| 1 | use std::alloc::{alloc_zeroed, handle_alloc_error, Layout}; |
| 2 | use std::boxed::Box; |
| 3 | use std::cell::{Cell, UnsafeCell}; |
| 4 | use std::cmp; |
| 5 | use std::fmt; |
| 6 | use std::marker::PhantomData; |
| 7 | use std::mem::{self, MaybeUninit}; |
| 8 | use std::ptr; |
| 9 | use std::sync::atomic::{self, AtomicIsize, AtomicPtr, AtomicUsize, Ordering}; |
| 10 | use std::sync::Arc; |
| 11 | |
| 12 | use crossbeam_epoch::{self as epoch, Atomic, Owned}; |
| 13 | use crossbeam_utils::{Backoff, CachePadded}; |
| 14 | |
| 15 | // Minimum buffer capacity. |
| 16 | const MIN_CAP: usize = 64; |
| 17 | // Maximum number of tasks that can be stolen in `steal_batch()` and `steal_batch_and_pop()`. |
| 18 | const MAX_BATCH: usize = 32; |
| 19 | // If a buffer of at least this size is retired, thread-local garbage is flushed so that it gets |
| 20 | // deallocated as soon as possible. |
| 21 | const FLUSH_THRESHOLD_BYTES: usize = 1 << 10; |
| 22 | |
| 23 | /// A buffer that holds tasks in a worker queue. |
| 24 | /// |
| 25 | /// This is just a pointer to the buffer and its length - dropping an instance of this struct will |
| 26 | /// *not* deallocate the buffer. |
| 27 | struct Buffer<T> { |
| 28 | /// Pointer to the allocated memory. |
| 29 | ptr: *mut T, |
| 30 | |
| 31 | /// Capacity of the buffer. Always a power of two. |
| 32 | cap: usize, |
| 33 | } |
| 34 | |
| 35 | unsafe impl<T> Send for Buffer<T> {} |
| 36 | |
| 37 | impl<T> Buffer<T> { |
| 38 | /// Allocates a new buffer with the specified capacity. |
| 39 | fn alloc(cap: usize) -> Buffer<T> { |
| 40 | debug_assert_eq!(cap, cap.next_power_of_two()); |
| 41 | |
| 42 | let ptr = Box::into_raw( |
| 43 | (0..cap) |
| 44 | .map(|_| MaybeUninit::<T>::uninit()) |
| 45 | .collect::<Box<[_]>>(), |
| 46 | ) |
| 47 | .cast::<T>(); |
| 48 | |
| 49 | Buffer { ptr, cap } |
| 50 | } |
| 51 | |
| 52 | /// Deallocates the buffer. |
| 53 | unsafe fn dealloc(self) { |
| 54 | drop(Box::from_raw(ptr::slice_from_raw_parts_mut( |
| 55 | self.ptr.cast::<MaybeUninit<T>>(), |
| 56 | self.cap, |
| 57 | ))); |
| 58 | } |
| 59 | |
| 60 | /// Returns a pointer to the task at the specified `index`. |
| 61 | unsafe fn at(&self, index: isize) -> *mut T { |
| 62 | // `self.cap` is always a power of two. |
| 63 | // We do all the loads at `MaybeUninit` because we might realize, after loading, that we |
| 64 | // don't actually have the right to access this memory. |
| 65 | self.ptr.offset(index & (self.cap - 1) as isize) |
| 66 | } |
| 67 | |
| 68 | /// Writes `task` into the specified `index`. |
| 69 | /// |
| 70 | /// This method might be concurrently called with another `read` at the same index, which is |
| 71 | /// technically speaking a data race and therefore UB. We should use an atomic store here, but |
| 72 | /// that would be more expensive and difficult to implement generically for all types `T`. |
| 73 | /// Hence, as a hack, we use a volatile write instead. |
| 74 | unsafe fn write(&self, index: isize, task: MaybeUninit<T>) { |
| 75 | ptr::write_volatile(self.at(index).cast::<MaybeUninit<T>>(), task) |
| 76 | } |
| 77 | |
| 78 | /// Reads a task from the specified `index`. |
| 79 | /// |
| 80 | /// This method might be concurrently called with another `write` at the same index, which is |
| 81 | /// technically speaking a data race and therefore UB. We should use an atomic load here, but |
| 82 | /// that would be more expensive and difficult to implement generically for all types `T`. |
| 83 | /// Hence, as a hack, we use a volatile load instead. |
| 84 | unsafe fn read(&self, index: isize) -> MaybeUninit<T> { |
| 85 | ptr::read_volatile(self.at(index).cast::<MaybeUninit<T>>()) |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | impl<T> Clone for Buffer<T> { |
| 90 | fn clone(&self) -> Buffer<T> { |
| 91 | *self |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | impl<T> Copy for Buffer<T> {} |
| 96 | |
| 97 | /// Internal queue data shared between the worker and stealers. |
| 98 | /// |
| 99 | /// The implementation is based on the following work: |
| 100 | /// |
| 101 | /// 1. [Chase and Lev. Dynamic circular work-stealing deque. SPAA 2005.][chase-lev] |
| 102 | /// 2. [Le, Pop, Cohen, and Nardelli. Correct and efficient work-stealing for weak memory models. |
| 103 | /// PPoPP 2013.][weak-mem] |
| 104 | /// 3. [Norris and Demsky. CDSchecker: checking concurrent data structures written with C/C++ |
| 105 | /// atomics. OOPSLA 2013.][checker] |
| 106 | /// |
| 107 | /// [chase-lev]: https://dl.acm.org/citation.cfm?id=1073974 |
| 108 | /// [weak-mem]: https://dl.acm.org/citation.cfm?id=2442524 |
| 109 | /// [checker]: https://dl.acm.org/citation.cfm?id=2509514 |
| 110 | struct Inner<T> { |
| 111 | /// The front index. |
| 112 | front: AtomicIsize, |
| 113 | |
| 114 | /// The back index. |
| 115 | back: AtomicIsize, |
| 116 | |
| 117 | /// The underlying buffer. |
| 118 | buffer: CachePadded<Atomic<Buffer<T>>>, |
| 119 | } |
| 120 | |
| 121 | impl<T> Drop for Inner<T> { |
| 122 | fn drop(&mut self) { |
| 123 | // Load the back index, front index, and buffer. |
| 124 | let b: isize = *self.back.get_mut(); |
| 125 | let f: isize = *self.front.get_mut(); |
| 126 | |
| 127 | unsafe { |
| 128 | let buffer: Shared<'_, Buffer> = self.buffer.load(ord:Ordering::Relaxed, epoch::unprotected()); |
| 129 | |
| 130 | // Go through the buffer from front to back and drop all tasks in the queue. |
| 131 | let mut i: isize = f; |
| 132 | while i != b { |
| 133 | buffer.deref().at(index:i).drop_in_place(); |
| 134 | i = i.wrapping_add(1); |
| 135 | } |
| 136 | |
| 137 | // Free the memory allocated by the buffer. |
| 138 | buffer.into_owned().into_box().dealloc(); |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | /// Worker queue flavor: FIFO or LIFO. |
| 144 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
| 145 | enum Flavor { |
| 146 | /// The first-in first-out flavor. |
| 147 | Fifo, |
| 148 | |
| 149 | /// The last-in first-out flavor. |
| 150 | Lifo, |
| 151 | } |
| 152 | |
| 153 | /// A worker queue. |
| 154 | /// |
| 155 | /// This is a FIFO or LIFO queue that is owned by a single thread, but other threads may steal |
| 156 | /// tasks from it. Task schedulers typically create a single worker queue per thread. |
| 157 | /// |
| 158 | /// # Examples |
| 159 | /// |
| 160 | /// A FIFO worker: |
| 161 | /// |
| 162 | /// ``` |
| 163 | /// use crossbeam_deque::{Steal, Worker}; |
| 164 | /// |
| 165 | /// let w = Worker::new_fifo(); |
| 166 | /// let s = w.stealer(); |
| 167 | /// |
| 168 | /// w.push(1); |
| 169 | /// w.push(2); |
| 170 | /// w.push(3); |
| 171 | /// |
| 172 | /// assert_eq!(s.steal(), Steal::Success(1)); |
| 173 | /// assert_eq!(w.pop(), Some(2)); |
| 174 | /// assert_eq!(w.pop(), Some(3)); |
| 175 | /// ``` |
| 176 | /// |
| 177 | /// A LIFO worker: |
| 178 | /// |
| 179 | /// ``` |
| 180 | /// use crossbeam_deque::{Steal, Worker}; |
| 181 | /// |
| 182 | /// let w = Worker::new_lifo(); |
| 183 | /// let s = w.stealer(); |
| 184 | /// |
| 185 | /// w.push(1); |
| 186 | /// w.push(2); |
| 187 | /// w.push(3); |
| 188 | /// |
| 189 | /// assert_eq!(s.steal(), Steal::Success(1)); |
| 190 | /// assert_eq!(w.pop(), Some(3)); |
| 191 | /// assert_eq!(w.pop(), Some(2)); |
| 192 | /// ``` |
| 193 | pub struct Worker<T> { |
| 194 | /// A reference to the inner representation of the queue. |
| 195 | inner: Arc<CachePadded<Inner<T>>>, |
| 196 | |
| 197 | /// A copy of `inner.buffer` for quick access. |
| 198 | buffer: Cell<Buffer<T>>, |
| 199 | |
| 200 | /// The flavor of the queue. |
| 201 | flavor: Flavor, |
| 202 | |
| 203 | /// Indicates that the worker cannot be shared among threads. |
| 204 | _marker: PhantomData<*mut ()>, // !Send + !Sync |
| 205 | } |
| 206 | |
| 207 | unsafe impl<T: Send> Send for Worker<T> {} |
| 208 | |
| 209 | impl<T> Worker<T> { |
| 210 | /// Creates a FIFO worker queue. |
| 211 | /// |
| 212 | /// Tasks are pushed and popped from opposite ends. |
| 213 | /// |
| 214 | /// # Examples |
| 215 | /// |
| 216 | /// ``` |
| 217 | /// use crossbeam_deque::Worker; |
| 218 | /// |
| 219 | /// let w = Worker::<i32>::new_fifo(); |
| 220 | /// ``` |
| 221 | pub fn new_fifo() -> Worker<T> { |
| 222 | let buffer = Buffer::alloc(MIN_CAP); |
| 223 | |
| 224 | let inner = Arc::new(CachePadded::new(Inner { |
| 225 | front: AtomicIsize::new(0), |
| 226 | back: AtomicIsize::new(0), |
| 227 | buffer: CachePadded::new(Atomic::new(buffer)), |
| 228 | })); |
| 229 | |
| 230 | Worker { |
| 231 | inner, |
| 232 | buffer: Cell::new(buffer), |
| 233 | flavor: Flavor::Fifo, |
| 234 | _marker: PhantomData, |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | /// Creates a LIFO worker queue. |
| 239 | /// |
| 240 | /// Tasks are pushed and popped from the same end. |
| 241 | /// |
| 242 | /// # Examples |
| 243 | /// |
| 244 | /// ``` |
| 245 | /// use crossbeam_deque::Worker; |
| 246 | /// |
| 247 | /// let w = Worker::<i32>::new_lifo(); |
| 248 | /// ``` |
| 249 | pub fn new_lifo() -> Worker<T> { |
| 250 | let buffer = Buffer::alloc(MIN_CAP); |
| 251 | |
| 252 | let inner = Arc::new(CachePadded::new(Inner { |
| 253 | front: AtomicIsize::new(0), |
| 254 | back: AtomicIsize::new(0), |
| 255 | buffer: CachePadded::new(Atomic::new(buffer)), |
| 256 | })); |
| 257 | |
| 258 | Worker { |
| 259 | inner, |
| 260 | buffer: Cell::new(buffer), |
| 261 | flavor: Flavor::Lifo, |
| 262 | _marker: PhantomData, |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | /// Creates a stealer for this queue. |
| 267 | /// |
| 268 | /// The returned stealer can be shared among threads and cloned. |
| 269 | /// |
| 270 | /// # Examples |
| 271 | /// |
| 272 | /// ``` |
| 273 | /// use crossbeam_deque::Worker; |
| 274 | /// |
| 275 | /// let w = Worker::<i32>::new_lifo(); |
| 276 | /// let s = w.stealer(); |
| 277 | /// ``` |
| 278 | pub fn stealer(&self) -> Stealer<T> { |
| 279 | Stealer { |
| 280 | inner: self.inner.clone(), |
| 281 | flavor: self.flavor, |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | /// Resizes the internal buffer to the new capacity of `new_cap`. |
| 286 | #[cold ] |
| 287 | unsafe fn resize(&self, new_cap: usize) { |
| 288 | // Load the back index, front index, and buffer. |
| 289 | let b = self.inner.back.load(Ordering::Relaxed); |
| 290 | let f = self.inner.front.load(Ordering::Relaxed); |
| 291 | let buffer = self.buffer.get(); |
| 292 | |
| 293 | // Allocate a new buffer and copy data from the old buffer to the new one. |
| 294 | let new = Buffer::alloc(new_cap); |
| 295 | let mut i = f; |
| 296 | while i != b { |
| 297 | ptr::copy_nonoverlapping(buffer.at(i), new.at(i), 1); |
| 298 | i = i.wrapping_add(1); |
| 299 | } |
| 300 | |
| 301 | let guard = &epoch::pin(); |
| 302 | |
| 303 | // Replace the old buffer with the new one. |
| 304 | self.buffer.replace(new); |
| 305 | let old = |
| 306 | self.inner |
| 307 | .buffer |
| 308 | .swap(Owned::new(new).into_shared(guard), Ordering::Release, guard); |
| 309 | |
| 310 | // Destroy the old buffer later. |
| 311 | guard.defer_unchecked(move || old.into_owned().into_box().dealloc()); |
| 312 | |
| 313 | // If the buffer is very large, then flush the thread-local garbage in order to deallocate |
| 314 | // it as soon as possible. |
| 315 | if mem::size_of::<T>() * new_cap >= FLUSH_THRESHOLD_BYTES { |
| 316 | guard.flush(); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | /// Reserves enough capacity so that `reserve_cap` tasks can be pushed without growing the |
| 321 | /// buffer. |
| 322 | fn reserve(&self, reserve_cap: usize) { |
| 323 | if reserve_cap > 0 { |
| 324 | // Compute the current length. |
| 325 | let b = self.inner.back.load(Ordering::Relaxed); |
| 326 | let f = self.inner.front.load(Ordering::SeqCst); |
| 327 | let len = b.wrapping_sub(f) as usize; |
| 328 | |
| 329 | // The current capacity. |
| 330 | let cap = self.buffer.get().cap; |
| 331 | |
| 332 | // Is there enough capacity to push `reserve_cap` tasks? |
| 333 | if cap - len < reserve_cap { |
| 334 | // Keep doubling the capacity as much as is needed. |
| 335 | let mut new_cap = cap * 2; |
| 336 | while new_cap - len < reserve_cap { |
| 337 | new_cap *= 2; |
| 338 | } |
| 339 | |
| 340 | // Resize the buffer. |
| 341 | unsafe { |
| 342 | self.resize(new_cap); |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | /// Returns `true` if the queue is empty. |
| 349 | /// |
| 350 | /// ``` |
| 351 | /// use crossbeam_deque::Worker; |
| 352 | /// |
| 353 | /// let w = Worker::new_lifo(); |
| 354 | /// |
| 355 | /// assert!(w.is_empty()); |
| 356 | /// w.push(1); |
| 357 | /// assert!(!w.is_empty()); |
| 358 | /// ``` |
| 359 | pub fn is_empty(&self) -> bool { |
| 360 | let b = self.inner.back.load(Ordering::Relaxed); |
| 361 | let f = self.inner.front.load(Ordering::SeqCst); |
| 362 | b.wrapping_sub(f) <= 0 |
| 363 | } |
| 364 | |
| 365 | /// Returns the number of tasks in the deque. |
| 366 | /// |
| 367 | /// ``` |
| 368 | /// use crossbeam_deque::Worker; |
| 369 | /// |
| 370 | /// let w = Worker::new_lifo(); |
| 371 | /// |
| 372 | /// assert_eq!(w.len(), 0); |
| 373 | /// w.push(1); |
| 374 | /// assert_eq!(w.len(), 1); |
| 375 | /// w.push(1); |
| 376 | /// assert_eq!(w.len(), 2); |
| 377 | /// ``` |
| 378 | pub fn len(&self) -> usize { |
| 379 | let b = self.inner.back.load(Ordering::Relaxed); |
| 380 | let f = self.inner.front.load(Ordering::SeqCst); |
| 381 | b.wrapping_sub(f).max(0) as usize |
| 382 | } |
| 383 | |
| 384 | /// Pushes a task into the queue. |
| 385 | /// |
| 386 | /// # Examples |
| 387 | /// |
| 388 | /// ``` |
| 389 | /// use crossbeam_deque::Worker; |
| 390 | /// |
| 391 | /// let w = Worker::new_lifo(); |
| 392 | /// w.push(1); |
| 393 | /// w.push(2); |
| 394 | /// ``` |
| 395 | pub fn push(&self, task: T) { |
| 396 | // Load the back index, front index, and buffer. |
| 397 | let b = self.inner.back.load(Ordering::Relaxed); |
| 398 | let f = self.inner.front.load(Ordering::Acquire); |
| 399 | let mut buffer = self.buffer.get(); |
| 400 | |
| 401 | // Calculate the length of the queue. |
| 402 | let len = b.wrapping_sub(f); |
| 403 | |
| 404 | // Is the queue full? |
| 405 | if len >= buffer.cap as isize { |
| 406 | // Yes. Grow the underlying buffer. |
| 407 | unsafe { |
| 408 | self.resize(2 * buffer.cap); |
| 409 | } |
| 410 | buffer = self.buffer.get(); |
| 411 | } |
| 412 | |
| 413 | // Write `task` into the slot. |
| 414 | unsafe { |
| 415 | buffer.write(b, MaybeUninit::new(task)); |
| 416 | } |
| 417 | |
| 418 | atomic::fence(Ordering::Release); |
| 419 | |
| 420 | // Increment the back index. |
| 421 | // |
| 422 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data |
| 423 | // races because it doesn't understand fences. |
| 424 | self.inner.back.store(b.wrapping_add(1), Ordering::Release); |
| 425 | } |
| 426 | |
| 427 | /// Pops a task from the queue. |
| 428 | /// |
| 429 | /// # Examples |
| 430 | /// |
| 431 | /// ``` |
| 432 | /// use crossbeam_deque::Worker; |
| 433 | /// |
| 434 | /// let w = Worker::new_fifo(); |
| 435 | /// w.push(1); |
| 436 | /// w.push(2); |
| 437 | /// |
| 438 | /// assert_eq!(w.pop(), Some(1)); |
| 439 | /// assert_eq!(w.pop(), Some(2)); |
| 440 | /// assert_eq!(w.pop(), None); |
| 441 | /// ``` |
| 442 | pub fn pop(&self) -> Option<T> { |
| 443 | // Load the back and front index. |
| 444 | let b = self.inner.back.load(Ordering::Relaxed); |
| 445 | let f = self.inner.front.load(Ordering::Relaxed); |
| 446 | |
| 447 | // Calculate the length of the queue. |
| 448 | let len = b.wrapping_sub(f); |
| 449 | |
| 450 | // Is the queue empty? |
| 451 | if len <= 0 { |
| 452 | return None; |
| 453 | } |
| 454 | |
| 455 | match self.flavor { |
| 456 | // Pop from the front of the queue. |
| 457 | Flavor::Fifo => { |
| 458 | // Try incrementing the front index to pop the task. |
| 459 | let f = self.inner.front.fetch_add(1, Ordering::SeqCst); |
| 460 | let new_f = f.wrapping_add(1); |
| 461 | |
| 462 | if b.wrapping_sub(new_f) < 0 { |
| 463 | self.inner.front.store(f, Ordering::Relaxed); |
| 464 | return None; |
| 465 | } |
| 466 | |
| 467 | unsafe { |
| 468 | // Read the popped task. |
| 469 | let buffer = self.buffer.get(); |
| 470 | let task = buffer.read(f).assume_init(); |
| 471 | |
| 472 | // Shrink the buffer if `len - 1` is less than one fourth of the capacity. |
| 473 | if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 { |
| 474 | self.resize(buffer.cap / 2); |
| 475 | } |
| 476 | |
| 477 | Some(task) |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | // Pop from the back of the queue. |
| 482 | Flavor::Lifo => { |
| 483 | // Decrement the back index. |
| 484 | let b = b.wrapping_sub(1); |
| 485 | self.inner.back.store(b, Ordering::Relaxed); |
| 486 | |
| 487 | atomic::fence(Ordering::SeqCst); |
| 488 | |
| 489 | // Load the front index. |
| 490 | let f = self.inner.front.load(Ordering::Relaxed); |
| 491 | |
| 492 | // Compute the length after the back index was decremented. |
| 493 | let len = b.wrapping_sub(f); |
| 494 | |
| 495 | if len < 0 { |
| 496 | // The queue is empty. Restore the back index to the original task. |
| 497 | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); |
| 498 | None |
| 499 | } else { |
| 500 | // Read the task to be popped. |
| 501 | let buffer = self.buffer.get(); |
| 502 | let mut task = unsafe { Some(buffer.read(b)) }; |
| 503 | |
| 504 | // Are we popping the last task from the queue? |
| 505 | if len == 0 { |
| 506 | // Try incrementing the front index. |
| 507 | if self |
| 508 | .inner |
| 509 | .front |
| 510 | .compare_exchange( |
| 511 | f, |
| 512 | f.wrapping_add(1), |
| 513 | Ordering::SeqCst, |
| 514 | Ordering::Relaxed, |
| 515 | ) |
| 516 | .is_err() |
| 517 | { |
| 518 | // Failed. We didn't pop anything. Reset to `None`. |
| 519 | task.take(); |
| 520 | } |
| 521 | |
| 522 | // Restore the back index to the original task. |
| 523 | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); |
| 524 | } else { |
| 525 | // Shrink the buffer if `len` is less than one fourth of the capacity. |
| 526 | if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 { |
| 527 | unsafe { |
| 528 | self.resize(buffer.cap / 2); |
| 529 | } |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | task.map(|t| unsafe { t.assume_init() }) |
| 534 | } |
| 535 | } |
| 536 | } |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | impl<T> fmt::Debug for Worker<T> { |
| 541 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 542 | f.pad("Worker { .. }" ) |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | /// A stealer handle of a worker queue. |
| 547 | /// |
| 548 | /// Stealers can be shared among threads. |
| 549 | /// |
| 550 | /// Task schedulers typically have a single worker queue per worker thread. |
| 551 | /// |
| 552 | /// # Examples |
| 553 | /// |
| 554 | /// ``` |
| 555 | /// use crossbeam_deque::{Steal, Worker}; |
| 556 | /// |
| 557 | /// let w = Worker::new_lifo(); |
| 558 | /// w.push(1); |
| 559 | /// w.push(2); |
| 560 | /// |
| 561 | /// let s = w.stealer(); |
| 562 | /// assert_eq!(s.steal(), Steal::Success(1)); |
| 563 | /// assert_eq!(s.steal(), Steal::Success(2)); |
| 564 | /// assert_eq!(s.steal(), Steal::Empty); |
| 565 | /// ``` |
| 566 | pub struct Stealer<T> { |
| 567 | /// A reference to the inner representation of the queue. |
| 568 | inner: Arc<CachePadded<Inner<T>>>, |
| 569 | |
| 570 | /// The flavor of the queue. |
| 571 | flavor: Flavor, |
| 572 | } |
| 573 | |
| 574 | unsafe impl<T: Send> Send for Stealer<T> {} |
| 575 | unsafe impl<T: Send> Sync for Stealer<T> {} |
| 576 | |
| 577 | impl<T> Stealer<T> { |
| 578 | /// Returns `true` if the queue is empty. |
| 579 | /// |
| 580 | /// ``` |
| 581 | /// use crossbeam_deque::Worker; |
| 582 | /// |
| 583 | /// let w = Worker::new_lifo(); |
| 584 | /// let s = w.stealer(); |
| 585 | /// |
| 586 | /// assert!(s.is_empty()); |
| 587 | /// w.push(1); |
| 588 | /// assert!(!s.is_empty()); |
| 589 | /// ``` |
| 590 | pub fn is_empty(&self) -> bool { |
| 591 | let f = self.inner.front.load(Ordering::Acquire); |
| 592 | atomic::fence(Ordering::SeqCst); |
| 593 | let b = self.inner.back.load(Ordering::Acquire); |
| 594 | b.wrapping_sub(f) <= 0 |
| 595 | } |
| 596 | |
| 597 | /// Returns the number of tasks in the deque. |
| 598 | /// |
| 599 | /// ``` |
| 600 | /// use crossbeam_deque::Worker; |
| 601 | /// |
| 602 | /// let w = Worker::new_lifo(); |
| 603 | /// let s = w.stealer(); |
| 604 | /// |
| 605 | /// assert_eq!(s.len(), 0); |
| 606 | /// w.push(1); |
| 607 | /// assert_eq!(s.len(), 1); |
| 608 | /// w.push(2); |
| 609 | /// assert_eq!(s.len(), 2); |
| 610 | /// ``` |
| 611 | pub fn len(&self) -> usize { |
| 612 | let f = self.inner.front.load(Ordering::Acquire); |
| 613 | atomic::fence(Ordering::SeqCst); |
| 614 | let b = self.inner.back.load(Ordering::Acquire); |
| 615 | b.wrapping_sub(f).max(0) as usize |
| 616 | } |
| 617 | |
| 618 | /// Steals a task from the queue. |
| 619 | /// |
| 620 | /// # Examples |
| 621 | /// |
| 622 | /// ``` |
| 623 | /// use crossbeam_deque::{Steal, Worker}; |
| 624 | /// |
| 625 | /// let w = Worker::new_lifo(); |
| 626 | /// w.push(1); |
| 627 | /// w.push(2); |
| 628 | /// |
| 629 | /// let s = w.stealer(); |
| 630 | /// assert_eq!(s.steal(), Steal::Success(1)); |
| 631 | /// assert_eq!(s.steal(), Steal::Success(2)); |
| 632 | /// ``` |
| 633 | pub fn steal(&self) -> Steal<T> { |
| 634 | // Load the front index. |
| 635 | let f = self.inner.front.load(Ordering::Acquire); |
| 636 | |
| 637 | // A SeqCst fence is needed here. |
| 638 | // |
| 639 | // If the current thread is already pinned (reentrantly), we must manually issue the |
| 640 | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't |
| 641 | // have to. |
| 642 | if epoch::is_pinned() { |
| 643 | atomic::fence(Ordering::SeqCst); |
| 644 | } |
| 645 | |
| 646 | let guard = &epoch::pin(); |
| 647 | |
| 648 | // Load the back index. |
| 649 | let b = self.inner.back.load(Ordering::Acquire); |
| 650 | |
| 651 | // Is the queue empty? |
| 652 | if b.wrapping_sub(f) <= 0 { |
| 653 | return Steal::Empty; |
| 654 | } |
| 655 | |
| 656 | // Load the buffer and read the task at the front. |
| 657 | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); |
| 658 | let task = unsafe { buffer.deref().read(f) }; |
| 659 | |
| 660 | // Try incrementing the front index to steal the task. |
| 661 | // If the buffer has been swapped or the increment fails, we retry. |
| 662 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
| 663 | || self |
| 664 | .inner |
| 665 | .front |
| 666 | .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) |
| 667 | .is_err() |
| 668 | { |
| 669 | // We didn't steal this task, forget it. |
| 670 | return Steal::Retry; |
| 671 | } |
| 672 | |
| 673 | // Return the stolen task. |
| 674 | Steal::Success(unsafe { task.assume_init() }) |
| 675 | } |
| 676 | |
| 677 | /// Steals a batch of tasks and pushes them into another worker. |
| 678 | /// |
| 679 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
| 680 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
| 681 | /// |
| 682 | /// # Examples |
| 683 | /// |
| 684 | /// ``` |
| 685 | /// use crossbeam_deque::Worker; |
| 686 | /// |
| 687 | /// let w1 = Worker::new_fifo(); |
| 688 | /// w1.push(1); |
| 689 | /// w1.push(2); |
| 690 | /// w1.push(3); |
| 691 | /// w1.push(4); |
| 692 | /// |
| 693 | /// let s = w1.stealer(); |
| 694 | /// let w2 = Worker::new_fifo(); |
| 695 | /// |
| 696 | /// let _ = s.steal_batch(&w2); |
| 697 | /// assert_eq!(w2.pop(), Some(1)); |
| 698 | /// assert_eq!(w2.pop(), Some(2)); |
| 699 | /// ``` |
| 700 | pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> { |
| 701 | self.steal_batch_with_limit(dest, MAX_BATCH) |
| 702 | } |
| 703 | |
| 704 | /// Steals no more than `limit` of tasks and pushes them into another worker. |
| 705 | /// |
| 706 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
| 707 | /// steal around half of the tasks in the queue, but also not more than the given limit. |
| 708 | /// |
| 709 | /// # Examples |
| 710 | /// |
| 711 | /// ``` |
| 712 | /// use crossbeam_deque::Worker; |
| 713 | /// |
| 714 | /// let w1 = Worker::new_fifo(); |
| 715 | /// w1.push(1); |
| 716 | /// w1.push(2); |
| 717 | /// w1.push(3); |
| 718 | /// w1.push(4); |
| 719 | /// w1.push(5); |
| 720 | /// w1.push(6); |
| 721 | /// |
| 722 | /// let s = w1.stealer(); |
| 723 | /// let w2 = Worker::new_fifo(); |
| 724 | /// |
| 725 | /// let _ = s.steal_batch_with_limit(&w2, 2); |
| 726 | /// assert_eq!(w2.pop(), Some(1)); |
| 727 | /// assert_eq!(w2.pop(), Some(2)); |
| 728 | /// assert_eq!(w2.pop(), None); |
| 729 | /// |
| 730 | /// w1.push(7); |
| 731 | /// w1.push(8); |
| 732 | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
| 733 | /// // half of the elements are currently popped, but the number of popped elements is considered |
| 734 | /// // an implementation detail that may be changed in the future. |
| 735 | /// let _ = s.steal_batch_with_limit(&w2, std::usize::MAX); |
| 736 | /// assert_eq!(w2.len(), 3); |
| 737 | /// ``` |
| 738 | pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> { |
| 739 | assert!(limit > 0); |
| 740 | if Arc::ptr_eq(&self.inner, &dest.inner) { |
| 741 | if dest.is_empty() { |
| 742 | return Steal::Empty; |
| 743 | } else { |
| 744 | return Steal::Success(()); |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | // Load the front index. |
| 749 | let mut f = self.inner.front.load(Ordering::Acquire); |
| 750 | |
| 751 | // A SeqCst fence is needed here. |
| 752 | // |
| 753 | // If the current thread is already pinned (reentrantly), we must manually issue the |
| 754 | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't |
| 755 | // have to. |
| 756 | if epoch::is_pinned() { |
| 757 | atomic::fence(Ordering::SeqCst); |
| 758 | } |
| 759 | |
| 760 | let guard = &epoch::pin(); |
| 761 | |
| 762 | // Load the back index. |
| 763 | let b = self.inner.back.load(Ordering::Acquire); |
| 764 | |
| 765 | // Is the queue empty? |
| 766 | let len = b.wrapping_sub(f); |
| 767 | if len <= 0 { |
| 768 | return Steal::Empty; |
| 769 | } |
| 770 | |
| 771 | // Reserve capacity for the stolen batch. |
| 772 | let batch_size = cmp::min((len as usize + 1) / 2, limit); |
| 773 | dest.reserve(batch_size); |
| 774 | let mut batch_size = batch_size as isize; |
| 775 | |
| 776 | // Get the destination buffer and back index. |
| 777 | let dest_buffer = dest.buffer.get(); |
| 778 | let mut dest_b = dest.inner.back.load(Ordering::Relaxed); |
| 779 | |
| 780 | // Load the buffer. |
| 781 | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); |
| 782 | |
| 783 | match self.flavor { |
| 784 | // Steal a batch of tasks from the front at once. |
| 785 | Flavor::Fifo => { |
| 786 | // Copy the batch from the source to the destination buffer. |
| 787 | match dest.flavor { |
| 788 | Flavor::Fifo => { |
| 789 | for i in 0..batch_size { |
| 790 | unsafe { |
| 791 | let task = buffer.deref().read(f.wrapping_add(i)); |
| 792 | dest_buffer.write(dest_b.wrapping_add(i), task); |
| 793 | } |
| 794 | } |
| 795 | } |
| 796 | Flavor::Lifo => { |
| 797 | for i in 0..batch_size { |
| 798 | unsafe { |
| 799 | let task = buffer.deref().read(f.wrapping_add(i)); |
| 800 | dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task); |
| 801 | } |
| 802 | } |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | // Try incrementing the front index to steal the batch. |
| 807 | // If the buffer has been swapped or the increment fails, we retry. |
| 808 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
| 809 | || self |
| 810 | .inner |
| 811 | .front |
| 812 | .compare_exchange( |
| 813 | f, |
| 814 | f.wrapping_add(batch_size), |
| 815 | Ordering::SeqCst, |
| 816 | Ordering::Relaxed, |
| 817 | ) |
| 818 | .is_err() |
| 819 | { |
| 820 | return Steal::Retry; |
| 821 | } |
| 822 | |
| 823 | dest_b = dest_b.wrapping_add(batch_size); |
| 824 | } |
| 825 | |
| 826 | // Steal a batch of tasks from the front one by one. |
| 827 | Flavor::Lifo => { |
| 828 | // This loop may modify the batch_size, which triggers a clippy lint warning. |
| 829 | // Use a new variable to avoid the warning, and to make it clear we aren't |
| 830 | // modifying the loop exit condition during iteration. |
| 831 | let original_batch_size = batch_size; |
| 832 | |
| 833 | for i in 0..original_batch_size { |
| 834 | // If this is not the first steal, check whether the queue is empty. |
| 835 | if i > 0 { |
| 836 | // We've already got the current front index. Now execute the fence to |
| 837 | // synchronize with other threads. |
| 838 | atomic::fence(Ordering::SeqCst); |
| 839 | |
| 840 | // Load the back index. |
| 841 | let b = self.inner.back.load(Ordering::Acquire); |
| 842 | |
| 843 | // Is the queue empty? |
| 844 | if b.wrapping_sub(f) <= 0 { |
| 845 | batch_size = i; |
| 846 | break; |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | // Read the task at the front. |
| 851 | let task = unsafe { buffer.deref().read(f) }; |
| 852 | |
| 853 | // Try incrementing the front index to steal the task. |
| 854 | // If the buffer has been swapped or the increment fails, we retry. |
| 855 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
| 856 | || self |
| 857 | .inner |
| 858 | .front |
| 859 | .compare_exchange( |
| 860 | f, |
| 861 | f.wrapping_add(1), |
| 862 | Ordering::SeqCst, |
| 863 | Ordering::Relaxed, |
| 864 | ) |
| 865 | .is_err() |
| 866 | { |
| 867 | // We didn't steal this task, forget it and break from the loop. |
| 868 | batch_size = i; |
| 869 | break; |
| 870 | } |
| 871 | |
| 872 | // Write the stolen task into the destination buffer. |
| 873 | unsafe { |
| 874 | dest_buffer.write(dest_b, task); |
| 875 | } |
| 876 | |
| 877 | // Move the source front index and the destination back index one step forward. |
| 878 | f = f.wrapping_add(1); |
| 879 | dest_b = dest_b.wrapping_add(1); |
| 880 | } |
| 881 | |
| 882 | // If we didn't steal anything, the operation needs to be retried. |
| 883 | if batch_size == 0 { |
| 884 | return Steal::Retry; |
| 885 | } |
| 886 | |
| 887 | // If stealing into a FIFO queue, stolen tasks need to be reversed. |
| 888 | if dest.flavor == Flavor::Fifo { |
| 889 | for i in 0..batch_size / 2 { |
| 890 | unsafe { |
| 891 | let i1 = dest_b.wrapping_sub(batch_size - i); |
| 892 | let i2 = dest_b.wrapping_sub(i + 1); |
| 893 | let t1 = dest_buffer.read(i1); |
| 894 | let t2 = dest_buffer.read(i2); |
| 895 | dest_buffer.write(i1, t2); |
| 896 | dest_buffer.write(i2, t1); |
| 897 | } |
| 898 | } |
| 899 | } |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | atomic::fence(Ordering::Release); |
| 904 | |
| 905 | // Update the back index in the destination queue. |
| 906 | // |
| 907 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data |
| 908 | // races because it doesn't understand fences. |
| 909 | dest.inner.back.store(dest_b, Ordering::Release); |
| 910 | |
| 911 | // Return with success. |
| 912 | Steal::Success(()) |
| 913 | } |
| 914 | |
| 915 | /// Steals a batch of tasks, pushes them into another worker, and pops a task from that worker. |
| 916 | /// |
| 917 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
| 918 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
| 919 | /// |
| 920 | /// # Examples |
| 921 | /// |
| 922 | /// ``` |
| 923 | /// use crossbeam_deque::{Steal, Worker}; |
| 924 | /// |
| 925 | /// let w1 = Worker::new_fifo(); |
| 926 | /// w1.push(1); |
| 927 | /// w1.push(2); |
| 928 | /// w1.push(3); |
| 929 | /// w1.push(4); |
| 930 | /// |
| 931 | /// let s = w1.stealer(); |
| 932 | /// let w2 = Worker::new_fifo(); |
| 933 | /// |
| 934 | /// assert_eq!(s.steal_batch_and_pop(&w2), Steal::Success(1)); |
| 935 | /// assert_eq!(w2.pop(), Some(2)); |
| 936 | /// ``` |
| 937 | pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> { |
| 938 | self.steal_batch_with_limit_and_pop(dest, MAX_BATCH) |
| 939 | } |
| 940 | |
| 941 | /// Steals no more than `limit` of tasks, pushes them into another worker, and pops a task from |
| 942 | /// that worker. |
| 943 | /// |
| 944 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
| 945 | /// steal around half of the tasks in the queue, but also not more than the given limit. |
| 946 | /// |
| 947 | /// # Examples |
| 948 | /// |
| 949 | /// ``` |
| 950 | /// use crossbeam_deque::{Steal, Worker}; |
| 951 | /// |
| 952 | /// let w1 = Worker::new_fifo(); |
| 953 | /// w1.push(1); |
| 954 | /// w1.push(2); |
| 955 | /// w1.push(3); |
| 956 | /// w1.push(4); |
| 957 | /// w1.push(5); |
| 958 | /// w1.push(6); |
| 959 | /// |
| 960 | /// let s = w1.stealer(); |
| 961 | /// let w2 = Worker::new_fifo(); |
| 962 | /// |
| 963 | /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, 2), Steal::Success(1)); |
| 964 | /// assert_eq!(w2.pop(), Some(2)); |
| 965 | /// assert_eq!(w2.pop(), None); |
| 966 | /// |
| 967 | /// w1.push(7); |
| 968 | /// w1.push(8); |
| 969 | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
| 970 | /// // half of the elements are currently popped, but the number of popped elements is considered |
| 971 | /// // an implementation detail that may be changed in the future. |
| 972 | /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, std::usize::MAX), Steal::Success(3)); |
| 973 | /// assert_eq!(w2.pop(), Some(4)); |
| 974 | /// assert_eq!(w2.pop(), Some(5)); |
| 975 | /// assert_eq!(w2.pop(), None); |
| 976 | /// ``` |
| 977 | pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> { |
| 978 | assert!(limit > 0); |
| 979 | if Arc::ptr_eq(&self.inner, &dest.inner) { |
| 980 | match dest.pop() { |
| 981 | None => return Steal::Empty, |
| 982 | Some(task) => return Steal::Success(task), |
| 983 | } |
| 984 | } |
| 985 | |
| 986 | // Load the front index. |
| 987 | let mut f = self.inner.front.load(Ordering::Acquire); |
| 988 | |
| 989 | // A SeqCst fence is needed here. |
| 990 | // |
| 991 | // If the current thread is already pinned (reentrantly), we must manually issue the |
| 992 | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't |
| 993 | // have to. |
| 994 | if epoch::is_pinned() { |
| 995 | atomic::fence(Ordering::SeqCst); |
| 996 | } |
| 997 | |
| 998 | let guard = &epoch::pin(); |
| 999 | |
| 1000 | // Load the back index. |
| 1001 | let b = self.inner.back.load(Ordering::Acquire); |
| 1002 | |
| 1003 | // Is the queue empty? |
| 1004 | let len = b.wrapping_sub(f); |
| 1005 | if len <= 0 { |
| 1006 | return Steal::Empty; |
| 1007 | } |
| 1008 | |
| 1009 | // Reserve capacity for the stolen batch. |
| 1010 | let batch_size = cmp::min((len as usize - 1) / 2, limit - 1); |
| 1011 | dest.reserve(batch_size); |
| 1012 | let mut batch_size = batch_size as isize; |
| 1013 | |
| 1014 | // Get the destination buffer and back index. |
| 1015 | let dest_buffer = dest.buffer.get(); |
| 1016 | let mut dest_b = dest.inner.back.load(Ordering::Relaxed); |
| 1017 | |
| 1018 | // Load the buffer |
| 1019 | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); |
| 1020 | |
| 1021 | // Read the task at the front. |
| 1022 | let mut task = unsafe { buffer.deref().read(f) }; |
| 1023 | |
| 1024 | match self.flavor { |
| 1025 | // Steal a batch of tasks from the front at once. |
| 1026 | Flavor::Fifo => { |
| 1027 | // Copy the batch from the source to the destination buffer. |
| 1028 | match dest.flavor { |
| 1029 | Flavor::Fifo => { |
| 1030 | for i in 0..batch_size { |
| 1031 | unsafe { |
| 1032 | let task = buffer.deref().read(f.wrapping_add(i + 1)); |
| 1033 | dest_buffer.write(dest_b.wrapping_add(i), task); |
| 1034 | } |
| 1035 | } |
| 1036 | } |
| 1037 | Flavor::Lifo => { |
| 1038 | for i in 0..batch_size { |
| 1039 | unsafe { |
| 1040 | let task = buffer.deref().read(f.wrapping_add(i + 1)); |
| 1041 | dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task); |
| 1042 | } |
| 1043 | } |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | // Try incrementing the front index to steal the task. |
| 1048 | // If the buffer has been swapped or the increment fails, we retry. |
| 1049 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
| 1050 | || self |
| 1051 | .inner |
| 1052 | .front |
| 1053 | .compare_exchange( |
| 1054 | f, |
| 1055 | f.wrapping_add(batch_size + 1), |
| 1056 | Ordering::SeqCst, |
| 1057 | Ordering::Relaxed, |
| 1058 | ) |
| 1059 | .is_err() |
| 1060 | { |
| 1061 | // We didn't steal this task, forget it. |
| 1062 | return Steal::Retry; |
| 1063 | } |
| 1064 | |
| 1065 | dest_b = dest_b.wrapping_add(batch_size); |
| 1066 | } |
| 1067 | |
| 1068 | // Steal a batch of tasks from the front one by one. |
| 1069 | Flavor::Lifo => { |
| 1070 | // Try incrementing the front index to steal the task. |
| 1071 | if self |
| 1072 | .inner |
| 1073 | .front |
| 1074 | .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) |
| 1075 | .is_err() |
| 1076 | { |
| 1077 | // We didn't steal this task, forget it. |
| 1078 | return Steal::Retry; |
| 1079 | } |
| 1080 | |
| 1081 | // Move the front index one step forward. |
| 1082 | f = f.wrapping_add(1); |
| 1083 | |
| 1084 | // Repeat the same procedure for the batch steals. |
| 1085 | // |
| 1086 | // This loop may modify the batch_size, which triggers a clippy lint warning. |
| 1087 | // Use a new variable to avoid the warning, and to make it clear we aren't |
| 1088 | // modifying the loop exit condition during iteration. |
| 1089 | let original_batch_size = batch_size; |
| 1090 | for i in 0..original_batch_size { |
| 1091 | // We've already got the current front index. Now execute the fence to |
| 1092 | // synchronize with other threads. |
| 1093 | atomic::fence(Ordering::SeqCst); |
| 1094 | |
| 1095 | // Load the back index. |
| 1096 | let b = self.inner.back.load(Ordering::Acquire); |
| 1097 | |
| 1098 | // Is the queue empty? |
| 1099 | if b.wrapping_sub(f) <= 0 { |
| 1100 | batch_size = i; |
| 1101 | break; |
| 1102 | } |
| 1103 | |
| 1104 | // Read the task at the front. |
| 1105 | let tmp = unsafe { buffer.deref().read(f) }; |
| 1106 | |
| 1107 | // Try incrementing the front index to steal the task. |
| 1108 | // If the buffer has been swapped or the increment fails, we retry. |
| 1109 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
| 1110 | || self |
| 1111 | .inner |
| 1112 | .front |
| 1113 | .compare_exchange( |
| 1114 | f, |
| 1115 | f.wrapping_add(1), |
| 1116 | Ordering::SeqCst, |
| 1117 | Ordering::Relaxed, |
| 1118 | ) |
| 1119 | .is_err() |
| 1120 | { |
| 1121 | // We didn't steal this task, forget it and break from the loop. |
| 1122 | batch_size = i; |
| 1123 | break; |
| 1124 | } |
| 1125 | |
| 1126 | // Write the previously stolen task into the destination buffer. |
| 1127 | unsafe { |
| 1128 | dest_buffer.write(dest_b, mem::replace(&mut task, tmp)); |
| 1129 | } |
| 1130 | |
| 1131 | // Move the source front index and the destination back index one step forward. |
| 1132 | f = f.wrapping_add(1); |
| 1133 | dest_b = dest_b.wrapping_add(1); |
| 1134 | } |
| 1135 | |
| 1136 | // If stealing into a FIFO queue, stolen tasks need to be reversed. |
| 1137 | if dest.flavor == Flavor::Fifo { |
| 1138 | for i in 0..batch_size / 2 { |
| 1139 | unsafe { |
| 1140 | let i1 = dest_b.wrapping_sub(batch_size - i); |
| 1141 | let i2 = dest_b.wrapping_sub(i + 1); |
| 1142 | let t1 = dest_buffer.read(i1); |
| 1143 | let t2 = dest_buffer.read(i2); |
| 1144 | dest_buffer.write(i1, t2); |
| 1145 | dest_buffer.write(i2, t1); |
| 1146 | } |
| 1147 | } |
| 1148 | } |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | atomic::fence(Ordering::Release); |
| 1153 | |
| 1154 | // Update the back index in the destination queue. |
| 1155 | // |
| 1156 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data |
| 1157 | // races because it doesn't understand fences. |
| 1158 | dest.inner.back.store(dest_b, Ordering::Release); |
| 1159 | |
| 1160 | // Return with success. |
| 1161 | Steal::Success(unsafe { task.assume_init() }) |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | impl<T> Clone for Stealer<T> { |
| 1166 | fn clone(&self) -> Stealer<T> { |
| 1167 | Stealer { |
| 1168 | inner: self.inner.clone(), |
| 1169 | flavor: self.flavor, |
| 1170 | } |
| 1171 | } |
| 1172 | } |
| 1173 | |
| 1174 | impl<T> fmt::Debug for Stealer<T> { |
| 1175 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1176 | f.pad("Stealer { .. }" ) |
| 1177 | } |
| 1178 | } |
| 1179 | |
| 1180 | // Bits indicating the state of a slot: |
| 1181 | // * If a task has been written into the slot, `WRITE` is set. |
| 1182 | // * If a task has been read from the slot, `READ` is set. |
| 1183 | // * If the block is being destroyed, `DESTROY` is set. |
| 1184 | const WRITE: usize = 1; |
| 1185 | const READ: usize = 2; |
| 1186 | const DESTROY: usize = 4; |
| 1187 | |
| 1188 | // Each block covers one "lap" of indices. |
| 1189 | const LAP: usize = 64; |
| 1190 | // The maximum number of values a block can hold. |
| 1191 | const BLOCK_CAP: usize = LAP - 1; |
| 1192 | // How many lower bits are reserved for metadata. |
| 1193 | const SHIFT: usize = 1; |
| 1194 | // Indicates that the block is not the last one. |
| 1195 | const HAS_NEXT: usize = 1; |
| 1196 | |
| 1197 | /// A slot in a block. |
| 1198 | struct Slot<T> { |
| 1199 | /// The task. |
| 1200 | task: UnsafeCell<MaybeUninit<T>>, |
| 1201 | |
| 1202 | /// The state of the slot. |
| 1203 | state: AtomicUsize, |
| 1204 | } |
| 1205 | |
| 1206 | impl<T> Slot<T> { |
| 1207 | /// Waits until a task is written into the slot. |
| 1208 | fn wait_write(&self) { |
| 1209 | let backoff: Backoff = Backoff::new(); |
| 1210 | while self.state.load(order:Ordering::Acquire) & WRITE == 0 { |
| 1211 | backoff.snooze(); |
| 1212 | } |
| 1213 | } |
| 1214 | } |
| 1215 | |
| 1216 | /// A block in a linked list. |
| 1217 | /// |
| 1218 | /// Each block in the list can hold up to `BLOCK_CAP` values. |
| 1219 | struct Block<T> { |
| 1220 | /// The next block in the linked list. |
| 1221 | next: AtomicPtr<Block<T>>, |
| 1222 | |
| 1223 | /// Slots for values. |
| 1224 | slots: [Slot<T>; BLOCK_CAP], |
| 1225 | } |
| 1226 | |
| 1227 | impl<T> Block<T> { |
| 1228 | const LAYOUT: Layout = { |
| 1229 | let layout = Layout::new::<Self>(); |
| 1230 | assert!( |
| 1231 | layout.size() != 0, |
| 1232 | "Block should never be zero-sized, as it has an AtomicPtr field" |
| 1233 | ); |
| 1234 | layout |
| 1235 | }; |
| 1236 | |
| 1237 | /// Creates an empty block. |
| 1238 | fn new() -> Box<Self> { |
| 1239 | // SAFETY: layout is not zero-sized |
| 1240 | let ptr = unsafe { alloc_zeroed(Self::LAYOUT) }; |
| 1241 | // Handle allocation failure |
| 1242 | if ptr.is_null() { |
| 1243 | handle_alloc_error(Self::LAYOUT) |
| 1244 | } |
| 1245 | // SAFETY: This is safe because: |
| 1246 | // [1] `Block::next` (AtomicPtr) may be safely zero initialized. |
| 1247 | // [2] `Block::slots` (Array) may be safely zero initialized because of [3, 4]. |
| 1248 | // [3] `Slot::task` (UnsafeCell) may be safely zero initialized because it |
| 1249 | // holds a MaybeUninit. |
| 1250 | // [4] `Slot::state` (AtomicUsize) may be safely zero initialized. |
| 1251 | // TODO: unsafe { Box::new_zeroed().assume_init() } |
| 1252 | unsafe { Box::from_raw(ptr.cast()) } |
| 1253 | } |
| 1254 | |
| 1255 | /// Waits until the next pointer is set. |
| 1256 | fn wait_next(&self) -> *mut Block<T> { |
| 1257 | let backoff = Backoff::new(); |
| 1258 | loop { |
| 1259 | let next = self.next.load(Ordering::Acquire); |
| 1260 | if !next.is_null() { |
| 1261 | return next; |
| 1262 | } |
| 1263 | backoff.snooze(); |
| 1264 | } |
| 1265 | } |
| 1266 | |
| 1267 | /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block. |
| 1268 | unsafe fn destroy(this: *mut Block<T>, count: usize) { |
| 1269 | // It is not necessary to set the `DESTROY` bit in the last slot because that slot has |
| 1270 | // begun destruction of the block. |
| 1271 | for i in (0..count).rev() { |
| 1272 | let slot = (*this).slots.get_unchecked(i); |
| 1273 | |
| 1274 | // Mark the `DESTROY` bit if a thread is still using the slot. |
| 1275 | if slot.state.load(Ordering::Acquire) & READ == 0 |
| 1276 | && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0 |
| 1277 | { |
| 1278 | // If a thread is still using the slot, it will continue destruction of the block. |
| 1279 | return; |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | // No thread is using the block, now it is safe to destroy it. |
| 1284 | drop(Box::from_raw(this)); |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | /// A position in a queue. |
| 1289 | struct Position<T> { |
| 1290 | /// The index in the queue. |
| 1291 | index: AtomicUsize, |
| 1292 | |
| 1293 | /// The block in the linked list. |
| 1294 | block: AtomicPtr<Block<T>>, |
| 1295 | } |
| 1296 | |
| 1297 | /// An injector queue. |
| 1298 | /// |
| 1299 | /// This is a FIFO queue that can be shared among multiple threads. Task schedulers typically have |
| 1300 | /// a single injector queue, which is the entry point for new tasks. |
| 1301 | /// |
| 1302 | /// # Examples |
| 1303 | /// |
| 1304 | /// ``` |
| 1305 | /// use crossbeam_deque::{Injector, Steal}; |
| 1306 | /// |
| 1307 | /// let q = Injector::new(); |
| 1308 | /// q.push(1); |
| 1309 | /// q.push(2); |
| 1310 | /// |
| 1311 | /// assert_eq!(q.steal(), Steal::Success(1)); |
| 1312 | /// assert_eq!(q.steal(), Steal::Success(2)); |
| 1313 | /// assert_eq!(q.steal(), Steal::Empty); |
| 1314 | /// ``` |
| 1315 | pub struct Injector<T> { |
| 1316 | /// The head of the queue. |
| 1317 | head: CachePadded<Position<T>>, |
| 1318 | |
| 1319 | /// The tail of the queue. |
| 1320 | tail: CachePadded<Position<T>>, |
| 1321 | |
| 1322 | /// Indicates that dropping a `Injector<T>` may drop values of type `T`. |
| 1323 | _marker: PhantomData<T>, |
| 1324 | } |
| 1325 | |
| 1326 | unsafe impl<T: Send> Send for Injector<T> {} |
| 1327 | unsafe impl<T: Send> Sync for Injector<T> {} |
| 1328 | |
| 1329 | impl<T> Default for Injector<T> { |
| 1330 | fn default() -> Self { |
| 1331 | let block: *mut Block = Box::into_raw(Block::<T>::new()); |
| 1332 | Self { |
| 1333 | head: CachePadded::new(Position { |
| 1334 | block: AtomicPtr::new(block), |
| 1335 | index: AtomicUsize::new(0), |
| 1336 | }), |
| 1337 | tail: CachePadded::new(Position { |
| 1338 | block: AtomicPtr::new(block), |
| 1339 | index: AtomicUsize::new(0), |
| 1340 | }), |
| 1341 | _marker: PhantomData, |
| 1342 | } |
| 1343 | } |
| 1344 | } |
| 1345 | |
| 1346 | impl<T> Injector<T> { |
| 1347 | /// Creates a new injector queue. |
| 1348 | /// |
| 1349 | /// # Examples |
| 1350 | /// |
| 1351 | /// ``` |
| 1352 | /// use crossbeam_deque::Injector; |
| 1353 | /// |
| 1354 | /// let q = Injector::<i32>::new(); |
| 1355 | /// ``` |
| 1356 | pub fn new() -> Injector<T> { |
| 1357 | Self::default() |
| 1358 | } |
| 1359 | |
| 1360 | /// Pushes a task into the queue. |
| 1361 | /// |
| 1362 | /// # Examples |
| 1363 | /// |
| 1364 | /// ``` |
| 1365 | /// use crossbeam_deque::Injector; |
| 1366 | /// |
| 1367 | /// let w = Injector::new(); |
| 1368 | /// w.push(1); |
| 1369 | /// w.push(2); |
| 1370 | /// ``` |
| 1371 | pub fn push(&self, task: T) { |
| 1372 | let backoff = Backoff::new(); |
| 1373 | let mut tail = self.tail.index.load(Ordering::Acquire); |
| 1374 | let mut block = self.tail.block.load(Ordering::Acquire); |
| 1375 | let mut next_block = None; |
| 1376 | |
| 1377 | loop { |
| 1378 | // Calculate the offset of the index into the block. |
| 1379 | let offset = (tail >> SHIFT) % LAP; |
| 1380 | |
| 1381 | // If we reached the end of the block, wait until the next one is installed. |
| 1382 | if offset == BLOCK_CAP { |
| 1383 | backoff.snooze(); |
| 1384 | tail = self.tail.index.load(Ordering::Acquire); |
| 1385 | block = self.tail.block.load(Ordering::Acquire); |
| 1386 | continue; |
| 1387 | } |
| 1388 | |
| 1389 | // If we're going to have to install the next block, allocate it in advance in order to |
| 1390 | // make the wait for other threads as short as possible. |
| 1391 | if offset + 1 == BLOCK_CAP && next_block.is_none() { |
| 1392 | next_block = Some(Block::<T>::new()); |
| 1393 | } |
| 1394 | |
| 1395 | let new_tail = tail + (1 << SHIFT); |
| 1396 | |
| 1397 | // Try advancing the tail forward. |
| 1398 | match self.tail.index.compare_exchange_weak( |
| 1399 | tail, |
| 1400 | new_tail, |
| 1401 | Ordering::SeqCst, |
| 1402 | Ordering::Acquire, |
| 1403 | ) { |
| 1404 | Ok(_) => unsafe { |
| 1405 | // If we've reached the end of the block, install the next one. |
| 1406 | if offset + 1 == BLOCK_CAP { |
| 1407 | let next_block = Box::into_raw(next_block.unwrap()); |
| 1408 | let next_index = new_tail.wrapping_add(1 << SHIFT); |
| 1409 | |
| 1410 | self.tail.block.store(next_block, Ordering::Release); |
| 1411 | self.tail.index.store(next_index, Ordering::Release); |
| 1412 | (*block).next.store(next_block, Ordering::Release); |
| 1413 | } |
| 1414 | |
| 1415 | // Write the task into the slot. |
| 1416 | let slot = (*block).slots.get_unchecked(offset); |
| 1417 | slot.task.get().write(MaybeUninit::new(task)); |
| 1418 | slot.state.fetch_or(WRITE, Ordering::Release); |
| 1419 | |
| 1420 | return; |
| 1421 | }, |
| 1422 | Err(t) => { |
| 1423 | tail = t; |
| 1424 | block = self.tail.block.load(Ordering::Acquire); |
| 1425 | backoff.spin(); |
| 1426 | } |
| 1427 | } |
| 1428 | } |
| 1429 | } |
| 1430 | |
| 1431 | /// Steals a task from the queue. |
| 1432 | /// |
| 1433 | /// # Examples |
| 1434 | /// |
| 1435 | /// ``` |
| 1436 | /// use crossbeam_deque::{Injector, Steal}; |
| 1437 | /// |
| 1438 | /// let q = Injector::new(); |
| 1439 | /// q.push(1); |
| 1440 | /// q.push(2); |
| 1441 | /// |
| 1442 | /// assert_eq!(q.steal(), Steal::Success(1)); |
| 1443 | /// assert_eq!(q.steal(), Steal::Success(2)); |
| 1444 | /// assert_eq!(q.steal(), Steal::Empty); |
| 1445 | /// ``` |
| 1446 | pub fn steal(&self) -> Steal<T> { |
| 1447 | let mut head; |
| 1448 | let mut block; |
| 1449 | let mut offset; |
| 1450 | |
| 1451 | let backoff = Backoff::new(); |
| 1452 | loop { |
| 1453 | head = self.head.index.load(Ordering::Acquire); |
| 1454 | block = self.head.block.load(Ordering::Acquire); |
| 1455 | |
| 1456 | // Calculate the offset of the index into the block. |
| 1457 | offset = (head >> SHIFT) % LAP; |
| 1458 | |
| 1459 | // If we reached the end of the block, wait until the next one is installed. |
| 1460 | if offset == BLOCK_CAP { |
| 1461 | backoff.snooze(); |
| 1462 | } else { |
| 1463 | break; |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | let mut new_head = head + (1 << SHIFT); |
| 1468 | |
| 1469 | if new_head & HAS_NEXT == 0 { |
| 1470 | atomic::fence(Ordering::SeqCst); |
| 1471 | let tail = self.tail.index.load(Ordering::Relaxed); |
| 1472 | |
| 1473 | // If the tail equals the head, that means the queue is empty. |
| 1474 | if head >> SHIFT == tail >> SHIFT { |
| 1475 | return Steal::Empty; |
| 1476 | } |
| 1477 | |
| 1478 | // If head and tail are not in the same block, set `HAS_NEXT` in head. |
| 1479 | if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { |
| 1480 | new_head |= HAS_NEXT; |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | // Try moving the head index forward. |
| 1485 | if self |
| 1486 | .head |
| 1487 | .index |
| 1488 | .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) |
| 1489 | .is_err() |
| 1490 | { |
| 1491 | return Steal::Retry; |
| 1492 | } |
| 1493 | |
| 1494 | unsafe { |
| 1495 | // If we've reached the end of the block, move to the next one. |
| 1496 | if offset + 1 == BLOCK_CAP { |
| 1497 | let next = (*block).wait_next(); |
| 1498 | let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); |
| 1499 | if !(*next).next.load(Ordering::Relaxed).is_null() { |
| 1500 | next_index |= HAS_NEXT; |
| 1501 | } |
| 1502 | |
| 1503 | self.head.block.store(next, Ordering::Release); |
| 1504 | self.head.index.store(next_index, Ordering::Release); |
| 1505 | } |
| 1506 | |
| 1507 | // Read the task. |
| 1508 | let slot = (*block).slots.get_unchecked(offset); |
| 1509 | slot.wait_write(); |
| 1510 | let task = slot.task.get().read().assume_init(); |
| 1511 | |
| 1512 | // Destroy the block if we've reached the end, or if another thread wanted to destroy |
| 1513 | // but couldn't because we were busy reading from the slot. |
| 1514 | if (offset + 1 == BLOCK_CAP) |
| 1515 | || (slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0) |
| 1516 | { |
| 1517 | Block::destroy(block, offset); |
| 1518 | } |
| 1519 | |
| 1520 | Steal::Success(task) |
| 1521 | } |
| 1522 | } |
| 1523 | |
| 1524 | /// Steals a batch of tasks and pushes them into a worker. |
| 1525 | /// |
| 1526 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
| 1527 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
| 1528 | /// |
| 1529 | /// # Examples |
| 1530 | /// |
| 1531 | /// ``` |
| 1532 | /// use crossbeam_deque::{Injector, Worker}; |
| 1533 | /// |
| 1534 | /// let q = Injector::new(); |
| 1535 | /// q.push(1); |
| 1536 | /// q.push(2); |
| 1537 | /// q.push(3); |
| 1538 | /// q.push(4); |
| 1539 | /// |
| 1540 | /// let w = Worker::new_fifo(); |
| 1541 | /// let _ = q.steal_batch(&w); |
| 1542 | /// assert_eq!(w.pop(), Some(1)); |
| 1543 | /// assert_eq!(w.pop(), Some(2)); |
| 1544 | /// ``` |
| 1545 | pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> { |
| 1546 | self.steal_batch_with_limit(dest, MAX_BATCH) |
| 1547 | } |
| 1548 | |
| 1549 | /// Steals no more than of tasks and pushes them into a worker. |
| 1550 | /// |
| 1551 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
| 1552 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
| 1553 | /// |
| 1554 | /// # Examples |
| 1555 | /// |
| 1556 | /// ``` |
| 1557 | /// use crossbeam_deque::{Injector, Worker}; |
| 1558 | /// |
| 1559 | /// let q = Injector::new(); |
| 1560 | /// q.push(1); |
| 1561 | /// q.push(2); |
| 1562 | /// q.push(3); |
| 1563 | /// q.push(4); |
| 1564 | /// q.push(5); |
| 1565 | /// q.push(6); |
| 1566 | /// |
| 1567 | /// let w = Worker::new_fifo(); |
| 1568 | /// let _ = q.steal_batch_with_limit(&w, 2); |
| 1569 | /// assert_eq!(w.pop(), Some(1)); |
| 1570 | /// assert_eq!(w.pop(), Some(2)); |
| 1571 | /// assert_eq!(w.pop(), None); |
| 1572 | /// |
| 1573 | /// q.push(7); |
| 1574 | /// q.push(8); |
| 1575 | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
| 1576 | /// // half of the elements are currently popped, but the number of popped elements is considered |
| 1577 | /// // an implementation detail that may be changed in the future. |
| 1578 | /// let _ = q.steal_batch_with_limit(&w, std::usize::MAX); |
| 1579 | /// assert_eq!(w.len(), 3); |
| 1580 | /// ``` |
| 1581 | pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> { |
| 1582 | assert!(limit > 0); |
| 1583 | let mut head; |
| 1584 | let mut block; |
| 1585 | let mut offset; |
| 1586 | |
| 1587 | let backoff = Backoff::new(); |
| 1588 | loop { |
| 1589 | head = self.head.index.load(Ordering::Acquire); |
| 1590 | block = self.head.block.load(Ordering::Acquire); |
| 1591 | |
| 1592 | // Calculate the offset of the index into the block. |
| 1593 | offset = (head >> SHIFT) % LAP; |
| 1594 | |
| 1595 | // If we reached the end of the block, wait until the next one is installed. |
| 1596 | if offset == BLOCK_CAP { |
| 1597 | backoff.snooze(); |
| 1598 | } else { |
| 1599 | break; |
| 1600 | } |
| 1601 | } |
| 1602 | |
| 1603 | let mut new_head = head; |
| 1604 | let advance; |
| 1605 | |
| 1606 | if new_head & HAS_NEXT == 0 { |
| 1607 | atomic::fence(Ordering::SeqCst); |
| 1608 | let tail = self.tail.index.load(Ordering::Relaxed); |
| 1609 | |
| 1610 | // If the tail equals the head, that means the queue is empty. |
| 1611 | if head >> SHIFT == tail >> SHIFT { |
| 1612 | return Steal::Empty; |
| 1613 | } |
| 1614 | |
| 1615 | // If head and tail are not in the same block, set `HAS_NEXT` in head. Also, calculate |
| 1616 | // the right batch size to steal. |
| 1617 | if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { |
| 1618 | new_head |= HAS_NEXT; |
| 1619 | // We can steal all tasks till the end of the block. |
| 1620 | advance = (BLOCK_CAP - offset).min(limit); |
| 1621 | } else { |
| 1622 | let len = (tail - head) >> SHIFT; |
| 1623 | // Steal half of the available tasks. |
| 1624 | advance = ((len + 1) / 2).min(limit); |
| 1625 | } |
| 1626 | } else { |
| 1627 | // We can steal all tasks till the end of the block. |
| 1628 | advance = (BLOCK_CAP - offset).min(limit); |
| 1629 | } |
| 1630 | |
| 1631 | new_head += advance << SHIFT; |
| 1632 | let new_offset = offset + advance; |
| 1633 | |
| 1634 | // Try moving the head index forward. |
| 1635 | if self |
| 1636 | .head |
| 1637 | .index |
| 1638 | .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) |
| 1639 | .is_err() |
| 1640 | { |
| 1641 | return Steal::Retry; |
| 1642 | } |
| 1643 | |
| 1644 | // Reserve capacity for the stolen batch. |
| 1645 | let batch_size = new_offset - offset; |
| 1646 | dest.reserve(batch_size); |
| 1647 | |
| 1648 | // Get the destination buffer and back index. |
| 1649 | let dest_buffer = dest.buffer.get(); |
| 1650 | let dest_b = dest.inner.back.load(Ordering::Relaxed); |
| 1651 | |
| 1652 | unsafe { |
| 1653 | // If we've reached the end of the block, move to the next one. |
| 1654 | if new_offset == BLOCK_CAP { |
| 1655 | let next = (*block).wait_next(); |
| 1656 | let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); |
| 1657 | if !(*next).next.load(Ordering::Relaxed).is_null() { |
| 1658 | next_index |= HAS_NEXT; |
| 1659 | } |
| 1660 | |
| 1661 | self.head.block.store(next, Ordering::Release); |
| 1662 | self.head.index.store(next_index, Ordering::Release); |
| 1663 | } |
| 1664 | |
| 1665 | // Copy values from the injector into the destination queue. |
| 1666 | match dest.flavor { |
| 1667 | Flavor::Fifo => { |
| 1668 | for i in 0..batch_size { |
| 1669 | // Read the task. |
| 1670 | let slot = (*block).slots.get_unchecked(offset + i); |
| 1671 | slot.wait_write(); |
| 1672 | let task = slot.task.get().read(); |
| 1673 | |
| 1674 | // Write it into the destination queue. |
| 1675 | dest_buffer.write(dest_b.wrapping_add(i as isize), task); |
| 1676 | } |
| 1677 | } |
| 1678 | |
| 1679 | Flavor::Lifo => { |
| 1680 | for i in 0..batch_size { |
| 1681 | // Read the task. |
| 1682 | let slot = (*block).slots.get_unchecked(offset + i); |
| 1683 | slot.wait_write(); |
| 1684 | let task = slot.task.get().read(); |
| 1685 | |
| 1686 | // Write it into the destination queue. |
| 1687 | dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task); |
| 1688 | } |
| 1689 | } |
| 1690 | } |
| 1691 | |
| 1692 | atomic::fence(Ordering::Release); |
| 1693 | |
| 1694 | // Update the back index in the destination queue. |
| 1695 | // |
| 1696 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report |
| 1697 | // data races because it doesn't understand fences. |
| 1698 | dest.inner |
| 1699 | .back |
| 1700 | .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release); |
| 1701 | |
| 1702 | // Destroy the block if we've reached the end, or if another thread wanted to destroy |
| 1703 | // but couldn't because we were busy reading from the slot. |
| 1704 | if new_offset == BLOCK_CAP { |
| 1705 | Block::destroy(block, offset); |
| 1706 | } else { |
| 1707 | for i in offset..new_offset { |
| 1708 | let slot = (*block).slots.get_unchecked(i); |
| 1709 | |
| 1710 | if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { |
| 1711 | Block::destroy(block, offset); |
| 1712 | break; |
| 1713 | } |
| 1714 | } |
| 1715 | } |
| 1716 | |
| 1717 | Steal::Success(()) |
| 1718 | } |
| 1719 | } |
| 1720 | |
| 1721 | /// Steals a batch of tasks, pushes them into a worker, and pops a task from that worker. |
| 1722 | /// |
| 1723 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
| 1724 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
| 1725 | /// |
| 1726 | /// # Examples |
| 1727 | /// |
| 1728 | /// ``` |
| 1729 | /// use crossbeam_deque::{Injector, Steal, Worker}; |
| 1730 | /// |
| 1731 | /// let q = Injector::new(); |
| 1732 | /// q.push(1); |
| 1733 | /// q.push(2); |
| 1734 | /// q.push(3); |
| 1735 | /// q.push(4); |
| 1736 | /// |
| 1737 | /// let w = Worker::new_fifo(); |
| 1738 | /// assert_eq!(q.steal_batch_and_pop(&w), Steal::Success(1)); |
| 1739 | /// assert_eq!(w.pop(), Some(2)); |
| 1740 | /// ``` |
| 1741 | pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> { |
| 1742 | // TODO: we use `MAX_BATCH + 1` as the hard limit for Injecter as the performance is slightly |
| 1743 | // better, but we may change it in the future to be compatible with the same method in Stealer. |
| 1744 | self.steal_batch_with_limit_and_pop(dest, MAX_BATCH + 1) |
| 1745 | } |
| 1746 | |
| 1747 | /// Steals no more than `limit` of tasks, pushes them into a worker, and pops a task from that worker. |
| 1748 | /// |
| 1749 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
| 1750 | /// steal around half of the tasks in the queue, but also not more than the given limit. |
| 1751 | /// |
| 1752 | /// # Examples |
| 1753 | /// |
| 1754 | /// ``` |
| 1755 | /// use crossbeam_deque::{Injector, Steal, Worker}; |
| 1756 | /// |
| 1757 | /// let q = Injector::new(); |
| 1758 | /// q.push(1); |
| 1759 | /// q.push(2); |
| 1760 | /// q.push(3); |
| 1761 | /// q.push(4); |
| 1762 | /// q.push(5); |
| 1763 | /// q.push(6); |
| 1764 | /// |
| 1765 | /// let w = Worker::new_fifo(); |
| 1766 | /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, 2), Steal::Success(1)); |
| 1767 | /// assert_eq!(w.pop(), Some(2)); |
| 1768 | /// assert_eq!(w.pop(), None); |
| 1769 | /// |
| 1770 | /// q.push(7); |
| 1771 | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
| 1772 | /// // half of the elements are currently popped, but the number of popped elements is considered |
| 1773 | /// // an implementation detail that may be changed in the future. |
| 1774 | /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, std::usize::MAX), Steal::Success(3)); |
| 1775 | /// assert_eq!(w.pop(), Some(4)); |
| 1776 | /// assert_eq!(w.pop(), Some(5)); |
| 1777 | /// assert_eq!(w.pop(), None); |
| 1778 | /// ``` |
| 1779 | pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> { |
| 1780 | assert!(limit > 0); |
| 1781 | let mut head; |
| 1782 | let mut block; |
| 1783 | let mut offset; |
| 1784 | |
| 1785 | let backoff = Backoff::new(); |
| 1786 | loop { |
| 1787 | head = self.head.index.load(Ordering::Acquire); |
| 1788 | block = self.head.block.load(Ordering::Acquire); |
| 1789 | |
| 1790 | // Calculate the offset of the index into the block. |
| 1791 | offset = (head >> SHIFT) % LAP; |
| 1792 | |
| 1793 | // If we reached the end of the block, wait until the next one is installed. |
| 1794 | if offset == BLOCK_CAP { |
| 1795 | backoff.snooze(); |
| 1796 | } else { |
| 1797 | break; |
| 1798 | } |
| 1799 | } |
| 1800 | |
| 1801 | let mut new_head = head; |
| 1802 | let advance; |
| 1803 | |
| 1804 | if new_head & HAS_NEXT == 0 { |
| 1805 | atomic::fence(Ordering::SeqCst); |
| 1806 | let tail = self.tail.index.load(Ordering::Relaxed); |
| 1807 | |
| 1808 | // If the tail equals the head, that means the queue is empty. |
| 1809 | if head >> SHIFT == tail >> SHIFT { |
| 1810 | return Steal::Empty; |
| 1811 | } |
| 1812 | |
| 1813 | // If head and tail are not in the same block, set `HAS_NEXT` in head. |
| 1814 | if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { |
| 1815 | new_head |= HAS_NEXT; |
| 1816 | // We can steal all tasks till the end of the block. |
| 1817 | advance = (BLOCK_CAP - offset).min(limit); |
| 1818 | } else { |
| 1819 | let len = (tail - head) >> SHIFT; |
| 1820 | // Steal half of the available tasks. |
| 1821 | advance = ((len + 1) / 2).min(limit); |
| 1822 | } |
| 1823 | } else { |
| 1824 | // We can steal all tasks till the end of the block. |
| 1825 | advance = (BLOCK_CAP - offset).min(limit); |
| 1826 | } |
| 1827 | |
| 1828 | new_head += advance << SHIFT; |
| 1829 | let new_offset = offset + advance; |
| 1830 | |
| 1831 | // Try moving the head index forward. |
| 1832 | if self |
| 1833 | .head |
| 1834 | .index |
| 1835 | .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) |
| 1836 | .is_err() |
| 1837 | { |
| 1838 | return Steal::Retry; |
| 1839 | } |
| 1840 | |
| 1841 | // Reserve capacity for the stolen batch. |
| 1842 | let batch_size = new_offset - offset - 1; |
| 1843 | dest.reserve(batch_size); |
| 1844 | |
| 1845 | // Get the destination buffer and back index. |
| 1846 | let dest_buffer = dest.buffer.get(); |
| 1847 | let dest_b = dest.inner.back.load(Ordering::Relaxed); |
| 1848 | |
| 1849 | unsafe { |
| 1850 | // If we've reached the end of the block, move to the next one. |
| 1851 | if new_offset == BLOCK_CAP { |
| 1852 | let next = (*block).wait_next(); |
| 1853 | let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); |
| 1854 | if !(*next).next.load(Ordering::Relaxed).is_null() { |
| 1855 | next_index |= HAS_NEXT; |
| 1856 | } |
| 1857 | |
| 1858 | self.head.block.store(next, Ordering::Release); |
| 1859 | self.head.index.store(next_index, Ordering::Release); |
| 1860 | } |
| 1861 | |
| 1862 | // Read the task. |
| 1863 | let slot = (*block).slots.get_unchecked(offset); |
| 1864 | slot.wait_write(); |
| 1865 | let task = slot.task.get().read(); |
| 1866 | |
| 1867 | match dest.flavor { |
| 1868 | Flavor::Fifo => { |
| 1869 | // Copy values from the injector into the destination queue. |
| 1870 | for i in 0..batch_size { |
| 1871 | // Read the task. |
| 1872 | let slot = (*block).slots.get_unchecked(offset + i + 1); |
| 1873 | slot.wait_write(); |
| 1874 | let task = slot.task.get().read(); |
| 1875 | |
| 1876 | // Write it into the destination queue. |
| 1877 | dest_buffer.write(dest_b.wrapping_add(i as isize), task); |
| 1878 | } |
| 1879 | } |
| 1880 | |
| 1881 | Flavor::Lifo => { |
| 1882 | // Copy values from the injector into the destination queue. |
| 1883 | for i in 0..batch_size { |
| 1884 | // Read the task. |
| 1885 | let slot = (*block).slots.get_unchecked(offset + i + 1); |
| 1886 | slot.wait_write(); |
| 1887 | let task = slot.task.get().read(); |
| 1888 | |
| 1889 | // Write it into the destination queue. |
| 1890 | dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task); |
| 1891 | } |
| 1892 | } |
| 1893 | } |
| 1894 | |
| 1895 | atomic::fence(Ordering::Release); |
| 1896 | |
| 1897 | // Update the back index in the destination queue. |
| 1898 | // |
| 1899 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report |
| 1900 | // data races because it doesn't understand fences. |
| 1901 | dest.inner |
| 1902 | .back |
| 1903 | .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release); |
| 1904 | |
| 1905 | // Destroy the block if we've reached the end, or if another thread wanted to destroy |
| 1906 | // but couldn't because we were busy reading from the slot. |
| 1907 | if new_offset == BLOCK_CAP { |
| 1908 | Block::destroy(block, offset); |
| 1909 | } else { |
| 1910 | for i in offset..new_offset { |
| 1911 | let slot = (*block).slots.get_unchecked(i); |
| 1912 | |
| 1913 | if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { |
| 1914 | Block::destroy(block, offset); |
| 1915 | break; |
| 1916 | } |
| 1917 | } |
| 1918 | } |
| 1919 | |
| 1920 | Steal::Success(task.assume_init()) |
| 1921 | } |
| 1922 | } |
| 1923 | |
| 1924 | /// Returns `true` if the queue is empty. |
| 1925 | /// |
| 1926 | /// # Examples |
| 1927 | /// |
| 1928 | /// ``` |
| 1929 | /// use crossbeam_deque::Injector; |
| 1930 | /// |
| 1931 | /// let q = Injector::new(); |
| 1932 | /// |
| 1933 | /// assert!(q.is_empty()); |
| 1934 | /// q.push(1); |
| 1935 | /// assert!(!q.is_empty()); |
| 1936 | /// ``` |
| 1937 | pub fn is_empty(&self) -> bool { |
| 1938 | let head = self.head.index.load(Ordering::SeqCst); |
| 1939 | let tail = self.tail.index.load(Ordering::SeqCst); |
| 1940 | head >> SHIFT == tail >> SHIFT |
| 1941 | } |
| 1942 | |
| 1943 | /// Returns the number of tasks in the queue. |
| 1944 | /// |
| 1945 | /// # Examples |
| 1946 | /// |
| 1947 | /// ``` |
| 1948 | /// use crossbeam_deque::Injector; |
| 1949 | /// |
| 1950 | /// let q = Injector::new(); |
| 1951 | /// |
| 1952 | /// assert_eq!(q.len(), 0); |
| 1953 | /// q.push(1); |
| 1954 | /// assert_eq!(q.len(), 1); |
| 1955 | /// q.push(1); |
| 1956 | /// assert_eq!(q.len(), 2); |
| 1957 | /// ``` |
| 1958 | pub fn len(&self) -> usize { |
| 1959 | loop { |
| 1960 | // Load the tail index, then load the head index. |
| 1961 | let mut tail = self.tail.index.load(Ordering::SeqCst); |
| 1962 | let mut head = self.head.index.load(Ordering::SeqCst); |
| 1963 | |
| 1964 | // If the tail index didn't change, we've got consistent indices to work with. |
| 1965 | if self.tail.index.load(Ordering::SeqCst) == tail { |
| 1966 | // Erase the lower bits. |
| 1967 | tail &= !((1 << SHIFT) - 1); |
| 1968 | head &= !((1 << SHIFT) - 1); |
| 1969 | |
| 1970 | // Fix up indices if they fall onto block ends. |
| 1971 | if (tail >> SHIFT) & (LAP - 1) == LAP - 1 { |
| 1972 | tail = tail.wrapping_add(1 << SHIFT); |
| 1973 | } |
| 1974 | if (head >> SHIFT) & (LAP - 1) == LAP - 1 { |
| 1975 | head = head.wrapping_add(1 << SHIFT); |
| 1976 | } |
| 1977 | |
| 1978 | // Rotate indices so that head falls into the first block. |
| 1979 | let lap = (head >> SHIFT) / LAP; |
| 1980 | tail = tail.wrapping_sub((lap * LAP) << SHIFT); |
| 1981 | head = head.wrapping_sub((lap * LAP) << SHIFT); |
| 1982 | |
| 1983 | // Remove the lower bits. |
| 1984 | tail >>= SHIFT; |
| 1985 | head >>= SHIFT; |
| 1986 | |
| 1987 | // Return the difference minus the number of blocks between tail and head. |
| 1988 | return tail - head - tail / LAP; |
| 1989 | } |
| 1990 | } |
| 1991 | } |
| 1992 | } |
| 1993 | |
| 1994 | impl<T> Drop for Injector<T> { |
| 1995 | fn drop(&mut self) { |
| 1996 | let mut head = *self.head.index.get_mut(); |
| 1997 | let mut tail = *self.tail.index.get_mut(); |
| 1998 | let mut block = *self.head.block.get_mut(); |
| 1999 | |
| 2000 | // Erase the lower bits. |
| 2001 | head &= !((1 << SHIFT) - 1); |
| 2002 | tail &= !((1 << SHIFT) - 1); |
| 2003 | |
| 2004 | unsafe { |
| 2005 | // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks. |
| 2006 | while head != tail { |
| 2007 | let offset = (head >> SHIFT) % LAP; |
| 2008 | |
| 2009 | if offset < BLOCK_CAP { |
| 2010 | // Drop the task in the slot. |
| 2011 | let slot = (*block).slots.get_unchecked(offset); |
| 2012 | (*slot.task.get()).assume_init_drop(); |
| 2013 | } else { |
| 2014 | // Deallocate the block and move to the next one. |
| 2015 | let next = *(*block).next.get_mut(); |
| 2016 | drop(Box::from_raw(block)); |
| 2017 | block = next; |
| 2018 | } |
| 2019 | |
| 2020 | head = head.wrapping_add(1 << SHIFT); |
| 2021 | } |
| 2022 | |
| 2023 | // Deallocate the last remaining block. |
| 2024 | drop(Box::from_raw(block)); |
| 2025 | } |
| 2026 | } |
| 2027 | } |
| 2028 | |
| 2029 | impl<T> fmt::Debug for Injector<T> { |
| 2030 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2031 | f.pad("Worker { .. }" ) |
| 2032 | } |
| 2033 | } |
| 2034 | |
| 2035 | /// Possible outcomes of a steal operation. |
| 2036 | /// |
| 2037 | /// # Examples |
| 2038 | /// |
| 2039 | /// There are lots of ways to chain results of steal operations together: |
| 2040 | /// |
| 2041 | /// ``` |
| 2042 | /// use crossbeam_deque::Steal::{self, Empty, Retry, Success}; |
| 2043 | /// |
| 2044 | /// let collect = |v: Vec<Steal<i32>>| v.into_iter().collect::<Steal<i32>>(); |
| 2045 | /// |
| 2046 | /// assert_eq!(collect(vec![Empty, Empty, Empty]), Empty); |
| 2047 | /// assert_eq!(collect(vec![Empty, Retry, Empty]), Retry); |
| 2048 | /// assert_eq!(collect(vec![Retry, Success(1), Empty]), Success(1)); |
| 2049 | /// |
| 2050 | /// assert_eq!(collect(vec![Empty, Empty]).or_else(|| Retry), Retry); |
| 2051 | /// assert_eq!(collect(vec![Retry, Empty]).or_else(|| Success(1)), Success(1)); |
| 2052 | /// ``` |
| 2053 | #[must_use ] |
| 2054 | #[derive (PartialEq, Eq, Copy, Clone)] |
| 2055 | pub enum Steal<T> { |
| 2056 | /// The queue was empty at the time of stealing. |
| 2057 | Empty, |
| 2058 | |
| 2059 | /// At least one task was successfully stolen. |
| 2060 | Success(T), |
| 2061 | |
| 2062 | /// The steal operation needs to be retried. |
| 2063 | Retry, |
| 2064 | } |
| 2065 | |
| 2066 | impl<T> Steal<T> { |
| 2067 | /// Returns `true` if the queue was empty at the time of stealing. |
| 2068 | /// |
| 2069 | /// # Examples |
| 2070 | /// |
| 2071 | /// ``` |
| 2072 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
| 2073 | /// |
| 2074 | /// assert!(!Success(7).is_empty()); |
| 2075 | /// assert!(!Retry::<i32>.is_empty()); |
| 2076 | /// |
| 2077 | /// assert!(Empty::<i32>.is_empty()); |
| 2078 | /// ``` |
| 2079 | pub fn is_empty(&self) -> bool { |
| 2080 | match self { |
| 2081 | Steal::Empty => true, |
| 2082 | _ => false, |
| 2083 | } |
| 2084 | } |
| 2085 | |
| 2086 | /// Returns `true` if at least one task was stolen. |
| 2087 | /// |
| 2088 | /// # Examples |
| 2089 | /// |
| 2090 | /// ``` |
| 2091 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
| 2092 | /// |
| 2093 | /// assert!(!Empty::<i32>.is_success()); |
| 2094 | /// assert!(!Retry::<i32>.is_success()); |
| 2095 | /// |
| 2096 | /// assert!(Success(7).is_success()); |
| 2097 | /// ``` |
| 2098 | pub fn is_success(&self) -> bool { |
| 2099 | match self { |
| 2100 | Steal::Success(_) => true, |
| 2101 | _ => false, |
| 2102 | } |
| 2103 | } |
| 2104 | |
| 2105 | /// Returns `true` if the steal operation needs to be retried. |
| 2106 | /// |
| 2107 | /// # Examples |
| 2108 | /// |
| 2109 | /// ``` |
| 2110 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
| 2111 | /// |
| 2112 | /// assert!(!Empty::<i32>.is_retry()); |
| 2113 | /// assert!(!Success(7).is_retry()); |
| 2114 | /// |
| 2115 | /// assert!(Retry::<i32>.is_retry()); |
| 2116 | /// ``` |
| 2117 | pub fn is_retry(&self) -> bool { |
| 2118 | match self { |
| 2119 | Steal::Retry => true, |
| 2120 | _ => false, |
| 2121 | } |
| 2122 | } |
| 2123 | |
| 2124 | /// Returns the result of the operation, if successful. |
| 2125 | /// |
| 2126 | /// # Examples |
| 2127 | /// |
| 2128 | /// ``` |
| 2129 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
| 2130 | /// |
| 2131 | /// assert_eq!(Empty::<i32>.success(), None); |
| 2132 | /// assert_eq!(Retry::<i32>.success(), None); |
| 2133 | /// |
| 2134 | /// assert_eq!(Success(7).success(), Some(7)); |
| 2135 | /// ``` |
| 2136 | pub fn success(self) -> Option<T> { |
| 2137 | match self { |
| 2138 | Steal::Success(res) => Some(res), |
| 2139 | _ => None, |
| 2140 | } |
| 2141 | } |
| 2142 | |
| 2143 | /// If no task was stolen, attempts another steal operation. |
| 2144 | /// |
| 2145 | /// Returns this steal result if it is `Success`. Otherwise, closure `f` is invoked and then: |
| 2146 | /// |
| 2147 | /// * If the second steal resulted in `Success`, it is returned. |
| 2148 | /// * If both steals were unsuccessful but any resulted in `Retry`, then `Retry` is returned. |
| 2149 | /// * If both resulted in `None`, then `None` is returned. |
| 2150 | /// |
| 2151 | /// # Examples |
| 2152 | /// |
| 2153 | /// ``` |
| 2154 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
| 2155 | /// |
| 2156 | /// assert_eq!(Success(1).or_else(|| Success(2)), Success(1)); |
| 2157 | /// assert_eq!(Retry.or_else(|| Success(2)), Success(2)); |
| 2158 | /// |
| 2159 | /// assert_eq!(Retry.or_else(|| Empty), Retry::<i32>); |
| 2160 | /// assert_eq!(Empty.or_else(|| Retry), Retry::<i32>); |
| 2161 | /// |
| 2162 | /// assert_eq!(Empty.or_else(|| Empty), Empty::<i32>); |
| 2163 | /// ``` |
| 2164 | pub fn or_else<F>(self, f: F) -> Steal<T> |
| 2165 | where |
| 2166 | F: FnOnce() -> Steal<T>, |
| 2167 | { |
| 2168 | match self { |
| 2169 | Steal::Empty => f(), |
| 2170 | Steal::Success(_) => self, |
| 2171 | Steal::Retry => { |
| 2172 | if let Steal::Success(res) = f() { |
| 2173 | Steal::Success(res) |
| 2174 | } else { |
| 2175 | Steal::Retry |
| 2176 | } |
| 2177 | } |
| 2178 | } |
| 2179 | } |
| 2180 | } |
| 2181 | |
| 2182 | impl<T> fmt::Debug for Steal<T> { |
| 2183 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2184 | match self { |
| 2185 | Steal::Empty => f.pad("Empty" ), |
| 2186 | Steal::Success(_) => f.pad("Success(..)" ), |
| 2187 | Steal::Retry => f.pad("Retry" ), |
| 2188 | } |
| 2189 | } |
| 2190 | } |
| 2191 | |
| 2192 | impl<T> FromIterator<Steal<T>> for Steal<T> { |
| 2193 | /// Consumes items until a `Success` is found and returns it. |
| 2194 | /// |
| 2195 | /// If no `Success` was found, but there was at least one `Retry`, then returns `Retry`. |
| 2196 | /// Otherwise, `Empty` is returned. |
| 2197 | fn from_iter<I>(iter: I) -> Steal<T> |
| 2198 | where |
| 2199 | I: IntoIterator<Item = Steal<T>>, |
| 2200 | { |
| 2201 | let mut retry = false; |
| 2202 | for s in iter { |
| 2203 | match &s { |
| 2204 | Steal::Empty => {} |
| 2205 | Steal::Success(_) => return s, |
| 2206 | Steal::Retry => retry = true, |
| 2207 | } |
| 2208 | } |
| 2209 | |
| 2210 | if retry { |
| 2211 | Steal::Retry |
| 2212 | } else { |
| 2213 | Steal::Empty |
| 2214 | } |
| 2215 | } |
| 2216 | } |
| 2217 | |