1 | #![warn (missing_docs)] |
2 | #![crate_name ="itertools" ] |
3 | #![cfg_attr (not(feature = "use_std" ), no_std)] |
4 | |
5 | //! Extra iterator adaptors, functions and macros. |
6 | //! |
7 | //! To extend [`Iterator`] with methods in this crate, import |
8 | //! the [`Itertools`] trait: |
9 | //! |
10 | //! ``` |
11 | //! use itertools::Itertools; |
12 | //! ``` |
13 | //! |
14 | //! Now, new methods like [`interleave`](Itertools::interleave) |
15 | //! are available on all iterators: |
16 | //! |
17 | //! ``` |
18 | //! use itertools::Itertools; |
19 | //! |
20 | //! let it = (1..3).interleave(vec![-1, -2]); |
21 | //! itertools::assert_equal(it, vec![1, -1, 2, -2]); |
22 | //! ``` |
23 | //! |
24 | //! Most iterator methods are also provided as functions (with the benefit |
25 | //! that they convert parameters using [`IntoIterator`]): |
26 | //! |
27 | //! ``` |
28 | //! use itertools::interleave; |
29 | //! |
30 | //! for elt in interleave(&[1, 2, 3], &[2, 3, 4]) { |
31 | //! /* loop body */ |
32 | //! } |
33 | //! ``` |
34 | //! |
35 | //! ## Crate Features |
36 | //! |
37 | //! - `use_std` |
38 | //! - Enabled by default. |
39 | //! - Disable to compile itertools using `#![no_std]`. This disables |
40 | //! any items that depend on collections (like `group_by`, `unique`, |
41 | //! `kmerge`, `join` and many more). |
42 | //! |
43 | //! ## Rust Version |
44 | //! |
45 | //! This version of itertools requires Rust 1.32 or later. |
46 | #![doc (html_root_url="https://docs.rs/itertools/0.8/" )] |
47 | |
48 | #[cfg (not(feature = "use_std" ))] |
49 | extern crate core as std; |
50 | |
51 | #[cfg (feature = "use_alloc" )] |
52 | extern crate alloc; |
53 | |
54 | #[cfg (feature = "use_alloc" )] |
55 | use alloc::{ |
56 | string::String, |
57 | vec::Vec, |
58 | }; |
59 | |
60 | pub use either::Either; |
61 | |
62 | use core::borrow::Borrow; |
63 | #[cfg (feature = "use_std" )] |
64 | use std::collections::HashMap; |
65 | use std::iter::{IntoIterator, once}; |
66 | use std::cmp::Ordering; |
67 | use std::fmt; |
68 | #[cfg (feature = "use_std" )] |
69 | use std::collections::HashSet; |
70 | #[cfg (feature = "use_std" )] |
71 | use std::hash::Hash; |
72 | #[cfg (feature = "use_alloc" )] |
73 | use std::fmt::Write; |
74 | #[cfg (feature = "use_alloc" )] |
75 | type VecIntoIter<T> = alloc::vec::IntoIter<T>; |
76 | #[cfg (feature = "use_alloc" )] |
77 | use std::iter::FromIterator; |
78 | |
79 | #[macro_use ] |
80 | mod impl_macros; |
81 | |
82 | // for compatibility with no std and macros |
83 | #[doc (hidden)] |
84 | pub use std::iter as __std_iter; |
85 | |
86 | /// The concrete iterator types. |
87 | pub mod structs { |
88 | pub use crate::adaptors::{ |
89 | Dedup, |
90 | DedupBy, |
91 | DedupWithCount, |
92 | DedupByWithCount, |
93 | Interleave, |
94 | InterleaveShortest, |
95 | FilterMapOk, |
96 | FilterOk, |
97 | Product, |
98 | PutBack, |
99 | Batching, |
100 | MapInto, |
101 | MapOk, |
102 | Merge, |
103 | MergeBy, |
104 | TakeWhileRef, |
105 | WhileSome, |
106 | Coalesce, |
107 | TupleCombinations, |
108 | Positions, |
109 | Update, |
110 | }; |
111 | #[allow (deprecated)] |
112 | pub use crate::adaptors::{MapResults, Step}; |
113 | #[cfg (feature = "use_alloc" )] |
114 | pub use crate::adaptors::MultiProduct; |
115 | #[cfg (feature = "use_alloc" )] |
116 | pub use crate::combinations::Combinations; |
117 | #[cfg (feature = "use_alloc" )] |
118 | pub use crate::combinations_with_replacement::CombinationsWithReplacement; |
119 | pub use crate::cons_tuples_impl::ConsTuples; |
120 | pub use crate::exactly_one_err::ExactlyOneError; |
121 | pub use crate::format::{Format, FormatWith}; |
122 | pub use crate::flatten_ok::FlattenOk; |
123 | #[cfg (feature = "use_std" )] |
124 | pub use crate::grouping_map::{GroupingMap, GroupingMapBy}; |
125 | #[cfg (feature = "use_alloc" )] |
126 | pub use crate::groupbylazy::{IntoChunks, Chunk, Chunks, GroupBy, Group, Groups}; |
127 | pub use crate::intersperse::{Intersperse, IntersperseWith}; |
128 | #[cfg (feature = "use_alloc" )] |
129 | pub use crate::kmerge_impl::{KMerge, KMergeBy}; |
130 | pub use crate::merge_join::MergeJoinBy; |
131 | #[cfg (feature = "use_alloc" )] |
132 | pub use crate::multipeek_impl::MultiPeek; |
133 | #[cfg (feature = "use_alloc" )] |
134 | pub use crate::peek_nth::PeekNth; |
135 | pub use crate::pad_tail::PadUsing; |
136 | pub use crate::peeking_take_while::PeekingTakeWhile; |
137 | #[cfg (feature = "use_alloc" )] |
138 | pub use crate::permutations::Permutations; |
139 | pub use crate::process_results_impl::ProcessResults; |
140 | #[cfg (feature = "use_alloc" )] |
141 | pub use crate::powerset::Powerset; |
142 | #[cfg (feature = "use_alloc" )] |
143 | pub use crate::put_back_n_impl::PutBackN; |
144 | #[cfg (feature = "use_alloc" )] |
145 | pub use crate::rciter_impl::RcIter; |
146 | pub use crate::repeatn::RepeatN; |
147 | #[allow (deprecated)] |
148 | pub use crate::sources::{RepeatCall, Unfold, Iterate}; |
149 | pub use crate::take_while_inclusive::TakeWhileInclusive; |
150 | #[cfg (feature = "use_alloc" )] |
151 | pub use crate::tee::Tee; |
152 | pub use crate::tuple_impl::{TupleBuffer, TupleWindows, CircularTupleWindows, Tuples}; |
153 | #[cfg (feature = "use_std" )] |
154 | pub use crate::duplicates_impl::{Duplicates, DuplicatesBy}; |
155 | #[cfg (feature = "use_std" )] |
156 | pub use crate::unique_impl::{Unique, UniqueBy}; |
157 | pub use crate::with_position::WithPosition; |
158 | pub use crate::zip_eq_impl::ZipEq; |
159 | pub use crate::zip_longest::ZipLongest; |
160 | pub use crate::ziptuple::Zip; |
161 | } |
162 | |
163 | /// Traits helpful for using certain `Itertools` methods in generic contexts. |
164 | pub mod traits { |
165 | pub use crate::tuple_impl::HomogeneousTuple; |
166 | } |
167 | |
168 | #[allow (deprecated)] |
169 | pub use crate::structs::*; |
170 | pub use crate::concat_impl::concat; |
171 | pub use crate::cons_tuples_impl::cons_tuples; |
172 | pub use crate::diff::diff_with; |
173 | pub use crate::diff::Diff; |
174 | #[cfg (feature = "use_alloc" )] |
175 | pub use crate::kmerge_impl::{kmerge_by}; |
176 | pub use crate::minmax::MinMaxResult; |
177 | pub use crate::peeking_take_while::PeekingNext; |
178 | pub use crate::process_results_impl::process_results; |
179 | pub use crate::repeatn::repeat_n; |
180 | #[allow (deprecated)] |
181 | pub use crate::sources::{repeat_call, unfold, iterate}; |
182 | pub use crate::with_position::Position; |
183 | pub use crate::unziptuple::{multiunzip, MultiUnzip}; |
184 | pub use crate::ziptuple::multizip; |
185 | mod adaptors; |
186 | mod either_or_both; |
187 | pub use crate::either_or_both::EitherOrBoth; |
188 | #[doc (hidden)] |
189 | pub mod free; |
190 | #[doc (inline)] |
191 | pub use crate::free::*; |
192 | mod concat_impl; |
193 | mod cons_tuples_impl; |
194 | #[cfg (feature = "use_alloc" )] |
195 | mod combinations; |
196 | #[cfg (feature = "use_alloc" )] |
197 | mod combinations_with_replacement; |
198 | mod exactly_one_err; |
199 | mod diff; |
200 | mod flatten_ok; |
201 | #[cfg (feature = "use_std" )] |
202 | mod extrema_set; |
203 | mod format; |
204 | #[cfg (feature = "use_std" )] |
205 | mod grouping_map; |
206 | #[cfg (feature = "use_alloc" )] |
207 | mod group_map; |
208 | #[cfg (feature = "use_alloc" )] |
209 | mod groupbylazy; |
210 | mod intersperse; |
211 | #[cfg (feature = "use_alloc" )] |
212 | mod k_smallest; |
213 | #[cfg (feature = "use_alloc" )] |
214 | mod kmerge_impl; |
215 | #[cfg (feature = "use_alloc" )] |
216 | mod lazy_buffer; |
217 | mod merge_join; |
218 | mod minmax; |
219 | #[cfg (feature = "use_alloc" )] |
220 | mod multipeek_impl; |
221 | mod pad_tail; |
222 | #[cfg (feature = "use_alloc" )] |
223 | mod peek_nth; |
224 | mod peeking_take_while; |
225 | #[cfg (feature = "use_alloc" )] |
226 | mod permutations; |
227 | #[cfg (feature = "use_alloc" )] |
228 | mod powerset; |
229 | mod process_results_impl; |
230 | #[cfg (feature = "use_alloc" )] |
231 | mod put_back_n_impl; |
232 | #[cfg (feature = "use_alloc" )] |
233 | mod rciter_impl; |
234 | mod repeatn; |
235 | mod size_hint; |
236 | mod sources; |
237 | mod take_while_inclusive; |
238 | #[cfg (feature = "use_alloc" )] |
239 | mod tee; |
240 | mod tuple_impl; |
241 | #[cfg (feature = "use_std" )] |
242 | mod duplicates_impl; |
243 | #[cfg (feature = "use_std" )] |
244 | mod unique_impl; |
245 | mod unziptuple; |
246 | mod with_position; |
247 | mod zip_eq_impl; |
248 | mod zip_longest; |
249 | mod ziptuple; |
250 | |
251 | #[macro_export ] |
252 | /// Create an iterator over the “cartesian product” of iterators. |
253 | /// |
254 | /// Iterator element type is like `(A, B, ..., E)` if formed |
255 | /// from iterators `(I, J, ..., M)` with element types `I::Item = A`, `J::Item = B`, etc. |
256 | /// |
257 | /// ``` |
258 | /// # use itertools::iproduct; |
259 | /// # |
260 | /// # fn main() { |
261 | /// // Iterate over the coordinates of a 4 x 4 x 4 grid |
262 | /// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3) |
263 | /// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) { |
264 | /// // .. |
265 | /// } |
266 | /// # } |
267 | /// ``` |
268 | macro_rules! iproduct { |
269 | (@flatten $I:expr,) => ( |
270 | $I |
271 | ); |
272 | (@flatten $I:expr, $J:expr, $($K:expr,)*) => ( |
273 | $crate::iproduct!(@flatten $crate::cons_tuples($crate::iproduct!($I, $J)), $($K,)*) |
274 | ); |
275 | ($I:expr) => ( |
276 | $crate::__std_iter::IntoIterator::into_iter($I) |
277 | ); |
278 | ($I:expr, $J:expr) => ( |
279 | $crate::Itertools::cartesian_product($crate::iproduct!($I), $crate::iproduct!($J)) |
280 | ); |
281 | ($I:expr, $J:expr, $($K:expr),+) => ( |
282 | $crate::iproduct!(@flatten $crate::iproduct!($I, $J), $($K,)+) |
283 | ); |
284 | } |
285 | |
286 | #[macro_export ] |
287 | /// Create an iterator running multiple iterators in lockstep. |
288 | /// |
289 | /// The `izip!` iterator yields elements until any subiterator |
290 | /// returns `None`. |
291 | /// |
292 | /// This is a version of the standard ``.zip()`` that's supporting more than |
293 | /// two iterators. The iterator element type is a tuple with one element |
294 | /// from each of the input iterators. Just like ``.zip()``, the iteration stops |
295 | /// when the shortest of the inputs reaches its end. |
296 | /// |
297 | /// **Note:** The result of this macro is in the general case an iterator |
298 | /// composed of repeated `.zip()` and a `.map()`; it has an anonymous type. |
299 | /// The special cases of one and two arguments produce the equivalent of |
300 | /// `$a.into_iter()` and `$a.into_iter().zip($b)` respectively. |
301 | /// |
302 | /// Prefer this macro `izip!()` over [`multizip`] for the performance benefits |
303 | /// of using the standard library `.zip()`. |
304 | /// |
305 | /// ``` |
306 | /// # use itertools::izip; |
307 | /// # |
308 | /// # fn main() { |
309 | /// |
310 | /// // iterate over three sequences side-by-side |
311 | /// let mut results = [0, 0, 0, 0]; |
312 | /// let inputs = [3, 7, 9, 6]; |
313 | /// |
314 | /// for (r, index, input) in izip!(&mut results, 0..10, &inputs) { |
315 | /// *r = index * 10 + input; |
316 | /// } |
317 | /// |
318 | /// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]); |
319 | /// # } |
320 | /// ``` |
321 | macro_rules! izip { |
322 | // @closure creates a tuple-flattening closure for .map() call. usage: |
323 | // @closure partial_pattern => partial_tuple , rest , of , iterators |
324 | // eg. izip!( @closure ((a, b), c) => (a, b, c) , dd , ee ) |
325 | ( @closure $p:pat => $tup:expr ) => { |
326 | |$p| $tup |
327 | }; |
328 | |
329 | // The "b" identifier is a different identifier on each recursion level thanks to hygiene. |
330 | ( @closure $p:pat => ( $($tup:tt)* ) , $_iter:expr $( , $tail:expr )* ) => { |
331 | $crate::izip!(@closure ($p, b) => ( $($tup)*, b ) $( , $tail )*) |
332 | }; |
333 | |
334 | // unary |
335 | ($first:expr $(,)*) => { |
336 | $crate::__std_iter::IntoIterator::into_iter($first) |
337 | }; |
338 | |
339 | // binary |
340 | ($first:expr, $second:expr $(,)*) => { |
341 | $crate::izip!($first) |
342 | .zip($second) |
343 | }; |
344 | |
345 | // n-ary where n > 2 |
346 | ( $first:expr $( , $rest:expr )* $(,)* ) => { |
347 | $crate::izip!($first) |
348 | $( |
349 | .zip($rest) |
350 | )* |
351 | .map( |
352 | $crate::izip!(@closure a => (a) $( , $rest )*) |
353 | ) |
354 | }; |
355 | } |
356 | |
357 | #[macro_export ] |
358 | /// [Chain][`chain`] zero or more iterators together into one sequence. |
359 | /// |
360 | /// The comma-separated arguments must implement [`IntoIterator`]. |
361 | /// The final argument may be followed by a trailing comma. |
362 | /// |
363 | /// [`chain`]: Iterator::chain |
364 | /// |
365 | /// # Examples |
366 | /// |
367 | /// Empty invocations of `chain!` expand to an invocation of [`std::iter::empty`]: |
368 | /// ``` |
369 | /// use std::iter; |
370 | /// use itertools::chain; |
371 | /// |
372 | /// let _: iter::Empty<()> = chain!(); |
373 | /// let _: iter::Empty<i8> = chain!(); |
374 | /// ``` |
375 | /// |
376 | /// Invocations of `chain!` with one argument expand to [`arg.into_iter()`](IntoIterator): |
377 | /// ``` |
378 | /// use std::{ops::Range, slice}; |
379 | /// use itertools::chain; |
380 | /// let _: <Range<_> as IntoIterator>::IntoIter = chain!((2..6),); // trailing comma optional! |
381 | /// let _: <&[_] as IntoIterator>::IntoIter = chain!(&[2, 3, 4]); |
382 | /// ``` |
383 | /// |
384 | /// Invocations of `chain!` with multiple arguments [`.into_iter()`](IntoIterator) each |
385 | /// argument, and then [`chain`] them together: |
386 | /// ``` |
387 | /// use std::{iter::*, ops::Range, slice}; |
388 | /// use itertools::{assert_equal, chain}; |
389 | /// |
390 | /// // e.g., this: |
391 | /// let with_macro: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> = |
392 | /// chain![once(&0), repeat(&1).take(2), &[2, 3, 5],]; |
393 | /// |
394 | /// // ...is equivalent to this: |
395 | /// let with_method: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> = |
396 | /// once(&0) |
397 | /// .chain(repeat(&1).take(2)) |
398 | /// .chain(&[2, 3, 5]); |
399 | /// |
400 | /// assert_equal(with_macro, with_method); |
401 | /// ``` |
402 | macro_rules! chain { |
403 | () => { |
404 | core::iter::empty() |
405 | }; |
406 | ($first:expr $(, $rest:expr )* $(,)?) => { |
407 | { |
408 | let iter = core::iter::IntoIterator::into_iter($first); |
409 | $( |
410 | let iter = |
411 | core::iter::Iterator::chain( |
412 | iter, |
413 | core::iter::IntoIterator::into_iter($rest)); |
414 | )* |
415 | iter |
416 | } |
417 | }; |
418 | } |
419 | |
420 | /// An [`Iterator`] blanket implementation that provides extra adaptors and |
421 | /// methods. |
422 | /// |
423 | /// This trait defines a number of methods. They are divided into two groups: |
424 | /// |
425 | /// * *Adaptors* take an iterator and parameter as input, and return |
426 | /// a new iterator value. These are listed first in the trait. An example |
427 | /// of an adaptor is [`.interleave()`](Itertools::interleave) |
428 | /// |
429 | /// * *Regular methods* are those that don't return iterators and instead |
430 | /// return a regular value of some other kind. |
431 | /// [`.next_tuple()`](Itertools::next_tuple) is an example and the first regular |
432 | /// method in the list. |
433 | pub trait Itertools : Iterator { |
434 | // adaptors |
435 | |
436 | /// Alternate elements from two iterators until both have run out. |
437 | /// |
438 | /// Iterator element type is `Self::Item`. |
439 | /// |
440 | /// This iterator is *fused*. |
441 | /// |
442 | /// ``` |
443 | /// use itertools::Itertools; |
444 | /// |
445 | /// let it = (1..7).interleave(vec![-1, -2]); |
446 | /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]); |
447 | /// ``` |
448 | fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter> |
449 | where J: IntoIterator<Item = Self::Item>, |
450 | Self: Sized |
451 | { |
452 | interleave(self, other) |
453 | } |
454 | |
455 | /// Alternate elements from two iterators until at least one of them has run |
456 | /// out. |
457 | /// |
458 | /// Iterator element type is `Self::Item`. |
459 | /// |
460 | /// ``` |
461 | /// use itertools::Itertools; |
462 | /// |
463 | /// let it = (1..7).interleave_shortest(vec![-1, -2]); |
464 | /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3]); |
465 | /// ``` |
466 | fn interleave_shortest<J>(self, other: J) -> InterleaveShortest<Self, J::IntoIter> |
467 | where J: IntoIterator<Item = Self::Item>, |
468 | Self: Sized |
469 | { |
470 | adaptors::interleave_shortest(self, other.into_iter()) |
471 | } |
472 | |
473 | /// An iterator adaptor to insert a particular value |
474 | /// between each element of the adapted iterator. |
475 | /// |
476 | /// Iterator element type is `Self::Item`. |
477 | /// |
478 | /// This iterator is *fused*. |
479 | /// |
480 | /// ``` |
481 | /// use itertools::Itertools; |
482 | /// |
483 | /// itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]); |
484 | /// ``` |
485 | fn intersperse(self, element: Self::Item) -> Intersperse<Self> |
486 | where Self: Sized, |
487 | Self::Item: Clone |
488 | { |
489 | intersperse::intersperse(self, element) |
490 | } |
491 | |
492 | /// An iterator adaptor to insert a particular value created by a function |
493 | /// between each element of the adapted iterator. |
494 | /// |
495 | /// Iterator element type is `Self::Item`. |
496 | /// |
497 | /// This iterator is *fused*. |
498 | /// |
499 | /// ``` |
500 | /// use itertools::Itertools; |
501 | /// |
502 | /// let mut i = 10; |
503 | /// itertools::assert_equal((0..3).intersperse_with(|| { i -= 1; i }), vec![0, 9, 1, 8, 2]); |
504 | /// assert_eq!(i, 8); |
505 | /// ``` |
506 | fn intersperse_with<F>(self, element: F) -> IntersperseWith<Self, F> |
507 | where Self: Sized, |
508 | F: FnMut() -> Self::Item |
509 | { |
510 | intersperse::intersperse_with(self, element) |
511 | } |
512 | |
513 | /// Create an iterator which iterates over both this and the specified |
514 | /// iterator simultaneously, yielding pairs of two optional elements. |
515 | /// |
516 | /// This iterator is *fused*. |
517 | /// |
518 | /// As long as neither input iterator is exhausted yet, it yields two values |
519 | /// via `EitherOrBoth::Both`. |
520 | /// |
521 | /// When the parameter iterator is exhausted, it only yields a value from the |
522 | /// `self` iterator via `EitherOrBoth::Left`. |
523 | /// |
524 | /// When the `self` iterator is exhausted, it only yields a value from the |
525 | /// parameter iterator via `EitherOrBoth::Right`. |
526 | /// |
527 | /// When both iterators return `None`, all further invocations of `.next()` |
528 | /// will return `None`. |
529 | /// |
530 | /// Iterator element type is |
531 | /// [`EitherOrBoth<Self::Item, J::Item>`](EitherOrBoth). |
532 | /// |
533 | /// ```rust |
534 | /// use itertools::EitherOrBoth::{Both, Right}; |
535 | /// use itertools::Itertools; |
536 | /// let it = (0..1).zip_longest(1..3); |
537 | /// itertools::assert_equal(it, vec![Both(0, 1), Right(2)]); |
538 | /// ``` |
539 | #[inline ] |
540 | fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter> |
541 | where J: IntoIterator, |
542 | Self: Sized |
543 | { |
544 | zip_longest::zip_longest(self, other.into_iter()) |
545 | } |
546 | |
547 | /// Create an iterator which iterates over both this and the specified |
548 | /// iterator simultaneously, yielding pairs of elements. |
549 | /// |
550 | /// **Panics** if the iterators reach an end and they are not of equal |
551 | /// lengths. |
552 | #[inline ] |
553 | fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter> |
554 | where J: IntoIterator, |
555 | Self: Sized |
556 | { |
557 | zip_eq(self, other) |
558 | } |
559 | |
560 | /// A “meta iterator adaptor”. Its closure receives a reference to the |
561 | /// iterator and may pick off as many elements as it likes, to produce the |
562 | /// next iterator element. |
563 | /// |
564 | /// Iterator element type is `B`. |
565 | /// |
566 | /// ``` |
567 | /// use itertools::Itertools; |
568 | /// |
569 | /// // An adaptor that gathers elements in pairs |
570 | /// let pit = (0..4).batching(|it| { |
571 | /// match it.next() { |
572 | /// None => None, |
573 | /// Some(x) => match it.next() { |
574 | /// None => None, |
575 | /// Some(y) => Some((x, y)), |
576 | /// } |
577 | /// } |
578 | /// }); |
579 | /// |
580 | /// itertools::assert_equal(pit, vec![(0, 1), (2, 3)]); |
581 | /// ``` |
582 | /// |
583 | fn batching<B, F>(self, f: F) -> Batching<Self, F> |
584 | where F: FnMut(&mut Self) -> Option<B>, |
585 | Self: Sized |
586 | { |
587 | adaptors::batching(self, f) |
588 | } |
589 | |
590 | /// Return an *iterable* that can group iterator elements. |
591 | /// Consecutive elements that map to the same key (“runs”), are assigned |
592 | /// to the same group. |
593 | /// |
594 | /// `GroupBy` is the storage for the lazy grouping operation. |
595 | /// |
596 | /// If the groups are consumed in order, or if each group's iterator is |
597 | /// dropped without keeping it around, then `GroupBy` uses no |
598 | /// allocations. It needs allocations only if several group iterators |
599 | /// are alive at the same time. |
600 | /// |
601 | /// This type implements [`IntoIterator`] (it is **not** an iterator |
602 | /// itself), because the group iterators need to borrow from this |
603 | /// value. It should be stored in a local variable or temporary and |
604 | /// iterated. |
605 | /// |
606 | /// Iterator element type is `(K, Group)`: the group's key and the |
607 | /// group iterator. |
608 | /// |
609 | /// ``` |
610 | /// use itertools::Itertools; |
611 | /// |
612 | /// // group data into runs of larger than zero or not. |
613 | /// let data = vec![1, 3, -2, -2, 1, 0, 1, 2]; |
614 | /// // groups: |---->|------>|--------->| |
615 | /// |
616 | /// // Note: The `&` is significant here, `GroupBy` is iterable |
617 | /// // only by reference. You can also call `.into_iter()` explicitly. |
618 | /// let mut data_grouped = Vec::new(); |
619 | /// for (key, group) in &data.into_iter().group_by(|elt| *elt >= 0) { |
620 | /// data_grouped.push((key, group.collect())); |
621 | /// } |
622 | /// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]); |
623 | /// ``` |
624 | #[cfg (feature = "use_alloc" )] |
625 | fn group_by<K, F>(self, key: F) -> GroupBy<K, Self, F> |
626 | where Self: Sized, |
627 | F: FnMut(&Self::Item) -> K, |
628 | K: PartialEq, |
629 | { |
630 | groupbylazy::new(self, key) |
631 | } |
632 | |
633 | /// Return an *iterable* that can chunk the iterator. |
634 | /// |
635 | /// Yield subiterators (chunks) that each yield a fixed number elements, |
636 | /// determined by `size`. The last chunk will be shorter if there aren't |
637 | /// enough elements. |
638 | /// |
639 | /// `IntoChunks` is based on `GroupBy`: it is iterable (implements |
640 | /// `IntoIterator`, **not** `Iterator`), and it only buffers if several |
641 | /// chunk iterators are alive at the same time. |
642 | /// |
643 | /// Iterator element type is `Chunk`, each chunk's iterator. |
644 | /// |
645 | /// **Panics** if `size` is 0. |
646 | /// |
647 | /// ``` |
648 | /// use itertools::Itertools; |
649 | /// |
650 | /// let data = vec![1, 1, 2, -2, 6, 0, 3, 1]; |
651 | /// //chunk size=3 |------->|-------->|--->| |
652 | /// |
653 | /// // Note: The `&` is significant here, `IntoChunks` is iterable |
654 | /// // only by reference. You can also call `.into_iter()` explicitly. |
655 | /// for chunk in &data.into_iter().chunks(3) { |
656 | /// // Check that the sum of each chunk is 4. |
657 | /// assert_eq!(4, chunk.sum()); |
658 | /// } |
659 | /// ``` |
660 | #[cfg (feature = "use_alloc" )] |
661 | fn chunks(self, size: usize) -> IntoChunks<Self> |
662 | where Self: Sized, |
663 | { |
664 | assert!(size != 0); |
665 | groupbylazy::new_chunks(self, size) |
666 | } |
667 | |
668 | /// Return an iterator over all contiguous windows producing tuples of |
669 | /// a specific size (up to 12). |
670 | /// |
671 | /// `tuple_windows` clones the iterator elements so that they can be |
672 | /// part of successive windows, this makes it most suited for iterators |
673 | /// of references and other values that are cheap to copy. |
674 | /// |
675 | /// ``` |
676 | /// use itertools::Itertools; |
677 | /// let mut v = Vec::new(); |
678 | /// |
679 | /// // pairwise iteration |
680 | /// for (a, b) in (1..5).tuple_windows() { |
681 | /// v.push((a, b)); |
682 | /// } |
683 | /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]); |
684 | /// |
685 | /// let mut it = (1..5).tuple_windows(); |
686 | /// assert_eq!(Some((1, 2, 3)), it.next()); |
687 | /// assert_eq!(Some((2, 3, 4)), it.next()); |
688 | /// assert_eq!(None, it.next()); |
689 | /// |
690 | /// // this requires a type hint |
691 | /// let it = (1..5).tuple_windows::<(_, _, _)>(); |
692 | /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]); |
693 | /// |
694 | /// // you can also specify the complete type |
695 | /// use itertools::TupleWindows; |
696 | /// use std::ops::Range; |
697 | /// |
698 | /// let it: TupleWindows<Range<u32>, (u32, u32, u32)> = (1..5).tuple_windows(); |
699 | /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]); |
700 | /// ``` |
701 | fn tuple_windows<T>(self) -> TupleWindows<Self, T> |
702 | where Self: Sized + Iterator<Item = T::Item>, |
703 | T: traits::HomogeneousTuple, |
704 | T::Item: Clone |
705 | { |
706 | tuple_impl::tuple_windows(self) |
707 | } |
708 | |
709 | /// Return an iterator over all windows, wrapping back to the first |
710 | /// elements when the window would otherwise exceed the length of the |
711 | /// iterator, producing tuples of a specific size (up to 12). |
712 | /// |
713 | /// `circular_tuple_windows` clones the iterator elements so that they can be |
714 | /// part of successive windows, this makes it most suited for iterators |
715 | /// of references and other values that are cheap to copy. |
716 | /// |
717 | /// ``` |
718 | /// use itertools::Itertools; |
719 | /// let mut v = Vec::new(); |
720 | /// for (a, b) in (1..5).circular_tuple_windows() { |
721 | /// v.push((a, b)); |
722 | /// } |
723 | /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4), (4, 1)]); |
724 | /// |
725 | /// let mut it = (1..5).circular_tuple_windows(); |
726 | /// assert_eq!(Some((1, 2, 3)), it.next()); |
727 | /// assert_eq!(Some((2, 3, 4)), it.next()); |
728 | /// assert_eq!(Some((3, 4, 1)), it.next()); |
729 | /// assert_eq!(Some((4, 1, 2)), it.next()); |
730 | /// assert_eq!(None, it.next()); |
731 | /// |
732 | /// // this requires a type hint |
733 | /// let it = (1..5).circular_tuple_windows::<(_, _, _)>(); |
734 | /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)]); |
735 | /// ``` |
736 | fn circular_tuple_windows<T>(self) -> CircularTupleWindows<Self, T> |
737 | where Self: Sized + Clone + Iterator<Item = T::Item> + ExactSizeIterator, |
738 | T: tuple_impl::TupleCollect + Clone, |
739 | T::Item: Clone |
740 | { |
741 | tuple_impl::circular_tuple_windows(self) |
742 | } |
743 | /// Return an iterator that groups the items in tuples of a specific size |
744 | /// (up to 12). |
745 | /// |
746 | /// See also the method [`.next_tuple()`](Itertools::next_tuple). |
747 | /// |
748 | /// ``` |
749 | /// use itertools::Itertools; |
750 | /// let mut v = Vec::new(); |
751 | /// for (a, b) in (1..5).tuples() { |
752 | /// v.push((a, b)); |
753 | /// } |
754 | /// assert_eq!(v, vec![(1, 2), (3, 4)]); |
755 | /// |
756 | /// let mut it = (1..7).tuples(); |
757 | /// assert_eq!(Some((1, 2, 3)), it.next()); |
758 | /// assert_eq!(Some((4, 5, 6)), it.next()); |
759 | /// assert_eq!(None, it.next()); |
760 | /// |
761 | /// // this requires a type hint |
762 | /// let it = (1..7).tuples::<(_, _, _)>(); |
763 | /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]); |
764 | /// |
765 | /// // you can also specify the complete type |
766 | /// use itertools::Tuples; |
767 | /// use std::ops::Range; |
768 | /// |
769 | /// let it: Tuples<Range<u32>, (u32, u32, u32)> = (1..7).tuples(); |
770 | /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]); |
771 | /// ``` |
772 | /// |
773 | /// See also [`Tuples::into_buffer`]. |
774 | fn tuples<T>(self) -> Tuples<Self, T> |
775 | where Self: Sized + Iterator<Item = T::Item>, |
776 | T: traits::HomogeneousTuple |
777 | { |
778 | tuple_impl::tuples(self) |
779 | } |
780 | |
781 | /// Split into an iterator pair that both yield all elements from |
782 | /// the original iterator. |
783 | /// |
784 | /// **Note:** If the iterator is clonable, prefer using that instead |
785 | /// of using this method. Cloning is likely to be more efficient. |
786 | /// |
787 | /// Iterator element type is `Self::Item`. |
788 | /// |
789 | /// ``` |
790 | /// use itertools::Itertools; |
791 | /// let xs = vec![0, 1, 2, 3]; |
792 | /// |
793 | /// let (mut t1, t2) = xs.into_iter().tee(); |
794 | /// itertools::assert_equal(t1.next(), Some(0)); |
795 | /// itertools::assert_equal(t2, 0..4); |
796 | /// itertools::assert_equal(t1, 1..4); |
797 | /// ``` |
798 | #[cfg (feature = "use_alloc" )] |
799 | fn tee(self) -> (Tee<Self>, Tee<Self>) |
800 | where Self: Sized, |
801 | Self::Item: Clone |
802 | { |
803 | tee::new(self) |
804 | } |
805 | |
806 | /// Return an iterator adaptor that steps `n` elements in the base iterator |
807 | /// for each iteration. |
808 | /// |
809 | /// The iterator steps by yielding the next element from the base iterator, |
810 | /// then skipping forward `n - 1` elements. |
811 | /// |
812 | /// Iterator element type is `Self::Item`. |
813 | /// |
814 | /// **Panics** if the step is 0. |
815 | /// |
816 | /// ``` |
817 | /// use itertools::Itertools; |
818 | /// |
819 | /// let it = (0..8).step(3); |
820 | /// itertools::assert_equal(it, vec![0, 3, 6]); |
821 | /// ``` |
822 | #[deprecated (note="Use std .step_by() instead" , since="0.8.0" )] |
823 | #[allow (deprecated)] |
824 | fn step(self, n: usize) -> Step<Self> |
825 | where Self: Sized |
826 | { |
827 | adaptors::step(self, n) |
828 | } |
829 | |
830 | /// Convert each item of the iterator using the [`Into`] trait. |
831 | /// |
832 | /// ```rust |
833 | /// use itertools::Itertools; |
834 | /// |
835 | /// (1i32..42i32).map_into::<f64>().collect_vec(); |
836 | /// ``` |
837 | fn map_into<R>(self) -> MapInto<Self, R> |
838 | where Self: Sized, |
839 | Self::Item: Into<R>, |
840 | { |
841 | adaptors::map_into(self) |
842 | } |
843 | |
844 | /// See [`.map_ok()`](Itertools::map_ok). |
845 | #[deprecated (note="Use .map_ok() instead" , since="0.10.0" )] |
846 | fn map_results<F, T, U, E>(self, f: F) -> MapOk<Self, F> |
847 | where Self: Iterator<Item = Result<T, E>> + Sized, |
848 | F: FnMut(T) -> U, |
849 | { |
850 | self.map_ok(f) |
851 | } |
852 | |
853 | /// Return an iterator adaptor that applies the provided closure |
854 | /// to every `Result::Ok` value. `Result::Err` values are |
855 | /// unchanged. |
856 | /// |
857 | /// ``` |
858 | /// use itertools::Itertools; |
859 | /// |
860 | /// let input = vec![Ok(41), Err(false), Ok(11)]; |
861 | /// let it = input.into_iter().map_ok(|i| i + 1); |
862 | /// itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]); |
863 | /// ``` |
864 | fn map_ok<F, T, U, E>(self, f: F) -> MapOk<Self, F> |
865 | where Self: Iterator<Item = Result<T, E>> + Sized, |
866 | F: FnMut(T) -> U, |
867 | { |
868 | adaptors::map_ok(self, f) |
869 | } |
870 | |
871 | /// Return an iterator adaptor that filters every `Result::Ok` |
872 | /// value with the provided closure. `Result::Err` values are |
873 | /// unchanged. |
874 | /// |
875 | /// ``` |
876 | /// use itertools::Itertools; |
877 | /// |
878 | /// let input = vec![Ok(22), Err(false), Ok(11)]; |
879 | /// let it = input.into_iter().filter_ok(|&i| i > 20); |
880 | /// itertools::assert_equal(it, vec![Ok(22), Err(false)]); |
881 | /// ``` |
882 | fn filter_ok<F, T, E>(self, f: F) -> FilterOk<Self, F> |
883 | where Self: Iterator<Item = Result<T, E>> + Sized, |
884 | F: FnMut(&T) -> bool, |
885 | { |
886 | adaptors::filter_ok(self, f) |
887 | } |
888 | |
889 | /// Return an iterator adaptor that filters and transforms every |
890 | /// `Result::Ok` value with the provided closure. `Result::Err` |
891 | /// values are unchanged. |
892 | /// |
893 | /// ``` |
894 | /// use itertools::Itertools; |
895 | /// |
896 | /// let input = vec![Ok(22), Err(false), Ok(11)]; |
897 | /// let it = input.into_iter().filter_map_ok(|i| if i > 20 { Some(i * 2) } else { None }); |
898 | /// itertools::assert_equal(it, vec![Ok(44), Err(false)]); |
899 | /// ``` |
900 | fn filter_map_ok<F, T, U, E>(self, f: F) -> FilterMapOk<Self, F> |
901 | where Self: Iterator<Item = Result<T, E>> + Sized, |
902 | F: FnMut(T) -> Option<U>, |
903 | { |
904 | adaptors::filter_map_ok(self, f) |
905 | } |
906 | |
907 | /// Return an iterator adaptor that flattens every `Result::Ok` value into |
908 | /// a series of `Result::Ok` values. `Result::Err` values are unchanged. |
909 | /// |
910 | /// This is useful when you have some common error type for your crate and |
911 | /// need to propagate it upwards, but the `Result::Ok` case needs to be flattened. |
912 | /// |
913 | /// ``` |
914 | /// use itertools::Itertools; |
915 | /// |
916 | /// let input = vec![Ok(0..2), Err(false), Ok(2..4)]; |
917 | /// let it = input.iter().cloned().flatten_ok(); |
918 | /// itertools::assert_equal(it.clone(), vec![Ok(0), Ok(1), Err(false), Ok(2), Ok(3)]); |
919 | /// |
920 | /// // This can also be used to propagate errors when collecting. |
921 | /// let output_result: Result<Vec<i32>, bool> = it.collect(); |
922 | /// assert_eq!(output_result, Err(false)); |
923 | /// ``` |
924 | fn flatten_ok<T, E>(self) -> FlattenOk<Self, T, E> |
925 | where Self: Iterator<Item = Result<T, E>> + Sized, |
926 | T: IntoIterator |
927 | { |
928 | flatten_ok::flatten_ok(self) |
929 | } |
930 | |
931 | /// “Lift” a function of the values of the current iterator so as to process |
932 | /// an iterator of `Result` values instead. |
933 | /// |
934 | /// `processor` is a closure that receives an adapted version of the iterator |
935 | /// as the only argument — the adapted iterator produces elements of type `T`, |
936 | /// as long as the original iterator produces `Ok` values. |
937 | /// |
938 | /// If the original iterable produces an error at any point, the adapted |
939 | /// iterator ends and it will return the error iself. |
940 | /// |
941 | /// Otherwise, the return value from the closure is returned wrapped |
942 | /// inside `Ok`. |
943 | /// |
944 | /// # Example |
945 | /// |
946 | /// ``` |
947 | /// use itertools::Itertools; |
948 | /// |
949 | /// type Item = Result<i32, &'static str>; |
950 | /// |
951 | /// let first_values: Vec<Item> = vec![Ok(1), Ok(0), Ok(3)]; |
952 | /// let second_values: Vec<Item> = vec![Ok(2), Ok(1), Err("overflow" )]; |
953 | /// |
954 | /// // “Lift” the iterator .max() method to work on the Ok-values. |
955 | /// let first_max = first_values.into_iter().process_results(|iter| iter.max().unwrap_or(0)); |
956 | /// let second_max = second_values.into_iter().process_results(|iter| iter.max().unwrap_or(0)); |
957 | /// |
958 | /// assert_eq!(first_max, Ok(3)); |
959 | /// assert!(second_max.is_err()); |
960 | /// ``` |
961 | fn process_results<F, T, E, R>(self, processor: F) -> Result<R, E> |
962 | where Self: Iterator<Item = Result<T, E>> + Sized, |
963 | F: FnOnce(ProcessResults<Self, E>) -> R |
964 | { |
965 | process_results(self, processor) |
966 | } |
967 | |
968 | /// Return an iterator adaptor that merges the two base iterators in |
969 | /// ascending order. If both base iterators are sorted (ascending), the |
970 | /// result is sorted. |
971 | /// |
972 | /// Iterator element type is `Self::Item`. |
973 | /// |
974 | /// ``` |
975 | /// use itertools::Itertools; |
976 | /// |
977 | /// let a = (0..11).step_by(3); |
978 | /// let b = (0..11).step_by(5); |
979 | /// let it = a.merge(b); |
980 | /// itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]); |
981 | /// ``` |
982 | fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter> |
983 | where Self: Sized, |
984 | Self::Item: PartialOrd, |
985 | J: IntoIterator<Item = Self::Item> |
986 | { |
987 | merge(self, other) |
988 | } |
989 | |
990 | /// Return an iterator adaptor that merges the two base iterators in order. |
991 | /// This is much like [`.merge()`](Itertools::merge) but allows for a custom ordering. |
992 | /// |
993 | /// This can be especially useful for sequences of tuples. |
994 | /// |
995 | /// Iterator element type is `Self::Item`. |
996 | /// |
997 | /// ``` |
998 | /// use itertools::Itertools; |
999 | /// |
1000 | /// let a = (0..).zip("bc" .chars()); |
1001 | /// let b = (0..).zip("ad" .chars()); |
1002 | /// let it = a.merge_by(b, |x, y| x.1 <= y.1); |
1003 | /// itertools::assert_equal(it, vec![(0, 'a' ), (0, 'b' ), (1, 'c' ), (1, 'd' )]); |
1004 | /// ``` |
1005 | |
1006 | fn merge_by<J, F>(self, other: J, is_first: F) -> MergeBy<Self, J::IntoIter, F> |
1007 | where Self: Sized, |
1008 | J: IntoIterator<Item = Self::Item>, |
1009 | F: FnMut(&Self::Item, &Self::Item) -> bool |
1010 | { |
1011 | adaptors::merge_by_new(self, other.into_iter(), is_first) |
1012 | } |
1013 | |
1014 | /// Create an iterator that merges items from both this and the specified |
1015 | /// iterator in ascending order. |
1016 | /// |
1017 | /// The function can either return an `Ordering` variant or a boolean. |
1018 | /// |
1019 | /// If `cmp_fn` returns `Ordering`, |
1020 | /// it chooses whether to pair elements based on the `Ordering` returned by the |
1021 | /// specified compare function. At any point, inspecting the tip of the |
1022 | /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type |
1023 | /// `J::Item` respectively, the resulting iterator will: |
1024 | /// |
1025 | /// - Emit `EitherOrBoth::Left(i)` when `i < j`, |
1026 | /// and remove `i` from its source iterator |
1027 | /// - Emit `EitherOrBoth::Right(j)` when `i > j`, |
1028 | /// and remove `j` from its source iterator |
1029 | /// - Emit `EitherOrBoth::Both(i, j)` when `i == j`, |
1030 | /// and remove both `i` and `j` from their respective source iterators |
1031 | /// |
1032 | /// ``` |
1033 | /// use itertools::Itertools; |
1034 | /// use itertools::EitherOrBoth::{Left, Right, Both}; |
1035 | /// |
1036 | /// let a = vec![0, 2, 4, 6, 1].into_iter(); |
1037 | /// let b = (0..10).step_by(3); |
1038 | /// |
1039 | /// itertools::assert_equal( |
1040 | /// a.merge_join_by(b, |i, j| i.cmp(j)), |
1041 | /// vec![Both(0, 0), Left(2), Right(3), Left(4), Both(6, 6), Left(1), Right(9)] |
1042 | /// ); |
1043 | /// ``` |
1044 | /// |
1045 | /// If `cmp_fn` returns `bool`, |
1046 | /// it chooses whether to pair elements based on the boolean returned by the |
1047 | /// specified function. At any point, inspecting the tip of the |
1048 | /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type |
1049 | /// `J::Item` respectively, the resulting iterator will: |
1050 | /// |
1051 | /// - Emit `Either::Left(i)` when `true`, |
1052 | /// and remove `i` from its source iterator |
1053 | /// - Emit `Either::Right(j)` when `false`, |
1054 | /// and remove `j` from its source iterator |
1055 | /// |
1056 | /// It is similar to the `Ordering` case if the first argument is considered |
1057 | /// "less" than the second argument. |
1058 | /// |
1059 | /// ``` |
1060 | /// use itertools::Itertools; |
1061 | /// use itertools::Either::{Left, Right}; |
1062 | /// |
1063 | /// let a = vec![0, 2, 4, 6, 1].into_iter(); |
1064 | /// let b = (0..10).step_by(3); |
1065 | /// |
1066 | /// itertools::assert_equal( |
1067 | /// a.merge_join_by(b, |i, j| i <= j), |
1068 | /// vec![Left(0), Right(0), Left(2), Right(3), Left(4), Left(6), Left(1), Right(6), Right(9)] |
1069 | /// ); |
1070 | /// ``` |
1071 | #[inline ] |
1072 | fn merge_join_by<J, F, T>(self, other: J, cmp_fn: F) -> MergeJoinBy<Self, J::IntoIter, F> |
1073 | where J: IntoIterator, |
1074 | F: FnMut(&Self::Item, &J::Item) -> T, |
1075 | T: merge_join::OrderingOrBool<Self::Item, J::Item>, |
1076 | Self: Sized |
1077 | { |
1078 | merge_join_by(self, other, cmp_fn) |
1079 | } |
1080 | |
1081 | /// Return an iterator adaptor that flattens an iterator of iterators by |
1082 | /// merging them in ascending order. |
1083 | /// |
1084 | /// If all base iterators are sorted (ascending), the result is sorted. |
1085 | /// |
1086 | /// Iterator element type is `Self::Item`. |
1087 | /// |
1088 | /// ``` |
1089 | /// use itertools::Itertools; |
1090 | /// |
1091 | /// let a = (0..6).step_by(3); |
1092 | /// let b = (1..6).step_by(3); |
1093 | /// let c = (2..6).step_by(3); |
1094 | /// let it = vec![a, b, c].into_iter().kmerge(); |
1095 | /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]); |
1096 | /// ``` |
1097 | #[cfg (feature = "use_alloc" )] |
1098 | fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter> |
1099 | where Self: Sized, |
1100 | Self::Item: IntoIterator, |
1101 | <Self::Item as IntoIterator>::Item: PartialOrd, |
1102 | { |
1103 | kmerge(self) |
1104 | } |
1105 | |
1106 | /// Return an iterator adaptor that flattens an iterator of iterators by |
1107 | /// merging them according to the given closure. |
1108 | /// |
1109 | /// The closure `first` is called with two elements *a*, *b* and should |
1110 | /// return `true` if *a* is ordered before *b*. |
1111 | /// |
1112 | /// If all base iterators are sorted according to `first`, the result is |
1113 | /// sorted. |
1114 | /// |
1115 | /// Iterator element type is `Self::Item`. |
1116 | /// |
1117 | /// ``` |
1118 | /// use itertools::Itertools; |
1119 | /// |
1120 | /// let a = vec![-1f64, 2., 3., -5., 6., -7.]; |
1121 | /// let b = vec![0., 2., -4.]; |
1122 | /// let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() < b.abs()); |
1123 | /// assert_eq!(it.next(), Some(0.)); |
1124 | /// assert_eq!(it.last(), Some(-7.)); |
1125 | /// ``` |
1126 | #[cfg (feature = "use_alloc" )] |
1127 | fn kmerge_by<F>(self, first: F) |
1128 | -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F> |
1129 | where Self: Sized, |
1130 | Self::Item: IntoIterator, |
1131 | F: FnMut(&<Self::Item as IntoIterator>::Item, |
1132 | &<Self::Item as IntoIterator>::Item) -> bool |
1133 | { |
1134 | kmerge_by(self, first) |
1135 | } |
1136 | |
1137 | /// Return an iterator adaptor that iterates over the cartesian product of |
1138 | /// the element sets of two iterators `self` and `J`. |
1139 | /// |
1140 | /// Iterator element type is `(Self::Item, J::Item)`. |
1141 | /// |
1142 | /// ``` |
1143 | /// use itertools::Itertools; |
1144 | /// |
1145 | /// let it = (0..2).cartesian_product("αβ" .chars()); |
1146 | /// itertools::assert_equal(it, vec![(0, 'α' ), (0, 'β' ), (1, 'α' ), (1, 'β' )]); |
1147 | /// ``` |
1148 | fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter> |
1149 | where Self: Sized, |
1150 | Self::Item: Clone, |
1151 | J: IntoIterator, |
1152 | J::IntoIter: Clone |
1153 | { |
1154 | adaptors::cartesian_product(self, other.into_iter()) |
1155 | } |
1156 | |
1157 | /// Return an iterator adaptor that iterates over the cartesian product of |
1158 | /// all subiterators returned by meta-iterator `self`. |
1159 | /// |
1160 | /// All provided iterators must yield the same `Item` type. To generate |
1161 | /// the product of iterators yielding multiple types, use the |
1162 | /// [`iproduct`] macro instead. |
1163 | /// |
1164 | /// |
1165 | /// The iterator element type is `Vec<T>`, where `T` is the iterator element |
1166 | /// of the subiterators. |
1167 | /// |
1168 | /// ``` |
1169 | /// use itertools::Itertools; |
1170 | /// let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2)) |
1171 | /// .multi_cartesian_product(); |
1172 | /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 4])); |
1173 | /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 5])); |
1174 | /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 4])); |
1175 | /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 5])); |
1176 | /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 4])); |
1177 | /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 5])); |
1178 | /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 4])); |
1179 | /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 5])); |
1180 | /// assert_eq!(multi_prod.next(), None); |
1181 | /// ``` |
1182 | #[cfg (feature = "use_alloc" )] |
1183 | fn multi_cartesian_product(self) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter> |
1184 | where Self: Sized, |
1185 | Self::Item: IntoIterator, |
1186 | <Self::Item as IntoIterator>::IntoIter: Clone, |
1187 | <Self::Item as IntoIterator>::Item: Clone |
1188 | { |
1189 | adaptors::multi_cartesian_product(self) |
1190 | } |
1191 | |
1192 | /// Return an iterator adaptor that uses the passed-in closure to |
1193 | /// optionally merge together consecutive elements. |
1194 | /// |
1195 | /// The closure `f` is passed two elements, `previous` and `current` and may |
1196 | /// return either (1) `Ok(combined)` to merge the two values or |
1197 | /// (2) `Err((previous', current'))` to indicate they can't be merged. |
1198 | /// In (2), the value `previous'` is emitted by the iterator. |
1199 | /// Either (1) `combined` or (2) `current'` becomes the previous value |
1200 | /// when coalesce continues with the next pair of elements to merge. The |
1201 | /// value that remains at the end is also emitted by the iterator. |
1202 | /// |
1203 | /// Iterator element type is `Self::Item`. |
1204 | /// |
1205 | /// This iterator is *fused*. |
1206 | /// |
1207 | /// ``` |
1208 | /// use itertools::Itertools; |
1209 | /// |
1210 | /// // sum same-sign runs together |
1211 | /// let data = vec![-1., -2., -3., 3., 1., 0., -1.]; |
1212 | /// itertools::assert_equal(data.into_iter().coalesce(|x, y| |
1213 | /// if (x >= 0.) == (y >= 0.) { |
1214 | /// Ok(x + y) |
1215 | /// } else { |
1216 | /// Err((x, y)) |
1217 | /// }), |
1218 | /// vec![-6., 4., -1.]); |
1219 | /// ``` |
1220 | fn coalesce<F>(self, f: F) -> Coalesce<Self, F> |
1221 | where Self: Sized, |
1222 | F: FnMut(Self::Item, Self::Item) |
1223 | -> Result<Self::Item, (Self::Item, Self::Item)> |
1224 | { |
1225 | adaptors::coalesce(self, f) |
1226 | } |
1227 | |
1228 | /// Remove duplicates from sections of consecutive identical elements. |
1229 | /// If the iterator is sorted, all elements will be unique. |
1230 | /// |
1231 | /// Iterator element type is `Self::Item`. |
1232 | /// |
1233 | /// This iterator is *fused*. |
1234 | /// |
1235 | /// ``` |
1236 | /// use itertools::Itertools; |
1237 | /// |
1238 | /// let data = vec![1., 1., 2., 3., 3., 2., 2.]; |
1239 | /// itertools::assert_equal(data.into_iter().dedup(), |
1240 | /// vec![1., 2., 3., 2.]); |
1241 | /// ``` |
1242 | fn dedup(self) -> Dedup<Self> |
1243 | where Self: Sized, |
1244 | Self::Item: PartialEq, |
1245 | { |
1246 | adaptors::dedup(self) |
1247 | } |
1248 | |
1249 | /// Remove duplicates from sections of consecutive identical elements, |
1250 | /// determining equality using a comparison function. |
1251 | /// If the iterator is sorted, all elements will be unique. |
1252 | /// |
1253 | /// Iterator element type is `Self::Item`. |
1254 | /// |
1255 | /// This iterator is *fused*. |
1256 | /// |
1257 | /// ``` |
1258 | /// use itertools::Itertools; |
1259 | /// |
1260 | /// let data = vec![(0, 1.), (1, 1.), (0, 2.), (0, 3.), (1, 3.), (1, 2.), (2, 2.)]; |
1261 | /// itertools::assert_equal(data.into_iter().dedup_by(|x, y| x.1 == y.1), |
1262 | /// vec![(0, 1.), (0, 2.), (0, 3.), (1, 2.)]); |
1263 | /// ``` |
1264 | fn dedup_by<Cmp>(self, cmp: Cmp) -> DedupBy<Self, Cmp> |
1265 | where Self: Sized, |
1266 | Cmp: FnMut(&Self::Item, &Self::Item)->bool, |
1267 | { |
1268 | adaptors::dedup_by(self, cmp) |
1269 | } |
1270 | |
1271 | /// Remove duplicates from sections of consecutive identical elements, while keeping a count of |
1272 | /// how many repeated elements were present. |
1273 | /// If the iterator is sorted, all elements will be unique. |
1274 | /// |
1275 | /// Iterator element type is `(usize, Self::Item)`. |
1276 | /// |
1277 | /// This iterator is *fused*. |
1278 | /// |
1279 | /// ``` |
1280 | /// use itertools::Itertools; |
1281 | /// |
1282 | /// let data = vec!['a' , 'a' , 'b' , 'c' , 'c' , 'b' , 'b' ]; |
1283 | /// itertools::assert_equal(data.into_iter().dedup_with_count(), |
1284 | /// vec![(2, 'a' ), (1, 'b' ), (2, 'c' ), (2, 'b' )]); |
1285 | /// ``` |
1286 | fn dedup_with_count(self) -> DedupWithCount<Self> |
1287 | where |
1288 | Self: Sized, |
1289 | { |
1290 | adaptors::dedup_with_count(self) |
1291 | } |
1292 | |
1293 | /// Remove duplicates from sections of consecutive identical elements, while keeping a count of |
1294 | /// how many repeated elements were present. |
1295 | /// This will determine equality using a comparison function. |
1296 | /// If the iterator is sorted, all elements will be unique. |
1297 | /// |
1298 | /// Iterator element type is `(usize, Self::Item)`. |
1299 | /// |
1300 | /// This iterator is *fused*. |
1301 | /// |
1302 | /// ``` |
1303 | /// use itertools::Itertools; |
1304 | /// |
1305 | /// let data = vec![(0, 'a' ), (1, 'a' ), (0, 'b' ), (0, 'c' ), (1, 'c' ), (1, 'b' ), (2, 'b' )]; |
1306 | /// itertools::assert_equal(data.into_iter().dedup_by_with_count(|x, y| x.1 == y.1), |
1307 | /// vec![(2, (0, 'a' )), (1, (0, 'b' )), (2, (0, 'c' )), (2, (1, 'b' ))]); |
1308 | /// ``` |
1309 | fn dedup_by_with_count<Cmp>(self, cmp: Cmp) -> DedupByWithCount<Self, Cmp> |
1310 | where |
1311 | Self: Sized, |
1312 | Cmp: FnMut(&Self::Item, &Self::Item) -> bool, |
1313 | { |
1314 | adaptors::dedup_by_with_count(self, cmp) |
1315 | } |
1316 | |
1317 | /// Return an iterator adaptor that produces elements that appear more than once during the |
1318 | /// iteration. Duplicates are detected using hash and equality. |
1319 | /// |
1320 | /// The iterator is stable, returning the duplicate items in the order in which they occur in |
1321 | /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more |
1322 | /// than twice, the second item is the item retained and the rest are discarded. |
1323 | /// |
1324 | /// ``` |
1325 | /// use itertools::Itertools; |
1326 | /// |
1327 | /// let data = vec![10, 20, 30, 20, 40, 10, 50]; |
1328 | /// itertools::assert_equal(data.into_iter().duplicates(), |
1329 | /// vec![20, 10]); |
1330 | /// ``` |
1331 | #[cfg (feature = "use_std" )] |
1332 | fn duplicates(self) -> Duplicates<Self> |
1333 | where Self: Sized, |
1334 | Self::Item: Eq + Hash |
1335 | { |
1336 | duplicates_impl::duplicates(self) |
1337 | } |
1338 | |
1339 | /// Return an iterator adaptor that produces elements that appear more than once during the |
1340 | /// iteration. Duplicates are detected using hash and equality. |
1341 | /// |
1342 | /// Duplicates are detected by comparing the key they map to with the keying function `f` by |
1343 | /// hash and equality. The keys are stored in a hash map in the iterator. |
1344 | /// |
1345 | /// The iterator is stable, returning the duplicate items in the order in which they occur in |
1346 | /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more |
1347 | /// than twice, the second item is the item retained and the rest are discarded. |
1348 | /// |
1349 | /// ``` |
1350 | /// use itertools::Itertools; |
1351 | /// |
1352 | /// let data = vec!["a" , "bb" , "aa" , "c" , "ccc" ]; |
1353 | /// itertools::assert_equal(data.into_iter().duplicates_by(|s| s.len()), |
1354 | /// vec!["aa" , "c" ]); |
1355 | /// ``` |
1356 | #[cfg (feature = "use_std" )] |
1357 | fn duplicates_by<V, F>(self, f: F) -> DuplicatesBy<Self, V, F> |
1358 | where Self: Sized, |
1359 | V: Eq + Hash, |
1360 | F: FnMut(&Self::Item) -> V |
1361 | { |
1362 | duplicates_impl::duplicates_by(self, f) |
1363 | } |
1364 | |
1365 | /// Return an iterator adaptor that filters out elements that have |
1366 | /// already been produced once during the iteration. Duplicates |
1367 | /// are detected using hash and equality. |
1368 | /// |
1369 | /// Clones of visited elements are stored in a hash set in the |
1370 | /// iterator. |
1371 | /// |
1372 | /// The iterator is stable, returning the non-duplicate items in the order |
1373 | /// in which they occur in the adapted iterator. In a set of duplicate |
1374 | /// items, the first item encountered is the item retained. |
1375 | /// |
1376 | /// ``` |
1377 | /// use itertools::Itertools; |
1378 | /// |
1379 | /// let data = vec![10, 20, 30, 20, 40, 10, 50]; |
1380 | /// itertools::assert_equal(data.into_iter().unique(), |
1381 | /// vec![10, 20, 30, 40, 50]); |
1382 | /// ``` |
1383 | #[cfg (feature = "use_std" )] |
1384 | fn unique(self) -> Unique<Self> |
1385 | where Self: Sized, |
1386 | Self::Item: Clone + Eq + Hash |
1387 | { |
1388 | unique_impl::unique(self) |
1389 | } |
1390 | |
1391 | /// Return an iterator adaptor that filters out elements that have |
1392 | /// already been produced once during the iteration. |
1393 | /// |
1394 | /// Duplicates are detected by comparing the key they map to |
1395 | /// with the keying function `f` by hash and equality. |
1396 | /// The keys are stored in a hash set in the iterator. |
1397 | /// |
1398 | /// The iterator is stable, returning the non-duplicate items in the order |
1399 | /// in which they occur in the adapted iterator. In a set of duplicate |
1400 | /// items, the first item encountered is the item retained. |
1401 | /// |
1402 | /// ``` |
1403 | /// use itertools::Itertools; |
1404 | /// |
1405 | /// let data = vec!["a" , "bb" , "aa" , "c" , "ccc" ]; |
1406 | /// itertools::assert_equal(data.into_iter().unique_by(|s| s.len()), |
1407 | /// vec!["a" , "bb" , "ccc" ]); |
1408 | /// ``` |
1409 | #[cfg (feature = "use_std" )] |
1410 | fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F> |
1411 | where Self: Sized, |
1412 | V: Eq + Hash, |
1413 | F: FnMut(&Self::Item) -> V |
1414 | { |
1415 | unique_impl::unique_by(self, f) |
1416 | } |
1417 | |
1418 | /// Return an iterator adaptor that borrows from this iterator and |
1419 | /// takes items while the closure `accept` returns `true`. |
1420 | /// |
1421 | /// This adaptor can only be used on iterators that implement `PeekingNext` |
1422 | /// like `.peekable()`, `put_back` and a few other collection iterators. |
1423 | /// |
1424 | /// The last and rejected element (first `false`) is still available when |
1425 | /// `peeking_take_while` is done. |
1426 | /// |
1427 | /// |
1428 | /// See also [`.take_while_ref()`](Itertools::take_while_ref) |
1429 | /// which is a similar adaptor. |
1430 | fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<Self, F> |
1431 | where Self: Sized + PeekingNext, |
1432 | F: FnMut(&Self::Item) -> bool, |
1433 | { |
1434 | peeking_take_while::peeking_take_while(self, accept) |
1435 | } |
1436 | |
1437 | /// Return an iterator adaptor that borrows from a `Clone`-able iterator |
1438 | /// to only pick off elements while the predicate `accept` returns `true`. |
1439 | /// |
1440 | /// It uses the `Clone` trait to restore the original iterator so that the |
1441 | /// last and rejected element (first `false`) is still available when |
1442 | /// `take_while_ref` is done. |
1443 | /// |
1444 | /// ``` |
1445 | /// use itertools::Itertools; |
1446 | /// |
1447 | /// let mut hexadecimals = "0123456789abcdef" .chars(); |
1448 | /// |
1449 | /// let decimals = hexadecimals.take_while_ref(|c| c.is_numeric()) |
1450 | /// .collect::<String>(); |
1451 | /// assert_eq!(decimals, "0123456789" ); |
1452 | /// assert_eq!(hexadecimals.next(), Some('a' )); |
1453 | /// |
1454 | /// ``` |
1455 | fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<Self, F> |
1456 | where Self: Clone, |
1457 | F: FnMut(&Self::Item) -> bool |
1458 | { |
1459 | adaptors::take_while_ref(self, accept) |
1460 | } |
1461 | |
1462 | /// Returns an iterator adaptor that consumes elements while the given |
1463 | /// predicate is `true`, *including* the element for which the predicate |
1464 | /// first returned `false`. |
1465 | /// |
1466 | /// The [`.take_while()`][std::iter::Iterator::take_while] adaptor is useful |
1467 | /// when you want items satisfying a predicate, but to know when to stop |
1468 | /// taking elements, we have to consume that first element that doesn't |
1469 | /// satisfy the predicate. This adaptor includes that element where |
1470 | /// [`.take_while()`][std::iter::Iterator::take_while] would drop it. |
1471 | /// |
1472 | /// The [`.take_while_ref()`][crate::Itertools::take_while_ref] adaptor |
1473 | /// serves a similar purpose, but this adaptor doesn't require [`Clone`]ing |
1474 | /// the underlying elements. |
1475 | /// |
1476 | /// ```rust |
1477 | /// # use itertools::Itertools; |
1478 | /// let items = vec![1, 2, 3, 4, 5]; |
1479 | /// let filtered: Vec<_> = items |
1480 | /// .into_iter() |
1481 | /// .take_while_inclusive(|&n| n % 3 != 0) |
1482 | /// .collect(); |
1483 | /// |
1484 | /// assert_eq!(filtered, vec![1, 2, 3]); |
1485 | /// ``` |
1486 | /// |
1487 | /// ```rust |
1488 | /// # use itertools::Itertools; |
1489 | /// let items = vec![1, 2, 3, 4, 5]; |
1490 | /// |
1491 | /// let take_while_inclusive_result: Vec<_> = items |
1492 | /// .iter() |
1493 | /// .copied() |
1494 | /// .take_while_inclusive(|&n| n % 3 != 0) |
1495 | /// .collect(); |
1496 | /// let take_while_result: Vec<_> = items |
1497 | /// .into_iter() |
1498 | /// .take_while(|&n| n % 3 != 0) |
1499 | /// .collect(); |
1500 | /// |
1501 | /// assert_eq!(take_while_inclusive_result, vec![1, 2, 3]); |
1502 | /// assert_eq!(take_while_result, vec![1, 2]); |
1503 | /// // both iterators have the same items remaining at this point---the 3 |
1504 | /// // is lost from the `take_while` vec |
1505 | /// ``` |
1506 | /// |
1507 | /// ```rust |
1508 | /// # use itertools::Itertools; |
1509 | /// #[derive(Debug, PartialEq)] |
1510 | /// struct NoCloneImpl(i32); |
1511 | /// |
1512 | /// let non_clonable_items: Vec<_> = vec![1, 2, 3, 4, 5] |
1513 | /// .into_iter() |
1514 | /// .map(NoCloneImpl) |
1515 | /// .collect(); |
1516 | /// let filtered: Vec<_> = non_clonable_items |
1517 | /// .into_iter() |
1518 | /// .take_while_inclusive(|n| n.0 % 3 != 0) |
1519 | /// .collect(); |
1520 | /// let expected: Vec<_> = vec![1, 2, 3].into_iter().map(NoCloneImpl).collect(); |
1521 | /// assert_eq!(filtered, expected); |
1522 | fn take_while_inclusive<F>(&mut self, accept: F) -> TakeWhileInclusive<Self, F> |
1523 | where |
1524 | Self: Sized, |
1525 | F: FnMut(&Self::Item) -> bool, |
1526 | { |
1527 | take_while_inclusive::TakeWhileInclusive::new(self, accept) |
1528 | } |
1529 | |
1530 | /// Return an iterator adaptor that filters `Option<A>` iterator elements |
1531 | /// and produces `A`. Stops on the first `None` encountered. |
1532 | /// |
1533 | /// Iterator element type is `A`, the unwrapped element. |
1534 | /// |
1535 | /// ``` |
1536 | /// use itertools::Itertools; |
1537 | /// |
1538 | /// // List all hexadecimal digits |
1539 | /// itertools::assert_equal( |
1540 | /// (0..).map(|i| std::char::from_digit(i, 16)).while_some(), |
1541 | /// "0123456789abcdef" .chars()); |
1542 | /// |
1543 | /// ``` |
1544 | fn while_some<A>(self) -> WhileSome<Self> |
1545 | where Self: Sized + Iterator<Item = Option<A>> |
1546 | { |
1547 | adaptors::while_some(self) |
1548 | } |
1549 | |
1550 | /// Return an iterator adaptor that iterates over the combinations of the |
1551 | /// elements from an iterator. |
1552 | /// |
1553 | /// Iterator element can be any homogeneous tuple of type `Self::Item` with |
1554 | /// size up to 12. |
1555 | /// |
1556 | /// ``` |
1557 | /// use itertools::Itertools; |
1558 | /// |
1559 | /// let mut v = Vec::new(); |
1560 | /// for (a, b) in (1..5).tuple_combinations() { |
1561 | /// v.push((a, b)); |
1562 | /// } |
1563 | /// assert_eq!(v, vec![(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]); |
1564 | /// |
1565 | /// let mut it = (1..5).tuple_combinations(); |
1566 | /// assert_eq!(Some((1, 2, 3)), it.next()); |
1567 | /// assert_eq!(Some((1, 2, 4)), it.next()); |
1568 | /// assert_eq!(Some((1, 3, 4)), it.next()); |
1569 | /// assert_eq!(Some((2, 3, 4)), it.next()); |
1570 | /// assert_eq!(None, it.next()); |
1571 | /// |
1572 | /// // this requires a type hint |
1573 | /// let it = (1..5).tuple_combinations::<(_, _, _)>(); |
1574 | /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]); |
1575 | /// |
1576 | /// // you can also specify the complete type |
1577 | /// use itertools::TupleCombinations; |
1578 | /// use std::ops::Range; |
1579 | /// |
1580 | /// let it: TupleCombinations<Range<u32>, (u32, u32, u32)> = (1..5).tuple_combinations(); |
1581 | /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]); |
1582 | /// ``` |
1583 | fn tuple_combinations<T>(self) -> TupleCombinations<Self, T> |
1584 | where Self: Sized + Clone, |
1585 | Self::Item: Clone, |
1586 | T: adaptors::HasCombination<Self>, |
1587 | { |
1588 | adaptors::tuple_combinations(self) |
1589 | } |
1590 | |
1591 | /// Return an iterator adaptor that iterates over the `k`-length combinations of |
1592 | /// the elements from an iterator. |
1593 | /// |
1594 | /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration, |
1595 | /// and clones the iterator elements. |
1596 | /// |
1597 | /// ``` |
1598 | /// use itertools::Itertools; |
1599 | /// |
1600 | /// let it = (1..5).combinations(3); |
1601 | /// itertools::assert_equal(it, vec![ |
1602 | /// vec![1, 2, 3], |
1603 | /// vec![1, 2, 4], |
1604 | /// vec![1, 3, 4], |
1605 | /// vec![2, 3, 4], |
1606 | /// ]); |
1607 | /// ``` |
1608 | /// |
1609 | /// Note: Combinations does not take into account the equality of the iterated values. |
1610 | /// ``` |
1611 | /// use itertools::Itertools; |
1612 | /// |
1613 | /// let it = vec![1, 2, 2].into_iter().combinations(2); |
1614 | /// itertools::assert_equal(it, vec![ |
1615 | /// vec![1, 2], // Note: these are the same |
1616 | /// vec![1, 2], // Note: these are the same |
1617 | /// vec![2, 2], |
1618 | /// ]); |
1619 | /// ``` |
1620 | #[cfg (feature = "use_alloc" )] |
1621 | fn combinations(self, k: usize) -> Combinations<Self> |
1622 | where Self: Sized, |
1623 | Self::Item: Clone |
1624 | { |
1625 | combinations::combinations(self, k) |
1626 | } |
1627 | |
1628 | /// Return an iterator that iterates over the `k`-length combinations of |
1629 | /// the elements from an iterator, with replacement. |
1630 | /// |
1631 | /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration, |
1632 | /// and clones the iterator elements. |
1633 | /// |
1634 | /// ``` |
1635 | /// use itertools::Itertools; |
1636 | /// |
1637 | /// let it = (1..4).combinations_with_replacement(2); |
1638 | /// itertools::assert_equal(it, vec![ |
1639 | /// vec![1, 1], |
1640 | /// vec![1, 2], |
1641 | /// vec![1, 3], |
1642 | /// vec![2, 2], |
1643 | /// vec![2, 3], |
1644 | /// vec![3, 3], |
1645 | /// ]); |
1646 | /// ``` |
1647 | #[cfg (feature = "use_alloc" )] |
1648 | fn combinations_with_replacement(self, k: usize) -> CombinationsWithReplacement<Self> |
1649 | where |
1650 | Self: Sized, |
1651 | Self::Item: Clone, |
1652 | { |
1653 | combinations_with_replacement::combinations_with_replacement(self, k) |
1654 | } |
1655 | |
1656 | /// Return an iterator adaptor that iterates over all k-permutations of the |
1657 | /// elements from an iterator. |
1658 | /// |
1659 | /// Iterator element type is `Vec<Self::Item>` with length `k`. The iterator |
1660 | /// produces a new Vec per iteration, and clones the iterator elements. |
1661 | /// |
1662 | /// If `k` is greater than the length of the input iterator, the resultant |
1663 | /// iterator adaptor will be empty. |
1664 | /// |
1665 | /// ``` |
1666 | /// use itertools::Itertools; |
1667 | /// |
1668 | /// let perms = (5..8).permutations(2); |
1669 | /// itertools::assert_equal(perms, vec![ |
1670 | /// vec![5, 6], |
1671 | /// vec![5, 7], |
1672 | /// vec![6, 5], |
1673 | /// vec![6, 7], |
1674 | /// vec![7, 5], |
1675 | /// vec![7, 6], |
1676 | /// ]); |
1677 | /// ``` |
1678 | /// |
1679 | /// Note: Permutations does not take into account the equality of the iterated values. |
1680 | /// |
1681 | /// ``` |
1682 | /// use itertools::Itertools; |
1683 | /// |
1684 | /// let it = vec![2, 2].into_iter().permutations(2); |
1685 | /// itertools::assert_equal(it, vec![ |
1686 | /// vec![2, 2], // Note: these are the same |
1687 | /// vec![2, 2], // Note: these are the same |
1688 | /// ]); |
1689 | /// ``` |
1690 | /// |
1691 | /// Note: The source iterator is collected lazily, and will not be |
1692 | /// re-iterated if the permutations adaptor is completed and re-iterated. |
1693 | #[cfg (feature = "use_alloc" )] |
1694 | fn permutations(self, k: usize) -> Permutations<Self> |
1695 | where Self: Sized, |
1696 | Self::Item: Clone |
1697 | { |
1698 | permutations::permutations(self, k) |
1699 | } |
1700 | |
1701 | /// Return an iterator that iterates through the powerset of the elements from an |
1702 | /// iterator. |
1703 | /// |
1704 | /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new `Vec` |
1705 | /// per iteration, and clones the iterator elements. |
1706 | /// |
1707 | /// The powerset of a set contains all subsets including the empty set and the full |
1708 | /// input set. A powerset has length _2^n_ where _n_ is the length of the input |
1709 | /// set. |
1710 | /// |
1711 | /// Each `Vec` produced by this iterator represents a subset of the elements |
1712 | /// produced by the source iterator. |
1713 | /// |
1714 | /// ``` |
1715 | /// use itertools::Itertools; |
1716 | /// |
1717 | /// let sets = (1..4).powerset().collect::<Vec<_>>(); |
1718 | /// itertools::assert_equal(sets, vec![ |
1719 | /// vec![], |
1720 | /// vec![1], |
1721 | /// vec![2], |
1722 | /// vec![3], |
1723 | /// vec![1, 2], |
1724 | /// vec![1, 3], |
1725 | /// vec![2, 3], |
1726 | /// vec![1, 2, 3], |
1727 | /// ]); |
1728 | /// ``` |
1729 | #[cfg (feature = "use_alloc" )] |
1730 | fn powerset(self) -> Powerset<Self> |
1731 | where Self: Sized, |
1732 | Self::Item: Clone, |
1733 | { |
1734 | powerset::powerset(self) |
1735 | } |
1736 | |
1737 | /// Return an iterator adaptor that pads the sequence to a minimum length of |
1738 | /// `min` by filling missing elements using a closure `f`. |
1739 | /// |
1740 | /// Iterator element type is `Self::Item`. |
1741 | /// |
1742 | /// ``` |
1743 | /// use itertools::Itertools; |
1744 | /// |
1745 | /// let it = (0..5).pad_using(10, |i| 2*i); |
1746 | /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 10, 12, 14, 16, 18]); |
1747 | /// |
1748 | /// let it = (0..10).pad_using(5, |i| 2*i); |
1749 | /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]); |
1750 | /// |
1751 | /// let it = (0..5).pad_using(10, |i| 2*i).rev(); |
1752 | /// itertools::assert_equal(it, vec![18, 16, 14, 12, 10, 4, 3, 2, 1, 0]); |
1753 | /// ``` |
1754 | fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F> |
1755 | where Self: Sized, |
1756 | F: FnMut(usize) -> Self::Item |
1757 | { |
1758 | pad_tail::pad_using(self, min, f) |
1759 | } |
1760 | |
1761 | /// Return an iterator adaptor that combines each element with a `Position` to |
1762 | /// ease special-case handling of the first or last elements. |
1763 | /// |
1764 | /// Iterator element type is |
1765 | /// [`(Position, Self::Item)`](Position) |
1766 | /// |
1767 | /// ``` |
1768 | /// use itertools::{Itertools, Position}; |
1769 | /// |
1770 | /// let it = (0..4).with_position(); |
1771 | /// itertools::assert_equal(it, |
1772 | /// vec![(Position::First, 0), |
1773 | /// (Position::Middle, 1), |
1774 | /// (Position::Middle, 2), |
1775 | /// (Position::Last, 3)]); |
1776 | /// |
1777 | /// let it = (0..1).with_position(); |
1778 | /// itertools::assert_equal(it, vec![(Position::Only, 0)]); |
1779 | /// ``` |
1780 | fn with_position(self) -> WithPosition<Self> |
1781 | where Self: Sized, |
1782 | { |
1783 | with_position::with_position(self) |
1784 | } |
1785 | |
1786 | /// Return an iterator adaptor that yields the indices of all elements |
1787 | /// satisfying a predicate, counted from the start of the iterator. |
1788 | /// |
1789 | /// Equivalent to `iter.enumerate().filter(|(_, v)| predicate(v)).map(|(i, _)| i)`. |
1790 | /// |
1791 | /// ``` |
1792 | /// use itertools::Itertools; |
1793 | /// |
1794 | /// let data = vec![1, 2, 3, 3, 4, 6, 7, 9]; |
1795 | /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 0), vec![1, 4, 5]); |
1796 | /// |
1797 | /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 1).rev(), vec![7, 6, 3, 2, 0]); |
1798 | /// ``` |
1799 | fn positions<P>(self, predicate: P) -> Positions<Self, P> |
1800 | where Self: Sized, |
1801 | P: FnMut(Self::Item) -> bool, |
1802 | { |
1803 | adaptors::positions(self, predicate) |
1804 | } |
1805 | |
1806 | /// Return an iterator adaptor that applies a mutating function |
1807 | /// to each element before yielding it. |
1808 | /// |
1809 | /// ``` |
1810 | /// use itertools::Itertools; |
1811 | /// |
1812 | /// let input = vec![vec![1], vec![3, 2, 1]]; |
1813 | /// let it = input.into_iter().update(|mut v| v.push(0)); |
1814 | /// itertools::assert_equal(it, vec![vec![1, 0], vec![3, 2, 1, 0]]); |
1815 | /// ``` |
1816 | fn update<F>(self, updater: F) -> Update<Self, F> |
1817 | where Self: Sized, |
1818 | F: FnMut(&mut Self::Item), |
1819 | { |
1820 | adaptors::update(self, updater) |
1821 | } |
1822 | |
1823 | // non-adaptor methods |
1824 | /// Advances the iterator and returns the next items grouped in a tuple of |
1825 | /// a specific size (up to 12). |
1826 | /// |
1827 | /// If there are enough elements to be grouped in a tuple, then the tuple is |
1828 | /// returned inside `Some`, otherwise `None` is returned. |
1829 | /// |
1830 | /// ``` |
1831 | /// use itertools::Itertools; |
1832 | /// |
1833 | /// let mut iter = 1..5; |
1834 | /// |
1835 | /// assert_eq!(Some((1, 2)), iter.next_tuple()); |
1836 | /// ``` |
1837 | fn next_tuple<T>(&mut self) -> Option<T> |
1838 | where Self: Sized + Iterator<Item = T::Item>, |
1839 | T: traits::HomogeneousTuple |
1840 | { |
1841 | T::collect_from_iter_no_buf(self) |
1842 | } |
1843 | |
1844 | /// Collects all items from the iterator into a tuple of a specific size |
1845 | /// (up to 12). |
1846 | /// |
1847 | /// If the number of elements inside the iterator is **exactly** equal to |
1848 | /// the tuple size, then the tuple is returned inside `Some`, otherwise |
1849 | /// `None` is returned. |
1850 | /// |
1851 | /// ``` |
1852 | /// use itertools::Itertools; |
1853 | /// |
1854 | /// let iter = 1..3; |
1855 | /// |
1856 | /// if let Some((x, y)) = iter.collect_tuple() { |
1857 | /// assert_eq!((x, y), (1, 2)) |
1858 | /// } else { |
1859 | /// panic!("Expected two elements" ) |
1860 | /// } |
1861 | /// ``` |
1862 | fn collect_tuple<T>(mut self) -> Option<T> |
1863 | where Self: Sized + Iterator<Item = T::Item>, |
1864 | T: traits::HomogeneousTuple |
1865 | { |
1866 | match self.next_tuple() { |
1867 | elt @ Some(_) => match self.next() { |
1868 | Some(_) => None, |
1869 | None => elt, |
1870 | }, |
1871 | _ => None |
1872 | } |
1873 | } |
1874 | |
1875 | |
1876 | /// Find the position and value of the first element satisfying a predicate. |
1877 | /// |
1878 | /// The iterator is not advanced past the first element found. |
1879 | /// |
1880 | /// ``` |
1881 | /// use itertools::Itertools; |
1882 | /// |
1883 | /// let text = "Hα" ; |
1884 | /// assert_eq!(text.chars().find_position(|ch| ch.is_lowercase()), Some((1, 'α' ))); |
1885 | /// ``` |
1886 | fn find_position<P>(&mut self, mut pred: P) -> Option<(usize, Self::Item)> |
1887 | where P: FnMut(&Self::Item) -> bool |
1888 | { |
1889 | for (index, elt) in self.enumerate() { |
1890 | if pred(&elt) { |
1891 | return Some((index, elt)); |
1892 | } |
1893 | } |
1894 | None |
1895 | } |
1896 | /// Find the value of the first element satisfying a predicate or return the last element, if any. |
1897 | /// |
1898 | /// The iterator is not advanced past the first element found. |
1899 | /// |
1900 | /// ``` |
1901 | /// use itertools::Itertools; |
1902 | /// |
1903 | /// let numbers = [1, 2, 3, 4]; |
1904 | /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 5), Some(&4)); |
1905 | /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 2), Some(&3)); |
1906 | /// assert_eq!(std::iter::empty::<i32>().find_or_last(|&x| x > 5), None); |
1907 | /// ``` |
1908 | fn find_or_last<P>(mut self, mut predicate: P) -> Option<Self::Item> |
1909 | where Self: Sized, |
1910 | P: FnMut(&Self::Item) -> bool, |
1911 | { |
1912 | let mut prev = None; |
1913 | self.find_map(|x| if predicate(&x) { Some(x) } else { prev = Some(x); None }) |
1914 | .or(prev) |
1915 | } |
1916 | /// Find the value of the first element satisfying a predicate or return the first element, if any. |
1917 | /// |
1918 | /// The iterator is not advanced past the first element found. |
1919 | /// |
1920 | /// ``` |
1921 | /// use itertools::Itertools; |
1922 | /// |
1923 | /// let numbers = [1, 2, 3, 4]; |
1924 | /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 5), Some(&1)); |
1925 | /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 2), Some(&3)); |
1926 | /// assert_eq!(std::iter::empty::<i32>().find_or_first(|&x| x > 5), None); |
1927 | /// ``` |
1928 | fn find_or_first<P>(mut self, mut predicate: P) -> Option<Self::Item> |
1929 | where Self: Sized, |
1930 | P: FnMut(&Self::Item) -> bool, |
1931 | { |
1932 | let first = self.next()?; |
1933 | Some(if predicate(&first) { |
1934 | first |
1935 | } else { |
1936 | self.find(|x| predicate(x)).unwrap_or(first) |
1937 | }) |
1938 | } |
1939 | /// Returns `true` if the given item is present in this iterator. |
1940 | /// |
1941 | /// This method is short-circuiting. If the given item is present in this |
1942 | /// iterator, this method will consume the iterator up-to-and-including |
1943 | /// the item. If the given item is not present in this iterator, the |
1944 | /// iterator will be exhausted. |
1945 | /// |
1946 | /// ``` |
1947 | /// use itertools::Itertools; |
1948 | /// |
1949 | /// #[derive(PartialEq, Debug)] |
1950 | /// enum Enum { A, B, C, D, E, } |
1951 | /// |
1952 | /// let mut iter = vec![Enum::A, Enum::B, Enum::C, Enum::D].into_iter(); |
1953 | /// |
1954 | /// // search `iter` for `B` |
1955 | /// assert_eq!(iter.contains(&Enum::B), true); |
1956 | /// // `B` was found, so the iterator now rests at the item after `B` (i.e, `C`). |
1957 | /// assert_eq!(iter.next(), Some(Enum::C)); |
1958 | /// |
1959 | /// // search `iter` for `E` |
1960 | /// assert_eq!(iter.contains(&Enum::E), false); |
1961 | /// // `E` wasn't found, so `iter` is now exhausted |
1962 | /// assert_eq!(iter.next(), None); |
1963 | /// ``` |
1964 | fn contains<Q>(&mut self, query: &Q) -> bool |
1965 | where |
1966 | Self: Sized, |
1967 | Self::Item: Borrow<Q>, |
1968 | Q: PartialEq, |
1969 | { |
1970 | self.any(|x| x.borrow() == query) |
1971 | } |
1972 | |
1973 | /// Check whether all elements compare equal. |
1974 | /// |
1975 | /// Empty iterators are considered to have equal elements: |
1976 | /// |
1977 | /// ``` |
1978 | /// use itertools::Itertools; |
1979 | /// |
1980 | /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5]; |
1981 | /// assert!(!data.iter().all_equal()); |
1982 | /// assert!(data[0..3].iter().all_equal()); |
1983 | /// assert!(data[3..5].iter().all_equal()); |
1984 | /// assert!(data[5..8].iter().all_equal()); |
1985 | /// |
1986 | /// let data : Option<usize> = None; |
1987 | /// assert!(data.into_iter().all_equal()); |
1988 | /// ``` |
1989 | fn all_equal(&mut self) -> bool |
1990 | where Self: Sized, |
1991 | Self::Item: PartialEq, |
1992 | { |
1993 | match self.next() { |
1994 | None => true, |
1995 | Some(a) => self.all(|x| a == x), |
1996 | } |
1997 | } |
1998 | |
1999 | /// If there are elements and they are all equal, return a single copy of that element. |
2000 | /// If there are no elements, return an Error containing None. |
2001 | /// If there are elements and they are not all equal, return a tuple containing the first |
2002 | /// two non-equal elements found. |
2003 | /// |
2004 | /// ``` |
2005 | /// use itertools::Itertools; |
2006 | /// |
2007 | /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5]; |
2008 | /// assert_eq!(data.iter().all_equal_value(), Err(Some((&1, &2)))); |
2009 | /// assert_eq!(data[0..3].iter().all_equal_value(), Ok(&1)); |
2010 | /// assert_eq!(data[3..5].iter().all_equal_value(), Ok(&2)); |
2011 | /// assert_eq!(data[5..8].iter().all_equal_value(), Ok(&3)); |
2012 | /// |
2013 | /// let data : Option<usize> = None; |
2014 | /// assert_eq!(data.into_iter().all_equal_value(), Err(None)); |
2015 | /// ``` |
2016 | fn all_equal_value(&mut self) -> Result<Self::Item, Option<(Self::Item, Self::Item)>> |
2017 | where |
2018 | Self: Sized, |
2019 | Self::Item: PartialEq |
2020 | { |
2021 | let first = self.next().ok_or(None)?; |
2022 | let other = self.find(|x| x != &first); |
2023 | if let Some(other) = other { |
2024 | Err(Some((first, other))) |
2025 | } else { |
2026 | Ok(first) |
2027 | } |
2028 | } |
2029 | |
2030 | /// Check whether all elements are unique (non equal). |
2031 | /// |
2032 | /// Empty iterators are considered to have unique elements: |
2033 | /// |
2034 | /// ``` |
2035 | /// use itertools::Itertools; |
2036 | /// |
2037 | /// let data = vec![1, 2, 3, 4, 1, 5]; |
2038 | /// assert!(!data.iter().all_unique()); |
2039 | /// assert!(data[0..4].iter().all_unique()); |
2040 | /// assert!(data[1..6].iter().all_unique()); |
2041 | /// |
2042 | /// let data : Option<usize> = None; |
2043 | /// assert!(data.into_iter().all_unique()); |
2044 | /// ``` |
2045 | #[cfg (feature = "use_std" )] |
2046 | fn all_unique(&mut self) -> bool |
2047 | where Self: Sized, |
2048 | Self::Item: Eq + Hash |
2049 | { |
2050 | let mut used = HashSet::new(); |
2051 | self.all(move |elt| used.insert(elt)) |
2052 | } |
2053 | |
2054 | /// Consume the first `n` elements from the iterator eagerly, |
2055 | /// and return the same iterator again. |
2056 | /// |
2057 | /// It works similarly to *.skip(* `n` *)* except it is eager and |
2058 | /// preserves the iterator type. |
2059 | /// |
2060 | /// ``` |
2061 | /// use itertools::Itertools; |
2062 | /// |
2063 | /// let mut iter = "αβγ" .chars().dropping(2); |
2064 | /// itertools::assert_equal(iter, "γ" .chars()); |
2065 | /// ``` |
2066 | /// |
2067 | /// *Fusing notes: if the iterator is exhausted by dropping, |
2068 | /// the result of calling `.next()` again depends on the iterator implementation.* |
2069 | fn dropping(mut self, n: usize) -> Self |
2070 | where Self: Sized |
2071 | { |
2072 | if n > 0 { |
2073 | self.nth(n - 1); |
2074 | } |
2075 | self |
2076 | } |
2077 | |
2078 | /// Consume the last `n` elements from the iterator eagerly, |
2079 | /// and return the same iterator again. |
2080 | /// |
2081 | /// This is only possible on double ended iterators. `n` may be |
2082 | /// larger than the number of elements. |
2083 | /// |
2084 | /// Note: This method is eager, dropping the back elements immediately and |
2085 | /// preserves the iterator type. |
2086 | /// |
2087 | /// ``` |
2088 | /// use itertools::Itertools; |
2089 | /// |
2090 | /// let init = vec![0, 3, 6, 9].into_iter().dropping_back(1); |
2091 | /// itertools::assert_equal(init, vec![0, 3, 6]); |
2092 | /// ``` |
2093 | fn dropping_back(mut self, n: usize) -> Self |
2094 | where Self: Sized, |
2095 | Self: DoubleEndedIterator |
2096 | { |
2097 | if n > 0 { |
2098 | (&mut self).rev().nth(n - 1); |
2099 | } |
2100 | self |
2101 | } |
2102 | |
2103 | /// Run the closure `f` eagerly on each element of the iterator. |
2104 | /// |
2105 | /// Consumes the iterator until its end. |
2106 | /// |
2107 | /// ``` |
2108 | /// use std::sync::mpsc::channel; |
2109 | /// use itertools::Itertools; |
2110 | /// |
2111 | /// let (tx, rx) = channel(); |
2112 | /// |
2113 | /// // use .foreach() to apply a function to each value -- sending it |
2114 | /// (0..5).map(|x| x * 2 + 1).foreach(|x| { tx.send(x).unwrap(); } ); |
2115 | /// |
2116 | /// drop(tx); |
2117 | /// |
2118 | /// itertools::assert_equal(rx.iter(), vec![1, 3, 5, 7, 9]); |
2119 | /// ``` |
2120 | #[deprecated (note="Use .for_each() instead" , since="0.8.0" )] |
2121 | fn foreach<F>(self, f: F) |
2122 | where F: FnMut(Self::Item), |
2123 | Self: Sized, |
2124 | { |
2125 | self.for_each(f); |
2126 | } |
2127 | |
2128 | /// Combine all an iterator's elements into one element by using [`Extend`]. |
2129 | /// |
2130 | /// This combinator will extend the first item with each of the rest of the |
2131 | /// items of the iterator. If the iterator is empty, the default value of |
2132 | /// `I::Item` is returned. |
2133 | /// |
2134 | /// ```rust |
2135 | /// use itertools::Itertools; |
2136 | /// |
2137 | /// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]]; |
2138 | /// assert_eq!(input.into_iter().concat(), |
2139 | /// vec![1, 2, 3, 4, 5, 6]); |
2140 | /// ``` |
2141 | fn concat(self) -> Self::Item |
2142 | where Self: Sized, |
2143 | Self::Item: Extend<<<Self as Iterator>::Item as IntoIterator>::Item> + IntoIterator + Default |
2144 | { |
2145 | concat(self) |
2146 | } |
2147 | |
2148 | /// `.collect_vec()` is simply a type specialization of [`Iterator::collect`], |
2149 | /// for convenience. |
2150 | #[cfg (feature = "use_alloc" )] |
2151 | fn collect_vec(self) -> Vec<Self::Item> |
2152 | where Self: Sized |
2153 | { |
2154 | self.collect() |
2155 | } |
2156 | |
2157 | /// `.try_collect()` is more convenient way of writing |
2158 | /// `.collect::<Result<_, _>>()` |
2159 | /// |
2160 | /// # Example |
2161 | /// |
2162 | /// ``` |
2163 | /// use std::{fs, io}; |
2164 | /// use itertools::Itertools; |
2165 | /// |
2166 | /// fn process_dir_entries(entries: &[fs::DirEntry]) { |
2167 | /// // ... |
2168 | /// } |
2169 | /// |
2170 | /// fn do_stuff() -> std::io::Result<()> { |
2171 | /// let entries: Vec<_> = fs::read_dir("." )?.try_collect()?; |
2172 | /// process_dir_entries(&entries); |
2173 | /// |
2174 | /// Ok(()) |
2175 | /// } |
2176 | /// ``` |
2177 | #[cfg (feature = "use_alloc" )] |
2178 | fn try_collect<T, U, E>(self) -> Result<U, E> |
2179 | where |
2180 | Self: Sized + Iterator<Item = Result<T, E>>, |
2181 | Result<U, E>: FromIterator<Result<T, E>>, |
2182 | { |
2183 | self.collect() |
2184 | } |
2185 | |
2186 | /// Assign to each reference in `self` from the `from` iterator, |
2187 | /// stopping at the shortest of the two iterators. |
2188 | /// |
2189 | /// The `from` iterator is queried for its next element before the `self` |
2190 | /// iterator, and if either is exhausted the method is done. |
2191 | /// |
2192 | /// Return the number of elements written. |
2193 | /// |
2194 | /// ``` |
2195 | /// use itertools::Itertools; |
2196 | /// |
2197 | /// let mut xs = [0; 4]; |
2198 | /// xs.iter_mut().set_from(1..); |
2199 | /// assert_eq!(xs, [1, 2, 3, 4]); |
2200 | /// ``` |
2201 | #[inline ] |
2202 | fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize |
2203 | where Self: Iterator<Item = &'a mut A>, |
2204 | J: IntoIterator<Item = A> |
2205 | { |
2206 | let mut count = 0; |
2207 | for elt in from { |
2208 | match self.next() { |
2209 | None => break, |
2210 | Some(ptr) => *ptr = elt, |
2211 | } |
2212 | count += 1; |
2213 | } |
2214 | count |
2215 | } |
2216 | |
2217 | /// Combine all iterator elements into one String, separated by `sep`. |
2218 | /// |
2219 | /// Use the `Display` implementation of each element. |
2220 | /// |
2221 | /// ``` |
2222 | /// use itertools::Itertools; |
2223 | /// |
2224 | /// assert_eq!(["a" , "b" , "c" ].iter().join(", " ), "a, b, c" ); |
2225 | /// assert_eq!([1, 2, 3].iter().join(", " ), "1, 2, 3" ); |
2226 | /// ``` |
2227 | #[cfg (feature = "use_alloc" )] |
2228 | fn join(&mut self, sep: &str) -> String |
2229 | where Self::Item: std::fmt::Display |
2230 | { |
2231 | match self.next() { |
2232 | None => String::new(), |
2233 | Some(first_elt) => { |
2234 | // estimate lower bound of capacity needed |
2235 | let (lower, _) = self.size_hint(); |
2236 | let mut result = String::with_capacity(sep.len() * lower); |
2237 | write!(&mut result, " {}" , first_elt).unwrap(); |
2238 | self.for_each(|elt| { |
2239 | result.push_str(sep); |
2240 | write!(&mut result, " {}" , elt).unwrap(); |
2241 | }); |
2242 | result |
2243 | } |
2244 | } |
2245 | } |
2246 | |
2247 | /// Format all iterator elements, separated by `sep`. |
2248 | /// |
2249 | /// All elements are formatted (any formatting trait) |
2250 | /// with `sep` inserted between each element. |
2251 | /// |
2252 | /// **Panics** if the formatter helper is formatted more than once. |
2253 | /// |
2254 | /// ``` |
2255 | /// use itertools::Itertools; |
2256 | /// |
2257 | /// let data = [1.1, 2.71828, -3.]; |
2258 | /// assert_eq!( |
2259 | /// format!("{:.2}" , data.iter().format(", " )), |
2260 | /// "1.10, 2.72, -3.00" ); |
2261 | /// ``` |
2262 | fn format(self, sep: &str) -> Format<Self> |
2263 | where Self: Sized, |
2264 | { |
2265 | format::new_format_default(self, sep) |
2266 | } |
2267 | |
2268 | /// Format all iterator elements, separated by `sep`. |
2269 | /// |
2270 | /// This is a customizable version of [`.format()`](Itertools::format). |
2271 | /// |
2272 | /// The supplied closure `format` is called once per iterator element, |
2273 | /// with two arguments: the element and a callback that takes a |
2274 | /// `&Display` value, i.e. any reference to type that implements `Display`. |
2275 | /// |
2276 | /// Using `&format_args!(...)` is the most versatile way to apply custom |
2277 | /// element formatting. The callback can be called multiple times if needed. |
2278 | /// |
2279 | /// **Panics** if the formatter helper is formatted more than once. |
2280 | /// |
2281 | /// ``` |
2282 | /// use itertools::Itertools; |
2283 | /// |
2284 | /// let data = [1.1, 2.71828, -3.]; |
2285 | /// let data_formatter = data.iter().format_with(", " , |elt, f| f(&format_args!("{:.2}" , elt))); |
2286 | /// assert_eq!(format!("{}" , data_formatter), |
2287 | /// "1.10, 2.72, -3.00" ); |
2288 | /// |
2289 | /// // .format_with() is recursively composable |
2290 | /// let matrix = [[1., 2., 3.], |
2291 | /// [4., 5., 6.]]; |
2292 | /// let matrix_formatter = matrix.iter().format_with(" \n" , |row, f| { |
2293 | /// f(&row.iter().format_with(", " , |elt, g| g(&elt))) |
2294 | /// }); |
2295 | /// assert_eq!(format!("{}" , matrix_formatter), |
2296 | /// "1, 2, 3 \n4, 5, 6" ); |
2297 | /// |
2298 | /// |
2299 | /// ``` |
2300 | fn format_with<F>(self, sep: &str, format: F) -> FormatWith<Self, F> |
2301 | where Self: Sized, |
2302 | F: FnMut(Self::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result, |
2303 | { |
2304 | format::new_format(self, sep, format) |
2305 | } |
2306 | |
2307 | /// See [`.fold_ok()`](Itertools::fold_ok). |
2308 | #[deprecated (note="Use .fold_ok() instead" , since="0.10.0" )] |
2309 | fn fold_results<A, E, B, F>(&mut self, start: B, f: F) -> Result<B, E> |
2310 | where Self: Iterator<Item = Result<A, E>>, |
2311 | F: FnMut(B, A) -> B |
2312 | { |
2313 | self.fold_ok(start, f) |
2314 | } |
2315 | |
2316 | /// Fold `Result` values from an iterator. |
2317 | /// |
2318 | /// Only `Ok` values are folded. If no error is encountered, the folded |
2319 | /// value is returned inside `Ok`. Otherwise, the operation terminates |
2320 | /// and returns the first `Err` value it encounters. No iterator elements are |
2321 | /// consumed after the first error. |
2322 | /// |
2323 | /// The first accumulator value is the `start` parameter. |
2324 | /// Each iteration passes the accumulator value and the next value inside `Ok` |
2325 | /// to the fold function `f` and its return value becomes the new accumulator value. |
2326 | /// |
2327 | /// For example the sequence *Ok(1), Ok(2), Ok(3)* will result in a |
2328 | /// computation like this: |
2329 | /// |
2330 | /// ```ignore |
2331 | /// let mut accum = start; |
2332 | /// accum = f(accum, 1); |
2333 | /// accum = f(accum, 2); |
2334 | /// accum = f(accum, 3); |
2335 | /// ``` |
2336 | /// |
2337 | /// With a `start` value of 0 and an addition as folding function, |
2338 | /// this effectively results in *((0 + 1) + 2) + 3* |
2339 | /// |
2340 | /// ``` |
2341 | /// use std::ops::Add; |
2342 | /// use itertools::Itertools; |
2343 | /// |
2344 | /// let values = [1, 2, -2, -1, 2, 1]; |
2345 | /// assert_eq!( |
2346 | /// values.iter() |
2347 | /// .map(Ok::<_, ()>) |
2348 | /// .fold_ok(0, Add::add), |
2349 | /// Ok(3) |
2350 | /// ); |
2351 | /// assert!( |
2352 | /// values.iter() |
2353 | /// .map(|&x| if x >= 0 { Ok(x) } else { Err("Negative number" ) }) |
2354 | /// .fold_ok(0, Add::add) |
2355 | /// .is_err() |
2356 | /// ); |
2357 | /// ``` |
2358 | fn fold_ok<A, E, B, F>(&mut self, mut start: B, mut f: F) -> Result<B, E> |
2359 | where Self: Iterator<Item = Result<A, E>>, |
2360 | F: FnMut(B, A) -> B |
2361 | { |
2362 | for elt in self { |
2363 | match elt { |
2364 | Ok(v) => start = f(start, v), |
2365 | Err(u) => return Err(u), |
2366 | } |
2367 | } |
2368 | Ok(start) |
2369 | } |
2370 | |
2371 | /// Fold `Option` values from an iterator. |
2372 | /// |
2373 | /// Only `Some` values are folded. If no `None` is encountered, the folded |
2374 | /// value is returned inside `Some`. Otherwise, the operation terminates |
2375 | /// and returns `None`. No iterator elements are consumed after the `None`. |
2376 | /// |
2377 | /// This is the `Option` equivalent to [`fold_ok`](Itertools::fold_ok). |
2378 | /// |
2379 | /// ``` |
2380 | /// use std::ops::Add; |
2381 | /// use itertools::Itertools; |
2382 | /// |
2383 | /// let mut values = vec![Some(1), Some(2), Some(-2)].into_iter(); |
2384 | /// assert_eq!(values.fold_options(5, Add::add), Some(5 + 1 + 2 - 2)); |
2385 | /// |
2386 | /// let mut more_values = vec![Some(2), None, Some(0)].into_iter(); |
2387 | /// assert!(more_values.fold_options(0, Add::add).is_none()); |
2388 | /// assert_eq!(more_values.next().unwrap(), Some(0)); |
2389 | /// ``` |
2390 | fn fold_options<A, B, F>(&mut self, mut start: B, mut f: F) -> Option<B> |
2391 | where Self: Iterator<Item = Option<A>>, |
2392 | F: FnMut(B, A) -> B |
2393 | { |
2394 | for elt in self { |
2395 | match elt { |
2396 | Some(v) => start = f(start, v), |
2397 | None => return None, |
2398 | } |
2399 | } |
2400 | Some(start) |
2401 | } |
2402 | |
2403 | /// Accumulator of the elements in the iterator. |
2404 | /// |
2405 | /// Like `.fold()`, without a base case. If the iterator is |
2406 | /// empty, return `None`. With just one element, return it. |
2407 | /// Otherwise elements are accumulated in sequence using the closure `f`. |
2408 | /// |
2409 | /// ``` |
2410 | /// use itertools::Itertools; |
2411 | /// |
2412 | /// assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45); |
2413 | /// assert_eq!((0..0).fold1(|x, y| x * y), None); |
2414 | /// ``` |
2415 | #[deprecated (since = "0.10.2" , note = "Use `Iterator::reduce` instead" )] |
2416 | fn fold1<F>(mut self, f: F) -> Option<Self::Item> |
2417 | where F: FnMut(Self::Item, Self::Item) -> Self::Item, |
2418 | Self: Sized, |
2419 | { |
2420 | self.next().map(move |x| self.fold(x, f)) |
2421 | } |
2422 | |
2423 | /// Accumulate the elements in the iterator in a tree-like manner. |
2424 | /// |
2425 | /// You can think of it as, while there's more than one item, repeatedly |
2426 | /// combining adjacent items. It does so in bottom-up-merge-sort order, |
2427 | /// however, so that it needs only logarithmic stack space. |
2428 | /// |
2429 | /// This produces a call tree like the following (where the calls under |
2430 | /// an item are done after reading that item): |
2431 | /// |
2432 | /// ```text |
2433 | /// 1 2 3 4 5 6 7 |
2434 | /// │ │ │ │ │ │ │ |
2435 | /// └─f └─f └─f │ |
2436 | /// │ │ │ │ |
2437 | /// └───f └─f |
2438 | /// │ │ |
2439 | /// └─────f |
2440 | /// ``` |
2441 | /// |
2442 | /// Which, for non-associative functions, will typically produce a different |
2443 | /// result than the linear call tree used by [`Iterator::reduce`]: |
2444 | /// |
2445 | /// ```text |
2446 | /// 1 2 3 4 5 6 7 |
2447 | /// │ │ │ │ │ │ │ |
2448 | /// └─f─f─f─f─f─f |
2449 | /// ``` |
2450 | /// |
2451 | /// If `f` is associative, prefer the normal [`Iterator::reduce`] instead. |
2452 | /// |
2453 | /// ``` |
2454 | /// use itertools::Itertools; |
2455 | /// |
2456 | /// // The same tree as above |
2457 | /// let num_strings = (1..8).map(|x| x.to_string()); |
2458 | /// assert_eq!(num_strings.tree_fold1(|x, y| format!("f({}, {})" , x, y)), |
2459 | /// Some(String::from("f(f(f(1, 2), f(3, 4)), f(f(5, 6), 7))" ))); |
2460 | /// |
2461 | /// // Like fold1, an empty iterator produces None |
2462 | /// assert_eq!((0..0).tree_fold1(|x, y| x * y), None); |
2463 | /// |
2464 | /// // tree_fold1 matches fold1 for associative operations... |
2465 | /// assert_eq!((0..10).tree_fold1(|x, y| x + y), |
2466 | /// (0..10).fold1(|x, y| x + y)); |
2467 | /// // ...but not for non-associative ones |
2468 | /// assert_ne!((0..10).tree_fold1(|x, y| x - y), |
2469 | /// (0..10).fold1(|x, y| x - y)); |
2470 | /// ``` |
2471 | fn tree_fold1<F>(mut self, mut f: F) -> Option<Self::Item> |
2472 | where F: FnMut(Self::Item, Self::Item) -> Self::Item, |
2473 | Self: Sized, |
2474 | { |
2475 | type State<T> = Result<T, Option<T>>; |
2476 | |
2477 | fn inner0<T, II, FF>(it: &mut II, f: &mut FF) -> State<T> |
2478 | where |
2479 | II: Iterator<Item = T>, |
2480 | FF: FnMut(T, T) -> T |
2481 | { |
2482 | // This function could be replaced with `it.next().ok_or(None)`, |
2483 | // but half the useful tree_fold1 work is combining adjacent items, |
2484 | // so put that in a form that LLVM is more likely to optimize well. |
2485 | |
2486 | let a = |
2487 | if let Some(v) = it.next() { v } |
2488 | else { return Err(None) }; |
2489 | let b = |
2490 | if let Some(v) = it.next() { v } |
2491 | else { return Err(Some(a)) }; |
2492 | Ok(f(a, b)) |
2493 | } |
2494 | |
2495 | fn inner<T, II, FF>(stop: usize, it: &mut II, f: &mut FF) -> State<T> |
2496 | where |
2497 | II: Iterator<Item = T>, |
2498 | FF: FnMut(T, T) -> T |
2499 | { |
2500 | let mut x = inner0(it, f)?; |
2501 | for height in 0..stop { |
2502 | // Try to get another tree the same size with which to combine it, |
2503 | // creating a new tree that's twice as big for next time around. |
2504 | let next = |
2505 | if height == 0 { |
2506 | inner0(it, f) |
2507 | } else { |
2508 | inner(height, it, f) |
2509 | }; |
2510 | match next { |
2511 | Ok(y) => x = f(x, y), |
2512 | |
2513 | // If we ran out of items, combine whatever we did manage |
2514 | // to get. It's better combined with the current value |
2515 | // than something in a parent frame, because the tree in |
2516 | // the parent is always as least as big as this one. |
2517 | Err(None) => return Err(Some(x)), |
2518 | Err(Some(y)) => return Err(Some(f(x, y))), |
2519 | } |
2520 | } |
2521 | Ok(x) |
2522 | } |
2523 | |
2524 | match inner(usize::max_value(), &mut self, &mut f) { |
2525 | Err(x) => x, |
2526 | _ => unreachable!(), |
2527 | } |
2528 | } |
2529 | |
2530 | /// An iterator method that applies a function, producing a single, final value. |
2531 | /// |
2532 | /// `fold_while()` is basically equivalent to [`Iterator::fold`] but with additional support for |
2533 | /// early exit via short-circuiting. |
2534 | /// |
2535 | /// ``` |
2536 | /// use itertools::Itertools; |
2537 | /// use itertools::FoldWhile::{Continue, Done}; |
2538 | /// |
2539 | /// let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
2540 | /// |
2541 | /// let mut result = 0; |
2542 | /// |
2543 | /// // for loop: |
2544 | /// for i in &numbers { |
2545 | /// if *i > 5 { |
2546 | /// break; |
2547 | /// } |
2548 | /// result = result + i; |
2549 | /// } |
2550 | /// |
2551 | /// // fold: |
2552 | /// let result2 = numbers.iter().fold(0, |acc, x| { |
2553 | /// if *x > 5 { acc } else { acc + x } |
2554 | /// }); |
2555 | /// |
2556 | /// // fold_while: |
2557 | /// let result3 = numbers.iter().fold_while(0, |acc, x| { |
2558 | /// if *x > 5 { Done(acc) } else { Continue(acc + x) } |
2559 | /// }).into_inner(); |
2560 | /// |
2561 | /// // they're the same |
2562 | /// assert_eq!(result, result2); |
2563 | /// assert_eq!(result2, result3); |
2564 | /// ``` |
2565 | /// |
2566 | /// The big difference between the computations of `result2` and `result3` is that while |
2567 | /// `fold()` called the provided closure for every item of the callee iterator, |
2568 | /// `fold_while()` actually stopped iterating as soon as it encountered `Fold::Done(_)`. |
2569 | fn fold_while<B, F>(&mut self, init: B, mut f: F) -> FoldWhile<B> |
2570 | where Self: Sized, |
2571 | F: FnMut(B, Self::Item) -> FoldWhile<B> |
2572 | { |
2573 | use Result::{ |
2574 | Ok as Continue, |
2575 | Err as Break, |
2576 | }; |
2577 | |
2578 | let result = self.try_fold(init, #[inline (always)] |acc, v| |
2579 | match f(acc, v) { |
2580 | FoldWhile::Continue(acc) => Continue(acc), |
2581 | FoldWhile::Done(acc) => Break(acc), |
2582 | } |
2583 | ); |
2584 | |
2585 | match result { |
2586 | Continue(acc) => FoldWhile::Continue(acc), |
2587 | Break(acc) => FoldWhile::Done(acc), |
2588 | } |
2589 | } |
2590 | |
2591 | /// Iterate over the entire iterator and add all the elements. |
2592 | /// |
2593 | /// An empty iterator returns `None`, otherwise `Some(sum)`. |
2594 | /// |
2595 | /// # Panics |
2596 | /// |
2597 | /// When calling `sum1()` and a primitive integer type is being returned, this |
2598 | /// method will panic if the computation overflows and debug assertions are |
2599 | /// enabled. |
2600 | /// |
2601 | /// # Examples |
2602 | /// |
2603 | /// ``` |
2604 | /// use itertools::Itertools; |
2605 | /// |
2606 | /// let empty_sum = (1..1).sum1::<i32>(); |
2607 | /// assert_eq!(empty_sum, None); |
2608 | /// |
2609 | /// let nonempty_sum = (1..11).sum1::<i32>(); |
2610 | /// assert_eq!(nonempty_sum, Some(55)); |
2611 | /// ``` |
2612 | fn sum1<S>(mut self) -> Option<S> |
2613 | where Self: Sized, |
2614 | S: std::iter::Sum<Self::Item>, |
2615 | { |
2616 | self.next() |
2617 | .map(|first| once(first).chain(self).sum()) |
2618 | } |
2619 | |
2620 | /// Iterate over the entire iterator and multiply all the elements. |
2621 | /// |
2622 | /// An empty iterator returns `None`, otherwise `Some(product)`. |
2623 | /// |
2624 | /// # Panics |
2625 | /// |
2626 | /// When calling `product1()` and a primitive integer type is being returned, |
2627 | /// method will panic if the computation overflows and debug assertions are |
2628 | /// enabled. |
2629 | /// |
2630 | /// # Examples |
2631 | /// ``` |
2632 | /// use itertools::Itertools; |
2633 | /// |
2634 | /// let empty_product = (1..1).product1::<i32>(); |
2635 | /// assert_eq!(empty_product, None); |
2636 | /// |
2637 | /// let nonempty_product = (1..11).product1::<i32>(); |
2638 | /// assert_eq!(nonempty_product, Some(3628800)); |
2639 | /// ``` |
2640 | fn product1<P>(mut self) -> Option<P> |
2641 | where Self: Sized, |
2642 | P: std::iter::Product<Self::Item>, |
2643 | { |
2644 | self.next() |
2645 | .map(|first| once(first).chain(self).product()) |
2646 | } |
2647 | |
2648 | /// Sort all iterator elements into a new iterator in ascending order. |
2649 | /// |
2650 | /// **Note:** This consumes the entire iterator, uses the |
2651 | /// [`slice::sort_unstable`] method and returns the result as a new |
2652 | /// iterator that owns its elements. |
2653 | /// |
2654 | /// This sort is unstable (i.e., may reorder equal elements). |
2655 | /// |
2656 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2657 | /// without any extra copying or allocation cost. |
2658 | /// |
2659 | /// ``` |
2660 | /// use itertools::Itertools; |
2661 | /// |
2662 | /// // sort the letters of the text in ascending order |
2663 | /// let text = "bdacfe" ; |
2664 | /// itertools::assert_equal(text.chars().sorted_unstable(), |
2665 | /// "abcdef" .chars()); |
2666 | /// ``` |
2667 | #[cfg (feature = "use_alloc" )] |
2668 | fn sorted_unstable(self) -> VecIntoIter<Self::Item> |
2669 | where Self: Sized, |
2670 | Self::Item: Ord |
2671 | { |
2672 | // Use .sort_unstable() directly since it is not quite identical with |
2673 | // .sort_by(Ord::cmp) |
2674 | let mut v = Vec::from_iter(self); |
2675 | v.sort_unstable(); |
2676 | v.into_iter() |
2677 | } |
2678 | |
2679 | /// Sort all iterator elements into a new iterator in ascending order. |
2680 | /// |
2681 | /// **Note:** This consumes the entire iterator, uses the |
2682 | /// [`slice::sort_unstable_by`] method and returns the result as a new |
2683 | /// iterator that owns its elements. |
2684 | /// |
2685 | /// This sort is unstable (i.e., may reorder equal elements). |
2686 | /// |
2687 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2688 | /// without any extra copying or allocation cost. |
2689 | /// |
2690 | /// ``` |
2691 | /// use itertools::Itertools; |
2692 | /// |
2693 | /// // sort people in descending order by age |
2694 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 27)]; |
2695 | /// |
2696 | /// let oldest_people_first = people |
2697 | /// .into_iter() |
2698 | /// .sorted_unstable_by(|a, b| Ord::cmp(&b.1, &a.1)) |
2699 | /// .map(|(person, _age)| person); |
2700 | /// |
2701 | /// itertools::assert_equal(oldest_people_first, |
2702 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2703 | /// ``` |
2704 | #[cfg (feature = "use_alloc" )] |
2705 | fn sorted_unstable_by<F>(self, cmp: F) -> VecIntoIter<Self::Item> |
2706 | where Self: Sized, |
2707 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, |
2708 | { |
2709 | let mut v = Vec::from_iter(self); |
2710 | v.sort_unstable_by(cmp); |
2711 | v.into_iter() |
2712 | } |
2713 | |
2714 | /// Sort all iterator elements into a new iterator in ascending order. |
2715 | /// |
2716 | /// **Note:** This consumes the entire iterator, uses the |
2717 | /// [`slice::sort_unstable_by_key`] method and returns the result as a new |
2718 | /// iterator that owns its elements. |
2719 | /// |
2720 | /// This sort is unstable (i.e., may reorder equal elements). |
2721 | /// |
2722 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2723 | /// without any extra copying or allocation cost. |
2724 | /// |
2725 | /// ``` |
2726 | /// use itertools::Itertools; |
2727 | /// |
2728 | /// // sort people in descending order by age |
2729 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 27)]; |
2730 | /// |
2731 | /// let oldest_people_first = people |
2732 | /// .into_iter() |
2733 | /// .sorted_unstable_by_key(|x| -x.1) |
2734 | /// .map(|(person, _age)| person); |
2735 | /// |
2736 | /// itertools::assert_equal(oldest_people_first, |
2737 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2738 | /// ``` |
2739 | #[cfg (feature = "use_alloc" )] |
2740 | fn sorted_unstable_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> |
2741 | where Self: Sized, |
2742 | K: Ord, |
2743 | F: FnMut(&Self::Item) -> K, |
2744 | { |
2745 | let mut v = Vec::from_iter(self); |
2746 | v.sort_unstable_by_key(f); |
2747 | v.into_iter() |
2748 | } |
2749 | |
2750 | /// Sort all iterator elements into a new iterator in ascending order. |
2751 | /// |
2752 | /// **Note:** This consumes the entire iterator, uses the |
2753 | /// [`slice::sort`] method and returns the result as a new |
2754 | /// iterator that owns its elements. |
2755 | /// |
2756 | /// This sort is stable (i.e., does not reorder equal elements). |
2757 | /// |
2758 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2759 | /// without any extra copying or allocation cost. |
2760 | /// |
2761 | /// ``` |
2762 | /// use itertools::Itertools; |
2763 | /// |
2764 | /// // sort the letters of the text in ascending order |
2765 | /// let text = "bdacfe" ; |
2766 | /// itertools::assert_equal(text.chars().sorted(), |
2767 | /// "abcdef" .chars()); |
2768 | /// ``` |
2769 | #[cfg (feature = "use_alloc" )] |
2770 | fn sorted(self) -> VecIntoIter<Self::Item> |
2771 | where Self: Sized, |
2772 | Self::Item: Ord |
2773 | { |
2774 | // Use .sort() directly since it is not quite identical with |
2775 | // .sort_by(Ord::cmp) |
2776 | let mut v = Vec::from_iter(self); |
2777 | v.sort(); |
2778 | v.into_iter() |
2779 | } |
2780 | |
2781 | /// Sort all iterator elements into a new iterator in ascending order. |
2782 | /// |
2783 | /// **Note:** This consumes the entire iterator, uses the |
2784 | /// [`slice::sort_by`] method and returns the result as a new |
2785 | /// iterator that owns its elements. |
2786 | /// |
2787 | /// This sort is stable (i.e., does not reorder equal elements). |
2788 | /// |
2789 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2790 | /// without any extra copying or allocation cost. |
2791 | /// |
2792 | /// ``` |
2793 | /// use itertools::Itertools; |
2794 | /// |
2795 | /// // sort people in descending order by age |
2796 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 30)]; |
2797 | /// |
2798 | /// let oldest_people_first = people |
2799 | /// .into_iter() |
2800 | /// .sorted_by(|a, b| Ord::cmp(&b.1, &a.1)) |
2801 | /// .map(|(person, _age)| person); |
2802 | /// |
2803 | /// itertools::assert_equal(oldest_people_first, |
2804 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2805 | /// ``` |
2806 | #[cfg (feature = "use_alloc" )] |
2807 | fn sorted_by<F>(self, cmp: F) -> VecIntoIter<Self::Item> |
2808 | where Self: Sized, |
2809 | F: FnMut(&Self::Item, &Self::Item) -> Ordering, |
2810 | { |
2811 | let mut v = Vec::from_iter(self); |
2812 | v.sort_by(cmp); |
2813 | v.into_iter() |
2814 | } |
2815 | |
2816 | /// Sort all iterator elements into a new iterator in ascending order. |
2817 | /// |
2818 | /// **Note:** This consumes the entire iterator, uses the |
2819 | /// [`slice::sort_by_key`] method and returns the result as a new |
2820 | /// iterator that owns its elements. |
2821 | /// |
2822 | /// This sort is stable (i.e., does not reorder equal elements). |
2823 | /// |
2824 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2825 | /// without any extra copying or allocation cost. |
2826 | /// |
2827 | /// ``` |
2828 | /// use itertools::Itertools; |
2829 | /// |
2830 | /// // sort people in descending order by age |
2831 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 30)]; |
2832 | /// |
2833 | /// let oldest_people_first = people |
2834 | /// .into_iter() |
2835 | /// .sorted_by_key(|x| -x.1) |
2836 | /// .map(|(person, _age)| person); |
2837 | /// |
2838 | /// itertools::assert_equal(oldest_people_first, |
2839 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2840 | /// ``` |
2841 | #[cfg (feature = "use_alloc" )] |
2842 | fn sorted_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> |
2843 | where Self: Sized, |
2844 | K: Ord, |
2845 | F: FnMut(&Self::Item) -> K, |
2846 | { |
2847 | let mut v = Vec::from_iter(self); |
2848 | v.sort_by_key(f); |
2849 | v.into_iter() |
2850 | } |
2851 | |
2852 | /// Sort all iterator elements into a new iterator in ascending order. The key function is |
2853 | /// called exactly once per key. |
2854 | /// |
2855 | /// **Note:** This consumes the entire iterator, uses the |
2856 | /// [`slice::sort_by_cached_key`] method and returns the result as a new |
2857 | /// iterator that owns its elements. |
2858 | /// |
2859 | /// This sort is stable (i.e., does not reorder equal elements). |
2860 | /// |
2861 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2862 | /// without any extra copying or allocation cost. |
2863 | /// |
2864 | /// ``` |
2865 | /// use itertools::Itertools; |
2866 | /// |
2867 | /// // sort people in descending order by age |
2868 | /// let people = vec![("Jane" , 20), ("John" , 18), ("Jill" , 30), ("Jack" , 30)]; |
2869 | /// |
2870 | /// let oldest_people_first = people |
2871 | /// .into_iter() |
2872 | /// .sorted_by_cached_key(|x| -x.1) |
2873 | /// .map(|(person, _age)| person); |
2874 | /// |
2875 | /// itertools::assert_equal(oldest_people_first, |
2876 | /// vec!["Jill" , "Jack" , "Jane" , "John" ]); |
2877 | /// ``` |
2878 | #[cfg (feature = "use_alloc" )] |
2879 | fn sorted_by_cached_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> |
2880 | where |
2881 | Self: Sized, |
2882 | K: Ord, |
2883 | F: FnMut(&Self::Item) -> K, |
2884 | { |
2885 | let mut v = Vec::from_iter(self); |
2886 | v.sort_by_cached_key(f); |
2887 | v.into_iter() |
2888 | } |
2889 | |
2890 | /// Sort the k smallest elements into a new iterator, in ascending order. |
2891 | /// |
2892 | /// **Note:** This consumes the entire iterator, and returns the result |
2893 | /// as a new iterator that owns its elements. If the input contains |
2894 | /// less than k elements, the result is equivalent to `self.sorted()`. |
2895 | /// |
2896 | /// This is guaranteed to use `k * sizeof(Self::Item) + O(1)` memory |
2897 | /// and `O(n log k)` time, with `n` the number of elements in the input. |
2898 | /// |
2899 | /// The sorted iterator, if directly collected to a `Vec`, is converted |
2900 | /// without any extra copying or allocation cost. |
2901 | /// |
2902 | /// **Note:** This is functionally-equivalent to `self.sorted().take(k)` |
2903 | /// but much more efficient. |
2904 | /// |
2905 | /// ``` |
2906 | /// use itertools::Itertools; |
2907 | /// |
2908 | /// // A random permutation of 0..15 |
2909 | /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; |
2910 | /// |
2911 | /// let five_smallest = numbers |
2912 | /// .into_iter() |
2913 | /// .k_smallest(5); |
2914 | /// |
2915 | /// itertools::assert_equal(five_smallest, 0..5); |
2916 | /// ``` |
2917 | #[cfg (feature = "use_alloc" )] |
2918 | fn k_smallest(self, k: usize) -> VecIntoIter<Self::Item> |
2919 | where Self: Sized, |
2920 | Self::Item: Ord |
2921 | { |
2922 | crate::k_smallest::k_smallest(self, k) |
2923 | .into_sorted_vec() |
2924 | .into_iter() |
2925 | } |
2926 | |
2927 | /// Collect all iterator elements into one of two |
2928 | /// partitions. Unlike [`Iterator::partition`], each partition may |
2929 | /// have a distinct type. |
2930 | /// |
2931 | /// ``` |
2932 | /// use itertools::{Itertools, Either}; |
2933 | /// |
2934 | /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)]; |
2935 | /// |
2936 | /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures |
2937 | /// .into_iter() |
2938 | /// .partition_map(|r| { |
2939 | /// match r { |
2940 | /// Ok(v) => Either::Left(v), |
2941 | /// Err(v) => Either::Right(v), |
2942 | /// } |
2943 | /// }); |
2944 | /// |
2945 | /// assert_eq!(successes, [1, 2]); |
2946 | /// assert_eq!(failures, [false, true]); |
2947 | /// ``` |
2948 | fn partition_map<A, B, F, L, R>(self, mut predicate: F) -> (A, B) |
2949 | where Self: Sized, |
2950 | F: FnMut(Self::Item) -> Either<L, R>, |
2951 | A: Default + Extend<L>, |
2952 | B: Default + Extend<R>, |
2953 | { |
2954 | let mut left = A::default(); |
2955 | let mut right = B::default(); |
2956 | |
2957 | self.for_each(|val| match predicate(val) { |
2958 | Either::Left(v) => left.extend(Some(v)), |
2959 | Either::Right(v) => right.extend(Some(v)), |
2960 | }); |
2961 | |
2962 | (left, right) |
2963 | } |
2964 | |
2965 | /// Partition a sequence of `Result`s into one list of all the `Ok` elements |
2966 | /// and another list of all the `Err` elements. |
2967 | /// |
2968 | /// ``` |
2969 | /// use itertools::Itertools; |
2970 | /// |
2971 | /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)]; |
2972 | /// |
2973 | /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures |
2974 | /// .into_iter() |
2975 | /// .partition_result(); |
2976 | /// |
2977 | /// assert_eq!(successes, [1, 2]); |
2978 | /// assert_eq!(failures, [false, true]); |
2979 | /// ``` |
2980 | fn partition_result<A, B, T, E>(self) -> (A, B) |
2981 | where |
2982 | Self: Iterator<Item = Result<T, E>> + Sized, |
2983 | A: Default + Extend<T>, |
2984 | B: Default + Extend<E>, |
2985 | { |
2986 | self.partition_map(|r| match r { |
2987 | Ok(v) => Either::Left(v), |
2988 | Err(v) => Either::Right(v), |
2989 | }) |
2990 | } |
2991 | |
2992 | /// Return a `HashMap` of keys mapped to `Vec`s of values. Keys and values |
2993 | /// are taken from `(Key, Value)` tuple pairs yielded by the input iterator. |
2994 | /// |
2995 | /// Essentially a shorthand for `.into_grouping_map().collect::<Vec<_>>()`. |
2996 | /// |
2997 | /// ``` |
2998 | /// use itertools::Itertools; |
2999 | /// |
3000 | /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)]; |
3001 | /// let lookup = data.into_iter().into_group_map(); |
3002 | /// |
3003 | /// assert_eq!(lookup[&0], vec![10, 20]); |
3004 | /// assert_eq!(lookup.get(&1), None); |
3005 | /// assert_eq!(lookup[&2], vec![12, 42]); |
3006 | /// assert_eq!(lookup[&3], vec![13, 33]); |
3007 | /// ``` |
3008 | #[cfg (feature = "use_std" )] |
3009 | fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>> |
3010 | where Self: Iterator<Item=(K, V)> + Sized, |
3011 | K: Hash + Eq, |
3012 | { |
3013 | group_map::into_group_map(self) |
3014 | } |
3015 | |
3016 | /// Return an `Iterator` on a `HashMap`. Keys mapped to `Vec`s of values. The key is specified |
3017 | /// in the closure. |
3018 | /// |
3019 | /// Essentially a shorthand for `.into_grouping_map_by(f).collect::<Vec<_>>()`. |
3020 | /// |
3021 | /// ``` |
3022 | /// use itertools::Itertools; |
3023 | /// use std::collections::HashMap; |
3024 | /// |
3025 | /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)]; |
3026 | /// let lookup: HashMap<u32,Vec<(u32, u32)>> = |
3027 | /// data.clone().into_iter().into_group_map_by(|a| a.0); |
3028 | /// |
3029 | /// assert_eq!(lookup[&0], vec![(0,10),(0,20)]); |
3030 | /// assert_eq!(lookup.get(&1), None); |
3031 | /// assert_eq!(lookup[&2], vec![(2,12), (2,42)]); |
3032 | /// assert_eq!(lookup[&3], vec![(3,13), (3,33)]); |
3033 | /// |
3034 | /// assert_eq!( |
3035 | /// data.into_iter() |
3036 | /// .into_group_map_by(|x| x.0) |
3037 | /// .into_iter() |
3038 | /// .map(|(key, values)| (key, values.into_iter().fold(0,|acc, (_,v)| acc + v ))) |
3039 | /// .collect::<HashMap<u32,u32>>()[&0], |
3040 | /// 30, |
3041 | /// ); |
3042 | /// ``` |
3043 | #[cfg (feature = "use_std" )] |
3044 | fn into_group_map_by<K, V, F>(self, f: F) -> HashMap<K, Vec<V>> |
3045 | where |
3046 | Self: Iterator<Item=V> + Sized, |
3047 | K: Hash + Eq, |
3048 | F: Fn(&V) -> K, |
3049 | { |
3050 | group_map::into_group_map_by(self, f) |
3051 | } |
3052 | |
3053 | /// Constructs a `GroupingMap` to be used later with one of the efficient |
3054 | /// group-and-fold operations it allows to perform. |
3055 | /// |
3056 | /// The input iterator must yield item in the form of `(K, V)` where the |
3057 | /// value of type `K` will be used as key to identify the groups and the |
3058 | /// value of type `V` as value for the folding operation. |
3059 | /// |
3060 | /// See [`GroupingMap`] for more informations |
3061 | /// on what operations are available. |
3062 | #[cfg (feature = "use_std" )] |
3063 | fn into_grouping_map<K, V>(self) -> GroupingMap<Self> |
3064 | where Self: Iterator<Item=(K, V)> + Sized, |
3065 | K: Hash + Eq, |
3066 | { |
3067 | grouping_map::new(self) |
3068 | } |
3069 | |
3070 | /// Constructs a `GroupingMap` to be used later with one of the efficient |
3071 | /// group-and-fold operations it allows to perform. |
3072 | /// |
3073 | /// The values from this iterator will be used as values for the folding operation |
3074 | /// while the keys will be obtained from the values by calling `key_mapper`. |
3075 | /// |
3076 | /// See [`GroupingMap`] for more informations |
3077 | /// on what operations are available. |
3078 | #[cfg (feature = "use_std" )] |
3079 | fn into_grouping_map_by<K, V, F>(self, key_mapper: F) -> GroupingMapBy<Self, F> |
3080 | where Self: Iterator<Item=V> + Sized, |
3081 | K: Hash + Eq, |
3082 | F: FnMut(&V) -> K |
3083 | { |
3084 | grouping_map::new(grouping_map::MapForGrouping::new(self, key_mapper)) |
3085 | } |
3086 | |
3087 | /// Return all minimum elements of an iterator. |
3088 | /// |
3089 | /// # Examples |
3090 | /// |
3091 | /// ``` |
3092 | /// use itertools::Itertools; |
3093 | /// |
3094 | /// let a: [i32; 0] = []; |
3095 | /// assert_eq!(a.iter().min_set(), Vec::<&i32>::new()); |
3096 | /// |
3097 | /// let a = [1]; |
3098 | /// assert_eq!(a.iter().min_set(), vec![&1]); |
3099 | /// |
3100 | /// let a = [1, 2, 3, 4, 5]; |
3101 | /// assert_eq!(a.iter().min_set(), vec![&1]); |
3102 | /// |
3103 | /// let a = [1, 1, 1, 1]; |
3104 | /// assert_eq!(a.iter().min_set(), vec![&1, &1, &1, &1]); |
3105 | /// ``` |
3106 | /// |
3107 | /// The elements can be floats but no particular result is guaranteed |
3108 | /// if an element is NaN. |
3109 | #[cfg (feature = "use_std" )] |
3110 | fn min_set(self) -> Vec<Self::Item> |
3111 | where Self: Sized, Self::Item: Ord |
3112 | { |
3113 | extrema_set::min_set_impl(self, |_| (), |x, y, _, _| x.cmp(y)) |
3114 | } |
3115 | |
3116 | /// Return all minimum elements of an iterator, as determined by |
3117 | /// the specified function. |
3118 | /// |
3119 | /// # Examples |
3120 | /// |
3121 | /// ``` |
3122 | /// # use std::cmp::Ordering; |
3123 | /// use itertools::Itertools; |
3124 | /// |
3125 | /// let a: [(i32, i32); 0] = []; |
3126 | /// assert_eq!(a.iter().min_set_by(|_, _| Ordering::Equal), Vec::<&(i32, i32)>::new()); |
3127 | /// |
3128 | /// let a = [(1, 2)]; |
3129 | /// assert_eq!(a.iter().min_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2)]); |
3130 | /// |
3131 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; |
3132 | /// assert_eq!(a.iter().min_set_by(|&&(_,k1), &&(_,k2)| k1.cmp(&k2)), vec![&(1, 2), &(2, 2)]); |
3133 | /// |
3134 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; |
3135 | /// assert_eq!(a.iter().min_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); |
3136 | /// ``` |
3137 | /// |
3138 | /// The elements can be floats but no particular result is guaranteed |
3139 | /// if an element is NaN. |
3140 | #[cfg (feature = "use_std" )] |
3141 | fn min_set_by<F>(self, mut compare: F) -> Vec<Self::Item> |
3142 | where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering |
3143 | { |
3144 | extrema_set::min_set_impl( |
3145 | self, |
3146 | |_| (), |
3147 | |x, y, _, _| compare(x, y) |
3148 | ) |
3149 | } |
3150 | |
3151 | /// Return all minimum elements of an iterator, as determined by |
3152 | /// the specified function. |
3153 | /// |
3154 | /// # Examples |
3155 | /// |
3156 | /// ``` |
3157 | /// use itertools::Itertools; |
3158 | /// |
3159 | /// let a: [(i32, i32); 0] = []; |
3160 | /// assert_eq!(a.iter().min_set_by_key(|_| ()), Vec::<&(i32, i32)>::new()); |
3161 | /// |
3162 | /// let a = [(1, 2)]; |
3163 | /// assert_eq!(a.iter().min_set_by_key(|&&(k,_)| k), vec![&(1, 2)]); |
3164 | /// |
3165 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; |
3166 | /// assert_eq!(a.iter().min_set_by_key(|&&(_, k)| k), vec![&(1, 2), &(2, 2)]); |
3167 | /// |
3168 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; |
3169 | /// assert_eq!(a.iter().min_set_by_key(|&&(k, _)| k), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); |
3170 | /// ``` |
3171 | /// |
3172 | /// The elements can be floats but no particular result is guaranteed |
3173 | /// if an element is NaN. |
3174 | #[cfg (feature = "use_std" )] |
3175 | fn min_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> |
3176 | where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K |
3177 | { |
3178 | extrema_set::min_set_impl(self, key, |_, _, kx, ky| kx.cmp(ky)) |
3179 | } |
3180 | |
3181 | /// Return all maximum elements of an iterator. |
3182 | /// |
3183 | /// # Examples |
3184 | /// |
3185 | /// ``` |
3186 | /// use itertools::Itertools; |
3187 | /// |
3188 | /// let a: [i32; 0] = []; |
3189 | /// assert_eq!(a.iter().max_set(), Vec::<&i32>::new()); |
3190 | /// |
3191 | /// let a = [1]; |
3192 | /// assert_eq!(a.iter().max_set(), vec![&1]); |
3193 | /// |
3194 | /// let a = [1, 2, 3, 4, 5]; |
3195 | /// assert_eq!(a.iter().max_set(), vec![&5]); |
3196 | /// |
3197 | /// let a = [1, 1, 1, 1]; |
3198 | /// assert_eq!(a.iter().max_set(), vec![&1, &1, &1, &1]); |
3199 | /// ``` |
3200 | /// |
3201 | /// The elements can be floats but no particular result is guaranteed |
3202 | /// if an element is NaN. |
3203 | #[cfg (feature = "use_std" )] |
3204 | fn max_set(self) -> Vec<Self::Item> |
3205 | where Self: Sized, Self::Item: Ord |
3206 | { |
3207 | extrema_set::max_set_impl(self, |_| (), |x, y, _, _| x.cmp(y)) |
3208 | } |
3209 | |
3210 | /// Return all maximum elements of an iterator, as determined by |
3211 | /// the specified function. |
3212 | /// |
3213 | /// # Examples |
3214 | /// |
3215 | /// ``` |
3216 | /// # use std::cmp::Ordering; |
3217 | /// use itertools::Itertools; |
3218 | /// |
3219 | /// let a: [(i32, i32); 0] = []; |
3220 | /// assert_eq!(a.iter().max_set_by(|_, _| Ordering::Equal), Vec::<&(i32, i32)>::new()); |
3221 | /// |
3222 | /// let a = [(1, 2)]; |
3223 | /// assert_eq!(a.iter().max_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2)]); |
3224 | /// |
3225 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; |
3226 | /// assert_eq!(a.iter().max_set_by(|&&(_,k1), &&(_,k2)| k1.cmp(&k2)), vec![&(3, 9), &(5, 9)]); |
3227 | /// |
3228 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; |
3229 | /// assert_eq!(a.iter().max_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); |
3230 | /// ``` |
3231 | /// |
3232 | /// The elements can be floats but no particular result is guaranteed |
3233 | /// if an element is NaN. |
3234 | #[cfg (feature = "use_std" )] |
3235 | fn max_set_by<F>(self, mut compare: F) -> Vec<Self::Item> |
3236 | where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering |
3237 | { |
3238 | extrema_set::max_set_impl( |
3239 | self, |
3240 | |_| (), |
3241 | |x, y, _, _| compare(x, y) |
3242 | ) |
3243 | } |
3244 | |
3245 | /// Return all maximum elements of an iterator, as determined by |
3246 | /// the specified function. |
3247 | /// |
3248 | /// # Examples |
3249 | /// |
3250 | /// ``` |
3251 | /// use itertools::Itertools; |
3252 | /// |
3253 | /// let a: [(i32, i32); 0] = []; |
3254 | /// assert_eq!(a.iter().max_set_by_key(|_| ()), Vec::<&(i32, i32)>::new()); |
3255 | /// |
3256 | /// let a = [(1, 2)]; |
3257 | /// assert_eq!(a.iter().max_set_by_key(|&&(k,_)| k), vec![&(1, 2)]); |
3258 | /// |
3259 | /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; |
3260 | /// assert_eq!(a.iter().max_set_by_key(|&&(_, k)| k), vec![&(3, 9), &(5, 9)]); |
3261 | /// |
3262 | /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; |
3263 | /// assert_eq!(a.iter().max_set_by_key(|&&(k, _)| k), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); |
3264 | /// ``` |
3265 | /// |
3266 | /// The elements can be floats but no particular result is guaranteed |
3267 | /// if an element is NaN. |
3268 | #[cfg (feature = "use_std" )] |
3269 | fn max_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> |
3270 | where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K |
3271 | { |
3272 | extrema_set::max_set_impl(self, key, |_, _, kx, ky| kx.cmp(ky)) |
3273 | } |
3274 | |
3275 | /// Return the minimum and maximum elements in the iterator. |
3276 | /// |
3277 | /// The return type `MinMaxResult` is an enum of three variants: |
3278 | /// |
3279 | /// - `NoElements` if the iterator is empty. |
3280 | /// - `OneElement(x)` if the iterator has exactly one element. |
3281 | /// - `MinMax(x, y)` is returned otherwise, where `x <= y`. Two |
3282 | /// values are equal if and only if there is more than one |
3283 | /// element in the iterator and all elements are equal. |
3284 | /// |
3285 | /// On an iterator of length `n`, `minmax` does `1.5 * n` comparisons, |
3286 | /// and so is faster than calling `min` and `max` separately which does |
3287 | /// `2 * n` comparisons. |
3288 | /// |
3289 | /// # Examples |
3290 | /// |
3291 | /// ``` |
3292 | /// use itertools::Itertools; |
3293 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; |
3294 | /// |
3295 | /// let a: [i32; 0] = []; |
3296 | /// assert_eq!(a.iter().minmax(), NoElements); |
3297 | /// |
3298 | /// let a = [1]; |
3299 | /// assert_eq!(a.iter().minmax(), OneElement(&1)); |
3300 | /// |
3301 | /// let a = [1, 2, 3, 4, 5]; |
3302 | /// assert_eq!(a.iter().minmax(), MinMax(&1, &5)); |
3303 | /// |
3304 | /// let a = [1, 1, 1, 1]; |
3305 | /// assert_eq!(a.iter().minmax(), MinMax(&1, &1)); |
3306 | /// ``` |
3307 | /// |
3308 | /// The elements can be floats but no particular result is guaranteed |
3309 | /// if an element is NaN. |
3310 | fn minmax(self) -> MinMaxResult<Self::Item> |
3311 | where Self: Sized, Self::Item: PartialOrd |
3312 | { |
3313 | minmax::minmax_impl(self, |_| (), |x, y, _, _| x < y) |
3314 | } |
3315 | |
3316 | /// Return the minimum and maximum element of an iterator, as determined by |
3317 | /// the specified function. |
3318 | /// |
3319 | /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax). |
3320 | /// |
3321 | /// For the minimum, the first minimal element is returned. For the maximum, |
3322 | /// the last maximal element wins. This matches the behavior of the standard |
3323 | /// [`Iterator::min`] and [`Iterator::max`] methods. |
3324 | /// |
3325 | /// The keys can be floats but no particular result is guaranteed |
3326 | /// if a key is NaN. |
3327 | fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item> |
3328 | where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K |
3329 | { |
3330 | minmax::minmax_impl(self, key, |_, _, xk, yk| xk < yk) |
3331 | } |
3332 | |
3333 | /// Return the minimum and maximum element of an iterator, as determined by |
3334 | /// the specified comparison function. |
3335 | /// |
3336 | /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax). |
3337 | /// |
3338 | /// For the minimum, the first minimal element is returned. For the maximum, |
3339 | /// the last maximal element wins. This matches the behavior of the standard |
3340 | /// [`Iterator::min`] and [`Iterator::max`] methods. |
3341 | fn minmax_by<F>(self, mut compare: F) -> MinMaxResult<Self::Item> |
3342 | where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering |
3343 | { |
3344 | minmax::minmax_impl( |
3345 | self, |
3346 | |_| (), |
3347 | |x, y, _, _| Ordering::Less == compare(x, y) |
3348 | ) |
3349 | } |
3350 | |
3351 | /// Return the position of the maximum element in the iterator. |
3352 | /// |
3353 | /// If several elements are equally maximum, the position of the |
3354 | /// last of them is returned. |
3355 | /// |
3356 | /// # Examples |
3357 | /// |
3358 | /// ``` |
3359 | /// use itertools::Itertools; |
3360 | /// |
3361 | /// let a: [i32; 0] = []; |
3362 | /// assert_eq!(a.iter().position_max(), None); |
3363 | /// |
3364 | /// let a = [-3, 0, 1, 5, -10]; |
3365 | /// assert_eq!(a.iter().position_max(), Some(3)); |
3366 | /// |
3367 | /// let a = [1, 1, -1, -1]; |
3368 | /// assert_eq!(a.iter().position_max(), Some(1)); |
3369 | /// ``` |
3370 | fn position_max(self) -> Option<usize> |
3371 | where Self: Sized, Self::Item: Ord |
3372 | { |
3373 | self.enumerate() |
3374 | .max_by(|x, y| Ord::cmp(&x.1, &y.1)) |
3375 | .map(|x| x.0) |
3376 | } |
3377 | |
3378 | /// Return the position of the maximum element in the iterator, as |
3379 | /// determined by the specified function. |
3380 | /// |
3381 | /// If several elements are equally maximum, the position of the |
3382 | /// last of them is returned. |
3383 | /// |
3384 | /// # Examples |
3385 | /// |
3386 | /// ``` |
3387 | /// use itertools::Itertools; |
3388 | /// |
3389 | /// let a: [i32; 0] = []; |
3390 | /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), None); |
3391 | /// |
3392 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3393 | /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(4)); |
3394 | /// |
3395 | /// let a = [1_i32, 1, -1, -1]; |
3396 | /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(3)); |
3397 | /// ``` |
3398 | fn position_max_by_key<K, F>(self, mut key: F) -> Option<usize> |
3399 | where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K |
3400 | { |
3401 | self.enumerate() |
3402 | .max_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1))) |
3403 | .map(|x| x.0) |
3404 | } |
3405 | |
3406 | /// Return the position of the maximum element in the iterator, as |
3407 | /// determined by the specified comparison function. |
3408 | /// |
3409 | /// If several elements are equally maximum, the position of the |
3410 | /// last of them is returned. |
3411 | /// |
3412 | /// # Examples |
3413 | /// |
3414 | /// ``` |
3415 | /// use itertools::Itertools; |
3416 | /// |
3417 | /// let a: [i32; 0] = []; |
3418 | /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), None); |
3419 | /// |
3420 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3421 | /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(3)); |
3422 | /// |
3423 | /// let a = [1_i32, 1, -1, -1]; |
3424 | /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(1)); |
3425 | /// ``` |
3426 | fn position_max_by<F>(self, mut compare: F) -> Option<usize> |
3427 | where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering |
3428 | { |
3429 | self.enumerate() |
3430 | .max_by(|x, y| compare(&x.1, &y.1)) |
3431 | .map(|x| x.0) |
3432 | } |
3433 | |
3434 | /// Return the position of the minimum element in the iterator. |
3435 | /// |
3436 | /// If several elements are equally minimum, the position of the |
3437 | /// first of them is returned. |
3438 | /// |
3439 | /// # Examples |
3440 | /// |
3441 | /// ``` |
3442 | /// use itertools::Itertools; |
3443 | /// |
3444 | /// let a: [i32; 0] = []; |
3445 | /// assert_eq!(a.iter().position_min(), None); |
3446 | /// |
3447 | /// let a = [-3, 0, 1, 5, -10]; |
3448 | /// assert_eq!(a.iter().position_min(), Some(4)); |
3449 | /// |
3450 | /// let a = [1, 1, -1, -1]; |
3451 | /// assert_eq!(a.iter().position_min(), Some(2)); |
3452 | /// ``` |
3453 | fn position_min(self) -> Option<usize> |
3454 | where Self: Sized, Self::Item: Ord |
3455 | { |
3456 | self.enumerate() |
3457 | .min_by(|x, y| Ord::cmp(&x.1, &y.1)) |
3458 | .map(|x| x.0) |
3459 | } |
3460 | |
3461 | /// Return the position of the minimum element in the iterator, as |
3462 | /// determined by the specified function. |
3463 | /// |
3464 | /// If several elements are equally minimum, the position of the |
3465 | /// first of them is returned. |
3466 | /// |
3467 | /// # Examples |
3468 | /// |
3469 | /// ``` |
3470 | /// use itertools::Itertools; |
3471 | /// |
3472 | /// let a: [i32; 0] = []; |
3473 | /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), None); |
3474 | /// |
3475 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3476 | /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(1)); |
3477 | /// |
3478 | /// let a = [1_i32, 1, -1, -1]; |
3479 | /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(0)); |
3480 | /// ``` |
3481 | fn position_min_by_key<K, F>(self, mut key: F) -> Option<usize> |
3482 | where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K |
3483 | { |
3484 | self.enumerate() |
3485 | .min_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1))) |
3486 | .map(|x| x.0) |
3487 | } |
3488 | |
3489 | /// Return the position of the minimum element in the iterator, as |
3490 | /// determined by the specified comparison function. |
3491 | /// |
3492 | /// If several elements are equally minimum, the position of the |
3493 | /// first of them is returned. |
3494 | /// |
3495 | /// # Examples |
3496 | /// |
3497 | /// ``` |
3498 | /// use itertools::Itertools; |
3499 | /// |
3500 | /// let a: [i32; 0] = []; |
3501 | /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), None); |
3502 | /// |
3503 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3504 | /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(4)); |
3505 | /// |
3506 | /// let a = [1_i32, 1, -1, -1]; |
3507 | /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(2)); |
3508 | /// ``` |
3509 | fn position_min_by<F>(self, mut compare: F) -> Option<usize> |
3510 | where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering |
3511 | { |
3512 | self.enumerate() |
3513 | .min_by(|x, y| compare(&x.1, &y.1)) |
3514 | .map(|x| x.0) |
3515 | } |
3516 | |
3517 | /// Return the positions of the minimum and maximum elements in |
3518 | /// the iterator. |
3519 | /// |
3520 | /// The return type [`MinMaxResult`] is an enum of three variants: |
3521 | /// |
3522 | /// - `NoElements` if the iterator is empty. |
3523 | /// - `OneElement(xpos)` if the iterator has exactly one element. |
3524 | /// - `MinMax(xpos, ypos)` is returned otherwise, where the |
3525 | /// element at `xpos` ≤ the element at `ypos`. While the |
3526 | /// referenced elements themselves may be equal, `xpos` cannot |
3527 | /// be equal to `ypos`. |
3528 | /// |
3529 | /// On an iterator of length `n`, `position_minmax` does `1.5 * n` |
3530 | /// comparisons, and so is faster than calling `position_min` and |
3531 | /// `position_max` separately which does `2 * n` comparisons. |
3532 | /// |
3533 | /// For the minimum, if several elements are equally minimum, the |
3534 | /// position of the first of them is returned. For the maximum, if |
3535 | /// several elements are equally maximum, the position of the last |
3536 | /// of them is returned. |
3537 | /// |
3538 | /// The elements can be floats but no particular result is |
3539 | /// guaranteed if an element is NaN. |
3540 | /// |
3541 | /// # Examples |
3542 | /// |
3543 | /// ``` |
3544 | /// use itertools::Itertools; |
3545 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; |
3546 | /// |
3547 | /// let a: [i32; 0] = []; |
3548 | /// assert_eq!(a.iter().position_minmax(), NoElements); |
3549 | /// |
3550 | /// let a = [10]; |
3551 | /// assert_eq!(a.iter().position_minmax(), OneElement(0)); |
3552 | /// |
3553 | /// let a = [-3, 0, 1, 5, -10]; |
3554 | /// assert_eq!(a.iter().position_minmax(), MinMax(4, 3)); |
3555 | /// |
3556 | /// let a = [1, 1, -1, -1]; |
3557 | /// assert_eq!(a.iter().position_minmax(), MinMax(2, 1)); |
3558 | /// ``` |
3559 | fn position_minmax(self) -> MinMaxResult<usize> |
3560 | where Self: Sized, Self::Item: PartialOrd |
3561 | { |
3562 | use crate::MinMaxResult::{NoElements, OneElement, MinMax}; |
3563 | match minmax::minmax_impl(self.enumerate(), |_| (), |x, y, _, _| x.1 < y.1) { |
3564 | NoElements => NoElements, |
3565 | OneElement(x) => OneElement(x.0), |
3566 | MinMax(x, y) => MinMax(x.0, y.0), |
3567 | } |
3568 | } |
3569 | |
3570 | /// Return the postions of the minimum and maximum elements of an |
3571 | /// iterator, as determined by the specified function. |
3572 | /// |
3573 | /// The return value is a variant of [`MinMaxResult`] like for |
3574 | /// [`position_minmax`]. |
3575 | /// |
3576 | /// For the minimum, if several elements are equally minimum, the |
3577 | /// position of the first of them is returned. For the maximum, if |
3578 | /// several elements are equally maximum, the position of the last |
3579 | /// of them is returned. |
3580 | /// |
3581 | /// The keys can be floats but no particular result is guaranteed |
3582 | /// if a key is NaN. |
3583 | /// |
3584 | /// # Examples |
3585 | /// |
3586 | /// ``` |
3587 | /// use itertools::Itertools; |
3588 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; |
3589 | /// |
3590 | /// let a: [i32; 0] = []; |
3591 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), NoElements); |
3592 | /// |
3593 | /// let a = [10_i32]; |
3594 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), OneElement(0)); |
3595 | /// |
3596 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3597 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(1, 4)); |
3598 | /// |
3599 | /// let a = [1_i32, 1, -1, -1]; |
3600 | /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(0, 3)); |
3601 | /// ``` |
3602 | /// |
3603 | /// [`position_minmax`]: Self::position_minmax |
3604 | fn position_minmax_by_key<K, F>(self, mut key: F) -> MinMaxResult<usize> |
3605 | where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K |
3606 | { |
3607 | use crate::MinMaxResult::{NoElements, OneElement, MinMax}; |
3608 | match self.enumerate().minmax_by_key(|e| key(&e.1)) { |
3609 | NoElements => NoElements, |
3610 | OneElement(x) => OneElement(x.0), |
3611 | MinMax(x, y) => MinMax(x.0, y.0), |
3612 | } |
3613 | } |
3614 | |
3615 | /// Return the postions of the minimum and maximum elements of an |
3616 | /// iterator, as determined by the specified comparison function. |
3617 | /// |
3618 | /// The return value is a variant of [`MinMaxResult`] like for |
3619 | /// [`position_minmax`]. |
3620 | /// |
3621 | /// For the minimum, if several elements are equally minimum, the |
3622 | /// position of the first of them is returned. For the maximum, if |
3623 | /// several elements are equally maximum, the position of the last |
3624 | /// of them is returned. |
3625 | /// |
3626 | /// # Examples |
3627 | /// |
3628 | /// ``` |
3629 | /// use itertools::Itertools; |
3630 | /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; |
3631 | /// |
3632 | /// let a: [i32; 0] = []; |
3633 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), NoElements); |
3634 | /// |
3635 | /// let a = [10_i32]; |
3636 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), OneElement(0)); |
3637 | /// |
3638 | /// let a = [-3_i32, 0, 1, 5, -10]; |
3639 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(4, 3)); |
3640 | /// |
3641 | /// let a = [1_i32, 1, -1, -1]; |
3642 | /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(2, 1)); |
3643 | /// ``` |
3644 | /// |
3645 | /// [`position_minmax`]: Self::position_minmax |
3646 | fn position_minmax_by<F>(self, mut compare: F) -> MinMaxResult<usize> |
3647 | where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering |
3648 | { |
3649 | use crate::MinMaxResult::{NoElements, OneElement, MinMax}; |
3650 | match self.enumerate().minmax_by(|x, y| compare(&x.1, &y.1)) { |
3651 | NoElements => NoElements, |
3652 | OneElement(x) => OneElement(x.0), |
3653 | MinMax(x, y) => MinMax(x.0, y.0), |
3654 | } |
3655 | } |
3656 | |
3657 | /// If the iterator yields exactly one element, that element will be returned, otherwise |
3658 | /// an error will be returned containing an iterator that has the same output as the input |
3659 | /// iterator. |
3660 | /// |
3661 | /// This provides an additional layer of validation over just calling `Iterator::next()`. |
3662 | /// If your assumption that there should only be one element yielded is false this provides |
3663 | /// the opportunity to detect and handle that, preventing errors at a distance. |
3664 | /// |
3665 | /// # Examples |
3666 | /// ``` |
3667 | /// use itertools::Itertools; |
3668 | /// |
3669 | /// assert_eq!((0..10).filter(|&x| x == 2).exactly_one().unwrap(), 2); |
3670 | /// assert!((0..10).filter(|&x| x > 1 && x < 4).exactly_one().unwrap_err().eq(2..4)); |
3671 | /// assert!((0..10).filter(|&x| x > 1 && x < 5).exactly_one().unwrap_err().eq(2..5)); |
3672 | /// assert!((0..10).filter(|&_| false).exactly_one().unwrap_err().eq(0..0)); |
3673 | /// ``` |
3674 | fn exactly_one(mut self) -> Result<Self::Item, ExactlyOneError<Self>> |
3675 | where |
3676 | Self: Sized, |
3677 | { |
3678 | match self.next() { |
3679 | Some(first) => { |
3680 | match self.next() { |
3681 | Some(second) => { |
3682 | Err(ExactlyOneError::new(Some(Either::Left([first, second])), self)) |
3683 | } |
3684 | None => { |
3685 | Ok(first) |
3686 | } |
3687 | } |
3688 | } |
3689 | None => Err(ExactlyOneError::new(None, self)), |
3690 | } |
3691 | } |
3692 | |
3693 | /// If the iterator yields no elements, Ok(None) will be returned. If the iterator yields |
3694 | /// exactly one element, that element will be returned, otherwise an error will be returned |
3695 | /// containing an iterator that has the same output as the input iterator. |
3696 | /// |
3697 | /// This provides an additional layer of validation over just calling `Iterator::next()`. |
3698 | /// If your assumption that there should be at most one element yielded is false this provides |
3699 | /// the opportunity to detect and handle that, preventing errors at a distance. |
3700 | /// |
3701 | /// # Examples |
3702 | /// ``` |
3703 | /// use itertools::Itertools; |
3704 | /// |
3705 | /// assert_eq!((0..10).filter(|&x| x == 2).at_most_one().unwrap(), Some(2)); |
3706 | /// assert!((0..10).filter(|&x| x > 1 && x < 4).at_most_one().unwrap_err().eq(2..4)); |
3707 | /// assert!((0..10).filter(|&x| x > 1 && x < 5).at_most_one().unwrap_err().eq(2..5)); |
3708 | /// assert_eq!((0..10).filter(|&_| false).at_most_one().unwrap(), None); |
3709 | /// ``` |
3710 | fn at_most_one(mut self) -> Result<Option<Self::Item>, ExactlyOneError<Self>> |
3711 | where |
3712 | Self: Sized, |
3713 | { |
3714 | match self.next() { |
3715 | Some(first) => { |
3716 | match self.next() { |
3717 | Some(second) => { |
3718 | Err(ExactlyOneError::new(Some(Either::Left([first, second])), self)) |
3719 | } |
3720 | None => { |
3721 | Ok(Some(first)) |
3722 | } |
3723 | } |
3724 | } |
3725 | None => Ok(None), |
3726 | } |
3727 | } |
3728 | |
3729 | /// An iterator adaptor that allows the user to peek at multiple `.next()` |
3730 | /// values without advancing the base iterator. |
3731 | /// |
3732 | /// # Examples |
3733 | /// ``` |
3734 | /// use itertools::Itertools; |
3735 | /// |
3736 | /// let mut iter = (0..10).multipeek(); |
3737 | /// assert_eq!(iter.peek(), Some(&0)); |
3738 | /// assert_eq!(iter.peek(), Some(&1)); |
3739 | /// assert_eq!(iter.peek(), Some(&2)); |
3740 | /// assert_eq!(iter.next(), Some(0)); |
3741 | /// assert_eq!(iter.peek(), Some(&1)); |
3742 | /// ``` |
3743 | #[cfg (feature = "use_alloc" )] |
3744 | fn multipeek(self) -> MultiPeek<Self> |
3745 | where |
3746 | Self: Sized, |
3747 | { |
3748 | multipeek_impl::multipeek(self) |
3749 | } |
3750 | |
3751 | /// Collect the items in this iterator and return a `HashMap` which |
3752 | /// contains each item that appears in the iterator and the number |
3753 | /// of times it appears. |
3754 | /// |
3755 | /// # Examples |
3756 | /// ``` |
3757 | /// # use itertools::Itertools; |
3758 | /// let counts = [1, 1, 1, 3, 3, 5].into_iter().counts(); |
3759 | /// assert_eq!(counts[&1], 3); |
3760 | /// assert_eq!(counts[&3], 2); |
3761 | /// assert_eq!(counts[&5], 1); |
3762 | /// assert_eq!(counts.get(&0), None); |
3763 | /// ``` |
3764 | #[cfg (feature = "use_std" )] |
3765 | fn counts(self) -> HashMap<Self::Item, usize> |
3766 | where |
3767 | Self: Sized, |
3768 | Self::Item: Eq + Hash, |
3769 | { |
3770 | let mut counts = HashMap::new(); |
3771 | self.for_each(|item| *counts.entry(item).or_default() += 1); |
3772 | counts |
3773 | } |
3774 | |
3775 | /// Collect the items in this iterator and return a `HashMap` which |
3776 | /// contains each item that appears in the iterator and the number |
3777 | /// of times it appears, |
3778 | /// determining identity using a keying function. |
3779 | /// |
3780 | /// ``` |
3781 | /// # use itertools::Itertools; |
3782 | /// struct Character { |
3783 | /// first_name: &'static str, |
3784 | /// last_name: &'static str, |
3785 | /// } |
3786 | /// |
3787 | /// let characters = |
3788 | /// vec![ |
3789 | /// Character { first_name: "Amy" , last_name: "Pond" }, |
3790 | /// Character { first_name: "Amy" , last_name: "Wong" }, |
3791 | /// Character { first_name: "Amy" , last_name: "Santiago" }, |
3792 | /// Character { first_name: "James" , last_name: "Bond" }, |
3793 | /// Character { first_name: "James" , last_name: "Sullivan" }, |
3794 | /// Character { first_name: "James" , last_name: "Norington" }, |
3795 | /// Character { first_name: "James" , last_name: "Kirk" }, |
3796 | /// ]; |
3797 | /// |
3798 | /// let first_name_frequency = |
3799 | /// characters |
3800 | /// .into_iter() |
3801 | /// .counts_by(|c| c.first_name); |
3802 | /// |
3803 | /// assert_eq!(first_name_frequency["Amy" ], 3); |
3804 | /// assert_eq!(first_name_frequency["James" ], 4); |
3805 | /// assert_eq!(first_name_frequency.contains_key("Asha" ), false); |
3806 | /// ``` |
3807 | #[cfg (feature = "use_std" )] |
3808 | fn counts_by<K, F>(self, f: F) -> HashMap<K, usize> |
3809 | where |
3810 | Self: Sized, |
3811 | K: Eq + Hash, |
3812 | F: FnMut(Self::Item) -> K, |
3813 | { |
3814 | self.map(f).counts() |
3815 | } |
3816 | |
3817 | /// Converts an iterator of tuples into a tuple of containers. |
3818 | /// |
3819 | /// `unzip()` consumes an entire iterator of n-ary tuples, producing `n` collections, one for each |
3820 | /// column. |
3821 | /// |
3822 | /// This function is, in some sense, the opposite of [`multizip`]. |
3823 | /// |
3824 | /// ``` |
3825 | /// use itertools::Itertools; |
3826 | /// |
3827 | /// let inputs = vec![(1, 2, 3), (4, 5, 6), (7, 8, 9)]; |
3828 | /// |
3829 | /// let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = inputs |
3830 | /// .into_iter() |
3831 | /// .multiunzip(); |
3832 | /// |
3833 | /// assert_eq!(a, vec![1, 4, 7]); |
3834 | /// assert_eq!(b, vec![2, 5, 8]); |
3835 | /// assert_eq!(c, vec![3, 6, 9]); |
3836 | /// ``` |
3837 | fn multiunzip<FromI>(self) -> FromI |
3838 | where |
3839 | Self: Sized + MultiUnzip<FromI>, |
3840 | { |
3841 | MultiUnzip::multiunzip(self) |
3842 | } |
3843 | } |
3844 | |
3845 | impl<T: ?Sized> Itertools for T where T: Iterator { } |
3846 | |
3847 | /// Return `true` if both iterables produce equal sequences |
3848 | /// (elements pairwise equal and sequences of the same length), |
3849 | /// `false` otherwise. |
3850 | /// |
3851 | /// [`IntoIterator`] enabled version of [`Iterator::eq`]. |
3852 | /// |
3853 | /// ``` |
3854 | /// assert!(itertools::equal(vec![1, 2, 3], 1..4)); |
3855 | /// assert!(!itertools::equal(&[0, 0], &[0, 0, 0])); |
3856 | /// ``` |
3857 | pub fn equal<I, J>(a: I, b: J) -> bool |
3858 | where I: IntoIterator, |
3859 | J: IntoIterator, |
3860 | I::Item: PartialEq<J::Item> |
3861 | { |
3862 | a.into_iter().eq(b) |
3863 | } |
3864 | |
3865 | /// Assert that two iterables produce equal sequences, with the same |
3866 | /// semantics as [`equal(a, b)`](equal). |
3867 | /// |
3868 | /// **Panics** on assertion failure with a message that shows the |
3869 | /// two iteration elements. |
3870 | /// |
3871 | /// ```ignore |
3872 | /// assert_equal("exceed" .split('c' ), "excess" .split('c' )); |
3873 | /// // ^PANIC: panicked at 'Failed assertion Some("eed") == Some("ess") for iteration 1', |
3874 | /// ``` |
3875 | pub fn assert_equal<I, J>(a: I, b: J) |
3876 | where I: IntoIterator, |
3877 | J: IntoIterator, |
3878 | I::Item: fmt::Debug + PartialEq<J::Item>, |
3879 | J::Item: fmt::Debug, |
3880 | { |
3881 | let mut ia: I = a.into_iter(); |
3882 | let mut ib: J = b.into_iter(); |
3883 | let mut i: i32 = 0; |
3884 | loop { |
3885 | match (ia.next(), ib.next()) { |
3886 | (None, None) => return, |
3887 | (a: Option<{unknown}>, b: Option<{unknown}>) => { |
3888 | let equal: bool = match (&a, &b) { |
3889 | (&Some(ref a: &{unknown}), &Some(ref b: &{unknown})) => a == b, |
3890 | _ => false, |
3891 | }; |
3892 | assert!(equal, "Failed assertion {a:?} == {b:?} for iteration {i}" , |
3893 | i=i, a=a, b=b); |
3894 | i += 1; |
3895 | } |
3896 | } |
3897 | } |
3898 | } |
3899 | |
3900 | /// Partition a sequence using predicate `pred` so that elements |
3901 | /// that map to `true` are placed before elements which map to `false`. |
3902 | /// |
3903 | /// The order within the partitions is arbitrary. |
3904 | /// |
3905 | /// Return the index of the split point. |
3906 | /// |
3907 | /// ``` |
3908 | /// use itertools::partition; |
3909 | /// |
3910 | /// # // use repeated numbers to not promise any ordering |
3911 | /// let mut data = [7, 1, 1, 7, 1, 1, 7]; |
3912 | /// let split_index = partition(&mut data, |elt| *elt >= 3); |
3913 | /// |
3914 | /// assert_eq!(data, [7, 7, 7, 1, 1, 1, 1]); |
3915 | /// assert_eq!(split_index, 3); |
3916 | /// ``` |
3917 | pub fn partition<'a, A: 'a, I, F>(iter: I, mut pred: F) -> usize |
3918 | where I: IntoIterator<Item = &'a mut A>, |
3919 | I::IntoIter: DoubleEndedIterator, |
3920 | F: FnMut(&A) -> bool |
3921 | { |
3922 | let mut split_index: usize = 0; |
3923 | let mut iter: ::IntoIter = iter.into_iter(); |
3924 | 'main: while let Some(front: &mut A) = iter.next() { |
3925 | if !pred(front) { |
3926 | loop { |
3927 | match iter.next_back() { |
3928 | Some(back: &mut A) => if pred(back) { |
3929 | std::mem::swap(x:front, y:back); |
3930 | break; |
3931 | }, |
3932 | None => break 'main, |
3933 | } |
3934 | } |
3935 | } |
3936 | split_index += 1; |
3937 | } |
3938 | split_index |
3939 | } |
3940 | |
3941 | /// An enum used for controlling the execution of `fold_while`. |
3942 | /// |
3943 | /// See [`.fold_while()`](Itertools::fold_while) for more information. |
3944 | #[derive (Copy, Clone, Debug, Eq, PartialEq)] |
3945 | pub enum FoldWhile<T> { |
3946 | /// Continue folding with this value |
3947 | Continue(T), |
3948 | /// Fold is complete and will return this value |
3949 | Done(T), |
3950 | } |
3951 | |
3952 | impl<T> FoldWhile<T> { |
3953 | /// Return the value in the continue or done. |
3954 | pub fn into_inner(self) -> T { |
3955 | match self { |
3956 | FoldWhile::Continue(x: T) | FoldWhile::Done(x: T) => x, |
3957 | } |
3958 | } |
3959 | |
3960 | /// Return true if `self` is `Done`, false if it is `Continue`. |
3961 | pub fn is_done(&self) -> bool { |
3962 | match *self { |
3963 | FoldWhile::Continue(_) => false, |
3964 | FoldWhile::Done(_) => true, |
3965 | } |
3966 | } |
3967 | } |
3968 | |