Range;
661 bool IsIFunc = D->hasAttr<IFuncAttr>();
662 if (const Attr *A = D->getDefiningAttr()) {
663 Location = A->getLocation();
664 Range = A->getRange();
665 } else
666 llvm_unreachable("Not an alias or ifunc?");
667
668 StringRef MangledName = getMangledName(GD);
669 llvm::GlobalValue *Alias = GetGlobalValue(Ref: MangledName);
670 const llvm::GlobalValue *GV = nullptr;
671 if (!checkAliasedGlobal(Context: getContext(), Diags, Location, IsIFunc, Alias, GV,
672 MangledDeclNames, AliasRange: Range)) {
673 Error = true;
674 continue;
675 }
676
677 if (getContext().getTargetInfo().getTriple().isOSAIX())
678 if (const llvm::GlobalVariable *GVar =
679 dyn_cast<const llvm::GlobalVariable>(Val: GV))
680 checkAliasForTocData(GVar: const_cast<llvm::GlobalVariable *>(GVar),
681 CodeGenOpts: getCodeGenOpts(), Diags, Location);
682
683 llvm::Constant *Aliasee =
684 IsIFunc ? cast<llvm::GlobalIFunc>(Val: Alias)->getResolver()
685 : cast<llvm::GlobalAlias>(Val: Alias)->getAliasee();
686
687 llvm::GlobalValue *AliaseeGV;
688 if (auto CE = dyn_cast<llvm::ConstantExpr>(Val: Aliasee))
689 AliaseeGV = cast<llvm::GlobalValue>(Val: CE->getOperand(i_nocapture: 0));
690 else
691 AliaseeGV = cast<llvm::GlobalValue>(Val: Aliasee);
692
693 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
694 StringRef AliasSection = SA->getName();
695 if (AliasSection != AliaseeGV->getSection())
696 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
697 << AliasSection << IsIFunc << IsIFunc;
698 }
699
700 // We have to handle alias to weak aliases in here. LLVM itself disallows
701 // this since the object semantics would not match the IL one. For
702 // compatibility with gcc we implement it by just pointing the alias
703 // to its aliasee's aliasee. We also warn, since the user is probably
704 // expecting the link to be weak.
705 if (auto *GA = dyn_cast<llvm::GlobalAlias>(Val: AliaseeGV)) {
706 if (GA->isInterposable()) {
707 Diags.Report(Location, diag::warn_alias_to_weak_alias)
708 << GV->getName() << GA->getName() << IsIFunc;
709 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
710 C: GA->getAliasee(), Ty: Alias->getType());
711
712 if (IsIFunc)
713 cast<llvm::GlobalIFunc>(Val: Alias)->setResolver(Aliasee);
714 else
715 cast<llvm::GlobalAlias>(Val: Alias)->setAliasee(Aliasee);
716 }
717 }
718 }
719 if (!Error)
720 return;
721
722 for (const GlobalDecl &GD : Aliases) {
723 StringRef MangledName = getMangledName(GD);
724 llvm::GlobalValue *Alias = GetGlobalValue(Ref: MangledName);
725 Alias->replaceAllUsesWith(V: llvm::UndefValue::get(T: Alias->getType()));
726 Alias->eraseFromParent();
727 }
728}
729
730void CodeGenModule::clear() {
731 DeferredDeclsToEmit.clear();
732 EmittedDeferredDecls.clear();
733 DeferredAnnotations.clear();
734 if (OpenMPRuntime)
735 OpenMPRuntime->clear();
736}
737
738void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
739 StringRef MainFile) {
740 if (!hasDiagnostics())
741 return;
742 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
743 if (MainFile.empty())
744 MainFile = "<stdin>";
745 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
746 } else {
747 if (Mismatched > 0)
748 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
749
750 if (Missing > 0)
751 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
752 }
753}
754
755static std::optional<llvm::GlobalValue::VisibilityTypes>
756getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
757 // Map to LLVM visibility.
758 switch (K) {
759 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
760 return std::nullopt;
761 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
762 return llvm::GlobalValue::DefaultVisibility;
763 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
764 return llvm::GlobalValue::HiddenVisibility;
765 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
766 return llvm::GlobalValue::ProtectedVisibility;
767 }
768 llvm_unreachable("unknown option value!");
769}
770
771void setLLVMVisibility(llvm::GlobalValue &GV,
772 std::optional<llvm::GlobalValue::VisibilityTypes> V) {
773 if (!V)
774 return;
775
776 // Reset DSO locality before setting the visibility. This removes
777 // any effects that visibility options and annotations may have
778 // had on the DSO locality. Setting the visibility will implicitly set
779 // appropriate globals to DSO Local; however, this will be pessimistic
780 // w.r.t. to the normal compiler IRGen.
781 GV.setDSOLocal(false);
782 GV.setVisibility(*V);
783}
784
785static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
786 llvm::Module &M) {
787 if (!LO.VisibilityFromDLLStorageClass)
788 return;
789
790 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
791 getLLVMVisibility(K: LO.getDLLExportVisibility());
792
793 std::optional<llvm::GlobalValue::VisibilityTypes>
794 NoDLLStorageClassVisibility =
795 getLLVMVisibility(K: LO.getNoDLLStorageClassVisibility());
796
797 std::optional<llvm::GlobalValue::VisibilityTypes>
798 ExternDeclDLLImportVisibility =
799 getLLVMVisibility(K: LO.getExternDeclDLLImportVisibility());
800
801 std::optional<llvm::GlobalValue::VisibilityTypes>
802 ExternDeclNoDLLStorageClassVisibility =
803 getLLVMVisibility(K: LO.getExternDeclNoDLLStorageClassVisibility());
804
805 for (llvm::GlobalValue &GV : M.global_values()) {
806 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
807 continue;
808
809 if (GV.isDeclarationForLinker())
810 setLLVMVisibility(GV, V: GV.getDLLStorageClass() ==
811 llvm::GlobalValue::DLLImportStorageClass
812 ? ExternDeclDLLImportVisibility
813 : ExternDeclNoDLLStorageClassVisibility);
814 else
815 setLLVMVisibility(GV, V: GV.getDLLStorageClass() ==
816 llvm::GlobalValue::DLLExportStorageClass
817 ? DLLExportVisibility
818 : NoDLLStorageClassVisibility);
819
820 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
821 }
822}
823
824static bool isStackProtectorOn(const LangOptions &LangOpts,
825 const llvm::Triple &Triple,
826 clang::LangOptions::StackProtectorMode Mode) {
827 if (Triple.isAMDGPU() || Triple.isNVPTX())
828 return false;
829 return LangOpts.getStackProtector() == Mode;
830}
831
832void CodeGenModule::Release() {
833 Module *Primary = getContext().getCurrentNamedModule();
834 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
835 EmitModuleInitializers(Primary);
836 EmitDeferred();
837 DeferredDecls.insert(I: EmittedDeferredDecls.begin(),
838 E: EmittedDeferredDecls.end());
839 EmittedDeferredDecls.clear();
840 EmitVTablesOpportunistically();
841 applyGlobalValReplacements();
842 applyReplacements();
843 emitMultiVersionFunctions();
844
845 if (Context.getLangOpts().IncrementalExtensions &&
846 GlobalTopLevelStmtBlockInFlight.first) {
847 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
848 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(EndLoc: TLSD->getEndLoc());
849 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
850 }
851
852 // Module implementations are initialized the same way as a regular TU that
853 // imports one or more modules.
854 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
855 EmitCXXModuleInitFunc(Primary);
856 else
857 EmitCXXGlobalInitFunc();
858 EmitCXXGlobalCleanUpFunc();
859 registerGlobalDtorsWithAtExit();
860 EmitCXXThreadLocalInitFunc();
861 if (ObjCRuntime)
862 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
863 AddGlobalCtor(Ctor: ObjCInitFunction);
864 if (Context.getLangOpts().CUDA && CUDARuntime) {
865 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
866 AddGlobalCtor(Ctor: CudaCtorFunction);
867 }
868 if (OpenMPRuntime) {
869 OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
870 OpenMPRuntime->clear();
871 }
872 if (PGOReader) {
873 getModule().setProfileSummary(
874 M: PGOReader->getSummary(/* UseCS */ false).getMD(Context&: VMContext),
875 Kind: llvm::ProfileSummary::PSK_Instr);
876 if (PGOStats.hasDiagnostics())
877 PGOStats.reportDiagnostics(Diags&: getDiags(), MainFile: getCodeGenOpts().MainFileName);
878 }
879 llvm::stable_sort(Range&: GlobalCtors, C: [](const Structor &L, const Structor &R) {
880 return L.LexOrder < R.LexOrder;
881 });
882 EmitCtorList(Fns&: GlobalCtors, GlobalName: "llvm.global_ctors");
883 EmitCtorList(Fns&: GlobalDtors, GlobalName: "llvm.global_dtors");
884 EmitGlobalAnnotations();
885 EmitStaticExternCAliases();
886 checkAliases();
887 EmitDeferredUnusedCoverageMappings();
888 CodeGenPGO(*this).setValueProfilingFlag(getModule());
889 CodeGenPGO(*this).setProfileVersion(getModule());
890 if (CoverageMapping)
891 CoverageMapping->emit();
892 if (CodeGenOpts.SanitizeCfiCrossDso) {
893 CodeGenFunction(*this).EmitCfiCheckFail();
894 CodeGenFunction(*this).EmitCfiCheckStub();
895 }
896 if (LangOpts.Sanitize.has(K: SanitizerKind::KCFI))
897 finalizeKCFITypes();
898 emitAtAvailableLinkGuard();
899 if (Context.getTargetInfo().getTriple().isWasm())
900 EmitMainVoidAlias();
901
902 if (getTriple().isAMDGPU()) {
903 // Emit amdhsa_code_object_version module flag, which is code object version
904 // times 100.
905 if (getTarget().getTargetOpts().CodeObjectVersion !=
906 llvm::CodeObjectVersionKind::COV_None) {
907 getModule().addModuleFlag(Behavior: llvm::Module::Error,
908 Key: "amdhsa_code_object_version",
909 Val: getTarget().getTargetOpts().CodeObjectVersion);
910 }
911
912 // Currently, "-mprintf-kind" option is only supported for HIP
913 if (LangOpts.HIP) {
914 auto *MDStr = llvm::MDString::get(
915 Context&: getLLVMContext(), Str: (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
916 TargetOptions::AMDGPUPrintfKind::Hostcall)
917 ? "hostcall"
918 : "buffered");
919 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "amdgpu_printf_kind",
920 Val: MDStr);
921 }
922 }
923
924 // Emit a global array containing all external kernels or device variables
925 // used by host functions and mark it as used for CUDA/HIP. This is necessary
926 // to get kernels or device variables in archives linked in even if these
927 // kernels or device variables are only used in host functions.
928 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
929 SmallVector<llvm::Constant *, 8> UsedArray;
930 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
931 GlobalDecl GD;
932 if (auto *FD = dyn_cast<FunctionDecl>(Val: D))
933 GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
934 else
935 GD = GlobalDecl(D);
936 UsedArray.push_back(Elt: llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
937 C: GetAddrOfGlobal(GD), Ty: Int8PtrTy));
938 }
939
940 llvm::ArrayType *ATy = llvm::ArrayType::get(ElementType: Int8PtrTy, NumElements: UsedArray.size());
941
942 auto *GV = new llvm::GlobalVariable(
943 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
944 llvm::ConstantArray::get(T: ATy, V: UsedArray), "__clang_gpu_used_external");
945 addCompilerUsedGlobal(GV);
946 }
947 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
948 // Emit a unique ID so that host and device binaries from the same
949 // compilation unit can be associated.
950 auto *GV = new llvm::GlobalVariable(
951 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
952 llvm::Constant::getNullValue(Ty: Int8Ty),
953 "__hip_cuid_" + getContext().getCUIDHash());
954 addCompilerUsedGlobal(GV);
955 }
956 emitLLVMUsed();
957 if (SanStats)
958 SanStats->finish();
959
960 if (CodeGenOpts.Autolink &&
961 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
962 EmitModuleLinkOptions();
963 }
964
965 // On ELF we pass the dependent library specifiers directly to the linker
966 // without manipulating them. This is in contrast to other platforms where
967 // they are mapped to a specific linker option by the compiler. This
968 // difference is a result of the greater variety of ELF linkers and the fact
969 // that ELF linkers tend to handle libraries in a more complicated fashion
970 // than on other platforms. This forces us to defer handling the dependent
971 // libs to the linker.
972 //
973 // CUDA/HIP device and host libraries are different. Currently there is no
974 // way to differentiate dependent libraries for host or device. Existing
975 // usage of #pragma comment(lib, *) is intended for host libraries on
976 // Windows. Therefore emit llvm.dependent-libraries only for host.
977 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
978 auto *NMD = getModule().getOrInsertNamedMetadata(Name: "llvm.dependent-libraries");
979 for (auto *MD : ELFDependentLibraries)
980 NMD->addOperand(M: MD);
981 }
982
983 // Record mregparm value now so it is visible through rest of codegen.
984 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
985 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "NumRegisterParameters",
986 Val: CodeGenOpts.NumRegisterParameters);
987
988 if (CodeGenOpts.DwarfVersion) {
989 getModule().addModuleFlag(Behavior: llvm::Module::Max, Key: "Dwarf Version",
990 Val: CodeGenOpts.DwarfVersion);
991 }
992
993 if (CodeGenOpts.Dwarf64)
994 getModule().addModuleFlag(Behavior: llvm::Module::Max, Key: "DWARF64", Val: 1);
995
996 if (Context.getLangOpts().SemanticInterposition)
997 // Require various optimization to respect semantic interposition.
998 getModule().setSemanticInterposition(true);
999
1000 if (CodeGenOpts.EmitCodeView) {
1001 // Indicate that we want CodeView in the metadata.
1002 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "CodeView", Val: 1);
1003 }
1004 if (CodeGenOpts.CodeViewGHash) {
1005 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "CodeViewGHash", Val: 1);
1006 }
1007 if (CodeGenOpts.ControlFlowGuard) {
1008 // Function ID tables and checks for Control Flow Guard (cfguard=2).
1009 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "cfguard", Val: 2);
1010 } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1011 // Function ID tables for Control Flow Guard (cfguard=1).
1012 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "cfguard", Val: 1);
1013 }
1014 if (CodeGenOpts.EHContGuard) {
1015 // Function ID tables for EH Continuation Guard.
1016 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "ehcontguard", Val: 1);
1017 }
1018 if (Context.getLangOpts().Kernel) {
1019 // Note if we are compiling with /kernel.
1020 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "ms-kernel", Val: 1);
1021 }
1022 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1023 // We don't support LTO with 2 with different StrictVTablePointers
1024 // FIXME: we could support it by stripping all the information introduced
1025 // by StrictVTablePointers.
1026
1027 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "StrictVTablePointers",Val: 1);
1028
1029 llvm::Metadata *Ops[2] = {
1030 llvm::MDString::get(Context&: VMContext, Str: "StrictVTablePointers"),
1031 llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get(
1032 Ty: llvm::Type::getInt32Ty(C&: VMContext), V: 1))};
1033
1034 getModule().addModuleFlag(Behavior: llvm::Module::Require,
1035 Key: "StrictVTablePointersRequirement",
1036 Val: llvm::MDNode::get(Context&: VMContext, MDs: Ops));
1037 }
1038 if (getModuleDebugInfo())
1039 // We support a single version in the linked module. The LLVM
1040 // parser will drop debug info with a different version number
1041 // (and warn about it, too).
1042 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "Debug Info Version",
1043 Val: llvm::DEBUG_METADATA_VERSION);
1044
1045 // We need to record the widths of enums and wchar_t, so that we can generate
1046 // the correct build attributes in the ARM backend. wchar_size is also used by
1047 // TargetLibraryInfo.
1048 uint64_t WCharWidth =
1049 Context.getTypeSizeInChars(T: Context.getWideCharType()).getQuantity();
1050 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "wchar_size", Val: WCharWidth);
1051
1052 if (getTriple().isOSzOS()) {
1053 getModule().addModuleFlag(Behavior: llvm::Module::Warning,
1054 Key: "zos_product_major_version",
1055 Val: uint32_t(CLANG_VERSION_MAJOR));
1056 getModule().addModuleFlag(Behavior: llvm::Module::Warning,
1057 Key: "zos_product_minor_version",
1058 Val: uint32_t(CLANG_VERSION_MINOR));
1059 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "zos_product_patchlevel",
1060 Val: uint32_t(CLANG_VERSION_PATCHLEVEL));
1061 std::string ProductId = getClangVendor() + "clang";
1062 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "zos_product_id",
1063 Val: llvm::MDString::get(Context&: VMContext, Str: ProductId));
1064
1065 // Record the language because we need it for the PPA2.
1066 StringRef lang_str = languageToString(
1067 L: LangStandard::getLangStandardForKind(K: LangOpts.LangStd).Language);
1068 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "zos_cu_language",
1069 Val: llvm::MDString::get(Context&: VMContext, Str: lang_str));
1070
1071 time_t TT = PreprocessorOpts.SourceDateEpoch
1072 ? *PreprocessorOpts.SourceDateEpoch
1073 : std::time(timer: nullptr);
1074 getModule().addModuleFlag(Behavior: llvm::Module::Max, Key: "zos_translation_time",
1075 Val: static_cast<uint64_t>(TT));
1076
1077 // Multiple modes will be supported here.
1078 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "zos_le_char_mode",
1079 Val: llvm::MDString::get(Context&: VMContext, Str: "ascii"));
1080 }
1081
1082 llvm::Triple T = Context.getTargetInfo().getTriple();
1083 if (T.isARM() || T.isThumb()) {
1084 // The minimum width of an enum in bytes
1085 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1086 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "min_enum_size", Val: EnumWidth);
1087 }
1088
1089 if (T.isRISCV()) {
1090 StringRef ABIStr = Target.getABI();
1091 llvm::LLVMContext &Ctx = TheModule.getContext();
1092 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "target-abi",
1093 Val: llvm::MDString::get(Context&: Ctx, Str: ABIStr));
1094
1095 // Add the canonical ISA string as metadata so the backend can set the ELF
1096 // attributes correctly. We use AppendUnique so LTO will keep all of the
1097 // unique ISA strings that were linked together.
1098 const std::vector<std::string> &Features =
1099 getTarget().getTargetOpts().Features;
1100 auto ParseResult =
1101 llvm::RISCVISAInfo::parseFeatures(XLen: T.isRISCV64() ? 64 : 32, Features);
1102 if (!errorToBool(Err: ParseResult.takeError()))
1103 getModule().addModuleFlag(
1104 Behavior: llvm::Module::AppendUnique, Key: "riscv-isa",
1105 Val: llvm::MDNode::get(
1106 Context&: Ctx, MDs: llvm::MDString::get(Context&: Ctx, Str: (*ParseResult)->toString())));
1107 }
1108
1109 if (CodeGenOpts.SanitizeCfiCrossDso) {
1110 // Indicate that we want cross-DSO control flow integrity checks.
1111 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "Cross-DSO CFI", Val: 1);
1112 }
1113
1114 if (CodeGenOpts.WholeProgramVTables) {
1115 // Indicate whether VFE was enabled for this module, so that the
1116 // vcall_visibility metadata added under whole program vtables is handled
1117 // appropriately in the optimizer.
1118 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "Virtual Function Elim",
1119 Val: CodeGenOpts.VirtualFunctionElimination);
1120 }
1121
1122 if (LangOpts.Sanitize.has(K: SanitizerKind::CFIICall)) {
1123 getModule().addModuleFlag(Behavior: llvm::Module::Override,
1124 Key: "CFI Canonical Jump Tables",
1125 Val: CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1126 }
1127
1128 if (LangOpts.Sanitize.has(K: SanitizerKind::KCFI)) {
1129 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "kcfi", Val: 1);
1130 // KCFI assumes patchable-function-prefix is the same for all indirectly
1131 // called functions. Store the expected offset for code generation.
1132 if (CodeGenOpts.PatchableFunctionEntryOffset)
1133 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "kcfi-offset",
1134 Val: CodeGenOpts.PatchableFunctionEntryOffset);
1135 }
1136
1137 if (CodeGenOpts.CFProtectionReturn &&
1138 Target.checkCFProtectionReturnSupported(Diags&: getDiags())) {
1139 // Indicate that we want to instrument return control flow protection.
1140 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "cf-protection-return",
1141 Val: 1);
1142 }
1143
1144 if (CodeGenOpts.CFProtectionBranch &&
1145 Target.checkCFProtectionBranchSupported(Diags&: getDiags())) {
1146 // Indicate that we want to instrument branch control flow protection.
1147 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "cf-protection-branch",
1148 Val: 1);
1149 }
1150
1151 if (CodeGenOpts.FunctionReturnThunks)
1152 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "function_return_thunk_extern", Val: 1);
1153
1154 if (CodeGenOpts.IndirectBranchCSPrefix)
1155 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "indirect_branch_cs_prefix", Val: 1);
1156
1157 // Add module metadata for return address signing (ignoring
1158 // non-leaf/all) and stack tagging. These are actually turned on by function
1159 // attributes, but we use module metadata to emit build attributes. This is
1160 // needed for LTO, where the function attributes are inside bitcode
1161 // serialised into a global variable by the time build attributes are
1162 // emitted, so we can't access them. LTO objects could be compiled with
1163 // different flags therefore module flags are set to "Min" behavior to achieve
1164 // the same end result of the normal build where e.g BTI is off if any object
1165 // doesn't support it.
1166 if (Context.getTargetInfo().hasFeature(Feature: "ptrauth") &&
1167 LangOpts.getSignReturnAddressScope() !=
1168 LangOptions::SignReturnAddressScopeKind::None)
1169 getModule().addModuleFlag(Behavior: llvm::Module::Override,
1170 Key: "sign-return-address-buildattr", Val: 1);
1171 if (LangOpts.Sanitize.has(K: SanitizerKind::MemtagStack))
1172 getModule().addModuleFlag(Behavior: llvm::Module::Override,
1173 Key: "tag-stack-memory-buildattr", Val: 1);
1174
1175 if (T.isARM() || T.isThumb() || T.isAArch64()) {
1176 if (LangOpts.BranchTargetEnforcement)
1177 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "branch-target-enforcement",
1178 Val: 1);
1179 if (LangOpts.BranchProtectionPAuthLR)
1180 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "branch-protection-pauth-lr",
1181 Val: 1);
1182 if (LangOpts.GuardedControlStack)
1183 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "guarded-control-stack", Val: 1);
1184 if (LangOpts.hasSignReturnAddress())
1185 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "sign-return-address", Val: 1);
1186 if (LangOpts.isSignReturnAddressScopeAll())
1187 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "sign-return-address-all",
1188 Val: 1);
1189 if (!LangOpts.isSignReturnAddressWithAKey())
1190 getModule().addModuleFlag(Behavior: llvm::Module::Min,
1191 Key: "sign-return-address-with-bkey", Val: 1);
1192 }
1193
1194 if (CodeGenOpts.StackClashProtector)
1195 getModule().addModuleFlag(
1196 Behavior: llvm::Module::Override, Key: "probe-stack",
1197 Val: llvm::MDString::get(Context&: TheModule.getContext(), Str: "inline-asm"));
1198
1199 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1200 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "stack-probe-size",
1201 Val: CodeGenOpts.StackProbeSize);
1202
1203 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1204 llvm::LLVMContext &Ctx = TheModule.getContext();
1205 getModule().addModuleFlag(
1206 Behavior: llvm::Module::Error, Key: "MemProfProfileFilename",
1207 Val: llvm::MDString::get(Context&: Ctx, Str: CodeGenOpts.MemoryProfileOutput));
1208 }
1209
1210 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1211 // Indicate whether __nvvm_reflect should be configured to flush denormal
1212 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
1213 // property.)
1214 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "nvvm-reflect-ftz",
1215 Val: CodeGenOpts.FP32DenormalMode.Output !=
1216 llvm::DenormalMode::IEEE);
1217 }
1218
1219 if (LangOpts.EHAsynch)
1220 getModule().addModuleFlag(Behavior: llvm::Module::Warning, Key: "eh-asynch", Val: 1);
1221
1222 // Indicate whether this Module was compiled with -fopenmp
1223 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1224 getModule().addModuleFlag(Behavior: llvm::Module::Max, Key: "openmp", Val: LangOpts.OpenMP);
1225 if (getLangOpts().OpenMPIsTargetDevice)
1226 getModule().addModuleFlag(Behavior: llvm::Module::Max, Key: "openmp-device",
1227 Val: LangOpts.OpenMP);
1228
1229 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1230 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1231 EmitOpenCLMetadata();
1232 // Emit SPIR version.
1233 if (getTriple().isSPIR()) {
1234 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1235 // opencl.spir.version named metadata.
1236 // C++ for OpenCL has a distinct mapping for version compatibility with
1237 // OpenCL.
1238 auto Version = LangOpts.getOpenCLCompatibleVersion();
1239 llvm::Metadata *SPIRVerElts[] = {
1240 llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get(
1241 Ty: Int32Ty, V: Version / 100)),
1242 llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get(
1243 Ty: Int32Ty, V: (Version / 100 > 1) ? 0 : 2))};
1244 llvm::NamedMDNode *SPIRVerMD =
1245 TheModule.getOrInsertNamedMetadata(Name: "opencl.spir.version");
1246 llvm::LLVMContext &Ctx = TheModule.getContext();
1247 SPIRVerMD->addOperand(M: llvm::MDNode::get(Context&: Ctx, MDs: SPIRVerElts));
1248 }
1249 }
1250
1251 // HLSL related end of code gen work items.
1252 if (LangOpts.HLSL)
1253 getHLSLRuntime().finishCodeGen();
1254
1255 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1256 assert(PLevel < 3 && "Invalid PIC Level");
1257 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1258 if (Context.getLangOpts().PIE)
1259 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1260 }
1261
1262 if (getCodeGenOpts().CodeModel.size() > 0) {
1263 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1264 .Case(S: "tiny", Value: llvm::CodeModel::Tiny)
1265 .Case(S: "small", Value: llvm::CodeModel::Small)
1266 .Case(S: "kernel", Value: llvm::CodeModel::Kernel)
1267 .Case(S: "medium", Value: llvm::CodeModel::Medium)
1268 .Case(S: "large", Value: llvm::CodeModel::Large)
1269 .Default(Value: ~0u);
1270 if (CM != ~0u) {
1271 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1272 getModule().setCodeModel(codeModel);
1273
1274 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1275 Context.getTargetInfo().getTriple().getArch() ==
1276 llvm::Triple::x86_64) {
1277 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1278 }
1279 }
1280 }
1281
1282 if (CodeGenOpts.NoPLT)
1283 getModule().setRtLibUseGOT();
1284 if (getTriple().isOSBinFormatELF() &&
1285 CodeGenOpts.DirectAccessExternalData !=
1286 getModule().getDirectAccessExternalData()) {
1287 getModule().setDirectAccessExternalData(
1288 CodeGenOpts.DirectAccessExternalData);
1289 }
1290 if (CodeGenOpts.UnwindTables)
1291 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1292
1293 switch (CodeGenOpts.getFramePointer()) {
1294 case CodeGenOptions::FramePointerKind::None:
1295 // 0 ("none") is the default.
1296 break;
1297 case CodeGenOptions::FramePointerKind::NonLeaf:
1298 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1299 break;
1300 case CodeGenOptions::FramePointerKind::All:
1301 getModule().setFramePointer(llvm::FramePointerKind::All);
1302 break;
1303 }
1304
1305 SimplifyPersonality();
1306
1307 if (getCodeGenOpts().EmitDeclMetadata)
1308 EmitDeclMetadata();
1309
1310 if (getCodeGenOpts().CoverageNotesFile.size() ||
1311 getCodeGenOpts().CoverageDataFile.size())
1312 EmitCoverageFile();
1313
1314 if (CGDebugInfo *DI = getModuleDebugInfo())
1315 DI->finalize();
1316
1317 if (getCodeGenOpts().EmitVersionIdentMetadata)
1318 EmitVersionIdentMetadata();
1319
1320 if (!getCodeGenOpts().RecordCommandLine.empty())
1321 EmitCommandLineMetadata();
1322
1323 if (!getCodeGenOpts().StackProtectorGuard.empty())
1324 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1325 if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1326 getModule().setStackProtectorGuardReg(
1327 getCodeGenOpts().StackProtectorGuardReg);
1328 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1329 getModule().setStackProtectorGuardSymbol(
1330 getCodeGenOpts().StackProtectorGuardSymbol);
1331 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1332 getModule().setStackProtectorGuardOffset(
1333 getCodeGenOpts().StackProtectorGuardOffset);
1334 if (getCodeGenOpts().StackAlignment)
1335 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1336 if (getCodeGenOpts().SkipRaxSetup)
1337 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "SkipRaxSetup", Val: 1);
1338 if (getLangOpts().RegCall4)
1339 getModule().addModuleFlag(Behavior: llvm::Module::Override, Key: "RegCallv4", Val: 1);
1340
1341 if (getContext().getTargetInfo().getMaxTLSAlign())
1342 getModule().addModuleFlag(Behavior: llvm::Module::Error, Key: "MaxTLSAlign",
1343 Val: getContext().getTargetInfo().getMaxTLSAlign());
1344
1345 getTargetCodeGenInfo().emitTargetGlobals(CGM&: *this);
1346
1347 getTargetCodeGenInfo().emitTargetMetadata(CGM&: *this, MangledDeclNames);
1348
1349 EmitBackendOptionsMetadata(CodeGenOpts: getCodeGenOpts());
1350
1351 // If there is device offloading code embed it in the host now.
1352 EmbedObject(M: &getModule(), CGOpts: CodeGenOpts, Diags&: getDiags());
1353
1354 // Set visibility from DLL storage class
1355 // We do this at the end of LLVM IR generation; after any operation
1356 // that might affect the DLL storage class or the visibility, and
1357 // before anything that might act on these.
1358 setVisibilityFromDLLStorageClass(LO: LangOpts, M&: getModule());
1359}
1360
1361void CodeGenModule::EmitOpenCLMetadata() {
1362 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1363 // opencl.ocl.version named metadata node.
1364 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1365 auto Version = LangOpts.getOpenCLCompatibleVersion();
1366 llvm::Metadata *OCLVerElts[] = {
1367 llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get(
1368 Ty: Int32Ty, V: Version / 100)),
1369 llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get(
1370 Ty: Int32Ty, V: (Version % 100) / 10))};
1371 llvm::NamedMDNode *OCLVerMD =
1372 TheModule.getOrInsertNamedMetadata(Name: "opencl.ocl.version");
1373 llvm::LLVMContext &Ctx = TheModule.getContext();
1374 OCLVerMD->addOperand(M: llvm::MDNode::get(Context&: Ctx, MDs: OCLVerElts));
1375}
1376
1377void CodeGenModule::EmitBackendOptionsMetadata(
1378 const CodeGenOptions &CodeGenOpts) {
1379 if (getTriple().isRISCV()) {
1380 getModule().addModuleFlag(Behavior: llvm::Module::Min, Key: "SmallDataLimit",
1381 Val: CodeGenOpts.SmallDataLimit);
1382 }
1383}
1384
1385void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1386 // Make sure that this type is translated.
1387 Types.UpdateCompletedType(TD);
1388}
1389
1390void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1391 // Make sure that this type is translated.
1392 Types.RefreshTypeCacheForClass(RD);
1393}
1394
1395llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1396 if (!TBAA)
1397 return nullptr;
1398 return TBAA->getTypeInfo(QTy);
1399}
1400
1401TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1402 if (!TBAA)
1403 return TBAAAccessInfo();
1404 if (getLangOpts().CUDAIsDevice) {
1405 // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1406 // access info.
1407 if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1408 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1409 nullptr)
1410 return TBAAAccessInfo();
1411 } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1412 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1413 nullptr)
1414 return TBAAAccessInfo();
1415 }
1416 }
1417 return TBAA->getAccessInfo(AccessType);
1418}
1419
1420TBAAAccessInfo
1421CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1422 if (!TBAA)
1423 return TBAAAccessInfo();
1424 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1425}
1426
1427llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1428 if (!TBAA)
1429 return nullptr;
1430 return TBAA->getTBAAStructInfo(QTy);
1431}
1432
1433llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1434 if (!TBAA)
1435 return nullptr;
1436 return TBAA->getBaseTypeInfo(QTy);
1437}
1438
1439llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1440 if (!TBAA)
1441 return nullptr;
1442 return TBAA->getAccessTagInfo(Info);
1443}
1444
1445TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1446 TBAAAccessInfo TargetInfo) {
1447 if (!TBAA)
1448 return TBAAAccessInfo();
1449 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1450}
1451
1452TBAAAccessInfo
1453CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1454 TBAAAccessInfo InfoB) {
1455 if (!TBAA)
1456 return TBAAAccessInfo();
1457 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1458}
1459
1460TBAAAccessInfo
1461CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1462 TBAAAccessInfo SrcInfo) {
1463 if (!TBAA)
1464 return TBAAAccessInfo();
1465 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA: DestInfo, InfoB: SrcInfo);
1466}
1467
1468void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1469 TBAAAccessInfo TBAAInfo) {
1470 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(Info: TBAAInfo))
1471 Inst->setMetadata(KindID: llvm::LLVMContext::MD_tbaa, Node: Tag);
1472}
1473
1474void CodeGenModule::DecorateInstructionWithInvariantGroup(
1475 llvm::Instruction *I, const CXXRecordDecl *RD) {
1476 I->setMetadata(KindID: llvm::LLVMContext::MD_invariant_group,
1477 Node: llvm::MDNode::get(Context&: getLLVMContext(), MDs: {}));
1478}
1479
1480void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1481 unsigned diagID = getDiags().getCustomDiagID(L: DiagnosticsEngine::Error, FormatString: "%0");
1482 getDiags().Report(Loc: Context.getFullLoc(Loc: loc), DiagID: diagID) << message;
1483}
1484
1485/// ErrorUnsupported - Print out an error that codegen doesn't support the
1486/// specified stmt yet.
1487void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1488 unsigned DiagID = getDiags().getCustomDiagID(L: DiagnosticsEngine::Error,
1489 FormatString: "cannot compile this %0 yet");
1490 std::string Msg = Type;
1491 getDiags().Report(Loc: Context.getFullLoc(Loc: S->getBeginLoc()), DiagID)
1492 << Msg << S->getSourceRange();
1493}
1494
1495/// ErrorUnsupported - Print out an error that codegen doesn't support the
1496/// specified decl yet.
1497void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1498 unsigned DiagID = getDiags().getCustomDiagID(L: DiagnosticsEngine::Error,
1499 FormatString: "cannot compile this %0 yet");
1500 std::string Msg = Type;
1501 getDiags().Report(Loc: Context.getFullLoc(Loc: D->getLocation()), DiagID) << Msg;
1502}
1503
1504llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1505 return llvm::ConstantInt::get(Ty: SizeTy, V: size.getQuantity());
1506}
1507
1508void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1509 const NamedDecl *D) const {
1510 // Internal definitions always have default visibility.
1511 if (GV->hasLocalLinkage()) {
1512 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1513 return;
1514 }
1515 if (!D)
1516 return;
1517
1518 // Set visibility for definitions, and for declarations if requested globally
1519 // or set explicitly.
1520 LinkageInfo LV = D->getLinkageAndVisibility();
1521
1522 // OpenMP declare target variables must be visible to the host so they can
1523 // be registered. We require protected visibility unless the variable has
1524 // the DT_nohost modifier and does not need to be registered.
1525 if (Context.getLangOpts().OpenMP &&
1526 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1527 D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1528 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1529 OMPDeclareTargetDeclAttr::DT_NoHost &&
1530 LV.getVisibility() == HiddenVisibility) {
1531 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1532 return;
1533 }
1534
1535 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1536 // Reject incompatible dlllstorage and visibility annotations.
1537 if (!LV.isVisibilityExplicit())
1538 return;
1539 if (GV->hasDLLExportStorageClass()) {
1540 if (LV.getVisibility() == HiddenVisibility)
1541 getDiags().Report(D->getLocation(),
1542 diag::err_hidden_visibility_dllexport);
1543 } else if (LV.getVisibility() != DefaultVisibility) {
1544 getDiags().Report(D->getLocation(),
1545 diag::err_non_default_visibility_dllimport);
1546 }
1547 return;
1548 }
1549
1550 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1551 !GV->isDeclarationForLinker())
1552 GV->setVisibility(GetLLVMVisibility(V: LV.getVisibility()));
1553}
1554
1555static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1556 llvm::GlobalValue *GV) {
1557 if (GV->hasLocalLinkage())
1558 return true;
1559
1560 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1561 return true;
1562
1563 // DLLImport explicitly marks the GV as external.
1564 if (GV->hasDLLImportStorageClass())
1565 return false;
1566
1567 const llvm::Triple &TT = CGM.getTriple();
1568 const auto &CGOpts = CGM.getCodeGenOpts();
1569 if (TT.isWindowsGNUEnvironment()) {
1570 // In MinGW, variables without DLLImport can still be automatically
1571 // imported from a DLL by the linker; don't mark variables that
1572 // potentially could come from another DLL as DSO local.
1573
1574 // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1575 // (and this actually happens in the public interface of libstdc++), so
1576 // such variables can't be marked as DSO local. (Native TLS variables
1577 // can't be dllimported at all, though.)
1578 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(Val: GV) &&
1579 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1580 CGOpts.AutoImport)
1581 return false;
1582 }
1583
1584 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1585 // remain unresolved in the link, they can be resolved to zero, which is
1586 // outside the current DSO.
1587 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1588 return false;
1589
1590 // Every other GV is local on COFF.
1591 // Make an exception for windows OS in the triple: Some firmware builds use
1592 // *-win32-macho triples. This (accidentally?) produced windows relocations
1593 // without GOT tables in older clang versions; Keep this behaviour.
1594 // FIXME: even thread local variables?
1595 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1596 return true;
1597
1598 // Only handle COFF and ELF for now.
1599 if (!TT.isOSBinFormatELF())
1600 return false;
1601
1602 // If this is not an executable, don't assume anything is local.
1603 llvm::Reloc::Model RM = CGOpts.RelocationModel;
1604 const auto &LOpts = CGM.getLangOpts();
1605 if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1606 // On ELF, if -fno-semantic-interposition is specified and the target
1607 // supports local aliases, there will be neither CC1
1608 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1609 // dso_local on the function if using a local alias is preferable (can avoid
1610 // PLT indirection).
1611 if (!(isa<llvm::Function>(Val: GV) && GV->canBenefitFromLocalAlias()))
1612 return false;
1613 return !(CGM.getLangOpts().SemanticInterposition ||
1614 CGM.getLangOpts().HalfNoSemanticInterposition);
1615 }
1616
1617 // A definition cannot be preempted from an executable.
1618 if (!GV->isDeclarationForLinker())
1619 return true;
1620
1621 // Most PIC code sequences that assume that a symbol is local cannot produce a
1622 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1623 // depended, it seems worth it to handle it here.
1624 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1625 return false;
1626
1627 // PowerPC64 prefers TOC indirection to avoid copy relocations.
1628 if (TT.isPPC64())
1629 return false;
1630
1631 if (CGOpts.DirectAccessExternalData) {
1632 // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1633 // for non-thread-local variables. If the symbol is not defined in the
1634 // executable, a copy relocation will be needed at link time. dso_local is
1635 // excluded for thread-local variables because they generally don't support
1636 // copy relocations.
1637 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Val: GV))
1638 if (!Var->isThreadLocal())
1639 return true;
1640
1641 // -fno-pic sets dso_local on a function declaration to allow direct
1642 // accesses when taking its address (similar to a data symbol). If the
1643 // function is not defined in the executable, a canonical PLT entry will be
1644 // needed at link time. -fno-direct-access-external-data can avoid the
1645 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1646 // it could just cause trouble without providing perceptible benefits.
1647 if (isa<llvm::Function>(Val: GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1648 return true;
1649 }
1650
1651 // If we can use copy relocations we can assume it is local.
1652
1653 // Otherwise don't assume it is local.
1654 return false;
1655}
1656
1657void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1658 GV->setDSOLocal(shouldAssumeDSOLocal(CGM: *this, GV));
1659}
1660
1661void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1662 GlobalDecl GD) const {
1663 const auto *D = dyn_cast<NamedDecl>(Val: GD.getDecl());
1664 // C++ destructors have a few C++ ABI specific special cases.
1665 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(Val: D)) {
1666 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, DT: GD.getDtorType());
1667 return;
1668 }
1669 setDLLImportDLLExport(GV, D);
1670}
1671
1672void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1673 const NamedDecl *D) const {
1674 if (D && D->isExternallyVisible()) {
1675 if (D->hasAttr<DLLImportAttr>())
1676 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1677 else if ((D->hasAttr<DLLExportAttr>() ||
1678 shouldMapVisibilityToDLLExport(D)) &&
1679 !GV->isDeclarationForLinker())
1680 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1681 }
1682}
1683
1684void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1685 GlobalDecl GD) const {
1686 setDLLImportDLLExport(GV, GD);
1687 setGVPropertiesAux(GV, D: dyn_cast<NamedDecl>(Val: GD.getDecl()));
1688}
1689
1690void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1691 const NamedDecl *D) const {
1692 setDLLImportDLLExport(GV, D);
1693 setGVPropertiesAux(GV, D);
1694}
1695
1696void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1697 const NamedDecl *D) const {
1698 setGlobalVisibility(GV, D);
1699 setDSOLocal(GV);
1700 GV->setPartition(CodeGenOpts.SymbolPartition);
1701}
1702
1703static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1704 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1705 .Case(S: "global-dynamic", Value: llvm::GlobalVariable::GeneralDynamicTLSModel)
1706 .Case(S: "local-dynamic", Value: llvm::GlobalVariable::LocalDynamicTLSModel)
1707 .Case(S: "initial-exec", Value: llvm::GlobalVariable::InitialExecTLSModel)
1708 .Case(S: "local-exec", Value: llvm::GlobalVariable::LocalExecTLSModel);
1709}
1710
1711llvm::GlobalVariable::ThreadLocalMode
1712CodeGenModule::GetDefaultLLVMTLSModel() const {
1713 switch (CodeGenOpts.getDefaultTLSModel()) {
1714 case CodeGenOptions::GeneralDynamicTLSModel:
1715 return llvm::GlobalVariable::GeneralDynamicTLSModel;
1716 case CodeGenOptions::LocalDynamicTLSModel:
1717 return llvm::GlobalVariable::LocalDynamicTLSModel;
1718 case CodeGenOptions::InitialExecTLSModel:
1719 return llvm::GlobalVariable::InitialExecTLSModel;
1720 case CodeGenOptions::LocalExecTLSModel:
1721 return llvm::GlobalVariable::LocalExecTLSModel;
1722 }
1723 llvm_unreachable("Invalid TLS model!");
1724}
1725
1726void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1727 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1728
1729 llvm::GlobalValue::ThreadLocalMode TLM;
1730 TLM = GetDefaultLLVMTLSModel();
1731
1732 // Override the TLS model if it is explicitly specified.
1733 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1734 TLM = GetLLVMTLSModel(Attr->getModel());
1735 }
1736
1737 GV->setThreadLocalMode(TLM);
1738}
1739
1740static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1741 StringRef Name) {
1742 const TargetInfo &Target = CGM.getTarget();
1743 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1744}
1745
1746static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1747 const CPUSpecificAttr *Attr,
1748 unsigned CPUIndex,
1749 raw_ostream &Out) {
1750 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1751 // supported.
1752 if (Attr)
1753 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1754 else if (CGM.getTarget().supportsIFunc())
1755 Out << ".resolver";
1756}
1757
1758// Returns true if GD is a function decl with internal linkage and
1759// needs a unique suffix after the mangled name.
1760static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1761 CodeGenModule &CGM) {
1762 const Decl *D = GD.getDecl();
1763 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(Val: D) &&
1764 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1765}
1766
1767static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1768 const NamedDecl *ND,
1769 bool OmitMultiVersionMangling = false) {
1770 SmallString<256> Buffer;
1771 llvm::raw_svector_ostream Out(Buffer);
1772 MangleContext &MC = CGM.getCXXABI().getMangleContext();
1773 if (!CGM.getModuleNameHash().empty())
1774 MC.needsUniqueInternalLinkageNames();
1775 bool ShouldMangle = MC.shouldMangleDeclName(D: ND);
1776 if (ShouldMangle)
1777 MC.mangleName(GD: GD.getWithDecl(ND), Out);
1778 else {
1779 IdentifierInfo *II = ND->getIdentifier();
1780 assert(II && "Attempt to mangle unnamed decl.");
1781 const auto *FD = dyn_cast<FunctionDecl>(Val: ND);
1782
1783 if (FD &&
1784 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1785 if (CGM.getLangOpts().RegCall4)
1786 Out << "__regcall4__" << II->getName();
1787 else
1788 Out << "__regcall3__" << II->getName();
1789 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1790 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1791 Out << "__device_stub__" << II->getName();
1792 } else {
1793 Out << II->getName();
1794 }
1795 }
1796
1797 // Check if the module name hash should be appended for internal linkage
1798 // symbols. This should come before multi-version target suffixes are
1799 // appended. This is to keep the name and module hash suffix of the
1800 // internal linkage function together. The unique suffix should only be
1801 // added when name mangling is done to make sure that the final name can
1802 // be properly demangled. For example, for C functions without prototypes,
1803 // name mangling is not done and the unique suffix should not be appeneded
1804 // then.
1805 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1806 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1807 "Hash computed when not explicitly requested");
1808 Out << CGM.getModuleNameHash();
1809 }
1810
1811 if (const auto *FD = dyn_cast<FunctionDecl>(Val: ND))
1812 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1813 switch (FD->getMultiVersionKind()) {
1814 case MultiVersionKind::CPUDispatch:
1815 case MultiVersionKind::CPUSpecific:
1816 AppendCPUSpecificCPUDispatchMangling(CGM,
1817 FD->getAttr<CPUSpecificAttr>(),
1818 GD.getMultiVersionIndex(), Out);
1819 break;
1820 case MultiVersionKind::Target: {
1821 auto *Attr = FD->getAttr<TargetAttr>();
1822 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1823 Info.appendAttributeMangling(Attr, Out);
1824 break;
1825 }
1826 case MultiVersionKind::TargetVersion: {
1827 auto *Attr = FD->getAttr<TargetVersionAttr>();
1828 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1829 Info.appendAttributeMangling(Attr, Out);
1830 break;
1831 }
1832 case MultiVersionKind::TargetClones: {
1833 auto *Attr = FD->getAttr<TargetClonesAttr>();
1834 unsigned Index = GD.getMultiVersionIndex();
1835 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1836 Info.appendAttributeMangling(Attr, Index, Out);
1837 break;
1838 }
1839 case MultiVersionKind::None:
1840 llvm_unreachable("None multiversion type isn't valid here");
1841 }
1842 }
1843
1844 // Make unique name for device side static file-scope variable for HIP.
1845 if (CGM.getContext().shouldExternalize(ND) &&
1846 CGM.getLangOpts().GPURelocatableDeviceCode &&
1847 CGM.getLangOpts().CUDAIsDevice)
1848 CGM.printPostfixForExternalizedDecl(Out, ND);
1849
1850 return std::string(Out.str());
1851}
1852
1853void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1854 const FunctionDecl *FD,
1855 StringRef &CurName) {
1856 if (!FD->isMultiVersion())
1857 return;
1858
1859 // Get the name of what this would be without the 'target' attribute. This
1860 // allows us to lookup the version that was emitted when this wasn't a
1861 // multiversion function.
1862 std::string NonTargetName =
1863 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1864 GlobalDecl OtherGD;
1865 if (lookupRepresentativeDecl(MangledName: NonTargetName, Result&: OtherGD)) {
1866 assert(OtherGD.getCanonicalDecl()
1867 .getDecl()
1868 ->getAsFunction()
1869 ->isMultiVersion() &&
1870 "Other GD should now be a multiversioned function");
1871 // OtherFD is the version of this function that was mangled BEFORE
1872 // becoming a MultiVersion function. It potentially needs to be updated.
1873 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1874 .getDecl()
1875 ->getAsFunction()
1876 ->getMostRecentDecl();
1877 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1878 // This is so that if the initial version was already the 'default'
1879 // version, we don't try to update it.
1880 if (OtherName != NonTargetName) {
1881 // Remove instead of erase, since others may have stored the StringRef
1882 // to this.
1883 const auto ExistingRecord = Manglings.find(Key: NonTargetName);
1884 if (ExistingRecord != std::end(cont&: Manglings))
1885 Manglings.remove(KeyValue: &(*ExistingRecord));
1886 auto Result = Manglings.insert(KV: std::make_pair(x&: OtherName, y&: OtherGD));
1887 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1888 Result.first->first();
1889 // If this is the current decl is being created, make sure we update the name.
1890 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1891 CurName = OtherNameRef;
1892 if (llvm::GlobalValue *Entry = GetGlobalValue(Ref: NonTargetName))
1893 Entry->setName(OtherName);
1894 }
1895 }
1896}
1897
1898StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1899 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1900
1901 // Some ABIs don't have constructor variants. Make sure that base and
1902 // complete constructors get mangled the same.
1903 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Val: CanonicalGD.getDecl())) {
1904 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1905 CXXCtorType OrigCtorType = GD.getCtorType();
1906 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1907 if (OrigCtorType == Ctor_Base)
1908 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1909 }
1910 }
1911
1912 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1913 // static device variable depends on whether the variable is referenced by
1914 // a host or device host function. Therefore the mangled name cannot be
1915 // cached.
1916 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(D: GD.getDecl())) {
1917 auto FoundName = MangledDeclNames.find(Key: CanonicalGD);
1918 if (FoundName != MangledDeclNames.end())
1919 return FoundName->second;
1920 }
1921
1922 // Keep the first result in the case of a mangling collision.
1923 const auto *ND = cast<NamedDecl>(Val: GD.getDecl());
1924 std::string MangledName = getMangledNameImpl(CGM&: *this, GD, ND);
1925
1926 // Ensure either we have different ABIs between host and device compilations,
1927 // says host compilation following MSVC ABI but device compilation follows
1928 // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1929 // mangling should be the same after name stubbing. The later checking is
1930 // very important as the device kernel name being mangled in host-compilation
1931 // is used to resolve the device binaries to be executed. Inconsistent naming
1932 // result in undefined behavior. Even though we cannot check that naming
1933 // directly between host- and device-compilations, the host- and
1934 // device-mangling in host compilation could help catching certain ones.
1935 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1936 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1937 (getContext().getAuxTargetInfo() &&
1938 (getContext().getAuxTargetInfo()->getCXXABI() !=
1939 getContext().getTargetInfo().getCXXABI())) ||
1940 getCUDARuntime().getDeviceSideName(ND) ==
1941 getMangledNameImpl(
1942 *this,
1943 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1944 ND));
1945
1946 auto Result = Manglings.insert(KV: std::make_pair(x&: MangledName, y&: GD));
1947 return MangledDeclNames[CanonicalGD] = Result.first->first();
1948}
1949
1950StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1951 const BlockDecl *BD) {
1952 MangleContext &MangleCtx = getCXXABI().getMangleContext();
1953 const Decl *D = GD.getDecl();
1954
1955 SmallString<256> Buffer;
1956 llvm::raw_svector_ostream Out(Buffer);
1957 if (!D)
1958 MangleCtx.mangleGlobalBlock(BD,
1959 dyn_cast_or_null<VarDecl>(Val: initializedGlobalDecl.getDecl()), Out);
1960 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(Val: D))
1961 MangleCtx.mangleCtorBlock(CD, CT: GD.getCtorType(), BD, Out);
1962 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: D))
1963 MangleCtx.mangleDtorBlock(CD: DD, DT: GD.getDtorType(), BD, Out);
1964 else
1965 MangleCtx.mangleBlock(DC: cast<DeclContext>(Val: D), BD, Out);
1966
1967 auto Result = Manglings.insert(KV: std::make_pair(x: Out.str(), y&: BD));
1968 return Result.first->first();
1969}
1970
1971const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1972 auto it = MangledDeclNames.begin();
1973 while (it != MangledDeclNames.end()) {
1974 if (it->second == Name)
1975 return it->first;
1976 it++;
1977 }
1978 return GlobalDecl();
1979}
1980
1981llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1982 return getModule().getNamedValue(Name);
1983}
1984
1985/// AddGlobalCtor - Add a function to the list that will be called before
1986/// main() runs.
1987void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1988 unsigned LexOrder,
1989 llvm::Constant *AssociatedData) {
1990 // FIXME: Type coercion of void()* types.
1991 GlobalCtors.push_back(x: Structor(Priority, LexOrder, Ctor, AssociatedData));
1992}
1993
1994/// AddGlobalDtor - Add a function to the list that will be called
1995/// when the module is unloaded.
1996void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1997 bool IsDtorAttrFunc) {
1998 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1999 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2000 DtorsUsingAtExit[Priority].push_back(NewVal: Dtor);
2001 return;
2002 }
2003
2004 // FIXME: Type coercion of void()* types.
2005 GlobalDtors.push_back(x: Structor(Priority, ~0U, Dtor, nullptr));
2006}
2007
2008void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2009 if (Fns.empty()) return;
2010
2011 // Ctor function type is void()*.
2012 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(Result: VoidTy, isVarArg: false);
2013 llvm::Type *CtorPFTy = llvm::PointerType::get(ElementType: CtorFTy,
2014 AddressSpace: TheModule.getDataLayout().getProgramAddressSpace());
2015
2016 // Get the type of a ctor entry, { i32, void ()*, i8* }.
2017 llvm::StructType *CtorStructTy = llvm::StructType::get(
2018 elt1: Int32Ty, elts: CtorPFTy, elts: VoidPtrTy);
2019
2020 // Construct the constructor and destructor arrays.
2021 ConstantInitBuilder builder(*this);
2022 auto ctors = builder.beginArray(eltTy: CtorStructTy);
2023 for (const auto &I : Fns) {
2024 auto ctor = ctors.beginStruct(ty: CtorStructTy);
2025 ctor.addInt(intTy: Int32Ty, value: I.Priority);
2026 ctor.add(value: I.Initializer);
2027 if (I.AssociatedData)
2028 ctor.add(value: I.AssociatedData);
2029 else
2030 ctor.addNullPointer(ptrTy: VoidPtrTy);
2031 ctor.finishAndAddTo(parent&: ctors);
2032 }
2033
2034 auto list =
2035 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2036 /*constant*/ false,
2037 llvm::GlobalValue::AppendingLinkage);
2038
2039 // The LTO linker doesn't seem to like it when we set an alignment
2040 // on appending variables. Take it off as a workaround.
2041 list->setAlignment(std::nullopt);
2042
2043 Fns.clear();
2044}
2045
2046llvm::GlobalValue::LinkageTypes
2047CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2048 const auto *D = cast<FunctionDecl>(Val: GD.getDecl());
2049
2050 GVALinkage Linkage = getContext().GetGVALinkageForFunction(FD: D);
2051
2052 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(Val: D))
2053 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, DT: GD.getDtorType());
2054
2055 return getLLVMLinkageForDeclarator(D, Linkage);
2056}
2057
2058llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2059 llvm::MDString *MDS = dyn_cast<llvm::MDString>(Val: MD);
2060 if (!MDS) return nullptr;
2061
2062 return llvm::ConstantInt::get(Ty: Int64Ty, V: llvm::MD5Hash(Str: MDS->getString()));
2063}
2064
2065llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2066 if (auto *FnType = T->getAs<FunctionProtoType>())
2067 T = getContext().getFunctionType(
2068 ResultTy: FnType->getReturnType(), Args: FnType->getParamTypes(),
2069 EPI: FnType->getExtProtoInfo().withExceptionSpec(ESI: EST_None));
2070
2071 std::string OutName;
2072 llvm::raw_string_ostream Out(OutName);
2073 getCXXABI().getMangleContext().mangleCanonicalTypeName(
2074 T, Out, NormalizeIntegers: getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2075
2076 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2077 Out << ".normalized";
2078
2079 return llvm::ConstantInt::get(Ty: Int32Ty,
2080 V: static_cast<uint32_t>(llvm::xxHash64(Data: OutName)));
2081}
2082
2083void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2084 const CGFunctionInfo &Info,
2085 llvm::Function *F, bool IsThunk) {
2086 unsigned CallingConv;
2087 llvm::AttributeList PAL;
2088 ConstructAttributeList(Name: F->getName(), Info, CalleeInfo: GD, Attrs&: PAL, CallingConv,
2089 /*AttrOnCallSite=*/false, IsThunk);
2090 if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2091 getTarget().getTriple().isWindowsArm64EC()) {
2092 SourceLocation Loc;
2093 if (const Decl *D = GD.getDecl())
2094 Loc = D->getLocation();
2095
2096 Error(loc: Loc, message: "__vectorcall calling convention is not currently supported");
2097 }
2098 F->setAttributes(PAL);
2099 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2100}
2101
2102static void removeImageAccessQualifier(std::string& TyName) {
2103 std::string ReadOnlyQual("__read_only");
2104 std::string::size_type ReadOnlyPos = TyName.find(str: ReadOnlyQual);
2105 if (ReadOnlyPos != std::string::npos)
2106 // "+ 1" for the space after access qualifier.
2107 TyName.erase(pos: ReadOnlyPos, n: ReadOnlyQual.size() + 1);
2108 else {
2109 std::string WriteOnlyQual("__write_only");
2110 std::string::size_type WriteOnlyPos = TyName.find(str: WriteOnlyQual);
2111 if (WriteOnlyPos != std::string::npos)
2112 TyName.erase(pos: WriteOnlyPos, n: WriteOnlyQual.size() + 1);
2113 else {
2114 std::string ReadWriteQual("__read_write");
2115 std::string::size_type ReadWritePos = TyName.find(str: ReadWriteQual);
2116 if (ReadWritePos != std::string::npos)
2117 TyName.erase(pos: ReadWritePos, n: ReadWriteQual.size() + 1);
2118 }
2119 }
2120}
2121
2122// Returns the address space id that should be produced to the
2123// kernel_arg_addr_space metadata. This is always fixed to the ids
2124// as specified in the SPIR 2.0 specification in order to differentiate
2125// for example in clGetKernelArgInfo() implementation between the address
2126// spaces with targets without unique mapping to the OpenCL address spaces
2127// (basically all single AS CPUs).
2128static unsigned ArgInfoAddressSpace(LangAS AS) {
2129 switch (AS) {
2130 case LangAS::opencl_global:
2131 return 1;
2132 case LangAS::opencl_constant:
2133 return 2;
2134 case LangAS::opencl_local:
2135 return 3;
2136 case LangAS::opencl_generic:
2137 return 4; // Not in SPIR 2.0 specs.
2138 case LangAS::opencl_global_device:
2139 return 5;
2140 case LangAS::opencl_global_host:
2141 return 6;
2142 default:
2143 return 0; // Assume private.
2144 }
2145}
2146
2147void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2148 const FunctionDecl *FD,
2149 CodeGenFunction *CGF) {
2150 assert(((FD && CGF) || (!FD && !CGF)) &&
2151 "Incorrect use - FD and CGF should either be both null or not!");
2152 // Create MDNodes that represent the kernel arg metadata.
2153 // Each MDNode is a list in the form of "key", N number of values which is
2154 // the same number of values as their are kernel arguments.
2155
2156 const PrintingPolicy &Policy = Context.getPrintingPolicy();
2157
2158 // MDNode for the kernel argument address space qualifiers.
2159 SmallVector<llvm::Metadata *, 8> addressQuals;
2160
2161 // MDNode for the kernel argument access qualifiers (images only).
2162 SmallVector<llvm::Metadata *, 8> accessQuals;
2163
2164 // MDNode for the kernel argument type names.
2165 SmallVector<llvm::Metadata *, 8> argTypeNames;
2166
2167 // MDNode for the kernel argument base type names.
2168 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2169
2170 // MDNode for the kernel argument type qualifiers.
2171 SmallVector<llvm::Metadata *, 8> argTypeQuals;
2172
2173 // MDNode for the kernel argument names.
2174 SmallVector<llvm::Metadata *, 8> argNames;
2175
2176 if (FD && CGF)
2177 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2178 const ParmVarDecl *parm = FD->getParamDecl(i);
2179 // Get argument name.
2180 argNames.push_back(Elt: llvm::MDString::get(VMContext, parm->getName()));
2181
2182 if (!getLangOpts().OpenCL)
2183 continue;
2184 QualType ty = parm->getType();
2185 std::string typeQuals;
2186
2187 // Get image and pipe access qualifier:
2188 if (ty->isImageType() || ty->isPipeType()) {
2189 const Decl *PDecl = parm;
2190 if (const auto *TD = ty->getAs<TypedefType>())
2191 PDecl = TD->getDecl();
2192 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2193 if (A && A->isWriteOnly())
2194 accessQuals.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: "write_only"));
2195 else if (A && A->isReadWrite())
2196 accessQuals.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: "read_write"));
2197 else
2198 accessQuals.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: "read_only"));
2199 } else
2200 accessQuals.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: "none"));
2201
2202 auto getTypeSpelling = [&](QualType Ty) {
2203 auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2204
2205 if (Ty.isCanonical()) {
2206 StringRef typeNameRef = typeName;
2207 // Turn "unsigned type" to "utype"
2208 if (typeNameRef.consume_front(Prefix: "unsigned "))
2209 return std::string("u") + typeNameRef.str();
2210 if (typeNameRef.consume_front(Prefix: "signed "))
2211 return typeNameRef.str();
2212 }
2213
2214 return typeName;
2215 };
2216
2217 if (ty->isPointerType()) {
2218 QualType pointeeTy = ty->getPointeeType();
2219
2220 // Get address qualifier.
2221 addressQuals.push_back(
2222 Elt: llvm::ConstantAsMetadata::get(C: CGF->Builder.getInt32(
2223 C: ArgInfoAddressSpace(AS: pointeeTy.getAddressSpace()))));
2224
2225 // Get argument type name.
2226 std::string typeName = getTypeSpelling(pointeeTy) + "*";
2227 std::string baseTypeName =
2228 getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2229 argTypeNames.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: typeName));
2230 argBaseTypeNames.push_back(
2231 Elt: llvm::MDString::get(Context&: VMContext, Str: baseTypeName));
2232
2233 // Get argument type qualifiers:
2234 if (ty.isRestrictQualified())
2235 typeQuals = "restrict";
2236 if (pointeeTy.isConstQualified() ||
2237 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2238 typeQuals += typeQuals.empty() ? "const" : " const";
2239 if (pointeeTy.isVolatileQualified())
2240 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2241 } else {
2242 uint32_t AddrSpc = 0;
2243 bool isPipe = ty->isPipeType();
2244 if (ty->isImageType() || isPipe)
2245 AddrSpc = ArgInfoAddressSpace(AS: LangAS::opencl_global);
2246
2247 addressQuals.push_back(
2248 Elt: llvm::ConstantAsMetadata::get(C: CGF->Builder.getInt32(C: AddrSpc)));
2249
2250 // Get argument type name.
2251 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2252 std::string typeName = getTypeSpelling(ty);
2253 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2254
2255 // Remove access qualifiers on images
2256 // (as they are inseparable from type in clang implementation,
2257 // but OpenCL spec provides a special query to get access qualifier
2258 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2259 if (ty->isImageType()) {
2260 removeImageAccessQualifier(TyName&: typeName);
2261 removeImageAccessQualifier(TyName&: baseTypeName);
2262 }
2263
2264 argTypeNames.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: typeName));
2265 argBaseTypeNames.push_back(
2266 Elt: llvm::MDString::get(Context&: VMContext, Str: baseTypeName));
2267
2268 if (isPipe)
2269 typeQuals = "pipe";
2270 }
2271 argTypeQuals.push_back(Elt: llvm::MDString::get(Context&: VMContext, Str: typeQuals));
2272 }
2273
2274 if (getLangOpts().OpenCL) {
2275 Fn->setMetadata(Kind: "kernel_arg_addr_space",
2276 Node: llvm::MDNode::get(Context&: VMContext, MDs: addressQuals));
2277 Fn->setMetadata(Kind: "kernel_arg_access_qual",
2278 Node: llvm::MDNode::get(Context&: VMContext, MDs: accessQuals));
2279 Fn->setMetadata(Kind: "kernel_arg_type",
2280 Node: llvm::MDNode::get(Context&: VMContext, MDs: argTypeNames));
2281 Fn->setMetadata(Kind: "kernel_arg_base_type",
2282 Node: llvm::MDNode::get(Context&: VMContext, MDs: argBaseTypeNames));
2283 Fn->setMetadata(Kind: "kernel_arg_type_qual",
2284 Node: llvm::MDNode::get(Context&: VMContext, MDs: argTypeQuals));
2285 }
2286 if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2287 getCodeGenOpts().HIPSaveKernelArgName)
2288 Fn->setMetadata(Kind: "kernel_arg_name",
2289 Node: llvm::MDNode::get(Context&: VMContext, MDs: argNames));
2290}
2291
2292/// Determines whether the language options require us to model
2293/// unwind exceptions. We treat -fexceptions as mandating this
2294/// except under the fragile ObjC ABI with only ObjC exceptions
2295/// enabled. This means, for example, that C with -fexceptions
2296/// enables this.
2297static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2298 // If exceptions are completely disabled, obviously this is false.
2299 if (!LangOpts.Exceptions) return false;
2300
2301 // If C++ exceptions are enabled, this is true.
2302 if (LangOpts.CXXExceptions) return true;
2303
2304 // If ObjC exceptions are enabled, this depends on the ABI.
2305 if (LangOpts.ObjCExceptions) {
2306 return LangOpts.ObjCRuntime.hasUnwindExceptions();
2307 }
2308
2309 return true;
2310}
2311
2312static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2313 const CXXMethodDecl *MD) {
2314 // Check that the type metadata can ever actually be used by a call.
2315 if (!CGM.getCodeGenOpts().LTOUnit ||
2316 !CGM.HasHiddenLTOVisibility(RD: MD->getParent()))
2317 return false;
2318
2319 // Only functions whose address can be taken with a member function pointer
2320 // need this sort of type metadata.
2321 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2322 !isa<CXXConstructorDecl, CXXDestructorDecl>(Val: MD);
2323}
2324
2325SmallVector<const CXXRecordDecl *, 0>
2326CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2327 llvm::SetVector<const CXXRecordDecl *> MostBases;
2328
2329 std::function<void (const CXXRecordDecl *)> CollectMostBases;
2330 CollectMostBases = [&](const CXXRecordDecl *RD) {
2331 if (RD->getNumBases() == 0)
2332 MostBases.insert(X: RD);
2333 for (const CXXBaseSpecifier &B : RD->bases())
2334 CollectMostBases(B.getType()->getAsCXXRecordDecl());
2335 };
2336 CollectMostBases(RD);
2337 return MostBases.takeVector();
2338}
2339
2340void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2341 llvm::Function *F) {
2342 llvm::AttrBuilder B(F->getContext());
2343
2344 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2345 B.addUWTableAttr(Kind: llvm::UWTableKind(CodeGenOpts.UnwindTables));
2346
2347 if (CodeGenOpts.StackClashProtector)
2348 B.addAttribute(A: "probe-stack", V: "inline-asm");
2349
2350 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2351 B.addAttribute(A: "stack-probe-size",
2352 V: std::to_string(val: CodeGenOpts.StackProbeSize));
2353
2354 if (!hasUnwindExceptions(LangOpts))
2355 B.addAttribute(llvm::Attribute::NoUnwind);
2356
2357 if (D && D->hasAttr<NoStackProtectorAttr>())
2358 ; // Do nothing.
2359 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2360 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2361 B.addAttribute(llvm::Attribute::StackProtectStrong);
2362 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2363 B.addAttribute(llvm::Attribute::StackProtect);
2364 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2365 B.addAttribute(llvm::Attribute::StackProtectStrong);
2366 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2367 B.addAttribute(llvm::Attribute::StackProtectReq);
2368
2369 if (!D) {
2370 // If we don't have a declaration to control inlining, the function isn't
2371 // explicitly marked as alwaysinline for semantic reasons, and inlining is
2372 // disabled, mark the function as noinline.
2373 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2374 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2375 B.addAttribute(llvm::Attribute::NoInline);
2376
2377 F->addFnAttrs(Attrs: B);
2378 return;
2379 }
2380
2381 // Handle SME attributes that apply to function definitions,
2382 // rather than to function prototypes.
2383 if (D->hasAttr<ArmLocallyStreamingAttr>())
2384 B.addAttribute(A: "aarch64_pstate_sm_body");
2385
2386 if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2387 if (Attr->isNewZA())
2388 B.addAttribute(A: "aarch64_new_za");
2389 if (Attr->isNewZT0())
2390 B.addAttribute(A: "aarch64_new_zt0");
2391 }
2392
2393 // Track whether we need to add the optnone LLVM attribute,
2394 // starting with the default for this optimization level.
2395 bool ShouldAddOptNone =
2396 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2397 // We can't add optnone in the following cases, it won't pass the verifier.
2398 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2399 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2400
2401 // Add optnone, but do so only if the function isn't always_inline.
2402 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2403 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2404 B.addAttribute(llvm::Attribute::OptimizeNone);
2405
2406 // OptimizeNone implies noinline; we should not be inlining such functions.
2407 B.addAttribute(llvm::Attribute::NoInline);
2408
2409 // We still need to handle naked functions even though optnone subsumes
2410 // much of their semantics.
2411 if (D->hasAttr<NakedAttr>())
2412 B.addAttribute(llvm::Attribute::Naked);
2413
2414 // OptimizeNone wins over OptimizeForSize and MinSize.
2415 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2416 F->removeFnAttr(llvm::Attribute::MinSize);
2417 } else if (D->hasAttr<NakedAttr>()) {
2418 // Naked implies noinline: we should not be inlining such functions.
2419 B.addAttribute(llvm::Attribute::Naked);
2420 B.addAttribute(llvm::Attribute::NoInline);
2421 } else if (D->hasAttr<NoDuplicateAttr>()) {
2422 B.addAttribute(llvm::Attribute::NoDuplicate);
2423 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2424 // Add noinline if the function isn't always_inline.
2425 B.addAttribute(llvm::Attribute::NoInline);
2426 } else if (D->hasAttr<AlwaysInlineAttr>() &&
2427 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2428 // (noinline wins over always_inline, and we can't specify both in IR)
2429 B.addAttribute(llvm::Attribute::AlwaysInline);
2430 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2431 // If we're not inlining, then force everything that isn't always_inline to
2432 // carry an explicit noinline attribute.
2433 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2434 B.addAttribute(llvm::Attribute::NoInline);
2435 } else {
2436 // Otherwise, propagate the inline hint attribute and potentially use its
2437 // absence to mark things as noinline.
2438 if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
2439 // Search function and template pattern redeclarations for inline.
2440 auto CheckForInline = [](const FunctionDecl *FD) {
2441 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2442 return Redecl->isInlineSpecified();
2443 };
2444 if (any_of(FD->redecls(), CheckRedeclForInline))
2445 return true;
2446 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2447 if (!Pattern)
2448 return false;
2449 return any_of(Pattern->redecls(), CheckRedeclForInline);
2450 };
2451 if (CheckForInline(FD)) {
2452 B.addAttribute(llvm::Attribute::InlineHint);
2453 } else if (CodeGenOpts.getInlining() ==
2454 CodeGenOptions::OnlyHintInlining &&
2455 !FD->isInlined() &&
2456 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2457 B.addAttribute(llvm::Attribute::NoInline);
2458 }
2459 }
2460 }
2461
2462 // Add other optimization related attributes if we are optimizing this
2463 // function.
2464 if (!D->hasAttr<OptimizeNoneAttr>()) {
2465 if (D->hasAttr<ColdAttr>()) {
2466 if (!ShouldAddOptNone)
2467 B.addAttribute(llvm::Attribute::OptimizeForSize);
2468 B.addAttribute(llvm::Attribute::Cold);
2469 }
2470 if (D->hasAttr<HotAttr>())
2471 B.addAttribute(llvm::Attribute::Hot);
2472 if (D->hasAttr<MinSizeAttr>())
2473 B.addAttribute(llvm::Attribute::MinSize);
2474 }
2475
2476 F->addFnAttrs(Attrs: B);
2477
2478 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2479 if (alignment)
2480 F->setAlignment(llvm::Align(alignment));
2481
2482 if (!D->hasAttr<AlignedAttr>())
2483 if (LangOpts.FunctionAlignment)
2484 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2485
2486 // Some C++ ABIs require 2-byte alignment for member functions, in order to
2487 // reserve a bit for differentiating between virtual and non-virtual member
2488 // functions. If the current target's C++ ABI requires this and this is a
2489 // member function, set its alignment accordingly.
2490 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2491 if (isa<CXXMethodDecl>(Val: D) && F->getPointerAlignment(DL: getDataLayout()) < 2)
2492 F->setAlignment(std::max(a: llvm::Align(2), b: F->getAlign().valueOrOne()));
2493 }
2494
2495 // In the cross-dso CFI mode with canonical jump tables, we want !type
2496 // attributes on definitions only.
2497 if (CodeGenOpts.SanitizeCfiCrossDso &&
2498 CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2499 if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
2500 // Skip available_externally functions. They won't be codegen'ed in the
2501 // current module anyway.
2502 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2503 CreateFunctionTypeMetadataForIcall(FD, F);
2504 }
2505 }
2506
2507 // Emit type metadata on member functions for member function pointer checks.
2508 // These are only ever necessary on definitions; we're guaranteed that the
2509 // definition will be present in the LTO unit as a result of LTO visibility.
2510 auto *MD = dyn_cast<CXXMethodDecl>(Val: D);
2511 if (MD && requiresMemberFunctionPointerTypeMetadata(CGM&: *this, MD)) {
2512 for (const CXXRecordDecl *Base : getMostBaseClasses(RD: MD->getParent())) {
2513 llvm::Metadata *Id =
2514 CreateMetadataIdentifierForType(T: Context.getMemberPointerType(
2515 T: MD->getType(), Cls: Context.getRecordType(Base).getTypePtr()));
2516 F->addTypeMetadata(Offset: 0, TypeID: Id);
2517 }
2518 }
2519}
2520
2521void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2522 const Decl *D = GD.getDecl();
2523 if (isa_and_nonnull<NamedDecl>(Val: D))
2524 setGVProperties(GV, GD);
2525 else
2526 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2527
2528 if (D && D->hasAttr<UsedAttr>())
2529 addUsedOrCompilerUsedGlobal(GV);
2530
2531 if (const auto *VD = dyn_cast_if_present<VarDecl>(Val: D);
2532 VD &&
2533 ((CodeGenOpts.KeepPersistentStorageVariables &&
2534 (VD->getStorageDuration() == SD_Static ||
2535 VD->getStorageDuration() == SD_Thread)) ||
2536 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2537 VD->getType().isConstQualified())))
2538 addUsedOrCompilerUsedGlobal(GV);
2539}
2540
2541bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2542 llvm::AttrBuilder &Attrs,
2543 bool SetTargetFeatures) {
2544 // Add target-cpu and target-features attributes to functions. If
2545 // we have a decl for the function and it has a target attribute then
2546 // parse that and add it to the feature set.
2547 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2548 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2549 std::vector<std::string> Features;
2550 const auto *FD = dyn_cast_or_null<FunctionDecl>(Val: GD.getDecl());
2551 FD = FD ? FD->getMostRecentDecl() : FD;
2552 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2553 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2554 assert((!TD || !TV) && "both target_version and target specified");
2555 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2556 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2557 bool AddedAttr = false;
2558 if (TD || TV || SD || TC) {
2559 llvm::StringMap<bool> FeatureMap;
2560 getContext().getFunctionFeatureMap(FeatureMap, GD);
2561
2562 // Produce the canonical string for this set of features.
2563 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2564 Features.push_back(x: (Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2565
2566 // Now add the target-cpu and target-features to the function.
2567 // While we populated the feature map above, we still need to
2568 // get and parse the target attribute so we can get the cpu for
2569 // the function.
2570 if (TD) {
2571 ParsedTargetAttr ParsedAttr =
2572 Target.parseTargetAttr(Str: TD->getFeaturesStr());
2573 if (!ParsedAttr.CPU.empty() &&
2574 getTarget().isValidCPUName(Name: ParsedAttr.CPU)) {
2575 TargetCPU = ParsedAttr.CPU;
2576 TuneCPU = ""; // Clear the tune CPU.
2577 }
2578 if (!ParsedAttr.Tune.empty() &&
2579 getTarget().isValidCPUName(Name: ParsedAttr.Tune))
2580 TuneCPU = ParsedAttr.Tune;
2581 }
2582
2583 if (SD) {
2584 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2585 // favor this processor.
2586 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2587 }
2588 } else {
2589 // Otherwise just add the existing target cpu and target features to the
2590 // function.
2591 Features = getTarget().getTargetOpts().Features;
2592 }
2593
2594 if (!TargetCPU.empty()) {
2595 Attrs.addAttribute(A: "target-cpu", V: TargetCPU);
2596 AddedAttr = true;
2597 }
2598 if (!TuneCPU.empty()) {
2599 Attrs.addAttribute(A: "tune-cpu", V: TuneCPU);
2600 AddedAttr = true;
2601 }
2602 if (!Features.empty() && SetTargetFeatures) {
2603 llvm::erase_if(C&: Features, P: [&](const std::string& F) {
2604 return getTarget().isReadOnlyFeature(Feature: F.substr(pos: 1));
2605 });
2606 llvm::sort(C&: Features);
2607 Attrs.addAttribute(A: "target-features", V: llvm::join(R&: Features, Separator: ","));
2608 AddedAttr = true;
2609 }
2610
2611 return AddedAttr;
2612}
2613
2614void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2615 llvm::GlobalObject *GO) {
2616 const Decl *D = GD.getDecl();
2617 SetCommonAttributes(GD, GV: GO);
2618
2619 if (D) {
2620 if (auto *GV = dyn_cast<llvm::GlobalVariable>(Val: GO)) {
2621 if (D->hasAttr<RetainAttr>())
2622 addUsedGlobal(GV);
2623 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2624 GV->addAttribute("bss-section", SA->getName());
2625 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2626 GV->addAttribute("data-section", SA->getName());
2627 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2628 GV->addAttribute("rodata-section", SA->getName());
2629 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2630 GV->addAttribute("relro-section", SA->getName());
2631 }
2632
2633 if (auto *F = dyn_cast<llvm::Function>(Val: GO)) {
2634 if (D->hasAttr<RetainAttr>())
2635 addUsedGlobal(GV: F);
2636 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2637 if (!D->getAttr<SectionAttr>())
2638 F->setSection(SA->getName());
2639
2640 llvm::AttrBuilder Attrs(F->getContext());
2641 if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2642 // We know that GetCPUAndFeaturesAttributes will always have the
2643 // newest set, since it has the newest possible FunctionDecl, so the
2644 // new ones should replace the old.
2645 llvm::AttributeMask RemoveAttrs;
2646 RemoveAttrs.addAttribute(A: "target-cpu");
2647 RemoveAttrs.addAttribute(A: "target-features");
2648 RemoveAttrs.addAttribute(A: "tune-cpu");
2649 F->removeFnAttrs(Attrs: RemoveAttrs);
2650 F->addFnAttrs(Attrs);
2651 }
2652 }
2653
2654 if (const auto *CSA = D->getAttr<CodeSegAttr>())
2655 GO->setSection(CSA->getName());
2656 else if (const auto *SA = D->getAttr<SectionAttr>())
2657 GO->setSection(SA->getName());
2658 }
2659
2660 getTargetCodeGenInfo().setTargetAttributes(D, GV: GO, M&: *this);
2661}
2662
2663void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2664 llvm::Function *F,
2665 const CGFunctionInfo &FI) {
2666 const Decl *D = GD.getDecl();
2667 SetLLVMFunctionAttributes(GD, Info: FI, F, /*IsThunk=*/false);
2668 SetLLVMFunctionAttributesForDefinition(D, F);
2669
2670 F->setLinkage(llvm::Function::InternalLinkage);
2671
2672 setNonAliasAttributes(GD, GO: F);
2673}
2674
2675static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2676 // Set linkage and visibility in case we never see a definition.
2677 LinkageInfo LV = ND->getLinkageAndVisibility();
2678 // Don't set internal linkage on declarations.
2679 // "extern_weak" is overloaded in LLVM; we probably should have
2680 // separate linkage types for this.
2681 if (isExternallyVisible(LV.getLinkage()) &&
2682 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2683 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2684}
2685
2686void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2687 llvm::Function *F) {
2688 // Only if we are checking indirect calls.
2689 if (!LangOpts.Sanitize.has(K: SanitizerKind::CFIICall))
2690 return;
2691
2692 // Non-static class methods are handled via vtable or member function pointer
2693 // checks elsewhere.
2694 if (isa<CXXMethodDecl>(Val: FD) && !cast<CXXMethodDecl>(Val: FD)->isStatic())
2695 return;
2696
2697 llvm::Metadata *MD = CreateMetadataIdentifierForType(T: FD->getType());
2698 F->addTypeMetadata(Offset: 0, TypeID: MD);
2699 F->addTypeMetadata(Offset: 0, TypeID: CreateMetadataIdentifierGeneralized(T: FD->getType()));
2700
2701 // Emit a hash-based bit set entry for cross-DSO calls.
2702 if (CodeGenOpts.SanitizeCfiCrossDso)
2703 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2704 F->addTypeMetadata(Offset: 0, TypeID: llvm::ConstantAsMetadata::get(C: CrossDsoTypeId));
2705}
2706
2707void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2708 llvm::LLVMContext &Ctx = F->getContext();
2709 llvm::MDBuilder MDB(Ctx);
2710 F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2711 llvm::MDNode::get(
2712 Context&: Ctx, MDs: MDB.createConstant(C: CreateKCFITypeId(T: FD->getType()))));
2713}
2714
2715static bool allowKCFIIdentifier(StringRef Name) {
2716 // KCFI type identifier constants are only necessary for external assembly
2717 // functions, which means it's safe to skip unusual names. Subset of
2718 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2719 return llvm::all_of(Range&: Name, P: [](const char &C) {
2720 return llvm::isAlnum(C) || C == '_' || C == '.';
2721 });
2722}
2723
2724void CodeGenModule::finalizeKCFITypes() {
2725 llvm::Module &M = getModule();
2726 for (auto &F : M.functions()) {
2727 // Remove KCFI type metadata from non-address-taken local functions.
2728 bool AddressTaken = F.hasAddressTaken();
2729 if (!AddressTaken && F.hasLocalLinkage())
2730 F.eraseMetadata(KindID: llvm::LLVMContext::MD_kcfi_type);
2731
2732 // Generate a constant with the expected KCFI type identifier for all
2733 // address-taken function declarations to support annotating indirectly
2734 // called assembly functions.
2735 if (!AddressTaken || !F.isDeclaration())
2736 continue;
2737
2738 const llvm::ConstantInt *Type;
2739 if (const llvm::MDNode *MD = F.getMetadata(KindID: llvm::LLVMContext::MD_kcfi_type))
2740 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD: MD->getOperand(I: 0));
2741 else
2742 continue;
2743
2744 StringRef Name = F.getName();
2745 if (!allowKCFIIdentifier(Name))
2746 continue;
2747
2748 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2749 Name + ", " + Twine(Type->getZExtValue()) + "\n")
2750 .str();
2751 M.appendModuleInlineAsm(Asm);
2752 }
2753}
2754
2755void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2756 bool IsIncompleteFunction,
2757 bool IsThunk) {
2758
2759 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2760 // If this is an intrinsic function, set the function's attributes
2761 // to the intrinsic's attributes.
2762 F->setAttributes(llvm::Intrinsic::getAttributes(C&: getLLVMContext(), id: IID));
2763 return;
2764 }
2765
2766 const auto *FD = cast<FunctionDecl>(Val: GD.getDecl());
2767
2768 if (!IsIncompleteFunction)
2769 SetLLVMFunctionAttributes(GD, Info: getTypes().arrangeGlobalDeclaration(GD), F,
2770 IsThunk);
2771
2772 // Add the Returned attribute for "this", except for iOS 5 and earlier
2773 // where substantial code, including the libstdc++ dylib, was compiled with
2774 // GCC and does not actually return "this".
2775 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2776 !(getTriple().isiOS() && getTriple().isOSVersionLT(Major: 6))) {
2777 assert(!F->arg_empty() &&
2778 F->arg_begin()->getType()
2779 ->canLosslesslyBitCastTo(F->getReturnType()) &&
2780 "unexpected this return");
2781 F->addParamAttr(0, llvm::Attribute::Returned);
2782 }
2783
2784 // Only a few attributes are set on declarations; these may later be
2785 // overridden by a definition.
2786
2787 setLinkageForGV(F, FD);
2788 setGVProperties(GV: F, GD: FD);
2789
2790 // Setup target-specific attributes.
2791 if (!IsIncompleteFunction && F->isDeclaration())
2792 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2793
2794 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2795 F->setSection(CSA->getName());
2796 else if (const auto *SA = FD->getAttr<SectionAttr>())
2797 F->setSection(SA->getName());
2798
2799 if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2800 if (EA->isError())
2801 F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2802 else if (EA->isWarning())
2803 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2804 }
2805
2806 // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2807 if (FD->isInlineBuiltinDeclaration()) {
2808 const FunctionDecl *FDBody;
2809 bool HasBody = FD->hasBody(Definition&: FDBody);
2810 (void)HasBody;
2811 assert(HasBody && "Inline builtin declarations should always have an "
2812 "available body!");
2813 if (shouldEmitFunction(FDBody))
2814 F->addFnAttr(llvm::Attribute::NoBuiltin);
2815 }
2816
2817 if (FD->isReplaceableGlobalAllocationFunction()) {
2818 // A replaceable global allocation function does not act like a builtin by
2819 // default, only if it is invoked by a new-expression or delete-expression.
2820 F->addFnAttr(llvm::Attribute::NoBuiltin);
2821 }
2822
2823 if (isa<CXXConstructorDecl>(Val: FD) || isa<CXXDestructorDecl>(Val: FD))
2824 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2825 else if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD))
2826 if (MD->isVirtual())
2827 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2828
2829 // Don't emit entries for function declarations in the cross-DSO mode. This
2830 // is handled with better precision by the receiving DSO. But if jump tables
2831 // are non-canonical then we need type metadata in order to produce the local
2832 // jump table.
2833 if (!CodeGenOpts.SanitizeCfiCrossDso ||
2834 !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2835 CreateFunctionTypeMetadataForIcall(FD, F);
2836
2837 if (LangOpts.Sanitize.has(K: SanitizerKind::KCFI))
2838 setKCFIType(FD, F);
2839
2840 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2841 getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn: F);
2842
2843 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2844 F->addFnAttr(Kind: "inline-max-stacksize", Val: llvm::utostr(X: CodeGenOpts.InlineMaxStackSize));
2845
2846 if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2847 // Annotate the callback behavior as metadata:
2848 // - The callback callee (as argument number).
2849 // - The callback payloads (as argument numbers).
2850 llvm::LLVMContext &Ctx = F->getContext();
2851 llvm::MDBuilder MDB(Ctx);
2852
2853 // The payload indices are all but the first one in the encoding. The first
2854 // identifies the callback callee.
2855 int CalleeIdx = *CB->encoding_begin();
2856 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2857 F->addMetadata(KindID: llvm::LLVMContext::MD_callback,
2858 MD&: *llvm::MDNode::get(Context&: Ctx, MDs: {MDB.createCallbackEncoding(
2859 CalleeArgNo: CalleeIdx, Arguments: PayloadIndices,
2860 /* VarArgsArePassed */ false)}));
2861 }
2862}
2863
2864void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2865 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2866 "Only globals with definition can force usage.");
2867 LLVMUsed.emplace_back(args&: GV);
2868}
2869
2870void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2871 assert(!GV->isDeclaration() &&
2872 "Only globals with definition can force usage.");
2873 LLVMCompilerUsed.emplace_back(args&: GV);
2874}
2875
2876void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2877 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2878 "Only globals with definition can force usage.");
2879 if (getTriple().isOSBinFormatELF())
2880 LLVMCompilerUsed.emplace_back(args&: GV);
2881 else
2882 LLVMUsed.emplace_back(args&: GV);
2883}
2884
2885static void emitUsed(CodeGenModule &CGM, StringRef Name,
2886 std::vector<llvm::WeakTrackingVH> &List) {
2887 // Don't create llvm.used if there is no need.
2888 if (List.empty())
2889 return;
2890
2891 // Convert List to what ConstantArray needs.
2892 SmallVector<llvm::Constant*, 8> UsedArray;
2893 UsedArray.resize(N: List.size());
2894 for (unsigned i = 0, e = List.size(); i != e; ++i) {
2895 UsedArray[i] =
2896 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2897 C: cast<llvm::Constant>(Val: &*List[i]), Ty: CGM.Int8PtrTy);
2898 }
2899
2900 if (UsedArray.empty())
2901 return;
2902 llvm::ArrayType *ATy = llvm::ArrayType::get(ElementType: CGM.Int8PtrTy, NumElements: UsedArray.size());
2903
2904 auto *GV = new llvm::GlobalVariable(
2905 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2906 llvm::ConstantArray::get(T: ATy, V: UsedArray), Name);
2907
2908 GV->setSection("llvm.metadata");
2909}
2910
2911void CodeGenModule::emitLLVMUsed() {
2912 emitUsed(CGM&: *this, Name: "llvm.used", List&: LLVMUsed);
2913 emitUsed(CGM&: *this, Name: "llvm.compiler.used", List&: LLVMCompilerUsed);
2914}
2915
2916void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2917 auto *MDOpts = llvm::MDString::get(Context&: getLLVMContext(), Str: Opts);
2918 LinkerOptionsMetadata.push_back(Elt: llvm::MDNode::get(Context&: getLLVMContext(), MDs: MDOpts));
2919}
2920
2921void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2922 llvm::SmallString<32> Opt;
2923 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2924 if (Opt.empty())
2925 return;
2926 auto *MDOpts = llvm::MDString::get(Context&: getLLVMContext(), Str: Opt);
2927 LinkerOptionsMetadata.push_back(Elt: llvm::MDNode::get(Context&: getLLVMContext(), MDs: MDOpts));
2928}
2929
2930void CodeGenModule::AddDependentLib(StringRef Lib) {
2931 auto &C = getLLVMContext();
2932 if (getTarget().getTriple().isOSBinFormatELF()) {
2933 ELFDependentLibraries.push_back(
2934 Elt: llvm::MDNode::get(Context&: C, MDs: llvm::MDString::get(Context&: C, Str: Lib)));
2935 return;
2936 }
2937
2938 llvm::SmallString<24> Opt;
2939 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2940 auto *MDOpts = llvm::MDString::get(Context&: getLLVMContext(), Str: Opt);
2941 LinkerOptionsMetadata.push_back(Elt: llvm::MDNode::get(Context&: C, MDs: MDOpts));
2942}
2943
2944/// Add link options implied by the given module, including modules
2945/// it depends on, using a postorder walk.
2946static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2947 SmallVectorImpl<llvm::MDNode *> &Metadata,
2948 llvm::SmallPtrSet<Module *, 16> &Visited) {
2949 // Import this module's parent.
2950 if (Mod->Parent && Visited.insert(Ptr: Mod->Parent).second) {
2951 addLinkOptionsPostorder(CGM, Mod: Mod->Parent, Metadata, Visited);
2952 }
2953
2954 // Import this module's dependencies.
2955 for (Module *Import : llvm::reverse(C&: Mod->Imports)) {
2956 if (Visited.insert(Ptr: Import).second)
2957 addLinkOptionsPostorder(CGM, Mod: Import, Metadata, Visited);
2958 }
2959
2960 // Add linker options to link against the libraries/frameworks
2961 // described by this module.
2962 llvm::LLVMContext &Context = CGM.getLLVMContext();
2963 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2964
2965 // For modules that use export_as for linking, use that module
2966 // name instead.
2967 if (Mod->UseExportAsModuleLinkName)
2968 return;
2969
2970 for (const Module::LinkLibrary &LL : llvm::reverse(C&: Mod->LinkLibraries)) {
2971 // Link against a framework. Frameworks are currently Darwin only, so we
2972 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2973 if (LL.IsFramework) {
2974 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, Str: "-framework"),
2975 llvm::MDString::get(Context, Str: LL.Library)};
2976
2977 Metadata.push_back(Elt: llvm::MDNode::get(Context, MDs: Args));
2978 continue;
2979 }
2980
2981 // Link against a library.
2982 if (IsELF) {
2983 llvm::Metadata *Args[2] = {
2984 llvm::MDString::get(Context, Str: "lib"),
2985 llvm::MDString::get(Context, Str: LL.Library),
2986 };
2987 Metadata.push_back(Elt: llvm::MDNode::get(Context, MDs: Args));
2988 } else {
2989 llvm::SmallString<24> Opt;
2990 CGM.getTargetCodeGenInfo().getDependentLibraryOption(Lib: LL.Library, Opt);
2991 auto *OptString = llvm::MDString::get(Context, Str: Opt);
2992 Metadata.push_back(Elt: llvm::MDNode::get(Context, MDs: OptString));
2993 }
2994 }
2995}
2996
2997void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2998 assert(Primary->isNamedModuleUnit() &&
2999 "We should only emit module initializers for named modules.");
3000
3001 // Emit the initializers in the order that sub-modules appear in the
3002 // source, first Global Module Fragments, if present.
3003 if (auto GMF = Primary->getGlobalModuleFragment()) {
3004 for (Decl *D : getContext().getModuleInitializers(M: GMF)) {
3005 if (isa<ImportDecl>(Val: D))
3006 continue;
3007 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3008 EmitTopLevelDecl(D);
3009 }
3010 }
3011 // Second any associated with the module, itself.
3012 for (Decl *D : getContext().getModuleInitializers(M: Primary)) {
3013 // Skip import decls, the inits for those are called explicitly.
3014 if (isa<ImportDecl>(Val: D))
3015 continue;
3016 EmitTopLevelDecl(D);
3017 }
3018 // Third any associated with the Privat eMOdule Fragment, if present.
3019 if (auto PMF = Primary->getPrivateModuleFragment()) {
3020 for (Decl *D : getContext().getModuleInitializers(M: PMF)) {
3021 // Skip import decls, the inits for those are called explicitly.
3022 if (isa<ImportDecl>(Val: D))
3023 continue;
3024 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3025 EmitTopLevelDecl(D);
3026 }
3027 }
3028}
3029
3030void CodeGenModule::EmitModuleLinkOptions() {
3031 // Collect the set of all of the modules we want to visit to emit link
3032 // options, which is essentially the imported modules and all of their
3033 // non-explicit child modules.
3034 llvm::SetVector<clang::Module *> LinkModules;
3035 llvm::SmallPtrSet<clang::Module *, 16> Visited;
3036 SmallVector<clang::Module *, 16> Stack;
3037
3038 // Seed the stack with imported modules.
3039 for (Module *M : ImportedModules) {
3040 // Do not add any link flags when an implementation TU of a module imports
3041 // a header of that same module.
3042 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3043 !getLangOpts().isCompilingModule())
3044 continue;
3045 if (Visited.insert(Ptr: M).second)
3046 Stack.push_back(Elt: M);
3047 }
3048
3049 // Find all of the modules to import, making a little effort to prune
3050 // non-leaf modules.
3051 while (!Stack.empty()) {
3052 clang::Module *Mod = Stack.pop_back_val();
3053
3054 bool AnyChildren = false;
3055
3056 // Visit the submodules of this module.
3057 for (const auto &SM : Mod->submodules()) {
3058 // Skip explicit children; they need to be explicitly imported to be
3059 // linked against.
3060 if (SM->IsExplicit)
3061 continue;
3062
3063 if (Visited.insert(Ptr: SM).second) {
3064 Stack.push_back(Elt: SM);
3065 AnyChildren = true;
3066 }
3067 }
3068
3069 // We didn't find any children, so add this module to the list of
3070 // modules to link against.
3071 if (!AnyChildren) {
3072 LinkModules.insert(X: Mod);
3073 }
3074 }
3075
3076 // Add link options for all of the imported modules in reverse topological
3077 // order. We don't do anything to try to order import link flags with respect
3078 // to linker options inserted by things like #pragma comment().
3079 SmallVector<llvm::MDNode *, 16> MetadataArgs;
3080 Visited.clear();
3081 for (Module *M : LinkModules)
3082 if (Visited.insert(Ptr: M).second)
3083 addLinkOptionsPostorder(CGM&: *this, Mod: M, Metadata&: MetadataArgs, Visited);
3084 std::reverse(first: MetadataArgs.begin(), last: MetadataArgs.end());
3085 LinkerOptionsMetadata.append(in_start: MetadataArgs.begin(), in_end: MetadataArgs.end());
3086
3087 // Add the linker options metadata flag.
3088 auto *NMD = getModule().getOrInsertNamedMetadata(Name: "llvm.linker.options");
3089 for (auto *MD : LinkerOptionsMetadata)
3090 NMD->addOperand(M: MD);
3091}
3092
3093void CodeGenModule::EmitDeferred() {
3094 // Emit deferred declare target declarations.
3095 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3096 getOpenMPRuntime().emitDeferredTargetDecls();
3097
3098 // Emit code for any potentially referenced deferred decls. Since a
3099 // previously unused static decl may become used during the generation of code
3100 // for a static function, iterate until no changes are made.
3101
3102 if (!DeferredVTables.empty()) {
3103 EmitDeferredVTables();
3104
3105 // Emitting a vtable doesn't directly cause more vtables to
3106 // become deferred, although it can cause functions to be
3107 // emitted that then need those vtables.
3108 assert(DeferredVTables.empty());
3109 }
3110
3111 // Emit CUDA/HIP static device variables referenced by host code only.
3112 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3113 // needed for further handling.
3114 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3115 llvm::append_range(C&: DeferredDeclsToEmit,
3116 R&: getContext().CUDADeviceVarODRUsedByHost);
3117
3118 // Stop if we're out of both deferred vtables and deferred declarations.
3119 if (DeferredDeclsToEmit.empty())
3120 return;
3121
3122 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3123 // work, it will not interfere with this.
3124 std::vector<GlobalDecl> CurDeclsToEmit;
3125 CurDeclsToEmit.swap(x&: DeferredDeclsToEmit);
3126
3127 for (GlobalDecl &D : CurDeclsToEmit) {
3128 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3129 // to get GlobalValue with exactly the type we need, not something that
3130 // might had been created for another decl with the same mangled name but
3131 // different type.
3132 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3133 Val: GetAddrOfGlobal(GD: D, IsForDefinition: ForDefinition));
3134
3135 // In case of different address spaces, we may still get a cast, even with
3136 // IsForDefinition equal to true. Query mangled names table to get
3137 // GlobalValue.
3138 if (!GV)
3139 GV = GetGlobalValue(Name: getMangledName(GD: D));
3140
3141 // Make sure GetGlobalValue returned non-null.
3142 assert(GV);
3143
3144 // Check to see if we've already emitted this. This is necessary
3145 // for a couple of reasons: first, decls can end up in the
3146 // deferred-decls queue multiple times, and second, decls can end
3147 // up with definitions in unusual ways (e.g. by an extern inline
3148 // function acquiring a strong function redefinition). Just
3149 // ignore these cases.
3150 if (!GV->isDeclaration())
3151 continue;
3152
3153 // If this is OpenMP, check if it is legal to emit this global normally.
3154 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD: D))
3155 continue;
3156
3157 // Otherwise, emit the definition and move on to the next one.
3158 EmitGlobalDefinition(D, GV);
3159
3160 // If we found out that we need to emit more decls, do that recursively.
3161 // This has the advantage that the decls are emitted in a DFS and related
3162 // ones are close together, which is convenient for testing.
3163 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3164 EmitDeferred();
3165 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3166 }
3167 }
3168}
3169
3170void CodeGenModule::EmitVTablesOpportunistically() {
3171 // Try to emit external vtables as available_externally if they have emitted
3172 // all inlined virtual functions. It runs after EmitDeferred() and therefore
3173 // is not allowed to create new references to things that need to be emitted
3174 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3175
3176 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3177 && "Only emit opportunistic vtables with optimizations");
3178
3179 for (const CXXRecordDecl *RD : OpportunisticVTables) {
3180 assert(getVTables().isVTableExternal(RD) &&
3181 "This queue should only contain external vtables");
3182 if (getCXXABI().canSpeculativelyEmitVTable(RD))
3183 VTables.GenerateClassData(RD);
3184 }
3185 OpportunisticVTables.clear();
3186}
3187
3188void CodeGenModule::EmitGlobalAnnotations() {
3189 for (const auto& [MangledName, VD] : DeferredAnnotations) {
3190 llvm::GlobalValue *GV = GetGlobalValue(Name: MangledName);
3191 if (GV)
3192 AddGlobalAnnotations(D: VD, GV);
3193 }
3194 DeferredAnnotations.clear();
3195
3196 if (Annotations.empty())
3197 return;
3198
3199 // Create a new global variable for the ConstantStruct in the Module.
3200 llvm::Constant *Array = llvm::ConstantArray::get(T: llvm::ArrayType::get(
3201 ElementType: Annotations[0]->getType(), NumElements: Annotations.size()), V: Annotations);
3202 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3203 llvm::GlobalValue::AppendingLinkage,
3204 Array, "llvm.global.annotations");
3205 gv->setSection(AnnotationSection);
3206}
3207
3208llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3209 llvm::Constant *&AStr = AnnotationStrings[Str];
3210 if (AStr)
3211 return AStr;
3212
3213 // Not found yet, create a new global.
3214 llvm::Constant *s = llvm::ConstantDataArray::getString(Context&: getLLVMContext(), Initializer: Str);
3215 auto *gv = new llvm::GlobalVariable(
3216 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3217 ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3218 ConstGlobalsPtrTy->getAddressSpace());
3219 gv->setSection(AnnotationSection);
3220 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3221 AStr = gv;
3222 return gv;
3223}
3224
3225llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3226 SourceManager &SM = getContext().getSourceManager();
3227 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3228 if (PLoc.isValid())
3229 return EmitAnnotationString(Str: PLoc.getFilename());
3230 return EmitAnnotationString(Str: SM.getBufferName(Loc));
3231}
3232
3233llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3234 SourceManager &SM = getContext().getSourceManager();
3235 PresumedLoc PLoc = SM.getPresumedLoc(Loc: L);
3236 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3237 SM.getExpansionLineNumber(Loc: L);
3238 return llvm::ConstantInt::get(Ty: Int32Ty, V: LineNo);
3239}
3240
3241llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3242 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3243 if (Exprs.empty())
3244 return llvm::ConstantPointerNull::get(T: ConstGlobalsPtrTy);
3245
3246 llvm::FoldingSetNodeID ID;
3247 for (Expr *E : Exprs) {
3248 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3249 }
3250 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3251 if (Lookup)
3252 return Lookup;
3253
3254 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3255 LLVMArgs.reserve(N: Exprs.size());
3256 ConstantEmitter ConstEmiter(*this);
3257 llvm::transform(Range&: Exprs, d_first: std::back_inserter(x&: LLVMArgs), F: [&](const Expr *E) {
3258 const auto *CE = cast<clang::ConstantExpr>(Val: E);
3259 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3260 CE->getType());
3261 });
3262 auto *Struct = llvm::ConstantStruct::getAnon(V: LLVMArgs);
3263 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3264 llvm::GlobalValue::PrivateLinkage, Struct,
3265 ".args");
3266 GV->setSection(AnnotationSection);
3267 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3268
3269 Lookup = GV;
3270 return GV;
3271}
3272
3273llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3274 const AnnotateAttr *AA,
3275 SourceLocation L) {
3276 // Get the globals for file name, annotation, and the line number.
3277 llvm::Constant *AnnoGV = EmitAnnotationString(Str: AA->getAnnotation()),
3278 *UnitGV = EmitAnnotationUnit(Loc: L),
3279 *LineNoCst = EmitAnnotationLineNo(L),
3280 *Args = EmitAnnotationArgs(Attr: AA);
3281
3282 llvm::Constant *GVInGlobalsAS = GV;
3283 if (GV->getAddressSpace() !=
3284 getDataLayout().getDefaultGlobalsAddressSpace()) {
3285 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3286 C: GV,
3287 Ty: llvm::PointerType::get(
3288 C&: GV->getContext(), AddressSpace: getDataLayout().getDefaultGlobalsAddressSpace()));
3289 }
3290
3291 // Create the ConstantStruct for the global annotation.
3292 llvm::Constant *Fields[] = {
3293 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3294 };
3295 return llvm::ConstantStruct::getAnon(V: Fields);
3296}
3297
3298void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3299 llvm::GlobalValue *GV) {
3300 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3301 // Get the struct elements for these annotations.
3302 for (const auto *I : D->specific_attrs<AnnotateAttr>())
3303 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3304}
3305
3306bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3307 SourceLocation Loc) const {
3308 const auto &NoSanitizeL = getContext().getNoSanitizeList();
3309 // NoSanitize by function name.
3310 if (NoSanitizeL.containsFunction(Mask: Kind, FunctionName: Fn->getName()))
3311 return true;
3312 // NoSanitize by location. Check "mainfile" prefix.
3313 auto &SM = Context.getSourceManager();
3314 FileEntryRef MainFile = *SM.getFileEntryRefForID(FID: SM.getMainFileID());
3315 if (NoSanitizeL.containsMainFile(Mask: Kind, FileName: MainFile.getName()))
3316 return true;
3317
3318 // Check "src" prefix.
3319 if (Loc.isValid())
3320 return NoSanitizeL.containsLocation(Mask: Kind, Loc);
3321 // If location is unknown, this may be a compiler-generated function. Assume
3322 // it's located in the main file.
3323 return NoSanitizeL.containsFile(Mask: Kind, FileName: MainFile.getName());
3324}
3325
3326bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3327 llvm::GlobalVariable *GV,
3328 SourceLocation Loc, QualType Ty,
3329 StringRef Category) const {
3330 const auto &NoSanitizeL = getContext().getNoSanitizeList();
3331 if (NoSanitizeL.containsGlobal(Mask: Kind, GlobalName: GV->getName(), Category))
3332 return true;
3333 auto &SM = Context.getSourceManager();
3334 if (NoSanitizeL.containsMainFile(
3335 Mask: Kind, FileName: SM.getFileEntryRefForID(FID: SM.getMainFileID())->getName(),
3336 Category))
3337 return true;
3338 if (NoSanitizeL.containsLocation(Mask: Kind, Loc, Category))
3339 return true;
3340
3341 // Check global type.
3342 if (!Ty.isNull()) {
3343 // Drill down the array types: if global variable of a fixed type is
3344 // not sanitized, we also don't instrument arrays of them.
3345 while (auto AT = dyn_cast<ArrayType>(Val: Ty.getTypePtr()))
3346 Ty = AT->getElementType();
3347 Ty = Ty.getCanonicalType().getUnqualifiedType();
3348 // Only record types (classes, structs etc.) are ignored.
3349 if (Ty->isRecordType()) {
3350 std::string TypeStr = Ty.getAsString(Policy: getContext().getPrintingPolicy());
3351 if (NoSanitizeL.containsType(Mask: Kind, MangledTypeName: TypeStr, Category))
3352 return true;
3353 }
3354 }
3355 return false;
3356}
3357
3358bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3359 StringRef Category) const {
3360 const auto &XRayFilter = getContext().getXRayFilter();
3361 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3362 auto Attr = ImbueAttr::NONE;
3363 if (Loc.isValid())
3364 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3365 if (Attr == ImbueAttr::NONE)
3366 Attr = XRayFilter.shouldImbueFunction(FunctionName: Fn->getName());
3367 switch (Attr) {
3368 case ImbueAttr::NONE:
3369 return false;
3370 case ImbueAttr::ALWAYS:
3371 Fn->addFnAttr(Kind: "function-instrument", Val: "xray-always");
3372 break;
3373 case ImbueAttr::ALWAYS_ARG1:
3374 Fn->addFnAttr(Kind: "function-instrument", Val: "xray-always");
3375 Fn->addFnAttr(Kind: "xray-log-args", Val: "1");
3376 break;
3377 case ImbueAttr::NEVER:
3378 Fn->addFnAttr(Kind: "function-instrument", Val: "xray-never");
3379 break;
3380 }
3381 return true;
3382}
3383
3384ProfileList::ExclusionType
3385CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3386 SourceLocation Loc) const {
3387 const auto &ProfileList = getContext().getProfileList();
3388 // If the profile list is empty, then instrument everything.
3389 if (ProfileList.isEmpty())
3390 return ProfileList::Allow;
3391 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3392 // First, check the function name.
3393 if (auto V = ProfileList.isFunctionExcluded(FunctionName: Fn->getName(), Kind))
3394 return *V;
3395 // Next, check the source location.
3396 if (Loc.isValid())
3397 if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3398 return *V;
3399 // If location is unknown, this may be a compiler-generated function. Assume
3400 // it's located in the main file.
3401 auto &SM = Context.getSourceManager();
3402 if (auto MainFile = SM.getFileEntryRefForID(FID: SM.getMainFileID()))
3403 if (auto V = ProfileList.isFileExcluded(FileName: MainFile->getName(), Kind))
3404 return *V;
3405 return ProfileList.getDefault(Kind);
3406}
3407
3408ProfileList::ExclusionType
3409CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3410 SourceLocation Loc) const {
3411 auto V = isFunctionBlockedByProfileList(Fn, Loc);
3412 if (V != ProfileList::Allow)
3413 return V;
3414
3415 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3416 if (NumGroups > 1) {
3417 auto Group = llvm::crc32(Data: arrayRefFromStringRef(Input: Fn->getName())) % NumGroups;
3418 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3419 return ProfileList::Skip;
3420 }
3421 return ProfileList::Allow;
3422}
3423
3424bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3425 // Never defer when EmitAllDecls is specified.
3426 if (LangOpts.EmitAllDecls)
3427 return true;
3428
3429 const auto *VD = dyn_cast<VarDecl>(Val: Global);
3430 if (VD &&
3431 ((CodeGenOpts.KeepPersistentStorageVariables &&
3432 (VD->getStorageDuration() == SD_Static ||
3433 VD->getStorageDuration() == SD_Thread)) ||
3434 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3435 VD->getType().isConstQualified())))
3436 return true;
3437
3438 return getContext().DeclMustBeEmitted(Global);
3439}
3440
3441bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3442 // In OpenMP 5.0 variables and function may be marked as
3443 // device_type(host/nohost) and we should not emit them eagerly unless we sure
3444 // that they must be emitted on the host/device. To be sure we need to have
3445 // seen a declare target with an explicit mentioning of the function, we know
3446 // we have if the level of the declare target attribute is -1. Note that we
3447 // check somewhere else if we should emit this at all.
3448 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3449 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3450 OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3451 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3452 return false;
3453 }
3454
3455 if (const auto *FD = dyn_cast<FunctionDecl>(Val: Global)) {
3456 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3457 // Implicit template instantiations may change linkage if they are later
3458 // explicitly instantiated, so they should not be emitted eagerly.
3459 return false;
3460 // Defer until all versions have been semantically checked.
3461 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3462 return false;
3463 }
3464 if (const auto *VD = dyn_cast<VarDecl>(Val: Global)) {
3465 if (Context.getInlineVariableDefinitionKind(VD) ==
3466 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3467 // A definition of an inline constexpr static data member may change
3468 // linkage later if it's redeclared outside the class.
3469 return false;
3470 if (CXX20ModuleInits && VD->getOwningModule() &&
3471 !VD->getOwningModule()->isModuleMapModule()) {
3472 // For CXX20, module-owned initializers need to be deferred, since it is
3473 // not known at this point if they will be run for the current module or
3474 // as part of the initializer for an imported one.
3475 return false;
3476 }
3477 }
3478 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3479 // codegen for global variables, because they may be marked as threadprivate.
3480 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3481 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3482 !Global->getType().isConstantStorage(getContext(), false, false) &&
3483 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3484 return false;
3485
3486 return true;
3487}
3488
3489ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3490 StringRef Name = getMangledName(GD);
3491
3492 // The UUID descriptor should be pointer aligned.
3493 CharUnits Alignment = CharUnits::fromQuantity(Quantity: PointerAlignInBytes);
3494
3495 // Look for an existing global.
3496 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3497 return ConstantAddress(GV, GV->getValueType(), Alignment);
3498
3499 ConstantEmitter Emitter(*this);
3500 llvm::Constant *Init;
3501
3502 APValue &V = GD->getAsAPValue();
3503 if (!V.isAbsent()) {
3504 // If possible, emit the APValue version of the initializer. In particular,
3505 // this gets the type of the constant right.
3506 Init = Emitter.emitForInitializer(
3507 value: GD->getAsAPValue(), destAddrSpace: GD->getType().getAddressSpace(), destType: GD->getType());
3508 } else {
3509 // As a fallback, directly construct the constant.
3510 // FIXME: This may get padding wrong under esoteric struct layout rules.
3511 // MSVC appears to create a complete type 'struct __s_GUID' that it
3512 // presumably uses to represent these constants.
3513 MSGuidDecl::Parts Parts = GD->getParts();
3514 llvm::Constant *Fields[4] = {
3515 llvm::ConstantInt::get(Ty: Int32Ty, V: Parts.Part1),
3516 llvm::ConstantInt::get(Ty: Int16Ty, V: Parts.Part2),
3517 llvm::ConstantInt::get(Ty: Int16Ty, V: Parts.Part3),
3518 llvm::ConstantDataArray::getRaw(
3519 Data: StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), NumElements: 8,
3520 ElementTy: Int8Ty)};
3521 Init = llvm::ConstantStruct::getAnon(V: Fields);
3522 }
3523
3524 auto *GV = new llvm::GlobalVariable(
3525 getModule(), Init->getType(),
3526 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3527 if (supportsCOMDAT())
3528 GV->setComdat(TheModule.getOrInsertComdat(Name: GV->getName()));
3529 setDSOLocal(GV);
3530
3531 if (!V.isAbsent()) {
3532 Emitter.finalize(global: GV);
3533 return ConstantAddress(GV, GV->getValueType(), Alignment);
3534 }
3535
3536 llvm::Type *Ty = getTypes().ConvertTypeForMem(T: GD->getType());
3537 return ConstantAddress(GV, Ty, Alignment);
3538}
3539
3540ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3541 const UnnamedGlobalConstantDecl *GCD) {
3542 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3543
3544 llvm::GlobalVariable **Entry = nullptr;
3545 Entry = &UnnamedGlobalConstantDeclMap[GCD];
3546 if (*Entry)
3547 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3548
3549 ConstantEmitter Emitter(*this);
3550 llvm::Constant *Init;
3551
3552 const APValue &V = GCD->getValue();
3553
3554 assert(!V.isAbsent());
3555 Init = Emitter.emitForInitializer(value: V, destAddrSpace: GCD->getType().getAddressSpace(),
3556 destType: GCD->getType());
3557
3558 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3559 /*isConstant=*/true,
3560 llvm::GlobalValue::PrivateLinkage, Init,
3561 ".constant");
3562 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3563 GV->setAlignment(Alignment.getAsAlign());
3564
3565 Emitter.finalize(global: GV);
3566
3567 *Entry = GV;
3568 return ConstantAddress(GV, GV->getValueType(), Alignment);
3569}
3570
3571ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3572 const TemplateParamObjectDecl *TPO) {
3573 StringRef Name = getMangledName(TPO);
3574 CharUnits Alignment = getNaturalTypeAlignment(T: TPO->getType());
3575
3576 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3577 return ConstantAddress(GV, GV->getValueType(), Alignment);
3578
3579 ConstantEmitter Emitter(*this);
3580 llvm::Constant *Init = Emitter.emitForInitializer(
3581 value: TPO->getValue(), destAddrSpace: TPO->getType().getAddressSpace(), destType: TPO->getType());
3582
3583 if (!Init) {
3584 ErrorUnsupported(TPO, "template parameter object");
3585 return ConstantAddress::invalid();
3586 }
3587
3588 llvm::GlobalValue::LinkageTypes Linkage =
3589 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3590 ? llvm::GlobalValue::LinkOnceODRLinkage
3591 : llvm::GlobalValue::InternalLinkage;
3592 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3593 /*isConstant=*/true, Linkage, Init, Name);
3594 setGVProperties(GV, TPO);
3595 if (supportsCOMDAT())
3596 GV->setComdat(TheModule.getOrInsertComdat(Name: GV->getName()));
3597 Emitter.finalize(global: GV);
3598
3599 return ConstantAddress(GV, GV->getValueType(), Alignment);
3600}
3601
3602ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3603 const AliasAttr *AA = VD->getAttr<AliasAttr>();
3604 assert(AA && "No alias?");
3605
3606 CharUnits Alignment = getContext().getDeclAlign(VD);
3607 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(T: VD->getType());
3608
3609 // See if there is already something with the target's name in the module.
3610 llvm::GlobalValue *Entry = GetGlobalValue(Name: AA->getAliasee());
3611 if (Entry)
3612 return ConstantAddress(Entry, DeclTy, Alignment);
3613
3614 llvm::Constant *Aliasee;
3615 if (isa<llvm::FunctionType>(Val: DeclTy))
3616 Aliasee = GetOrCreateLLVMFunction(MangledName: AA->getAliasee(), Ty: DeclTy,
3617 D: GlobalDecl(cast<FunctionDecl>(Val: VD)),
3618 /*ForVTable=*/false);
3619 else
3620 Aliasee = GetOrCreateLLVMGlobal(MangledName: AA->getAliasee(), Ty: DeclTy, AddrSpace: LangAS::Default,
3621 D: nullptr);
3622
3623 auto *F = cast<llvm::GlobalValue>(Val: Aliasee);
3624 F->setLinkage(llvm::Function::ExternalWeakLinkage);
3625 WeakRefReferences.insert(Ptr: F);
3626
3627 return ConstantAddress(Aliasee, DeclTy, Alignment);
3628}
3629
3630template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3631 if (!D)
3632 return false;
3633 if (auto *A = D->getAttr<AttrT>())
3634 return A->isImplicit();
3635 return D->isImplicit();
3636}
3637
3638void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3639 const auto *Global = cast<ValueDecl>(Val: GD.getDecl());
3640
3641 // Weak references don't produce any output by themselves.
3642 if (Global->hasAttr<WeakRefAttr>())
3643 return;
3644
3645 // If this is an alias definition (which otherwise looks like a declaration)
3646 // emit it now.
3647 if (Global->hasAttr<AliasAttr>())
3648 return EmitAliasDefinition(GD);
3649
3650 // IFunc like an alias whose value is resolved at runtime by calling resolver.
3651 if (Global->hasAttr<IFuncAttr>())
3652 return emitIFuncDefinition(GD);
3653
3654 // If this is a cpu_dispatch multiversion function, emit the resolver.
3655 if (Global->hasAttr<CPUDispatchAttr>())
3656 return emitCPUDispatchDefinition(GD);
3657
3658 // If this is CUDA, be selective about which declarations we emit.
3659 // Non-constexpr non-lambda implicit host device functions are not emitted
3660 // unless they are used on device side.
3661 if (LangOpts.CUDA) {
3662 if (LangOpts.CUDAIsDevice) {
3663 const auto *FD = dyn_cast<FunctionDecl>(Val: Global);
3664 if ((!Global->hasAttr<CUDADeviceAttr>() ||
3665 (LangOpts.OffloadImplicitHostDeviceTemplates && FD &&
3666 hasImplicitAttr<CUDAHostAttr>(FD) &&
3667 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3668 !isLambdaCallOperator(FD) &&
3669 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3670 !Global->hasAttr<CUDAGlobalAttr>() &&
3671 !Global->hasAttr<CUDAConstantAttr>() &&
3672 !Global->hasAttr<CUDASharedAttr>() &&
3673 !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3674 !Global->getType()->isCUDADeviceBuiltinTextureType() &&
3675 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3676 !Global->hasAttr<CUDAHostAttr>()))
3677 return;
3678 } else {
3679 // We need to emit host-side 'shadows' for all global
3680 // device-side variables because the CUDA runtime needs their
3681 // size and host-side address in order to provide access to
3682 // their device-side incarnations.
3683
3684 // So device-only functions are the only things we skip.
3685 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3686 Global->hasAttr<CUDADeviceAttr>())
3687 return;
3688
3689 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3690 "Expected Variable or Function");
3691 }
3692 }
3693
3694 if (LangOpts.OpenMP) {
3695 // If this is OpenMP, check if it is legal to emit this global normally.
3696 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3697 return;
3698 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Val: Global)) {
3699 if (MustBeEmitted(Global))
3700 EmitOMPDeclareReduction(D: DRD);
3701 return;
3702 }
3703 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Val: Global)) {
3704 if (MustBeEmitted(Global))
3705 EmitOMPDeclareMapper(D: DMD);
3706 return;
3707 }
3708 }
3709
3710 // Ignore declarations, they will be emitted on their first use.
3711 if (const auto *FD = dyn_cast<FunctionDecl>(Val: Global)) {
3712 // Update deferred annotations with the latest declaration if the function
3713 // function was already used or defined.
3714 if (FD->hasAttr<AnnotateAttr>()) {
3715 StringRef MangledName = getMangledName(GD);
3716 if (GetGlobalValue(Name: MangledName))
3717 DeferredAnnotations[MangledName] = FD;
3718 }
3719
3720 // Forward declarations are emitted lazily on first use.
3721 if (!FD->doesThisDeclarationHaveABody()) {
3722 if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3723 (!FD->isMultiVersion() ||
3724 !FD->getASTContext().getTargetInfo().getTriple().isAArch64()))
3725 return;
3726
3727 StringRef MangledName = getMangledName(GD);
3728
3729 // Compute the function info and LLVM type.
3730 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3731 llvm::Type *Ty = getTypes().GetFunctionType(Info: FI);
3732
3733 GetOrCreateLLVMFunction(MangledName, Ty, D: GD, /*ForVTable=*/false,
3734 /*DontDefer=*/false);
3735 return;
3736 }
3737 } else {
3738 const auto *VD = cast<VarDecl>(Val: Global);
3739 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3740 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3741 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3742 if (LangOpts.OpenMP) {
3743 // Emit declaration of the must-be-emitted declare target variable.
3744 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3745 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3746
3747 // If this variable has external storage and doesn't require special
3748 // link handling we defer to its canonical definition.
3749 if (VD->hasExternalStorage() &&
3750 Res != OMPDeclareTargetDeclAttr::MT_Link)
3751 return;
3752
3753 bool UnifiedMemoryEnabled =
3754 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3755 if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3756 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3757 !UnifiedMemoryEnabled) {
3758 (void)GetAddrOfGlobalVar(D: VD);
3759 } else {
3760 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3761 ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3762 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3763 UnifiedMemoryEnabled)) &&
3764 "Link clause or to clause with unified memory expected.");
3765 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3766 }
3767
3768 return;
3769 }
3770 }
3771 // If this declaration may have caused an inline variable definition to
3772 // change linkage, make sure that it's emitted.
3773 if (Context.getInlineVariableDefinitionKind(VD) ==
3774 ASTContext::InlineVariableDefinitionKind::Strong)
3775 GetAddrOfGlobalVar(D: VD);
3776 return;
3777 }
3778 }
3779
3780 // Defer code generation to first use when possible, e.g. if this is an inline
3781 // function. If the global must always be emitted, do it eagerly if possible
3782 // to benefit from cache locality.
3783 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3784 // Emit the definition if it can't be deferred.
3785 EmitGlobalDefinition(D: GD);
3786 addEmittedDeferredDecl(GD);
3787 return;
3788 }
3789
3790 // If we're deferring emission of a C++ variable with an
3791 // initializer, remember the order in which it appeared in the file.
3792 if (getLangOpts().CPlusPlus && isa<VarDecl>(Val: Global) &&
3793 cast<VarDecl>(Val: Global)->hasInit()) {
3794 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3795 CXXGlobalInits.push_back(x: nullptr);
3796 }
3797
3798 StringRef MangledName = getMangledName(GD);
3799 if (GetGlobalValue(Name: MangledName) != nullptr) {
3800 // The value has already been used and should therefore be emitted.
3801 addDeferredDeclToEmit(GD);
3802 } else if (MustBeEmitted(Global)) {
3803 // The value must be emitted, but cannot be emitted eagerly.
3804 assert(!MayBeEmittedEagerly(Global));
3805 addDeferredDeclToEmit(GD);
3806 } else {
3807 // Otherwise, remember that we saw a deferred decl with this name. The
3808 // first use of the mangled name will cause it to move into
3809 // DeferredDeclsToEmit.
3810 DeferredDecls[MangledName] = GD;
3811 }
3812}
3813
3814// Check if T is a class type with a destructor that's not dllimport.
3815static bool HasNonDllImportDtor(QualType T) {
3816 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3817 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: RT->getDecl()))
3818 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3819 return true;
3820
3821 return false;
3822}
3823
3824namespace {
3825 struct FunctionIsDirectlyRecursive
3826 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3827 const StringRef Name;
3828 const Builtin::Context &BI;
3829 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3830 : Name(N), BI(C) {}
3831
3832 bool VisitCallExpr(const CallExpr *E) {
3833 const FunctionDecl *FD = E->getDirectCallee();
3834 if (!FD)
3835 return false;
3836 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3837 if (Attr && Name == Attr->getLabel())
3838 return true;
3839 unsigned BuiltinID = FD->getBuiltinID();
3840 if (!BuiltinID || !BI.isLibFunction(ID: BuiltinID))
3841 return false;
3842 StringRef BuiltinName = BI.getName(ID: BuiltinID);
3843 if (BuiltinName.starts_with(Prefix: "__builtin_") &&
3844 Name == BuiltinName.slice(Start: strlen(s: "__builtin_"), End: StringRef::npos)) {
3845 return true;
3846 }
3847 return false;
3848 }
3849
3850 bool VisitStmt(const Stmt *S) {
3851 for (const Stmt *Child : S->children())
3852 if (Child && this->Visit(Child))
3853 return true;
3854 return false;
3855 }
3856 };
3857
3858 // Make sure we're not referencing non-imported vars or functions.
3859 struct DLLImportFunctionVisitor
3860 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3861 bool SafeToInline = true;
3862
3863 bool shouldVisitImplicitCode() const { return true; }
3864
3865 bool VisitVarDecl(VarDecl *VD) {
3866 if (VD->getTLSKind()) {
3867 // A thread-local variable cannot be imported.
3868 SafeToInline = false;
3869 return SafeToInline;
3870 }
3871
3872 // A variable definition might imply a destructor call.
3873 if (VD->isThisDeclarationADefinition())
3874 SafeToInline = !HasNonDllImportDtor(VD->getType());
3875
3876 return SafeToInline;
3877 }
3878
3879 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3880 if (const auto *D = E->getTemporary()->getDestructor())
3881 SafeToInline = D->hasAttr<DLLImportAttr>();
3882 return SafeToInline;
3883 }
3884
3885 bool VisitDeclRefExpr(DeclRefExpr *E) {
3886 ValueDecl *VD = E->getDecl();
3887 if (isa<FunctionDecl>(VD))
3888 SafeToInline = VD->hasAttr<DLLImportAttr>();
3889 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3890 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3891 return SafeToInline;
3892 }
3893
3894 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3895 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3896 return SafeToInline;
3897 }
3898
3899 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3900 CXXMethodDecl *M = E->getMethodDecl();
3901 if (!M) {
3902 // Call through a pointer to member function. This is safe to inline.
3903 SafeToInline = true;
3904 } else {
3905 SafeToInline = M->hasAttr<DLLImportAttr>();
3906 }
3907 return SafeToInline;
3908 }
3909
3910 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3911 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3912 return SafeToInline;
3913 }
3914
3915 bool VisitCXXNewExpr(CXXNewExpr *E) {
3916 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3917 return SafeToInline;
3918 }
3919 };
3920}
3921
3922// isTriviallyRecursive - Check if this function calls another
3923// decl that, because of the asm attribute or the other decl being a builtin,
3924// ends up pointing to itself.
3925bool
3926CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3927 StringRef Name;
3928 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3929 // asm labels are a special kind of mangling we have to support.
3930 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3931 if (!Attr)
3932 return false;
3933 Name = Attr->getLabel();
3934 } else {
3935 Name = FD->getName();
3936 }
3937
3938 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3939 const Stmt *Body = FD->getBody();
3940 return Body ? Walker.Visit(Body) : false;
3941}
3942
3943bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3944 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3945 return true;
3946
3947 const auto *F = cast<FunctionDecl>(Val: GD.getDecl());
3948 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3949 return false;
3950
3951 // We don't import function bodies from other named module units since that
3952 // behavior may break ABI compatibility of the current unit.
3953 if (const Module *M = F->getOwningModule();
3954 M && M->getTopLevelModule()->isNamedModule() &&
3955 getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
3956 // There are practices to mark template member function as always-inline
3957 // and mark the template as extern explicit instantiation but not give
3958 // the definition for member function. So we have to emit the function
3959 // from explicitly instantiation with always-inline.
3960 //
3961 // See https://github.com/llvm/llvm-project/issues/86893 for details.
3962 //
3963 // TODO: Maybe it is better to give it a warning if we call a non-inline
3964 // function from other module units which is marked as always-inline.
3965 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
3966 return false;
3967 }
3968 }
3969
3970 if (F->hasAttr<NoInlineAttr>())
3971 return false;
3972
3973 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3974 // Check whether it would be safe to inline this dllimport function.
3975 DLLImportFunctionVisitor Visitor;
3976 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3977 if (!Visitor.SafeToInline)
3978 return false;
3979
3980 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(Val: F)) {
3981 // Implicit destructor invocations aren't captured in the AST, so the
3982 // check above can't see them. Check for them manually here.
3983 for (const Decl *Member : Dtor->getParent()->decls())
3984 if (isa<FieldDecl>(Member))
3985 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3986 return false;
3987 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3988 if (HasNonDllImportDtor(B.getType()))
3989 return false;
3990 }
3991 }
3992
3993 // Inline builtins declaration must be emitted. They often are fortified
3994 // functions.
3995 if (F->isInlineBuiltinDeclaration())
3996 return true;
3997
3998 // PR9614. Avoid cases where the source code is lying to us. An available
3999 // externally function should have an equivalent function somewhere else,
4000 // but a function that calls itself through asm label/`__builtin_` trickery is
4001 // clearly not equivalent to the real implementation.
4002 // This happens in glibc's btowc and in some configure checks.
4003 return !isTriviallyRecursive(FD: F);
4004}
4005
4006bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4007 return CodeGenOpts.OptimizationLevel > 0;
4008}
4009
4010void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4011 llvm::GlobalValue *GV) {
4012 const auto *FD = cast<FunctionDecl>(Val: GD.getDecl());
4013
4014 if (FD->isCPUSpecificMultiVersion()) {
4015 auto *Spec = FD->getAttr<CPUSpecificAttr>();
4016 for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4017 EmitGlobalFunctionDefinition(GD: GD.getWithMultiVersionIndex(Index: I), GV: nullptr);
4018 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4019 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4020 // AArch64 favors the default target version over the clone if any.
4021 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4022 TC->isFirstOfVersion(I))
4023 EmitGlobalFunctionDefinition(GD: GD.getWithMultiVersionIndex(Index: I), GV: nullptr);
4024 // Ensure that the resolver function is also emitted.
4025 GetOrCreateMultiVersionResolver(GD);
4026 } else
4027 EmitGlobalFunctionDefinition(GD, GV);
4028
4029 // Defer the resolver emission until we can reason whether the TU
4030 // contains a default target version implementation.
4031 if (FD->isTargetVersionMultiVersion())
4032 AddDeferredMultiVersionResolverToEmit(GD);
4033}
4034
4035void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4036 const auto *D = cast<ValueDecl>(Val: GD.getDecl());
4037
4038 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4039 Context.getSourceManager(),
4040 "Generating code for declaration");
4041
4042 if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
4043 // At -O0, don't generate IR for functions with available_externally
4044 // linkage.
4045 if (!shouldEmitFunction(GD))
4046 return;
4047
4048 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4049 std::string Name;
4050 llvm::raw_string_ostream OS(Name);
4051 FD->getNameForDiagnostic(OS, Policy: getContext().getPrintingPolicy(),
4052 /*Qualified=*/true);
4053 return Name;
4054 });
4055
4056 if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: D)) {
4057 // Make sure to emit the definition(s) before we emit the thunks.
4058 // This is necessary for the generation of certain thunks.
4059 if (isa<CXXConstructorDecl>(Val: Method) || isa<CXXDestructorDecl>(Val: Method))
4060 ABI->emitCXXStructor(GD);
4061 else if (FD->isMultiVersion())
4062 EmitMultiVersionFunctionDefinition(GD, GV);
4063 else
4064 EmitGlobalFunctionDefinition(GD, GV);
4065
4066 if (Method->isVirtual())
4067 getVTables().EmitThunks(GD);
4068
4069 return;
4070 }
4071
4072 if (FD->isMultiVersion())
4073 return EmitMultiVersionFunctionDefinition(GD, GV);
4074 return EmitGlobalFunctionDefinition(GD, GV);
4075 }
4076
4077 if (const auto *VD = dyn_cast<VarDecl>(Val: D))
4078 return EmitGlobalVarDefinition(D: VD, IsTentative: !VD->hasDefinition());
4079
4080 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4081}
4082
4083static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4084 llvm::Function *NewFn);
4085
4086static unsigned
4087TargetMVPriority(const TargetInfo &TI,
4088 const CodeGenFunction::MultiVersionResolverOption &RO) {
4089 unsigned Priority = 0;
4090 unsigned NumFeatures = 0;
4091 for (StringRef Feat : RO.Conditions.Features) {
4092 Priority = std::max(a: Priority, b: TI.multiVersionSortPriority(Name: Feat));
4093 NumFeatures++;
4094 }
4095
4096 if (!RO.Conditions.Architecture.empty())
4097 Priority = std::max(
4098 a: Priority, b: TI.multiVersionSortPriority(Name: RO.Conditions.Architecture));
4099
4100 Priority += TI.multiVersionFeatureCost() * NumFeatures;
4101
4102 return Priority;
4103}
4104
4105// Multiversion functions should be at most 'WeakODRLinkage' so that a different
4106// TU can forward declare the function without causing problems. Particularly
4107// in the cases of CPUDispatch, this causes issues. This also makes sure we
4108// work with internal linkage functions, so that the same function name can be
4109// used with internal linkage in multiple TUs.
4110llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4111 GlobalDecl GD) {
4112 const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl());
4113 if (FD->getFormalLinkage() == Linkage::Internal)
4114 return llvm::GlobalValue::InternalLinkage;
4115 return llvm::GlobalValue::WeakODRLinkage;
4116}
4117
4118static FunctionDecl *createDefaultTargetVersionFrom(const FunctionDecl *FD) {
4119 DeclContext *DeclCtx = FD->getASTContext().getTranslationUnitDecl();
4120 TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
4121 StorageClass SC = FD->getStorageClass();
4122 DeclarationName Name = FD->getNameInfo().getName();
4123
4124 FunctionDecl *NewDecl =
4125 FunctionDecl::Create(FD->getASTContext(), DeclCtx, FD->getBeginLoc(),
4126 FD->getEndLoc(), Name, TInfo->getType(), TInfo, SC);
4127
4128 NewDecl->setIsMultiVersion();
4129 NewDecl->addAttr(TargetVersionAttr::CreateImplicit(
4130 NewDecl->getASTContext(), "default", NewDecl->getSourceRange()));
4131
4132 return NewDecl;
4133}
4134
4135void CodeGenModule::emitMultiVersionFunctions() {
4136 std::vector<GlobalDecl> MVFuncsToEmit;
4137 MultiVersionFuncs.swap(x&: MVFuncsToEmit);
4138 for (GlobalDecl GD : MVFuncsToEmit) {
4139 const auto *FD = cast<FunctionDecl>(Val: GD.getDecl());
4140 assert(FD && "Expected a FunctionDecl");
4141
4142 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4143 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4144 StringRef MangledName = getMangledName(GD: CurGD);
4145 llvm::Constant *Func = GetGlobalValue(Name: MangledName);
4146 if (!Func) {
4147 if (Decl->isDefined()) {
4148 EmitGlobalFunctionDefinition(GD: CurGD, GV: nullptr);
4149 Func = GetGlobalValue(Name: MangledName);
4150 } else {
4151 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD: CurGD);
4152 llvm::FunctionType *Ty = getTypes().GetFunctionType(Info: FI);
4153 Func = GetAddrOfFunction(GD: CurGD, Ty, /*ForVTable=*/false,
4154 /*DontDefer=*/false, IsForDefinition: ForDefinition);
4155 }
4156 assert(Func && "This should have just been created");
4157 }
4158 return cast<llvm::Function>(Val: Func);
4159 };
4160
4161 bool HasDefaultDecl = !FD->isTargetVersionMultiVersion();
4162 bool ShouldEmitResolver =
4163 !getContext().getTargetInfo().getTriple().isAArch64();
4164 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4165
4166 getContext().forEachMultiversionedFunctionVersion(
4167 FD, Pred: [&](const FunctionDecl *CurFD) {
4168 llvm::SmallVector<StringRef, 8> Feats;
4169
4170 if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4171 TA->getAddedFeatures(Feats);
4172 llvm::Function *Func = createFunction(CurFD);
4173 Options.emplace_back(Func, TA->getArchitecture(), Feats);
4174 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4175 bool HasDefaultDef = TVA->isDefaultVersion() &&
4176 CurFD->doesThisDeclarationHaveABody();
4177 HasDefaultDecl |= TVA->isDefaultVersion();
4178 ShouldEmitResolver |= (CurFD->isUsed() || HasDefaultDef);
4179 TVA->getFeatures(Feats);
4180 llvm::Function *Func = createFunction(CurFD);
4181 Options.emplace_back(Args&: Func, /*Architecture*/ Args: "", Args&: Feats);
4182 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4183 ShouldEmitResolver |= CurFD->doesThisDeclarationHaveABody();
4184 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4185 if (!TC->isFirstOfVersion(I))
4186 continue;
4187
4188 llvm::Function *Func = createFunction(CurFD, I);
4189 StringRef Architecture;
4190 Feats.clear();
4191 if (getTarget().getTriple().isAArch64())
4192 TC->getFeatures(Feats, I);
4193 else {
4194 StringRef Version = TC->getFeatureStr(I);
4195 if (Version.starts_with(Prefix: "arch="))
4196 Architecture = Version.drop_front(N: sizeof("arch=") - 1);
4197 else if (Version != "default")
4198 Feats.push_back(Elt: Version);
4199 }
4200 Options.emplace_back(Args&: Func, Args&: Architecture, Args&: Feats);
4201 }
4202 } else
4203 llvm_unreachable("unexpected MultiVersionKind");
4204 });
4205
4206 if (!ShouldEmitResolver)
4207 continue;
4208
4209 if (!HasDefaultDecl) {
4210 FunctionDecl *NewFD = createDefaultTargetVersionFrom(FD);
4211 llvm::Function *Func = createFunction(NewFD);
4212 llvm::SmallVector<StringRef, 1> Feats;
4213 Options.emplace_back(Args&: Func, /*Architecture*/ Args: "", Args&: Feats);
4214 }
4215
4216 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4217 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(Val: ResolverConstant)) {
4218 ResolverConstant = IFunc->getResolver();
4219 if (FD->isTargetClonesMultiVersion() ||
4220 FD->isTargetVersionMultiVersion()) {
4221 std::string MangledName = getMangledNameImpl(
4222 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4223 if (!GetGlobalValue(Name: MangledName + ".ifunc")) {
4224 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4225 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(Info: FI);
4226 // In prior versions of Clang, the mangling for ifuncs incorrectly
4227 // included an .ifunc suffix. This alias is generated for backward
4228 // compatibility. It is deprecated, and may be removed in the future.
4229 auto *Alias = llvm::GlobalAlias::create(
4230 Ty: DeclTy, AddressSpace: 0, Linkage: getMultiversionLinkage(CGM&: *this, GD),
4231 Name: MangledName + ".ifunc", Aliasee: IFunc, Parent: &getModule());
4232 SetCommonAttributes(GD: FD, GV: Alias);
4233 }
4234 }
4235 }
4236 llvm::Function *ResolverFunc = cast<llvm::Function>(Val: ResolverConstant);
4237
4238 ResolverFunc->setLinkage(getMultiversionLinkage(CGM&: *this, GD));
4239
4240 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4241 ResolverFunc->setComdat(
4242 getModule().getOrInsertComdat(Name: ResolverFunc->getName()));
4243
4244 const TargetInfo &TI = getTarget();
4245 llvm::stable_sort(
4246 Range&: Options, C: [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4247 const CodeGenFunction::MultiVersionResolverOption &RHS) {
4248 return TargetMVPriority(TI, RO: LHS) > TargetMVPriority(TI, RO: RHS);
4249 });
4250 CodeGenFunction CGF(*this);
4251 CGF.EmitMultiVersionResolver(Resolver: ResolverFunc, Options);
4252 }
4253
4254 // Ensure that any additions to the deferred decls list caused by emitting a
4255 // variant are emitted. This can happen when the variant itself is inline and
4256 // calls a function without linkage.
4257 if (!MVFuncsToEmit.empty())
4258 EmitDeferred();
4259
4260 // Ensure that any additions to the multiversion funcs list from either the
4261 // deferred decls or the multiversion functions themselves are emitted.
4262 if (!MultiVersionFuncs.empty())
4263 emitMultiVersionFunctions();
4264}
4265
4266void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4267 const auto *FD = cast<FunctionDecl>(Val: GD.getDecl());
4268 assert(FD && "Not a FunctionDecl?");
4269 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4270 const auto *DD = FD->getAttr<CPUDispatchAttr>();
4271 assert(DD && "Not a cpu_dispatch Function?");
4272
4273 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4274 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(Info: FI);
4275
4276 StringRef ResolverName = getMangledName(GD);
4277 UpdateMultiVersionNames(GD, FD, CurName&: ResolverName);
4278
4279 llvm::Type *ResolverType;
4280 GlobalDecl ResolverGD;
4281 if (getTarget().supportsIFunc()) {
4282 ResolverType = llvm::FunctionType::get(
4283 llvm::PointerType::get(DeclTy,
4284 getTypes().getTargetAddressSpace(T: FD->getType())),
4285 false);
4286 }
4287 else {
4288 ResolverType = DeclTy;
4289 ResolverGD = GD;
4290 }
4291
4292 auto *ResolverFunc = cast<llvm::Function>(Val: GetOrCreateLLVMFunction(
4293 MangledName: ResolverName, Ty: ResolverType, D: ResolverGD, /*ForVTable=*/false));
4294 ResolverFunc->setLinkage(getMultiversionLinkage(CGM&: *this, GD));
4295 if (supportsCOMDAT())
4296 ResolverFunc->setComdat(
4297 getModule().getOrInsertComdat(Name: ResolverFunc->getName()));
4298
4299 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4300 const TargetInfo &Target = getTarget();
4301 unsigned Index = 0;
4302 for (const IdentifierInfo *II : DD->cpus()) {
4303 // Get the name of the target function so we can look it up/create it.
4304 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4305 getCPUSpecificMangling(*this, II->getName());
4306
4307 llvm::Constant *Func = GetGlobalValue(MangledName);
4308
4309 if (!Func) {
4310 GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4311 if (ExistingDecl.getDecl() &&
4312 ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4313 EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4314 Func = GetGlobalValue(MangledName);
4315 } else {
4316 if (!ExistingDecl.getDecl())
4317 ExistingDecl = GD.getWithMultiVersionIndex(Index);
4318
4319 Func = GetOrCreateLLVMFunction(
4320 MangledName, DeclTy, ExistingDecl,
4321 /*ForVTable=*/false, /*DontDefer=*/true,
4322 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4323 }
4324 }
4325
4326 llvm::SmallVector<StringRef, 32> Features;
4327 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4328 llvm::transform(Features, Features.begin(),
4329 [](StringRef Str) { return Str.substr(1); });
4330 llvm::erase_if(Features, [&Target](StringRef Feat) {
4331 return !Target.validateCpuSupports(Feat);
4332 });
4333 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4334 ++Index;
4335 }
4336
4337 llvm::stable_sort(
4338 Range&: Options, C: [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4339 const CodeGenFunction::MultiVersionResolverOption &RHS) {
4340 return llvm::X86::getCpuSupportsMask(FeatureStrs: LHS.Conditions.Features) >
4341 llvm::X86::getCpuSupportsMask(FeatureStrs: RHS.Conditions.Features);
4342 });
4343
4344 // If the list contains multiple 'default' versions, such as when it contains
4345 // 'pentium' and 'generic', don't emit the call to the generic one (since we
4346 // always run on at least a 'pentium'). We do this by deleting the 'least
4347 // advanced' (read, lowest mangling letter).
4348 while (Options.size() > 1 &&
4349 llvm::all_of(Range: llvm::X86::getCpuSupportsMask(
4350 FeatureStrs: (Options.end() - 2)->Conditions.Features),
4351 P: [](auto X) { return X == 0; })) {
4352 StringRef LHSName = (Options.end() - 2)->Function->getName();
4353 StringRef RHSName = (Options.end() - 1)->Function->getName();
4354 if (LHSName.compare(RHS: RHSName) < 0)
4355 Options.erase(CI: Options.end() - 2);
4356 else
4357 Options.erase(CI: Options.end() - 1);
4358 }
4359
4360 CodeGenFunction CGF(*this);
4361 CGF.EmitMultiVersionResolver(Resolver: ResolverFunc, Options);
4362
4363 if (getTarget().supportsIFunc()) {
4364 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(CGM&: *this, GD);
4365 auto *IFunc = cast<llvm::GlobalValue>(Val: GetOrCreateMultiVersionResolver(GD));
4366
4367 // Fix up function declarations that were created for cpu_specific before
4368 // cpu_dispatch was known
4369 if (!isa<llvm::GlobalIFunc>(Val: IFunc)) {
4370 assert(cast<llvm::Function>(IFunc)->isDeclaration());
4371 auto *GI = llvm::GlobalIFunc::create(Ty: DeclTy, AddressSpace: 0, Linkage, Name: "", Resolver: ResolverFunc,
4372 Parent: &getModule());
4373 GI->takeName(V: IFunc);
4374 IFunc->replaceAllUsesWith(V: GI);
4375 IFunc->eraseFromParent();
4376 IFunc = GI;
4377 }
4378
4379 std::string AliasName = getMangledNameImpl(
4380 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4381 llvm::Constant *AliasFunc = GetGlobalValue(Name: AliasName);
4382 if (!AliasFunc) {
4383 auto *GA = llvm::GlobalAlias::create(Ty: DeclTy, AddressSpace: 0, Linkage, Name: AliasName, Aliasee: IFunc,
4384 Parent: &getModule());
4385 SetCommonAttributes(GD, GV: GA);
4386 }
4387 }
4388}
4389
4390/// Adds a declaration to the list of multi version functions if not present.
4391void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4392 const auto *FD = cast<FunctionDecl>(Val: GD.getDecl());
4393 assert(FD && "Not a FunctionDecl?");
4394
4395 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4396 std::string MangledName =
4397 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4398 if (!DeferredResolversToEmit.insert(key: MangledName).second)
4399 return;
4400 }
4401 MultiVersionFuncs.push_back(x: GD);
4402}
4403
4404/// If a dispatcher for the specified mangled name is not in the module, create
4405/// and return an llvm Function with the specified type.
4406llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4407 const auto *FD = cast<FunctionDecl>(Val: GD.getDecl());
4408 assert(FD && "Not a FunctionDecl?");
4409
4410 std::string MangledName =
4411 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4412
4413 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4414 // a separate resolver).
4415 std::string ResolverName = MangledName;
4416 if (getTarget().supportsIFunc()) {
4417 switch (FD->getMultiVersionKind()) {
4418 case MultiVersionKind::None:
4419 llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4420 case MultiVersionKind::Target:
4421 case MultiVersionKind::CPUSpecific:
4422 case MultiVersionKind::CPUDispatch:
4423 ResolverName += ".ifunc";
4424 break;
4425 case MultiVersionKind::TargetClones:
4426 case MultiVersionKind::TargetVersion:
4427 break;
4428 }
4429 } else if (FD->isTargetMultiVersion()) {
4430 ResolverName += ".resolver";
4431 }
4432
4433 // If the resolver has already been created, just return it.
4434 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(Name: ResolverName))
4435 return ResolverGV;
4436
4437 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4438 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(Info: FI);
4439
4440 // The resolver needs to be created. For target and target_clones, defer
4441 // creation until the end of the TU.
4442 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4443 AddDeferredMultiVersionResolverToEmit(GD);
4444
4445 // For cpu_specific, don't create an ifunc yet because we don't know if the
4446 // cpu_dispatch will be emitted in this translation unit.
4447 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4448 llvm::Type *ResolverType = llvm::FunctionType::get(
4449 llvm::PointerType::get(DeclTy,
4450 getTypes().getTargetAddressSpace(T: FD->getType())),
4451 false);
4452 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4453 MangledName: MangledName + ".resolver", Ty: ResolverType, D: GlobalDecl{},
4454 /*ForVTable=*/false);
4455 llvm::GlobalIFunc *GIF =
4456 llvm::GlobalIFunc::create(Ty: DeclTy, AddressSpace: 0, Linkage: getMultiversionLinkage(CGM&: *this, GD),
4457 Name: "", Resolver, Parent: &getModule());
4458 GIF->setName(ResolverName);
4459 SetCommonAttributes(GD: FD, GV: GIF);
4460
4461 return GIF;
4462 }
4463
4464 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4465 MangledName: ResolverName, Ty: DeclTy, D: GlobalDecl{}, /*ForVTable=*/false);
4466 assert(isa<llvm::GlobalValue>(Resolver) &&
4467 "Resolver should be created for the first time");
4468 SetCommonAttributes(GD: FD, GV: cast<llvm::GlobalValue>(Val: Resolver));
4469 return Resolver;
4470}
4471
4472/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4473/// module, create and return an llvm Function with the specified type. If there
4474/// is something in the module with the specified name, return it potentially
4475/// bitcasted to the right type.
4476///
4477/// If D is non-null, it specifies a decl that correspond to this. This is used
4478/// to set the attributes on the function when it is first created.
4479llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4480 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4481 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4482 ForDefinition_t IsForDefinition) {
4483 const Decl *D = GD.getDecl();
4484
4485 // Any attempts to use a MultiVersion function should result in retrieving
4486 // the iFunc instead. Name Mangling will handle the rest of the changes.
4487 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(Val: D)) {
4488 // For the device mark the function as one that should be emitted.
4489 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4490 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4491 !DontDefer && !IsForDefinition) {
4492 if (const FunctionDecl *FDDef = FD->getDefinition()) {
4493 GlobalDecl GDDef;
4494 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Val: FDDef))
4495 GDDef = GlobalDecl(CD, GD.getCtorType());
4496 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: FDDef))
4497 GDDef = GlobalDecl(DD, GD.getDtorType());
4498 else
4499 GDDef = GlobalDecl(FDDef);
4500 EmitGlobal(GD: GDDef);
4501 }
4502 }
4503
4504 if (FD->isMultiVersion()) {
4505 UpdateMultiVersionNames(GD, FD, CurName&: MangledName);
4506 if (FD->getASTContext().getTargetInfo().getTriple().isAArch64() &&
4507 !FD->isUsed())
4508 AddDeferredMultiVersionResolverToEmit(GD);
4509 else if (!IsForDefinition)
4510 return GetOrCreateMultiVersionResolver(GD);
4511 }
4512 }
4513
4514 // Lookup the entry, lazily creating it if necessary.
4515 llvm::GlobalValue *Entry = GetGlobalValue(Name: MangledName);
4516 if (Entry) {
4517 if (WeakRefReferences.erase(Ptr: Entry)) {
4518 const FunctionDecl *FD = cast_or_null<FunctionDecl>(Val: D);
4519 if (FD && !FD->hasAttr<WeakAttr>())
4520 Entry->setLinkage(llvm::Function::ExternalLinkage);
4521 }
4522
4523 // Handle dropped DLL attributes.
4524 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4525 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4526 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4527 setDSOLocal(Entry);
4528 }
4529
4530 // If there are two attempts to define the same mangled name, issue an
4531 // error.
4532 if (IsForDefinition && !Entry->isDeclaration()) {
4533 GlobalDecl OtherGD;
4534 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4535 // to make sure that we issue an error only once.
4536 if (lookupRepresentativeDecl(MangledName, Result&: OtherGD) &&
4537 (GD.getCanonicalDecl().getDecl() !=
4538 OtherGD.getCanonicalDecl().getDecl()) &&
4539 DiagnosedConflictingDefinitions.insert(V: GD).second) {
4540 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4541 << MangledName;
4542 getDiags().Report(OtherGD.getDecl()->getLocation(),
4543 diag::note_previous_definition);
4544 }
4545 }
4546
4547 if ((isa<llvm::Function>(Val: Entry) || isa<llvm::GlobalAlias>(Val: Entry)) &&
4548 (Entry->getValueType() == Ty)) {
4549 return Entry;
4550 }
4551
4552 // Make sure the result is of the correct type.
4553 // (If function is requested for a definition, we always need to create a new
4554 // function, not just return a bitcast.)
4555 if (!IsForDefinition)
4556 return Entry;
4557 }
4558
4559 // This function doesn't have a complete type (for example, the return
4560 // type is an incomplete struct). Use a fake type instead, and make
4561 // sure not to try to set attributes.
4562 bool IsIncompleteFunction = false;
4563
4564 llvm::FunctionType *FTy;
4565 if (isa<llvm::FunctionType>(Val: Ty)) {
4566 FTy = cast<llvm::FunctionType>(Val: Ty);
4567 } else {
4568 FTy = llvm::FunctionType::get(Result: VoidTy, isVarArg: false);
4569 IsIncompleteFunction = true;
4570 }
4571
4572 llvm::Function *F =
4573 llvm::Function::Create(Ty: FTy, Linkage: llvm::Function::ExternalLinkage,
4574 N: Entry ? StringRef() : MangledName, M: &getModule());
4575
4576 // Store the declaration associated with this function so it is potentially
4577 // updated by further declarations or definitions and emitted at the end.
4578 if (D && D->hasAttr<AnnotateAttr>())
4579 DeferredAnnotations[MangledName] = cast<ValueDecl>(Val: D);
4580
4581 // If we already created a function with the same mangled name (but different
4582 // type) before, take its name and add it to the list of functions to be
4583 // replaced with F at the end of CodeGen.
4584 //
4585 // This happens if there is a prototype for a function (e.g. "int f()") and
4586 // then a definition of a different type (e.g. "int f(int x)").
4587 if (Entry) {
4588 F->takeName(V: Entry);
4589
4590 // This might be an implementation of a function without a prototype, in
4591 // which case, try to do special replacement of calls which match the new
4592 // prototype. The really key thing here is that we also potentially drop
4593 // arguments from the call site so as to make a direct call, which makes the
4594 // inliner happier and suppresses a number of optimizer warnings (!) about
4595 // dropping arguments.
4596 if (!Entry->use_empty()) {
4597 ReplaceUsesOfNonProtoTypeWithRealFunction(Old: Entry, NewFn: F);
4598 Entry->removeDeadConstantUsers();
4599 }
4600
4601 addGlobalValReplacement(GV: Entry, C: F);
4602 }
4603
4604 assert(F->getName() == MangledName && "name was uniqued!");
4605 if (D)
4606 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4607 if (ExtraAttrs.hasFnAttrs()) {
4608 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4609 F->addFnAttrs(Attrs: B);
4610 }
4611
4612 if (!DontDefer) {
4613 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4614 // each other bottoming out with the base dtor. Therefore we emit non-base
4615 // dtors on usage, even if there is no dtor definition in the TU.
4616 if (isa_and_nonnull<CXXDestructorDecl>(Val: D) &&
4617 getCXXABI().useThunkForDtorVariant(Dtor: cast<CXXDestructorDecl>(Val: D),
4618 DT: GD.getDtorType()))
4619 addDeferredDeclToEmit(GD);
4620
4621 // This is the first use or definition of a mangled name. If there is a
4622 // deferred decl with this name, remember that we need to emit it at the end
4623 // of the file.
4624 auto DDI = DeferredDecls.find(Val: MangledName);
4625 if (DDI != DeferredDecls.end()) {
4626 // Move the potentially referenced deferred decl to the
4627 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4628 // don't need it anymore).
4629 addDeferredDeclToEmit(GD: DDI->second);
4630 DeferredDecls.erase(I: DDI);
4631
4632 // Otherwise, there are cases we have to worry about where we're
4633 // using a declaration for which we must emit a definition but where
4634 // we might not find a top-level definition:
4635 // - member functions defined inline in their classes
4636 // - friend functions defined inline in some class
4637 // - special member functions with implicit definitions
4638 // If we ever change our AST traversal to walk into class methods,
4639 // this will be unnecessary.
4640 //
4641 // We also don't emit a definition for a function if it's going to be an
4642 // entry in a vtable, unless it's already marked as used.
4643 } else if (getLangOpts().CPlusPlus && D) {
4644 // Look for a declaration that's lexically in a record.
4645 for (const auto *FD = cast<FunctionDecl>(Val: D)->getMostRecentDecl(); FD;
4646 FD = FD->getPreviousDecl()) {
4647 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4648 if (FD->doesThisDeclarationHaveABody()) {
4649 addDeferredDeclToEmit(GD: GD.getWithDecl(D: FD));
4650 break;
4651 }
4652 }
4653 }
4654 }
4655 }
4656
4657 // Make sure the result is of the requested type.
4658 if (!IsIncompleteFunction) {
4659 assert(F->getFunctionType() == Ty);
4660 return F;
4661 }
4662
4663 return F;
4664}
4665
4666/// GetAddrOfFunction - Return the address of the given function. If Ty is
4667/// non-null, then this function will use the specified type if it has to
4668/// create it (this occurs when we see a definition of the function).
4669llvm::Constant *
4670CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4671 bool DontDefer,
4672 ForDefinition_t IsForDefinition) {
4673 // If there was no specific requested type, just convert it now.
4674 if (!Ty) {
4675 const auto *FD = cast<FunctionDecl>(Val: GD.getDecl());
4676 Ty = getTypes().ConvertType(T: FD->getType());
4677 }
4678
4679 // Devirtualized destructor calls may come through here instead of via
4680 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4681 // of the complete destructor when necessary.
4682 if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: GD.getDecl())) {
4683 if (getTarget().getCXXABI().isMicrosoft() &&
4684 GD.getDtorType() == Dtor_Complete &&
4685 DD->getParent()->getNumVBases() == 0)
4686 GD = GlobalDecl(DD, Dtor_Base);
4687 }
4688
4689 StringRef MangledName = getMangledName(GD);
4690 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4691 /*IsThunk=*/false, ExtraAttrs: llvm::AttributeList(),
4692 IsForDefinition);
4693 // Returns kernel handle for HIP kernel stub function.
4694 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4695 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4696 auto *Handle = getCUDARuntime().getKernelHandle(
4697 Stub: cast<llvm::Function>(Val: F->stripPointerCasts()), GD);
4698 if (IsForDefinition)
4699 return F;
4700 return Handle;
4701 }
4702 return F;
4703}
4704
4705llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4706 llvm::GlobalValue *F =
4707 cast<llvm::GlobalValue>(Val: GetAddrOfFunction(Decl)->stripPointerCasts());
4708
4709 return llvm::NoCFIValue::get(GV: F);
4710}
4711
4712static const FunctionDecl *
4713GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4714 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4715 DeclContext *DC = TranslationUnitDecl::castToDeclContext(D: TUDecl);
4716
4717 IdentifierInfo &CII = C.Idents.get(Name);
4718 for (const auto *Result : DC->lookup(Name: &CII))
4719 if (const auto *FD = dyn_cast<FunctionDecl>(Val: Result))
4720 return FD;
4721
4722 if (!C.getLangOpts().CPlusPlus)
4723 return nullptr;
4724
4725 // Demangle the premangled name from getTerminateFn()
4726 IdentifierInfo &CXXII =
4727 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4728 ? C.Idents.get(Name: "terminate")
4729 : C.Idents.get(Name);
4730
4731 for (const auto &N : {"__cxxabiv1", "std"}) {
4732 IdentifierInfo &NS = C.Idents.get(Name: N);
4733 for (const auto *Result : DC->lookup(Name: &NS)) {
4734 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Val: Result);
4735 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4736 for (const auto *Result : LSD->lookup(&NS))
4737 if ((ND = dyn_cast<NamespaceDecl>(Result)))
4738 break;
4739
4740 if (ND)
4741 for (const auto *Result : ND->lookup(&CXXII))
4742 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4743 return FD;
4744 }
4745 }
4746
4747 return nullptr;
4748}
4749
4750/// CreateRuntimeFunction - Create a new runtime function with the specified
4751/// type and name.
4752llvm::FunctionCallee
4753CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4754 llvm::AttributeList ExtraAttrs, bool Local,
4755 bool AssumeConvergent) {
4756 if (AssumeConvergent) {
4757 ExtraAttrs =
4758 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4759 }
4760
4761 llvm::Constant *C =
4762 GetOrCreateLLVMFunction(MangledName: Name, Ty: FTy, GD: GlobalDecl(), /*ForVTable=*/false,
4763 /*DontDefer=*/false, /*IsThunk=*/false,
4764 ExtraAttrs);
4765
4766 if (auto *F = dyn_cast<llvm::Function>(Val: C)) {
4767 if (F->empty()) {
4768 F->setCallingConv(getRuntimeCC());
4769
4770 // In Windows Itanium environments, try to mark runtime functions
4771 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4772 // will link their standard library statically or dynamically. Marking
4773 // functions imported when they are not imported can cause linker errors
4774 // and warnings.
4775 if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4776 !getCodeGenOpts().LTOVisibilityPublicStd) {
4777 const FunctionDecl *FD = GetRuntimeFunctionDecl(C&: Context, Name);
4778 if (!FD || FD->hasAttr<DLLImportAttr>()) {
4779 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4780 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4781 }
4782 }
4783 setDSOLocal(F);
4784 }
4785 }
4786
4787 return {FTy, C};
4788}
4789
4790/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4791/// create and return an llvm GlobalVariable with the specified type and address
4792/// space. If there is something in the module with the specified name, return
4793/// it potentially bitcasted to the right type.
4794///
4795/// If D is non-null, it specifies a decl that correspond to this. This is used
4796/// to set the attributes on the global when it is first created.
4797///
4798/// If IsForDefinition is true, it is guaranteed that an actual global with
4799/// type Ty will be returned, not conversion of a variable with the same
4800/// mangled name but some other type.
4801llvm::Constant *
4802CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4803 LangAS AddrSpace, const VarDecl *D,
4804 ForDefinition_t IsForDefinition) {
4805 // Lookup the entry, lazily creating it if necessary.
4806 llvm::GlobalValue *Entry = GetGlobalValue(Name: MangledName);
4807 unsigned TargetAS = getContext().getTargetAddressSpace(AS: AddrSpace);
4808 if (Entry) {
4809 if (WeakRefReferences.erase(Ptr: Entry)) {
4810 if (D && !D->hasAttr<WeakAttr>())
4811 Entry->setLinkage(llvm::Function::ExternalLinkage);
4812 }
4813
4814 // Handle dropped DLL attributes.
4815 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4816 !shouldMapVisibilityToDLLExport(D))
4817 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4818
4819 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4820 getOpenMPRuntime().registerTargetGlobalVariable(VD: D, Addr: Entry);
4821
4822 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4823 return Entry;
4824
4825 // If there are two attempts to define the same mangled name, issue an
4826 // error.
4827 if (IsForDefinition && !Entry->isDeclaration()) {
4828 GlobalDecl OtherGD;
4829 const VarDecl *OtherD;
4830
4831 // Check that D is not yet in DiagnosedConflictingDefinitions is required
4832 // to make sure that we issue an error only once.
4833 if (D && lookupRepresentativeDecl(MangledName, Result&: OtherGD) &&
4834 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4835 (OtherD = dyn_cast<VarDecl>(Val: OtherGD.getDecl())) &&
4836 OtherD->hasInit() &&
4837 DiagnosedConflictingDefinitions.insert(V: D).second) {
4838 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4839 << MangledName;
4840 getDiags().Report(OtherGD.getDecl()->getLocation(),
4841 diag::note_previous_definition);
4842 }
4843 }
4844
4845 // Make sure the result is of the correct type.
4846 if (Entry->getType()->getAddressSpace() != TargetAS)
4847 return llvm::ConstantExpr::getAddrSpaceCast(
4848 C: Entry, Ty: llvm::PointerType::get(C&: Ty->getContext(), AddressSpace: TargetAS));
4849
4850 // (If global is requested for a definition, we always need to create a new
4851 // global, not just return a bitcast.)
4852 if (!IsForDefinition)
4853 return Entry;
4854 }
4855
4856 auto DAddrSpace = GetGlobalVarAddressSpace(D);
4857
4858 auto *GV = new llvm::GlobalVariable(
4859 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4860 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4861 getContext().getTargetAddressSpace(AS: DAddrSpace));
4862
4863 // If we already created a global with the same mangled name (but different
4864 // type) before, take its name and remove it from its parent.
4865 if (Entry) {
4866 GV->takeName(V: Entry);
4867
4868 if (!Entry->use_empty()) {
4869 Entry->replaceAllUsesWith(V: GV);
4870 }
4871
4872 Entry->eraseFromParent();
4873 }
4874
4875 // This is the first use or definition of a mangled name. If there is a
4876 // deferred decl with this name, remember that we need to emit it at the end
4877 // of the file.
4878 auto DDI = DeferredDecls.find(Val: MangledName);
4879 if (DDI != DeferredDecls.end()) {
4880 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4881 // list, and remove it from DeferredDecls (since we don't need it anymore).
4882 addDeferredDeclToEmit(GD: DDI->second);
4883 DeferredDecls.erase(I: DDI);
4884 }
4885
4886 // Handle things which are present even on external declarations.
4887 if (D) {
4888 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4889 getOpenMPRuntime().registerTargetGlobalVariable(VD: D, Addr: GV);
4890
4891 // FIXME: This code is overly simple and should be merged with other global
4892 // handling.
4893 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4894
4895 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4896
4897 setLinkageForGV(GV, D);
4898
4899 if (D->getTLSKind()) {
4900 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4901 CXXThreadLocals.push_back(x: D);
4902 setTLSMode(GV, D: *D);
4903 }
4904
4905 setGVProperties(GV, GD: D);
4906
4907 // If required by the ABI, treat declarations of static data members with
4908 // inline initializers as definitions.
4909 if (getContext().isMSStaticDataMemberInlineDefinition(VD: D)) {
4910 EmitGlobalVarDefinition(D);
4911 }
4912
4913 // Emit section information for extern variables.
4914 if (D->hasExternalStorage()) {
4915 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4916 GV->setSection(SA->getName());
4917 }
4918
4919 // Handle XCore specific ABI requirements.
4920 if (getTriple().getArch() == llvm::Triple::xcore &&
4921 D->getLanguageLinkage() == CLanguageLinkage &&
4922 D->getType().isConstant(Context) &&
4923 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4924 GV->setSection(".cp.rodata");
4925
4926 // Handle code model attribute
4927 if (const auto *CMA = D->getAttr<CodeModelAttr>())
4928 GV->setCodeModel(CMA->getModel());
4929
4930 // Check if we a have a const declaration with an initializer, we may be
4931 // able to emit it as available_externally to expose it's value to the
4932 // optimizer.
4933 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4934 D->getType().isConstQualified() && !GV->hasInitializer() &&
4935 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4936 const auto *Record =
4937 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4938 bool HasMutableFields = Record && Record->hasMutableFields();
4939 if (!HasMutableFields) {
4940 const VarDecl *InitDecl;
4941 const Expr *InitExpr = D->getAnyInitializer(D&: InitDecl);
4942 if (InitExpr) {
4943 ConstantEmitter emitter(*this);
4944 llvm::Constant *Init = emitter.tryEmitForInitializer(D: *InitDecl);
4945 if (Init) {
4946 auto *InitType = Init->getType();
4947 if (GV->getValueType() != InitType) {
4948 // The type of the initializer does not match the definition.
4949 // This happens when an initializer has a different type from
4950 // the type of the global (because of padding at the end of a
4951 // structure for instance).
4952 GV->setName(StringRef());
4953 // Make a new global with the correct type, this is now guaranteed
4954 // to work.
4955 auto *NewGV = cast<llvm::GlobalVariable>(
4956 Val: GetAddrOfGlobalVar(D, Ty: InitType, IsForDefinition)
4957 ->stripPointerCasts());
4958
4959 // Erase the old global, since it is no longer used.
4960 GV->eraseFromParent();
4961 GV = NewGV;
4962 } else {
4963 GV->setInitializer(Init);
4964 GV->setConstant(true);
4965 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4966 }
4967 emitter.finalize(global: GV);
4968 }
4969 }
4970 }
4971 }
4972 }
4973
4974 if (D &&
4975 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
4976 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4977 // External HIP managed variables needed to be recorded for transformation
4978 // in both device and host compilations.
4979 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4980 D->hasExternalStorage())
4981 getCUDARuntime().handleVarRegistration(VD: D, Var&: *GV);
4982 }
4983
4984 if (D)
4985 SanitizerMD->reportGlobal(GV, D: *D);
4986
4987 LangAS ExpectedAS =
4988 D ? D->getType().getAddressSpace()
4989 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4990 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4991 if (DAddrSpace != ExpectedAS) {
4992 return getTargetCodeGenInfo().performAddrSpaceCast(
4993 CGM&: *this, V: GV, SrcAddr: DAddrSpace, DestAddr: ExpectedAS,
4994 DestTy: llvm::PointerType::get(C&: getLLVMContext(), AddressSpace: TargetAS));
4995 }
4996
4997 return GV;
4998}
4999
5000llvm::Constant *
5001CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5002 const Decl *D = GD.getDecl();
5003
5004 if (isa<CXXConstructorDecl>(Val: D) || isa<CXXDestructorDecl>(Val: D))
5005 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5006 /*DontDefer=*/false, IsForDefinition);
5007
5008 if (isa<CXXMethodDecl>(Val: D)) {
5009 auto FInfo =
5010 &getTypes().arrangeCXXMethodDeclaration(MD: cast<CXXMethodDecl>(Val: D));
5011 auto Ty = getTypes().GetFunctionType(Info: *FInfo);
5012 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5013 IsForDefinition);
5014 }
5015
5016 if (isa<FunctionDecl>(Val: D)) {
5017 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5018 llvm::FunctionType *Ty = getTypes().GetFunctionType(Info: FI);
5019 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5020 IsForDefinition);
5021 }
5022
5023 return GetAddrOfGlobalVar(D: cast<VarDecl>(Val: D), /*Ty=*/nullptr, IsForDefinition);
5024}
5025
5026llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5027 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5028 llvm::Align Alignment) {
5029 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5030 llvm::GlobalVariable *OldGV = nullptr;
5031
5032 if (GV) {
5033 // Check if the variable has the right type.
5034 if (GV->getValueType() == Ty)
5035 return GV;
5036
5037 // Because C++ name mangling, the only way we can end up with an already
5038 // existing global with the same name is if it has been declared extern "C".
5039 assert(GV->isDeclaration() && "Declaration has wrong type!");
5040 OldGV = GV;
5041 }
5042
5043 // Create a new variable.
5044 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5045 Linkage, nullptr, Name);
5046
5047 if (OldGV) {
5048 // Replace occurrences of the old variable if needed.
5049 GV->takeName(V: OldGV);
5050
5051 if (!OldGV->use_empty()) {
5052 OldGV->replaceAllUsesWith(V: GV);
5053 }
5054
5055 OldGV->eraseFromParent();
5056 }
5057
5058 if (supportsCOMDAT() && GV->isWeakForLinker() &&
5059 !GV->hasAvailableExternallyLinkage())
5060 GV->setComdat(TheModule.getOrInsertComdat(Name: GV->getName()));
5061
5062 GV->setAlignment(Alignment);
5063
5064 return GV;
5065}
5066
5067/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5068/// given global variable. If Ty is non-null and if the global doesn't exist,
5069/// then it will be created with the specified type instead of whatever the
5070/// normal requested type would be. If IsForDefinition is true, it is guaranteed
5071/// that an actual global with type Ty will be returned, not conversion of a
5072/// variable with the same mangled name but some other type.
5073llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5074 llvm::Type *Ty,
5075 ForDefinition_t IsForDefinition) {
5076 assert(D->hasGlobalStorage() && "Not a global variable");
5077 QualType ASTTy = D->getType();
5078 if (!Ty)
5079 Ty = getTypes().ConvertTypeForMem(T: ASTTy);
5080
5081 StringRef MangledName = getMangledName(GD: D);
5082 return GetOrCreateLLVMGlobal(MangledName, Ty, AddrSpace: ASTTy.getAddressSpace(), D,
5083 IsForDefinition);
5084}
5085
5086/// CreateRuntimeVariable - Create a new runtime global variable with the
5087/// specified type and name.
5088llvm::Constant *
5089CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5090 StringRef Name) {
5091 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5092 : LangAS::Default;
5093 auto *Ret = GetOrCreateLLVMGlobal(MangledName: Name, Ty, AddrSpace, D: nullptr);
5094 setDSOLocal(cast<llvm::GlobalValue>(Val: Ret->stripPointerCasts()));
5095 return Ret;
5096}
5097
5098void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5099 assert(!D->getInit() && "Cannot emit definite definitions here!");
5100
5101 StringRef MangledName = getMangledName(GD: D);
5102 llvm::GlobalValue *GV = GetGlobalValue(Name: MangledName);
5103
5104 // We already have a definition, not declaration, with the same mangled name.
5105 // Emitting of declaration is not required (and actually overwrites emitted
5106 // definition).
5107 if (GV && !GV->isDeclaration())
5108 return;
5109
5110 // If we have not seen a reference to this variable yet, place it into the
5111 // deferred declarations table to be emitted if needed later.
5112 if (!MustBeEmitted(D) && !GV) {
5113 DeferredDecls[MangledName] = D;
5114 return;
5115 }
5116
5117 // The tentative definition is the only definition.
5118 EmitGlobalVarDefinition(D);
5119}
5120
5121void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
5122 EmitExternalVarDeclaration(D);
5123}
5124
5125CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5126 return Context.toCharUnitsFromBits(
5127 BitSize: getDataLayout().getTypeStoreSizeInBits(Ty));
5128}
5129
5130LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5131 if (LangOpts.OpenCL) {
5132 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5133 assert(AS == LangAS::opencl_global ||
5134 AS == LangAS::opencl_global_device ||
5135 AS == LangAS::opencl_global_host ||
5136 AS == LangAS::opencl_constant ||
5137 AS == LangAS::opencl_local ||
5138 AS >= LangAS::FirstTargetAddressSpace);
5139 return AS;
5140 }
5141
5142 if (LangOpts.SYCLIsDevice &&
5143 (!D || D->getType().getAddressSpace() == LangAS::Default))
5144 return LangAS::sycl_global;
5145
5146 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5147 if (D) {
5148 if (D->hasAttr<CUDAConstantAttr>())
5149 return LangAS::cuda_constant;
5150 if (D->hasAttr<CUDASharedAttr>())
5151 return LangAS::cuda_shared;
5152 if (D->hasAttr<CUDADeviceAttr>())
5153 return LangAS::cuda_device;
5154 if (D->getType().isConstQualified())
5155 return LangAS::cuda_constant;
5156 }
5157 return LangAS::cuda_device;
5158 }
5159
5160 if (LangOpts.OpenMP) {
5161 LangAS AS;
5162 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(VD: D, AS))
5163 return AS;
5164 }
5165 return getTargetCodeGenInfo().getGlobalVarAddressSpace(CGM&: *this, D);
5166}
5167
5168LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5169 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5170 if (LangOpts.OpenCL)
5171 return LangAS::opencl_constant;
5172 if (LangOpts.SYCLIsDevice)
5173 return LangAS::sycl_global;
5174 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5175 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5176 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5177 // with OpVariable instructions with Generic storage class which is not
5178 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5179 // UniformConstant storage class is not viable as pointers to it may not be
5180 // casted to Generic pointers which are used to model HIP's "flat" pointers.
5181 return LangAS::cuda_device;
5182 if (auto AS = getTarget().getConstantAddressSpace())
5183 return *AS;
5184 return LangAS::Default;
5185}
5186
5187// In address space agnostic languages, string literals are in default address
5188// space in AST. However, certain targets (e.g. amdgcn) request them to be
5189// emitted in constant address space in LLVM IR. To be consistent with other
5190// parts of AST, string literal global variables in constant address space
5191// need to be casted to default address space before being put into address
5192// map and referenced by other part of CodeGen.
5193// In OpenCL, string literals are in constant address space in AST, therefore
5194// they should not be casted to default address space.
5195static llvm::Constant *
5196castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5197 llvm::GlobalVariable *GV) {
5198 llvm::Constant *Cast = GV;
5199 if (!CGM.getLangOpts().OpenCL) {
5200 auto AS = CGM.GetGlobalConstantAddressSpace();
5201 if (AS != LangAS::Default)
5202 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5203 CGM, V: GV, SrcAddr: AS, DestAddr: LangAS::Default,
5204 DestTy: llvm::PointerType::get(
5205 C&: CGM.getLLVMContext(),
5206 AddressSpace: CGM.getContext().getTargetAddressSpace(AS: LangAS::Default)));
5207 }
5208 return Cast;
5209}
5210
5211template<typename SomeDecl>
5212void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5213 llvm::GlobalValue *GV) {
5214 if (!getLangOpts().CPlusPlus)
5215 return;
5216
5217 // Must have 'used' attribute, or else inline assembly can't rely on
5218 // the name existing.
5219 if (!D->template hasAttr<UsedAttr>())
5220 return;
5221
5222 // Must have internal linkage and an ordinary name.
5223 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5224 return;
5225
5226 // Must be in an extern "C" context. Entities declared directly within
5227 // a record are not extern "C" even if the record is in such a context.
5228 const SomeDecl *First = D->getFirstDecl();
5229 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5230 return;
5231
5232 // OK, this is an internal linkage entity inside an extern "C" linkage
5233 // specification. Make a note of that so we can give it the "expected"
5234 // mangled name if nothing else is using that name.
5235 std::pair<StaticExternCMap::iterator, bool> R =
5236 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5237
5238 // If we have multiple internal linkage entities with the same name
5239 // in extern "C" regions, none of them gets that name.
5240 if (!R.second)
5241 R.first->second = nullptr;
5242}
5243
5244static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5245 if (!CGM.supportsCOMDAT())
5246 return false;
5247
5248 if (D.hasAttr<SelectAnyAttr>())
5249 return true;
5250
5251 GVALinkage Linkage;
5252 if (auto *VD = dyn_cast<VarDecl>(Val: &D))
5253 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5254 else
5255 Linkage = CGM.getContext().GetGVALinkageForFunction(FD: cast<FunctionDecl>(Val: &D));
5256
5257 switch (Linkage) {
5258 case GVA_Internal:
5259 case GVA_AvailableExternally:
5260 case GVA_StrongExternal:
5261 return false;
5262 case GVA_DiscardableODR:
5263 case GVA_StrongODR:
5264 return true;
5265 }
5266 llvm_unreachable("No such linkage");
5267}
5268
5269bool CodeGenModule::supportsCOMDAT() const {
5270 return getTriple().supportsCOMDAT();
5271}
5272
5273void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5274 llvm::GlobalObject &GO) {
5275 if (!shouldBeInCOMDAT(CGM&: *this, D))
5276 return;
5277 GO.setComdat(TheModule.getOrInsertComdat(Name: GO.getName()));
5278}
5279
5280/// Pass IsTentative as true if you want to create a tentative definition.
5281void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5282 bool IsTentative) {
5283 // OpenCL global variables of sampler type are translated to function calls,
5284 // therefore no need to be translated.
5285 QualType ASTTy = D->getType();
5286 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5287 return;
5288
5289 // If this is OpenMP device, check if it is legal to emit this global
5290 // normally.
5291 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5292 OpenMPRuntime->emitTargetGlobalVariable(GD: D))
5293 return;
5294
5295 llvm::TrackingVH<llvm::Constant> Init;
5296 bool NeedsGlobalCtor = false;
5297 // Whether the definition of the variable is available externally.
5298 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5299 // since this is the job for its original source.
5300 bool IsDefinitionAvailableExternally =
5301 getContext().GetGVALinkageForVariable(VD: D) == GVA_AvailableExternally;
5302 bool NeedsGlobalDtor =
5303 !IsDefinitionAvailableExternally &&
5304 D->needsDestruction(Ctx: getContext()) == QualType::DK_cxx_destructor;
5305
5306 const VarDecl *InitDecl;
5307 const Expr *InitExpr = D->getAnyInitializer(D&: InitDecl);
5308
5309 std::optional<ConstantEmitter> emitter;
5310
5311 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5312 // as part of their declaration." Sema has already checked for
5313 // error cases, so we just need to set Init to UndefValue.
5314 bool IsCUDASharedVar =
5315 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5316 // Shadows of initialized device-side global variables are also left
5317 // undefined.
5318 // Managed Variables should be initialized on both host side and device side.
5319 bool IsCUDAShadowVar =
5320 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5321 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5322 D->hasAttr<CUDASharedAttr>());
5323 bool IsCUDADeviceShadowVar =
5324 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5325 (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5326 D->getType()->isCUDADeviceBuiltinTextureType());
5327 if (getLangOpts().CUDA &&
5328 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5329 Init = llvm::UndefValue::get(T: getTypes().ConvertTypeForMem(T: ASTTy));
5330 else if (D->hasAttr<LoaderUninitializedAttr>())
5331 Init = llvm::UndefValue::get(T: getTypes().ConvertTypeForMem(T: ASTTy));
5332 else if (!InitExpr) {
5333 // This is a tentative definition; tentative definitions are
5334 // implicitly initialized with { 0 }.
5335 //
5336 // Note that tentative definitions are only emitted at the end of
5337 // a translation unit, so they should never have incomplete
5338 // type. In addition, EmitTentativeDefinition makes sure that we
5339 // never attempt to emit a tentative definition if a real one
5340 // exists. A use may still exists, however, so we still may need
5341 // to do a RAUW.
5342 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5343 Init = EmitNullConstant(T: D->getType());
5344 } else {
5345 initializedGlobalDecl = GlobalDecl(D);
5346 emitter.emplace(args&: *this);
5347 llvm::Constant *Initializer = emitter->tryEmitForInitializer(D: *InitDecl);
5348 if (!Initializer) {
5349 QualType T = InitExpr->getType();
5350 if (D->getType()->isReferenceType())
5351 T = D->getType();
5352
5353 if (getLangOpts().CPlusPlus) {
5354 if (InitDecl->hasFlexibleArrayInit(Ctx: getContext()))
5355 ErrorUnsupported(D, "flexible array initializer");
5356 Init = EmitNullConstant(T);
5357
5358 if (!IsDefinitionAvailableExternally)
5359 NeedsGlobalCtor = true;
5360 } else {
5361 ErrorUnsupported(D, "static initializer");
5362 Init = llvm::UndefValue::get(T: getTypes().ConvertType(T));
5363 }
5364 } else {
5365 Init = Initializer;
5366 // We don't need an initializer, so remove the entry for the delayed
5367 // initializer position (just in case this entry was delayed) if we
5368 // also don't need to register a destructor.
5369 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5370 DelayedCXXInitPosition.erase(D);
5371
5372#ifndef NDEBUG
5373 CharUnits VarSize = getContext().getTypeSizeInChars(T: ASTTy) +
5374 InitDecl->getFlexibleArrayInitChars(Ctx: getContext());
5375 CharUnits CstSize = CharUnits::fromQuantity(
5376 Quantity: getDataLayout().getTypeAllocSize(Ty: Init->getType()));
5377 assert(VarSize == CstSize && "Emitted constant has unexpected size");
5378#endif
5379 }
5380 }
5381
5382 llvm::Type* InitType = Init->getType();
5383 llvm::Constant *Entry =
5384 GetAddrOfGlobalVar(D, Ty: InitType, IsForDefinition: ForDefinition_t(!IsTentative));
5385
5386 // Strip off pointer casts if we got them.
5387 Entry = Entry->stripPointerCasts();
5388
5389 // Entry is now either a Function or GlobalVariable.
5390 auto *GV = dyn_cast<llvm::GlobalVariable>(Val: Entry);
5391
5392 // We have a definition after a declaration with the wrong type.
5393 // We must make a new GlobalVariable* and update everything that used OldGV
5394 // (a declaration or tentative definition) with the new GlobalVariable*
5395 // (which will be a definition).
5396 //
5397 // This happens if there is a prototype for a global (e.g.
5398 // "extern int x[];") and then a definition of a different type (e.g.
5399 // "int x[10];"). This also happens when an initializer has a different type
5400 // from the type of the global (this happens with unions).
5401 if (!GV || GV->getValueType() != InitType ||
5402 GV->getType()->getAddressSpace() !=
5403 getContext().getTargetAddressSpace(AS: GetGlobalVarAddressSpace(D))) {
5404
5405 // Move the old entry aside so that we'll create a new one.
5406 Entry->setName(StringRef());
5407
5408 // Make a new global with the correct type, this is now guaranteed to work.
5409 GV = cast<llvm::GlobalVariable>(
5410 Val: GetAddrOfGlobalVar(D, Ty: InitType, IsForDefinition: ForDefinition_t(!IsTentative))
5411 ->stripPointerCasts());
5412
5413 // Replace all uses of the old global with the new global
5414 llvm::Constant *NewPtrForOldDecl =
5415 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(C: GV,
5416 Ty: Entry->getType());
5417 Entry->replaceAllUsesWith(V: NewPtrForOldDecl);
5418
5419 // Erase the old global, since it is no longer used.
5420 cast<llvm::GlobalValue>(Val: Entry)->eraseFromParent();
5421 }
5422
5423 MaybeHandleStaticInExternC(D, GV);
5424
5425 if (D->hasAttr<AnnotateAttr>())
5426 AddGlobalAnnotations(D, GV);
5427
5428 // Set the llvm linkage type as appropriate.
5429 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD: D);
5430
5431 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5432 // the device. [...]"
5433 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5434 // __device__, declares a variable that: [...]
5435 // Is accessible from all the threads within the grid and from the host
5436 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5437 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5438 if (LangOpts.CUDA) {
5439 if (LangOpts.CUDAIsDevice) {
5440 if (Linkage != llvm::GlobalValue::InternalLinkage &&
5441 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5442 D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5443 D->getType()->isCUDADeviceBuiltinTextureType()))
5444 GV->setExternallyInitialized(true);
5445 } else {
5446 getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5447 }
5448 getCUDARuntime().handleVarRegistration(VD: D, Var&: *GV);
5449 }
5450
5451 GV->setInitializer(Init);
5452 if (emitter)
5453 emitter->finalize(global: GV);
5454
5455 // If it is safe to mark the global 'constant', do so now.
5456 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5457 D->getType().isConstantStorage(getContext(), true, true));
5458
5459 // If it is in a read-only section, mark it 'constant'.
5460 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5461 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5462 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5463 GV->setConstant(true);
5464 }
5465
5466 CharUnits AlignVal = getContext().getDeclAlign(D);
5467 // Check for alignment specifed in an 'omp allocate' directive.
5468 if (std::optional<CharUnits> AlignValFromAllocate =
5469 getOMPAllocateAlignment(VD: D))
5470 AlignVal = *AlignValFromAllocate;
5471 GV->setAlignment(AlignVal.getAsAlign());
5472
5473 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5474 // function is only defined alongside the variable, not also alongside
5475 // callers. Normally, all accesses to a thread_local go through the
5476 // thread-wrapper in order to ensure initialization has occurred, underlying
5477 // variable will never be used other than the thread-wrapper, so it can be
5478 // converted to internal linkage.
5479 //
5480 // However, if the variable has the 'constinit' attribute, it _can_ be
5481 // referenced directly, without calling the thread-wrapper, so the linkage
5482 // must not be changed.
5483 //
5484 // Additionally, if the variable isn't plain external linkage, e.g. if it's
5485 // weak or linkonce, the de-duplication semantics are important to preserve,
5486 // so we don't change the linkage.
5487 if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5488 Linkage == llvm::GlobalValue::ExternalLinkage &&
5489 Context.getTargetInfo().getTriple().isOSDarwin() &&
5490 !D->hasAttr<ConstInitAttr>())
5491 Linkage = llvm::GlobalValue::InternalLinkage;
5492
5493 GV->setLinkage(Linkage);
5494 if (D->hasAttr<DLLImportAttr>())
5495 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5496 else if (D->hasAttr<DLLExportAttr>())
5497 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5498 else
5499 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5500
5501 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5502 // common vars aren't constant even if declared const.
5503 GV->setConstant(false);
5504 // Tentative definition of global variables may be initialized with
5505 // non-zero null pointers. In this case they should have weak linkage
5506 // since common linkage must have zero initializer and must not have
5507 // explicit section therefore cannot have non-zero initial value.
5508 if (!GV->getInitializer()->isNullValue())
5509 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5510 }
5511
5512 setNonAliasAttributes(GD: D, GO: GV);
5513
5514 if (D->getTLSKind() && !GV->isThreadLocal()) {
5515 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5516 CXXThreadLocals.push_back(x: D);
5517 setTLSMode(GV, D: *D);
5518 }
5519
5520 maybeSetTrivialComdat(*D, *GV);
5521
5522 // Emit the initializer function if necessary.
5523 if (NeedsGlobalCtor || NeedsGlobalDtor)
5524 EmitCXXGlobalVarDeclInitFunc(D, Addr: GV, PerformInit: NeedsGlobalCtor);
5525
5526 SanitizerMD->reportGlobal(GV, D: *D, IsDynInit: NeedsGlobalCtor);
5527
5528 // Emit global variable debug information.
5529 if (CGDebugInfo *DI = getModuleDebugInfo())
5530 if (getCodeGenOpts().hasReducedDebugInfo())
5531 DI->EmitGlobalVariable(GV, Decl: D);
5532}
5533
5534void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5535 if (CGDebugInfo *DI = getModuleDebugInfo())
5536 if (getCodeGenOpts().hasReducedDebugInfo()) {
5537 QualType ASTTy = D->getType();
5538 llvm::Type *Ty = getTypes().ConvertTypeForMem(T: D->getType());
5539 llvm::Constant *GV =
5540 GetOrCreateLLVMGlobal(MangledName: D->getName(), Ty, AddrSpace: ASTTy.getAddressSpace(), D);
5541 DI->EmitExternalVariable(
5542 GV: cast<llvm::GlobalVariable>(Val: GV->stripPointerCasts()), Decl: D);
5543 }
5544}
5545
5546static bool isVarDeclStrongDefinition(const ASTContext &Context,
5547 CodeGenModule &CGM, const VarDecl *D,
5548 bool NoCommon) {
5549 // Don't give variables common linkage if -fno-common was specified unless it
5550 // was overridden by a NoCommon attribute.
5551 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5552 return true;
5553
5554 // C11 6.9.2/2:
5555 // A declaration of an identifier for an object that has file scope without
5556 // an initializer, and without a storage-class specifier or with the
5557 // storage-class specifier static, constitutes a tentative definition.
5558 if (D->getInit() || D->hasExternalStorage())
5559 return true;
5560
5561 // A variable cannot be both common and exist in a section.
5562 if (D->hasAttr<SectionAttr>())
5563 return true;
5564
5565 // A variable cannot be both common and exist in a section.
5566 // We don't try to determine which is the right section in the front-end.
5567 // If no specialized section name is applicable, it will resort to default.
5568 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5569 D->hasAttr<PragmaClangDataSectionAttr>() ||
5570 D->hasAttr<PragmaClangRelroSectionAttr>() ||
5571 D->hasAttr<PragmaClangRodataSectionAttr>())
5572 return true;
5573
5574 // Thread local vars aren't considered common linkage.
5575 if (D->getTLSKind())
5576 return true;
5577
5578 // Tentative definitions marked with WeakImportAttr are true definitions.
5579 if (D->hasAttr<WeakImportAttr>())
5580 return true;
5581
5582 // A variable cannot be both common and exist in a comdat.
5583 if (shouldBeInCOMDAT(CGM, *D))
5584 return true;
5585
5586 // Declarations with a required alignment do not have common linkage in MSVC
5587 // mode.
5588 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5589 if (D->hasAttr<AlignedAttr>())
5590 return true;
5591 QualType VarType = D->getType();
5592 if (Context.isAlignmentRequired(T: VarType))
5593 return true;
5594
5595 if (const auto *RT = VarType->getAs<RecordType>()) {
5596 const RecordDecl *RD = RT->getDecl();
5597 for (const FieldDecl *FD : RD->fields()) {
5598 if (FD->isBitField())
5599 continue;
5600 if (FD->hasAttr<AlignedAttr>())
5601 return true;
5602 if (Context.isAlignmentRequired(FD->getType()))
5603 return true;
5604 }
5605 }
5606 }
5607
5608 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5609 // common symbols, so symbols with greater alignment requirements cannot be
5610 // common.
5611 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5612 // alignments for common symbols via the aligncomm directive, so this
5613 // restriction only applies to MSVC environments.
5614 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5615 Context.getTypeAlignIfKnown(T: D->getType()) >
5616 Context.toBits(CharSize: CharUnits::fromQuantity(Quantity: 32)))
5617 return true;
5618
5619 return false;
5620}
5621
5622llvm::GlobalValue::LinkageTypes
5623CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5624 GVALinkage Linkage) {
5625 if (Linkage == GVA_Internal)
5626 return llvm::Function::InternalLinkage;
5627
5628 if (D->hasAttr<WeakAttr>())
5629 return llvm::GlobalVariable::WeakAnyLinkage;
5630
5631 if (const auto *FD = D->getAsFunction())
5632 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5633 return llvm::GlobalVariable::LinkOnceAnyLinkage;
5634
5635 // We are guaranteed to have a strong definition somewhere else,
5636 // so we can use available_externally linkage.
5637 if (Linkage == GVA_AvailableExternally)
5638 return llvm::GlobalValue::AvailableExternallyLinkage;
5639
5640 // Note that Apple's kernel linker doesn't support symbol
5641 // coalescing, so we need to avoid linkonce and weak linkages there.
5642 // Normally, this means we just map to internal, but for explicit
5643 // instantiations we'll map to external.
5644
5645 // In C++, the compiler has to emit a definition in every translation unit
5646 // that references the function. We should use linkonce_odr because
5647 // a) if all references in this translation unit are optimized away, we
5648 // don't need to codegen it. b) if the function persists, it needs to be
5649 // merged with other definitions. c) C++ has the ODR, so we know the
5650 // definition is dependable.
5651 if (Linkage == GVA_DiscardableODR)
5652 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5653 : llvm::Function::InternalLinkage;
5654
5655 // An explicit instantiation of a template has weak linkage, since
5656 // explicit instantiations can occur in multiple translation units
5657 // and must all be equivalent. However, we are not allowed to
5658 // throw away these explicit instantiations.
5659 //
5660 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5661 // so say that CUDA templates are either external (for kernels) or internal.
5662 // This lets llvm perform aggressive inter-procedural optimizations. For
5663 // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5664 // therefore we need to follow the normal linkage paradigm.
5665 if (Linkage == GVA_StrongODR) {
5666 if (getLangOpts().AppleKext)
5667 return llvm::Function::ExternalLinkage;
5668 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5669 !getLangOpts().GPURelocatableDeviceCode)
5670 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5671 : llvm::Function::InternalLinkage;
5672 return llvm::Function::WeakODRLinkage;
5673 }
5674
5675 // C++ doesn't have tentative definitions and thus cannot have common
5676 // linkage.
5677 if (!getLangOpts().CPlusPlus && isa<VarDecl>(Val: D) &&
5678 !isVarDeclStrongDefinition(Context, CGM&: *this, D: cast<VarDecl>(Val: D),
5679 NoCommon: CodeGenOpts.NoCommon))
5680 return llvm::GlobalVariable::CommonLinkage;
5681
5682 // selectany symbols are externally visible, so use weak instead of
5683 // linkonce. MSVC optimizes away references to const selectany globals, so
5684 // all definitions should be the same and ODR linkage should be used.
5685 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5686 if (D->hasAttr<SelectAnyAttr>())
5687 return llvm::GlobalVariable::WeakODRLinkage;
5688
5689 // Otherwise, we have strong external linkage.
5690 assert(Linkage == GVA_StrongExternal);
5691 return llvm::GlobalVariable::ExternalLinkage;
5692}
5693
5694llvm::GlobalValue::LinkageTypes
5695CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5696 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5697 return getLLVMLinkageForDeclarator(VD, Linkage);
5698}
5699
5700/// Replace the uses of a function that was declared with a non-proto type.
5701/// We want to silently drop extra arguments from call sites
5702static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5703 llvm::Function *newFn) {
5704 // Fast path.
5705 if (old->use_empty()) return;
5706
5707 llvm::Type *newRetTy = newFn->getReturnType();
5708 SmallVector<llvm::Value*, 4> newArgs;
5709
5710 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5711 ui != ue; ) {
5712 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5713 llvm::User *user = use->getUser();
5714
5715 // Recognize and replace uses of bitcasts. Most calls to
5716 // unprototyped functions will use bitcasts.
5717 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(Val: user)) {
5718 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5719 replaceUsesOfNonProtoConstant(old: bitcast, newFn);
5720 continue;
5721 }
5722
5723 // Recognize calls to the function.
5724 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(Val: user);
5725 if (!callSite) continue;
5726 if (!callSite->isCallee(U: &*use))
5727 continue;
5728
5729 // If the return types don't match exactly, then we can't
5730 // transform this call unless it's dead.
5731 if (callSite->getType() != newRetTy && !callSite->use_empty())
5732 continue;
5733
5734 // Get the call site's attribute list.
5735 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5736 llvm::AttributeList oldAttrs = callSite->getAttributes();
5737
5738 // If the function was passed too few arguments, don't transform.
5739 unsigned newNumArgs = newFn->arg_size();
5740 if (callSite->arg_size() < newNumArgs)
5741 continue;
5742
5743 // If extra arguments were passed, we silently drop them.
5744 // If any of the types mismatch, we don't transform.
5745 unsigned argNo = 0;
5746 bool dontTransform = false;
5747 for (llvm::Argument &A : newFn->args()) {
5748 if (callSite->getArgOperand(i: argNo)->getType() != A.getType()) {
5749 dontTransform = true;
5750 break;
5751 }
5752
5753 // Add any parameter attributes.
5754 newArgAttrs.push_back(Elt: oldAttrs.getParamAttrs(ArgNo: argNo));
5755 argNo++;
5756 }
5757 if (dontTransform)
5758 continue;
5759
5760 // Okay, we can transform this. Create the new call instruction and copy
5761 // over the required information.
5762 newArgs.append(in_start: callSite->arg_begin(), in_end: callSite->arg_begin() + argNo);
5763
5764 // Copy over any operand bundles.
5765 SmallVector<llvm::OperandBundleDef, 1> newBundles;
5766 callSite->getOperandBundlesAsDefs(Defs&: newBundles);
5767
5768 llvm::CallBase *newCall;
5769 if (isa<llvm::CallInst>(Val: callSite)) {
5770 newCall =
5771 llvm::CallInst::Create(Func: newFn, Args: newArgs, Bundles: newBundles, NameStr: "", InsertBefore: callSite);
5772 } else {
5773 auto *oldInvoke = cast<llvm::InvokeInst>(Val: callSite);
5774 newCall = llvm::InvokeInst::Create(Func: newFn, IfNormal: oldInvoke->getNormalDest(),
5775 IfException: oldInvoke->getUnwindDest(), Args: newArgs,
5776 Bundles: newBundles, NameStr: "", InsertBefore: callSite);
5777 }
5778 newArgs.clear(); // for the next iteration
5779
5780 if (!newCall->getType()->isVoidTy())
5781 newCall->takeName(V: callSite);
5782 newCall->setAttributes(
5783 llvm::AttributeList::get(C&: newFn->getContext(), FnAttrs: oldAttrs.getFnAttrs(),
5784 RetAttrs: oldAttrs.getRetAttrs(), ArgAttrs: newArgAttrs));
5785 newCall->setCallingConv(callSite->getCallingConv());
5786
5787 // Finally, remove the old call, replacing any uses with the new one.
5788 if (!callSite->use_empty())
5789 callSite->replaceAllUsesWith(V: newCall);
5790
5791 // Copy debug location attached to CI.
5792 if (callSite->getDebugLoc())
5793 newCall->setDebugLoc(callSite->getDebugLoc());
5794
5795 callSite->eraseFromParent();
5796 }
5797}
5798
5799/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5800/// implement a function with no prototype, e.g. "int foo() {}". If there are
5801/// existing call uses of the old function in the module, this adjusts them to
5802/// call the new function directly.
5803///
5804/// This is not just a cleanup: the always_inline pass requires direct calls to
5805/// functions to be able to inline them. If there is a bitcast in the way, it
5806/// won't inline them. Instcombine normally deletes these calls, but it isn't
5807/// run at -O0.
5808static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5809 llvm::Function *NewFn) {
5810 // If we're redefining a global as a function, don't transform it.
5811 if (!isa<llvm::Function>(Val: Old)) return;
5812
5813 replaceUsesOfNonProtoConstant(old: Old, newFn: NewFn);
5814}
5815
5816void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5817 auto DK = VD->isThisDeclarationADefinition();
5818 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5819 return;
5820
5821 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5822 // If we have a definition, this might be a deferred decl. If the
5823 // instantiation is explicit, make sure we emit it at the end.
5824 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5825 GetAddrOfGlobalVar(D: VD);
5826
5827 EmitTopLevelDecl(VD);
5828}
5829
5830void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5831 llvm::GlobalValue *GV) {
5832 const auto *D = cast<FunctionDecl>(Val: GD.getDecl());
5833
5834 // Compute the function info and LLVM type.
5835 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5836 llvm::FunctionType *Ty = getTypes().GetFunctionType(Info: FI);
5837
5838 // Get or create the prototype for the function.
5839 if (!GV || (GV->getValueType() != Ty))
5840 GV = cast<llvm::GlobalValue>(Val: GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5841 /*DontDefer=*/true,
5842 IsForDefinition: ForDefinition));
5843
5844 // Already emitted.
5845 if (!GV->isDeclaration())
5846 return;
5847
5848 // We need to set linkage and visibility on the function before
5849 // generating code for it because various parts of IR generation
5850 // want to propagate this information down (e.g. to local static
5851 // declarations).
5852 auto *Fn = cast<llvm::Function>(Val: GV);
5853 setFunctionLinkage(GD, F: Fn);
5854
5855 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5856 setGVProperties(GV: Fn, GD);
5857
5858 MaybeHandleStaticInExternC(D, GV: Fn);
5859
5860 maybeSetTrivialComdat(*D, *Fn);
5861
5862 CodeGenFunction(*this).GenerateCode(GD, Fn, FnInfo: FI);
5863
5864 setNonAliasAttributes(GD, GO: Fn);
5865 SetLLVMFunctionAttributesForDefinition(D, Fn);
5866
5867 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5868 AddGlobalCtor(Ctor: Fn, Priority: CA->getPriority());
5869 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5870 AddGlobalDtor(Dtor: Fn, Priority: DA->getPriority(), IsDtorAttrFunc: true);
5871 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5872 getOpenMPRuntime().emitDeclareTargetFunction(FD: D, GV);
5873}
5874
5875void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5876 const auto *D = cast<ValueDecl>(Val: GD.getDecl());
5877 const AliasAttr *AA = D->getAttr<AliasAttr>();
5878 assert(AA && "Not an alias?");
5879
5880 StringRef MangledName = getMangledName(GD);
5881
5882 if (AA->getAliasee() == MangledName) {
5883 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5884 return;
5885 }
5886
5887 // If there is a definition in the module, then it wins over the alias.
5888 // This is dubious, but allow it to be safe. Just ignore the alias.
5889 llvm::GlobalValue *Entry = GetGlobalValue(Name: MangledName);
5890 if (Entry && !Entry->isDeclaration())
5891 return;
5892
5893 Aliases.push_back(x: GD);
5894
5895 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(T: D->getType());
5896
5897 // Create a reference to the named value. This ensures that it is emitted
5898 // if a deferred decl.
5899 llvm::Constant *Aliasee;
5900 llvm::GlobalValue::LinkageTypes LT;
5901 if (isa<llvm::FunctionType>(Val: DeclTy)) {
5902 Aliasee = GetOrCreateLLVMFunction(MangledName: AA->getAliasee(), Ty: DeclTy, GD,
5903 /*ForVTable=*/false);
5904 LT = getFunctionLinkage(GD);
5905 } else {
5906 Aliasee = GetOrCreateLLVMGlobal(MangledName: AA->getAliasee(), Ty: DeclTy, AddrSpace: LangAS::Default,
5907 /*D=*/nullptr);
5908 if (const auto *VD = dyn_cast<VarDecl>(Val: GD.getDecl()))
5909 LT = getLLVMLinkageVarDefinition(VD);
5910 else
5911 LT = getFunctionLinkage(GD);
5912 }
5913
5914 // Create the new alias itself, but don't set a name yet.
5915 unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5916 auto *GA =
5917 llvm::GlobalAlias::create(Ty: DeclTy, AddressSpace: AS, Linkage: LT, Name: "", Aliasee, Parent: &getModule());
5918
5919 if (Entry) {
5920 if (GA->getAliasee() == Entry) {
5921 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5922 return;
5923 }
5924
5925 assert(Entry->isDeclaration());
5926
5927 // If there is a declaration in the module, then we had an extern followed
5928 // by the alias, as in:
5929 // extern int test6();
5930 // ...
5931 // int test6() __attribute__((alias("test7")));
5932 //
5933 // Remove it and replace uses of it with the alias.
5934 GA->takeName(V: Entry);
5935
5936 Entry->replaceAllUsesWith(V: GA);
5937 Entry->eraseFromParent();
5938 } else {
5939 GA->setName(MangledName);
5940 }
5941
5942 // Set attributes which are particular to an alias; this is a
5943 // specialization of the attributes which may be set on a global
5944 // variable/function.
5945 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5946 D->isWeakImported()) {
5947 GA->setLinkage(llvm::Function::WeakAnyLinkage);
5948 }
5949
5950 if (const auto *VD = dyn_cast<VarDecl>(Val: D))
5951 if (VD->getTLSKind())
5952 setTLSMode(GV: GA, D: *VD);
5953
5954 SetCommonAttributes(GD, GV: GA);
5955
5956 // Emit global alias debug information.
5957 if (isa<VarDecl>(Val: D))
5958 if (CGDebugInfo *DI = getModuleDebugInfo())
5959 DI->EmitGlobalAlias(GV: cast<llvm::GlobalValue>(Val: GA->getAliasee()->stripPointerCasts()), Decl: GD);
5960}
5961
5962void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5963 const auto *D = cast<ValueDecl>(Val: GD.getDecl());
5964 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5965 assert(IFA && "Not an ifunc?");
5966
5967 StringRef MangledName = getMangledName(GD);
5968
5969 if (IFA->getResolver() == MangledName) {
5970 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5971 return;
5972 }
5973
5974 // Report an error if some definition overrides ifunc.
5975 llvm::GlobalValue *Entry = GetGlobalValue(Name: MangledName);
5976 if (Entry && !Entry->isDeclaration()) {
5977 GlobalDecl OtherGD;
5978 if (lookupRepresentativeDecl(MangledName, Result&: OtherGD) &&
5979 DiagnosedConflictingDefinitions.insert(V: GD).second) {
5980 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5981 << MangledName;
5982 Diags.Report(OtherGD.getDecl()->getLocation(),
5983 diag::note_previous_definition);
5984 }
5985 return;
5986 }
5987
5988 Aliases.push_back(x: GD);
5989
5990 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(T: D->getType());
5991 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(IFuncValTy: DeclTy);
5992 llvm::Constant *Resolver =
5993 GetOrCreateLLVMFunction(MangledName: IFA->getResolver(), Ty: ResolverTy, GD: {},
5994 /*ForVTable=*/false);
5995 llvm::GlobalIFunc *GIF =
5996 llvm::GlobalIFunc::create(Ty: DeclTy, AddressSpace: 0, Linkage: llvm::Function::ExternalLinkage,
5997 Name: "", Resolver, Parent: &getModule());
5998 if (Entry) {
5999 if (GIF->getResolver() == Entry) {
6000 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6001 return;
6002 }
6003 assert(Entry->isDeclaration());
6004
6005 // If there is a declaration in the module, then we had an extern followed
6006 // by the ifunc, as in:
6007 // extern int test();
6008 // ...
6009 // int test() __attribute__((ifunc("resolver")));
6010 //
6011 // Remove it and replace uses of it with the ifunc.
6012 GIF->takeName(V: Entry);
6013
6014 Entry->replaceAllUsesWith(V: GIF);
6015 Entry->eraseFromParent();
6016 } else
6017 GIF->setName(MangledName);
6018 if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
6019 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
6020 }
6021 SetCommonAttributes(GD, GV: GIF);
6022}
6023
6024llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6025 ArrayRef<llvm::Type*> Tys) {
6026 return llvm::Intrinsic::getDeclaration(M: &getModule(), id: (llvm::Intrinsic::ID)IID,
6027 Tys);
6028}
6029
6030static llvm::StringMapEntry<llvm::GlobalVariable *> &
6031GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6032 const StringLiteral *Literal, bool TargetIsLSB,
6033 bool &IsUTF16, unsigned &StringLength) {
6034 StringRef String = Literal->getString();
6035 unsigned NumBytes = String.size();
6036
6037 // Check for simple case.
6038 if (!Literal->containsNonAsciiOrNull()) {
6039 StringLength = NumBytes;
6040 return *Map.insert(KV: std::make_pair(x&: String, y: nullptr)).first;
6041 }
6042
6043 // Otherwise, convert the UTF8 literals into a string of shorts.
6044 IsUTF16 = true;
6045
6046 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6047 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6048 llvm::UTF16 *ToPtr = &ToBuf[0];
6049
6050 (void)llvm::ConvertUTF8toUTF16(sourceStart: &FromPtr, sourceEnd: FromPtr + NumBytes, targetStart: &ToPtr,
6051 targetEnd: ToPtr + NumBytes, flags: llvm::strictConversion);
6052
6053 // ConvertUTF8toUTF16 returns the length in ToPtr.
6054 StringLength = ToPtr - &ToBuf[0];
6055
6056 // Add an explicit null.
6057 *ToPtr = 0;
6058 return *Map.insert(KV: std::make_pair(
6059 x: StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6060 (StringLength + 1) * 2),
6061 y: nullptr)).first;
6062}
6063
6064ConstantAddress
6065CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6066 unsigned StringLength = 0;
6067 bool isUTF16 = false;
6068 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6069 GetConstantCFStringEntry(Map&: CFConstantStringMap, Literal,
6070 TargetIsLSB: getDataLayout().isLittleEndian(), IsUTF16&: isUTF16,
6071 StringLength);
6072
6073 if (auto *C = Entry.second)
6074 return ConstantAddress(
6075 C, C->getValueType(), CharUnits::fromQuantity(Quantity: C->getAlignment()));
6076
6077 llvm::Constant *Zero = llvm::Constant::getNullValue(Ty: Int32Ty);
6078 llvm::Constant *Zeros[] = { Zero, Zero };
6079
6080 const ASTContext &Context = getContext();
6081 const llvm::Triple &Triple = getTriple();
6082
6083 const auto CFRuntime = getLangOpts().CFRuntime;
6084 const bool IsSwiftABI =
6085 static_cast<unsigned>(CFRuntime) >=
6086 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6087 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6088
6089 // If we don't already have it, get __CFConstantStringClassReference.
6090 if (!CFConstantStringClassRef) {
6091 const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6092 llvm::Type *Ty = getTypes().ConvertType(T: getContext().IntTy);
6093 Ty = llvm::ArrayType::get(ElementType: Ty, NumElements: 0);
6094
6095 switch (CFRuntime) {
6096 default: break;
6097 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6098 case LangOptions::CoreFoundationABI::Swift5_0:
6099 CFConstantStringClassName =
6100 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6101 : "$s10Foundation19_NSCFConstantStringCN";
6102 Ty = IntPtrTy;
6103 break;
6104 case LangOptions::CoreFoundationABI::Swift4_2:
6105 CFConstantStringClassName =
6106 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6107 : "$S10Foundation19_NSCFConstantStringCN";
6108 Ty = IntPtrTy;
6109 break;
6110 case LangOptions::CoreFoundationABI::Swift4_1:
6111 CFConstantStringClassName =
6112 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6113 : "__T010Foundation19_NSCFConstantStringCN";
6114 Ty = IntPtrTy;
6115 break;
6116 }
6117
6118 llvm::Constant *C = CreateRuntimeVariable(Ty, Name: CFConstantStringClassName);
6119
6120 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6121 llvm::GlobalValue *GV = nullptr;
6122
6123 if ((GV = dyn_cast<llvm::GlobalValue>(Val: C))) {
6124 IdentifierInfo &II = Context.Idents.get(Name: GV->getName());
6125 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6126 DeclContext *DC = TranslationUnitDecl::castToDeclContext(D: TUDecl);
6127
6128 const VarDecl *VD = nullptr;
6129 for (const auto *Result : DC->lookup(Name: &II))
6130 if ((VD = dyn_cast<VarDecl>(Val: Result)))
6131 break;
6132
6133 if (Triple.isOSBinFormatELF()) {
6134 if (!VD)
6135 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6136 } else {
6137 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6138 if (!VD || !VD->hasAttr<DLLExportAttr>())
6139 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6140 else
6141 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6142 }
6143
6144 setDSOLocal(GV);
6145 }
6146 }
6147
6148 // Decay array -> ptr
6149 CFConstantStringClassRef =
6150 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
6151 : llvm::ConstantExpr::getGetElementPtr(Ty, C, IdxList: Zeros);
6152 }
6153
6154 QualType CFTy = Context.getCFConstantStringType();
6155
6156 auto *STy = cast<llvm::StructType>(Val: getTypes().ConvertType(T: CFTy));
6157
6158 ConstantInitBuilder Builder(*this);
6159 auto Fields = Builder.beginStruct(structTy: STy);
6160
6161 // Class pointer.
6162 Fields.add(value: cast<llvm::Constant>(Val&: CFConstantStringClassRef));
6163
6164 // Flags.
6165 if (IsSwiftABI) {
6166 Fields.addInt(intTy: IntPtrTy, value: IsSwift4_1 ? 0x05 : 0x01);
6167 Fields.addInt(intTy: Int64Ty, value: isUTF16 ? 0x07d0 : 0x07c8);
6168 } else {
6169 Fields.addInt(intTy: IntTy, value: isUTF16 ? 0x07d0 : 0x07C8);
6170 }
6171
6172 // String pointer.
6173 llvm::Constant *C = nullptr;
6174 if (isUTF16) {
6175 auto Arr = llvm::ArrayRef(
6176 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6177 Entry.first().size() / 2);
6178 C = llvm::ConstantDataArray::get(Context&: VMContext, Elts: Arr);
6179 } else {
6180 C = llvm::ConstantDataArray::getString(Context&: VMContext, Initializer: Entry.first());
6181 }
6182
6183 // Note: -fwritable-strings doesn't make the backing store strings of
6184 // CFStrings writable.
6185 auto *GV =
6186 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6187 llvm::GlobalValue::PrivateLinkage, C, ".str");
6188 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6189 // Don't enforce the target's minimum global alignment, since the only use
6190 // of the string is via this class initializer.
6191 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6192 : Context.getTypeAlignInChars(Context.CharTy);
6193 GV->setAlignment(Align.getAsAlign());
6194
6195 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6196 // Without it LLVM can merge the string with a non unnamed_addr one during
6197 // LTO. Doing that changes the section it ends in, which surprises ld64.
6198 if (Triple.isOSBinFormatMachO())
6199 GV->setSection(isUTF16 ? "__TEXT,__ustring"
6200 : "__TEXT,__cstring,cstring_literals");
6201 // Make sure the literal ends up in .rodata to allow for safe ICF and for
6202 // the static linker to adjust permissions to read-only later on.
6203 else if (Triple.isOSBinFormatELF())
6204 GV->setSection(".rodata");
6205
6206 // String.
6207 llvm::Constant *Str =
6208 llvm::ConstantExpr::getGetElementPtr(Ty: GV->getValueType(), C: GV, IdxList: Zeros);
6209
6210 Fields.add(value: Str);
6211
6212 // String length.
6213 llvm::IntegerType *LengthTy =
6214 llvm::IntegerType::get(C&: getModule().getContext(),
6215 NumBits: Context.getTargetInfo().getLongWidth());
6216 if (IsSwiftABI) {
6217 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6218 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6219 LengthTy = Int32Ty;
6220 else
6221 LengthTy = IntPtrTy;
6222 }
6223 Fields.addInt(intTy: LengthTy, value: StringLength);
6224
6225 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6226 // properly aligned on 32-bit platforms.
6227 CharUnits Alignment =
6228 IsSwiftABI ? Context.toCharUnitsFromBits(BitSize: 64) : getPointerAlign();
6229
6230 // The struct.
6231 GV = Fields.finishAndCreateGlobal(args: "_unnamed_cfstring_", args&: Alignment,
6232 /*isConstant=*/args: false,
6233 args: llvm::GlobalVariable::PrivateLinkage);
6234 GV->addAttribute(Kind: "objc_arc_inert");
6235 switch (Triple.getObjectFormat()) {
6236 case llvm::Triple::UnknownObjectFormat:
6237 llvm_unreachable("unknown file format");
6238 case llvm::Triple::DXContainer:
6239 case llvm::Triple::GOFF:
6240 case llvm::Triple::SPIRV:
6241 case llvm::Triple::XCOFF:
6242 llvm_unreachable("unimplemented");
6243 case llvm::Triple::COFF:
6244 case llvm::Triple::ELF:
6245 case llvm::Triple::Wasm:
6246 GV->setSection("cfstring");
6247 break;
6248 case llvm::Triple::MachO:
6249 GV->setSection("__DATA,__cfstring");
6250 break;
6251 }
6252 Entry.second = GV;
6253
6254 return ConstantAddress(GV, GV->getValueType(), Alignment);
6255}
6256
6257bool CodeGenModule::getExpressionLocationsEnabled() const {
6258 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6259}
6260
6261QualType CodeGenModule::getObjCFastEnumerationStateType() {
6262 if (ObjCFastEnumerationStateType.isNull()) {
6263 RecordDecl *D = Context.buildImplicitRecord(Name: "__objcFastEnumerationState");
6264 D->startDefinition();
6265
6266 QualType FieldTypes[] = {
6267 Context.UnsignedLongTy, Context.getPointerType(T: Context.getObjCIdType()),
6268 Context.getPointerType(Context.UnsignedLongTy),
6269 Context.getConstantArrayType(EltTy: Context.UnsignedLongTy, ArySize: llvm::APInt(32, 5),
6270 SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0)};
6271
6272 for (size_t i = 0; i < 4; ++i) {
6273 FieldDecl *Field = FieldDecl::Create(C: Context,
6274 DC: D,
6275 StartLoc: SourceLocation(),
6276 IdLoc: SourceLocation(), Id: nullptr,
6277 T: FieldTypes[i], /*TInfo=*/nullptr,
6278 /*BitWidth=*/BW: nullptr,
6279 /*Mutable=*/false,
6280 InitStyle: ICIS_NoInit);
6281 Field->setAccess(AS_public);
6282 D->addDecl(Field);
6283 }
6284
6285 D->completeDefinition();
6286 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6287 }
6288
6289 return ObjCFastEnumerationStateType;
6290}
6291
6292llvm::Constant *
6293CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6294 assert(!E->getType()->isPointerType() && "Strings are always arrays");
6295
6296 // Don't emit it as the address of the string, emit the string data itself
6297 // as an inline array.
6298 if (E->getCharByteWidth() == 1) {
6299 SmallString<64> Str(E->getString());
6300
6301 // Resize the string to the right size, which is indicated by its type.
6302 const ConstantArrayType *CAT = Context.getAsConstantArrayType(T: E->getType());
6303 assert(CAT && "String literal not of constant array type!");
6304 Str.resize(N: CAT->getZExtSize());
6305 return llvm::ConstantDataArray::getString(Context&: VMContext, Initializer: Str, AddNull: false);
6306 }
6307
6308 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(T: E->getType()));
6309 llvm::Type *ElemTy = AType->getElementType();
6310 unsigned NumElements = AType->getNumElements();
6311
6312 // Wide strings have either 2-byte or 4-byte elements.
6313 if (ElemTy->getPrimitiveSizeInBits() == 16) {
6314 SmallVector<uint16_t, 32> Elements;
6315 Elements.reserve(N: NumElements);
6316
6317 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6318 Elements.push_back(Elt: E->getCodeUnit(i));
6319 Elements.resize(N: NumElements);
6320 return llvm::ConstantDataArray::get(Context&: VMContext, Elts&: Elements);
6321 }
6322
6323 assert(ElemTy->getPrimitiveSizeInBits() == 32);
6324 SmallVector<uint32_t, 32> Elements;
6325 Elements.reserve(N: NumElements);
6326
6327 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6328 Elements.push_back(Elt: E->getCodeUnit(i));
6329 Elements.resize(N: NumElements);
6330 return llvm::ConstantDataArray::get(Context&: VMContext, Elts&: Elements);
6331}
6332
6333static llvm::GlobalVariable *
6334GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6335 CodeGenModule &CGM, StringRef GlobalName,
6336 CharUnits Alignment) {
6337 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6338 AS: CGM.GetGlobalConstantAddressSpace());
6339
6340 llvm::Module &M = CGM.getModule();
6341 // Create a global variable for this string
6342 auto *GV = new llvm::GlobalVariable(
6343 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6344 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6345 GV->setAlignment(Alignment.getAsAlign());
6346 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6347 if (GV->isWeakForLinker()) {
6348 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6349 GV->setComdat(M.getOrInsertComdat(Name: GV->getName()));
6350 }
6351 CGM.setDSOLocal(GV);
6352
6353 return GV;
6354}
6355
6356/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6357/// constant array for the given string literal.
6358ConstantAddress
6359CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6360 StringRef Name) {
6361 CharUnits Alignment =
6362 getContext().getAlignOfGlobalVarInChars(T: S->getType(), /*VD=*/nullptr);
6363
6364 llvm::Constant *C = GetConstantArrayFromStringLiteral(E: S);
6365 llvm::GlobalVariable **Entry = nullptr;
6366 if (!LangOpts.WritableStrings) {
6367 Entry = &ConstantStringMap[C];
6368 if (auto GV = *Entry) {
6369 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6370 GV->setAlignment(Alignment.getAsAlign());
6371 return ConstantAddress(castStringLiteralToDefaultAddressSpace(CGM&: *this, GV),
6372 GV->getValueType(), Alignment);
6373 }
6374 }
6375
6376 SmallString<256> MangledNameBuffer;
6377 StringRef GlobalVariableName;
6378 llvm::GlobalValue::LinkageTypes LT;
6379
6380 // Mangle the string literal if that's how the ABI merges duplicate strings.
6381 // Don't do it if they are writable, since we don't want writes in one TU to
6382 // affect strings in another.
6383 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(SL: S) &&
6384 !LangOpts.WritableStrings) {
6385 llvm::raw_svector_ostream Out(MangledNameBuffer);
6386 getCXXABI().getMangleContext().mangleStringLiteral(SL: S, Out);
6387 LT = llvm::GlobalValue::LinkOnceODRLinkage;
6388 GlobalVariableName = MangledNameBuffer;
6389 } else {
6390 LT = llvm::GlobalValue::PrivateLinkage;
6391 GlobalVariableName = Name;
6392 }
6393
6394 auto GV = GenerateStringLiteral(C, LT, CGM&: *this, GlobalName: GlobalVariableName, Alignment);
6395
6396 CGDebugInfo *DI = getModuleDebugInfo();
6397 if (DI && getCodeGenOpts().hasReducedDebugInfo())
6398 DI->AddStringLiteralDebugInfo(GV: GV, S);
6399
6400 if (Entry)
6401 *Entry = GV;
6402
6403 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(TokNum: 0), "<string literal>");
6404
6405 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6406 GV->getValueType(), Alignment);
6407}
6408
6409/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6410/// array for the given ObjCEncodeExpr node.
6411ConstantAddress
6412CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6413 std::string Str;
6414 getContext().getObjCEncodingForType(T: E->getEncodedType(), S&: Str);
6415
6416 return GetAddrOfConstantCString(Str);
6417}
6418
6419/// GetAddrOfConstantCString - Returns a pointer to a character array containing
6420/// the literal and a terminating '\0' character.
6421/// The result has pointer to array type.
6422ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6423 const std::string &Str, const char *GlobalName) {
6424 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6425 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6426 T: getContext().CharTy, /*VD=*/nullptr);
6427
6428 llvm::Constant *C =
6429 llvm::ConstantDataArray::getString(Context&: getLLVMContext(), Initializer: StrWithNull, AddNull: false);
6430
6431 // Don't share any string literals if strings aren't constant.
6432 llvm::GlobalVariable **Entry = nullptr;
6433 if (!LangOpts.WritableStrings) {
6434 Entry = &ConstantStringMap[C];
6435 if (auto GV = *Entry) {
6436 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6437 GV->setAlignment(Alignment.getAsAlign());
6438 return ConstantAddress(castStringLiteralToDefaultAddressSpace(CGM&: *this, GV),
6439 GV->getValueType(), Alignment);
6440 }
6441 }
6442
6443 // Get the default prefix if a name wasn't specified.
6444 if (!GlobalName)
6445 GlobalName = ".str";
6446 // Create a global variable for this.
6447 auto GV = GenerateStringLiteral(C, LT: llvm::GlobalValue::PrivateLinkage, CGM&: *this,
6448 GlobalName, Alignment);
6449 if (Entry)
6450 *Entry = GV;
6451
6452 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6453 GV->getValueType(), Alignment);
6454}
6455
6456ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6457 const MaterializeTemporaryExpr *E, const Expr *Init) {
6458 assert((E->getStorageDuration() == SD_Static ||
6459 E->getStorageDuration() == SD_Thread) && "not a global temporary");
6460 const auto *VD = cast<VarDecl>(Val: E->getExtendingDecl());
6461
6462 // If we're not materializing a subobject of the temporary, keep the
6463 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6464 QualType MaterializedType = Init->getType();
6465 if (Init == E->getSubExpr())
6466 MaterializedType = E->getType();
6467
6468 CharUnits Align = getContext().getTypeAlignInChars(T: MaterializedType);
6469
6470 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6471 if (!InsertResult.second) {
6472 // We've seen this before: either we already created it or we're in the
6473 // process of doing so.
6474 if (!InsertResult.first->second) {
6475 // We recursively re-entered this function, probably during emission of
6476 // the initializer. Create a placeholder. We'll clean this up in the
6477 // outer call, at the end of this function.
6478 llvm::Type *Type = getTypes().ConvertTypeForMem(T: MaterializedType);
6479 InsertResult.first->second = new llvm::GlobalVariable(
6480 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6481 nullptr);
6482 }
6483 return ConstantAddress(InsertResult.first->second,
6484 llvm::cast<llvm::GlobalVariable>(
6485 InsertResult.first->second->stripPointerCasts())
6486 ->getValueType(),
6487 Align);
6488 }
6489
6490 // FIXME: If an externally-visible declaration extends multiple temporaries,
6491 // we need to give each temporary the same name in every translation unit (and
6492 // we also need to make the temporaries externally-visible).
6493 SmallString<256> Name;
6494 llvm::raw_svector_ostream Out(Name);
6495 getCXXABI().getMangleContext().mangleReferenceTemporary(
6496 D: VD, ManglingNumber: E->getManglingNumber(), Out);
6497
6498 APValue *Value = nullptr;
6499 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6500 // If the initializer of the extending declaration is a constant
6501 // initializer, we should have a cached constant initializer for this
6502 // temporary. Note that this might have a different value from the value
6503 // computed by evaluating the initializer if the surrounding constant
6504 // expression modifies the temporary.
6505 Value = E->getOrCreateValue(MayCreate: false);
6506 }
6507
6508 // Try evaluating it now, it might have a constant initializer.
6509 Expr::EvalResult EvalResult;
6510 if (!Value && Init->EvaluateAsRValue(Result&: EvalResult, Ctx: getContext()) &&
6511 !EvalResult.hasSideEffects())
6512 Value = &EvalResult.Val;
6513
6514 LangAS AddrSpace = GetGlobalVarAddressSpace(D: VD);
6515
6516 std::optional<ConstantEmitter> emitter;
6517 llvm::Constant *InitialValue = nullptr;
6518 bool Constant = false;
6519 llvm::Type *Type;
6520 if (Value) {
6521 // The temporary has a constant initializer, use it.
6522 emitter.emplace(args&: *this);
6523 InitialValue = emitter->emitForInitializer(value: *Value, destAddrSpace: AddrSpace,
6524 destType: MaterializedType);
6525 Constant =
6526 MaterializedType.isConstantStorage(Ctx: getContext(), /*ExcludeCtor*/ Value,
6527 /*ExcludeDtor*/ false);
6528 Type = InitialValue->getType();
6529 } else {
6530 // No initializer, the initialization will be provided when we
6531 // initialize the declaration which performed lifetime extension.
6532 Type = getTypes().ConvertTypeForMem(T: MaterializedType);
6533 }
6534
6535 // Create a global variable for this lifetime-extended temporary.
6536 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6537 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6538 const VarDecl *InitVD;
6539 if (VD->isStaticDataMember() && VD->getAnyInitializer(D&: InitVD) &&
6540 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6541 // Temporaries defined inside a class get linkonce_odr linkage because the
6542 // class can be defined in multiple translation units.
6543 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6544 } else {
6545 // There is no need for this temporary to have external linkage if the
6546 // VarDecl has external linkage.
6547 Linkage = llvm::GlobalVariable::InternalLinkage;
6548 }
6549 }
6550 auto TargetAS = getContext().getTargetAddressSpace(AS: AddrSpace);
6551 auto *GV = new llvm::GlobalVariable(
6552 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6553 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6554 if (emitter) emitter->finalize(global: GV);
6555 // Don't assign dllimport or dllexport to local linkage globals.
6556 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6557 setGVProperties(GV, GD: VD);
6558 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6559 // The reference temporary should never be dllexport.
6560 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6561 }
6562 GV->setAlignment(Align.getAsAlign());
6563 if (supportsCOMDAT() && GV->isWeakForLinker())
6564 GV->setComdat(TheModule.getOrInsertComdat(Name: GV->getName()));
6565 if (VD->getTLSKind())
6566 setTLSMode(GV, D: *VD);
6567 llvm::Constant *CV = GV;
6568 if (AddrSpace != LangAS::Default)
6569 CV = getTargetCodeGenInfo().performAddrSpaceCast(
6570 CGM&: *this, V: GV, SrcAddr: AddrSpace, DestAddr: LangAS::Default,
6571 DestTy: llvm::PointerType::get(
6572 C&: getLLVMContext(),
6573 AddressSpace: getContext().getTargetAddressSpace(AS: LangAS::Default)));
6574
6575 // Update the map with the new temporary. If we created a placeholder above,
6576 // replace it with the new global now.
6577 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6578 if (Entry) {
6579 Entry->replaceAllUsesWith(V: CV);
6580 llvm::cast<llvm::GlobalVariable>(Val: Entry)->eraseFromParent();
6581 }
6582 Entry = CV;
6583
6584 return ConstantAddress(CV, Type, Align);
6585}
6586
6587/// EmitObjCPropertyImplementations - Emit information for synthesized
6588/// properties for an implementation.
6589void CodeGenModule::EmitObjCPropertyImplementations(const
6590 ObjCImplementationDecl *D) {
6591 for (const auto *PID : D->property_impls()) {
6592 // Dynamic is just for type-checking.
6593 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6594 ObjCPropertyDecl *PD = PID->getPropertyDecl();
6595
6596 // Determine which methods need to be implemented, some may have
6597 // been overridden. Note that ::isPropertyAccessor is not the method
6598 // we want, that just indicates if the decl came from a
6599 // property. What we want to know is if the method is defined in
6600 // this implementation.
6601 auto *Getter = PID->getGetterMethodDecl();
6602 if (!Getter || Getter->isSynthesizedAccessorStub())
6603 CodeGenFunction(*this).GenerateObjCGetter(
6604 const_cast<ObjCImplementationDecl *>(D), PID);
6605 auto *Setter = PID->getSetterMethodDecl();
6606 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6607 CodeGenFunction(*this).GenerateObjCSetter(
6608 const_cast<ObjCImplementationDecl *>(D), PID);
6609 }
6610 }
6611}
6612
6613static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6614 const ObjCInterfaceDecl *iface = impl->getClassInterface();
6615 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6616 ivar; ivar = ivar->getNextIvar())
6617 if (ivar->getType().isDestructedType())
6618 return true;
6619
6620 return false;
6621}
6622
6623static bool AllTrivialInitializers(CodeGenModule &CGM,
6624 ObjCImplementationDecl *D) {
6625 CodeGenFunction CGF(CGM);
6626 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6627 E = D->init_end(); B != E; ++B) {
6628 CXXCtorInitializer *CtorInitExp = *B;
6629 Expr *Init = CtorInitExp->getInit();
6630 if (!CGF.isTrivialInitializer(Init))
6631 return false;
6632 }
6633 return true;
6634}
6635
6636/// EmitObjCIvarInitializations - Emit information for ivar initialization
6637/// for an implementation.
6638void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6639 // We might need a .cxx_destruct even if we don't have any ivar initializers.
6640 if (needsDestructMethod(impl: D)) {
6641 const IdentifierInfo *II = &getContext().Idents.get(Name: ".cxx_destruct");
6642 Selector cxxSelector = getContext().Selectors.getSelector(NumArgs: 0, IIV: &II);
6643 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6644 C&: getContext(), beginLoc: D->getLocation(), endLoc: D->getLocation(), SelInfo: cxxSelector,
6645 T: getContext().VoidTy, ReturnTInfo: nullptr, contextDecl: D,
6646 /*isInstance=*/true, /*isVariadic=*/false,
6647 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6648 /*isImplicitlyDeclared=*/true,
6649 /*isDefined=*/false, impControl: ObjCImplementationControl::Required);
6650 D->addInstanceMethod(DTORMethod);
6651 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(IMP: D, MD: DTORMethod, ctor: false);
6652 D->setHasDestructors(true);
6653 }
6654
6655 // If the implementation doesn't have any ivar initializers, we don't need
6656 // a .cxx_construct.
6657 if (D->getNumIvarInitializers() == 0 ||
6658 AllTrivialInitializers(CGM&: *this, D))
6659 return;
6660
6661 const IdentifierInfo *II = &getContext().Idents.get(Name: ".cxx_construct");
6662 Selector cxxSelector = getContext().Selectors.getSelector(NumArgs: 0, IIV: &II);
6663 // The constructor returns 'self'.
6664 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6665 C&: getContext(), beginLoc: D->getLocation(), endLoc: D->getLocation(), SelInfo: cxxSelector,
6666 T: getContext().getObjCIdType(), ReturnTInfo: nullptr, contextDecl: D, /*isInstance=*/true,
6667 /*isVariadic=*/false,
6668 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6669 /*isImplicitlyDeclared=*/true,
6670 /*isDefined=*/false, impControl: ObjCImplementationControl::Required);
6671 D->addInstanceMethod(CTORMethod);
6672 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(IMP: D, MD: CTORMethod, ctor: true);
6673 D->setHasNonZeroConstructors(true);
6674}
6675
6676// EmitLinkageSpec - Emit all declarations in a linkage spec.
6677void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6678 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6679 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6680 ErrorUnsupported(LSD, "linkage spec");
6681 return;
6682 }
6683
6684 EmitDeclContext(LSD);
6685}
6686
6687void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6688 // Device code should not be at top level.
6689 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6690 return;
6691
6692 std::unique_ptr<CodeGenFunction> &CurCGF =
6693 GlobalTopLevelStmtBlockInFlight.first;
6694
6695 // We emitted a top-level stmt but after it there is initialization.
6696 // Stop squashing the top-level stmts into a single function.
6697 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6698 CurCGF->FinishFunction(EndLoc: D->getEndLoc());
6699 CurCGF = nullptr;
6700 }
6701
6702 if (!CurCGF) {
6703 // void __stmts__N(void)
6704 // FIXME: Ask the ABI name mangler to pick a name.
6705 std::string Name = "__stmts__" + llvm::utostr(X: CXXGlobalInits.size());
6706 FunctionArgList Args;
6707 QualType RetTy = getContext().VoidTy;
6708 const CGFunctionInfo &FnInfo =
6709 getTypes().arrangeBuiltinFunctionDeclaration(resultType: RetTy, args: Args);
6710 llvm::FunctionType *FnTy = getTypes().GetFunctionType(Info: FnInfo);
6711 llvm::Function *Fn = llvm::Function::Create(
6712 Ty: FnTy, Linkage: llvm::GlobalValue::InternalLinkage, N: Name, M: &getModule());
6713
6714 CurCGF.reset(p: new CodeGenFunction(*this));
6715 GlobalTopLevelStmtBlockInFlight.second = D;
6716 CurCGF->StartFunction(GD: GlobalDecl(), RetTy, Fn, FnInfo, Args,
6717 Loc: D->getBeginLoc(), StartLoc: D->getBeginLoc());
6718 CXXGlobalInits.push_back(x: Fn);
6719 }
6720
6721 CurCGF->EmitStmt(S: D->getStmt());
6722}
6723
6724void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6725 for (auto *I : DC->decls()) {
6726 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6727 // are themselves considered "top-level", so EmitTopLevelDecl on an
6728 // ObjCImplDecl does not recursively visit them. We need to do that in
6729 // case they're nested inside another construct (LinkageSpecDecl /
6730 // ExportDecl) that does stop them from being considered "top-level".
6731 if (auto *OID = dyn_cast<ObjCImplDecl>(Val: I)) {
6732 for (auto *M : OID->methods())
6733 EmitTopLevelDecl(M);
6734 }
6735
6736 EmitTopLevelDecl(D: I);
6737 }
6738}
6739
6740/// EmitTopLevelDecl - Emit code for a single top level declaration.
6741void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6742 // Ignore dependent declarations.
6743 if (D->isTemplated())
6744 return;
6745
6746 // Consteval function shouldn't be emitted.
6747 if (auto *FD = dyn_cast<FunctionDecl>(Val: D); FD && FD->isImmediateFunction())
6748 return;
6749
6750 switch (D->getKind()) {
6751 case Decl::CXXConversion:
6752 case Decl::CXXMethod:
6753 case Decl::Function:
6754 EmitGlobal(GD: cast<FunctionDecl>(Val: D));
6755 // Always provide some coverage mapping
6756 // even for the functions that aren't emitted.
6757 AddDeferredUnusedCoverageMapping(D);
6758 break;
6759
6760 case Decl::CXXDeductionGuide:
6761 // Function-like, but does not result in code emission.
6762 break;
6763
6764 case Decl::Var:
6765 case Decl::Decomposition:
6766 case Decl::VarTemplateSpecialization:
6767 EmitGlobal(GD: cast<VarDecl>(Val: D));
6768 if (auto *DD = dyn_cast<DecompositionDecl>(Val: D))
6769 for (auto *B : DD->bindings())
6770 if (auto *HD = B->getHoldingVar())
6771 EmitGlobal(GD: HD);
6772 break;
6773
6774 // Indirect fields from global anonymous structs and unions can be
6775 // ignored; only the actual variable requires IR gen support.
6776 case Decl::IndirectField:
6777 break;
6778
6779 // C++ Decls
6780 case Decl::Namespace:
6781 EmitDeclContext(cast<NamespaceDecl>(Val: D));
6782 break;
6783 case Decl::ClassTemplateSpecialization: {
6784 const auto *Spec = cast<ClassTemplateSpecializationDecl>(Val: D);
6785 if (CGDebugInfo *DI = getModuleDebugInfo())
6786 if (Spec->getSpecializationKind() ==
6787 TSK_ExplicitInstantiationDefinition &&
6788 Spec->hasDefinition())
6789 DI->completeTemplateDefinition(SD: *Spec);
6790 } [[fallthrough]];
6791 case Decl::CXXRecord: {
6792 CXXRecordDecl *CRD = cast<CXXRecordDecl>(Val: D);
6793 if (CGDebugInfo *DI = getModuleDebugInfo()) {
6794 if (CRD->hasDefinition())
6795 DI->EmitAndRetainType(Ty: getContext().getRecordType(Decl: cast<RecordDecl>(Val: D)));
6796 if (auto *ES = D->getASTContext().getExternalSource())
6797 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6798 DI->completeUnusedClass(D: *CRD);
6799 }
6800 // Emit any static data members, they may be definitions.
6801 for (auto *I : CRD->decls())
6802 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6803 EmitTopLevelDecl(I);
6804 break;
6805 }
6806 // No code generation needed.
6807 case Decl::UsingShadow:
6808 case Decl::ClassTemplate:
6809 case Decl::VarTemplate:
6810 case Decl::Concept:
6811 case Decl::VarTemplatePartialSpecialization:
6812 case Decl::FunctionTemplate:
6813 case Decl::TypeAliasTemplate:
6814 case Decl::Block:
6815 case Decl::Empty:
6816 case Decl::Binding:
6817 break;
6818 case Decl::Using: // using X; [C++]
6819 if (CGDebugInfo *DI = getModuleDebugInfo())
6820 DI->EmitUsingDecl(UD: cast<UsingDecl>(Val&: *D));
6821 break;
6822 case Decl::UsingEnum: // using enum X; [C++]
6823 if (CGDebugInfo *DI = getModuleDebugInfo())
6824 DI->EmitUsingEnumDecl(UD: cast<UsingEnumDecl>(Val&: *D));
6825 break;
6826 case Decl::NamespaceAlias:
6827 if (CGDebugInfo *DI = getModuleDebugInfo())
6828 DI->EmitNamespaceAlias(NA: cast<NamespaceAliasDecl>(Val&: *D));
6829 break;
6830 case Decl::UsingDirective: // using namespace X; [C++]
6831 if (CGDebugInfo *DI = getModuleDebugInfo())
6832 DI->EmitUsingDirective(UD: cast<UsingDirectiveDecl>(Val&: *D));
6833 break;
6834 case Decl::CXXConstructor:
6835 getCXXABI().EmitCXXConstructors(D: cast<CXXConstructorDecl>(Val: D));
6836 break;
6837 case Decl::CXXDestructor:
6838 getCXXABI().EmitCXXDestructors(D: cast<CXXDestructorDecl>(Val: D));
6839 break;
6840
6841 case Decl::StaticAssert:
6842 // Nothing to do.
6843 break;
6844
6845 // Objective-C Decls
6846
6847 // Forward declarations, no (immediate) code generation.
6848 case Decl::ObjCInterface:
6849 case Decl::ObjCCategory:
6850 break;
6851
6852 case Decl::ObjCProtocol: {
6853 auto *Proto = cast<ObjCProtocolDecl>(Val: D);
6854 if (Proto->isThisDeclarationADefinition())
6855 ObjCRuntime->GenerateProtocol(OPD: Proto);
6856 break;
6857 }
6858
6859 case Decl::ObjCCategoryImpl:
6860 // Categories have properties but don't support synthesize so we
6861 // can ignore them here.
6862 ObjCRuntime->GenerateCategory(OCD: cast<ObjCCategoryImplDecl>(Val: D));
6863 break;
6864
6865 case Decl::ObjCImplementation: {
6866 auto *OMD = cast<ObjCImplementationDecl>(Val: D);
6867 EmitObjCPropertyImplementations(D: OMD);
6868 EmitObjCIvarInitializations(D: OMD);
6869 ObjCRuntime->GenerateClass(OID: OMD);
6870 // Emit global variable debug information.
6871 if (CGDebugInfo *DI = getModuleDebugInfo())
6872 if (getCodeGenOpts().hasReducedDebugInfo())
6873 DI->getOrCreateInterfaceType(Ty: getContext().getObjCInterfaceType(
6874 Decl: OMD->getClassInterface()), Loc: OMD->getLocation());
6875 break;
6876 }
6877 case Decl::ObjCMethod: {
6878 auto *OMD = cast<ObjCMethodDecl>(Val: D);
6879 // If this is not a prototype, emit the body.
6880 if (OMD->getBody())
6881 CodeGenFunction(*this).GenerateObjCMethod(OMD);
6882 break;
6883 }
6884 case Decl::ObjCCompatibleAlias:
6885 ObjCRuntime->RegisterAlias(OAD: cast<ObjCCompatibleAliasDecl>(Val: D));
6886 break;
6887
6888 case Decl::PragmaComment: {
6889 const auto *PCD = cast<PragmaCommentDecl>(Val: D);
6890 switch (PCD->getCommentKind()) {
6891 case PCK_Unknown:
6892 llvm_unreachable("unexpected pragma comment kind");
6893 case PCK_Linker:
6894 AppendLinkerOptions(Opts: PCD->getArg());
6895 break;
6896 case PCK_Lib:
6897 AddDependentLib(Lib: PCD->getArg());
6898 break;
6899 case PCK_Compiler:
6900 case PCK_ExeStr:
6901 case PCK_User:
6902 break; // We ignore all of these.
6903 }
6904 break;
6905 }
6906
6907 case Decl::PragmaDetectMismatch: {
6908 const auto *PDMD = cast<PragmaDetectMismatchDecl>(Val: D);
6909 AddDetectMismatch(Name: PDMD->getName(), Value: PDMD->getValue());
6910 break;
6911 }
6912
6913 case Decl::LinkageSpec:
6914 EmitLinkageSpec(LSD: cast<LinkageSpecDecl>(Val: D));
6915 break;
6916
6917 case Decl::FileScopeAsm: {
6918 // File-scope asm is ignored during device-side CUDA compilation.
6919 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6920 break;
6921 // File-scope asm is ignored during device-side OpenMP compilation.
6922 if (LangOpts.OpenMPIsTargetDevice)
6923 break;
6924 // File-scope asm is ignored during device-side SYCL compilation.
6925 if (LangOpts.SYCLIsDevice)
6926 break;
6927 auto *AD = cast<FileScopeAsmDecl>(Val: D);
6928 getModule().appendModuleInlineAsm(Asm: AD->getAsmString()->getString());
6929 break;
6930 }
6931
6932 case Decl::TopLevelStmt:
6933 EmitTopLevelStmt(D: cast<TopLevelStmtDecl>(Val: D));
6934 break;
6935
6936 case Decl::Import: {
6937 auto *Import = cast<ImportDecl>(Val: D);
6938
6939 // If we've already imported this module, we're done.
6940 if (!ImportedModules.insert(X: Import->getImportedModule()))
6941 break;
6942
6943 // Emit debug information for direct imports.
6944 if (!Import->getImportedOwningModule()) {
6945 if (CGDebugInfo *DI = getModuleDebugInfo())
6946 DI->EmitImportDecl(ID: *Import);
6947 }
6948
6949 // For C++ standard modules we are done - we will call the module
6950 // initializer for imported modules, and that will likewise call those for
6951 // any imports it has.
6952 if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6953 !Import->getImportedOwningModule()->isModuleMapModule())
6954 break;
6955
6956 // For clang C++ module map modules the initializers for sub-modules are
6957 // emitted here.
6958
6959 // Find all of the submodules and emit the module initializers.
6960 llvm::SmallPtrSet<clang::Module *, 16> Visited;
6961 SmallVector<clang::Module *, 16> Stack;
6962 Visited.insert(Ptr: Import->getImportedModule());
6963 Stack.push_back(Elt: Import->getImportedModule());
6964
6965 while (!Stack.empty()) {
6966 clang::Module *Mod = Stack.pop_back_val();
6967 if (!EmittedModuleInitializers.insert(Ptr: Mod).second)
6968 continue;
6969
6970 for (auto *D : Context.getModuleInitializers(M: Mod))
6971 EmitTopLevelDecl(D);
6972
6973 // Visit the submodules of this module.
6974 for (auto *Submodule : Mod->submodules()) {
6975 // Skip explicit children; they need to be explicitly imported to emit
6976 // the initializers.
6977 if (Submodule->IsExplicit)
6978 continue;
6979
6980 if (Visited.insert(Ptr: Submodule).second)
6981 Stack.push_back(Elt: Submodule);
6982 }
6983 }
6984 break;
6985 }
6986
6987 case Decl::Export:
6988 EmitDeclContext(cast<ExportDecl>(Val: D));
6989 break;
6990
6991 case Decl::OMPThreadPrivate:
6992 EmitOMPThreadPrivateDecl(D: cast<OMPThreadPrivateDecl>(Val: D));
6993 break;
6994
6995 case Decl::OMPAllocate:
6996 EmitOMPAllocateDecl(D: cast<OMPAllocateDecl>(Val: D));
6997 break;
6998
6999 case Decl::OMPDeclareReduction:
7000 EmitOMPDeclareReduction(D: cast<OMPDeclareReductionDecl>(Val: D));
7001 break;
7002
7003 case Decl::OMPDeclareMapper:
7004 EmitOMPDeclareMapper(D: cast<OMPDeclareMapperDecl>(Val: D));
7005 break;
7006
7007 case Decl::OMPRequires:
7008 EmitOMPRequiresDecl(D: cast<OMPRequiresDecl>(Val: D));
7009 break;
7010
7011 case Decl::Typedef:
7012 case Decl::TypeAlias: // using foo = bar; [C++11]
7013 if (CGDebugInfo *DI = getModuleDebugInfo())
7014 DI->EmitAndRetainType(
7015 Ty: getContext().getTypedefType(Decl: cast<TypedefNameDecl>(Val: D)));
7016 break;
7017
7018 case Decl::Record:
7019 if (CGDebugInfo *DI = getModuleDebugInfo())
7020 if (cast<RecordDecl>(Val: D)->getDefinition())
7021 DI->EmitAndRetainType(Ty: getContext().getRecordType(Decl: cast<RecordDecl>(Val: D)));
7022 break;
7023
7024 case Decl::Enum:
7025 if (CGDebugInfo *DI = getModuleDebugInfo())
7026 if (cast<EnumDecl>(Val: D)->getDefinition())
7027 DI->EmitAndRetainType(Ty: getContext().getEnumType(Decl: cast<EnumDecl>(Val: D)));
7028 break;
7029
7030 case Decl::HLSLBuffer:
7031 getHLSLRuntime().addBuffer(D: cast<HLSLBufferDecl>(Val: D));
7032 break;
7033
7034 default:
7035 // Make sure we handled everything we should, every other kind is a
7036 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
7037 // function. Need to recode Decl::Kind to do that easily.
7038 assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7039 break;
7040 }
7041}
7042
7043void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7044 // Do we need to generate coverage mapping?
7045 if (!CodeGenOpts.CoverageMapping)
7046 return;
7047 switch (D->getKind()) {
7048 case Decl::CXXConversion:
7049 case Decl::CXXMethod:
7050 case Decl::Function:
7051 case Decl::ObjCMethod:
7052 case Decl::CXXConstructor:
7053 case Decl::CXXDestructor: {
7054 if (!cast<FunctionDecl>(Val: D)->doesThisDeclarationHaveABody())
7055 break;
7056 SourceManager &SM = getContext().getSourceManager();
7057 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(SpellingLoc: D->getBeginLoc()))
7058 break;
7059 DeferredEmptyCoverageMappingDecls.try_emplace(Key: D, Args: true);
7060 break;
7061 }
7062 default:
7063 break;
7064 };
7065}
7066
7067void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7068 // Do we need to generate coverage mapping?
7069 if (!CodeGenOpts.CoverageMapping)
7070 return;
7071 if (const auto *Fn = dyn_cast<FunctionDecl>(Val: D)) {
7072 if (Fn->isTemplateInstantiation())
7073 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7074 }
7075 DeferredEmptyCoverageMappingDecls.insert_or_assign(Key: D, Val: false);
7076}
7077
7078void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7079 // We call takeVector() here to avoid use-after-free.
7080 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7081 // we deserialize function bodies to emit coverage info for them, and that
7082 // deserializes more declarations. How should we handle that case?
7083 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7084 if (!Entry.second)
7085 continue;
7086 const Decl *D = Entry.first;
7087 switch (D->getKind()) {
7088 case Decl::CXXConversion:
7089 case Decl::CXXMethod:
7090 case Decl::Function:
7091 case Decl::ObjCMethod: {
7092 CodeGenPGO PGO(*this);
7093 GlobalDecl GD(cast<FunctionDecl>(Val: D));
7094 PGO.emitEmptyCounterMapping(D, FuncName: getMangledName(GD),
7095 Linkage: getFunctionLinkage(GD));
7096 break;
7097 }
7098 case Decl::CXXConstructor: {
7099 CodeGenPGO PGO(*this);
7100 GlobalDecl GD(cast<CXXConstructorDecl>(Val: D), Ctor_Base);
7101 PGO.emitEmptyCounterMapping(D, FuncName: getMangledName(GD),
7102 Linkage: getFunctionLinkage(GD));
7103 break;
7104 }
7105 case Decl::CXXDestructor: {
7106 CodeGenPGO PGO(*this);
7107 GlobalDecl GD(cast<CXXDestructorDecl>(Val: D), Dtor_Base);
7108 PGO.emitEmptyCounterMapping(D, FuncName: getMangledName(GD),
7109 Linkage: getFunctionLinkage(GD));
7110 break;
7111 }
7112 default:
7113 break;
7114 };
7115 }
7116}
7117
7118void CodeGenModule::EmitMainVoidAlias() {
7119 // In order to transition away from "__original_main" gracefully, emit an
7120 // alias for "main" in the no-argument case so that libc can detect when
7121 // new-style no-argument main is in used.
7122 if (llvm::Function *F = getModule().getFunction(Name: "main")) {
7123 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7124 F->getReturnType()->isIntegerTy(Bitwidth: Context.getTargetInfo().getIntWidth())) {
7125 auto *GA = llvm::GlobalAlias::create(Name: "__main_void", Aliasee: F);
7126 GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7127 }
7128 }
7129}
7130
7131/// Turns the given pointer into a constant.
7132static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7133 const void *Ptr) {
7134 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7135 llvm::Type *i64 = llvm::Type::getInt64Ty(C&: Context);
7136 return llvm::ConstantInt::get(Ty: i64, V: PtrInt);
7137}
7138
7139static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7140 llvm::NamedMDNode *&GlobalMetadata,
7141 GlobalDecl D,
7142 llvm::GlobalValue *Addr) {
7143 if (!GlobalMetadata)
7144 GlobalMetadata =
7145 CGM.getModule().getOrInsertNamedMetadata(Name: "clang.global.decl.ptrs");
7146
7147 // TODO: should we report variant information for ctors/dtors?
7148 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(C: Addr),
7149 llvm::ConstantAsMetadata::get(C: GetPointerConstant(
7150 Context&: CGM.getLLVMContext(), Ptr: D.getDecl()))};
7151 GlobalMetadata->addOperand(M: llvm::MDNode::get(Context&: CGM.getLLVMContext(), MDs: Ops));
7152}
7153
7154bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7155 llvm::GlobalValue *CppFunc) {
7156 // Store the list of ifuncs we need to replace uses in.
7157 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7158 // List of ConstantExprs that we should be able to delete when we're done
7159 // here.
7160 llvm::SmallVector<llvm::ConstantExpr *> CEs;
7161
7162 // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7163 if (Elem == CppFunc)
7164 return false;
7165
7166 // First make sure that all users of this are ifuncs (or ifuncs via a
7167 // bitcast), and collect the list of ifuncs and CEs so we can work on them
7168 // later.
7169 for (llvm::User *User : Elem->users()) {
7170 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7171 // ifunc directly. In any other case, just give up, as we don't know what we
7172 // could break by changing those.
7173 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(Val: User)) {
7174 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7175 return false;
7176
7177 for (llvm::User *CEUser : ConstExpr->users()) {
7178 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(Val: CEUser)) {
7179 IFuncs.push_back(Elt: IFunc);
7180 } else {
7181 return false;
7182 }
7183 }
7184 CEs.push_back(Elt: ConstExpr);
7185 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(Val: User)) {
7186 IFuncs.push_back(Elt: IFunc);
7187 } else {
7188 // This user is one we don't know how to handle, so fail redirection. This
7189 // will result in an ifunc retaining a resolver name that will ultimately
7190 // fail to be resolved to a defined function.
7191 return false;
7192 }
7193 }
7194
7195 // Now we know this is a valid case where we can do this alias replacement, we
7196 // need to remove all of the references to Elem (and the bitcasts!) so we can
7197 // delete it.
7198 for (llvm::GlobalIFunc *IFunc : IFuncs)
7199 IFunc->setResolver(nullptr);
7200 for (llvm::ConstantExpr *ConstExpr : CEs)
7201 ConstExpr->destroyConstant();
7202
7203 // We should now be out of uses for the 'old' version of this function, so we
7204 // can erase it as well.
7205 Elem->eraseFromParent();
7206
7207 for (llvm::GlobalIFunc *IFunc : IFuncs) {
7208 // The type of the resolver is always just a function-type that returns the
7209 // type of the IFunc, so create that here. If the type of the actual
7210 // resolver doesn't match, it just gets bitcast to the right thing.
7211 auto *ResolverTy =
7212 llvm::FunctionType::get(Result: IFunc->getType(), /*isVarArg*/ false);
7213 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7214 MangledName: CppFunc->getName(), Ty: ResolverTy, GD: {}, /*ForVTable*/ false);
7215 IFunc->setResolver(Resolver);
7216 }
7217 return true;
7218}
7219
7220/// For each function which is declared within an extern "C" region and marked
7221/// as 'used', but has internal linkage, create an alias from the unmangled
7222/// name to the mangled name if possible. People expect to be able to refer
7223/// to such functions with an unmangled name from inline assembly within the
7224/// same translation unit.
7225void CodeGenModule::EmitStaticExternCAliases() {
7226 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7227 return;
7228 for (auto &I : StaticExternCValues) {
7229 const IdentifierInfo *Name = I.first;
7230 llvm::GlobalValue *Val = I.second;
7231
7232 // If Val is null, that implies there were multiple declarations that each
7233 // had a claim to the unmangled name. In this case, generation of the alias
7234 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7235 if (!Val)
7236 break;
7237
7238 llvm::GlobalValue *ExistingElem =
7239 getModule().getNamedValue(Name: Name->getName());
7240
7241 // If there is either not something already by this name, or we were able to
7242 // replace all uses from IFuncs, create the alias.
7243 if (!ExistingElem || CheckAndReplaceExternCIFuncs(Elem: ExistingElem, CppFunc: Val))
7244 addCompilerUsedGlobal(GV: llvm::GlobalAlias::create(Name: Name->getName(), Aliasee: Val));
7245 }
7246}
7247
7248bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7249 GlobalDecl &Result) const {
7250 auto Res = Manglings.find(Key: MangledName);
7251 if (Res == Manglings.end())
7252 return false;
7253 Result = Res->getValue();
7254 return true;
7255}
7256
7257/// Emits metadata nodes associating all the global values in the
7258/// current module with the Decls they came from. This is useful for
7259/// projects using IR gen as a subroutine.
7260///
7261/// Since there's currently no way to associate an MDNode directly
7262/// with an llvm::GlobalValue, we create a global named metadata
7263/// with the name 'clang.global.decl.ptrs'.
7264void CodeGenModule::EmitDeclMetadata() {
7265 llvm::NamedMDNode *GlobalMetadata = nullptr;
7266
7267 for (auto &I : MangledDeclNames) {
7268 llvm::GlobalValue *Addr = getModule().getNamedValue(Name: I.second);
7269 // Some mangled names don't necessarily have an associated GlobalValue
7270 // in this module, e.g. if we mangled it for DebugInfo.
7271 if (Addr)
7272 EmitGlobalDeclMetadata(CGM&: *this, GlobalMetadata, D: I.first, Addr);
7273 }
7274}
7275
7276/// Emits metadata nodes for all the local variables in the current
7277/// function.
7278void CodeGenFunction::EmitDeclMetadata() {
7279 if (LocalDeclMap.empty()) return;
7280
7281 llvm::LLVMContext &Context = getLLVMContext();
7282
7283 // Find the unique metadata ID for this name.
7284 unsigned DeclPtrKind = Context.getMDKindID(Name: "clang.decl.ptr");
7285
7286 llvm::NamedMDNode *GlobalMetadata = nullptr;
7287
7288 for (auto &I : LocalDeclMap) {
7289 const Decl *D = I.first;
7290 llvm::Value *Addr = I.second.emitRawPointer(CGF&: *this);
7291 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Val: Addr)) {
7292 llvm::Value *DAddr = GetPointerConstant(Context&: getLLVMContext(), Ptr: D);
7293 Alloca->setMetadata(
7294 KindID: DeclPtrKind, Node: llvm::MDNode::get(
7295 Context, MDs: llvm::ValueAsMetadata::getConstant(C: DAddr)));
7296 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Val: Addr)) {
7297 GlobalDecl GD = GlobalDecl(cast<VarDecl>(Val: D));
7298 EmitGlobalDeclMetadata(CGM, GlobalMetadata, D: GD, Addr: GV);
7299 }
7300 }
7301}
7302
7303void CodeGenModule::EmitVersionIdentMetadata() {
7304 llvm::NamedMDNode *IdentMetadata =
7305 TheModule.getOrInsertNamedMetadata(Name: "llvm.ident");
7306 std::string Version = getClangFullVersion();
7307 llvm::LLVMContext &Ctx = TheModule.getContext();
7308
7309 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Context&: Ctx, Str: Version)};
7310 IdentMetadata->addOperand(M: llvm::MDNode::get(Context&: Ctx, MDs: IdentNode));
7311}
7312
7313void CodeGenModule::EmitCommandLineMetadata() {
7314 llvm::NamedMDNode *CommandLineMetadata =
7315 TheModule.getOrInsertNamedMetadata(Name: "llvm.commandline");
7316 std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7317 llvm::LLVMContext &Ctx = TheModule.getContext();
7318
7319 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Context&: Ctx, Str: CommandLine)};
7320 CommandLineMetadata->addOperand(M: llvm::MDNode::get(Context&: Ctx, MDs: CommandLineNode));
7321}
7322
7323void CodeGenModule::EmitCoverageFile() {
7324 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata(Name: "llvm.dbg.cu");
7325 if (!CUNode)
7326 return;
7327
7328 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata(Name: "llvm.gcov");
7329 llvm::LLVMContext &Ctx = TheModule.getContext();
7330 auto *CoverageDataFile =
7331 llvm::MDString::get(Context&: Ctx, Str: getCodeGenOpts().CoverageDataFile);
7332 auto *CoverageNotesFile =
7333 llvm::MDString::get(Context&: Ctx, Str: getCodeGenOpts().CoverageNotesFile);
7334 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7335 llvm::MDNode *CU = CUNode->getOperand(i);
7336 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7337 GCov->addOperand(M: llvm::MDNode::get(Context&: Ctx, MDs: Elts));
7338 }
7339}
7340
7341llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7342 bool ForEH) {
7343 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7344 // FIXME: should we even be calling this method if RTTI is disabled
7345 // and it's not for EH?
7346 if (!shouldEmitRTTI(ForEH))
7347 return llvm::Constant::getNullValue(Ty: GlobalsInt8PtrTy);
7348
7349 if (ForEH && Ty->isObjCObjectPointerType() &&
7350 LangOpts.ObjCRuntime.isGNUFamily())
7351 return ObjCRuntime->GetEHType(T: Ty);
7352
7353 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7354}
7355
7356void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7357 // Do not emit threadprivates in simd-only mode.
7358 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7359 return;
7360 for (auto RefExpr : D->varlists()) {
7361 auto *VD = cast<VarDecl>(Val: cast<DeclRefExpr>(Val: RefExpr)->getDecl());
7362 bool PerformInit =
7363 VD->getAnyInitializer() &&
7364 !VD->getAnyInitializer()->isConstantInitializer(Ctx&: getContext(),
7365 /*ForRef=*/false);
7366
7367 Address Addr(GetAddrOfGlobalVar(D: VD),
7368 getTypes().ConvertTypeForMem(T: VD->getType()),
7369 getContext().getDeclAlign(VD));
7370 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7371 VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7372 CXXGlobalInits.push_back(InitFunction);
7373 }
7374}
7375
7376llvm::Metadata *
7377CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7378 StringRef Suffix) {
7379 if (auto *FnType = T->getAs<FunctionProtoType>())
7380 T = getContext().getFunctionType(
7381 ResultTy: FnType->getReturnType(), Args: FnType->getParamTypes(),
7382 EPI: FnType->getExtProtoInfo().withExceptionSpec(ESI: EST_None));
7383
7384 llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7385 if (InternalId)
7386 return InternalId;
7387
7388 if (isExternallyVisible(L: T->getLinkage())) {
7389 std::string OutName;
7390 llvm::raw_string_ostream Out(OutName);
7391 getCXXABI().getMangleContext().mangleCanonicalTypeName(
7392 T, Out, NormalizeIntegers: getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7393
7394 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7395 Out << ".normalized";
7396
7397 Out << Suffix;
7398
7399 InternalId = llvm::MDString::get(Context&: getLLVMContext(), Str: Out.str());
7400 } else {
7401 InternalId = llvm::MDNode::getDistinct(Context&: getLLVMContext(),
7402 MDs: llvm::ArrayRef<llvm::Metadata *>());
7403 }
7404
7405 return InternalId;
7406}
7407
7408llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7409 return CreateMetadataIdentifierImpl(T, Map&: MetadataIdMap, Suffix: "");
7410}
7411
7412llvm::Metadata *
7413CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7414 return CreateMetadataIdentifierImpl(T, Map&: VirtualMetadataIdMap, Suffix: ".virtual");
7415}
7416
7417// Generalize pointer types to a void pointer with the qualifiers of the
7418// originally pointed-to type, e.g. 'const char *' and 'char * const *'
7419// generalize to 'const void *' while 'char *' and 'const char **' generalize to
7420// 'void *'.
7421static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7422 if (!Ty->isPointerType())
7423 return Ty;
7424
7425 return Ctx.getPointerType(
7426 T: QualType(Ctx.VoidTy).withCVRQualifiers(
7427 CVR: Ty->getPointeeType().getCVRQualifiers()));
7428}
7429
7430// Apply type generalization to a FunctionType's return and argument types
7431static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7432 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7433 SmallVector<QualType, 8> GeneralizedParams;
7434 for (auto &Param : FnType->param_types())
7435 GeneralizedParams.push_back(Elt: GeneralizeType(Ctx, Ty: Param));
7436
7437 return Ctx.getFunctionType(
7438 ResultTy: GeneralizeType(Ctx, FnType->getReturnType()),
7439 Args: GeneralizedParams, EPI: FnType->getExtProtoInfo());
7440 }
7441
7442 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7443 return Ctx.getFunctionNoProtoType(
7444 GeneralizeType(Ctx, FnType->getReturnType()));
7445
7446 llvm_unreachable("Encountered unknown FunctionType");
7447}
7448
7449llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7450 return CreateMetadataIdentifierImpl(T: GeneralizeFunctionType(Ctx&: getContext(), Ty: T),
7451 Map&: GeneralizedMetadataIdMap, Suffix: ".generalized");
7452}
7453
7454/// Returns whether this module needs the "all-vtables" type identifier.
7455bool CodeGenModule::NeedAllVtablesTypeId() const {
7456 // Returns true if at least one of vtable-based CFI checkers is enabled and
7457 // is not in the trapping mode.
7458 return ((LangOpts.Sanitize.has(K: SanitizerKind::CFIVCall) &&
7459 !CodeGenOpts.SanitizeTrap.has(K: SanitizerKind::CFIVCall)) ||
7460 (LangOpts.Sanitize.has(K: SanitizerKind::CFINVCall) &&
7461 !CodeGenOpts.SanitizeTrap.has(K: SanitizerKind::CFINVCall)) ||
7462 (LangOpts.Sanitize.has(K: SanitizerKind::CFIDerivedCast) &&
7463 !CodeGenOpts.SanitizeTrap.has(K: SanitizerKind::CFIDerivedCast)) ||
7464 (LangOpts.Sanitize.has(K: SanitizerKind::CFIUnrelatedCast) &&
7465 !CodeGenOpts.SanitizeTrap.has(K: SanitizerKind::CFIUnrelatedCast)));
7466}
7467
7468void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7469 CharUnits Offset,
7470 const CXXRecordDecl *RD) {
7471 llvm::Metadata *MD =
7472 CreateMetadataIdentifierForType(T: QualType(RD->getTypeForDecl(), 0));
7473 VTable->addTypeMetadata(Offset: Offset.getQuantity(), TypeID: MD);
7474
7475 if (CodeGenOpts.SanitizeCfiCrossDso)
7476 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7477 VTable->addTypeMetadata(Offset: Offset.getQuantity(),
7478 TypeID: llvm::ConstantAsMetadata::get(C: CrossDsoTypeId));
7479
7480 if (NeedAllVtablesTypeId()) {
7481 llvm::Metadata *MD = llvm::MDString::get(Context&: getLLVMContext(), Str: "all-vtables");
7482 VTable->addTypeMetadata(Offset: Offset.getQuantity(), TypeID: MD);
7483 }
7484}
7485
7486llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7487 if (!SanStats)
7488 SanStats = std::make_unique<llvm::SanitizerStatReport>(args: &getModule());
7489
7490 return *SanStats;
7491}
7492
7493llvm::Value *
7494CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7495 CodeGenFunction &CGF) {
7496 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, T: E->getType());
7497 auto *SamplerT = getOpenCLRuntime().getSamplerType(T: E->getType().getTypePtr());
7498 auto *FTy = llvm::FunctionType::get(Result: SamplerT, Params: {C->getType()}, isVarArg: false);
7499 auto *Call = CGF.EmitRuntimeCall(
7500 callee: CreateRuntimeFunction(FTy, Name: "__translate_sampler_initializer"), args: {C});
7501 return Call;
7502}
7503
7504CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7505 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7506 return getNaturalTypeAlignment(T: T->getPointeeType(), BaseInfo, TBAAInfo,
7507 /* forPointeeType= */ true);
7508}
7509
7510CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7511 LValueBaseInfo *BaseInfo,
7512 TBAAAccessInfo *TBAAInfo,
7513 bool forPointeeType) {
7514 if (TBAAInfo)
7515 *TBAAInfo = getTBAAAccessInfo(AccessType: T);
7516
7517 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7518 // that doesn't return the information we need to compute BaseInfo.
7519
7520 // Honor alignment typedef attributes even on incomplete types.
7521 // We also honor them straight for C++ class types, even as pointees;
7522 // there's an expressivity gap here.
7523 if (auto TT = T->getAs<TypedefType>()) {
7524 if (auto Align = TT->getDecl()->getMaxAlignment()) {
7525 if (BaseInfo)
7526 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7527 return getContext().toCharUnitsFromBits(BitSize: Align);
7528 }
7529 }
7530
7531 bool AlignForArray = T->isArrayType();
7532
7533 // Analyze the base element type, so we don't get confused by incomplete
7534 // array types.
7535 T = getContext().getBaseElementType(QT: T);
7536
7537 if (T->isIncompleteType()) {
7538 // We could try to replicate the logic from
7539 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7540 // type is incomplete, so it's impossible to test. We could try to reuse
7541 // getTypeAlignIfKnown, but that doesn't return the information we need
7542 // to set BaseInfo. So just ignore the possibility that the alignment is
7543 // greater than one.
7544 if (BaseInfo)
7545 *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7546 return CharUnits::One();
7547 }
7548
7549 if (BaseInfo)
7550 *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7551
7552 CharUnits Alignment;
7553 const CXXRecordDecl *RD;
7554 if (T.getQualifiers().hasUnaligned()) {
7555 Alignment = CharUnits::One();
7556 } else if (forPointeeType && !AlignForArray &&
7557 (RD = T->getAsCXXRecordDecl())) {
7558 // For C++ class pointees, we don't know whether we're pointing at a
7559 // base or a complete object, so we generally need to use the
7560 // non-virtual alignment.
7561 Alignment = getClassPointerAlignment(CD: RD);
7562 } else {
7563 Alignment = getContext().getTypeAlignInChars(T);
7564 }
7565
7566 // Cap to the global maximum type alignment unless the alignment
7567 // was somehow explicit on the type.
7568 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7569 if (Alignment.getQuantity() > MaxAlign &&
7570 !getContext().isAlignmentRequired(T))
7571 Alignment = CharUnits::fromQuantity(Quantity: MaxAlign);
7572 }
7573 return Alignment;
7574}
7575
7576bool CodeGenModule::stopAutoInit() {
7577 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7578 if (StopAfter) {
7579 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7580 // used
7581 if (NumAutoVarInit >= StopAfter) {
7582 return true;
7583 }
7584 if (!NumAutoVarInit) {
7585 unsigned DiagID = getDiags().getCustomDiagID(
7586 L: DiagnosticsEngine::Warning,
7587 FormatString: "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7588 "number of times ftrivial-auto-var-init=%1 gets applied.");
7589 getDiags().Report(DiagID)
7590 << StopAfter
7591 << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7592 LangOptions::TrivialAutoVarInitKind::Zero
7593 ? "zero"
7594 : "pattern");
7595 }
7596 ++NumAutoVarInit;
7597 }
7598 return false;
7599}
7600
7601void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7602 const Decl *D) const {
7603 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7604 // postfix beginning with '.' since the symbol name can be demangled.
7605 if (LangOpts.HIP)
7606 OS << (isa<VarDecl>(Val: D) ? ".static." : ".intern.");
7607 else
7608 OS << (isa<VarDecl>(Val: D) ? "__static__" : "__intern__");
7609
7610 // If the CUID is not specified we try to generate a unique postfix.
7611 if (getLangOpts().CUID.empty()) {
7612 SourceManager &SM = getContext().getSourceManager();
7613 PresumedLoc PLoc = SM.getPresumedLoc(Loc: D->getLocation());
7614 assert(PLoc.isValid() && "Source location is expected to be valid.");
7615
7616 // Get the hash of the user defined macros.
7617 llvm::MD5 Hash;
7618 llvm::MD5::MD5Result Result;
7619 for (const auto &Arg : PreprocessorOpts.Macros)
7620 Hash.update(Str: Arg.first);
7621 Hash.final(Result);
7622
7623 // Get the UniqueID for the file containing the decl.
7624 llvm::sys::fs::UniqueID ID;
7625 if (llvm::sys::fs::getUniqueID(Path: PLoc.getFilename(), Result&: ID)) {
7626 PLoc = SM.getPresumedLoc(Loc: D->getLocation(), /*UseLineDirectives=*/false);
7627 assert(PLoc.isValid() && "Source location is expected to be valid.");
7628 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7629 SM.getDiagnostics().Report(diag::err_cannot_open_file)
7630 << PLoc.getFilename() << EC.message();
7631 }
7632 OS << llvm::format(Fmt: "%x", Vals: ID.getFile()) << llvm::format(Fmt: "%x", Vals: ID.getDevice())
7633 << "_" << llvm::utohexstr(X: Result.low(), /*LowerCase=*/true, /*Width=*/8);
7634 } else {
7635 OS << getContext().getCUIDHash();
7636 }
7637}
7638
7639void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7640 assert(DeferredDeclsToEmit.empty() &&
7641 "Should have emitted all decls deferred to emit.");
7642 assert(NewBuilder->DeferredDecls.empty() &&
7643 "Newly created module should not have deferred decls");
7644 NewBuilder->DeferredDecls = std::move(DeferredDecls);
7645 assert(EmittedDeferredDecls.empty() &&
7646 "Still have (unmerged) EmittedDeferredDecls deferred decls");
7647
7648 assert(NewBuilder->DeferredVTables.empty() &&
7649 "Newly created module should not have deferred vtables");
7650 NewBuilder->DeferredVTables = std::move(DeferredVTables);
7651
7652 assert(NewBuilder->MangledDeclNames.empty() &&
7653 "Newly created module should not have mangled decl names");
7654 assert(NewBuilder->Manglings.empty() &&
7655 "Newly created module should not have manglings");
7656 NewBuilder->Manglings = std::move(Manglings);
7657
7658 NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7659
7660 NewBuilder->TBAA = std::move(TBAA);
7661
7662 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7663}
7664

source code of clang/lib/CodeGen/CodeGenModule.cpp