1 | // Copyright (C) 2020 The Qt Company Ltd. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only |
3 | |
4 | #include "qquick3deffect_p.h" |
5 | |
6 | #include <QtQuick3DRuntimeRender/private/qssgrendercontextcore_p.h> |
7 | #include <QtQuick3DRuntimeRender/private/qssgrendereffect_p.h> |
8 | #include <QtQuick3DRuntimeRender/private/qssgshadermaterialadapter_p.h> |
9 | #include <QtQuick3DUtils/private/qssgutils_p.h> |
10 | #include <QtQuick/qquickwindow.h> |
11 | #include <QtQuick3D/private/qquick3dobject_p.h> |
12 | #include <QtQuick3D/private/qquick3dscenemanager_p.h> |
13 | #include <QtCore/qfile.h> |
14 | #include <QtCore/qurl.h> |
15 | |
16 | |
17 | QT_BEGIN_NAMESPACE |
18 | |
19 | /*! |
20 | \qmltype Effect |
21 | \inherits Object3D |
22 | \inqmlmodule QtQuick3D |
23 | \instantiates QQuick3DEffect |
24 | \brief Base component for creating a post-processing effect. |
25 | |
26 | The Effect type allows the user to implement their own post-processing |
27 | effects for QtQuick3D. |
28 | |
29 | \section1 Post-processing effects |
30 | |
31 | A post-processing effect is conceptually very similar to Qt Quick's \l |
32 | ShaderEffect item. When an effect is present, the scene is rendered into a |
33 | separate texture first. The effect is then applied by drawing a textured |
34 | quad to the main render target, depending on the |
35 | \l{View3D::renderMode}{render mode} of the View3D. The effect can provide a |
36 | vertex shader, a fragment shader, or both. Effects are always applied on the |
37 | entire scene, per View3D. |
38 | |
39 | Effects are associated with the \l SceneEnvironment in the |
40 | \l{SceneEnvironment::effects} property. The property is a list: effects can |
41 | be chained together; they are applied in the order they are in the list, |
42 | using the previous step's output as the input to the next one, with the last |
43 | effect's output defining the contents of the View3D. |
44 | |
45 | \note \l SceneEnvironment and \l ExtendedSceneEnvironment provide a set of |
46 | built-in effects, such as depth of field, glow/bloom, lens flare, color |
47 | grading, and vignette. Always consider first if these are sufficient for |
48 | the application's needs, and prefer using the built-in facilities instead |
49 | of implementing a custom post-processing effect. |
50 | |
51 | Effects are similar to \l{CustomMaterial}{custom materials} in many |
52 | ways. However, a custom material is associated with a model and is |
53 | responsible for the shading of that given mesh. Whereas an effect's vertex |
54 | shader always gets a quad (for example, two triangles) as its input, while |
55 | its fragment shader samples the texture with the scene's content. |
56 | |
57 | Unlike custom materials, effects support multiple passes. For many effects |
58 | this it not necessary, and when there is a need to apply multiple effects, |
59 | identical results can often be achieved by chaining together multiple |
60 | effects in \l{SceneEnvironment::effects}{the SceneEnvironment}. This is |
61 | demonstrated by the \l{Qt Quick 3D - Custom Effect Example}{Custom Effect |
62 | example} as well. However, passes have the possibility to request additional |
63 | color buffers (texture), and specify which of these additional buffers they |
64 | output to. This allows implementing more complex image processing techniques |
65 | since subsequent passes can then use one or more of these additional |
66 | buffers, plus the original scene's content, as their input. If necessary, |
67 | these additional buffers can have an extended lifetime, meaning their |
68 | content is preserved between frames, which allows implementing effects that |
69 | rely on accumulating content from multiple frames, such as, motion blur. |
70 | |
71 | When compared to Qt Quick's 2D ShaderEffect, the 3D post-processing effects |
72 | have the advantage of being able to work with depth buffer data, as well as |
73 | the ability to implement multiple passes with intermediate buffers. In |
74 | addition, the texture-related capabilities are extended: Qt Quick 3D allows |
75 | more fine-grained control over filtering modes, and allows effects to work |
76 | with texture formats other than RGBA8, for example, floating point formats. |
77 | |
78 | \note Post-processing effects are currently available when the View3D |
79 | has its \l{View3D::renderMode}{renderMode} set to \c Offscreen, |
80 | \c Underlay or \c Overlay. Effects will not be rendered for \c Inline mode. |
81 | |
82 | \note When using post-processing effects, the application-provided shaders |
83 | should expect linear color data without tonemapping applied. The |
84 | tonemapping that is performed during the main render pass (or during skybox |
85 | rendering, if there is a skybox) when |
86 | \l{SceneEnvironment::tonemapMode}{tonemapMode} is set to a value other than |
87 | \c SceneEnvironment.TonemapModeNone, is automatically disabled when there |
88 | is at least one post-processing effect specified in the SceneEnvironment. |
89 | The last effect in the chain (more precisely, the last pass of the last |
90 | effect in the chain) will automatically get its fragment shader amended to |
91 | perform the same tonemapping the main render pass would. |
92 | |
93 | \note Effects that perform their own tonemapping should be used in a |
94 | SceneEnvironment that has the built-in tonemapping disabled by setting |
95 | \l{SceneEnvironment::tonemapMode}{tonemapMode} to \c |
96 | SceneEnvironment.TonemapModeNone. |
97 | |
98 | \note By default the texture used as the effects' input is created with a |
99 | floating point texture format, such as 16-bit floating point RGBA. The |
100 | output texture's format is the same since by default it follows the input |
101 | format. This can be overridden using \l Buffer and an empty name. The |
102 | default RGBA16F is useful because it allows working with non-tonemapped |
103 | linear data without having the color values outside the 0-1 range clamped. |
104 | |
105 | \section1 Exposing data to the shaders |
106 | |
107 | Like with CustomMaterial or ShaderEffect, the dynamic properties of an |
108 | Effect object can be changed and animated using the usual QML and Qt Quick |
109 | facilities, and the values are exposed to the shaders automatically. The |
110 | following list shows how properties are mapped: |
111 | |
112 | \list |
113 | \li bool, int, real -> bool, int, float |
114 | \li QColor, \l{QtQml::Qt::rgba()}{color} -> vec4, and the color gets |
115 | converted to linear, assuming sRGB space for the color value specified in |
116 | QML. The built-in Qt colors, such as \c{"green"} are in sRGB color space as |
117 | well, and the same conversion is performed for all color properties of |
118 | DefaultMaterial and PrincipledMaterial, so this behavior of Effect |
119 | matches those. |
120 | \li QRect, QRectF, \l{QtQml::Qt::rect()}{rect} -> vec4 |
121 | \li QPoint, QPointF, \l{QtQml::Qt::point()}{point}, QSize, QSizeF, \l{QtQml::Qt::size()}{size} -> vec2 |
122 | \li QVector2D, \l{QtQml::Qt::vector2d()}{vector2d} -> vec3 |
123 | \li QVector3D, \l{QtQml::Qt::vector3d()}{vector3d} -> vec3 |
124 | \li QVector4D, \l{QtQml::Qt::vector4d()}{vector4d} -> vec4 |
125 | \li QMatrix4x4, \l{QtQml::Qt::matrix4x4()}{matrix4x4} -> mat4 |
126 | \li QQuaternion, \l{QtQml::Qt::quaternion()}{quaternion} -> vec4, scalar value is \c w |
127 | |
128 | \li TextureInput -> sampler2D or samplerCube, depending on whether \l |
129 | Texture or \l CubeMapTexture is used in the texture property of the |
130 | TextureInput. Setting the \l{TextureInput::enabled}{enabled} property to |
131 | false leads to exposing a dummy texture to the shader, meaning the shaders |
132 | are still functional but will sample a texture with opaque black image |
133 | content. Pay attention to the fact that properties for samplers must always |
134 | reference a \l TextureInput object, not a \l Texture directly. When it |
135 | comes to the \l Texture properties, the source, tiling, and filtering |
136 | related ones are the only ones that are taken into account implicitly with |
137 | effects, as the rest (such as, UV transformations) is up to the custom |
138 | shaders to implement as they see fit. |
139 | |
140 | \endlist |
141 | |
142 | \note When a uniform referenced in the shader code does not have a |
143 | corresponding property, it will cause a shader compilation error when |
144 | processing the effect at run time. There are some exceptions to this, |
145 | such as, sampler uniforms, that get a dummy texture bound when no |
146 | corresponding QML property is present, but as a general rule, all uniforms |
147 | and samplers must have a corresponding property declared in the |
148 | Effect object. |
149 | |
150 | \section1 Getting started with user-defined effects |
151 | |
152 | A custom post-processing effect involves at minimum an Effect object and a |
153 | fragment shader snippet. Some effects will also want a customized vertex |
154 | shader as well. |
155 | |
156 | As a simple example, let's create an effect that combines the scene's |
157 | content with an image, while further altering the red channel's value in an |
158 | animated manner: |
159 | |
160 | \table 70% |
161 | \row |
162 | \li \qml |
163 | Effect { |
164 | id: simpleEffect |
165 | property TextureInput tex: TextureInput { |
166 | texture: Texture { source: "image.png" } |
167 | } |
168 | property real redLevel |
169 | NumberAnimation on redLevel { from: 0; to: 1; duration: 5000; loops: -1 } |
170 | passes: Pass { |
171 | shaders: Shader { |
172 | stage: Shader.Fragment |
173 | shader: "effect.frag" |
174 | } |
175 | } |
176 | } |
177 | \endqml |
178 | \li \badcode |
179 | void MAIN() |
180 | { |
181 | vec4 c = texture(tex, TEXTURE_UV); |
182 | c.r *= redLevel; |
183 | FRAGCOLOR = c * texture(INPUT, INPUT_UV); |
184 | } |
185 | \endcode |
186 | \endtable |
187 | |
188 | Here the texture with the image \c{image.png} is exposed to the shader under |
189 | the name \c tex. The value of redLevel is available in the shader in a \c |
190 | float uniform with the same name. |
191 | |
192 | The fragment shader must contain a function called \c MAIN. The final |
193 | fragment color is determined by \c FRAGCOLOR. The main input texture, with |
194 | the contents of the View3D's scene, is accessible under a \c sampler2D with |
195 | the name \c INPUT. The UV coordinates from the quad are in \c |
196 | INPUT_UV. These UV values are always suitable for sampling \c INPUT, |
197 | regardless of the underlying graphics API at run time (and so regardless of |
198 | the Y axis direction in images since the necessary adjustments are applied |
199 | automatically by Qt Quick 3D). Sampling the texture with our external image |
200 | is done using \c TEXTURE_UV. \c INPUT_UV is not suitable in cross-platform |
201 | applications since V needs to be flipped to cater for the coordinate system |
202 | differences mentioned before, using a logic that is different for textures |
203 | based on images and textures used as render targets. Fortunately this is all |
204 | taken care of by the engine so the shader need no further logic for this. |
205 | |
206 | Once simpleEffect is available, it can be associated with the effects list |
207 | of a the View3D's SceneEnvironment: |
208 | |
209 | \qml |
210 | environment: SceneEnvironment { |
211 | effects: [ simpleEffect ] |
212 | } |
213 | \endqml |
214 | |
215 | The results would look something like the following, with the original scene |
216 | on the left and with the effect applied on the right: |
217 | |
218 | \table 70% |
219 | \row |
220 | \li \image effect_intro_1.png |
221 | \li \image effect_intro_2.png |
222 | \endtable |
223 | |
224 | \note The \c shader property value in Shader is a URL, as is the custom in |
225 | QML and Qt Quick, referencing the file containing the shader snippet, and |
226 | works very similarly to ShaderEffect or |
227 | \l{Image::source}{Image.source}. Only the \c file and \c qrc schemes are |
228 | supported.. It is also possible to omit the \c file scheme, allowing to |
229 | specify a relative path in a convenient way. Such a path is resolved |
230 | relative to the component's (the \c{.qml} file's) location. |
231 | |
232 | \note Shader code is always provided using Vulkan-style GLSL, regardless of |
233 | the graphics API used by Qt at run time. |
234 | |
235 | \note The vertex and fragment shader code provided by the effect are not |
236 | full, complete GLSL shaders on their own. Rather, they provide a \c MAIN |
237 | function, and optionally a set of \c VARYING declarations, which are then |
238 | amended with further shader code by the engine. |
239 | |
240 | \section1 Effects with vertex shaders |
241 | |
242 | A vertex shader, when present, must provide a function called \c MAIN. In |
243 | the vast majority of cases the custom vertex shader will not want to provide |
244 | its own calculation of the homogenous vertex position, but it is possible |
245 | using \c POSITION, \c VERTEX, and \c MODELVIEWPROJECTION_MATRIX. When |
246 | \c POSITION is not present in the custom shader code, a statement equivalent to |
247 | \c{POSITION = MODELVIEWPROJECTION_MATRIX * vec4(VERTEX, 1.0);} will be |
248 | injected automatically by Qt Quick 3D. |
249 | |
250 | To pass data between the vertex and fragment shaders, use the VARYING |
251 | keyword. Internally this will then be transformed into the appropriate |
252 | vertex output or fragment input declaration. The fragment shader can use the |
253 | same declaration, which then allows to read the interpolated value for the |
254 | current fragment. |
255 | |
256 | Let's look at example, that is in effect very similar to the built-in |
257 | DistortionSpiral effect: |
258 | |
259 | \table 70% |
260 | \row |
261 | \li \badcode |
262 | VARYING vec2 center_vec; |
263 | void MAIN() |
264 | { |
265 | center_vec = INPUT_UV - vec2(0.5, 0.5); |
266 | center_vec.y *= INPUT_SIZE.y / INPUT_SIZE.x; |
267 | } |
268 | \endcode |
269 | \li \badcode |
270 | VARYING vec2 center_vec; |
271 | void MAIN() |
272 | { |
273 | float radius = 0.25; |
274 | float dist_to_center = length(center_vec) / radius; |
275 | vec2 texcoord = INPUT_UV; |
276 | if (dist_to_center <= 1.0) { |
277 | float rotation_amount = (1.0 - dist_to_center) * (1.0 - dist_to_center); |
278 | float r = radians(360.0) * rotation_amount / 4.0; |
279 | mat2 rotation = mat2(cos(r), sin(r), -sin(r), cos(r)); |
280 | texcoord = vec2(0.5, 0.5) + rotation * (INPUT_UV - vec2(0.5, 0.5)); |
281 | } |
282 | FRAGCOLOR = texture(INPUT, texcoord); |
283 | } |
284 | \endcode |
285 | \endtable |
286 | |
287 | The Effect object's \c passes list should now specify both the vertex and |
288 | fragment snippets: |
289 | |
290 | \qml |
291 | passes: Pass { |
292 | shaders: [ |
293 | Shader { |
294 | stage: Shader.Vertex |
295 | shader: "effect.vert" |
296 | }, |
297 | Shader { |
298 | stage: Shader.Fragment |
299 | shader: "effect.frag" |
300 | } |
301 | ] |
302 | } |
303 | \endqml |
304 | |
305 | The end result looks like the following: |
306 | |
307 | \table 70% |
308 | \row |
309 | \li \image effect_intro_1.png |
310 | \li \image effect_intro_3.png |
311 | \endtable |
312 | |
313 | \section1 Special keywords in effect shaders |
314 | |
315 | \list |
316 | |
317 | \li \c VARYING - Declares a vertex output or fragment input, depending on the type of the current shader. |
318 | \li \c MAIN - This function must always be present in an effect shader. |
319 | \li \c FRAGCOLOR - \c vec4 - The final fragment color; the output of the fragment shader. (fragment shader only) |
320 | \li \c POSITION - \c vec4 - The homogenous position calculated in the vertex shader. (vertex shader only) |
321 | \li \c MODELVIEWPROJECTION_MATRIX - \c mat4 - The transformation matrix for the screen quad. |
322 | \li \c VERTEX - \c vec3 - The vertices of the quad; the input to the vertex shader. (vertex shader only) |
323 | |
324 | \li \c INPUT - \c sampler2D - The sampler for the input texture with the |
325 | scene rendered into it, unless a pass redirects its input via a BufferInput |
326 | object, in which case \c INPUT refers to the additional color buffer's |
327 | texture referenced by the BufferInput. |
328 | |
329 | \li \c INPUT_UV - \c vec2 - UV coordinates for sampling \c INPUT. |
330 | |
331 | \li \c TEXTURE_UV - \c vec2 - UV coordinates suitable for sampling a Texture |
332 | with contents loaded from an image file. |
333 | |
334 | \li \c INPUT_SIZE - \c vec2 - The size of the \c INPUT texture, in pixels. |
335 | |
336 | \li \c OUTPUT_SIZE - \c vec2 - The size of the output buffer, in |
337 | pixels. Often the same as \c INPUT_SIZE, unless the pass outputs to an extra |
338 | Buffer with a size multiplier on it. |
339 | |
340 | \li \c FRAME - \c float - A frame counter, incremented after each frame in the View3D. |
341 | |
342 | \li \c DEPTH_TEXTURE - \c sampler2D - A depth texture with the depth buffer |
343 | contents with the opaque objects in the scene. Like with CustomMaterial, the |
344 | presence of this keyword in the shader triggers generating the depth texture |
345 | automatically. |
346 | |
347 | \endlist |
348 | |
349 | \section1 Building multi-pass effects |
350 | |
351 | A multi-pass effect often uses more than one set of shaders, and takes the |
352 | \l{Pass::output}{output} and \l{Pass::commands}{commands} properties into |
353 | use. Each entry in the passes list translates to a render pass drawing a |
354 | quad into the pass's output texture, while sampling the effect's input texture |
355 | and optionally other textures as well. |
356 | |
357 | The typical outline of a multi-pass Effect can look like the following: |
358 | |
359 | \qml |
360 | passes: [ |
361 | Pass { |
362 | shaders: [ |
363 | Shader { |
364 | stage: Shader.Vertex |
365 | shader: "pass1.vert" |
366 | }, |
367 | Shader { |
368 | stage: Shader.Fragment |
369 | shader: "pass1.frag" |
370 | } |
371 | // This pass outputs to the intermediate texture described |
372 | // by the Buffer object. |
373 | output: intermediateColorBuffer |
374 | ], |
375 | }, |
376 | Pass { |
377 | shaders: [ |
378 | Shader { |
379 | stage: Shader.Vertex |
380 | shader: "pass2.vert" |
381 | }, |
382 | Shader { |
383 | stage: Shader.Fragment |
384 | shader: "pass2.frag" |
385 | } |
386 | // The output of the last pass needs no redirection, it is |
387 | // the final result of the effect. |
388 | ], |
389 | commands: [ |
390 | // This pass reads from the intermediate texture, meaning |
391 | // INPUT in the shader will refer to the texture associated |
392 | // with the Buffer. |
393 | BufferInput { |
394 | buffer: intermediateColorBuffer |
395 | } |
396 | ] |
397 | } |
398 | ] |
399 | \endqml |
400 | |
401 | What is \c intermediateColorBuffer? |
402 | |
403 | \qml |
404 | Buffer { |
405 | id: intermediateColorBuffer |
406 | name: "tempBuffer" |
407 | // format: Buffer.RGBA8 |
408 | // textureFilterOperation: Buffer.Linear |
409 | // textureCoordOperation: Buffer.ClampToEdge |
410 | } |
411 | \endqml |
412 | |
413 | The commented properties are not necessary if the desired values match the |
414 | defaults. |
415 | |
416 | Internally the presence of this Buffer object and referencing it from the \c |
417 | output property of a Pass leads to creating a texture with a size matching |
418 | the View3D, and so the size of the implicit input and output textures. When |
419 | this is not desired, the \l{Buffer::sizeMultiplier}{sizeMultiplier} property |
420 | can be used to get an intermediate texture with a different size. This can |
421 | lead to the \c INPUT_SIZE and \c OUTPUT_SIZE uniforms in the shader having |
422 | different values. |
423 | |
424 | By default the Effect cannot count on textures preserving their contents |
425 | between frames. When a new intermediate texture is created, it is cleared to |
426 | \c{vec4(0.0)}. Afterwards, the same texture can be reused for another |
427 | purpose. Therefore, effect passes should always write to the entire texture, |
428 | without making assumptions about their content at the start of the pass. |
429 | There is an exception to this: Buffer objects with |
430 | \l{Buffer::bufferFlags}{bufferFlags} set to Buffer.SceneLifetime. This |
431 | indicates that the texture is permanently associated with a pass of the |
432 | effect and it will not be reused for other purposes. The contents of such |
433 | color buffers is preserved between frames. This is typically used in a |
434 | ping-pong fashion in effects like motion blur: the first pass takes the |
435 | persistent buffer as its input, in addition to the effects main input |
436 | texture, outputting to another intermediate buffer, while the second pass |
437 | outputs to the persistent buffer. This way in the first frame the first pass |
438 | samples an empty (transparent) texture, whereas in subsequent frames it |
439 | samples the output of the second pass from the previous frame. A third pass |
440 | can then blend the effect's input and the second pass' output together. |
441 | |
442 | The BufferInput command type is used to expose custom texture buffers to the |
443 | render pass. |
444 | |
445 | For instance, to access \c someBuffer in the render pass shaders under |
446 | the name, \c mySampler, the following can be added to its command list: |
447 | \qml |
448 | BufferInput { buffer: someBuffer; sampler: "mySampler" } |
449 | \endqml |
450 | |
451 | If the \c sampler name is not specified, \c INPUT will be used as default. |
452 | |
453 | Buffers can be useful to share intermediate results between render passes. |
454 | |
455 | To expose preloaded textures to the effect, TextureInput should be used instead. |
456 | These can be defined as properties of the Effect itself, and will automatically |
457 | be accessible to the shaders by their property names. |
458 | \qml |
459 | property TextureInput tex: TextureInput { |
460 | texture: Texture { source: "image.png" } |
461 | } |
462 | \endqml |
463 | |
464 | Here \c tex is a valid sampler in all shaders of all the passes of the |
465 | effect. |
466 | |
467 | When it comes to uniform values from properties, all passes in the Effect |
468 | read the same values in their shaders. If necessary it is possible to |
469 | override the value of a uniform just for a given pass. This is achieved by |
470 | adding the \l SetUniformValue command to the list of commands for the pass. |
471 | |
472 | \note The \l{SetUniformValue::target}{target} of the pass-specific uniform |
473 | value setter can only refer to a name that is the name of a property of the |
474 | effect. It can override the value for a property's corresponding uniform, |
475 | but it cannot introduce new uniforms. |
476 | |
477 | \section1 Performance considerations |
478 | |
479 | Be aware of the increased resource usage and potentially reduced performance |
480 | when using post-processing effects. Just like with Qt Quick layers and |
481 | ShaderEffect, rendering the scene into a texture and then using that to |
482 | texture a quad is not a cheap operation, especially on low-end hardware with |
483 | limited fragment processing power. The amount of additional graphics memory |
484 | needed, as well as the increase in GPU load both depend on the size of the |
485 | View3D (which, on embedded devices without a windowing system, may often be |
486 | as big as the screen resolution). Multi-pass effects, as well as applying |
487 | multiple effects increase the resource and performance requirements further. |
488 | |
489 | Therefore, it is highly advisable to ensure early on in the development |
490 | lifecycle that the targeted device and graphics stack is able to cope with |
491 | the effects included in the design of the 3D scene at the final product's |
492 | screen resolution. |
493 | |
494 | While unavoidable with techniques that need it, \c DEPTH_TEXTURE implies an |
495 | additional rendering pass to generate the contents of that texture, which |
496 | can also present a hit on less capable hardware. Therefore, use \c |
497 | DEPTH_TEXTURE in the effect's shaders only when essential. |
498 | |
499 | The complexity of the operations in the shaders is also important. Just like |
500 | with CustomMaterial, a sub-optimal fragment shader can easily lead to |
501 | reduced rendering performance. |
502 | |
503 | Be cautious with \l{Buffer::sizeMultiplier}{sizeMultiplier in Buffer} when |
504 | values larger than 1 are involved. For example, a multiplier of 4 means |
505 | creating and then rendering to a texture that is 4 times the size of the |
506 | View3D. Just like with shadow maps and multi- or supersampling, the |
507 | increased resource and performance costs can quickly outweigh the benefits |
508 | from better quality on systems with limited GPU power. |
509 | |
510 | \sa Shader, Pass, Buffer, BufferInput, {Qt Quick 3D - Custom Effect Example} |
511 | */ |
512 | |
513 | /*! |
514 | \qmlproperty list Effect::passes |
515 | Contains a list of render \l {Pass}{passes} implemented by the effect. |
516 | */ |
517 | |
518 | QQuick3DEffect::QQuick3DEffect(QQuick3DObject *parent) |
519 | : QQuick3DObject(*(new QQuick3DObjectPrivate(QQuick3DObjectPrivate::Type::Effect)), parent) |
520 | { |
521 | } |
522 | |
523 | QQmlListProperty<QQuick3DShaderUtilsRenderPass> QQuick3DEffect::passes() |
524 | { |
525 | return QQmlListProperty<QQuick3DShaderUtilsRenderPass>(this, |
526 | nullptr, |
527 | QQuick3DEffect::qmlAppendPass, |
528 | QQuick3DEffect::qmlPassCount, |
529 | QQuick3DEffect::qmlPassAt, |
530 | QQuick3DEffect::qmlPassClear); |
531 | } |
532 | |
533 | // Default vertex and fragment shader code that is used when no corresponding |
534 | // Shader is present in the Effect. These go through the usual processing so |
535 | // should use the user-facing builtins. |
536 | |
537 | static const char *default_effect_vertex_shader = |
538 | "void MAIN()\n" |
539 | "{\n" |
540 | "}\n" ; |
541 | |
542 | static const char *default_effect_fragment_shader = |
543 | "void MAIN()\n" |
544 | "{\n" |
545 | " FRAGCOLOR = texture(INPUT, INPUT_UV);\n" |
546 | "}\n" ; |
547 | |
548 | static inline void insertVertexMainArgs(QByteArray &snippet) |
549 | { |
550 | static const char *argKey = "/*%QT_ARGS_MAIN%*/" ; |
551 | const int argKeyLen = int(strlen(s: argKey)); |
552 | const int argKeyPos = snippet.indexOf(bv: argKey); |
553 | if (argKeyPos >= 0) |
554 | snippet = snippet.left(len: argKeyPos) + QByteArrayLiteral("inout vec3 VERTEX" ) + snippet.mid(index: argKeyPos + argKeyLen); |
555 | } |
556 | |
557 | QSSGRenderGraphObject *QQuick3DEffect::updateSpatialNode(QSSGRenderGraphObject *node) |
558 | { |
559 | using namespace QSSGShaderUtils; |
560 | |
561 | const auto &renderContext = QQuick3DObjectPrivate::get(item: this)->sceneManager->wattached->rci(); |
562 | if (!renderContext) { |
563 | qWarning(msg: "QQuick3DEffect: No render context interface?" ); |
564 | return nullptr; |
565 | } |
566 | |
567 | QSSGRenderEffect *effectNode = static_cast<QSSGRenderEffect *>(node); |
568 | bool newBackendNode = false; |
569 | if (!effectNode) { |
570 | effectNode = new QSSGRenderEffect; |
571 | newBackendNode = true; |
572 | } |
573 | |
574 | bool shadersMayChange = false; |
575 | if (m_dirtyAttributes & Dirty::EffectChainDirty) |
576 | shadersMayChange = true; |
577 | |
578 | const bool fullUpdate = newBackendNode || effectNode->incompleteBuildTimeObject; |
579 | |
580 | if (fullUpdate || shadersMayChange) { |
581 | markAllDirty(); |
582 | |
583 | QMetaMethod propertyDirtyMethod; |
584 | const int idx = metaObject()->indexOfSlot(slot: "onPropertyDirty()" ); |
585 | if (idx != -1) |
586 | propertyDirtyMethod = metaObject()->method(index: idx); |
587 | |
588 | // Properties -> uniforms |
589 | QSSGShaderCustomMaterialAdapter::StringPairList uniforms; |
590 | const int propCount = metaObject()->propertyCount(); |
591 | int propOffset = metaObject()->propertyOffset(); |
592 | |
593 | // Effect can have multilayered inheritance structure, so find the actual propOffset |
594 | const QMetaObject *superClass = metaObject()->superClass(); |
595 | while (superClass && qstrcmp(str1: superClass->className(), str2: "QQuick3DEffect" ) != 0) { |
596 | propOffset = superClass->propertyOffset(); |
597 | superClass = superClass->superClass(); |
598 | } |
599 | |
600 | using TextureInputProperty = QPair<QQuick3DShaderUtilsTextureInput *, const char *>; |
601 | |
602 | QVector<TextureInputProperty> textureProperties; // We'll deal with these later |
603 | for (int i = propOffset; i != propCount; ++i) { |
604 | const QMetaProperty property = metaObject()->property(index: i); |
605 | if (Q_UNLIKELY(!property.isValid())) |
606 | continue; |
607 | |
608 | const auto name = property.name(); |
609 | QMetaType propType = property.metaType(); |
610 | QVariant propValue = property.read(obj: this); |
611 | if (propType == QMetaType(QMetaType::QVariant)) |
612 | propType = propValue.metaType(); |
613 | |
614 | if (propType.id() >= QMetaType::User) { |
615 | if (propType.id() == qMetaTypeId<QQuick3DShaderUtilsTextureInput *>()) { |
616 | if (QQuick3DShaderUtilsTextureInput *texture = property.read(obj: this).value<QQuick3DShaderUtilsTextureInput *>()) |
617 | textureProperties.push_back(t: {texture, name}); |
618 | } |
619 | } else if (propType == QMetaType(QMetaType::QObjectStar)) { |
620 | if (QQuick3DShaderUtilsTextureInput *texture = qobject_cast<QQuick3DShaderUtilsTextureInput *>(object: propValue.value<QObject *>())) |
621 | textureProperties.push_back(t: {texture, name}); |
622 | } else { |
623 | const auto type = uniformType(type: propType); |
624 | if (type != QSSGRenderShaderValue::Unknown) { |
625 | uniforms.append(t: { uniformTypeName(type: propType), name }); |
626 | effectNode->properties.push_back(t: { name, uniformTypeName(type: propType), |
627 | propValue, uniformType(type: propType), i}); |
628 | // Track the property changes |
629 | if (fullUpdate) { |
630 | if (property.hasNotifySignal() && propertyDirtyMethod.isValid()) |
631 | connect(sender: this, signal: property.notifySignal(), receiver: this, method: propertyDirtyMethod); |
632 | } // else already connected |
633 | } else { |
634 | // ### figure out how _not_ to warn when there are no dynamic |
635 | // properties defined (because warnings like Blah blah objectName etc. are not helpful) |
636 | //qWarning("No known uniform conversion found for effect property %s. Skipping", property.name()); |
637 | } |
638 | } |
639 | } |
640 | |
641 | const auto processTextureProperty = [&](QQuick3DShaderUtilsTextureInput &texture, const QByteArray &name) { |
642 | QSSGRenderEffect::TextureProperty texProp; |
643 | QQuick3DTexture *tex = texture.texture(); // may be null if the TextureInput has no 'texture' set |
644 | if (fullUpdate) { |
645 | connect(sender: &texture, signal: &QQuick3DShaderUtilsTextureInput::enabledChanged, context: this, slot: &QQuick3DEffect::onTextureDirty); |
646 | connect(sender: &texture, signal: &QQuick3DShaderUtilsTextureInput::textureChanged, context: this, slot: &QQuick3DEffect::onTextureDirty); |
647 | } // else already connected |
648 | texProp.name = name; |
649 | if (texture.enabled && tex) |
650 | texProp.texImage = tex->getRenderImage(); |
651 | |
652 | texProp.shaderDataType = QSSGRenderShaderValue::Texture; |
653 | |
654 | if (tex) { |
655 | texProp.minFilterType = tex->minFilter() == QQuick3DTexture::Nearest ? QSSGRenderTextureFilterOp::Nearest |
656 | : QSSGRenderTextureFilterOp::Linear; |
657 | texProp.magFilterType = tex->magFilter() == QQuick3DTexture::Nearest ? QSSGRenderTextureFilterOp::Nearest |
658 | : QSSGRenderTextureFilterOp::Linear; |
659 | texProp.mipFilterType = tex->generateMipmaps() ? (tex->mipFilter() == QQuick3DTexture::Nearest ? QSSGRenderTextureFilterOp::Nearest |
660 | : QSSGRenderTextureFilterOp::Linear) |
661 | : QSSGRenderTextureFilterOp::None; |
662 | texProp.horizontalClampType = tex->horizontalTiling() == QQuick3DTexture::Repeat ? QSSGRenderTextureCoordOp::Repeat |
663 | : (tex->horizontalTiling() == QQuick3DTexture::ClampToEdge ? QSSGRenderTextureCoordOp::ClampToEdge |
664 | : QSSGRenderTextureCoordOp::MirroredRepeat); |
665 | texProp.verticalClampType = tex->verticalTiling() == QQuick3DTexture::Repeat ? QSSGRenderTextureCoordOp::Repeat |
666 | : (tex->verticalTiling() == QQuick3DTexture::ClampToEdge ? QSSGRenderTextureCoordOp::ClampToEdge |
667 | : QSSGRenderTextureCoordOp::MirroredRepeat); |
668 | } |
669 | |
670 | if (tex && QQuick3DObjectPrivate::get(item: tex)->type == QQuick3DObjectPrivate::Type::ImageCube) |
671 | uniforms.append(t: { QByteArrayLiteral("samplerCube" ), name }); |
672 | else if (tex && tex->textureData() && tex->textureData()->depth() > 0) |
673 | uniforms.append(t: { QByteArrayLiteral("sampler3D" ), name }); |
674 | else |
675 | uniforms.append(t: { QByteArrayLiteral("sampler2D" ), name }); |
676 | |
677 | effectNode->textureProperties.push_back(t: texProp); |
678 | }; |
679 | |
680 | // Textures |
681 | for (const auto &property : std::as_const(t&: textureProperties)) |
682 | processTextureProperty(*property.first, property.second); |
683 | |
684 | if (effectNode->incompleteBuildTimeObject) { // This object came from the shadergen tool |
685 | const auto names = dynamicPropertyNames(); |
686 | for (const auto &name : names) { |
687 | QVariant propValue = property(name: name.constData()); |
688 | QMetaType propType = propValue.metaType(); |
689 | if (propType == QMetaType(QMetaType::QVariant)) |
690 | propType = propValue.metaType(); |
691 | |
692 | if (propType.id() >= QMetaType::User) { |
693 | if (propType.id() == qMetaTypeId<QQuick3DShaderUtilsTextureInput *>()) { |
694 | if (QQuick3DShaderUtilsTextureInput *texture = propValue.value<QQuick3DShaderUtilsTextureInput *>()) |
695 | textureProperties.push_back(t: {texture, name}); |
696 | } |
697 | } else if (propType.id() == QMetaType::QObjectStar) { |
698 | if (QQuick3DShaderUtilsTextureInput *texture = qobject_cast<QQuick3DShaderUtilsTextureInput *>(object: propValue.value<QObject *>())) |
699 | textureProperties.push_back(t: {texture, name}); |
700 | } else { |
701 | const auto type = uniformType(type: propType); |
702 | if (type != QSSGRenderShaderValue::Unknown) { |
703 | uniforms.append(t: { uniformTypeName(type: propType), name }); |
704 | effectNode->properties.push_back(t: { name, uniformTypeName(type: propType), |
705 | propValue, uniformType(type: propType), -1 /* aka. dynamic property */}); |
706 | // We don't need to track property changes |
707 | } else { |
708 | // ### figure out how _not_ to warn when there are no dynamic |
709 | // properties defined (because warnings like Blah blah objectName etc. are not helpful) |
710 | qWarning(msg: "No known uniform conversion found for effect property %s. Skipping" , name.constData()); |
711 | } |
712 | } |
713 | } |
714 | |
715 | for (const auto &property : std::as_const(t&: textureProperties)) |
716 | processTextureProperty(*property.first, property.second); |
717 | } |
718 | |
719 | // built-ins |
720 | uniforms.append(t: { "mat4" , "qt_modelViewProjection" }); |
721 | uniforms.append(t: { "sampler2D" , "qt_inputTexture" }); |
722 | uniforms.append(t: { "vec2" , "qt_inputSize" }); |
723 | uniforms.append(t: { "vec2" , "qt_outputSize" }); |
724 | uniforms.append(t: { "float" , "qt_frame_num" }); |
725 | uniforms.append(t: { "float" , "qt_fps" }); |
726 | uniforms.append(t: { "vec2" , "qt_cameraProperties" }); |
727 | uniforms.append(t: { "float" , "qt_normalAdjustViewportFactor" }); |
728 | uniforms.append(t: { "float" , "qt_nearClipValue" }); |
729 | |
730 | QSSGShaderCustomMaterialAdapter::StringPairList builtinVertexInputs; |
731 | builtinVertexInputs.append(t: { "vec3" , "attr_pos" }); |
732 | builtinVertexInputs.append(t: { "vec2" , "attr_uv" }); |
733 | |
734 | QSSGShaderCustomMaterialAdapter::StringPairList builtinVertexOutputs; |
735 | builtinVertexOutputs.append(t: { "vec2" , "qt_inputUV" }); |
736 | builtinVertexOutputs.append(t: { "vec2" , "qt_textureUV" }); |
737 | |
738 | // fragOutput is added automatically by the program generator |
739 | |
740 | if (!m_passes.isEmpty()) { |
741 | const QQmlContext *context = qmlContext(this); |
742 | effectNode->resetCommands(); |
743 | for (QQuick3DShaderUtilsRenderPass *pass : std::as_const(t&: m_passes)) { |
744 | // Have a key composed more or less of the vertex and fragment filenames. |
745 | // The shaderLibraryManager uses stage+shaderPathKey as the key. |
746 | // Thus shaderPathKey is then sufficient to look up both the vertex and fragment shaders later on. |
747 | // Note that this key is not suitable as a unique key for the graphics resources because the same |
748 | // set of shader files can be used in multiple different passes, or in multiple active effects. |
749 | // But that's the effect system's problem. |
750 | QByteArray shaderPathKey("effect pipeline--" ); |
751 | QSSGRenderEffect::ShaderPrepPassData passData; |
752 | for (QQuick3DShaderUtilsShader::Stage stage : { QQuick3DShaderUtilsShader::Stage::Vertex, QQuick3DShaderUtilsShader::Stage::Fragment }) { |
753 | QQuick3DShaderUtilsShader *shader = nullptr; |
754 | for (QQuick3DShaderUtilsShader *s : pass->m_shaders) { |
755 | if (s->stage == stage) { |
756 | shader = s; |
757 | break; |
758 | } |
759 | } |
760 | |
761 | // just how many enums does one need for the exact same thing... |
762 | QSSGShaderCache::ShaderType type = QSSGShaderCache::ShaderType::Vertex; |
763 | if (stage == QQuick3DShaderUtilsShader::Stage::Fragment) |
764 | type = QSSGShaderCache::ShaderType::Fragment; |
765 | |
766 | // Will just use the custom material infrastructure. Some |
767 | // substitutions are common between custom materials and effects. |
768 | // |
769 | // Substitutions relevant to us here: |
770 | // MAIN -> qt_customMain |
771 | // FRAGCOLOR -> fragOutput |
772 | // POSITION -> gl_Position |
773 | // MODELVIEWPROJECTION_MATRIX -> qt_modelViewProjection |
774 | // DEPTH_TEXTURE -> qt_depthTexture |
775 | // ... other things shared with custom material |
776 | // |
777 | // INPUT -> qt_inputTexture |
778 | // INPUT_UV -> qt_inputUV |
779 | // ... other effect specifics |
780 | // |
781 | // Built-in uniforms, inputs and outputs will be baked into |
782 | // metadata comment blocks in the resulting source code. |
783 | // Same goes for inputs/outputs declared with VARYING. |
784 | |
785 | QByteArray code; |
786 | if (shader) { |
787 | code = QSSGShaderUtils::resolveShader(fileUrl: shader->shader, context, shaderPathKey); // appends to shaderPathKey |
788 | } else { |
789 | if (!shaderPathKey.isEmpty()) |
790 | shaderPathKey.append(c: '>'); |
791 | shaderPathKey += "DEFAULT" ; |
792 | if (type == QSSGShaderCache::ShaderType::Vertex) |
793 | code = default_effect_vertex_shader; |
794 | else |
795 | code = default_effect_fragment_shader; |
796 | } |
797 | |
798 | QByteArray shaderCodeMeta; |
799 | QSSGShaderCustomMaterialAdapter::ShaderCodeAndMetaData result; |
800 | if (type == QSSGShaderCache::ShaderType::Vertex) { |
801 | result = QSSGShaderCustomMaterialAdapter::prepareCustomShader(dst&: shaderCodeMeta, shaderCode: code, type, |
802 | baseUniforms: uniforms, baseInputs: builtinVertexInputs, baseOutputs: builtinVertexOutputs); |
803 | } else { |
804 | result = QSSGShaderCustomMaterialAdapter::prepareCustomShader(dst&: shaderCodeMeta, shaderCode: code, type, |
805 | baseUniforms: uniforms, baseInputs: builtinVertexOutputs); |
806 | } |
807 | |
808 | if (result.second.flags.testFlag(flag: QSSGCustomShaderMetaData::UsesDepthTexture)) |
809 | effectNode->requiresDepthTexture = true; |
810 | |
811 | code = result.first + shaderCodeMeta; |
812 | |
813 | if (type == QSSGShaderCache::ShaderType::Vertex) { |
814 | // qt_customMain() has an argument list which gets injected here |
815 | insertVertexMainArgs(snippet&: code); |
816 | passData.vertexShaderCode = code; |
817 | passData.vertexMetaData = result.second; |
818 | } else { |
819 | passData.fragmentShaderCode = code; |
820 | passData.fragmentMetaData = result.second; |
821 | } |
822 | } |
823 | |
824 | effectNode->commands.push_back(t: { .command: nullptr, .own: true }); // will be changed to QSSGBindShader in finalizeShaders |
825 | passData.bindShaderCmdIndex = effectNode->commands.size() - 1; |
826 | |
827 | // finalizing the shader code happens in a separate step later on by the backend node |
828 | passData.shaderPathKeyPrefix = shaderPathKey; |
829 | effectNode->shaderPrepData.passes.append(t: passData); |
830 | effectNode->shaderPrepData.valid = true; // trigger reprocessing the shader code later on |
831 | |
832 | effectNode->commands.push_back(t: { .command: new QSSGApplyInstanceValue, .own: true }); |
833 | |
834 | // Buffers |
835 | QQuick3DShaderUtilsBuffer *outputBuffer = pass->outputBuffer; |
836 | if (outputBuffer) { |
837 | const QByteArray &outBufferName = outputBuffer->name; |
838 | if (outBufferName.isEmpty()) { |
839 | // default output buffer (with settings) |
840 | auto outputFormat = QQuick3DShaderUtilsBuffer::mapTextureFormat(fmt: outputBuffer->format()); |
841 | effectNode->commands.push_back(t: { .command: new QSSGBindTarget(outputFormat), .own: true }); |
842 | effectNode->outputFormat = outputFormat; |
843 | } else { |
844 | // Allocate buffer command |
845 | effectNode->commands.push_back(t: { .command: outputBuffer->getCommand(), .own: false }); |
846 | // bind buffer |
847 | effectNode->commands.push_back(t: { .command: new QSSGBindBuffer(outBufferName), .own: true }); |
848 | } |
849 | } else { |
850 | // Use the default output buffer, same format as the source buffer |
851 | effectNode->commands.push_back(t: { .command: new QSSGBindTarget(QSSGRenderTextureFormat::Unknown), .own: true }); |
852 | effectNode->outputFormat = QSSGRenderTextureFormat::Unknown; |
853 | } |
854 | |
855 | // Other commands (BufferInput, Blending ... ) |
856 | const auto &extraCommands = pass->m_commands; |
857 | for (const auto &command : extraCommands) { |
858 | const int bufferCount = command->bufferCount(); |
859 | for (int i = 0; i != bufferCount; ++i) |
860 | effectNode->commands.push_back(t: { .command: command->bufferAt(idx: i)->getCommand(), .own: false }); |
861 | effectNode->commands.push_back(t: { .command: command->getCommand(), .own: false }); |
862 | } |
863 | |
864 | effectNode->commands.push_back(t: { .command: new QSSGRender, .own: true }); |
865 | } |
866 | } |
867 | } |
868 | |
869 | if (m_dirtyAttributes & Dirty::PropertyDirty) { |
870 | for (const auto &prop : std::as_const(t&: effectNode->properties)) { |
871 | auto p = metaObject()->property(index: prop.pid); |
872 | if (Q_LIKELY(p.isValid())) |
873 | prop.value = p.read(obj: this); |
874 | } |
875 | } |
876 | |
877 | m_dirtyAttributes = 0; |
878 | |
879 | DebugViewHelpers::ensureDebugObjectName(node: effectNode, src: this); |
880 | |
881 | return effectNode; |
882 | } |
883 | |
884 | void QQuick3DEffect::onPropertyDirty() |
885 | { |
886 | markDirty(type: Dirty::PropertyDirty); |
887 | } |
888 | |
889 | void QQuick3DEffect::onTextureDirty() |
890 | { |
891 | markDirty(type: Dirty::TextureDirty); |
892 | } |
893 | |
894 | void QQuick3DEffect::onPassDirty() |
895 | { |
896 | markDirty(type: Dirty::EffectChainDirty); |
897 | } |
898 | |
899 | void QQuick3DEffect::effectChainDirty() |
900 | { |
901 | markDirty(type: Dirty::EffectChainDirty); |
902 | } |
903 | |
904 | void QQuick3DEffect::markDirty(QQuick3DEffect::Dirty type) |
905 | { |
906 | if (!(m_dirtyAttributes & quint32(type))) { |
907 | m_dirtyAttributes |= quint32(type); |
908 | update(); |
909 | } |
910 | } |
911 | |
912 | void QQuick3DEffect::updateSceneManager(QQuick3DSceneManager *sceneManager) |
913 | { |
914 | if (sceneManager) { |
915 | for (const auto &it : std::as_const(t&: m_dynamicTextureMaps)) { |
916 | if (auto tex = it->texture()) |
917 | QQuick3DObjectPrivate::refSceneManager(obj: tex, mgr&: *sceneManager); |
918 | } |
919 | } else { |
920 | for (const auto &it : std::as_const(t&: m_dynamicTextureMaps)) { |
921 | if (auto tex = it->texture()) |
922 | QQuick3DObjectPrivate::derefSceneManager(obj: tex); |
923 | } |
924 | } |
925 | } |
926 | |
927 | void QQuick3DEffect::itemChange(QQuick3DObject::ItemChange change, const QQuick3DObject::ItemChangeData &value) |
928 | { |
929 | if (change == QQuick3DObject::ItemSceneChange) |
930 | updateSceneManager(sceneManager: value.sceneManager); |
931 | } |
932 | |
933 | void QQuick3DEffect::qmlAppendPass(QQmlListProperty<QQuick3DShaderUtilsRenderPass> *list, QQuick3DShaderUtilsRenderPass *pass) |
934 | { |
935 | if (!pass) |
936 | return; |
937 | |
938 | QQuick3DEffect *that = qobject_cast<QQuick3DEffect *>(object: list->object); |
939 | that->m_passes.push_back(t: pass); |
940 | |
941 | connect(sender: pass, signal: &QQuick3DShaderUtilsRenderPass::changed, context: that, slot: &QQuick3DEffect::onPassDirty); |
942 | that->effectChainDirty(); |
943 | } |
944 | |
945 | QQuick3DShaderUtilsRenderPass *QQuick3DEffect::qmlPassAt(QQmlListProperty<QQuick3DShaderUtilsRenderPass> *list, qsizetype index) |
946 | { |
947 | QQuick3DEffect *that = qobject_cast<QQuick3DEffect *>(object: list->object); |
948 | return that->m_passes.at(i: index); |
949 | } |
950 | |
951 | qsizetype QQuick3DEffect::qmlPassCount(QQmlListProperty<QQuick3DShaderUtilsRenderPass> *list) |
952 | { |
953 | QQuick3DEffect *that = qobject_cast<QQuick3DEffect *>(object: list->object); |
954 | return that->m_passes.size(); |
955 | } |
956 | |
957 | void QQuick3DEffect::qmlPassClear(QQmlListProperty<QQuick3DShaderUtilsRenderPass> *list) |
958 | { |
959 | QQuick3DEffect *that = qobject_cast<QQuick3DEffect *>(object: list->object); |
960 | |
961 | for (QQuick3DShaderUtilsRenderPass *pass : that->m_passes) |
962 | pass->disconnect(receiver: that); |
963 | |
964 | that->m_passes.clear(); |
965 | that->effectChainDirty(); |
966 | } |
967 | |
968 | void QQuick3DEffect::setDynamicTextureMap(QQuick3DShaderUtilsTextureInput *textureMap) |
969 | { |
970 | // There can only be one texture input per property, as the texture input is a combination |
971 | // of the texture used and the uniform name! |
972 | auto it = m_dynamicTextureMaps.constFind(value: textureMap); |
973 | |
974 | if (it == m_dynamicTextureMaps.constEnd()) { |
975 | // Track the object, if it's destroyed we need to remove it from our table. |
976 | connect(sender: textureMap, signal: &QQuick3DShaderUtilsTextureInput::destroyed, context: this, slot: [this, textureMap]() { |
977 | auto it = m_dynamicTextureMaps.constFind(value: textureMap); |
978 | if (it != m_dynamicTextureMaps.constEnd()) |
979 | m_dynamicTextureMaps.erase(i: it); |
980 | }); |
981 | m_dynamicTextureMaps.insert(value: textureMap); |
982 | |
983 | update(); |
984 | } |
985 | } |
986 | |
987 | QT_END_NAMESPACE |
988 | |