1//===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file This register allocator allocates registers to a basic block at a
10/// time, attempting to keep values in registers and reusing registers as
11/// appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/IndexedMap.h"
18#include "llvm/ADT/MapVector.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/SparseSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27#include "llvm/CodeGen/MachineInstr.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineOperand.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/RegAllocCommon.h"
32#include "llvm/CodeGen/RegAllocRegistry.h"
33#include "llvm/CodeGen/RegisterClassInfo.h"
34#include "llvm/CodeGen/TargetInstrInfo.h"
35#include "llvm/CodeGen/TargetOpcodes.h"
36#include "llvm/CodeGen/TargetRegisterInfo.h"
37#include "llvm/CodeGen/TargetSubtargetInfo.h"
38#include "llvm/InitializePasses.h"
39#include "llvm/MC/MCRegisterInfo.h"
40#include "llvm/Pass.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/raw_ostream.h"
44#include <cassert>
45#include <tuple>
46#include <vector>
47
48using namespace llvm;
49
50#define DEBUG_TYPE "regalloc"
51
52STATISTIC(NumStores, "Number of stores added");
53STATISTIC(NumLoads, "Number of loads added");
54STATISTIC(NumCoalesced, "Number of copies coalesced");
55
56// FIXME: Remove this switch when all testcases are fixed!
57static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
58 cl::Hidden);
59
60static RegisterRegAlloc fastRegAlloc("fast", "fast register allocator",
61 createFastRegisterAllocator);
62
63namespace {
64
65/// Assign ascending index for instructions in machine basic block. The index
66/// can be used to determine dominance between instructions in same MBB.
67class InstrPosIndexes {
68public:
69 void unsetInitialized() { IsInitialized = false; }
70
71 void init(const MachineBasicBlock &MBB) {
72 CurMBB = &MBB;
73 Instr2PosIndex.clear();
74 uint64_t LastIndex = 0;
75 for (const MachineInstr &MI : MBB) {
76 LastIndex += InstrDist;
77 Instr2PosIndex[&MI] = LastIndex;
78 }
79 }
80
81 /// Set \p Index to index of \p MI. If \p MI is new inserted, it try to assign
82 /// index without affecting existing instruction's index. Return true if all
83 /// instructions index has been reassigned.
84 bool getIndex(const MachineInstr &MI, uint64_t &Index) {
85 if (!IsInitialized) {
86 init(MBB: *MI.getParent());
87 IsInitialized = true;
88 Index = Instr2PosIndex.at(Val: &MI);
89 return true;
90 }
91
92 assert(MI.getParent() == CurMBB && "MI is not in CurMBB");
93 auto It = Instr2PosIndex.find(Val: &MI);
94 if (It != Instr2PosIndex.end()) {
95 Index = It->second;
96 return false;
97 }
98
99 // Distance is the number of consecutive unassigned instructions including
100 // MI. Start is the first instruction of them. End is the next of last
101 // instruction of them.
102 // e.g.
103 // |Instruction| A | B | C | MI | D | E |
104 // | Index | 1024 | | | | | 2048 |
105 //
106 // In this case, B, C, MI, D are unassigned. Distance is 4, Start is B, End
107 // is E.
108 unsigned Distance = 1;
109 MachineBasicBlock::const_iterator Start = MI.getIterator(),
110 End = std::next(x: Start);
111 while (Start != CurMBB->begin() &&
112 !Instr2PosIndex.count(Val: &*std::prev(x: Start))) {
113 --Start;
114 ++Distance;
115 }
116 while (End != CurMBB->end() && !Instr2PosIndex.count(Val: &*(End))) {
117 ++End;
118 ++Distance;
119 }
120
121 // LastIndex is initialized to last used index prior to MI or zero.
122 // In previous example, LastIndex is 1024, EndIndex is 2048;
123 uint64_t LastIndex =
124 Start == CurMBB->begin() ? 0 : Instr2PosIndex.at(Val: &*std::prev(x: Start));
125 uint64_t Step;
126 if (End == CurMBB->end())
127 Step = static_cast<uint64_t>(InstrDist);
128 else {
129 // No instruction uses index zero.
130 uint64_t EndIndex = Instr2PosIndex.at(Val: &*End);
131 assert(EndIndex > LastIndex && "Index must be ascending order");
132 unsigned NumAvailableIndexes = EndIndex - LastIndex - 1;
133 // We want index gap between two adjacent MI is as same as possible. Given
134 // total A available indexes, D is number of consecutive unassigned
135 // instructions, S is the step.
136 // |<- S-1 -> MI <- S-1 -> MI <- A-S*D ->|
137 // There're S-1 available indexes between unassigned instruction and its
138 // predecessor. There're A-S*D available indexes between the last
139 // unassigned instruction and its successor.
140 // Ideally, we want
141 // S-1 = A-S*D
142 // then
143 // S = (A+1)/(D+1)
144 // An valid S must be integer greater than zero, so
145 // S <= (A+1)/(D+1)
146 // =>
147 // A-S*D >= 0
148 // That means we can safely use (A+1)/(D+1) as step.
149 // In previous example, Step is 204, Index of B, C, MI, D is 1228, 1432,
150 // 1636, 1840.
151 Step = (NumAvailableIndexes + 1) / (Distance + 1);
152 }
153
154 // Reassign index for all instructions if number of new inserted
155 // instructions exceed slot or all instructions are new.
156 if (LLVM_UNLIKELY(!Step || (!LastIndex && Step == InstrDist))) {
157 init(MBB: *CurMBB);
158 Index = Instr2PosIndex.at(Val: &MI);
159 return true;
160 }
161
162 for (auto I = Start; I != End; ++I) {
163 LastIndex += Step;
164 Instr2PosIndex[&*I] = LastIndex;
165 }
166 Index = Instr2PosIndex.at(Val: &MI);
167 return false;
168 }
169
170private:
171 bool IsInitialized = false;
172 enum { InstrDist = 1024 };
173 const MachineBasicBlock *CurMBB = nullptr;
174 DenseMap<const MachineInstr *, uint64_t> Instr2PosIndex;
175};
176
177class RegAllocFast : public MachineFunctionPass {
178public:
179 static char ID;
180
181 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses,
182 bool ClearVirtRegs_ = true)
183 : MachineFunctionPass(ID), ShouldAllocateClass(F),
184 StackSlotForVirtReg(-1), ClearVirtRegs(ClearVirtRegs_) {}
185
186private:
187 MachineFrameInfo *MFI = nullptr;
188 MachineRegisterInfo *MRI = nullptr;
189 const TargetRegisterInfo *TRI = nullptr;
190 const TargetInstrInfo *TII = nullptr;
191 RegisterClassInfo RegClassInfo;
192 const RegClassFilterFunc ShouldAllocateClass;
193
194 /// Basic block currently being allocated.
195 MachineBasicBlock *MBB = nullptr;
196
197 /// Maps virtual regs to the frame index where these values are spilled.
198 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
199
200 bool ClearVirtRegs;
201
202 /// Everything we know about a live virtual register.
203 struct LiveReg {
204 MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
205 Register VirtReg; ///< Virtual register number.
206 MCPhysReg PhysReg = 0; ///< Currently held here.
207 bool LiveOut = false; ///< Register is possibly live out.
208 bool Reloaded = false; ///< Register was reloaded.
209 bool Error = false; ///< Could not allocate.
210
211 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
212
213 unsigned getSparseSetIndex() const {
214 return Register::virtReg2Index(Reg: VirtReg);
215 }
216 };
217
218 using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>;
219 /// This map contains entries for each virtual register that is currently
220 /// available in a physical register.
221 LiveRegMap LiveVirtRegs;
222
223 /// Stores assigned virtual registers present in the bundle MI.
224 DenseMap<Register, MCPhysReg> BundleVirtRegsMap;
225
226 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap;
227 /// List of DBG_VALUE that we encountered without the vreg being assigned
228 /// because they were placed after the last use of the vreg.
229 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
230
231 /// Has a bit set for every virtual register for which it was determined
232 /// that it is alive across blocks.
233 BitVector MayLiveAcrossBlocks;
234
235 /// State of a register unit.
236 enum RegUnitState {
237 /// A free register is not currently in use and can be allocated
238 /// immediately without checking aliases.
239 regFree,
240
241 /// A pre-assigned register has been assigned before register allocation
242 /// (e.g., setting up a call parameter).
243 regPreAssigned,
244
245 /// Used temporarily in reloadAtBegin() to mark register units that are
246 /// live-in to the basic block.
247 regLiveIn,
248
249 /// A register state may also be a virtual register number, indication
250 /// that the physical register is currently allocated to a virtual
251 /// register. In that case, LiveVirtRegs contains the inverse mapping.
252 };
253
254 /// Maps each physical register to a RegUnitState enum or virtual register.
255 std::vector<unsigned> RegUnitStates;
256
257 SmallVector<MachineInstr *, 32> Coalesced;
258
259 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
260 /// Set of register units that are used in the current instruction, and so
261 /// cannot be allocated.
262 RegUnitSet UsedInInstr;
263 RegUnitSet PhysRegUses;
264 SmallVector<uint16_t, 8> DefOperandIndexes;
265 // Register masks attached to the current instruction.
266 SmallVector<const uint32_t *> RegMasks;
267
268 // Assign index for each instruction to quickly determine dominance.
269 InstrPosIndexes PosIndexes;
270
271 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
272 bool isPhysRegFree(MCPhysReg PhysReg) const;
273
274 /// Mark a physreg as used in this instruction.
275 void markRegUsedInInstr(MCPhysReg PhysReg) {
276 for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg))
277 UsedInInstr.insert(Val: Unit);
278 }
279
280 // Check if physreg is clobbered by instruction's regmask(s).
281 bool isClobberedByRegMasks(MCPhysReg PhysReg) const {
282 return llvm::any_of(Range: RegMasks, P: [PhysReg](const uint32_t *Mask) {
283 return MachineOperand::clobbersPhysReg(RegMask: Mask, PhysReg);
284 });
285 }
286
287 /// Check if a physreg or any of its aliases are used in this instruction.
288 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
289 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg))
290 return true;
291 for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) {
292 if (UsedInInstr.count(Key: Unit))
293 return true;
294 if (LookAtPhysRegUses && PhysRegUses.count(Key: Unit))
295 return true;
296 }
297 return false;
298 }
299
300 /// Mark physical register as being used in a register use operand.
301 /// This is only used by the special livethrough handling code.
302 void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
303 for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg))
304 PhysRegUses.insert(Val: Unit);
305 }
306
307 /// Remove mark of physical register being used in the instruction.
308 void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
309 for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg))
310 UsedInInstr.erase(Key: Unit);
311 }
312
313 enum : unsigned {
314 spillClean = 50,
315 spillDirty = 100,
316 spillPrefBonus = 20,
317 spillImpossible = ~0u
318 };
319
320public:
321 StringRef getPassName() const override { return "Fast Register Allocator"; }
322
323 void getAnalysisUsage(AnalysisUsage &AU) const override {
324 AU.setPreservesCFG();
325 MachineFunctionPass::getAnalysisUsage(AU);
326 }
327
328 MachineFunctionProperties getRequiredProperties() const override {
329 return MachineFunctionProperties().set(
330 MachineFunctionProperties::Property::NoPHIs);
331 }
332
333 MachineFunctionProperties getSetProperties() const override {
334 if (ClearVirtRegs) {
335 return MachineFunctionProperties().set(
336 MachineFunctionProperties::Property::NoVRegs);
337 }
338
339 return MachineFunctionProperties();
340 }
341
342 MachineFunctionProperties getClearedProperties() const override {
343 return MachineFunctionProperties().set(
344 MachineFunctionProperties::Property::IsSSA);
345 }
346
347private:
348 bool runOnMachineFunction(MachineFunction &MF) override;
349
350 void allocateBasicBlock(MachineBasicBlock &MBB);
351
352 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
353 Register Reg) const;
354
355 void findAndSortDefOperandIndexes(const MachineInstr &MI);
356
357 void allocateInstruction(MachineInstr &MI);
358 void handleDebugValue(MachineInstr &MI);
359 void handleBundle(MachineInstr &MI);
360
361 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
362 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
363 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
364 void freePhysReg(MCPhysReg PhysReg);
365
366 unsigned calcSpillCost(MCPhysReg PhysReg) const;
367
368 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
369 return LiveVirtRegs.find(Key: Register::virtReg2Index(Reg: VirtReg));
370 }
371
372 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
373 return LiveVirtRegs.find(Key: Register::virtReg2Index(Reg: VirtReg));
374 }
375
376 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
377 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
378 bool LookAtPhysRegUses = false);
379 void allocVirtRegUndef(MachineOperand &MO);
380 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
381 MCPhysReg Reg);
382 bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
383 Register VirtReg);
384 bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
385 bool LookAtPhysRegUses = false);
386 bool useVirtReg(MachineInstr &MI, MachineOperand &MO, Register VirtReg);
387
388 MachineBasicBlock::iterator
389 getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
390 SmallSet<Register, 2> &PrologLiveIns) const;
391
392 void reloadAtBegin(MachineBasicBlock &MBB);
393 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
394
395 Register traceCopies(Register VirtReg) const;
396 Register traceCopyChain(Register Reg) const;
397
398 bool shouldAllocateRegister(const Register Reg) const;
399 int getStackSpaceFor(Register VirtReg);
400 void spill(MachineBasicBlock::iterator Before, Register VirtReg,
401 MCPhysReg AssignedReg, bool Kill, bool LiveOut);
402 void reload(MachineBasicBlock::iterator Before, Register VirtReg,
403 MCPhysReg PhysReg);
404
405 bool mayLiveOut(Register VirtReg);
406 bool mayLiveIn(Register VirtReg);
407
408 void dumpState() const;
409};
410
411} // end anonymous namespace
412
413char RegAllocFast::ID = 0;
414
415INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
416 false)
417
418bool RegAllocFast::shouldAllocateRegister(const Register Reg) const {
419 assert(Reg.isVirtual());
420 const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
421 return ShouldAllocateClass(*TRI, RC);
422}
423
424void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
425 for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg))
426 RegUnitStates[Unit] = NewState;
427}
428
429bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const {
430 for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) {
431 if (RegUnitStates[Unit] != regFree)
432 return false;
433 }
434 return true;
435}
436
437/// This allocates space for the specified virtual register to be held on the
438/// stack.
439int RegAllocFast::getStackSpaceFor(Register VirtReg) {
440 // Find the location Reg would belong...
441 int SS = StackSlotForVirtReg[VirtReg];
442 // Already has space allocated?
443 if (SS != -1)
444 return SS;
445
446 // Allocate a new stack object for this spill location...
447 const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg);
448 unsigned Size = TRI->getSpillSize(RC);
449 Align Alignment = TRI->getSpillAlign(RC);
450 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
451
452 // Assign the slot.
453 StackSlotForVirtReg[VirtReg] = FrameIdx;
454 return FrameIdx;
455}
456
457static bool dominates(InstrPosIndexes &PosIndexes, const MachineInstr &A,
458 const MachineInstr &B) {
459 uint64_t IndexA, IndexB;
460 PosIndexes.getIndex(MI: A, Index&: IndexA);
461 if (LLVM_UNLIKELY(PosIndexes.getIndex(B, IndexB)))
462 PosIndexes.getIndex(MI: A, Index&: IndexA);
463 return IndexA < IndexB;
464}
465
466/// Returns false if \p VirtReg is known to not live out of the current block.
467bool RegAllocFast::mayLiveOut(Register VirtReg) {
468 if (MayLiveAcrossBlocks.test(Idx: Register::virtReg2Index(Reg: VirtReg))) {
469 // Cannot be live-out if there are no successors.
470 return !MBB->succ_empty();
471 }
472
473 const MachineInstr *SelfLoopDef = nullptr;
474
475 // If this block loops back to itself, it is necessary to check whether the
476 // use comes after the def.
477 if (MBB->isSuccessor(MBB)) {
478 // Find the first def in the self loop MBB.
479 for (const MachineInstr &DefInst : MRI->def_instructions(Reg: VirtReg)) {
480 if (DefInst.getParent() != MBB) {
481 MayLiveAcrossBlocks.set(Register::virtReg2Index(Reg: VirtReg));
482 return true;
483 } else {
484 if (!SelfLoopDef || dominates(PosIndexes, A: DefInst, B: *SelfLoopDef))
485 SelfLoopDef = &DefInst;
486 }
487 }
488 if (!SelfLoopDef) {
489 MayLiveAcrossBlocks.set(Register::virtReg2Index(Reg: VirtReg));
490 return true;
491 }
492 }
493
494 // See if the first \p Limit uses of the register are all in the current
495 // block.
496 static const unsigned Limit = 8;
497 unsigned C = 0;
498 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg: VirtReg)) {
499 if (UseInst.getParent() != MBB || ++C >= Limit) {
500 MayLiveAcrossBlocks.set(Register::virtReg2Index(Reg: VirtReg));
501 // Cannot be live-out if there are no successors.
502 return !MBB->succ_empty();
503 }
504
505 if (SelfLoopDef) {
506 // Try to handle some simple cases to avoid spilling and reloading every
507 // value inside a self looping block.
508 if (SelfLoopDef == &UseInst ||
509 !dominates(PosIndexes, A: *SelfLoopDef, B: UseInst)) {
510 MayLiveAcrossBlocks.set(Register::virtReg2Index(Reg: VirtReg));
511 return true;
512 }
513 }
514 }
515
516 return false;
517}
518
519/// Returns false if \p VirtReg is known to not be live into the current block.
520bool RegAllocFast::mayLiveIn(Register VirtReg) {
521 if (MayLiveAcrossBlocks.test(Idx: Register::virtReg2Index(Reg: VirtReg)))
522 return !MBB->pred_empty();
523
524 // See if the first \p Limit def of the register are all in the current block.
525 static const unsigned Limit = 8;
526 unsigned C = 0;
527 for (const MachineInstr &DefInst : MRI->def_instructions(Reg: VirtReg)) {
528 if (DefInst.getParent() != MBB || ++C >= Limit) {
529 MayLiveAcrossBlocks.set(Register::virtReg2Index(Reg: VirtReg));
530 return !MBB->pred_empty();
531 }
532 }
533
534 return false;
535}
536
537/// Insert spill instruction for \p AssignedReg before \p Before. Update
538/// DBG_VALUEs with \p VirtReg operands with the stack slot.
539void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
540 MCPhysReg AssignedReg, bool Kill, bool LiveOut) {
541 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " in "
542 << printReg(AssignedReg, TRI));
543 int FI = getStackSpaceFor(VirtReg);
544 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
545
546 const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg);
547 TII->storeRegToStackSlot(MBB&: *MBB, MI: Before, SrcReg: AssignedReg, isKill: Kill, FrameIndex: FI, RC: &RC, TRI,
548 VReg: VirtReg);
549 ++NumStores;
550
551 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
552
553 // When we spill a virtual register, we will have spill instructions behind
554 // every definition of it, meaning we can switch all the DBG_VALUEs over
555 // to just reference the stack slot.
556 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg];
557 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2>
558 SpilledOperandsMap;
559 for (MachineOperand *MO : LRIDbgOperands)
560 SpilledOperandsMap[MO->getParent()].push_back(Elt: MO);
561 for (auto MISpilledOperands : SpilledOperandsMap) {
562 MachineInstr &DBG = *MISpilledOperands.first;
563 // We don't have enough support for tracking operands of DBG_VALUE_LISTs.
564 if (DBG.isDebugValueList())
565 continue;
566 MachineInstr *NewDV = buildDbgValueForSpill(
567 BB&: *MBB, I: Before, Orig: *MISpilledOperands.first, FrameIndex: FI, SpilledOperands&: MISpilledOperands.second);
568 assert(NewDV->getParent() == MBB && "dangling parent pointer");
569 (void)NewDV;
570 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
571
572 if (LiveOut) {
573 // We need to insert a DBG_VALUE at the end of the block if the spill slot
574 // is live out, but there is another use of the value after the
575 // spill. This will allow LiveDebugValues to see the correct live out
576 // value to propagate to the successors.
577 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(Orig: NewDV);
578 MBB->insert(I: FirstTerm, MI: ClonedDV);
579 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
580 }
581
582 // Rewrite unassigned dbg_values to use the stack slot.
583 // TODO We can potentially do this for list debug values as well if we know
584 // how the dbg_values are getting unassigned.
585 if (DBG.isNonListDebugValue()) {
586 MachineOperand &MO = DBG.getDebugOperand(Index: 0);
587 if (MO.isReg() && MO.getReg() == 0) {
588 updateDbgValueForSpill(Orig&: DBG, FrameIndex: FI, Reg: 0);
589 }
590 }
591 }
592 // Now this register is spilled there is should not be any DBG_VALUE
593 // pointing to this register because they are all pointing to spilled value
594 // now.
595 LRIDbgOperands.clear();
596}
597
598/// Insert reload instruction for \p PhysReg before \p Before.
599void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
600 MCPhysReg PhysReg) {
601 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
602 << printReg(PhysReg, TRI) << '\n');
603 int FI = getStackSpaceFor(VirtReg);
604 const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg);
605 TII->loadRegFromStackSlot(MBB&: *MBB, MI: Before, DestReg: PhysReg, FrameIndex: FI, RC: &RC, TRI, VReg: VirtReg);
606 ++NumLoads;
607}
608
609/// Get basic block begin insertion point.
610/// This is not just MBB.begin() because surprisingly we have EH_LABEL
611/// instructions marking the begin of a basic block. This means we must insert
612/// new instructions after such labels...
613MachineBasicBlock::iterator RegAllocFast::getMBBBeginInsertionPoint(
614 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
615 MachineBasicBlock::iterator I = MBB.begin();
616 while (I != MBB.end()) {
617 if (I->isLabel()) {
618 ++I;
619 continue;
620 }
621
622 // Most reloads should be inserted after prolog instructions.
623 if (!TII->isBasicBlockPrologue(MI: *I))
624 break;
625
626 // However if a prolog instruction reads a register that needs to be
627 // reloaded, the reload should be inserted before the prolog.
628 for (MachineOperand &MO : I->operands()) {
629 if (MO.isReg())
630 PrologLiveIns.insert(V: MO.getReg());
631 }
632
633 ++I;
634 }
635
636 return I;
637}
638
639/// Reload all currently assigned virtual registers.
640void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) {
641 if (LiveVirtRegs.empty())
642 return;
643
644 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
645 MCPhysReg Reg = P.PhysReg;
646 // Set state to live-in. This possibly overrides mappings to virtual
647 // registers but we don't care anymore at this point.
648 setPhysRegState(PhysReg: Reg, NewState: regLiveIn);
649 }
650
651 SmallSet<Register, 2> PrologLiveIns;
652
653 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
654 // of spilling here is deterministic, if arbitrary.
655 MachineBasicBlock::iterator InsertBefore =
656 getMBBBeginInsertionPoint(MBB, PrologLiveIns);
657 for (const LiveReg &LR : LiveVirtRegs) {
658 MCPhysReg PhysReg = LR.PhysReg;
659 if (PhysReg == 0)
660 continue;
661
662 MCRegister FirstUnit = *TRI->regunits(Reg: PhysReg).begin();
663 if (RegUnitStates[FirstUnit] == regLiveIn)
664 continue;
665
666 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
667 "no reload in start block. Missing vreg def?");
668
669 if (PrologLiveIns.count(V: PhysReg)) {
670 // FIXME: Theoretically this should use an insert point skipping labels
671 // but I'm not sure how labels should interact with prolog instruction
672 // that need reloads.
673 reload(Before: MBB.begin(), VirtReg: LR.VirtReg, PhysReg);
674 } else
675 reload(Before: InsertBefore, VirtReg: LR.VirtReg, PhysReg);
676 }
677 LiveVirtRegs.clear();
678}
679
680/// Handle the direct use of a physical register. Check that the register is
681/// not used by a virtreg. Kill the physreg, marking it free. This may add
682/// implicit kills to MO->getParent() and invalidate MO.
683bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
684 assert(Register::isPhysicalRegister(Reg) && "expected physreg");
685 bool displacedAny = displacePhysReg(MI, PhysReg: Reg);
686 setPhysRegState(PhysReg: Reg, NewState: regPreAssigned);
687 markRegUsedInInstr(PhysReg: Reg);
688 return displacedAny;
689}
690
691bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
692 bool displacedAny = displacePhysReg(MI, PhysReg: Reg);
693 setPhysRegState(PhysReg: Reg, NewState: regPreAssigned);
694 return displacedAny;
695}
696
697/// Mark PhysReg as reserved or free after spilling any virtregs. This is very
698/// similar to defineVirtReg except the physreg is reserved instead of
699/// allocated.
700bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
701 bool displacedAny = false;
702
703 for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) {
704 switch (unsigned VirtReg = RegUnitStates[Unit]) {
705 default: {
706 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
707 assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
708 MachineBasicBlock::iterator ReloadBefore =
709 std::next(x: (MachineBasicBlock::iterator)MI.getIterator());
710 reload(Before: ReloadBefore, VirtReg, PhysReg: LRI->PhysReg);
711
712 setPhysRegState(PhysReg: LRI->PhysReg, NewState: regFree);
713 LRI->PhysReg = 0;
714 LRI->Reloaded = true;
715 displacedAny = true;
716 break;
717 }
718 case regPreAssigned:
719 RegUnitStates[Unit] = regFree;
720 displacedAny = true;
721 break;
722 case regFree:
723 break;
724 }
725 }
726 return displacedAny;
727}
728
729void RegAllocFast::freePhysReg(MCPhysReg PhysReg) {
730 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
731
732 MCRegister FirstUnit = *TRI->regunits(Reg: PhysReg).begin();
733 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
734 case regFree:
735 LLVM_DEBUG(dbgs() << '\n');
736 return;
737 case regPreAssigned:
738 LLVM_DEBUG(dbgs() << '\n');
739 setPhysRegState(PhysReg, NewState: regFree);
740 return;
741 default: {
742 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
743 assert(LRI != LiveVirtRegs.end());
744 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
745 setPhysRegState(PhysReg: LRI->PhysReg, NewState: regFree);
746 LRI->PhysReg = 0;
747 }
748 return;
749 }
750}
751
752/// Return the cost of spilling clearing out PhysReg and aliases so it is free
753/// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
754/// disabled - it can be allocated directly.
755/// \returns spillImpossible when PhysReg or an alias can't be spilled.
756unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
757 for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) {
758 switch (unsigned VirtReg = RegUnitStates[Unit]) {
759 case regFree:
760 break;
761 case regPreAssigned:
762 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
763 << printReg(PhysReg, TRI) << '\n');
764 return spillImpossible;
765 default: {
766 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
767 findLiveVirtReg(VirtReg)->LiveOut;
768 return SureSpill ? spillClean : spillDirty;
769 }
770 }
771 }
772 return 0;
773}
774
775void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition,
776 Register VirtReg, MCPhysReg Reg) {
777 auto UDBGValIter = DanglingDbgValues.find(Val: VirtReg);
778 if (UDBGValIter == DanglingDbgValues.end())
779 return;
780
781 SmallVectorImpl<MachineInstr *> &Dangling = UDBGValIter->second;
782 for (MachineInstr *DbgValue : Dangling) {
783 assert(DbgValue->isDebugValue());
784 if (!DbgValue->hasDebugOperandForReg(Reg: VirtReg))
785 continue;
786
787 // Test whether the physreg survives from the definition to the DBG_VALUE.
788 MCPhysReg SetToReg = Reg;
789 unsigned Limit = 20;
790 for (MachineBasicBlock::iterator I = std::next(x: Definition.getIterator()),
791 E = DbgValue->getIterator();
792 I != E; ++I) {
793 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
794 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
795 << '\n');
796 SetToReg = 0;
797 break;
798 }
799 }
800 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(Reg: VirtReg)) {
801 MO.setReg(SetToReg);
802 if (SetToReg != 0)
803 MO.setIsRenamable();
804 }
805 }
806 Dangling.clear();
807}
808
809/// This method updates local state so that we know that PhysReg is the
810/// proper container for VirtReg now. The physical register must not be used
811/// for anything else when this is called.
812void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
813 MCPhysReg PhysReg) {
814 Register VirtReg = LR.VirtReg;
815 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
816 << printReg(PhysReg, TRI) << '\n');
817 assert(LR.PhysReg == 0 && "Already assigned a physreg");
818 assert(PhysReg != 0 && "Trying to assign no register");
819 LR.PhysReg = PhysReg;
820 setPhysRegState(PhysReg, NewState: VirtReg);
821
822 assignDanglingDebugValues(Definition&: AtMI, VirtReg, Reg: PhysReg);
823}
824
825static bool isCoalescable(const MachineInstr &MI) { return MI.isFullCopy(); }
826
827Register RegAllocFast::traceCopyChain(Register Reg) const {
828 static const unsigned ChainLengthLimit = 3;
829 unsigned C = 0;
830 do {
831 if (Reg.isPhysical())
832 return Reg;
833 assert(Reg.isVirtual());
834
835 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
836 if (!VRegDef || !isCoalescable(MI: *VRegDef))
837 return 0;
838 Reg = VRegDef->getOperand(i: 1).getReg();
839 } while (++C <= ChainLengthLimit);
840 return 0;
841}
842
843/// Check if any of \p VirtReg's definitions is a copy. If it is follow the
844/// chain of copies to check whether we reach a physical register we can
845/// coalesce with.
846Register RegAllocFast::traceCopies(Register VirtReg) const {
847 static const unsigned DefLimit = 3;
848 unsigned C = 0;
849 for (const MachineInstr &MI : MRI->def_instructions(Reg: VirtReg)) {
850 if (isCoalescable(MI)) {
851 Register Reg = MI.getOperand(i: 1).getReg();
852 Reg = traceCopyChain(Reg);
853 if (Reg.isValid())
854 return Reg;
855 }
856
857 if (++C >= DefLimit)
858 break;
859 }
860 return Register();
861}
862
863/// Allocates a physical register for VirtReg.
864void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint0,
865 bool LookAtPhysRegUses) {
866 const Register VirtReg = LR.VirtReg;
867 assert(LR.PhysReg == 0);
868
869 const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg);
870 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
871 << " in class " << TRI->getRegClassName(&RC)
872 << " with hint " << printReg(Hint0, TRI) << '\n');
873
874 // Take hint when possible.
875 if (Hint0.isPhysical() && MRI->isAllocatable(PhysReg: Hint0) && RC.contains(Reg: Hint0) &&
876 !isRegUsedInInstr(PhysReg: Hint0, LookAtPhysRegUses)) {
877 // Take hint if the register is currently free.
878 if (isPhysRegFree(PhysReg: Hint0)) {
879 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
880 << '\n');
881 assignVirtToPhysReg(AtMI&: MI, LR, PhysReg: Hint0);
882 return;
883 } else {
884 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
885 << " occupied\n");
886 }
887 } else {
888 Hint0 = Register();
889 }
890
891 // Try other hint.
892 Register Hint1 = traceCopies(VirtReg);
893 if (Hint1.isPhysical() && MRI->isAllocatable(PhysReg: Hint1) && RC.contains(Reg: Hint1) &&
894 !isRegUsedInInstr(PhysReg: Hint1, LookAtPhysRegUses)) {
895 // Take hint if the register is currently free.
896 if (isPhysRegFree(PhysReg: Hint1)) {
897 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
898 << '\n');
899 assignVirtToPhysReg(AtMI&: MI, LR, PhysReg: Hint1);
900 return;
901 } else {
902 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
903 << " occupied\n");
904 }
905 } else {
906 Hint1 = Register();
907 }
908
909 MCPhysReg BestReg = 0;
910 unsigned BestCost = spillImpossible;
911 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(RC: &RC);
912 for (MCPhysReg PhysReg : AllocationOrder) {
913 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
914 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
915 LLVM_DEBUG(dbgs() << "already used in instr.\n");
916 continue;
917 }
918
919 unsigned Cost = calcSpillCost(PhysReg);
920 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
921 // Immediate take a register with cost 0.
922 if (Cost == 0) {
923 assignVirtToPhysReg(AtMI&: MI, LR, PhysReg);
924 return;
925 }
926
927 if (PhysReg == Hint0 || PhysReg == Hint1)
928 Cost -= spillPrefBonus;
929
930 if (Cost < BestCost) {
931 BestReg = PhysReg;
932 BestCost = Cost;
933 }
934 }
935
936 if (!BestReg) {
937 // Nothing we can do: Report an error and keep going with an invalid
938 // allocation.
939 if (MI.isInlineAsm())
940 MI.emitError(Msg: "inline assembly requires more registers than available");
941 else
942 MI.emitError(Msg: "ran out of registers during register allocation");
943
944 LR.Error = true;
945 LR.PhysReg = 0;
946 return;
947 }
948
949 displacePhysReg(MI, PhysReg: BestReg);
950 assignVirtToPhysReg(AtMI&: MI, LR, PhysReg: BestReg);
951}
952
953void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
954 assert(MO.isUndef() && "expected undef use");
955 Register VirtReg = MO.getReg();
956 assert(VirtReg.isVirtual() && "Expected virtreg");
957 if (!shouldAllocateRegister(Reg: VirtReg))
958 return;
959
960 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
961 MCPhysReg PhysReg;
962 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
963 PhysReg = LRI->PhysReg;
964 } else {
965 const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg);
966 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(RC: &RC);
967 assert(!AllocationOrder.empty() && "Allocation order must not be empty");
968 PhysReg = AllocationOrder[0];
969 }
970
971 unsigned SubRegIdx = MO.getSubReg();
972 if (SubRegIdx != 0) {
973 PhysReg = TRI->getSubReg(Reg: PhysReg, Idx: SubRegIdx);
974 MO.setSubReg(0);
975 }
976 MO.setReg(PhysReg);
977 MO.setIsRenamable(true);
978}
979
980/// Variation of defineVirtReg() with special handling for livethrough regs
981/// (tied or earlyclobber) that may interfere with preassigned uses.
982/// \return true if MI's MachineOperands were re-arranged/invalidated.
983bool RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
984 Register VirtReg) {
985 if (!shouldAllocateRegister(Reg: VirtReg))
986 return false;
987 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
988 if (LRI != LiveVirtRegs.end()) {
989 MCPhysReg PrevReg = LRI->PhysReg;
990 if (PrevReg != 0 && isRegUsedInInstr(PhysReg: PrevReg, LookAtPhysRegUses: true)) {
991 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
992 << " (tied/earlyclobber resolution)\n");
993 freePhysReg(PhysReg: PrevReg);
994 LRI->PhysReg = 0;
995 allocVirtReg(MI, LR&: *LRI, Hint0: 0, LookAtPhysRegUses: true);
996 MachineBasicBlock::iterator InsertBefore =
997 std::next(x: (MachineBasicBlock::iterator)MI.getIterator());
998 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
999 << printReg(PrevReg, TRI) << '\n');
1000 BuildMI(BB&: *MBB, I: InsertBefore, MIMD: MI.getDebugLoc(),
1001 MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: PrevReg)
1002 .addReg(RegNo: LRI->PhysReg, flags: llvm::RegState::Kill);
1003 }
1004 MachineOperand &MO = MI.getOperand(i: OpNum);
1005 if (MO.getSubReg() && !MO.isUndef()) {
1006 LRI->LastUse = &MI;
1007 }
1008 }
1009 return defineVirtReg(MI, OpNum, VirtReg, LookAtPhysRegUses: true);
1010}
1011
1012/// Allocates a register for VirtReg definition. Typically the register is
1013/// already assigned from a use of the virtreg, however we still need to
1014/// perform an allocation if:
1015/// - It is a dead definition without any uses.
1016/// - The value is live out and all uses are in different basic blocks.
1017///
1018/// \return true if MI's MachineOperands were re-arranged/invalidated.
1019bool RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
1020 Register VirtReg, bool LookAtPhysRegUses) {
1021 assert(VirtReg.isVirtual() && "Not a virtual register");
1022 if (!shouldAllocateRegister(Reg: VirtReg))
1023 return false;
1024 MachineOperand &MO = MI.getOperand(i: OpNum);
1025 LiveRegMap::iterator LRI;
1026 bool New;
1027 std::tie(args&: LRI, args&: New) = LiveVirtRegs.insert(Val: LiveReg(VirtReg));
1028 if (New) {
1029 if (!MO.isDead()) {
1030 if (mayLiveOut(VirtReg)) {
1031 LRI->LiveOut = true;
1032 } else {
1033 // It is a dead def without the dead flag; add the flag now.
1034 MO.setIsDead(true);
1035 }
1036 }
1037 }
1038 if (LRI->PhysReg == 0) {
1039 allocVirtReg(MI, LR&: *LRI, Hint0: 0, LookAtPhysRegUses);
1040 // If no physical register is available for LRI, we assign one at random
1041 // and bail out of this function immediately.
1042 if (LRI->Error) {
1043 const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg);
1044 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(RC: &RC);
1045 if (AllocationOrder.empty())
1046 return setPhysReg(MI, MO, PhysReg: MCRegister::NoRegister);
1047 return setPhysReg(MI, MO, PhysReg: *AllocationOrder.begin());
1048 }
1049 } else {
1050 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
1051 "TODO: preassign mismatch");
1052 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
1053 << " use existing assignment to "
1054 << printReg(LRI->PhysReg, TRI) << '\n');
1055 }
1056
1057 MCPhysReg PhysReg = LRI->PhysReg;
1058 if (LRI->Reloaded || LRI->LiveOut) {
1059 if (!MI.isImplicitDef()) {
1060 MachineBasicBlock::iterator SpillBefore =
1061 std::next(x: (MachineBasicBlock::iterator)MI.getIterator());
1062 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut
1063 << " RL: " << LRI->Reloaded << '\n');
1064 bool Kill = LRI->LastUse == nullptr;
1065 spill(Before: SpillBefore, VirtReg, AssignedReg: PhysReg, Kill, LiveOut: LRI->LiveOut);
1066
1067 // We need to place additional spills for each indirect destination of an
1068 // INLINEASM_BR.
1069 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
1070 int FI = StackSlotForVirtReg[VirtReg];
1071 const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg);
1072 for (MachineOperand &MO : MI.operands()) {
1073 if (MO.isMBB()) {
1074 MachineBasicBlock *Succ = MO.getMBB();
1075 TII->storeRegToStackSlot(MBB&: *Succ, MI: Succ->begin(), SrcReg: PhysReg, isKill: Kill, FrameIndex: FI,
1076 RC: &RC, TRI, VReg: VirtReg);
1077 ++NumStores;
1078 Succ->addLiveIn(PhysReg);
1079 }
1080 }
1081 }
1082
1083 LRI->LastUse = nullptr;
1084 }
1085 LRI->LiveOut = false;
1086 LRI->Reloaded = false;
1087 }
1088 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1089 BundleVirtRegsMap[VirtReg] = PhysReg;
1090 }
1091 markRegUsedInInstr(PhysReg);
1092 return setPhysReg(MI, MO, PhysReg);
1093}
1094
1095/// Allocates a register for a VirtReg use.
1096/// \return true if MI's MachineOperands were re-arranged/invalidated.
1097bool RegAllocFast::useVirtReg(MachineInstr &MI, MachineOperand &MO,
1098 Register VirtReg) {
1099 assert(VirtReg.isVirtual() && "Not a virtual register");
1100 if (!shouldAllocateRegister(Reg: VirtReg))
1101 return false;
1102 LiveRegMap::iterator LRI;
1103 bool New;
1104 std::tie(args&: LRI, args&: New) = LiveVirtRegs.insert(Val: LiveReg(VirtReg));
1105 if (New) {
1106 if (!MO.isKill()) {
1107 if (mayLiveOut(VirtReg)) {
1108 LRI->LiveOut = true;
1109 } else {
1110 // It is a last (killing) use without the kill flag; add the flag now.
1111 MO.setIsKill(true);
1112 }
1113 }
1114 } else {
1115 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
1116 }
1117
1118 // If necessary allocate a register.
1119 if (LRI->PhysReg == 0) {
1120 assert(!MO.isTied() && "tied op should be allocated");
1121 Register Hint;
1122 if (MI.isCopy() && MI.getOperand(i: 1).getSubReg() == 0) {
1123 Hint = MI.getOperand(i: 0).getReg();
1124 if (Hint.isVirtual()) {
1125 assert(!shouldAllocateRegister(Hint));
1126 Hint = Register();
1127 } else {
1128 assert(Hint.isPhysical() &&
1129 "Copy destination should already be assigned");
1130 }
1131 }
1132 allocVirtReg(MI, LR&: *LRI, Hint0: Hint, LookAtPhysRegUses: false);
1133 if (LRI->Error) {
1134 const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg);
1135 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(RC: &RC);
1136 if (AllocationOrder.empty())
1137 return setPhysReg(MI, MO, PhysReg: MCRegister::NoRegister);
1138 return setPhysReg(MI, MO, PhysReg: *AllocationOrder.begin());
1139 }
1140 }
1141
1142 LRI->LastUse = &MI;
1143
1144 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1145 BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
1146 }
1147 markRegUsedInInstr(PhysReg: LRI->PhysReg);
1148 return setPhysReg(MI, MO, PhysReg: LRI->PhysReg);
1149}
1150
1151/// Changes operand OpNum in MI the refer the PhysReg, considering subregs.
1152/// \return true if MI's MachineOperands were re-arranged/invalidated.
1153bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
1154 MCPhysReg PhysReg) {
1155 if (!MO.getSubReg()) {
1156 MO.setReg(PhysReg);
1157 MO.setIsRenamable(true);
1158 return false;
1159 }
1160
1161 // Handle subregister index.
1162 MO.setReg(PhysReg ? TRI->getSubReg(Reg: PhysReg, Idx: MO.getSubReg()) : MCRegister());
1163 MO.setIsRenamable(true);
1164 // Note: We leave the subreg number around a little longer in case of defs.
1165 // This is so that the register freeing logic in allocateInstruction can still
1166 // recognize this as subregister defs. The code there will clear the number.
1167 if (!MO.isDef())
1168 MO.setSubReg(0);
1169
1170 // A kill flag implies killing the full register. Add corresponding super
1171 // register kill.
1172 if (MO.isKill()) {
1173 MI.addRegisterKilled(IncomingReg: PhysReg, RegInfo: TRI, AddIfNotFound: true);
1174 // Conservatively assume implicit MOs were re-arranged
1175 return true;
1176 }
1177
1178 // A <def,read-undef> of a sub-register requires an implicit def of the full
1179 // register.
1180 if (MO.isDef() && MO.isUndef()) {
1181 if (MO.isDead())
1182 MI.addRegisterDead(Reg: PhysReg, RegInfo: TRI, AddIfNotFound: true);
1183 else
1184 MI.addRegisterDefined(Reg: PhysReg, RegInfo: TRI);
1185 // Conservatively assume implicit MOs were re-arranged
1186 return true;
1187 }
1188 return false;
1189}
1190
1191#ifndef NDEBUG
1192
1193void RegAllocFast::dumpState() const {
1194 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
1195 ++Unit) {
1196 switch (unsigned VirtReg = RegUnitStates[Unit]) {
1197 case regFree:
1198 break;
1199 case regPreAssigned:
1200 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
1201 break;
1202 case regLiveIn:
1203 llvm_unreachable("Should not have regLiveIn in map");
1204 default: {
1205 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(Reg: VirtReg);
1206 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
1207 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
1208 if (I->LiveOut || I->Reloaded) {
1209 dbgs() << '[';
1210 if (I->LiveOut)
1211 dbgs() << 'O';
1212 if (I->Reloaded)
1213 dbgs() << 'R';
1214 dbgs() << ']';
1215 }
1216 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
1217 break;
1218 }
1219 }
1220 }
1221 dbgs() << '\n';
1222 // Check that LiveVirtRegs is the inverse.
1223 for (const LiveReg &LR : LiveVirtRegs) {
1224 Register VirtReg = LR.VirtReg;
1225 assert(VirtReg.isVirtual() && "Bad map key");
1226 MCPhysReg PhysReg = LR.PhysReg;
1227 if (PhysReg != 0) {
1228 assert(Register::isPhysicalRegister(PhysReg) && "mapped to physreg");
1229 for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) {
1230 assert(RegUnitStates[Unit] == VirtReg && "inverse map valid");
1231 }
1232 }
1233 }
1234}
1235#endif
1236
1237/// Count number of defs consumed from each register class by \p Reg
1238void RegAllocFast::addRegClassDefCounts(
1239 std::vector<unsigned> &RegClassDefCounts, Register Reg) const {
1240 assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
1241
1242 if (Reg.isVirtual()) {
1243 if (!shouldAllocateRegister(Reg))
1244 return;
1245 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
1246 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1247 RCIdx != RCIdxEnd; ++RCIdx) {
1248 const TargetRegisterClass *IdxRC = TRI->getRegClass(i: RCIdx);
1249 // FIXME: Consider aliasing sub/super registers.
1250 if (OpRC->hasSubClassEq(RC: IdxRC))
1251 ++RegClassDefCounts[RCIdx];
1252 }
1253
1254 return;
1255 }
1256
1257 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1258 RCIdx != RCIdxEnd; ++RCIdx) {
1259 const TargetRegisterClass *IdxRC = TRI->getRegClass(i: RCIdx);
1260 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
1261 if (IdxRC->contains(Reg: *Alias)) {
1262 ++RegClassDefCounts[RCIdx];
1263 break;
1264 }
1265 }
1266 }
1267}
1268
1269/// Compute \ref DefOperandIndexes so it contains the indices of "def" operands
1270/// that are to be allocated. Those are ordered in a way that small classes,
1271/// early clobbers and livethroughs are allocated first.
1272void RegAllocFast::findAndSortDefOperandIndexes(const MachineInstr &MI) {
1273 DefOperandIndexes.clear();
1274
1275 // Track number of defs which may consume a register from the class.
1276 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
1277 assert(RegClassDefCounts[0] == 0);
1278
1279 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
1280 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1281 const MachineOperand &MO = MI.getOperand(i: I);
1282 if (!MO.isReg())
1283 continue;
1284 Register Reg = MO.getReg();
1285 if (MO.readsReg()) {
1286 if (Reg.isPhysical()) {
1287 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n');
1288 markPhysRegUsedInInstr(PhysReg: Reg);
1289 }
1290 }
1291
1292 if (MO.isDef()) {
1293 if (Reg.isVirtual() && shouldAllocateRegister(Reg))
1294 DefOperandIndexes.push_back(Elt: I);
1295
1296 addRegClassDefCounts(RegClassDefCounts, Reg);
1297 }
1298 }
1299
1300 llvm::sort(C&: DefOperandIndexes, Comp: [&](uint16_t I0, uint16_t I1) {
1301 const MachineOperand &MO0 = MI.getOperand(i: I0);
1302 const MachineOperand &MO1 = MI.getOperand(i: I1);
1303 Register Reg0 = MO0.getReg();
1304 Register Reg1 = MO1.getReg();
1305 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg: Reg0);
1306 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg: Reg1);
1307
1308 // Identify regclass that are easy to use up completely just in this
1309 // instruction.
1310 unsigned ClassSize0 = RegClassInfo.getOrder(RC: &RC0).size();
1311 unsigned ClassSize1 = RegClassInfo.getOrder(RC: &RC1).size();
1312
1313 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
1314 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
1315 if (SmallClass0 > SmallClass1)
1316 return true;
1317 if (SmallClass0 < SmallClass1)
1318 return false;
1319
1320 // Allocate early clobbers and livethrough operands first.
1321 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
1322 (MO0.getSubReg() == 0 && !MO0.isUndef());
1323 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
1324 (MO1.getSubReg() == 0 && !MO1.isUndef());
1325 if (Livethrough0 > Livethrough1)
1326 return true;
1327 if (Livethrough0 < Livethrough1)
1328 return false;
1329
1330 // Tie-break rule: operand index.
1331 return I0 < I1;
1332 });
1333}
1334
1335// Returns true if MO is tied and the operand it's tied to is not Undef (not
1336// Undef is not the same thing as Def).
1337static bool isTiedToNotUndef(const MachineOperand &MO) {
1338 if (!MO.isTied())
1339 return false;
1340 const MachineInstr &MI = *MO.getParent();
1341 unsigned TiedIdx = MI.findTiedOperandIdx(OpIdx: MI.getOperandNo(I: &MO));
1342 const MachineOperand &TiedMO = MI.getOperand(i: TiedIdx);
1343 return !TiedMO.isUndef();
1344}
1345
1346void RegAllocFast::allocateInstruction(MachineInstr &MI) {
1347 // The basic algorithm here is:
1348 // 1. Mark registers of def operands as free
1349 // 2. Allocate registers to use operands and place reload instructions for
1350 // registers displaced by the allocation.
1351 //
1352 // However we need to handle some corner cases:
1353 // - pre-assigned defs and uses need to be handled before the other def/use
1354 // operands are processed to avoid the allocation heuristics clashing with
1355 // the pre-assignment.
1356 // - The "free def operands" step has to come last instead of first for tied
1357 // operands and early-clobbers.
1358
1359 UsedInInstr.clear();
1360 RegMasks.clear();
1361 BundleVirtRegsMap.clear();
1362
1363 // Scan for special cases; Apply pre-assigned register defs to state.
1364 bool HasPhysRegUse = false;
1365 bool HasRegMask = false;
1366 bool HasVRegDef = false;
1367 bool HasDef = false;
1368 bool HasEarlyClobber = false;
1369 bool NeedToAssignLiveThroughs = false;
1370 for (MachineOperand &MO : MI.operands()) {
1371 if (MO.isReg()) {
1372 Register Reg = MO.getReg();
1373 if (Reg.isVirtual()) {
1374 if (!shouldAllocateRegister(Reg))
1375 continue;
1376 if (MO.isDef()) {
1377 HasDef = true;
1378 HasVRegDef = true;
1379 if (MO.isEarlyClobber()) {
1380 HasEarlyClobber = true;
1381 NeedToAssignLiveThroughs = true;
1382 }
1383 if (isTiedToNotUndef(MO) || (MO.getSubReg() != 0 && !MO.isUndef()))
1384 NeedToAssignLiveThroughs = true;
1385 }
1386 } else if (Reg.isPhysical()) {
1387 if (!MRI->isReserved(PhysReg: Reg)) {
1388 if (MO.isDef()) {
1389 HasDef = true;
1390 bool displacedAny = definePhysReg(MI, Reg);
1391 if (MO.isEarlyClobber())
1392 HasEarlyClobber = true;
1393 if (!displacedAny)
1394 MO.setIsDead(true);
1395 }
1396 if (MO.readsReg())
1397 HasPhysRegUse = true;
1398 }
1399 }
1400 } else if (MO.isRegMask()) {
1401 HasRegMask = true;
1402 RegMasks.push_back(Elt: MO.getRegMask());
1403 }
1404 }
1405
1406 // Allocate virtreg defs.
1407 if (HasDef) {
1408 if (HasVRegDef) {
1409 // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop
1410 // multiple times to ensure no operand is missed.
1411 bool ReArrangedImplicitOps = true;
1412
1413 // Special handling for early clobbers, tied operands or subregister defs:
1414 // Compared to "normal" defs these:
1415 // - Must not use a register that is pre-assigned for a use operand.
1416 // - In order to solve tricky inline assembly constraints we change the
1417 // heuristic to figure out a good operand order before doing
1418 // assignments.
1419 if (NeedToAssignLiveThroughs) {
1420 PhysRegUses.clear();
1421
1422 while (ReArrangedImplicitOps) {
1423 ReArrangedImplicitOps = false;
1424 findAndSortDefOperandIndexes(MI);
1425 for (uint16_t OpIdx : DefOperandIndexes) {
1426 MachineOperand &MO = MI.getOperand(i: OpIdx);
1427 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
1428 Register Reg = MO.getReg();
1429 if (MO.isEarlyClobber() || isTiedToNotUndef(MO) ||
1430 (MO.getSubReg() && !MO.isUndef())) {
1431 ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpNum: OpIdx, VirtReg: Reg);
1432 } else {
1433 ReArrangedImplicitOps = defineVirtReg(MI, OpNum: OpIdx, VirtReg: Reg);
1434 }
1435 // Implicit operands of MI were re-arranged,
1436 // re-compute DefOperandIndexes.
1437 if (ReArrangedImplicitOps)
1438 break;
1439 }
1440 }
1441 } else {
1442 // Assign virtual register defs.
1443 while (ReArrangedImplicitOps) {
1444 ReArrangedImplicitOps = false;
1445 for (MachineOperand &MO : MI.operands()) {
1446 if (!MO.isReg() || !MO.isDef())
1447 continue;
1448 Register Reg = MO.getReg();
1449 if (Reg.isVirtual()) {
1450 ReArrangedImplicitOps =
1451 defineVirtReg(MI, OpNum: MI.getOperandNo(I: &MO), VirtReg: Reg);
1452 if (ReArrangedImplicitOps)
1453 break;
1454 }
1455 }
1456 }
1457 }
1458 }
1459
1460 // Free registers occupied by defs.
1461 // Iterate operands in reverse order, so we see the implicit super register
1462 // defs first (we added them earlier in case of <def,read-undef>).
1463 for (MachineOperand &MO : reverse(C: MI.operands())) {
1464 if (!MO.isReg() || !MO.isDef())
1465 continue;
1466
1467 Register Reg = MO.getReg();
1468
1469 // subreg defs don't free the full register. We left the subreg number
1470 // around as a marker in setPhysReg() to recognize this case here.
1471 if (Reg.isPhysical() && MO.getSubReg() != 0) {
1472 MO.setSubReg(0);
1473 continue;
1474 }
1475
1476 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) &&
1477 "tied def assigned to clobbered register");
1478
1479 // Do not free tied operands and early clobbers.
1480 if (isTiedToNotUndef(MO) || MO.isEarlyClobber())
1481 continue;
1482 if (!Reg)
1483 continue;
1484 if (Reg.isVirtual()) {
1485 assert(!shouldAllocateRegister(Reg));
1486 continue;
1487 }
1488 assert(Reg.isPhysical());
1489 if (MRI->isReserved(PhysReg: Reg))
1490 continue;
1491 freePhysReg(PhysReg: Reg);
1492 unmarkRegUsedInInstr(PhysReg: Reg);
1493 }
1494 }
1495
1496 // Displace clobbered registers.
1497 if (HasRegMask) {
1498 assert(!RegMasks.empty() && "expected RegMask");
1499 // MRI bookkeeping.
1500 for (const auto *RM : RegMasks)
1501 MRI->addPhysRegsUsedFromRegMask(RegMask: RM);
1502
1503 // Displace clobbered registers.
1504 for (const LiveReg &LR : LiveVirtRegs) {
1505 MCPhysReg PhysReg = LR.PhysReg;
1506 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg))
1507 displacePhysReg(MI, PhysReg);
1508 }
1509 }
1510
1511 // Apply pre-assigned register uses to state.
1512 if (HasPhysRegUse) {
1513 for (MachineOperand &MO : MI.operands()) {
1514 if (!MO.isReg() || !MO.readsReg())
1515 continue;
1516 Register Reg = MO.getReg();
1517 if (!Reg.isPhysical())
1518 continue;
1519 if (MRI->isReserved(PhysReg: Reg))
1520 continue;
1521 if (!usePhysReg(MI, Reg))
1522 MO.setIsKill(true);
1523 }
1524 }
1525
1526 // Allocate virtreg uses and insert reloads as necessary.
1527 // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple
1528 // times to ensure no operand is missed.
1529 bool HasUndefUse = false;
1530 bool ReArrangedImplicitMOs = true;
1531 while (ReArrangedImplicitMOs) {
1532 ReArrangedImplicitMOs = false;
1533 for (MachineOperand &MO : MI.operands()) {
1534 if (!MO.isReg() || !MO.isUse())
1535 continue;
1536 Register Reg = MO.getReg();
1537 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1538 continue;
1539
1540 if (MO.isUndef()) {
1541 HasUndefUse = true;
1542 continue;
1543 }
1544
1545 // Populate MayLiveAcrossBlocks in case the use block is allocated before
1546 // the def block (removing the vreg uses).
1547 mayLiveIn(VirtReg: Reg);
1548
1549 assert(!MO.isInternalRead() && "Bundles not supported");
1550 assert(MO.readsReg() && "reading use");
1551 ReArrangedImplicitMOs = useVirtReg(MI, MO, VirtReg: Reg);
1552 if (ReArrangedImplicitMOs)
1553 break;
1554 }
1555 }
1556
1557 // Allocate undef operands. This is a separate step because in a situation
1558 // like ` = OP undef %X, %X` both operands need the same register assign
1559 // so we should perform the normal assignment first.
1560 if (HasUndefUse) {
1561 for (MachineOperand &MO : MI.all_uses()) {
1562 Register Reg = MO.getReg();
1563 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1564 continue;
1565
1566 assert(MO.isUndef() && "Should only have undef virtreg uses left");
1567 allocVirtRegUndef(MO);
1568 }
1569 }
1570
1571 // Free early clobbers.
1572 if (HasEarlyClobber) {
1573 for (MachineOperand &MO : reverse(C: MI.all_defs())) {
1574 if (!MO.isEarlyClobber())
1575 continue;
1576 assert(!MO.getSubReg() && "should be already handled in def processing");
1577
1578 Register Reg = MO.getReg();
1579 if (!Reg)
1580 continue;
1581 if (Reg.isVirtual()) {
1582 assert(!shouldAllocateRegister(Reg));
1583 continue;
1584 }
1585 assert(Reg.isPhysical() && "should have register assigned");
1586
1587 // We sometimes get odd situations like:
1588 // early-clobber %x0 = INSTRUCTION %x0
1589 // which is semantically questionable as the early-clobber should
1590 // apply before the use. But in practice we consider the use to
1591 // happen before the early clobber now. Don't free the early clobber
1592 // register in this case.
1593 if (MI.readsRegister(Reg, TRI))
1594 continue;
1595
1596 freePhysReg(PhysReg: Reg);
1597 }
1598 }
1599
1600 LLVM_DEBUG(dbgs() << "<< " << MI);
1601 if (MI.isCopy() && MI.getOperand(i: 0).getReg() == MI.getOperand(i: 1).getReg() &&
1602 MI.getNumOperands() == 2) {
1603 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1604 Coalesced.push_back(Elt: &MI);
1605 }
1606}
1607
1608void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1609 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1610 // mostly constants and frame indices.
1611 assert(MI.isDebugValue() && "not a DBG_VALUE*");
1612 for (const auto &MO : MI.debug_operands()) {
1613 if (!MO.isReg())
1614 continue;
1615 Register Reg = MO.getReg();
1616 if (!Reg.isVirtual())
1617 continue;
1618 if (!shouldAllocateRegister(Reg))
1619 continue;
1620
1621 // Already spilled to a stackslot?
1622 int SS = StackSlotForVirtReg[Reg];
1623 if (SS != -1) {
1624 // Modify DBG_VALUE now that the value is in a spill slot.
1625 updateDbgValueForSpill(Orig&: MI, FrameIndex: SS, Reg);
1626 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
1627 continue;
1628 }
1629
1630 // See if this virtual register has already been allocated to a physical
1631 // register or spilled to a stack slot.
1632 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg: Reg);
1633 SmallVector<MachineOperand *> DbgOps;
1634 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg))
1635 DbgOps.push_back(Elt: &Op);
1636
1637 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1638 // Update every use of Reg within MI.
1639 for (auto &RegMO : DbgOps)
1640 setPhysReg(MI, MO&: *RegMO, PhysReg: LRI->PhysReg);
1641 } else {
1642 DanglingDbgValues[Reg].push_back(Elt: &MI);
1643 }
1644
1645 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1646 // that future spills of Reg will have DBG_VALUEs.
1647 LiveDbgValueMap[Reg].append(in_start: DbgOps.begin(), in_end: DbgOps.end());
1648 }
1649}
1650
1651void RegAllocFast::handleBundle(MachineInstr &MI) {
1652 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
1653 ++BundledMI;
1654 while (BundledMI->isBundledWithPred()) {
1655 for (MachineOperand &MO : BundledMI->operands()) {
1656 if (!MO.isReg())
1657 continue;
1658
1659 Register Reg = MO.getReg();
1660 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1661 continue;
1662
1663 DenseMap<Register, MCPhysReg>::iterator DI;
1664 DI = BundleVirtRegsMap.find(Val: Reg);
1665 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");
1666
1667 setPhysReg(MI, MO, PhysReg: DI->second);
1668 }
1669
1670 ++BundledMI;
1671 }
1672}
1673
1674void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1675 this->MBB = &MBB;
1676 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1677
1678 PosIndexes.unsetInitialized();
1679 RegUnitStates.assign(n: TRI->getNumRegUnits(), val: regFree);
1680 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1681
1682 for (const auto &LiveReg : MBB.liveouts())
1683 setPhysRegState(PhysReg: LiveReg.PhysReg, NewState: regPreAssigned);
1684
1685 Coalesced.clear();
1686
1687 // Traverse block in reverse order allocating instructions one by one.
1688 for (MachineInstr &MI : reverse(C&: MBB)) {
1689 LLVM_DEBUG(dbgs() << "\n>> " << MI << "Regs:"; dumpState());
1690
1691 // Special handling for debug values. Note that they are not allowed to
1692 // affect codegen of the other instructions in any way.
1693 if (MI.isDebugValue()) {
1694 handleDebugValue(MI);
1695 continue;
1696 }
1697
1698 allocateInstruction(MI);
1699
1700 // Once BUNDLE header is assigned registers, same assignments need to be
1701 // done for bundled MIs.
1702 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1703 handleBundle(MI);
1704 }
1705 }
1706
1707 LLVM_DEBUG(dbgs() << "Begin Regs:"; dumpState());
1708
1709 // Spill all physical registers holding virtual registers now.
1710 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
1711 reloadAtBegin(MBB);
1712
1713 // Erase all the coalesced copies. We are delaying it until now because
1714 // LiveVirtRegs might refer to the instrs.
1715 for (MachineInstr *MI : Coalesced)
1716 MBB.erase(I: MI);
1717 NumCoalesced += Coalesced.size();
1718
1719 for (auto &UDBGPair : DanglingDbgValues) {
1720 for (MachineInstr *DbgValue : UDBGPair.second) {
1721 assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
1722 // Nothing to do if the vreg was spilled in the meantime.
1723 if (!DbgValue->hasDebugOperandForReg(Reg: UDBGPair.first))
1724 continue;
1725 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
1726 << '\n');
1727 DbgValue->setDebugValueUndef();
1728 }
1729 }
1730 DanglingDbgValues.clear();
1731
1732 LLVM_DEBUG(MBB.dump());
1733}
1734
1735bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1736 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1737 << "********** Function: " << MF.getName() << '\n');
1738 MRI = &MF.getRegInfo();
1739 const TargetSubtargetInfo &STI = MF.getSubtarget();
1740 TRI = STI.getRegisterInfo();
1741 TII = STI.getInstrInfo();
1742 MFI = &MF.getFrameInfo();
1743 MRI->freezeReservedRegs();
1744 RegClassInfo.runOnMachineFunction(MF);
1745 unsigned NumRegUnits = TRI->getNumRegUnits();
1746 UsedInInstr.clear();
1747 UsedInInstr.setUniverse(NumRegUnits);
1748 PhysRegUses.clear();
1749 PhysRegUses.setUniverse(NumRegUnits);
1750
1751 // initialize the virtual->physical register map to have a 'null'
1752 // mapping for all virtual registers
1753 unsigned NumVirtRegs = MRI->getNumVirtRegs();
1754 StackSlotForVirtReg.resize(s: NumVirtRegs);
1755 LiveVirtRegs.setUniverse(NumVirtRegs);
1756 MayLiveAcrossBlocks.clear();
1757 MayLiveAcrossBlocks.resize(N: NumVirtRegs);
1758
1759 // Loop over all of the basic blocks, eliminating virtual register references
1760 for (MachineBasicBlock &MBB : MF)
1761 allocateBasicBlock(MBB);
1762
1763 if (ClearVirtRegs) {
1764 // All machine operands and other references to virtual registers have been
1765 // replaced. Remove the virtual registers.
1766 MRI->clearVirtRegs();
1767 }
1768
1769 StackSlotForVirtReg.clear();
1770 LiveDbgValueMap.clear();
1771 return true;
1772}
1773
1774FunctionPass *llvm::createFastRegisterAllocator() { return new RegAllocFast(); }
1775
1776FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor,
1777 bool ClearVirtRegs) {
1778 return new RegAllocFast(Ftor, ClearVirtRegs);
1779}
1780

source code of llvm/lib/CodeGen/RegAllocFast.cpp