| 1 | // |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions |
| 4 | // are met: |
| 5 | // * Redistributions of source code must retain the above copyright |
| 6 | // notice, this list of conditions and the following disclaimer. |
| 7 | // * Redistributions in binary form must reproduce the above copyright |
| 8 | // notice, this list of conditions and the following disclaimer in the |
| 9 | // documentation and/or other materials provided with the distribution. |
| 10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
| 11 | // contributors may be used to endorse or promote products derived |
| 12 | // from this software without specific prior written permission. |
| 13 | // |
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | // |
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 29 | |
| 30 | |
| 31 | #ifndef PX_VEHICLE_WHEELS_H |
| 32 | #define PX_VEHICLE_WHEELS_H |
| 33 | /** \addtogroup vehicle |
| 34 | @{ |
| 35 | */ |
| 36 | |
| 37 | #include "foundation/PxSimpleTypes.h" |
| 38 | #include "vehicle/PxVehicleShaders.h" |
| 39 | #include "vehicle/PxVehicleComponents.h" |
| 40 | #include "common/PxBase.h" |
| 41 | #include "PxRigidDynamic.h" |
| 42 | |
| 43 | #if !PX_DOXYGEN |
| 44 | namespace physx |
| 45 | { |
| 46 | #endif |
| 47 | |
| 48 | class PxVehicleWheels4SimData; |
| 49 | class PxVehicleWheels4DynData; |
| 50 | class PxVehicleTireForceCalculator; |
| 51 | class PxShape; |
| 52 | class PxPhysics; |
| 53 | class PxMaterial; |
| 54 | |
| 55 | /** |
| 56 | \brief Flags to configure the vehicle wheel simulation. |
| 57 | |
| 58 | @see PxVehicleWheelsSimData::setFlags(), PxVehicleWheelsSimData::getFlags() |
| 59 | */ |
| 60 | struct PxVehicleWheelsSimFlag |
| 61 | { |
| 62 | enum Enum |
| 63 | { |
| 64 | /** |
| 65 | \brief Limit the suspension expansion velocity. |
| 66 | |
| 67 | For extreme damping ratios, large damping forces might result in the vehicle sticking to the ground where |
| 68 | one would rather expect to see the vehicle lift off. While it is highly recommended to use somewhat realistic |
| 69 | damping ratios, this flag can be used to limit the velocity of the suspension. In more detail, the simulation |
| 70 | will check whether the suspension can extend to the target length in the given simulation time step. If that |
| 71 | is the case, the suspension force will be computed as usual, else the force will be set to zero. Enabling |
| 72 | this feature gives a slightly more realisitic behavior at the potential cost of more easily losing control |
| 73 | when steering the vehicle. |
| 74 | */ |
| 75 | eLIMIT_SUSPENSION_EXPANSION_VELOCITY = (1 << 0), |
| 76 | |
| 77 | /** |
| 78 | \brief Disable internal cylinder-plane intersection test. |
| 79 | |
| 80 | By default the internal code runs a post-process on sweep results, approximating the wheel shape with a |
| 81 | cylinder and tweaking the sweep hit results accordingly. This can produce artefacts in certain cases, in |
| 82 | particular when the swept shape is very different from a cylinder - e.g. with swept spheres. This flag |
| 83 | tells the system to disable this internal test, and reuse the direct user-provided sweep results. |
| 84 | |
| 85 | The default code refines the sweep results in each substep. Enabling this flag makes the system partially |
| 86 | reuse the same sweep results over each substep, which could potentially create other artefacts. |
| 87 | */ |
| 88 | eDISABLE_INTERNAL_CYLINDER_PLANE_INTERSECTION_TEST = (1 << 1), |
| 89 | |
| 90 | /** |
| 91 | \brief Disable suspension force projection. |
| 92 | |
| 93 | By default the internal code modulates the suspension force with the contact normal, i.e. the more the contact |
| 94 | normal is aligned with the suspension direction, the bigger the force. This can create issues when using a |
| 95 | single blocking hit, whose unique contact normal sometimes does not accurately capture the reality of the |
| 96 | surrounding geometry. For example it can weaken the suspension force too much, which visually makes the wheel |
| 97 | move up and down against e.g. a kerb. Enabling this flag tells the system to disable the modulation of the |
| 98 | suspension force by the contact normal. |
| 99 | |
| 100 | The rationale is that a real tire has a deformed contact patch containing multiple normals, and even if some |
| 101 | of these normals are bent when colliding against a kerb, there would still be a large area of the contact patch |
| 102 | touching the ground, and getting normals aligned with the suspension. This is difficult to capture with simple |
| 103 | sweep results, especially with a single sweep hit whose normal is computed by a less than accurate algorithm |
| 104 | like GJK. Using this flag shortcuts these issues, which can improves the behavior when driving over kerbs or |
| 105 | small obstacles. |
| 106 | */ |
| 107 | eDISABLE_SUSPENSION_FORCE_PROJECTION = (1 << 2) |
| 108 | }; |
| 109 | }; |
| 110 | |
| 111 | /** |
| 112 | \brief Collection of set bits defined in #PxVehicleWheelsSimFlag. |
| 113 | |
| 114 | @see PxVehicleWheelsSimFlag |
| 115 | */ |
| 116 | typedef PxFlags<PxVehicleWheelsSimFlag::Enum, PxU32> PxVehicleWheelsSimFlags; |
| 117 | PX_FLAGS_OPERATORS(PxVehicleWheelsSimFlag::Enum, PxU32) |
| 118 | |
| 119 | /** |
| 120 | \brief Data structure describing configuration data of a vehicle with up to 20 wheels. |
| 121 | */ |
| 122 | |
| 123 | class PxVehicleWheelsSimData |
| 124 | { |
| 125 | //= ATTENTION! ===================================================================================== |
| 126 | // Changing the data layout of this class breaks the binary serialization format. See comments for |
| 127 | // PX_BINARY_SERIAL_VERSION. If a modification is required, please adjust the getBinaryMetaData |
| 128 | // function. If the modification is made on a custom branch, please change PX_BINARY_SERIAL_VERSION |
| 129 | // accordingly. |
| 130 | //================================================================================================== |
| 131 | public: |
| 132 | |
| 133 | friend class PxVehicleWheels; |
| 134 | friend class PxVehicleNoDrive; |
| 135 | friend class PxVehicleDrive4W; |
| 136 | friend class PxVehicleDriveTank; |
| 137 | friend class PxVehicleUpdate; |
| 138 | |
| 139 | /** |
| 140 | \brief Allocate a PxVehicleWheelsSimData instance for with nbWheels. |
| 141 | @see free |
| 142 | */ |
| 143 | static PxVehicleWheelsSimData* allocate(const PxU32 nbWheels); |
| 144 | |
| 145 | /** |
| 146 | \brief Setup with mass information that can be applied to the default values of the suspensions, wheels, and tires |
| 147 | set in their respective constructors. |
| 148 | |
| 149 | \param chassisMass is the mass of the chassis. |
| 150 | |
| 151 | \note This function assumes that the suspensions equally share the load of the chassis mass. It also |
| 152 | assumes that the suspension will have a particular natural frequency and damping ratio that is typical |
| 153 | of a standard car. If either of these assumptions is broken then each suspension will need to |
| 154 | be individually configured with custom strength, damping rate, and sprung mass. |
| 155 | |
| 156 | @see allocate |
| 157 | */ |
| 158 | void setChassisMass(const PxF32 chassisMass); |
| 159 | |
| 160 | /** |
| 161 | \brief Free a PxVehicleWheelsSimData instance |
| 162 | @see allocate |
| 163 | */ |
| 164 | void free(); |
| 165 | |
| 166 | /** |
| 167 | \brief Copy wheel simulation data. |
| 168 | \note The number of wheels on both instances of PxVehicleWheelsSimData must match. |
| 169 | */ |
| 170 | PxVehicleWheelsSimData& operator=(const PxVehicleWheelsSimData& src); |
| 171 | |
| 172 | /** |
| 173 | \brief Copy the data of a single wheel unit (wheel, suspension, tire) from srcWheel of src to trgWheel. |
| 174 | \param[in] src is the data to be copied. |
| 175 | \param[in] srcWheel is the wheel whose data will be copied from src. |
| 176 | \param[in] trgWheel is the wheel that will be assigned the copied data. |
| 177 | */ |
| 178 | void copy(const PxVehicleWheelsSimData& src, const PxU32 srcWheel, const PxU32 trgWheel); |
| 179 | |
| 180 | /** |
| 181 | \brief Return the number of wheels |
| 182 | @see allocate |
| 183 | */ |
| 184 | PxU32 getNbWheels() const {return mNbActiveWheels;} |
| 185 | |
| 186 | /** |
| 187 | \brief Return the suspension data of the idth wheel |
| 188 | */ |
| 189 | const PxVehicleSuspensionData& getSuspensionData(const PxU32 id) const; |
| 190 | |
| 191 | /** |
| 192 | \brief Return the wheel data of the idth wheel |
| 193 | */ |
| 194 | const PxVehicleWheelData& getWheelData(const PxU32 id) const; |
| 195 | |
| 196 | /** |
| 197 | \brief Return the tire data of the idth wheel |
| 198 | */ |
| 199 | const PxVehicleTireData& getTireData(const PxU32 id) const; |
| 200 | |
| 201 | /** |
| 202 | \brief Return the direction of travel of the suspension of the idth wheel |
| 203 | */ |
| 204 | const PxVec3& getSuspTravelDirection(const PxU32 id) const; |
| 205 | |
| 206 | /** |
| 207 | \brief Return the application point of the suspension force of the suspension of the idth wheel as an offset from the rigid body center of mass. |
| 208 | \note Specified relative to the center of mass of the rigid body |
| 209 | */ |
| 210 | const PxVec3& getSuspForceAppPointOffset(const PxU32 id) const; |
| 211 | |
| 212 | /** |
| 213 | \brief Return the application point of the tire force of the tire of the idth wheel as an offset from the rigid body center of mass. |
| 214 | \note Specified relative to the centre of mass of the rigid body |
| 215 | */ |
| 216 | const PxVec3& getTireForceAppPointOffset(const PxU32 id) const; |
| 217 | |
| 218 | /** |
| 219 | \brief Return the offset from the rigid body centre of mass to the centre of the idth wheel. |
| 220 | */ |
| 221 | const PxVec3& getWheelCentreOffset(const PxU32 id) const; |
| 222 | |
| 223 | /** |
| 224 | \brief Return the wheel mapping for the ith wheel. |
| 225 | |
| 226 | \note The return value is the element in the array of |
| 227 | shapes of the vehicle's PxRigidDynamic that corresponds to the ith wheel. A return value of -1 means |
| 228 | that the wheel is not mapped to a PxShape. |
| 229 | |
| 230 | @see PxRigidActor.getShapes |
| 231 | */ |
| 232 | PxI32 getWheelShapeMapping(const PxU32 wheelId) const; |
| 233 | |
| 234 | /** |
| 235 | \brief Return the scene query filter data used by the specified suspension line |
| 236 | */ |
| 237 | const PxFilterData& getSceneQueryFilterData(const PxU32 suspId) const; |
| 238 | |
| 239 | /** |
| 240 | \brief Return the number of unique anti-roll bars that have been added with addAntiRollBarData |
| 241 | @see PxVehicleWheelsSimData::addAntiRollBarData |
| 242 | */ |
| 243 | PxU32 getNbAntiRollBars() const |
| 244 | { |
| 245 | return mNbActiveAntiRollBars; |
| 246 | } |
| 247 | |
| 248 | /** |
| 249 | \brief Return a specific anti-roll bar. |
| 250 | \param antiRollId is the unique id of the anti-roll bar |
| 251 | \note The return value of addAntiRollBarData is a unique id for that specific anti-roll bar |
| 252 | and can be used as input parameter for getAntiRollBarData in order to query the same anti-roll bar. |
| 253 | Alternatively, it is possible to iterate over all anti-roll bars by choosing antiRollId |
| 254 | in range (0, getNbAntiRollBars()). |
| 255 | */ |
| 256 | const PxVehicleAntiRollBarData& getAntiRollBarData(const PxU32 antiRollId) const; |
| 257 | |
| 258 | /** |
| 259 | \brief Return the data that describes the filtering of the tire load to produce smoother handling at large time-steps. |
| 260 | */ |
| 261 | PX_FORCE_INLINE const PxVehicleTireLoadFilterData& getTireLoadFilterData() const |
| 262 | { |
| 263 | return mNormalisedLoadFilter; |
| 264 | } |
| 265 | |
| 266 | /** |
| 267 | \brief Set the suspension data of the idth wheel |
| 268 | \param[in] id is the wheel index. |
| 269 | \param[in] susp is the suspension data to be applied. |
| 270 | */ |
| 271 | void setSuspensionData(const PxU32 id, const PxVehicleSuspensionData& susp); |
| 272 | |
| 273 | /** |
| 274 | \brief Set the wheel data of the idth wheel |
| 275 | \param[in] id is the wheel index. |
| 276 | \param[in] wheel is the wheel data to be applied. |
| 277 | */ |
| 278 | void setWheelData(const PxU32 id, const PxVehicleWheelData& wheel); |
| 279 | |
| 280 | /** |
| 281 | \brief Set the tire data of the idth wheel |
| 282 | \param[in] id is the wheel index. |
| 283 | \param[in] tire is the tire data to be applied. |
| 284 | */ |
| 285 | void setTireData(const PxU32 id, const PxVehicleTireData& tire); |
| 286 | |
| 287 | /** |
| 288 | \brief Set the direction of travel of the suspension of the idth wheel |
| 289 | \param[in] id is the wheel index |
| 290 | \param[in] dir is the suspension travel direction to be applied. |
| 291 | */ |
| 292 | void setSuspTravelDirection(const PxU32 id, const PxVec3& dir); |
| 293 | |
| 294 | /** |
| 295 | \brief Set the application point of the suspension force of the suspension of the idth wheel. |
| 296 | \param[in] id is the wheel index |
| 297 | \param[in] offset is the offset from the rigid body center of mass to the application point of the suspension force. |
| 298 | \note Specified relative to the centre of mass of the rigid body |
| 299 | */ |
| 300 | void setSuspForceAppPointOffset(const PxU32 id, const PxVec3& offset); |
| 301 | |
| 302 | /** |
| 303 | \brief Set the application point of the tire force of the tire of the idth wheel. |
| 304 | \param[in] id is the wheel index |
| 305 | \param[in] offset is the offset from the rigid body center of mass to the application point of the tire force. |
| 306 | \note Specified relative to the centre of mass of the rigid body |
| 307 | */ |
| 308 | void setTireForceAppPointOffset(const PxU32 id, const PxVec3& offset); |
| 309 | |
| 310 | /** |
| 311 | \brief Set the offset from the rigid body centre of mass to the centre of the idth wheel. |
| 312 | \param[in] id is the wheel index |
| 313 | \param[in] offset is the offset from the rigid body center of mass to the center of the wheel at rest. |
| 314 | \note Specified relative to the centre of mass of the rigid body |
| 315 | */ |
| 316 | void setWheelCentreOffset(const PxU32 id, const PxVec3& offset); |
| 317 | |
| 318 | /** |
| 319 | \brief Set mapping between wheel id and position of corresponding wheel shape in the list of actor shapes. |
| 320 | |
| 321 | \note This mapping is used to pose the correct wheel shapes with the latest wheel rotation angle, steer angle, and suspension travel |
| 322 | while allowing arbitrary ordering of the wheel shapes in the actor's list of shapes. |
| 323 | |
| 324 | \note Use setWheelShapeMapping(i,-1) to register that there is no wheel shape corresponding to the ith wheel |
| 325 | |
| 326 | \note Set setWheelShapeMapping(i,k) to register that the ith wheel corresponds to the kth shape in the actor's list of shapes. |
| 327 | |
| 328 | \note The default values correspond to setWheelShapeMapping(i,i) for all wheels. |
| 329 | |
| 330 | \note Calling this function will also pose the relevant PxShape at the rest position of the wheel. |
| 331 | |
| 332 | \param wheelId is the wheel index |
| 333 | |
| 334 | \param shapeId is the shape index. |
| 335 | |
| 336 | @see PxVehicleUpdates, PxVehicleDrive4W::setup, PxVehicleDriveTank::setup, PxVehicleNoDrive::setup, setSceneQueryFilterData, PxRigidActor::getShapes |
| 337 | */ |
| 338 | void setWheelShapeMapping(const PxU32 wheelId, const PxI32 shapeId); |
| 339 | |
| 340 | /** |
| 341 | \brief Set the scene query filter data that will be used for raycasts along the travel |
| 342 | direction of the specified suspension. The default value is PxFilterData(0,0,0,0) |
| 343 | \param suspId is the wheel index |
| 344 | \param sqFilterData is the raycast filter data for the suspension raycast. |
| 345 | @see setWheelShapeMapping |
| 346 | */ |
| 347 | void setSceneQueryFilterData(const PxU32 suspId, const PxFilterData& sqFilterData); |
| 348 | |
| 349 | /** |
| 350 | \brief Set the data that describes the filtering of the tire load to produce smoother handling at large timesteps. |
| 351 | \param tireLoadFilter is the smoothing function data. |
| 352 | */ |
| 353 | void setTireLoadFilterData(const PxVehicleTireLoadFilterData& tireLoadFilter); |
| 354 | |
| 355 | /** |
| 356 | \brief Set the anti-roll suspension for a pair of wheels. |
| 357 | |
| 358 | \param antiRoll is the anti-roll suspension. |
| 359 | |
| 360 | \note If an anti-roll bar has already been set for the same logical wheel pair |
| 361 | (independent of wheel index order specified by PxVehicleAntiRollBar.mWheel0 and PxVehicleAntiRollBar.mWheel0) |
| 362 | then the existing anti-roll bar is updated with a new stiffness parameter antiRoll.mStiffness. |
| 363 | |
| 364 | \note If the wheel pair specified by antiRoll does not yet have an anti-roll bar then antiRoll is added to |
| 365 | a list of anti-roll bars for the vehicle. |
| 366 | |
| 367 | \return If antiRoll represents a new wheel pair then a unique id is assigned to the anti-roll bar and returned. |
| 368 | If antiRoll represents an existing wheel pair then the unique id of the existing anti-roll bar is returned. |
| 369 | The return value is always in range (0, getNbAntiRollBars()). |
| 370 | |
| 371 | \note The return value can be used to query the anti-roll bar with getAntiRollBarData(id). |
| 372 | |
| 373 | \note The number of possible anti-roll bars is limited to half the wheel count. |
| 374 | |
| 375 | \note An existing anti-roll bar can be disabled by calling antiRoll.mStiffness to zero. |
| 376 | |
| 377 | @see PxVehicleWheelsSimData::getAntiRollBarData, PxVehicleAntiRollBarData |
| 378 | */ |
| 379 | PxU32 addAntiRollBarData(const PxVehicleAntiRollBarData& antiRoll); |
| 380 | |
| 381 | /** |
| 382 | \brief Disable a wheel so that zero suspension forces and zero tire forces are applied to the rigid body from this wheel. |
| 383 | |
| 384 | \note If the vehicle has a differential (PxVehicleNW/PxVehicle4W) then the differential (PxVehicleDifferentialNWData/PxVehicleDifferential4WData) |
| 385 | needs to be configured so that no drive torque is delivered to the disabled wheel. |
| 386 | |
| 387 | \note If the vehicle is of type PxVehicleNoDrive then zero drive torque must be applied to the disabled wheel. |
| 388 | |
| 389 | \note For tanks (PxVehicleDriveTank) any drive torque that could be delivered to the wheel through the tank differential will be |
| 390 | re-directed to the remaining enabled wheels. |
| 391 | |
| 392 | @see enableWheel |
| 393 | @see PxVehicleDifferentialNWData::setDrivenWheel |
| 394 | @see PxVehicleDifferential4WData::mFrontLeftRightSplit, PxVehicleDifferential4WData::mRearLeftRightSplit, PxVehicleDifferential4WData::mType |
| 395 | @see PxVehicleNoDrive::setDriveTorque |
| 396 | @see PxVehicle4WEnable3WTadpoleMode, PxVehicle4WEnable3WDeltaMode |
| 397 | |
| 398 | \note If a PxShape is associated with the disabled wheel then the association must be broken by calling setWheelShapeMapping(wheelId, -1). |
| 399 | @see setWheelShapeMapping |
| 400 | |
| 401 | \note A wheel that is disabled must also simultaneously be given zero wheel rotation speed. |
| 402 | @see PxVehicleWheelsDynData::setWheelRotationSpeed |
| 403 | |
| 404 | \note Care must be taken with the sprung mass supported by the remaining enabled wheels. Depending on the desired effect, the mass of the rigid body |
| 405 | might need to be distributed among the remaining enabled wheels and suspensions. |
| 406 | |
| 407 | \param[in] wheel is the wheel index. |
| 408 | */ |
| 409 | void disableWheel(const PxU32 wheel); |
| 410 | |
| 411 | /** |
| 412 | \brief Enable a wheel so that suspension forces and tire forces are applied to the rigid body. |
| 413 | All wheels are enabled by default and remain enabled until they are disabled. |
| 414 | \param[in] wheel is the wheel index. |
| 415 | @see disableWheel |
| 416 | */ |
| 417 | void enableWheel(const PxU32 wheel); |
| 418 | |
| 419 | /** |
| 420 | \brief Test if a wheel has been disabled. |
| 421 | \param[in] wheel is the wheel index. |
| 422 | */ |
| 423 | bool getIsWheelDisabled(const PxU32 wheel) const; |
| 424 | |
| 425 | /** |
| 426 | \brief Set the number of vehicle sub-steps that will be performed when the vehicle's longitudinal |
| 427 | speed is below and above a threshold longitudinal speed. |
| 428 | |
| 429 | \note More sub-steps provides better stability but with greater computational cost. |
| 430 | |
| 431 | \note Typically, vehicles require more sub-steps at very low forward speeds. |
| 432 | |
| 433 | \note The threshold longitudinal speed has a default value that is the equivalent of 5 metres per second after accounting for |
| 434 | the length scale set in PxTolerancesScale. |
| 435 | |
| 436 | \note The sub-step count below the threshold longitudinal speed has a default of 3. |
| 437 | |
| 438 | \note The sub-step count above the threshold longitudinal speed has a default of 1. |
| 439 | |
| 440 | \note Each sub-step has time advancement equal to the time-step passed to PxVehicleUpdates divided by the number of required sub-steps. |
| 441 | |
| 442 | \note The contact planes of the most recent suspension line raycast are reused across all sub-steps. |
| 443 | |
| 444 | \note Each sub-step computes tire and suspension forces and then advances a velocity, angular velocity and transform. |
| 445 | |
| 446 | \note At the end of all sub-steps the vehicle actor is given the velocity and angular velocity that would move the actor from its start transform prior |
| 447 | to the first sub-step to the transform computed at the end of the last substep, assuming it doesn't collide with anything along the way in the next PhysX SDK update. |
| 448 | |
| 449 | \note The global pose of the actor is left unchanged throughout the sub-steps. |
| 450 | |
| 451 | \param[in] thresholdLongitudinalSpeed is a threshold speed that is used to categorize vehicle speed as low speed or high speed. |
| 452 | \param[in] lowForwardSpeedSubStepCount is the number of sub-steps performed in PxVehicleUpates for vehicles that have longitudinal speed lower than thresholdLongitudinalSpeed. |
| 453 | \param[in] highForwardSpeedSubStepCount is the number of sub-steps performed in PxVehicleUpdates for vehicles that have longitudinal speed graeter than thresholdLongitudinalSpeed. |
| 454 | */ |
| 455 | void setSubStepCount(const PxReal thresholdLongitudinalSpeed, const PxU32 lowForwardSpeedSubStepCount, const PxU32 highForwardSpeedSubStepCount); |
| 456 | |
| 457 | /** |
| 458 | \brief Set the minimum denominator used in the longitudinal slip calculation. |
| 459 | |
| 460 | \note The longitudinal slip has a theoretical value of (w*r - vz)/|vz|, where w is the angular speed of the wheel; r is the radius of the wheel; |
| 461 | and vz is the component of rigid body velocity (computed at the wheel base) that lies along the longitudinal wheel direction. The term |vz| |
| 462 | normalizes the slip, while preserving the sign of the longitudinal tire slip. The difficulty here is that when |vz| approaches zero the |
| 463 | longitudinal slip approaches infinity. A solution to this problem is to replace the denominator (|vz|) with a value that never falls below a chosen threshold. |
| 464 | The longitudinal slip is then calculated with (w*r - vz)/PxMax(|vz|, minLongSlipDenominator). |
| 465 | |
| 466 | \note The default value is the equivalent of 4 metres per second after accounting for the length scale set in PxTolerancesScale. |
| 467 | |
| 468 | \note Adjust this value upwards if a vehicle has difficulty coming to rest. |
| 469 | |
| 470 | \note Decreasing the timestep (or increasing the number of sub-steps at low longitudinal speed with setSubStepCount) should allow stable stable |
| 471 | behavior with smaller values of minLongSlipDenominator. |
| 472 | */ |
| 473 | void setMinLongSlipDenominator(const PxReal minLongSlipDenominator); |
| 474 | |
| 475 | /** |
| 476 | \brief Set the vehicle wheel simulation flags. |
| 477 | |
| 478 | \param[in] flags The flags to set (see #PxVehicleWheelsSimFlags). |
| 479 | |
| 480 | <b>Default:</b> no flag set |
| 481 | |
| 482 | @see PxVehicleWheelsSimFlag |
| 483 | */ |
| 484 | void setFlags(PxVehicleWheelsSimFlags flags); |
| 485 | |
| 486 | /** |
| 487 | \brief Return the vehicle wheel simulation flags. |
| 488 | |
| 489 | \return The values of the flags. |
| 490 | |
| 491 | @see PxVehicleWheelsSimFlag |
| 492 | */ |
| 493 | PxVehicleWheelsSimFlags getFlags() const; |
| 494 | |
| 495 | private: |
| 496 | |
| 497 | /** |
| 498 | \brief Graph to filter normalised load |
| 499 | @see setTireLoadFilterData, getTireLoadFilterData |
| 500 | */ |
| 501 | PxVehicleTireLoadFilterData mNormalisedLoadFilter; |
| 502 | |
| 503 | /** |
| 504 | \brief Wheels data organised in blocks of 4 wheels. |
| 505 | */ |
| 506 | PxVehicleWheels4SimData* mWheels4SimData; |
| 507 | |
| 508 | /** |
| 509 | \brief Number of blocks of 4 wheels. |
| 510 | */ |
| 511 | PxU32 mNbWheels4; |
| 512 | |
| 513 | /** |
| 514 | \brief Number of actual wheels (<=(mNbWheels4*4)) |
| 515 | */ |
| 516 | PxU32 mNbActiveWheels; |
| 517 | |
| 518 | /** |
| 519 | \brief Anti-roll bars |
| 520 | */ |
| 521 | PxVehicleAntiRollBarData* mAntiRollBars; |
| 522 | |
| 523 | /** |
| 524 | \brief 2 anti-rollbars allocated for each block of 4 wheels. |
| 525 | */ |
| 526 | PxU32 mNbAntiRollBars4; |
| 527 | |
| 528 | /** |
| 529 | \brief Number of active anti-roll bars. |
| 530 | */ |
| 531 | PxU32 mNbActiveAntiRollBars; |
| 532 | |
| 533 | /** |
| 534 | \brief Which of the mNbActiveWheels are active or disabled? |
| 535 | The default is that all mNbActiveWheels wheels are active. |
| 536 | */ |
| 537 | PxU32 mActiveWheelsBitmapBuffer[((PX_MAX_NB_WHEELS + 31) & ~31) >> 5]; |
| 538 | |
| 539 | /** |
| 540 | \brief Threshold longitudinal speed used to decide whether to use |
| 541 | mLowForwardSpeedSubStepCount or mHighForwardSpeedSubStepCount as the |
| 542 | number of sub-steps that will be peformed. |
| 543 | */ |
| 544 | PxF32 mThresholdLongitudinalSpeed; |
| 545 | |
| 546 | /** |
| 547 | \brief Number of sub-steps that will be performed if the longitudinal speed |
| 548 | of the vehicle is smaller than mThresholdLongitudinalSpeed. |
| 549 | */ |
| 550 | PxU32 mLowForwardSpeedSubStepCount; |
| 551 | |
| 552 | /** |
| 553 | \brief Number of sub-steps that will be performed if the longitudinal speed |
| 554 | of the vehicle is greater than or equal to mThresholdLongitudinalSpeed. |
| 555 | */ |
| 556 | PxU32 mHighForwardSpeedSubStepCount; |
| 557 | |
| 558 | /** |
| 559 | \brief Minimum long slip denominator |
| 560 | */ |
| 561 | PxF32 mMinLongSlipDenominator; |
| 562 | |
| 563 | /** |
| 564 | \brief The vehicle wheel simulation flags. |
| 565 | |
| 566 | @see PxVehicleWheelsSimFlags |
| 567 | */ |
| 568 | PxU32 mFlags; |
| 569 | |
| 570 | #if PX_P64_FAMILY |
| 571 | PxU32 mPad[1]; |
| 572 | #endif |
| 573 | |
| 574 | /** |
| 575 | \brief Test if wheel simulation data has been setup with legal values. |
| 576 | */ |
| 577 | bool isValid() const; |
| 578 | |
| 579 | /** |
| 580 | \brief see PxVehicleWheels::allocate |
| 581 | */ |
| 582 | static PxU32 computeByteSize(const PxU32 numWheels); |
| 583 | static PxU8* patchUpPointers(const PxU32 numWheels, PxVehicleWheelsSimData* simData, PxU8* ptrIn); |
| 584 | PxVehicleWheelsSimData(const PxU32 numWheels); |
| 585 | |
| 586 | //serialization |
| 587 | public: |
| 588 | PxVehicleWheelsSimData(const PxEMPTY) : mNormalisedLoadFilter(PxEmpty) {} |
| 589 | static void getBinaryMetaData(PxOutputStream& stream); |
| 590 | PxU32 getNbWheels4() const { return mNbWheels4; } |
| 591 | PxU32 getNbSuspensionData() const { return mNbActiveWheels; } |
| 592 | PxU32 getNbWheelData() const { return mNbActiveWheels; } |
| 593 | PxU32 getNbSuspTravelDirection() const { return mNbActiveWheels; } |
| 594 | PxU32 getNbTireData() const { return mNbActiveWheels; } |
| 595 | PxU32 getNbSuspForceAppPointOffset() const { return mNbActiveWheels; } |
| 596 | PxU32 getNbTireForceAppPointOffset() const { return mNbActiveWheels; } |
| 597 | PxU32 getNbWheelCentreOffset() const { return mNbActiveWheels; } |
| 598 | PxU32 getNbWheelShapeMapping() const { return mNbActiveWheels; } |
| 599 | PxU32 getNbSceneQueryFilterData() const { return mNbActiveWheels; } |
| 600 | PxF32 getMinLongSlipDenominator() const {return mMinLongSlipDenominator;} |
| 601 | void setThresholdLongSpeed(const PxF32 f) {mThresholdLongitudinalSpeed = f;} |
| 602 | PxF32 getThresholdLongSpeed() const {return mThresholdLongitudinalSpeed;} |
| 603 | void setLowForwardSpeedSubStepCount(const PxU32 f) {mLowForwardSpeedSubStepCount = f;} |
| 604 | PxU32 getLowForwardSpeedSubStepCount() const {return mLowForwardSpeedSubStepCount;} |
| 605 | void setHighForwardSpeedSubStepCount(const PxU32 f) {mHighForwardSpeedSubStepCount = f;} |
| 606 | PxU32 getHighForwardSpeedSubStepCount() const {return mHighForwardSpeedSubStepCount;} |
| 607 | void setWheelEnabledState(const PxU32 wheel, const bool state) {if(state) {enableWheel(wheel);} else {disableWheel(wheel);}} |
| 608 | bool getWheelEnabledState(const PxU32 wheel) const {return !getIsWheelDisabled(wheel);} |
| 609 | PxU32 getNbWheelEnabledState() const {return mNbActiveWheels;} |
| 610 | PxU32 getNbAntiRollBars4() const { return mNbAntiRollBars4; } |
| 611 | PxU32 getNbAntiRollBarData() const {return mNbActiveAntiRollBars;} |
| 612 | void setAntiRollBarData(const PxU32 id, const PxVehicleAntiRollBarData& antiRoll); |
| 613 | PxVehicleWheelsSimData(){} |
| 614 | ~PxVehicleWheelsSimData(){} |
| 615 | //~serialization |
| 616 | }; |
| 617 | PX_COMPILE_TIME_ASSERT(0==(sizeof(PxVehicleWheelsSimData) & 15)); |
| 618 | |
| 619 | /** |
| 620 | \brief Data structure with instanced dynamics data for wheels |
| 621 | */ |
| 622 | class PxVehicleWheelsDynData |
| 623 | { |
| 624 | //= ATTENTION! ===================================================================================== |
| 625 | // Changing the data layout of this class breaks the binary serialization format. See comments for |
| 626 | // PX_BINARY_SERIAL_VERSION. If a modification is required, please adjust the getBinaryMetaData |
| 627 | // function. If the modification is made on a custom branch, please change PX_BINARY_SERIAL_VERSION |
| 628 | // accordingly. |
| 629 | //================================================================================================== |
| 630 | public: |
| 631 | |
| 632 | friend class PxVehicleWheels; |
| 633 | friend class PxVehicleDrive4W; |
| 634 | friend class PxVehicleDriveTank; |
| 635 | friend class PxVehicleUpdate; |
| 636 | |
| 637 | PxVehicleWheelsDynData(){} |
| 638 | ~PxVehicleWheelsDynData(){} |
| 639 | |
| 640 | /** |
| 641 | \brief Set all wheels to their rest state. |
| 642 | @see setup |
| 643 | */ |
| 644 | void setToRestState(); |
| 645 | |
| 646 | /** |
| 647 | \brief Set the tire force shader function |
| 648 | \param[in] tireForceShaderFn is the shader function that will be used to compute tire forces. |
| 649 | */ |
| 650 | void setTireForceShaderFunction(PxVehicleComputeTireForce tireForceShaderFn); |
| 651 | |
| 652 | /** |
| 653 | \brief Set the tire force shader data for a specific tire |
| 654 | \param[in] tireId is the wheel index |
| 655 | \param[in] tireForceShaderData is the data describing the tire. |
| 656 | */ |
| 657 | void setTireForceShaderData(const PxU32 tireId, const void* tireForceShaderData); |
| 658 | |
| 659 | /** |
| 660 | \brief Get the tire force shader data for a specific tire |
| 661 | */ |
| 662 | const void* getTireForceShaderData(const PxU32 tireId) const; |
| 663 | |
| 664 | /** |
| 665 | \brief Set the wheel rotation speed (radians per second) about the rolling axis for the specified wheel. |
| 666 | \param[in] wheelIdx is the wheel index |
| 667 | \param[in] speed is the rotation speed to be applied to the wheel. |
| 668 | */ |
| 669 | void setWheelRotationSpeed(const PxU32 wheelIdx, const PxReal speed); |
| 670 | |
| 671 | /** |
| 672 | \brief Return the rotation speed about the rolling axis of a specified wheel . |
| 673 | */ |
| 674 | PxReal getWheelRotationSpeed(const PxU32 wheelIdx) const; |
| 675 | |
| 676 | /** |
| 677 | \brief Set the wheel rotation angle (radians) about the rolling axis of the specified wheel. |
| 678 | \param[in] wheelIdx is the wheel index |
| 679 | \param[in] angle is the rotation angle to be applied to the wheel. |
| 680 | */ |
| 681 | void setWheelRotationAngle(const PxU32 wheelIdx, const PxReal angle); |
| 682 | |
| 683 | /** |
| 684 | \brief Return the rotation angle about the rolling axis for the specified wheel. |
| 685 | */ |
| 686 | PxReal getWheelRotationAngle(const PxU32 wheelIdx) const; |
| 687 | |
| 688 | /** |
| 689 | \brief Set the user data pointer for the specified wheel |
| 690 | It has a default value of NULL. |
| 691 | \param[in] tireIdx is the wheel index |
| 692 | \param[in] userData is the data to be associated with the wheel. |
| 693 | */ |
| 694 | void setUserData(const PxU32 tireIdx, void* userData); |
| 695 | |
| 696 | /** |
| 697 | \brief Get the user data pointer that was set for the specified wheel |
| 698 | */ |
| 699 | void* getUserData(const PxU32 tireIdx) const; |
| 700 | |
| 701 | /** |
| 702 | \brief Copy the dynamics data of a single wheel unit (wheel, suspension, tire) from srcWheel of src to trgWheel. |
| 703 | \param[in] src is the data to be copied. |
| 704 | \param[in] srcWheel is the wheel whose data will be copied from src. |
| 705 | \param[in] trgWheel is the wheel that will be assigned the copied data. |
| 706 | */ |
| 707 | void copy(const PxVehicleWheelsDynData& src, const PxU32 srcWheel, const PxU32 trgWheel); |
| 708 | |
| 709 | private: |
| 710 | |
| 711 | /** |
| 712 | \brief Dynamics data arranged in blocks of 4 wheels. |
| 713 | */ |
| 714 | PxVehicleWheels4DynData* mWheels4DynData; |
| 715 | |
| 716 | /** |
| 717 | \brief Test if wheel dynamics data have legal values. |
| 718 | */ |
| 719 | bool isValid() const; |
| 720 | |
| 721 | /** |
| 722 | \brief Shader data and function for tire force calculations. |
| 723 | */ |
| 724 | PxVehicleTireForceCalculator* mTireForceCalculators; |
| 725 | |
| 726 | /** |
| 727 | \brief A userData pointer can be stored for each wheel. |
| 728 | @see setUserData, getUserData |
| 729 | */ |
| 730 | void** mUserDatas; |
| 731 | |
| 732 | /** |
| 733 | \brief Number of blocks of 4 wheels. |
| 734 | */ |
| 735 | PxU32 mNbWheels4; |
| 736 | |
| 737 | /** |
| 738 | \brief Number of wheels (mNbActiveWheels <= (mNbWheels4*4)) |
| 739 | */ |
| 740 | PxU32 mNbActiveWheels; |
| 741 | |
| 742 | PxU32 mPad[3]; |
| 743 | |
| 744 | /** |
| 745 | \brief see PxVehicleWheels::allocate |
| 746 | */ |
| 747 | static PxU32 computeByteSize(const PxU32 numWheels); |
| 748 | static PxU8* patchUpPointers(const PxU32 numWheels, PxVehicleWheelsDynData* dynData, PxU8* ptr); |
| 749 | PxVehicleWheelsDynData(const PxU32 numWheels); |
| 750 | |
| 751 | //serialization |
| 752 | public: |
| 753 | static void getBinaryMetaData(PxOutputStream& stream); |
| 754 | PxU32 getNbWheelRotationSpeed() const { return mNbActiveWheels; } |
| 755 | PxU32 getNbWheelRotationAngle() const { return mNbActiveWheels; } |
| 756 | PxVehicleWheels4DynData* getWheel4DynData() const { return mWheels4DynData; } |
| 757 | //~serialization |
| 758 | |
| 759 | /** |
| 760 | \brief Retrieve the number of PxConstraint objects associated with the vehicle. |
| 761 | |
| 762 | You can use #getConstraints() to retrieve the constraint pointers. |
| 763 | |
| 764 | \return Number of constraints associated with this vehicle. |
| 765 | |
| 766 | @see PxConstraint getConstraints() |
| 767 | */ |
| 768 | PxU32 getNbConstraints() const { return mNbWheels4; } |
| 769 | |
| 770 | /** |
| 771 | \brief Retrieve all the PxConstraint objects associated with the vehicle. |
| 772 | |
| 773 | There is one PxConstraint per block of 4 wheels. The count can be extracted through #getNbConstraints() |
| 774 | |
| 775 | \param[out] userBuffer The buffer to store the constraint pointers. |
| 776 | \param[in] bufferSize Size of provided user buffer. |
| 777 | \param[in] startIndex Index of first constraint pointer to be retrieved |
| 778 | \return Number of constraint pointers written to the buffer. |
| 779 | |
| 780 | @see PxConstraint getNbConstraints() |
| 781 | */ |
| 782 | PxU32 getConstraints(PxConstraint** userBuffer, PxU32 bufferSize, PxU32 startIndex = 0) const; |
| 783 | }; |
| 784 | PX_COMPILE_TIME_ASSERT(0==(sizeof(PxVehicleWheelsDynData) & 15)); |
| 785 | |
| 786 | /** |
| 787 | \brief Data structure with instanced dynamics data and configuration data of a vehicle with just wheels |
| 788 | @see PxVehicleDrive, PxVehicleDrive4W, PxVehicleDriveTank |
| 789 | */ |
| 790 | class PxVehicleWheels : public PxBase |
| 791 | { |
| 792 | //= ATTENTION! ===================================================================================== |
| 793 | // Changing the data layout of this class breaks the binary serialization format. See comments for |
| 794 | // PX_BINARY_SERIAL_VERSION. If a modification is required, please adjust the getBinaryMetaData |
| 795 | // function. If the modification is made on a custom branch, please change PX_BINARY_SERIAL_VERSION |
| 796 | // accordingly. |
| 797 | //================================================================================================== |
| 798 | public: |
| 799 | |
| 800 | friend class PxVehicleUpdate; |
| 801 | friend class PxVehicleConstraintShader; |
| 802 | |
| 803 | /** |
| 804 | \brief Return the type of vehicle |
| 805 | @see PxVehicleTypes |
| 806 | */ |
| 807 | PX_FORCE_INLINE PxU32 getVehicleType() const {return mType;} |
| 808 | |
| 809 | /** |
| 810 | \brief Get non-const ptr to PxRigidDynamic instance that is the vehicle's physx representation |
| 811 | */ |
| 812 | PX_FORCE_INLINE PxRigidDynamic* getRigidDynamicActor() {return mActor;} |
| 813 | |
| 814 | /** |
| 815 | \brief Get const ptr to PxRigidDynamic instance that is the vehicle's physx representation |
| 816 | */ |
| 817 | PX_FORCE_INLINE const PxRigidDynamic* getRigidDynamicActor() const {return mActor;} |
| 818 | |
| 819 | /** |
| 820 | \brief Compute the rigid body velocity component along the forward vector of the rigid body transform. |
| 821 | @see PxVehicleSetBasisVectors |
| 822 | */ |
| 823 | PxReal computeForwardSpeed() const; |
| 824 | |
| 825 | /** |
| 826 | \brief Compute the rigid body velocity component along the right vector of the rigid body transform. |
| 827 | @see PxVehicleSetBasisVectors |
| 828 | */ |
| 829 | PxReal computeSidewaysSpeed() const; |
| 830 | |
| 831 | /** |
| 832 | \brief Data describing the setup of all the wheels/suspensions/tires. |
| 833 | */ |
| 834 | PxVehicleWheelsSimData mWheelsSimData; |
| 835 | |
| 836 | /** |
| 837 | \brief Data describing the dynamic state of all wheels/suspension/tires. |
| 838 | */ |
| 839 | PxVehicleWheelsDynData mWheelsDynData; |
| 840 | |
| 841 | protected: |
| 842 | |
| 843 | /** |
| 844 | \brief Set all wheels to their rest state |
| 845 | */ |
| 846 | void setToRestState(); |
| 847 | |
| 848 | /** |
| 849 | \brief Test that all configuration and instanced dynamics data is valid. |
| 850 | */ |
| 851 | bool isValid() const; |
| 852 | |
| 853 | /** |
| 854 | @see PxVehicleDrive4W::allocate, PxVehicleDriveTank::allocate |
| 855 | */ |
| 856 | static PxU32 computeByteSize(const PxU32 nbWheels); |
| 857 | static PxU8* patchupPointers(const PxU32 nbWheels, PxVehicleWheels* vehWheels, PxU8* ptr); |
| 858 | virtual void init(const PxU32 numWheels); |
| 859 | |
| 860 | /** |
| 861 | \brief Deallocate a PxVehicleWheels instance. |
| 862 | @see PxVehicleDrive4W::free, PxVehicleDriveTank::free |
| 863 | */ |
| 864 | void free(); |
| 865 | |
| 866 | /* |
| 867 | \brief Deferred deletion. |
| 868 | */ |
| 869 | void onConstraintRelease(); |
| 870 | |
| 871 | /** |
| 872 | @see PxVehicleDrive4W::setup, PxVehicleDriveTank::setup |
| 873 | */ |
| 874 | void setup |
| 875 | (PxPhysics* physics, PxRigidDynamic* vehActor, |
| 876 | const PxVehicleWheelsSimData& wheelsData, |
| 877 | const PxU32 nbDrivenWheels, const PxU32 nbNonDrivenWheels); |
| 878 | |
| 879 | /** |
| 880 | \brief The rigid body actor that represents the vehicle in the PhysX SDK. |
| 881 | */ |
| 882 | PxRigidDynamic* mActor; |
| 883 | |
| 884 | private: |
| 885 | |
| 886 | /** |
| 887 | \brief Count the number of constraint connectors that have hit their callback when deleting a vehicle. |
| 888 | Can only delete the vehicle's memory when all constraint connectors have hit their callback. |
| 889 | */ |
| 890 | PxU32 mNbNonDrivenWheels; |
| 891 | |
| 892 | PxU8 mOnConstraintReleaseCounter; |
| 893 | |
| 894 | protected: |
| 895 | |
| 896 | /** |
| 897 | \brief Vehicle type (eVehicleDriveTypes) |
| 898 | */ |
| 899 | PxU8 mType; |
| 900 | |
| 901 | #if PX_P64_FAMILY |
| 902 | PxU8 mPad0[14]; |
| 903 | #else |
| 904 | PxU8 mPad0[14]; |
| 905 | #endif |
| 906 | |
| 907 | //serialization |
| 908 | public: |
| 909 | virtual void requiresObjects(PxProcessPxBaseCallback& c); |
| 910 | virtual const char* getConcreteTypeName() const { return "PxVehicleWheels" ; } |
| 911 | virtual bool isKindOf(const char* name) const { return !::strcmp(s1: "PxVehicleWheels" , s2: name) || PxBase::isKindOf(superClass: name); } |
| 912 | virtual void preExportDataReset() {} |
| 913 | virtual void (PxSerializationContext&); |
| 914 | void (PxDeserializationContext&); |
| 915 | void resolveReferences(PxDeserializationContext&); |
| 916 | static void getBinaryMetaData(PxOutputStream& stream); |
| 917 | PX_FORCE_INLINE PxU32 getNbNonDrivenWheels() const { return mNbNonDrivenWheels; } |
| 918 | PxVehicleWheels(PxType concreteType, PxBaseFlags baseFlags) : PxBase(concreteType, baseFlags) {} |
| 919 | PxVehicleWheels(PxBaseFlags baseFlags) : PxBase(baseFlags), mWheelsSimData(PxEmpty) {} |
| 920 | virtual ~PxVehicleWheels() {} |
| 921 | virtual void release() { free(); } |
| 922 | //~serialization |
| 923 | }; |
| 924 | PX_COMPILE_TIME_ASSERT(0==(sizeof(PxVehicleWheels) & 15)); |
| 925 | |
| 926 | #if !PX_DOXYGEN |
| 927 | } // namespace physx |
| 928 | #endif |
| 929 | |
| 930 | /** @} */ |
| 931 | #endif //PX_VEHICLE_WHEELS_H |
| 932 | |