1 | /*! |
2 | Jiff is a datetime library for Rust that encourages you to jump into the pit |
3 | of success. The focus of this library is providing high level datetime |
4 | primitives that are difficult to misuse and have reasonable performance. |
5 | |
6 | Jiff takes enormous inspiration from [Temporal], which is a [TC39] proposal to |
7 | improve datetime handling in JavaScript. |
8 | |
9 | Here is a quick example that shows how to parse a typical RFC 3339 instant, |
10 | convert it to a zone aware datetime, add a span of time and losslessly print |
11 | it: |
12 | |
13 | ``` |
14 | use jiff::{Timestamp, ToSpan}; |
15 | |
16 | let time: Timestamp = "2024-07-11T01:14:00Z" .parse()?; |
17 | let zoned = time.in_tz("America/New_York" )?.checked_add(1.month().hours(2))?; |
18 | assert_eq!(zoned.to_string(), "2024-08-10T23:14:00-04:00[America/New_York]" ); |
19 | // Or, if you want an RFC3339 formatted string: |
20 | assert_eq!(zoned.timestamp().to_string(), "2024-08-11T03:14:00Z" ); |
21 | |
22 | # Ok::<(), Box<dyn std::error::Error>>(()) |
23 | ``` |
24 | |
25 | [TC39]: https://tc39.es/ |
26 | [Temporal]: https://tc39.es/proposal-temporal/docs/index.html |
27 | |
28 | # Overview |
29 | |
30 | The primary type in this crate is [`Zoned`]. A `Zoned` value is a datetime that |
31 | corresponds to a precise instant in time in a particular geographic region. |
32 | Users of this crate may find it helpful to think of a `Zoned` as a triple of |
33 | the following components: |
34 | |
35 | * A [`Timestamp`] is a 96-bit integer of nanoseconds since the [Unix epoch]. |
36 | A timestamp is a precise instant in time. |
37 | * A [`civil::DateTime`] is an inexact calendar date and clock time. The terms |
38 | "civil", "local", "plain" and "naive" are all used in various places to |
39 | describe this same concept. |
40 | * A [`tz::TimeZone`] is a set of rules for determining the civil time, via an |
41 | offset from [UTC], in a particular geographic region. |
42 | |
43 | All three of these components are used to provide convenient high level |
44 | operations on `Zoned` such as computing durations, adding durations and |
45 | rounding. |
46 | |
47 | A [`Span`] is this crate's primary duration type. It mixes calendar and clock |
48 | units into a single type. Jiff also provides [`SignedDuration`], which is like |
49 | [`std::time::Duration`], but signed. Users should default to a `Span` for |
50 | representing durations when using Jiff. |
51 | |
52 | [Unix epoch]: https://en.wikipedia.org/wiki/Unix_time |
53 | [UTC]: https://en.wikipedia.org/wiki/Coordinated_Universal_Time |
54 | |
55 | The remainder of this documentation is organized as follows: |
56 | |
57 | * [Features](#features) gives a very brief summary of the features Jiff does |
58 | and does not support. |
59 | * [Usage](#usage) shows how to add Jiff to your Rust project. |
60 | * [Examples](#examples) shows a small cookbook of programs for common tasks. |
61 | * [Crate features](#crate-features) documents the Cargo features that can be |
62 | enabled or disabled for this crate. |
63 | |
64 | Also, the `_documentation` sub-module serves to provide longer form |
65 | documentation: |
66 | |
67 | * [Comparison with other Rust datetime crates](crate::_documentation::comparison) |
68 | * [The API design rationale for Jiff](crate::_documentation::design) |
69 | * [Platform support](crate::_documentation::platform) |
70 | * [CHANGELOG](crate::_documentation::changelog) |
71 | |
72 | # Features |
73 | |
74 | Here is a non-exhaustive list of the things that Jiff supports: |
75 | |
76 | * Automatic and seamless integration with your system's copy of the |
77 | [IANA Time Zone Database]. When a platform doesn't have a time zone database, |
78 | Jiff automatically embeds a copy of it. |
79 | * A separation of datetime types between absolute times ([`Timestamp`] and |
80 | [`Zoned`]) and civil times ([`civil::DateTime`]). |
81 | * Nanosecond precision. |
82 | * Time zone and daylight saving time aware arithmetic. |
83 | * The primary duration type, [`Span`], mixes calendar and clock |
84 | units to provide an all-in-one human friendly experience that is time zone |
85 | aware. |
86 | * An "absolute" duration type, [`SignedDuration`], is like |
87 | [`std::time::Duration`] but signed. |
88 | * Datetime rounding. |
89 | * Span rounding, including calendar units and including taking time zones into |
90 | account. |
91 | * Formatting and parsing datetimes via a Temporal-specified hybrid format |
92 | that takes the best parts of [RFC 3339], [RFC 9557] and [ISO 8601]. This |
93 | includes lossless round tripping of zone aware datetimes and durations. |
94 | * Formatting and parsing according to [RFC 2822]. |
95 | * Formatting and parsing via routines similar to [`strftime`] and [`strptime`]. |
96 | * Formatting and parsing durations via a bespoke |
97 | ["friendly" format](crate::fmt::friendly), with Serde support, that is meant |
98 | to service the [`humantime`](https://docs.rs/humantime) use cases. |
99 | * Opt-in Serde integration. |
100 | * Full support for dealing with ambiguous civil datetimes. |
101 | * Protection against deserializing datetimes in the future with an offset |
102 | different than what is possible with your copy of the Time Zone Database. |
103 | (This is done via [`tz::OffsetConflict`].) |
104 | * APIs that panic by design are clearly documented as such and few in number. |
105 | Otherwise, all operations that can fail, including because of overflow, |
106 | return a `Result`. |
107 | |
108 | Here is also a list of things that Jiff doesn't currently support, along with |
109 | a link to a relevant issue (if one exists). |
110 | |
111 | * [Leap seconds]. (Jiff will automatically constrain times like `23:59:60` to |
112 | `23:59:59`.) |
113 | * Time scales other than Unix. |
114 | * [Calendars other than Gregorian]. |
115 | * [Localization]. |
116 | * [Changing the representation size, precision or limits on the minimum and |
117 | maximum datetime values.][cppchrono] |
118 | * [Jiff aims to have reasonable performance and may not be capable of doing the |
119 | fastest possible thing.][perf] |
120 | |
121 | At present, it is recommended to use the [`icu`] crate via [`jiff-icu`] for |
122 | localization and non-Gregorian use cases. |
123 | |
124 | [Leap seconds]: https://github.com/BurntSushi/jiff/issues/7 |
125 | [Calendars other than Gregorian]: https://github.com/BurntSushi/jiff/issues/6 |
126 | [Localization]: https://github.com/BurntSushi/jiff/issues/4 |
127 | [cppchrono]: https://github.com/BurntSushi/jiff/issues/3 |
128 | [perf]: https://github.com/BurntSushi/jiff/issues/17 |
129 | [`icu`]: https://docs.rs/icu |
130 | [`jiff-icu`]: https://docs.rs/jiff-icu |
131 | |
132 | Please file an issue if you can think of more (substantial) things to add to |
133 | the above list. |
134 | |
135 | [IANA Time Zone Database]: https://en.wikipedia.org/wiki/Tz_database |
136 | [RFC 3339]: https://www.rfc-editor.org/rfc/rfc3339 |
137 | [RFC 9557]: https://www.rfc-editor.org/rfc/rfc9557.html |
138 | [ISO 8601]: https://www.iso.org/iso-8601-date-and-time-format.html |
139 | |
140 | # Usage |
141 | |
142 | Jiff is [on crates.io](https://crates.io/crates/jiff) and can be |
143 | used by adding `jiff` to your dependencies in your project's `Cargo.toml`. |
144 | Or more simply, just run `cargo add jiff`. |
145 | |
146 | Here is a complete example that creates a new Rust project, adds a dependency |
147 | on `jiff`, creates the source code for a simple datetime program and then runs |
148 | it. |
149 | |
150 | First, create the project in a new directory: |
151 | |
152 | ```text |
153 | $ cargo new jiff-example |
154 | $ cd jiff-example |
155 | ``` |
156 | |
157 | Second, add a dependency on `jiff`: |
158 | |
159 | ```text |
160 | $ cargo add jiff |
161 | ``` |
162 | |
163 | Third, edit `src/main.rs`. Delete what's there and replace it with this: |
164 | |
165 | ``` |
166 | use jiff::{Unit, Zoned}; |
167 | |
168 | fn main() -> Result<(), jiff::Error> { |
169 | let now = Zoned::now().round(Unit::Second)?; |
170 | println!("{now}" ); |
171 | Ok(()) |
172 | } |
173 | ``` |
174 | |
175 | Fourth, run it with `cargo run`: |
176 | |
177 | ```text |
178 | $ cargo run |
179 | Compiling jiff v0.2.0 (/home/andrew/rust/jiff) |
180 | Compiling jiff-play v0.2.0 (/home/andrew/tmp/scratch/rust/jiff-play) |
181 | Finished `dev` profile [unoptimized + debuginfo] target(s) in 1.37s |
182 | Running `target/debug/jiff-play` |
183 | 2024-07-10T19:54:20-04:00[America/New_York] |
184 | ``` |
185 | |
186 | The first time you run the program will show more output like above. But |
187 | subsequent runs shouldn't have to re-compile the dependencies. |
188 | |
189 | # Examples |
190 | |
191 | * [Get the current time in your system's time zone](#get-the-current-time-in-your-systems-time-zone) |
192 | * [Print the current time rounded to the nearest second](#print-the-current-time-rounded-to-the-nearest-second) |
193 | * [Print today's date at a specific time](#print-todays-date-at-a-specific-time) |
194 | * [Print the current Unix timestamp](#print-the-current-unix-timestamp) |
195 | * [Print the datetime for a timestamp](#print-the-datetime-for-a-timestamp) |
196 | * [Create a zoned datetime from civil time](#create-a-zoned-datetime-from-civil-time) |
197 | * [Change an instant from one time zone to another](#change-an-instant-from-one-time-zone-to-another) |
198 | * [Find the duration between two zoned datetimes](#find-the-duration-between-two-zoned-datetimes) |
199 | * [Add a duration to a zoned datetime](#add-a-duration-to-a-zoned-datetime) |
200 | * [Dealing with ambiguity](#dealing-with-ambiguity) |
201 | * [Parsing a span](#parsing-a-span) |
202 | * [Parsing an RFC 2822 datetime string](#parsing-an-rfc-2822-datetime-string) |
203 | * [Using `strftime` and `strptime` for formatting and parsing](#using-strftime-and-strptime-for-formatting-and-parsing) |
204 | * [Serializing and deserializing integer timestamps with Serde](#serializing-and-deserializing-integer-timestamps-with-serde) |
205 | |
206 | ### Get the current time in your system's time zone |
207 | |
208 | The [`Zoned::now`] returns your system's time and also attempts |
209 | to automatically find your system's default time zone via |
210 | [`tz::TimeZone::system`]: |
211 | |
212 | ``` |
213 | use jiff::Zoned; |
214 | |
215 | let now = Zoned::now(); |
216 | println!("{now}" ); |
217 | // Output: 2024-07-10T17:09:28.168146054-04:00[America/New_York] |
218 | ``` |
219 | |
220 | ### Print the current time rounded to the nearest second |
221 | |
222 | This uses the [`Zoned::round`] API to round a zoned datetime to the nearest |
223 | second. This is useful, for example, if you don't care about fractional |
224 | seconds: |
225 | |
226 | ``` |
227 | use jiff::{Unit, Zoned}; |
228 | |
229 | let now = Zoned::now().round(Unit::Second)?; |
230 | println!("{now}" ); |
231 | // Output: 2024-07-10T17:09:28-04:00[America/New_York] |
232 | # Ok::<(), Box<dyn std::error::Error>>(()) |
233 | ``` |
234 | |
235 | ### Print today's date at a specific time |
236 | |
237 | Let's say you want to get the current date at 2pm. Here's one way of doing it |
238 | that makes use of [`Zoned::with`]: |
239 | |
240 | ``` |
241 | use jiff::Zoned; |
242 | |
243 | let zdt = Zoned::now().with() |
244 | .hour(14) |
245 | .minute(0) |
246 | .second(0) |
247 | .subsec_nanosecond(0) |
248 | .build()?; |
249 | println!("{zdt}" ); |
250 | // Output: 2024-07-12T14:00:00-04:00[America/New_York] |
251 | # Ok::<(), Box<dyn std::error::Error>>(()) |
252 | ``` |
253 | |
254 | Or, if the time is known to be valid, you can use the infallibe |
255 | [`civil::time`](civil::time()) convenience constructor: |
256 | |
257 | ``` |
258 | use jiff::{civil::time, Zoned}; |
259 | |
260 | let zdt = Zoned::now().with().time(time(14, 0, 0, 0)).build()?; |
261 | println!("{zdt}" ); |
262 | // Output: 2024-07-12T14:00:00-04:00[America/New_York] |
263 | # Ok::<(), Box<dyn std::error::Error>>(()) |
264 | ``` |
265 | |
266 | You can eliminate the possibility of a panic at runtime by using `time` in |
267 | a `const` block: |
268 | |
269 | ``` |
270 | use jiff::{civil::time, Zoned}; |
271 | |
272 | let zdt = Zoned::now().with().time(const { time(14, 0, 0, 0) }).build()?; |
273 | println!("{zdt}" ); |
274 | // Output: 2024-07-12T14:00:00-04:00[America/New_York] |
275 | # Ok::<(), Box<dyn std::error::Error>>(()) |
276 | ``` |
277 | |
278 | ### Print the current Unix timestamp |
279 | |
280 | This prints a Unix timestamp as the number of seconds since the Unix epoch |
281 | via [`Timestamp::now`]: |
282 | |
283 | ``` |
284 | use jiff::Timestamp; |
285 | |
286 | let now = Timestamp::now(); |
287 | println!("{}" , now.as_second()); |
288 | // Output: 1720646365 |
289 | ``` |
290 | |
291 | Or print the current timestamp to nanosecond precision (which is the maximum |
292 | supported by Jiff): |
293 | |
294 | ``` |
295 | use jiff::Timestamp; |
296 | |
297 | let now = Timestamp::now(); |
298 | println!("{}" , now.as_nanosecond()); |
299 | // Output: 1720646414218901664 |
300 | ``` |
301 | |
302 | ### Print the datetime for a timestamp |
303 | |
304 | This example shows how to convert a Unix timestamp, in milliseconds, to |
305 | a zoned datetime in the system's current time zone. This utilizes the |
306 | [`Timestamp::from_millisecond`] constructor, [`tz::TimeZone::system`] to get |
307 | the default time zone and the [`Timestamp::to_zoned`] routine to convert a |
308 | timestamp to a zoned datetime. |
309 | |
310 | ``` |
311 | use jiff::{tz::TimeZone, Timestamp}; |
312 | |
313 | let ts = Timestamp::from_millisecond(1_720_646_365_567)?; |
314 | let zdt = ts.to_zoned(TimeZone::system()); |
315 | println!("{zdt}" ); |
316 | // Output: 2024-07-10T17:19:25.567-04:00[America/New_York] |
317 | // Or if you just want the RFC 3339 time without bothering with time zones: |
318 | assert_eq!(ts.to_string(), "2024-07-10T21:19:25.567Z" ); |
319 | |
320 | # Ok::<(), Box<dyn std::error::Error>>(()) |
321 | ``` |
322 | |
323 | ### Create a zoned datetime from civil time |
324 | |
325 | This example demonstrates the convenience constructor, [`civil::date`], |
326 | for a [`civil::Date`]. And use the [`civil::Date::at`] method to create |
327 | a [`civil::DateTime`]. Once we have a civil datetime, we can use |
328 | [`civil::DateTime::in_tz`] to do a time zone lookup and convert it to a precise |
329 | instant in time: |
330 | |
331 | ``` |
332 | use jiff::civil::date; |
333 | |
334 | let zdt = date(2023, 12, 31).at(18, 30, 0, 0).in_tz("America/New_York" )?; |
335 | assert_eq!(zdt.to_string(), "2023-12-31T18:30:00-05:00[America/New_York]" ); |
336 | |
337 | # Ok::<(), Box<dyn std::error::Error>>(()) |
338 | ``` |
339 | |
340 | Note that [`civil::date`] should only be used for inputs that are known to be |
341 | correct since it panics for an invalid date. If your date isn't known to be |
342 | valid, then use the fallible [`civil::Date::new`] constructor. |
343 | |
344 | ### Change an instant from one time zone to another |
345 | |
346 | This shows how to find the civil time, in New York, when World War 1 ended: |
347 | |
348 | ``` |
349 | use jiff::civil::date; |
350 | |
351 | let zdt1 = date(1918, 11, 11).at(11, 0, 0, 0).in_tz("Europe/Paris" )?; |
352 | let zdt2 = zdt1.in_tz("America/New_York" )?; |
353 | assert_eq!( |
354 | zdt2.to_string(), |
355 | "1918-11-11T06:00:00-05:00[America/New_York]" , |
356 | ); |
357 | |
358 | # Ok::<(), Box<dyn std::error::Error>>(()) |
359 | ``` |
360 | |
361 | ### Find the duration between two zoned datetimes |
362 | |
363 | This shows how to compute a span between two zoned datetimes. This utilizes |
364 | a [`Zoned`]'s implementation for `Sub`, permitting one to subtract two zoned |
365 | datetimes via the `-` operator: |
366 | |
367 | ``` |
368 | use jiff::civil::date; |
369 | |
370 | let zdt1 = date(2020, 8, 26).at(6, 27, 0, 0).in_tz("America/New_York" )?; |
371 | let zdt2 = date(2023, 12, 31).at(18, 30, 0, 0).in_tz("America/New_York" )?; |
372 | let span = &zdt2 - &zdt1; |
373 | assert_eq!(format!("{span:#}" ), "29341h 3m" ); |
374 | |
375 | # Ok::<(), Box<dyn std::error::Error>>(()) |
376 | ``` |
377 | |
378 | The above returns no units bigger than hours because it makes the operation |
379 | reversible in all cases. But if you don't need reversibility (i.e., adding the |
380 | span returned to `zdt1` gives you `zdt2`), then you can ask for bigger units |
381 | via [`Zoned::until`] to make the span more comprehensible: |
382 | |
383 | ``` |
384 | use jiff::{civil::date, Unit}; |
385 | |
386 | let zdt1 = date(2020, 8, 26).at(6, 27, 0, 0).in_tz("America/New_York" )?; |
387 | let zdt2 = date(2023, 12, 31).at(18, 30, 0, 0).in_tz("America/New_York" )?; |
388 | let span = zdt1.until((Unit::Year, &zdt2))?; |
389 | assert_eq!(format!("{span:#}" ), "3y 4mo 5d 12h 3m" ); |
390 | |
391 | # Ok::<(), Box<dyn std::error::Error>>(()) |
392 | ``` |
393 | |
394 | ### Add a duration to a zoned datetime |
395 | |
396 | This example shows how one can add a [`Span`] to a [`Zoned`] via |
397 | [`Zoned::checked_add`] to get a new `Zoned` value. We utilize the [`ToSpan`] |
398 | trait for convenience construction of `Span` values. |
399 | |
400 | ``` |
401 | use jiff::{civil::date, ToSpan}; |
402 | |
403 | let zdt1 = date(2020, 8, 26).at(6, 27, 0, 0).in_tz("America/New_York" )?; |
404 | let span = 3.years().months(4).days(5).hours(12).minutes(3); |
405 | let zdt2 = zdt1.checked_add(span)?; |
406 | assert_eq!(zdt2.to_string(), "2023-12-31T18:30:00-05:00[America/New_York]" ); |
407 | |
408 | # Ok::<(), Box<dyn std::error::Error>>(()) |
409 | ``` |
410 | |
411 | As with [`civil::date`], the [`ToSpan`] trait should only be used with inputs |
412 | that are known to be valid. If you aren't sure whether the inputs are valid, |
413 | then use [`Span::new`] and its fallible mutators like [`Span::try_years`]. |
414 | |
415 | ### Dealing with ambiguity |
416 | |
417 | In some cases, civil datetimes either don't exist in a particular time zone or |
418 | are repeated. By default, Jiff automatically uses the |
419 | [`tz::Disambiguation::Compatible`] strategy for choosing an instant in all |
420 | cases: |
421 | |
422 | ``` |
423 | use jiff::civil::date; |
424 | |
425 | // 2:30 on 2024-03-10 in New York didn't exist. It's a "gap." |
426 | // The compatible strategy selects the datetime after the gap. |
427 | let zdt = date(2024, 3, 10).at(2, 30, 0, 0).in_tz("America/New_York" )?; |
428 | assert_eq!(zdt.to_string(), "2024-03-10T03:30:00-04:00[America/New_York]" ); |
429 | |
430 | // 1:30 on 2024-11-03 in New York appeared twice. It's a "fold." |
431 | // The compatible strategy selects the datetime before the fold. |
432 | let zdt = date(2024, 11, 3).at(1, 30, 0, 0).in_tz("America/New_York" )?; |
433 | assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-04:00[America/New_York]" ); |
434 | |
435 | # Ok::<(), Box<dyn std::error::Error>>(()) |
436 | ``` |
437 | |
438 | For more control over disambiguation, see |
439 | [`tz::TimeZone::to_ambiguous_zoned`]. Or |
440 | [`fmt::temporal::DateTimeParser::disambiguation`] |
441 | if you're parsing zoned datetimes. |
442 | |
443 | ### Parsing a span |
444 | |
445 | Jiff supports parsing ISO 8601 duration strings: |
446 | |
447 | ``` |
448 | use jiff::Span; |
449 | |
450 | let span: Span = "P5y1w10dT5h59m" .parse()?; |
451 | let expected = Span::new().years(5).weeks(1).days(10).hours(5).minutes(59); |
452 | assert_eq!(span, expected.fieldwise()); |
453 | |
454 | # Ok::<(), Box<dyn std::error::Error>>(()) |
455 | ``` |
456 | |
457 | The same format is used for serializing and deserializing `Span` values when |
458 | the `serde` feature is enabled. |
459 | |
460 | Jiff also supports a bespoke ["friendly" format](crate::fmt::friendly) as |
461 | well: |
462 | |
463 | ``` |
464 | use jiff::Span; |
465 | |
466 | let expected = Span::new().years(5).weeks(1).days(10).hours(5).minutes(59); |
467 | let span: Span = "5 years, 1 week, 10 days, 5 hours, 59 minutes" .parse()?; |
468 | assert_eq!(span, expected.fieldwise()); |
469 | let span: Span = "5yrs 1wk 10d 5hrs 59mins" .parse()?; |
470 | assert_eq!(span, expected.fieldwise()); |
471 | let span: Span = "5y 1w 10d 5h 59m" .parse()?; |
472 | assert_eq!(span, expected.fieldwise()); |
473 | |
474 | # Ok::<(), Box<dyn std::error::Error>>(()) |
475 | ``` |
476 | |
477 | ### Parsing an RFC 2822 datetime string |
478 | |
479 | While you probably shouldn't pick [RFC 2822] as a format for new things, it is |
480 | sometimes necessary to use it when something else requires it (like HTTP |
481 | or email). Parsing and printing of RFC 2822 datetimes is done via the |
482 | [`fmt::rfc2822`] module: |
483 | |
484 | ``` |
485 | use jiff::fmt::rfc2822; |
486 | |
487 | let zdt1 = rfc2822::parse("Thu, 29 Feb 2024 05:34 -0500" )?; |
488 | let zdt2 = zdt1.in_tz("Australia/Tasmania" )?; |
489 | assert_eq!(rfc2822::to_string(&zdt2)?, "Thu, 29 Feb 2024 21:34:00 +1100" ); |
490 | let zdt3 = zdt1.in_tz("Asia/Kolkata" )?; |
491 | assert_eq!(rfc2822::to_string(&zdt3)?, "Thu, 29 Feb 2024 16:04:00 +0530" ); |
492 | |
493 | # Ok::<(), Box<dyn std::error::Error>>(()) |
494 | ``` |
495 | |
496 | [RFC 2822]: https://datatracker.ietf.org/doc/html/rfc2822 |
497 | |
498 | ### Using `strftime` and `strptime` for formatting and parsing |
499 | |
500 | Jiff has support for the C style [`strftime`] and [`strptime`] functions for |
501 | formatting and parsing datetime types. All of Jiff's datetime types having a |
502 | `strptime` constructor for parsing, and a `strftime` method for formatting. |
503 | For example, this shows how to use [`Zoned::strptime`] to parsed a string in |
504 | a "odd" custom format into a zoned datetime: |
505 | |
506 | ``` |
507 | use jiff::Zoned; |
508 | |
509 | let zdt = Zoned::strptime( |
510 | "%A, %B %d, %Y at %I:%M%p %Q" , |
511 | "Monday, July 15, 2024 at 5:30pm US/Eastern" , |
512 | )?; |
513 | assert_eq!(zdt.to_string(), "2024-07-15T17:30:00-04:00[US/Eastern]" ); |
514 | |
515 | # Ok::<(), Box<dyn std::error::Error>>(()) |
516 | ``` |
517 | |
518 | And this shows how to use [`Zoned::strftime`] to format a zoned datetime. |
519 | Note the use of `%Z`, which will print a time zone abbreviation (when one is |
520 | available) instead of an offset (`%Z` can't be used for parsing): |
521 | |
522 | ``` |
523 | use jiff::civil::date; |
524 | |
525 | let zdt = date(2024, 7, 15).at(17, 30, 59, 0).in_tz("Australia/Tasmania" )?; |
526 | // %-I instead of %I means no padding. |
527 | let string = zdt.strftime("%A, %B %d, %Y at %-I:%M%P %Z" ).to_string(); |
528 | assert_eq!(string, "Monday, July 15, 2024 at 5:30pm AEST" ); |
529 | |
530 | # Ok::<(), Box<dyn std::error::Error>>(()) |
531 | ``` |
532 | |
533 | However, time zone abbreviations aren't parsable because they are ambiguous. |
534 | For example, `CST` can stand for `Central Standard Time`, `Cuba Standard Time` |
535 | or `China Standard Time`. Instead, it is recommended to use `%Q` to format an |
536 | IANA time zone identifier (which can be parsed, as shown above): |
537 | |
538 | ``` |
539 | use jiff::civil::date; |
540 | |
541 | let zdt = date(2024, 7, 15).at(17, 30, 59, 0).in_tz("Australia/Tasmania" )?; |
542 | // %-I instead of %I means no padding. |
543 | let string = zdt.strftime("%A, %B %d, %Y at %-I:%M%P %Q" ).to_string(); |
544 | assert_eq!(string, "Monday, July 15, 2024 at 5:30pm Australia/Tasmania" ); |
545 | |
546 | # Ok::<(), Box<dyn std::error::Error>>(()) |
547 | ``` |
548 | |
549 | See the [`fmt::strtime`] module documentation for supported conversion |
550 | specifiers and other APIs. |
551 | |
552 | [`strftime`]: https://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html |
553 | [`strptime`]: https://pubs.opengroup.org/onlinepubs/009695399/functions/strptime.html |
554 | |
555 | ### Serializing and deserializing integer timestamps with Serde |
556 | |
557 | Sometimes you need to interact with external services that use integer timestamps |
558 | instead of something more civilized like RFC 3339. Since [`Timestamp`]'s |
559 | Serde integration uses RFC 3339, you'll need to override the default. While |
560 | you could hand-write this, Jiff provides convenience routines that do this |
561 | for you. But you do need to wire it up via [Serde's `with` attribute]: |
562 | |
563 | ``` |
564 | use jiff::Timestamp; |
565 | |
566 | #[derive(Debug, serde::Deserialize, serde::Serialize)] |
567 | struct Record { |
568 | #[serde(with = "jiff::fmt::serde::timestamp::second::required" )] |
569 | timestamp: Timestamp, |
570 | } |
571 | |
572 | let json = r#"{"timestamp":1517644800}"# ; |
573 | let got: Record = serde_json::from_str(&json)?; |
574 | assert_eq!(got.timestamp, Timestamp::from_second(1517644800)?); |
575 | assert_eq!(serde_json::to_string(&got)?, json); |
576 | |
577 | # Ok::<(), Box<dyn std::error::Error>>(()) |
578 | ``` |
579 | |
580 | If you need to support optional timestamps via `Option<Timestamp>`, then use |
581 | `jiff::fmt::serde::timestamp::second::optional` instead. |
582 | |
583 | For more, see the [`fmt::serde`] sub-module. (This requires enabling Jiff's |
584 | `serde` crate feature.) |
585 | |
586 | [Serde's `with` attribute]: https://serde.rs/field-attrs.html#with |
587 | |
588 | # Crate features |
589 | |
590 | ### Ecosystem features |
591 | |
592 | * **std** (enabled by default) - |
593 | When enabled, Jiff will depend on Rust's standard library. This is needed |
594 | for things that require interacting with your system, such as reading |
595 | `/usr/share/zoneinfo` on Unix systems for time zone information, or for |
596 | finding your system's default time zone. But if you don't need that (or can |
597 | bundle the Time Zone Database), then Jiff has nearly full functionality |
598 | without `std` enabled, excepting things like `std::error::Error` trait |
599 | implementations and a global time zone database (which is required for |
600 | things like [`Timestamp::in_tz`] to work). |
601 | * **alloc** (enabled by default) - |
602 | When enabled, Jiff will depend on the `alloc` crate. In particular, this |
603 | enables functionality that requires or greatly benefits from dynamic memory |
604 | allocation. If you can enable this, it is strongly encouraged that you do so. |
605 | Without it, only fixed time zones are supported and error messages are |
606 | significantly degraded. Also, the sizes of some types get bigger. If you |
607 | have use cases for Jiff in a no-std and no-alloc context, I would love |
608 | feedback on the issue tracker about your use cases. |
609 | * **logging** - |
610 | When enabled, the `log` crate is used to emit messages where appropriate. |
611 | Generally speaking, this is reserved for system interaction points, such as |
612 | finding the system copy of the Time Zone Database or finding the system's |
613 | default time zone. |
614 | * **serde** - |
615 | When enabled, all of the datetime and span types in Jiff implement |
616 | serde's `Serialize` and `Deserialize` traits. The format used is specified by |
617 | Temporal, but it's a mix of the "best" parts of RFC 3339, RFC 9557 and |
618 | ISO 8601. See the [`fmt::temporal`] module for more details on the format |
619 | used. |
620 | * **js** - |
621 | On _only_ the `wasm32-unknown-unknown` and `wasm64-unknown-unknown` targets, |
622 | the `js` feature will add dependencies on `js-sys` and `wasm-bindgen`. |
623 | These dependencies are used to determine the current datetime and time |
624 | zone from the web browser. On these targets without the `js` feature |
625 | enabled, getting the current datetime will panic (because that's what |
626 | `std::time::SystemTime::now()` does), and it won't be possible to determine |
627 | the time zone. This feature is disabled by default because not all uses |
628 | of `wasm{32,64}-unknown-unknown` are in a web context, although _many_ are |
629 | (for example, when using `wasm-pack`). Only binary, tests and benchmarks |
630 | should enable this feature. See |
631 | [Platform support](crate::_documentation::platform) for more details. |
632 | |
633 | ### Time zone features |
634 | |
635 | * **tz-system** (enabled by default) - |
636 | When enabled, Jiff will include code that attempts to determine the "system" |
637 | time zone. For example, on Unix systems, this is usually determined by |
638 | looking at the symlink information on `/etc/localtime`. But in general, it's |
639 | very platform specific and heuristic oriented. On some platforms, this may |
640 | require extra dependencies. (For example, `windows-sys` on Windows.) |
641 | * **tz-fat** (enabled by default) - |
642 | When enabled, Jiff will "fatten" time zone data with extra transitions to |
643 | make time zone lookups faster. This may result in increased heap memory |
644 | (when loading time zones from `/usr/share/zoneinfo`) or increased binary |
645 | size (when using the `jiff-static` proc macros). Note that this doesn't add |
646 | more transitions than are likely already in `/usr/share/zoneinfo`, depending |
647 | on how it was generated. |
648 | * **tzdb-bundle-always** - |
649 | When enabled, Jiff will forcefully depend on the `jiff-tzdb` crate, which |
650 | embeds an entire copy of the Time Zone Database. You should avoid this unless |
651 | you have a specific need for it, since it is better to rely on your system's |
652 | copy of time zone information. (Which may be updated multiple times per |
653 | year.) |
654 | * **tzdb-bundle-platform** (enabled by default) - |
655 | When enabled, Jiff will depend on `jiff-tzdb` only for platforms where it is |
656 | known that there is no canonical copy of the Time Zone Database. For example, |
657 | Windows. |
658 | * **tzdb-zoneinfo** (enabled by default) - |
659 | When enabled, Jiff will attempt to look for your system's copy of the Time |
660 | Zone Database. |
661 | * **tzdb-concatenated** (enabled by default) - |
662 | When enabled, Jiff will attempt to look for a system copy of the |
663 | [Concatenated Time Zone Database]. This is primarily meant for reading time |
664 | zone information on Android platforms. The `ANDROID_ROOT` and `ANDROID_DATA` |
665 | environment variables (with sensible default fallbacks) are used to construct |
666 | candidate paths to look for this database. For more on this, see the |
667 | [Android section of the platform support documentation](crate::_documentation::platform#android). |
668 | * **static** - |
669 | When enabled, new procedural macros will be added to the `tz` sub-module for |
670 | creating static `TimeZone` values at compile-time. This adds a dependency on |
671 | [`jiff-static`] and [`jiff-tzdb`]. `jiff-static` defines the macros, and Jiff |
672 | re-exports them. This also enables `static-tz`. |
673 | * **static-tz** - |
674 | When enabled, a `jiff::tz::include` procedural macro will become available. |
675 | This takes a TZif file path, like `/usr/share/zoneinfo/Israel`, as input and |
676 | returns a `TimeZone` value at compile time. |
677 | |
678 | ### Performance features |
679 | |
680 | * **perf-inline** (enabled by default) - |
681 | When enabled, a number of `inline(always)` annotations are used inside of |
682 | Jiff to improve performance. This can especially impact formatting and |
683 | parsing of datetimes. If the extra performance isn't needed or if you want |
684 | to prioritize smaller binary sizes and shorter compilation times over |
685 | runtime performance, then it can be useful to disable this feature. |
686 | |
687 | [`jiff-static`]: https://docs.rs/jiff-static |
688 | [`jiff-tzdb`]: https://docs.rs/jiff-tzdb |
689 | [Concatenated Time Zone Database]: https://android.googlesource.com/platform/libcore/+/jb-mr2-release/luni/src/main/java/libcore/util/ZoneInfoDB.java |
690 | */ |
691 | |
692 | #![no_std ] |
693 | // Lots of rustdoc links break when disabling default features because docs |
694 | // aren't written conditionally. |
695 | #![cfg_attr ( |
696 | all( |
697 | feature = "std" , |
698 | feature = "serde" , |
699 | feature = "static" , |
700 | feature = "tzdb-zoneinfo" |
701 | ), |
702 | deny(rustdoc::broken_intra_doc_links) |
703 | )] |
704 | // These are just too annoying to squash otherwise. |
705 | #![cfg_attr ( |
706 | not(all( |
707 | feature = "std" , |
708 | feature = "tzdb-zoneinfo" , |
709 | feature = "tzdb-concatenated" , |
710 | feature = "tz-system" , |
711 | )), |
712 | allow(dead_code, unused_imports) |
713 | )] |
714 | // No clue why this thing is still unstable because it's pretty amazing. This |
715 | // adds Cargo feature annotations to items in the rustdoc output. Which is |
716 | // sadly hugely beneficial for this crate due to the number of features. |
717 | #![cfg_attr (docsrs, feature(doc_auto_cfg))] |
718 | // We generally want all types to impl Debug. |
719 | #![warn (missing_debug_implementations)] |
720 | // Document ALL THE THINGS! |
721 | #![deny (missing_docs)] |
722 | // See: https://github.com/rust-lang/rust/pull/121364 |
723 | #![allow (unknown_lints, ambiguous_negative_literals)] |
724 | // See: https://github.com/rust-lang/rust/pull/121364 |
725 | #![doc (test(attr(allow(unknown_lints, ambiguous_negative_literals))))] |
726 | |
727 | // It should be possible to support other pointer widths, but this library |
728 | // hasn't been tested nor thought about much in contexts with pointers less |
729 | // than 32 bits. |
730 | // |
731 | // If you need support for 8-bit or 16-bit, please submit a bug report at |
732 | // https://github.com/BurntSushi/jiff |
733 | #[cfg (not(any(target_pointer_width = "32" , target_pointer_width = "64" )))] |
734 | compile_error!("jiff currently not supported on non-{32,64}" ); |
735 | |
736 | #[cfg (any(test, feature = "std" ))] |
737 | extern crate std; |
738 | |
739 | #[cfg (any(test, feature = "alloc" ))] |
740 | extern crate alloc; |
741 | |
742 | pub use crate::{ |
743 | error::Error, |
744 | signed_duration::{SignedDuration, SignedDurationRound}, |
745 | span::{ |
746 | Span, SpanArithmetic, SpanCompare, SpanFieldwise, SpanRelativeTo, |
747 | SpanRound, SpanTotal, ToSpan, Unit, |
748 | }, |
749 | timestamp::{ |
750 | Timestamp, TimestampArithmetic, TimestampDifference, |
751 | TimestampDisplayWithOffset, TimestampRound, TimestampSeries, |
752 | }, |
753 | util::round::mode::RoundMode, |
754 | zoned::{Zoned, ZonedArithmetic, ZonedDifference, ZonedRound, ZonedWith}, |
755 | }; |
756 | |
757 | #[macro_use ] |
758 | mod logging; |
759 | |
760 | pub mod civil; |
761 | mod duration; |
762 | mod error; |
763 | pub mod fmt; |
764 | #[cfg (feature = "std" )] |
765 | mod now; |
766 | #[doc (hidden)] |
767 | pub mod shared; |
768 | mod signed_duration; |
769 | mod span; |
770 | mod timestamp; |
771 | pub mod tz; |
772 | mod util; |
773 | mod zoned; |
774 | |
775 | /// Longer form documentation for Jiff. |
776 | pub mod _documentation { |
777 | #[doc = include_str!("../COMPARE.md" )] |
778 | pub mod comparison {} |
779 | #[doc = include_str!("../DESIGN.md" )] |
780 | pub mod design {} |
781 | #[doc = include_str!("../PLATFORM.md" )] |
782 | pub mod platform {} |
783 | #[doc = include_str!("../CHANGELOG.md" )] |
784 | pub mod changelog {} |
785 | } |
786 | |
787 | #[cfg (test)] |
788 | mod tests { |
789 | use super::*; |
790 | |
791 | #[cfg (feature = "std" )] |
792 | #[test ] |
793 | fn now_works() { |
794 | let _ = crate::logging::Logger::init(); |
795 | |
796 | let zdt = Zoned::now(); |
797 | std::println!("{zdt}" ); |
798 | } |
799 | |
800 | #[cfg (feature = "std" )] |
801 | #[test ] |
802 | fn ranges() { |
803 | use crate::util::t; |
804 | |
805 | dbg!((t::SpanYears::MIN, t::SpanYears::MAX)); |
806 | dbg!((t::SpanMonths::MIN, t::SpanMonths::MAX)); |
807 | dbg!((t::SpanWeeks::MIN, t::SpanWeeks::MAX)); |
808 | dbg!((t::SpanDays::MIN, t::SpanDays::MAX)); |
809 | dbg!((t::SpanHours::MIN, t::SpanHours::MAX)); |
810 | dbg!((t::SpanMinutes::MIN, t::SpanMinutes::MAX)); |
811 | dbg!((t::SpanSeconds::MIN, t::SpanSeconds::MAX)); |
812 | dbg!((t::SpanMilliseconds::MIN, t::SpanMilliseconds::MAX)); |
813 | dbg!((t::SpanMicroseconds::MIN, t::SpanMicroseconds::MAX)); |
814 | dbg!((t::SpanNanoseconds::MIN, t::SpanNanoseconds::MAX)); |
815 | dbg!((t::UnixSeconds::MIN, t::UnixSeconds::MAX)); |
816 | dbg!((t::UnixEpochDay::MIN, t::UnixEpochDay::MAX)); |
817 | } |
818 | } |
819 | |