| 1 | /* Building internal representation for IRA. |
| 2 | Copyright (C) 2006-2025 Free Software Foundation, Inc. |
| 3 | Contributed by Vladimir Makarov <vmakarov@redhat.com>. |
| 4 | |
| 5 | This file is part of GCC. |
| 6 | |
| 7 | GCC is free software; you can redistribute it and/or modify it under |
| 8 | the terms of the GNU General Public License as published by the Free |
| 9 | Software Foundation; either version 3, or (at your option) any later |
| 10 | version. |
| 11 | |
| 12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 15 | for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with GCC; see the file COPYING3. If not see |
| 19 | <http://www.gnu.org/licenses/>. */ |
| 20 | |
| 21 | #include "config.h" |
| 22 | #include "system.h" |
| 23 | #include "coretypes.h" |
| 24 | #include "backend.h" |
| 25 | #include "target.h" |
| 26 | #include "rtl.h" |
| 27 | #include "predict.h" |
| 28 | #include "df.h" |
| 29 | #include "insn-config.h" |
| 30 | #include "regs.h" |
| 31 | #include "memmodel.h" |
| 32 | #include "ira.h" |
| 33 | #include "ira-int.h" |
| 34 | #include "sparseset.h" |
| 35 | #include "cfgloop.h" |
| 36 | |
| 37 | static ira_copy_t find_allocno_copy (ira_allocno_t, ira_allocno_t, rtx_insn *, |
| 38 | ira_loop_tree_node_t); |
| 39 | |
| 40 | /* The root of the loop tree corresponding to the all function. */ |
| 41 | ira_loop_tree_node_t ira_loop_tree_root; |
| 42 | |
| 43 | /* Height of the loop tree. */ |
| 44 | int ira_loop_tree_height; |
| 45 | |
| 46 | /* All nodes representing basic blocks are referred through the |
| 47 | following array. We cannot use basic block member `aux' for this |
| 48 | because it is used for insertion of insns on edges. */ |
| 49 | ira_loop_tree_node_t ira_bb_nodes; |
| 50 | |
| 51 | /* All nodes representing loops are referred through the following |
| 52 | array. */ |
| 53 | ira_loop_tree_node_t ira_loop_nodes; |
| 54 | |
| 55 | /* And size of the ira_loop_nodes array. */ |
| 56 | unsigned int ira_loop_nodes_count; |
| 57 | |
| 58 | /* Map regno -> allocnos with given regno (see comments for |
| 59 | allocno member `next_regno_allocno'). */ |
| 60 | ira_allocno_t *ira_regno_allocno_map; |
| 61 | |
| 62 | /* Array of references to all allocnos. The order number of the |
| 63 | allocno corresponds to the index in the array. Removed allocnos |
| 64 | have NULL element value. */ |
| 65 | ira_allocno_t *ira_allocnos; |
| 66 | |
| 67 | /* Sizes of the previous array. */ |
| 68 | int ira_allocnos_num; |
| 69 | |
| 70 | /* Count of conflict record structures we've created, used when creating |
| 71 | a new conflict id. */ |
| 72 | int ira_objects_num; |
| 73 | |
| 74 | /* Map a conflict id to its conflict record. */ |
| 75 | ira_object_t *ira_object_id_map; |
| 76 | |
| 77 | /* Array of references to all allocno preferences. The order number |
| 78 | of the preference corresponds to the index in the array. */ |
| 79 | ira_pref_t *ira_prefs; |
| 80 | |
| 81 | /* Size of the previous array. */ |
| 82 | int ira_prefs_num; |
| 83 | |
| 84 | /* Array of references to all copies. The order number of the copy |
| 85 | corresponds to the index in the array. Removed copies have NULL |
| 86 | element value. */ |
| 87 | ira_copy_t *ira_copies; |
| 88 | |
| 89 | /* Size of the previous array. */ |
| 90 | int ira_copies_num; |
| 91 | |
| 92 | |
| 93 | |
| 94 | /* LAST_BASIC_BLOCK before generating additional insns because of live |
| 95 | range splitting. Emitting insns on a critical edge creates a new |
| 96 | basic block. */ |
| 97 | static int last_basic_block_before_change; |
| 98 | |
| 99 | /* Initialize some members in loop tree node NODE. Use LOOP_NUM for |
| 100 | the member loop_num. */ |
| 101 | static void |
| 102 | init_loop_tree_node (struct ira_loop_tree_node *node, int loop_num) |
| 103 | { |
| 104 | int max_regno = max_reg_num (); |
| 105 | |
| 106 | node->regno_allocno_map |
| 107 | = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) * max_regno); |
| 108 | memset (s: node->regno_allocno_map, c: 0, n: sizeof (ira_allocno_t) * max_regno); |
| 109 | memset (s: node->reg_pressure, c: 0, n: sizeof (node->reg_pressure)); |
| 110 | node->all_allocnos = ira_allocate_bitmap (); |
| 111 | node->modified_regnos = ira_allocate_bitmap (); |
| 112 | node->border_allocnos = ira_allocate_bitmap (); |
| 113 | node->local_copies = ira_allocate_bitmap (); |
| 114 | node->loop_num = loop_num; |
| 115 | node->children = NULL; |
| 116 | node->subloops = NULL; |
| 117 | } |
| 118 | |
| 119 | |
| 120 | /* The following function allocates the loop tree nodes. If |
| 121 | CURRENT_LOOPS is NULL, the nodes corresponding to the loops (except |
| 122 | the root which corresponds the all function) will be not allocated |
| 123 | but nodes will still be allocated for basic blocks. */ |
| 124 | static void |
| 125 | create_loop_tree_nodes (void) |
| 126 | { |
| 127 | unsigned int i, j; |
| 128 | bool skip_p; |
| 129 | edge_iterator ei; |
| 130 | edge e; |
| 131 | loop_p loop; |
| 132 | |
| 133 | ira_bb_nodes |
| 134 | = ((struct ira_loop_tree_node *) |
| 135 | ira_allocate (sizeof (struct ira_loop_tree_node) |
| 136 | * last_basic_block_for_fn (cfun))); |
| 137 | last_basic_block_before_change = last_basic_block_for_fn (cfun); |
| 138 | for (i = 0; i < (unsigned int) last_basic_block_for_fn (cfun); i++) |
| 139 | { |
| 140 | ira_bb_nodes[i].regno_allocno_map = NULL; |
| 141 | memset (s: ira_bb_nodes[i].reg_pressure, c: 0, |
| 142 | n: sizeof (ira_bb_nodes[i].reg_pressure)); |
| 143 | ira_bb_nodes[i].all_allocnos = NULL; |
| 144 | ira_bb_nodes[i].modified_regnos = NULL; |
| 145 | ira_bb_nodes[i].border_allocnos = NULL; |
| 146 | ira_bb_nodes[i].local_copies = NULL; |
| 147 | } |
| 148 | if (current_loops == NULL) |
| 149 | { |
| 150 | ira_loop_nodes_count = 1; |
| 151 | ira_loop_nodes = ((struct ira_loop_tree_node *) |
| 152 | ira_allocate (sizeof (struct ira_loop_tree_node))); |
| 153 | init_loop_tree_node (node: ira_loop_nodes, loop_num: 0); |
| 154 | return; |
| 155 | } |
| 156 | ira_loop_nodes_count = number_of_loops (cfun); |
| 157 | ira_loop_nodes = ((struct ira_loop_tree_node *) |
| 158 | ira_allocate (sizeof (struct ira_loop_tree_node) |
| 159 | * ira_loop_nodes_count)); |
| 160 | FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop) |
| 161 | { |
| 162 | if (loop_outer (loop) != NULL) |
| 163 | { |
| 164 | ira_loop_nodes[i].regno_allocno_map = NULL; |
| 165 | skip_p = false; |
| 166 | FOR_EACH_EDGE (e, ei, loop->header->preds) |
| 167 | if (e->src != loop->latch |
| 168 | && (e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)) |
| 169 | { |
| 170 | skip_p = true; |
| 171 | break; |
| 172 | } |
| 173 | if (skip_p) |
| 174 | continue; |
| 175 | auto_vec<edge> edges = get_loop_exit_edges (loop); |
| 176 | FOR_EACH_VEC_ELT (edges, j, e) |
| 177 | if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)) |
| 178 | { |
| 179 | skip_p = true; |
| 180 | break; |
| 181 | } |
| 182 | if (skip_p) |
| 183 | continue; |
| 184 | } |
| 185 | init_loop_tree_node (node: &ira_loop_nodes[i], loop_num: loop->num); |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | /* The function returns TRUE if there are more one allocation |
| 190 | region. */ |
| 191 | static bool |
| 192 | more_one_region_p (void) |
| 193 | { |
| 194 | unsigned int i; |
| 195 | loop_p loop; |
| 196 | |
| 197 | if (current_loops != NULL) |
| 198 | FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop) |
| 199 | if (ira_loop_nodes[i].regno_allocno_map != NULL |
| 200 | && ira_loop_tree_root != &ira_loop_nodes[i]) |
| 201 | return true; |
| 202 | return false; |
| 203 | } |
| 204 | |
| 205 | /* Free the loop tree node of a loop. */ |
| 206 | static void |
| 207 | finish_loop_tree_node (ira_loop_tree_node_t loop) |
| 208 | { |
| 209 | if (loop->regno_allocno_map != NULL) |
| 210 | { |
| 211 | ira_assert (loop->bb == NULL); |
| 212 | ira_free_bitmap (loop->local_copies); |
| 213 | ira_free_bitmap (loop->border_allocnos); |
| 214 | ira_free_bitmap (loop->modified_regnos); |
| 215 | ira_free_bitmap (loop->all_allocnos); |
| 216 | ira_free (addr: loop->regno_allocno_map); |
| 217 | loop->regno_allocno_map = NULL; |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | /* Free the loop tree nodes. */ |
| 222 | static void |
| 223 | finish_loop_tree_nodes (void) |
| 224 | { |
| 225 | unsigned int i; |
| 226 | |
| 227 | for (i = 0; i < ira_loop_nodes_count; i++) |
| 228 | finish_loop_tree_node (loop: &ira_loop_nodes[i]); |
| 229 | ira_free (addr: ira_loop_nodes); |
| 230 | for (i = 0; i < (unsigned int) last_basic_block_before_change; i++) |
| 231 | { |
| 232 | if (ira_bb_nodes[i].local_copies != NULL) |
| 233 | ira_free_bitmap (ira_bb_nodes[i].local_copies); |
| 234 | if (ira_bb_nodes[i].border_allocnos != NULL) |
| 235 | ira_free_bitmap (ira_bb_nodes[i].border_allocnos); |
| 236 | if (ira_bb_nodes[i].modified_regnos != NULL) |
| 237 | ira_free_bitmap (ira_bb_nodes[i].modified_regnos); |
| 238 | if (ira_bb_nodes[i].all_allocnos != NULL) |
| 239 | ira_free_bitmap (ira_bb_nodes[i].all_allocnos); |
| 240 | if (ira_bb_nodes[i].regno_allocno_map != NULL) |
| 241 | ira_free (addr: ira_bb_nodes[i].regno_allocno_map); |
| 242 | } |
| 243 | ira_free (addr: ira_bb_nodes); |
| 244 | } |
| 245 | |
| 246 | |
| 247 | |
| 248 | /* The following recursive function adds LOOP to the loop tree |
| 249 | hierarchy. LOOP is added only once. If LOOP is NULL we adding |
| 250 | loop designating the whole function when CFG loops are not |
| 251 | built. */ |
| 252 | static void |
| 253 | add_loop_to_tree (class loop *loop) |
| 254 | { |
| 255 | int loop_num; |
| 256 | class loop *parent; |
| 257 | ira_loop_tree_node_t loop_node, parent_node; |
| 258 | |
| 259 | /* We cannot use loop node access macros here because of potential |
| 260 | checking and because the nodes are not initialized enough |
| 261 | yet. */ |
| 262 | if (loop != NULL && loop_outer (loop) != NULL) |
| 263 | add_loop_to_tree (loop: loop_outer (loop)); |
| 264 | loop_num = loop != NULL ? loop->num : 0; |
| 265 | if (ira_loop_nodes[loop_num].regno_allocno_map != NULL |
| 266 | && ira_loop_nodes[loop_num].children == NULL) |
| 267 | { |
| 268 | /* We have not added loop node to the tree yet. */ |
| 269 | loop_node = &ira_loop_nodes[loop_num]; |
| 270 | loop_node->loop = loop; |
| 271 | loop_node->bb = NULL; |
| 272 | if (loop == NULL) |
| 273 | parent = NULL; |
| 274 | else |
| 275 | { |
| 276 | for (parent = loop_outer (loop); |
| 277 | parent != NULL; |
| 278 | parent = loop_outer (loop: parent)) |
| 279 | if (ira_loop_nodes[parent->num].regno_allocno_map != NULL) |
| 280 | break; |
| 281 | } |
| 282 | if (parent == NULL) |
| 283 | { |
| 284 | loop_node->next = NULL; |
| 285 | loop_node->subloop_next = NULL; |
| 286 | loop_node->parent = NULL; |
| 287 | } |
| 288 | else |
| 289 | { |
| 290 | parent_node = &ira_loop_nodes[parent->num]; |
| 291 | loop_node->next = parent_node->children; |
| 292 | parent_node->children = loop_node; |
| 293 | loop_node->subloop_next = parent_node->subloops; |
| 294 | parent_node->subloops = loop_node; |
| 295 | loop_node->parent = parent_node; |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | /* The following recursive function sets up levels of nodes of the |
| 301 | tree given its root LOOP_NODE. The enumeration starts with LEVEL. |
| 302 | The function returns maximal value of level in the tree + 1. */ |
| 303 | static int |
| 304 | setup_loop_tree_level (ira_loop_tree_node_t loop_node, int level) |
| 305 | { |
| 306 | int height, max_height; |
| 307 | ira_loop_tree_node_t subloop_node; |
| 308 | |
| 309 | ira_assert (loop_node->bb == NULL); |
| 310 | loop_node->level = level; |
| 311 | max_height = level + 1; |
| 312 | for (subloop_node = loop_node->subloops; |
| 313 | subloop_node != NULL; |
| 314 | subloop_node = subloop_node->subloop_next) |
| 315 | { |
| 316 | ira_assert (subloop_node->bb == NULL); |
| 317 | height = setup_loop_tree_level (loop_node: subloop_node, level: level + 1); |
| 318 | if (height > max_height) |
| 319 | max_height = height; |
| 320 | } |
| 321 | return max_height; |
| 322 | } |
| 323 | |
| 324 | /* Create the loop tree. The algorithm is designed to provide correct |
| 325 | order of loops (they are ordered by their last loop BB) and basic |
| 326 | blocks in the chain formed by member next. */ |
| 327 | static void |
| 328 | form_loop_tree (void) |
| 329 | { |
| 330 | basic_block bb; |
| 331 | class loop *parent; |
| 332 | ira_loop_tree_node_t bb_node, loop_node; |
| 333 | |
| 334 | /* We cannot use loop/bb node access macros because of potential |
| 335 | checking and because the nodes are not initialized enough |
| 336 | yet. */ |
| 337 | FOR_EACH_BB_FN (bb, cfun) |
| 338 | { |
| 339 | bb_node = &ira_bb_nodes[bb->index]; |
| 340 | bb_node->bb = bb; |
| 341 | bb_node->loop = NULL; |
| 342 | bb_node->subloops = NULL; |
| 343 | bb_node->children = NULL; |
| 344 | bb_node->subloop_next = NULL; |
| 345 | bb_node->next = NULL; |
| 346 | if (current_loops == NULL) |
| 347 | parent = NULL; |
| 348 | else |
| 349 | { |
| 350 | for (parent = bb->loop_father; |
| 351 | parent != NULL; |
| 352 | parent = loop_outer (loop: parent)) |
| 353 | if (ira_loop_nodes[parent->num].regno_allocno_map != NULL) |
| 354 | break; |
| 355 | } |
| 356 | add_loop_to_tree (loop: parent); |
| 357 | loop_node = &ira_loop_nodes[parent == NULL ? 0 : parent->num]; |
| 358 | bb_node->next = loop_node->children; |
| 359 | bb_node->parent = loop_node; |
| 360 | loop_node->children = bb_node; |
| 361 | } |
| 362 | ira_loop_tree_root = IRA_LOOP_NODE_BY_INDEX (0); |
| 363 | ira_loop_tree_height = setup_loop_tree_level (loop_node: ira_loop_tree_root, level: 0); |
| 364 | ira_assert (ira_loop_tree_root->regno_allocno_map != NULL); |
| 365 | } |
| 366 | |
| 367 | |
| 368 | |
| 369 | /* Rebuild IRA_REGNO_ALLOCNO_MAP and REGNO_ALLOCNO_MAPs of the loop |
| 370 | tree nodes. */ |
| 371 | static void |
| 372 | rebuild_regno_allocno_maps (void) |
| 373 | { |
| 374 | unsigned int l; |
| 375 | int max_regno, regno; |
| 376 | ira_allocno_t a; |
| 377 | ira_loop_tree_node_t loop_tree_node; |
| 378 | loop_p loop; |
| 379 | ira_allocno_iterator ai; |
| 380 | |
| 381 | ira_assert (current_loops != NULL); |
| 382 | max_regno = max_reg_num (); |
| 383 | FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), l, loop) |
| 384 | if (ira_loop_nodes[l].regno_allocno_map != NULL) |
| 385 | { |
| 386 | ira_free (addr: ira_loop_nodes[l].regno_allocno_map); |
| 387 | ira_loop_nodes[l].regno_allocno_map |
| 388 | = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) |
| 389 | * max_regno); |
| 390 | memset (s: ira_loop_nodes[l].regno_allocno_map, c: 0, |
| 391 | n: sizeof (ira_allocno_t) * max_regno); |
| 392 | } |
| 393 | ira_free (addr: ira_regno_allocno_map); |
| 394 | ira_regno_allocno_map |
| 395 | = (ira_allocno_t *) ira_allocate (max_regno * sizeof (ira_allocno_t)); |
| 396 | memset (s: ira_regno_allocno_map, c: 0, n: max_regno * sizeof (ira_allocno_t)); |
| 397 | FOR_EACH_ALLOCNO (a, ai) |
| 398 | { |
| 399 | if (ALLOCNO_CAP_MEMBER (a) != NULL) |
| 400 | /* Caps are not in the regno allocno maps. */ |
| 401 | continue; |
| 402 | regno = ALLOCNO_REGNO (a); |
| 403 | loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a); |
| 404 | ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno]; |
| 405 | ira_regno_allocno_map[regno] = a; |
| 406 | if (loop_tree_node->regno_allocno_map[regno] == NULL) |
| 407 | /* Remember that we can create temporary allocnos to break |
| 408 | cycles in register shuffle. */ |
| 409 | loop_tree_node->regno_allocno_map[regno] = a; |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | |
| 414 | /* Pools for allocnos, allocno live ranges and objects. */ |
| 415 | static object_allocator<live_range> live_range_pool ("live ranges" ); |
| 416 | static object_allocator<ira_allocno> allocno_pool ("allocnos" ); |
| 417 | static object_allocator<ira_object> object_pool ("objects" ); |
| 418 | |
| 419 | /* Vec containing references to all created allocnos. It is a |
| 420 | container of array allocnos. */ |
| 421 | static vec<ira_allocno_t> allocno_vec; |
| 422 | |
| 423 | /* Vec containing references to all created ira_objects. It is a |
| 424 | container of ira_object_id_map. */ |
| 425 | static vec<ira_object_t> ira_object_id_map_vec; |
| 426 | |
| 427 | /* Initialize data concerning allocnos. */ |
| 428 | static void |
| 429 | initiate_allocnos (void) |
| 430 | { |
| 431 | allocno_vec.create (nelems: max_reg_num () * 2); |
| 432 | ira_allocnos = NULL; |
| 433 | ira_allocnos_num = 0; |
| 434 | ira_objects_num = 0; |
| 435 | ira_object_id_map_vec.create (nelems: max_reg_num () * 2); |
| 436 | ira_object_id_map = NULL; |
| 437 | ira_regno_allocno_map |
| 438 | = (ira_allocno_t *) ira_allocate (max_reg_num () |
| 439 | * sizeof (ira_allocno_t)); |
| 440 | memset (s: ira_regno_allocno_map, c: 0, n: max_reg_num () * sizeof (ira_allocno_t)); |
| 441 | } |
| 442 | |
| 443 | /* Create and return an object corresponding to a new allocno A. */ |
| 444 | static ira_object_t |
| 445 | ira_create_object (ira_allocno_t a, int subword) |
| 446 | { |
| 447 | enum reg_class aclass = ALLOCNO_CLASS (a); |
| 448 | ira_object_t obj = object_pool.allocate (); |
| 449 | |
| 450 | OBJECT_ALLOCNO (obj) = a; |
| 451 | OBJECT_SUBWORD (obj) = subword; |
| 452 | OBJECT_CONFLICT_ID (obj) = ira_objects_num; |
| 453 | OBJECT_CONFLICT_VEC_P (obj) = false; |
| 454 | OBJECT_CONFLICT_ARRAY (obj) = NULL; |
| 455 | OBJECT_NUM_CONFLICTS (obj) = 0; |
| 456 | OBJECT_CONFLICT_HARD_REGS (obj) = ira_no_alloc_regs; |
| 457 | OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) = ira_no_alloc_regs; |
| 458 | OBJECT_CONFLICT_HARD_REGS (obj) |= ~reg_class_contents[aclass]; |
| 459 | OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= ~reg_class_contents[aclass]; |
| 460 | OBJECT_MIN (obj) = INT_MAX; |
| 461 | OBJECT_MAX (obj) = -1; |
| 462 | OBJECT_LIVE_RANGES (obj) = NULL; |
| 463 | |
| 464 | ira_object_id_map_vec.safe_push (obj); |
| 465 | ira_object_id_map |
| 466 | = ira_object_id_map_vec.address (); |
| 467 | ira_objects_num = ira_object_id_map_vec.length (); |
| 468 | |
| 469 | return obj; |
| 470 | } |
| 471 | |
| 472 | /* Create and return the allocno corresponding to REGNO in |
| 473 | LOOP_TREE_NODE. Add the allocno to the list of allocnos with the |
| 474 | same regno if CAP_P is FALSE. */ |
| 475 | ira_allocno_t |
| 476 | ira_create_allocno (int regno, bool cap_p, |
| 477 | ira_loop_tree_node_t loop_tree_node) |
| 478 | { |
| 479 | ira_allocno_t a; |
| 480 | |
| 481 | a = allocno_pool.allocate (); |
| 482 | ALLOCNO_REGNO (a) = regno; |
| 483 | ALLOCNO_LOOP_TREE_NODE (a) = loop_tree_node; |
| 484 | if (! cap_p) |
| 485 | { |
| 486 | ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno]; |
| 487 | ira_regno_allocno_map[regno] = a; |
| 488 | if (loop_tree_node->regno_allocno_map[regno] == NULL) |
| 489 | /* Remember that we can create temporary allocnos to break |
| 490 | cycles in register shuffle on region borders (see |
| 491 | ira-emit.cc). */ |
| 492 | loop_tree_node->regno_allocno_map[regno] = a; |
| 493 | } |
| 494 | ALLOCNO_CAP (a) = NULL; |
| 495 | ALLOCNO_CAP_MEMBER (a) = NULL; |
| 496 | ALLOCNO_NUM (a) = ira_allocnos_num; |
| 497 | bitmap_set_bit (loop_tree_node->all_allocnos, ALLOCNO_NUM (a)); |
| 498 | ALLOCNO_NREFS (a) = 0; |
| 499 | ALLOCNO_FREQ (a) = 0; |
| 500 | ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (a) = false; |
| 501 | ALLOCNO_SET_REGISTER_FILTERS (a, 0); |
| 502 | ALLOCNO_HARD_REGNO (a) = -1; |
| 503 | ALLOCNO_CALL_FREQ (a) = 0; |
| 504 | ALLOCNO_CALLS_CROSSED_NUM (a) = 0; |
| 505 | ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a) = 0; |
| 506 | ALLOCNO_CROSSED_CALLS_ABIS (a) = 0; |
| 507 | CLEAR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a)); |
| 508 | #ifdef STACK_REGS |
| 509 | ALLOCNO_NO_STACK_REG_P (a) = false; |
| 510 | ALLOCNO_TOTAL_NO_STACK_REG_P (a) = false; |
| 511 | #endif |
| 512 | ALLOCNO_DONT_REASSIGN_P (a) = false; |
| 513 | ALLOCNO_BAD_SPILL_P (a) = false; |
| 514 | ALLOCNO_ASSIGNED_P (a) = false; |
| 515 | ALLOCNO_MODE (a) = (regno < 0 ? VOIDmode : PSEUDO_REGNO_MODE (regno)); |
| 516 | ALLOCNO_WMODE (a) = ALLOCNO_MODE (a); |
| 517 | ALLOCNO_PREFS (a) = NULL; |
| 518 | ALLOCNO_COPIES (a) = NULL; |
| 519 | ALLOCNO_HARD_REG_COSTS (a) = NULL; |
| 520 | ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL; |
| 521 | ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL; |
| 522 | ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL; |
| 523 | ALLOCNO_CLASS (a) = NO_REGS; |
| 524 | ALLOCNO_UPDATED_CLASS_COST (a) = 0; |
| 525 | ALLOCNO_CLASS_COST (a) = 0; |
| 526 | ALLOCNO_MEMORY_COST (a) = 0; |
| 527 | ALLOCNO_UPDATED_MEMORY_COST (a) = 0; |
| 528 | ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) = 0; |
| 529 | ALLOCNO_NUM_OBJECTS (a) = 0; |
| 530 | |
| 531 | ALLOCNO_ADD_DATA (a) = NULL; |
| 532 | allocno_vec.safe_push (obj: a); |
| 533 | ira_allocnos = allocno_vec.address (); |
| 534 | ira_allocnos_num = allocno_vec.length (); |
| 535 | |
| 536 | return a; |
| 537 | } |
| 538 | |
| 539 | /* Set up register class for A and update its conflict hard |
| 540 | registers. */ |
| 541 | void |
| 542 | ira_set_allocno_class (ira_allocno_t a, enum reg_class aclass) |
| 543 | { |
| 544 | ira_allocno_object_iterator oi; |
| 545 | ira_object_t obj; |
| 546 | |
| 547 | ALLOCNO_CLASS (a) = aclass; |
| 548 | FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) |
| 549 | { |
| 550 | OBJECT_CONFLICT_HARD_REGS (obj) |= ~reg_class_contents[aclass]; |
| 551 | OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= ~reg_class_contents[aclass]; |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | /* Determine the number of objects we should associate with allocno A |
| 556 | and allocate them. */ |
| 557 | void |
| 558 | ira_create_allocno_objects (ira_allocno_t a) |
| 559 | { |
| 560 | machine_mode mode = ALLOCNO_MODE (a); |
| 561 | enum reg_class aclass = ALLOCNO_CLASS (a); |
| 562 | int n = ira_reg_class_max_nregs[aclass][mode]; |
| 563 | int i; |
| 564 | |
| 565 | if (n != 2 || maybe_ne (a: GET_MODE_SIZE (mode), b: n * UNITS_PER_WORD)) |
| 566 | n = 1; |
| 567 | |
| 568 | ALLOCNO_NUM_OBJECTS (a) = n; |
| 569 | for (i = 0; i < n; i++) |
| 570 | ALLOCNO_OBJECT (a, i) = ira_create_object (a, subword: i); |
| 571 | } |
| 572 | |
| 573 | /* For each allocno, set ALLOCNO_NUM_OBJECTS and create the |
| 574 | ALLOCNO_OBJECT structures. This must be called after the allocno |
| 575 | classes are known. */ |
| 576 | static void |
| 577 | create_allocno_objects (void) |
| 578 | { |
| 579 | ira_allocno_t a; |
| 580 | ira_allocno_iterator ai; |
| 581 | |
| 582 | FOR_EACH_ALLOCNO (a, ai) |
| 583 | ira_create_allocno_objects (a); |
| 584 | } |
| 585 | |
| 586 | /* Merge hard register conflict information for all objects associated with |
| 587 | allocno TO into the corresponding objects associated with FROM. |
| 588 | If TOTAL_ONLY is true, we only merge OBJECT_TOTAL_CONFLICT_HARD_REGS. */ |
| 589 | static void |
| 590 | merge_hard_reg_conflicts (ira_allocno_t from, ira_allocno_t to, |
| 591 | bool total_only) |
| 592 | { |
| 593 | int i; |
| 594 | gcc_assert (ALLOCNO_NUM_OBJECTS (to) == ALLOCNO_NUM_OBJECTS (from)); |
| 595 | for (i = 0; i < ALLOCNO_NUM_OBJECTS (to); i++) |
| 596 | { |
| 597 | ira_object_t from_obj = ALLOCNO_OBJECT (from, i); |
| 598 | ira_object_t to_obj = ALLOCNO_OBJECT (to, i); |
| 599 | |
| 600 | if (!total_only) |
| 601 | OBJECT_CONFLICT_HARD_REGS (to_obj) |
| 602 | |= OBJECT_CONFLICT_HARD_REGS (from_obj); |
| 603 | OBJECT_TOTAL_CONFLICT_HARD_REGS (to_obj) |
| 604 | |= OBJECT_TOTAL_CONFLICT_HARD_REGS (from_obj); |
| 605 | } |
| 606 | #ifdef STACK_REGS |
| 607 | if (!total_only && ALLOCNO_NO_STACK_REG_P (from)) |
| 608 | ALLOCNO_NO_STACK_REG_P (to) = true; |
| 609 | if (ALLOCNO_TOTAL_NO_STACK_REG_P (from)) |
| 610 | ALLOCNO_TOTAL_NO_STACK_REG_P (to) = true; |
| 611 | #endif |
| 612 | } |
| 613 | |
| 614 | /* Update hard register conflict information for all objects associated with |
| 615 | A to include the regs in SET. */ |
| 616 | void |
| 617 | ior_hard_reg_conflicts (ira_allocno_t a, const_hard_reg_set set) |
| 618 | { |
| 619 | ira_allocno_object_iterator i; |
| 620 | ira_object_t obj; |
| 621 | |
| 622 | FOR_EACH_ALLOCNO_OBJECT (a, obj, i) |
| 623 | { |
| 624 | OBJECT_CONFLICT_HARD_REGS (obj) |= set; |
| 625 | OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= set; |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | /* Return TRUE if a conflict vector with NUM elements is more |
| 630 | profitable than a conflict bit vector for OBJ. */ |
| 631 | bool |
| 632 | ira_conflict_vector_profitable_p (ira_object_t obj, int num) |
| 633 | { |
| 634 | int nbytes; |
| 635 | int max = OBJECT_MAX (obj); |
| 636 | int min = OBJECT_MIN (obj); |
| 637 | |
| 638 | if (max < min) |
| 639 | /* We prefer a bit vector in such case because it does not result |
| 640 | in allocation. */ |
| 641 | return false; |
| 642 | |
| 643 | nbytes = (max - min) / 8 + 1; |
| 644 | STATIC_ASSERT (sizeof (ira_object_t) <= 8); |
| 645 | /* Don't use sizeof (ira_object_t), use constant 8. Size of ira_object_t (a |
| 646 | pointer) is different on 32-bit and 64-bit targets. Usage sizeof |
| 647 | (ira_object_t) can result in different code generation by GCC built as 32- |
| 648 | and 64-bit program. In any case the profitability is just an estimation |
| 649 | and border cases are rare. */ |
| 650 | return (2 * 8 /* sizeof (ira_object_t) */ * (num + 1) < 3 * nbytes); |
| 651 | } |
| 652 | |
| 653 | /* Allocates and initialize the conflict vector of OBJ for NUM |
| 654 | conflicting objects. */ |
| 655 | void |
| 656 | ira_allocate_conflict_vec (ira_object_t obj, int num) |
| 657 | { |
| 658 | int size; |
| 659 | ira_object_t *vec; |
| 660 | |
| 661 | ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL); |
| 662 | num++; /* for NULL end marker */ |
| 663 | size = sizeof (ira_object_t) * num; |
| 664 | OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size); |
| 665 | vec = (ira_object_t *) OBJECT_CONFLICT_ARRAY (obj); |
| 666 | vec[0] = NULL; |
| 667 | OBJECT_NUM_CONFLICTS (obj) = 0; |
| 668 | OBJECT_CONFLICT_ARRAY_SIZE (obj) = size; |
| 669 | OBJECT_CONFLICT_VEC_P (obj) = true; |
| 670 | } |
| 671 | |
| 672 | /* Allocate and initialize the conflict bit vector of OBJ. */ |
| 673 | static void |
| 674 | allocate_conflict_bit_vec (ira_object_t obj) |
| 675 | { |
| 676 | unsigned int size; |
| 677 | |
| 678 | ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL); |
| 679 | size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) + IRA_INT_BITS) |
| 680 | / IRA_INT_BITS * sizeof (IRA_INT_TYPE)); |
| 681 | OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size); |
| 682 | memset (OBJECT_CONFLICT_ARRAY (obj), c: 0, n: size); |
| 683 | OBJECT_CONFLICT_ARRAY_SIZE (obj) = size; |
| 684 | OBJECT_CONFLICT_VEC_P (obj) = false; |
| 685 | } |
| 686 | |
| 687 | /* Allocate and initialize the conflict vector or conflict bit vector |
| 688 | of OBJ for NUM conflicting allocnos whatever is more profitable. */ |
| 689 | void |
| 690 | ira_allocate_object_conflicts (ira_object_t obj, int num) |
| 691 | { |
| 692 | if (ira_conflict_vector_profitable_p (obj, num)) |
| 693 | ira_allocate_conflict_vec (obj, num); |
| 694 | else |
| 695 | allocate_conflict_bit_vec (obj); |
| 696 | } |
| 697 | |
| 698 | /* Add OBJ2 to the conflicts of OBJ1. */ |
| 699 | static void |
| 700 | add_to_conflicts (ira_object_t obj1, ira_object_t obj2) |
| 701 | { |
| 702 | int num; |
| 703 | unsigned int size; |
| 704 | |
| 705 | if (OBJECT_CONFLICT_VEC_P (obj1)) |
| 706 | { |
| 707 | ira_object_t *vec = OBJECT_CONFLICT_VEC (obj1); |
| 708 | int curr_num = OBJECT_NUM_CONFLICTS (obj1); |
| 709 | num = curr_num + 2; |
| 710 | if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < num * sizeof (ira_object_t)) |
| 711 | { |
| 712 | ira_object_t *newvec; |
| 713 | size = (3 * num / 2 + 1) * sizeof (ira_allocno_t); |
| 714 | newvec = (ira_object_t *) ira_allocate (size); |
| 715 | memcpy (dest: newvec, src: vec, n: curr_num * sizeof (ira_object_t)); |
| 716 | ira_free (addr: vec); |
| 717 | vec = newvec; |
| 718 | OBJECT_CONFLICT_ARRAY (obj1) = vec; |
| 719 | OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size; |
| 720 | } |
| 721 | vec[num - 2] = obj2; |
| 722 | vec[num - 1] = NULL; |
| 723 | OBJECT_NUM_CONFLICTS (obj1)++; |
| 724 | } |
| 725 | else |
| 726 | { |
| 727 | int nw, added_head_nw, id; |
| 728 | IRA_INT_TYPE *vec = OBJECT_CONFLICT_BITVEC (obj1); |
| 729 | |
| 730 | id = OBJECT_CONFLICT_ID (obj2); |
| 731 | if (OBJECT_MIN (obj1) > id) |
| 732 | { |
| 733 | /* Expand head of the bit vector. */ |
| 734 | added_head_nw = (OBJECT_MIN (obj1) - id - 1) / IRA_INT_BITS + 1; |
| 735 | nw = (OBJECT_MAX (obj1) - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1; |
| 736 | size = (nw + added_head_nw) * sizeof (IRA_INT_TYPE); |
| 737 | if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) >= size) |
| 738 | { |
| 739 | memmove (dest: (char *) vec + added_head_nw * sizeof (IRA_INT_TYPE), |
| 740 | src: vec, n: nw * sizeof (IRA_INT_TYPE)); |
| 741 | memset (s: vec, c: 0, n: added_head_nw * sizeof (IRA_INT_TYPE)); |
| 742 | } |
| 743 | else |
| 744 | { |
| 745 | size |
| 746 | = (3 * (nw + added_head_nw) / 2 + 1) * sizeof (IRA_INT_TYPE); |
| 747 | vec = (IRA_INT_TYPE *) ira_allocate (size); |
| 748 | memcpy (dest: (char *) vec + added_head_nw * sizeof (IRA_INT_TYPE), |
| 749 | OBJECT_CONFLICT_ARRAY (obj1), n: nw * sizeof (IRA_INT_TYPE)); |
| 750 | memset (s: vec, c: 0, n: added_head_nw * sizeof (IRA_INT_TYPE)); |
| 751 | memset (s: (char *) vec |
| 752 | + (nw + added_head_nw) * sizeof (IRA_INT_TYPE), |
| 753 | c: 0, n: size - (nw + added_head_nw) * sizeof (IRA_INT_TYPE)); |
| 754 | ira_free (OBJECT_CONFLICT_ARRAY (obj1)); |
| 755 | OBJECT_CONFLICT_ARRAY (obj1) = vec; |
| 756 | OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size; |
| 757 | } |
| 758 | OBJECT_MIN (obj1) -= added_head_nw * IRA_INT_BITS; |
| 759 | } |
| 760 | else if (OBJECT_MAX (obj1) < id) |
| 761 | { |
| 762 | nw = (id - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1; |
| 763 | size = nw * sizeof (IRA_INT_TYPE); |
| 764 | if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < size) |
| 765 | { |
| 766 | /* Expand tail of the bit vector. */ |
| 767 | size = (3 * nw / 2 + 1) * sizeof (IRA_INT_TYPE); |
| 768 | vec = (IRA_INT_TYPE *) ira_allocate (size); |
| 769 | memcpy (dest: vec, OBJECT_CONFLICT_ARRAY (obj1), OBJECT_CONFLICT_ARRAY_SIZE (obj1)); |
| 770 | memset (s: (char *) vec + OBJECT_CONFLICT_ARRAY_SIZE (obj1), |
| 771 | c: 0, n: size - OBJECT_CONFLICT_ARRAY_SIZE (obj1)); |
| 772 | ira_free (OBJECT_CONFLICT_ARRAY (obj1)); |
| 773 | OBJECT_CONFLICT_ARRAY (obj1) = vec; |
| 774 | OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size; |
| 775 | } |
| 776 | OBJECT_MAX (obj1) = id; |
| 777 | } |
| 778 | SET_MINMAX_SET_BIT (vec, id, OBJECT_MIN (obj1), OBJECT_MAX (obj1)); |
| 779 | } |
| 780 | } |
| 781 | |
| 782 | /* Add OBJ1 to the conflicts of OBJ2 and vice versa. */ |
| 783 | static void |
| 784 | ira_add_conflict (ira_object_t obj1, ira_object_t obj2) |
| 785 | { |
| 786 | add_to_conflicts (obj1, obj2); |
| 787 | add_to_conflicts (obj1: obj2, obj2: obj1); |
| 788 | } |
| 789 | |
| 790 | /* Clear all conflicts of OBJ. */ |
| 791 | static void |
| 792 | clear_conflicts (ira_object_t obj) |
| 793 | { |
| 794 | if (OBJECT_CONFLICT_VEC_P (obj)) |
| 795 | { |
| 796 | OBJECT_NUM_CONFLICTS (obj) = 0; |
| 797 | OBJECT_CONFLICT_VEC (obj)[0] = NULL; |
| 798 | } |
| 799 | else if (OBJECT_CONFLICT_ARRAY_SIZE (obj) != 0) |
| 800 | { |
| 801 | int nw; |
| 802 | |
| 803 | nw = (OBJECT_MAX (obj) - OBJECT_MIN (obj)) / IRA_INT_BITS + 1; |
| 804 | memset (OBJECT_CONFLICT_BITVEC (obj), c: 0, n: nw * sizeof (IRA_INT_TYPE)); |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | /* The array used to find duplications in conflict vectors of |
| 809 | allocnos. */ |
| 810 | static int *conflict_check; |
| 811 | |
| 812 | /* The value used to mark allocation presence in conflict vector of |
| 813 | the current allocno. */ |
| 814 | static int curr_conflict_check_tick; |
| 815 | |
| 816 | /* Remove duplications in conflict vector of OBJ. */ |
| 817 | static void |
| 818 | compress_conflict_vec (ira_object_t obj) |
| 819 | { |
| 820 | ira_object_t *vec, conflict_obj; |
| 821 | int i, j; |
| 822 | |
| 823 | ira_assert (OBJECT_CONFLICT_VEC_P (obj)); |
| 824 | vec = OBJECT_CONFLICT_VEC (obj); |
| 825 | curr_conflict_check_tick++; |
| 826 | for (i = j = 0; (conflict_obj = vec[i]) != NULL; i++) |
| 827 | { |
| 828 | int id = OBJECT_CONFLICT_ID (conflict_obj); |
| 829 | if (conflict_check[id] != curr_conflict_check_tick) |
| 830 | { |
| 831 | conflict_check[id] = curr_conflict_check_tick; |
| 832 | vec[j++] = conflict_obj; |
| 833 | } |
| 834 | } |
| 835 | OBJECT_NUM_CONFLICTS (obj) = j; |
| 836 | vec[j] = NULL; |
| 837 | } |
| 838 | |
| 839 | /* Remove duplications in conflict vectors of all allocnos. */ |
| 840 | static void |
| 841 | compress_conflict_vecs (void) |
| 842 | { |
| 843 | ira_object_t obj; |
| 844 | ira_object_iterator oi; |
| 845 | |
| 846 | conflict_check = (int *) ira_allocate (sizeof (int) * ira_objects_num); |
| 847 | memset (s: conflict_check, c: 0, n: sizeof (int) * ira_objects_num); |
| 848 | curr_conflict_check_tick = 0; |
| 849 | FOR_EACH_OBJECT (obj, oi) |
| 850 | { |
| 851 | if (OBJECT_CONFLICT_VEC_P (obj)) |
| 852 | compress_conflict_vec (obj); |
| 853 | } |
| 854 | ira_free (addr: conflict_check); |
| 855 | } |
| 856 | |
| 857 | /* This recursive function outputs allocno A and if it is a cap the |
| 858 | function outputs its members. */ |
| 859 | void |
| 860 | ira_print_expanded_allocno (ira_allocno_t a) |
| 861 | { |
| 862 | basic_block bb; |
| 863 | |
| 864 | fprintf (stream: ira_dump_file, format: " a%d(r%d" , ALLOCNO_NUM (a), ALLOCNO_REGNO (a)); |
| 865 | if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL) |
| 866 | fprintf (stream: ira_dump_file, format: ",b%d" , bb->index); |
| 867 | else |
| 868 | fprintf (stream: ira_dump_file, format: ",l%d" , ALLOCNO_LOOP_TREE_NODE (a)->loop_num); |
| 869 | if (ALLOCNO_CAP_MEMBER (a) != NULL) |
| 870 | { |
| 871 | fprintf (stream: ira_dump_file, format: ":" ); |
| 872 | ira_print_expanded_allocno (ALLOCNO_CAP_MEMBER (a)); |
| 873 | } |
| 874 | fprintf (stream: ira_dump_file, format: ")" ); |
| 875 | } |
| 876 | |
| 877 | /* Create and return the cap representing allocno A in the |
| 878 | parent loop. */ |
| 879 | static ira_allocno_t |
| 880 | create_cap_allocno (ira_allocno_t a) |
| 881 | { |
| 882 | ira_allocno_t cap; |
| 883 | ira_loop_tree_node_t parent; |
| 884 | enum reg_class aclass; |
| 885 | |
| 886 | parent = ALLOCNO_LOOP_TREE_NODE (a)->parent; |
| 887 | cap = ira_create_allocno (ALLOCNO_REGNO (a), cap_p: true, loop_tree_node: parent); |
| 888 | ALLOCNO_MODE (cap) = ALLOCNO_MODE (a); |
| 889 | ALLOCNO_WMODE (cap) = ALLOCNO_WMODE (a); |
| 890 | aclass = ALLOCNO_CLASS (a); |
| 891 | ira_set_allocno_class (a: cap, aclass); |
| 892 | ira_create_allocno_objects (a: cap); |
| 893 | ALLOCNO_CAP_MEMBER (cap) = a; |
| 894 | ALLOCNO_CAP (a) = cap; |
| 895 | ALLOCNO_CLASS_COST (cap) = ALLOCNO_CLASS_COST (a); |
| 896 | ALLOCNO_MEMORY_COST (cap) = ALLOCNO_MEMORY_COST (a); |
| 897 | ira_allocate_and_copy_costs |
| 898 | (vec: &ALLOCNO_HARD_REG_COSTS (cap), aclass, ALLOCNO_HARD_REG_COSTS (a)); |
| 899 | ira_allocate_and_copy_costs |
| 900 | (vec: &ALLOCNO_CONFLICT_HARD_REG_COSTS (cap), aclass, |
| 901 | ALLOCNO_CONFLICT_HARD_REG_COSTS (a)); |
| 902 | ALLOCNO_BAD_SPILL_P (cap) = ALLOCNO_BAD_SPILL_P (a); |
| 903 | ALLOCNO_NREFS (cap) = ALLOCNO_NREFS (a); |
| 904 | ALLOCNO_FREQ (cap) = ALLOCNO_FREQ (a); |
| 905 | ALLOCNO_CALL_FREQ (cap) = ALLOCNO_CALL_FREQ (a); |
| 906 | ALLOCNO_SET_REGISTER_FILTERS (cap, ALLOCNO_REGISTER_FILTERS (a)); |
| 907 | |
| 908 | merge_hard_reg_conflicts (from: a, to: cap, total_only: false); |
| 909 | |
| 910 | ALLOCNO_CALLS_CROSSED_NUM (cap) = ALLOCNO_CALLS_CROSSED_NUM (a); |
| 911 | ALLOCNO_CHEAP_CALLS_CROSSED_NUM (cap) = ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a); |
| 912 | ALLOCNO_CROSSED_CALLS_ABIS (cap) = ALLOCNO_CROSSED_CALLS_ABIS (a); |
| 913 | ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (cap) |
| 914 | = ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a); |
| 915 | if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL) |
| 916 | { |
| 917 | fprintf (stream: ira_dump_file, format: " Creating cap " ); |
| 918 | ira_print_expanded_allocno (a: cap); |
| 919 | fprintf (stream: ira_dump_file, format: "\n" ); |
| 920 | } |
| 921 | return cap; |
| 922 | } |
| 923 | |
| 924 | /* Create and return a live range for OBJECT with given attributes. */ |
| 925 | live_range_t |
| 926 | ira_create_live_range (ira_object_t obj, int start, int finish, |
| 927 | live_range_t next) |
| 928 | { |
| 929 | live_range_t p; |
| 930 | |
| 931 | p = live_range_pool.allocate (); |
| 932 | p->object = obj; |
| 933 | p->start = start; |
| 934 | p->finish = finish; |
| 935 | p->next = next; |
| 936 | return p; |
| 937 | } |
| 938 | |
| 939 | /* Create a new live range for OBJECT and queue it at the head of its |
| 940 | live range list. */ |
| 941 | void |
| 942 | ira_add_live_range_to_object (ira_object_t object, int start, int finish) |
| 943 | { |
| 944 | live_range_t p; |
| 945 | p = ira_create_live_range (obj: object, start, finish, |
| 946 | OBJECT_LIVE_RANGES (object)); |
| 947 | OBJECT_LIVE_RANGES (object) = p; |
| 948 | } |
| 949 | |
| 950 | /* Copy allocno live range R and return the result. */ |
| 951 | static live_range_t |
| 952 | copy_live_range (live_range_t r) |
| 953 | { |
| 954 | live_range_t p; |
| 955 | |
| 956 | p = live_range_pool.allocate (); |
| 957 | *p = *r; |
| 958 | return p; |
| 959 | } |
| 960 | |
| 961 | /* Copy allocno live range list given by its head R and return the |
| 962 | result. */ |
| 963 | live_range_t |
| 964 | ira_copy_live_range_list (live_range_t r) |
| 965 | { |
| 966 | live_range_t p, first, last; |
| 967 | |
| 968 | if (r == NULL) |
| 969 | return NULL; |
| 970 | for (first = last = NULL; r != NULL; r = r->next) |
| 971 | { |
| 972 | p = copy_live_range (r); |
| 973 | if (first == NULL) |
| 974 | first = p; |
| 975 | else |
| 976 | last->next = p; |
| 977 | last = p; |
| 978 | } |
| 979 | return first; |
| 980 | } |
| 981 | |
| 982 | /* Merge ranges R1 and R2 and returns the result. The function |
| 983 | maintains the order of ranges and tries to minimize number of the |
| 984 | result ranges. */ |
| 985 | live_range_t |
| 986 | ira_merge_live_ranges (live_range_t r1, live_range_t r2) |
| 987 | { |
| 988 | live_range_t first, last; |
| 989 | |
| 990 | if (r1 == NULL) |
| 991 | return r2; |
| 992 | if (r2 == NULL) |
| 993 | return r1; |
| 994 | for (first = last = NULL; r1 != NULL && r2 != NULL;) |
| 995 | { |
| 996 | if (r1->start < r2->start) |
| 997 | std::swap (a&: r1, b&: r2); |
| 998 | if (r1->start <= r2->finish + 1) |
| 999 | { |
| 1000 | /* Intersected ranges: merge r1 and r2 into r1. */ |
| 1001 | r1->start = r2->start; |
| 1002 | if (r1->finish < r2->finish) |
| 1003 | r1->finish = r2->finish; |
| 1004 | live_range_t temp = r2; |
| 1005 | r2 = r2->next; |
| 1006 | ira_finish_live_range (temp); |
| 1007 | if (r2 == NULL) |
| 1008 | { |
| 1009 | /* To try to merge with subsequent ranges in r1. */ |
| 1010 | r2 = r1->next; |
| 1011 | r1->next = NULL; |
| 1012 | } |
| 1013 | } |
| 1014 | else |
| 1015 | { |
| 1016 | /* Add r1 to the result. */ |
| 1017 | if (first == NULL) |
| 1018 | first = last = r1; |
| 1019 | else |
| 1020 | { |
| 1021 | last->next = r1; |
| 1022 | last = r1; |
| 1023 | } |
| 1024 | r1 = r1->next; |
| 1025 | if (r1 == NULL) |
| 1026 | { |
| 1027 | /* To try to merge with subsequent ranges in r2. */ |
| 1028 | r1 = r2->next; |
| 1029 | r2->next = NULL; |
| 1030 | } |
| 1031 | } |
| 1032 | } |
| 1033 | if (r1 != NULL) |
| 1034 | { |
| 1035 | if (first == NULL) |
| 1036 | first = r1; |
| 1037 | else |
| 1038 | last->next = r1; |
| 1039 | ira_assert (r1->next == NULL); |
| 1040 | } |
| 1041 | else if (r2 != NULL) |
| 1042 | { |
| 1043 | if (first == NULL) |
| 1044 | first = r2; |
| 1045 | else |
| 1046 | last->next = r2; |
| 1047 | ira_assert (r2->next == NULL); |
| 1048 | } |
| 1049 | else |
| 1050 | { |
| 1051 | ira_assert (last->next == NULL); |
| 1052 | } |
| 1053 | return first; |
| 1054 | } |
| 1055 | |
| 1056 | /* Return TRUE if live ranges R1 and R2 intersect. */ |
| 1057 | bool |
| 1058 | ira_live_ranges_intersect_p (live_range_t r1, live_range_t r2) |
| 1059 | { |
| 1060 | /* Remember the live ranges are always kept ordered. */ |
| 1061 | while (r1 != NULL && r2 != NULL) |
| 1062 | { |
| 1063 | if (r1->start > r2->finish) |
| 1064 | r1 = r1->next; |
| 1065 | else if (r2->start > r1->finish) |
| 1066 | r2 = r2->next; |
| 1067 | else |
| 1068 | return true; |
| 1069 | } |
| 1070 | return false; |
| 1071 | } |
| 1072 | |
| 1073 | /* Free allocno live range R. */ |
| 1074 | void |
| 1075 | ira_finish_live_range (live_range_t r) |
| 1076 | { |
| 1077 | live_range_pool.remove (object: r); |
| 1078 | } |
| 1079 | |
| 1080 | /* Free list of allocno live ranges starting with R. */ |
| 1081 | void |
| 1082 | ira_finish_live_range_list (live_range_t r) |
| 1083 | { |
| 1084 | live_range_t next_r; |
| 1085 | |
| 1086 | for (; r != NULL; r = next_r) |
| 1087 | { |
| 1088 | next_r = r->next; |
| 1089 | ira_finish_live_range (r); |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | /* Free updated register costs of allocno A. */ |
| 1094 | void |
| 1095 | ira_free_allocno_updated_costs (ira_allocno_t a) |
| 1096 | { |
| 1097 | enum reg_class aclass; |
| 1098 | |
| 1099 | aclass = ALLOCNO_CLASS (a); |
| 1100 | if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL) |
| 1101 | ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass); |
| 1102 | ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL; |
| 1103 | if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL) |
| 1104 | ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a), |
| 1105 | aclass); |
| 1106 | ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL; |
| 1107 | } |
| 1108 | |
| 1109 | /* Free and nullify all cost vectors allocated earlier for allocno |
| 1110 | A. */ |
| 1111 | static void |
| 1112 | ira_free_allocno_costs (ira_allocno_t a) |
| 1113 | { |
| 1114 | enum reg_class aclass = ALLOCNO_CLASS (a); |
| 1115 | ira_object_t obj; |
| 1116 | ira_allocno_object_iterator oi; |
| 1117 | |
| 1118 | FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) |
| 1119 | { |
| 1120 | ira_finish_live_range_list (OBJECT_LIVE_RANGES (obj)); |
| 1121 | ira_object_id_map[OBJECT_CONFLICT_ID (obj)] = NULL; |
| 1122 | if (OBJECT_CONFLICT_ARRAY (obj) != NULL) |
| 1123 | ira_free (OBJECT_CONFLICT_ARRAY (obj)); |
| 1124 | object_pool.remove (object: obj); |
| 1125 | } |
| 1126 | |
| 1127 | ira_allocnos[ALLOCNO_NUM (a)] = NULL; |
| 1128 | if (ALLOCNO_HARD_REG_COSTS (a) != NULL) |
| 1129 | ira_free_cost_vector (ALLOCNO_HARD_REG_COSTS (a), aclass); |
| 1130 | if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL) |
| 1131 | ira_free_cost_vector (ALLOCNO_CONFLICT_HARD_REG_COSTS (a), aclass); |
| 1132 | if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL) |
| 1133 | ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass); |
| 1134 | if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL) |
| 1135 | ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a), |
| 1136 | aclass); |
| 1137 | ALLOCNO_HARD_REG_COSTS (a) = NULL; |
| 1138 | ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL; |
| 1139 | ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL; |
| 1140 | ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL; |
| 1141 | } |
| 1142 | |
| 1143 | /* Free the memory allocated for allocno A. */ |
| 1144 | static void |
| 1145 | finish_allocno (ira_allocno_t a) |
| 1146 | { |
| 1147 | ira_free_allocno_costs (a); |
| 1148 | allocno_pool.remove (object: a); |
| 1149 | } |
| 1150 | |
| 1151 | /* Free the memory allocated for all allocnos. */ |
| 1152 | static void |
| 1153 | finish_allocnos (void) |
| 1154 | { |
| 1155 | ira_allocno_t a; |
| 1156 | ira_allocno_iterator ai; |
| 1157 | |
| 1158 | FOR_EACH_ALLOCNO (a, ai) |
| 1159 | finish_allocno (a); |
| 1160 | ira_free (addr: ira_regno_allocno_map); |
| 1161 | ira_object_id_map_vec.release (); |
| 1162 | allocno_vec.release (); |
| 1163 | allocno_pool.release (); |
| 1164 | object_pool.release (); |
| 1165 | live_range_pool.release (); |
| 1166 | } |
| 1167 | |
| 1168 | |
| 1169 | |
| 1170 | /* Pools for allocno preferences. */ |
| 1171 | static object_allocator <ira_allocno_pref> pref_pool ("prefs" ); |
| 1172 | |
| 1173 | /* Vec containing references to all created preferences. It is a |
| 1174 | container of array ira_prefs. */ |
| 1175 | static vec<ira_pref_t> pref_vec; |
| 1176 | |
| 1177 | /* The function initializes data concerning allocno prefs. */ |
| 1178 | static void |
| 1179 | initiate_prefs (void) |
| 1180 | { |
| 1181 | pref_vec.create (nelems: get_max_uid ()); |
| 1182 | ira_prefs = NULL; |
| 1183 | ira_prefs_num = 0; |
| 1184 | } |
| 1185 | |
| 1186 | /* Return pref for A and HARD_REGNO if any. */ |
| 1187 | static ira_pref_t |
| 1188 | find_allocno_pref (ira_allocno_t a, int hard_regno) |
| 1189 | { |
| 1190 | ira_pref_t pref; |
| 1191 | |
| 1192 | for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref) |
| 1193 | if (pref->allocno == a && pref->hard_regno == hard_regno) |
| 1194 | return pref; |
| 1195 | return NULL; |
| 1196 | } |
| 1197 | |
| 1198 | /* Create and return pref with given attributes A, HARD_REGNO, and FREQ. */ |
| 1199 | ira_pref_t |
| 1200 | ira_create_pref (ira_allocno_t a, int hard_regno, int freq) |
| 1201 | { |
| 1202 | ira_pref_t pref; |
| 1203 | |
| 1204 | pref = pref_pool.allocate (); |
| 1205 | pref->num = ira_prefs_num; |
| 1206 | pref->allocno = a; |
| 1207 | pref->hard_regno = hard_regno; |
| 1208 | pref->freq = freq; |
| 1209 | pref_vec.safe_push (obj: pref); |
| 1210 | ira_prefs = pref_vec.address (); |
| 1211 | ira_prefs_num = pref_vec.length (); |
| 1212 | return pref; |
| 1213 | } |
| 1214 | |
| 1215 | /* Attach a pref PREF to the corresponding allocno. */ |
| 1216 | static void |
| 1217 | add_allocno_pref_to_list (ira_pref_t pref) |
| 1218 | { |
| 1219 | ira_allocno_t a = pref->allocno; |
| 1220 | |
| 1221 | pref->next_pref = ALLOCNO_PREFS (a); |
| 1222 | ALLOCNO_PREFS (a) = pref; |
| 1223 | } |
| 1224 | |
| 1225 | /* Create (or update frequency if the pref already exists) the pref of |
| 1226 | allocnos A preferring HARD_REGNO with frequency FREQ. */ |
| 1227 | void |
| 1228 | ira_add_allocno_pref (ira_allocno_t a, int hard_regno, int freq) |
| 1229 | { |
| 1230 | ira_pref_t pref; |
| 1231 | |
| 1232 | if (freq <= 0) |
| 1233 | return; |
| 1234 | if ((pref = find_allocno_pref (a, hard_regno)) != NULL) |
| 1235 | { |
| 1236 | pref->freq += freq; |
| 1237 | return; |
| 1238 | } |
| 1239 | pref = ira_create_pref (a, hard_regno, freq); |
| 1240 | ira_assert (a != NULL); |
| 1241 | add_allocno_pref_to_list (pref); |
| 1242 | } |
| 1243 | |
| 1244 | /* Print info about PREF into file F. */ |
| 1245 | static void |
| 1246 | print_pref (FILE *f, ira_pref_t pref) |
| 1247 | { |
| 1248 | fprintf (stream: f, format: " pref%d:a%d(r%d)<-hr%d@%d\n" , pref->num, |
| 1249 | ALLOCNO_NUM (pref->allocno), ALLOCNO_REGNO (pref->allocno), |
| 1250 | pref->hard_regno, pref->freq); |
| 1251 | } |
| 1252 | |
| 1253 | /* Print info about PREF into stderr. */ |
| 1254 | void |
| 1255 | ira_debug_pref (ira_pref_t pref) |
| 1256 | { |
| 1257 | print_pref (stderr, pref); |
| 1258 | } |
| 1259 | |
| 1260 | /* Print info about all prefs into file F. */ |
| 1261 | static void |
| 1262 | print_prefs (FILE *f) |
| 1263 | { |
| 1264 | ira_pref_t pref; |
| 1265 | ira_pref_iterator pi; |
| 1266 | |
| 1267 | FOR_EACH_PREF (pref, pi) |
| 1268 | print_pref (f, pref); |
| 1269 | } |
| 1270 | |
| 1271 | /* Print info about all prefs into stderr. */ |
| 1272 | void |
| 1273 | ira_debug_prefs (void) |
| 1274 | { |
| 1275 | print_prefs (stderr); |
| 1276 | } |
| 1277 | |
| 1278 | /* Print info about prefs involving allocno A into file F. */ |
| 1279 | static void |
| 1280 | print_allocno_prefs (FILE *f, ira_allocno_t a) |
| 1281 | { |
| 1282 | ira_pref_t pref; |
| 1283 | |
| 1284 | fprintf (stream: f, format: " a%d(r%d):" , ALLOCNO_NUM (a), ALLOCNO_REGNO (a)); |
| 1285 | for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref) |
| 1286 | fprintf (stream: f, format: " pref%d:hr%d@%d" , pref->num, pref->hard_regno, pref->freq); |
| 1287 | fprintf (stream: f, format: "\n" ); |
| 1288 | } |
| 1289 | |
| 1290 | /* Print info about prefs involving allocno A into stderr. */ |
| 1291 | void |
| 1292 | ira_debug_allocno_prefs (ira_allocno_t a) |
| 1293 | { |
| 1294 | print_allocno_prefs (stderr, a); |
| 1295 | } |
| 1296 | |
| 1297 | /* The function frees memory allocated for PREF. */ |
| 1298 | static void |
| 1299 | finish_pref (ira_pref_t pref) |
| 1300 | { |
| 1301 | ira_prefs[pref->num] = NULL; |
| 1302 | pref_pool.remove (object: pref); |
| 1303 | } |
| 1304 | |
| 1305 | /* Remove PREF from the list of allocno prefs and free memory for |
| 1306 | it. */ |
| 1307 | void |
| 1308 | ira_remove_pref (ira_pref_t pref) |
| 1309 | { |
| 1310 | ira_pref_t cpref, prev; |
| 1311 | |
| 1312 | if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL) |
| 1313 | fprintf (stream: ira_dump_file, format: " Removing pref%d:hr%d@%d\n" , |
| 1314 | pref->num, pref->hard_regno, pref->freq); |
| 1315 | for (prev = NULL, cpref = ALLOCNO_PREFS (pref->allocno); |
| 1316 | cpref != NULL; |
| 1317 | prev = cpref, cpref = cpref->next_pref) |
| 1318 | if (cpref == pref) |
| 1319 | break; |
| 1320 | ira_assert (cpref != NULL); |
| 1321 | if (prev == NULL) |
| 1322 | ALLOCNO_PREFS (pref->allocno) = pref->next_pref; |
| 1323 | else |
| 1324 | prev->next_pref = pref->next_pref; |
| 1325 | finish_pref (pref); |
| 1326 | } |
| 1327 | |
| 1328 | /* Remove all prefs of allocno A. */ |
| 1329 | void |
| 1330 | ira_remove_allocno_prefs (ira_allocno_t a) |
| 1331 | { |
| 1332 | ira_pref_t pref, next_pref; |
| 1333 | |
| 1334 | for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = next_pref) |
| 1335 | { |
| 1336 | next_pref = pref->next_pref; |
| 1337 | finish_pref (pref); |
| 1338 | } |
| 1339 | ALLOCNO_PREFS (a) = NULL; |
| 1340 | } |
| 1341 | |
| 1342 | /* Free memory allocated for all prefs. */ |
| 1343 | static void |
| 1344 | finish_prefs (void) |
| 1345 | { |
| 1346 | ira_pref_t pref; |
| 1347 | ira_pref_iterator pi; |
| 1348 | |
| 1349 | FOR_EACH_PREF (pref, pi) |
| 1350 | finish_pref (pref); |
| 1351 | pref_vec.release (); |
| 1352 | pref_pool.release (); |
| 1353 | } |
| 1354 | |
| 1355 | |
| 1356 | |
| 1357 | /* Pools for copies. */ |
| 1358 | static object_allocator<ira_allocno_copy> copy_pool ("copies" ); |
| 1359 | |
| 1360 | /* Vec containing references to all created copies. It is a |
| 1361 | container of array ira_copies. */ |
| 1362 | static vec<ira_copy_t> copy_vec; |
| 1363 | |
| 1364 | /* The function initializes data concerning allocno copies. */ |
| 1365 | static void |
| 1366 | initiate_copies (void) |
| 1367 | { |
| 1368 | copy_vec.create (nelems: get_max_uid ()); |
| 1369 | ira_copies = NULL; |
| 1370 | ira_copies_num = 0; |
| 1371 | } |
| 1372 | |
| 1373 | /* Return copy connecting A1 and A2 and originated from INSN of |
| 1374 | LOOP_TREE_NODE if any. */ |
| 1375 | static ira_copy_t |
| 1376 | find_allocno_copy (ira_allocno_t a1, ira_allocno_t a2, rtx_insn *insn, |
| 1377 | ira_loop_tree_node_t loop_tree_node) |
| 1378 | { |
| 1379 | ira_copy_t cp, next_cp; |
| 1380 | ira_allocno_t another_a; |
| 1381 | |
| 1382 | for (cp = ALLOCNO_COPIES (a1); cp != NULL; cp = next_cp) |
| 1383 | { |
| 1384 | if (cp->first == a1) |
| 1385 | { |
| 1386 | next_cp = cp->next_first_allocno_copy; |
| 1387 | another_a = cp->second; |
| 1388 | } |
| 1389 | else if (cp->second == a1) |
| 1390 | { |
| 1391 | next_cp = cp->next_second_allocno_copy; |
| 1392 | another_a = cp->first; |
| 1393 | } |
| 1394 | else |
| 1395 | gcc_unreachable (); |
| 1396 | if (another_a == a2 && cp->insn == insn |
| 1397 | && cp->loop_tree_node == loop_tree_node) |
| 1398 | return cp; |
| 1399 | } |
| 1400 | return NULL; |
| 1401 | } |
| 1402 | |
| 1403 | /* Create and return copy with given attributes LOOP_TREE_NODE, FIRST, |
| 1404 | SECOND, FREQ, CONSTRAINT_P, and INSN. */ |
| 1405 | ira_copy_t |
| 1406 | ira_create_copy (ira_allocno_t first, ira_allocno_t second, int freq, |
| 1407 | bool constraint_p, rtx_insn *insn, |
| 1408 | ira_loop_tree_node_t loop_tree_node) |
| 1409 | { |
| 1410 | ira_copy_t cp; |
| 1411 | |
| 1412 | cp = copy_pool.allocate (); |
| 1413 | cp->num = ira_copies_num; |
| 1414 | cp->first = first; |
| 1415 | cp->second = second; |
| 1416 | cp->freq = freq; |
| 1417 | cp->constraint_p = constraint_p; |
| 1418 | cp->insn = insn; |
| 1419 | cp->loop_tree_node = loop_tree_node; |
| 1420 | copy_vec.safe_push (obj: cp); |
| 1421 | ira_copies = copy_vec.address (); |
| 1422 | ira_copies_num = copy_vec.length (); |
| 1423 | return cp; |
| 1424 | } |
| 1425 | |
| 1426 | /* Attach a copy CP to allocnos involved into the copy. */ |
| 1427 | static void |
| 1428 | add_allocno_copy_to_list (ira_copy_t cp) |
| 1429 | { |
| 1430 | ira_allocno_t first = cp->first, second = cp->second; |
| 1431 | |
| 1432 | cp->prev_first_allocno_copy = NULL; |
| 1433 | cp->prev_second_allocno_copy = NULL; |
| 1434 | cp->next_first_allocno_copy = ALLOCNO_COPIES (first); |
| 1435 | if (cp->next_first_allocno_copy != NULL) |
| 1436 | { |
| 1437 | if (cp->next_first_allocno_copy->first == first) |
| 1438 | cp->next_first_allocno_copy->prev_first_allocno_copy = cp; |
| 1439 | else |
| 1440 | cp->next_first_allocno_copy->prev_second_allocno_copy = cp; |
| 1441 | } |
| 1442 | cp->next_second_allocno_copy = ALLOCNO_COPIES (second); |
| 1443 | if (cp->next_second_allocno_copy != NULL) |
| 1444 | { |
| 1445 | if (cp->next_second_allocno_copy->second == second) |
| 1446 | cp->next_second_allocno_copy->prev_second_allocno_copy = cp; |
| 1447 | else |
| 1448 | cp->next_second_allocno_copy->prev_first_allocno_copy = cp; |
| 1449 | } |
| 1450 | ALLOCNO_COPIES (first) = cp; |
| 1451 | ALLOCNO_COPIES (second) = cp; |
| 1452 | } |
| 1453 | |
| 1454 | /* Make a copy CP a canonical copy where number of the |
| 1455 | first allocno is less than the second one. */ |
| 1456 | static void |
| 1457 | swap_allocno_copy_ends_if_necessary (ira_copy_t cp) |
| 1458 | { |
| 1459 | if (ALLOCNO_NUM (cp->first) <= ALLOCNO_NUM (cp->second)) |
| 1460 | return; |
| 1461 | |
| 1462 | std::swap (a&: cp->first, b&: cp->second); |
| 1463 | std::swap (a&: cp->prev_first_allocno_copy, b&: cp->prev_second_allocno_copy); |
| 1464 | std::swap (a&: cp->next_first_allocno_copy, b&: cp->next_second_allocno_copy); |
| 1465 | } |
| 1466 | |
| 1467 | /* Create (or update frequency if the copy already exists) and return |
| 1468 | the copy of allocnos FIRST and SECOND with frequency FREQ |
| 1469 | corresponding to move insn INSN (if any) and originated from |
| 1470 | LOOP_TREE_NODE. */ |
| 1471 | ira_copy_t |
| 1472 | ira_add_allocno_copy (ira_allocno_t first, ira_allocno_t second, int freq, |
| 1473 | bool constraint_p, rtx_insn *insn, |
| 1474 | ira_loop_tree_node_t loop_tree_node) |
| 1475 | { |
| 1476 | ira_copy_t cp; |
| 1477 | |
| 1478 | if ((cp = find_allocno_copy (a1: first, a2: second, insn, loop_tree_node)) != NULL) |
| 1479 | { |
| 1480 | cp->freq += freq; |
| 1481 | return cp; |
| 1482 | } |
| 1483 | cp = ira_create_copy (first, second, freq, constraint_p, insn, |
| 1484 | loop_tree_node); |
| 1485 | ira_assert (first != NULL && second != NULL); |
| 1486 | add_allocno_copy_to_list (cp); |
| 1487 | swap_allocno_copy_ends_if_necessary (cp); |
| 1488 | return cp; |
| 1489 | } |
| 1490 | |
| 1491 | /* Print info about copy CP into file F. */ |
| 1492 | static void |
| 1493 | print_copy (FILE *f, ira_copy_t cp) |
| 1494 | { |
| 1495 | fprintf (stream: f, format: " cp%d:a%d(r%d)<->a%d(r%d)@%d:%s\n" , cp->num, |
| 1496 | ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first), |
| 1497 | ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second), cp->freq, |
| 1498 | cp->insn != NULL |
| 1499 | ? "move" : cp->constraint_p ? "constraint" : "shuffle" ); |
| 1500 | } |
| 1501 | |
| 1502 | DEBUG_FUNCTION void |
| 1503 | debug (ira_allocno_copy &ref) |
| 1504 | { |
| 1505 | print_copy (stderr, cp: &ref); |
| 1506 | } |
| 1507 | |
| 1508 | DEBUG_FUNCTION void |
| 1509 | debug (ira_allocno_copy *ptr) |
| 1510 | { |
| 1511 | if (ptr) |
| 1512 | debug (ref&: *ptr); |
| 1513 | else |
| 1514 | fprintf (stderr, format: "<nil>\n" ); |
| 1515 | } |
| 1516 | |
| 1517 | /* Print info about copy CP into stderr. */ |
| 1518 | void |
| 1519 | ira_debug_copy (ira_copy_t cp) |
| 1520 | { |
| 1521 | print_copy (stderr, cp); |
| 1522 | } |
| 1523 | |
| 1524 | /* Print info about all copies into file F. */ |
| 1525 | static void |
| 1526 | print_copies (FILE *f) |
| 1527 | { |
| 1528 | ira_copy_t cp; |
| 1529 | ira_copy_iterator ci; |
| 1530 | |
| 1531 | FOR_EACH_COPY (cp, ci) |
| 1532 | print_copy (f, cp); |
| 1533 | } |
| 1534 | |
| 1535 | /* Print info about all copies into stderr. */ |
| 1536 | void |
| 1537 | ira_debug_copies (void) |
| 1538 | { |
| 1539 | print_copies (stderr); |
| 1540 | } |
| 1541 | |
| 1542 | /* Print info about copies involving allocno A into file F. */ |
| 1543 | static void |
| 1544 | print_allocno_copies (FILE *f, ira_allocno_t a) |
| 1545 | { |
| 1546 | ira_allocno_t another_a; |
| 1547 | ira_copy_t cp, next_cp; |
| 1548 | |
| 1549 | fprintf (stream: f, format: " a%d(r%d):" , ALLOCNO_NUM (a), ALLOCNO_REGNO (a)); |
| 1550 | for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp) |
| 1551 | { |
| 1552 | if (cp->first == a) |
| 1553 | { |
| 1554 | next_cp = cp->next_first_allocno_copy; |
| 1555 | another_a = cp->second; |
| 1556 | } |
| 1557 | else if (cp->second == a) |
| 1558 | { |
| 1559 | next_cp = cp->next_second_allocno_copy; |
| 1560 | another_a = cp->first; |
| 1561 | } |
| 1562 | else |
| 1563 | gcc_unreachable (); |
| 1564 | fprintf (stream: f, format: " cp%d:a%d(r%d)@%d" , cp->num, |
| 1565 | ALLOCNO_NUM (another_a), ALLOCNO_REGNO (another_a), cp->freq); |
| 1566 | } |
| 1567 | fprintf (stream: f, format: "\n" ); |
| 1568 | } |
| 1569 | |
| 1570 | DEBUG_FUNCTION void |
| 1571 | debug (ira_allocno &ref) |
| 1572 | { |
| 1573 | print_allocno_copies (stderr, a: &ref); |
| 1574 | } |
| 1575 | |
| 1576 | DEBUG_FUNCTION void |
| 1577 | debug (ira_allocno *ptr) |
| 1578 | { |
| 1579 | if (ptr) |
| 1580 | debug (ref&: *ptr); |
| 1581 | else |
| 1582 | fprintf (stderr, format: "<nil>\n" ); |
| 1583 | } |
| 1584 | |
| 1585 | |
| 1586 | /* Print info about copies involving allocno A into stderr. */ |
| 1587 | void |
| 1588 | ira_debug_allocno_copies (ira_allocno_t a) |
| 1589 | { |
| 1590 | print_allocno_copies (stderr, a); |
| 1591 | } |
| 1592 | |
| 1593 | /* The function frees memory allocated for copy CP. */ |
| 1594 | static void |
| 1595 | finish_copy (ira_copy_t cp) |
| 1596 | { |
| 1597 | copy_pool.remove (object: cp); |
| 1598 | } |
| 1599 | |
| 1600 | |
| 1601 | /* Free memory allocated for all copies. */ |
| 1602 | static void |
| 1603 | finish_copies (void) |
| 1604 | { |
| 1605 | ira_copy_t cp; |
| 1606 | ira_copy_iterator ci; |
| 1607 | |
| 1608 | FOR_EACH_COPY (cp, ci) |
| 1609 | finish_copy (cp); |
| 1610 | copy_vec.release (); |
| 1611 | copy_pool.release (); |
| 1612 | } |
| 1613 | |
| 1614 | |
| 1615 | |
| 1616 | /* Pools for cost vectors. It is defined only for allocno classes. */ |
| 1617 | static pool_allocator *cost_vector_pool[N_REG_CLASSES]; |
| 1618 | |
| 1619 | /* The function initiates work with hard register cost vectors. It |
| 1620 | creates allocation pool for each allocno class. */ |
| 1621 | static void |
| 1622 | initiate_cost_vectors (void) |
| 1623 | { |
| 1624 | int i; |
| 1625 | enum reg_class aclass; |
| 1626 | |
| 1627 | for (i = 0; i < ira_allocno_classes_num; i++) |
| 1628 | { |
| 1629 | aclass = ira_allocno_classes[i]; |
| 1630 | cost_vector_pool[aclass] = new pool_allocator |
| 1631 | ("cost vectors" , sizeof (int) * (ira_class_hard_regs_num[aclass])); |
| 1632 | } |
| 1633 | } |
| 1634 | |
| 1635 | /* Allocate and return a cost vector VEC for ACLASS. */ |
| 1636 | int * |
| 1637 | ira_allocate_cost_vector (reg_class_t aclass) |
| 1638 | { |
| 1639 | return (int*) cost_vector_pool[(int) aclass]->allocate (); |
| 1640 | } |
| 1641 | |
| 1642 | /* Free a cost vector VEC for ACLASS. */ |
| 1643 | void |
| 1644 | ira_free_cost_vector (int *vec, reg_class_t aclass) |
| 1645 | { |
| 1646 | ira_assert (vec != NULL); |
| 1647 | cost_vector_pool[(int) aclass]->remove (object: vec); |
| 1648 | } |
| 1649 | |
| 1650 | /* Finish work with hard register cost vectors. Release allocation |
| 1651 | pool for each allocno class. */ |
| 1652 | static void |
| 1653 | finish_cost_vectors (void) |
| 1654 | { |
| 1655 | int i; |
| 1656 | enum reg_class aclass; |
| 1657 | |
| 1658 | for (i = 0; i < ira_allocno_classes_num; i++) |
| 1659 | { |
| 1660 | aclass = ira_allocno_classes[i]; |
| 1661 | delete cost_vector_pool[aclass]; |
| 1662 | } |
| 1663 | } |
| 1664 | |
| 1665 | |
| 1666 | |
| 1667 | /* Compute a post-ordering of the reverse control flow of the loop body |
| 1668 | designated by the children nodes of LOOP_NODE, whose body nodes in |
| 1669 | pre-order are input as LOOP_PREORDER. Return a VEC with a post-order |
| 1670 | of the reverse loop body. |
| 1671 | |
| 1672 | For the post-order of the reverse CFG, we visit the basic blocks in |
| 1673 | LOOP_PREORDER array in the reverse order of where they appear. |
| 1674 | This is important: We do not just want to compute a post-order of |
| 1675 | the reverse CFG, we want to make a best-guess for a visiting order that |
| 1676 | minimizes the number of chain elements per allocno live range. If the |
| 1677 | blocks would be visited in a different order, we would still compute a |
| 1678 | correct post-ordering but it would be less likely that two nodes |
| 1679 | connected by an edge in the CFG are neighbors in the topsort. */ |
| 1680 | |
| 1681 | static vec<ira_loop_tree_node_t> |
| 1682 | ira_loop_tree_body_rev_postorder (ira_loop_tree_node_t loop_node ATTRIBUTE_UNUSED, |
| 1683 | const vec<ira_loop_tree_node_t> &loop_preorder) |
| 1684 | { |
| 1685 | vec<ira_loop_tree_node_t> topsort_nodes = vNULL; |
| 1686 | unsigned int n_loop_preorder; |
| 1687 | |
| 1688 | n_loop_preorder = loop_preorder.length (); |
| 1689 | if (n_loop_preorder != 0) |
| 1690 | { |
| 1691 | ira_loop_tree_node_t subloop_node; |
| 1692 | unsigned int i; |
| 1693 | auto_vec<ira_loop_tree_node_t> dfs_stack; |
| 1694 | |
| 1695 | /* This is a bit of strange abuse of the BB_VISITED flag: We use |
| 1696 | the flag to mark blocks we still have to visit to add them to |
| 1697 | our post-order. Define an alias to avoid confusion. */ |
| 1698 | #define BB_TO_VISIT BB_VISITED |
| 1699 | |
| 1700 | FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node) |
| 1701 | { |
| 1702 | gcc_checking_assert (! (subloop_node->bb->flags & BB_TO_VISIT)); |
| 1703 | subloop_node->bb->flags |= BB_TO_VISIT; |
| 1704 | } |
| 1705 | |
| 1706 | topsort_nodes.create (nelems: n_loop_preorder); |
| 1707 | dfs_stack.create (nelems: n_loop_preorder); |
| 1708 | |
| 1709 | FOR_EACH_VEC_ELT_REVERSE (loop_preorder, i, subloop_node) |
| 1710 | { |
| 1711 | if (! (subloop_node->bb->flags & BB_TO_VISIT)) |
| 1712 | continue; |
| 1713 | |
| 1714 | subloop_node->bb->flags &= ~BB_TO_VISIT; |
| 1715 | dfs_stack.quick_push (obj: subloop_node); |
| 1716 | while (! dfs_stack.is_empty ()) |
| 1717 | { |
| 1718 | edge e; |
| 1719 | edge_iterator ei; |
| 1720 | |
| 1721 | ira_loop_tree_node_t n = dfs_stack.last (); |
| 1722 | FOR_EACH_EDGE (e, ei, n->bb->preds) |
| 1723 | { |
| 1724 | ira_loop_tree_node_t pred_node; |
| 1725 | basic_block pred_bb = e->src; |
| 1726 | |
| 1727 | if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) |
| 1728 | continue; |
| 1729 | |
| 1730 | pred_node = IRA_BB_NODE_BY_INDEX (pred_bb->index); |
| 1731 | if (pred_node != n |
| 1732 | && (pred_node->bb->flags & BB_TO_VISIT)) |
| 1733 | { |
| 1734 | pred_node->bb->flags &= ~BB_TO_VISIT; |
| 1735 | dfs_stack.quick_push (obj: pred_node); |
| 1736 | } |
| 1737 | } |
| 1738 | if (n == dfs_stack.last ()) |
| 1739 | { |
| 1740 | dfs_stack.pop (); |
| 1741 | topsort_nodes.quick_push (obj: n); |
| 1742 | } |
| 1743 | } |
| 1744 | } |
| 1745 | |
| 1746 | #undef BB_TO_VISIT |
| 1747 | } |
| 1748 | |
| 1749 | gcc_assert (topsort_nodes.length () == n_loop_preorder); |
| 1750 | return topsort_nodes; |
| 1751 | } |
| 1752 | |
| 1753 | /* The current loop tree node and its regno allocno map. */ |
| 1754 | ira_loop_tree_node_t ira_curr_loop_tree_node; |
| 1755 | ira_allocno_t *ira_curr_regno_allocno_map; |
| 1756 | |
| 1757 | /* This recursive function traverses loop tree with root LOOP_NODE |
| 1758 | calling non-null functions PREORDER_FUNC and POSTORDER_FUNC |
| 1759 | correspondingly in preorder and postorder. The function sets up |
| 1760 | IRA_CURR_LOOP_TREE_NODE and IRA_CURR_REGNO_ALLOCNO_MAP. If BB_P, |
| 1761 | basic block nodes of LOOP_NODE is also processed (before its |
| 1762 | subloop nodes). |
| 1763 | |
| 1764 | If BB_P is set and POSTORDER_FUNC is given, the basic blocks in |
| 1765 | the loop are passed in the *reverse* post-order of the *reverse* |
| 1766 | CFG. This is only used by ira_create_allocno_live_ranges, which |
| 1767 | wants to visit basic blocks in this order to minimize the number |
| 1768 | of elements per live range chain. |
| 1769 | Note that the loop tree nodes are still visited in the normal, |
| 1770 | forward post-order of the loop tree. */ |
| 1771 | |
| 1772 | void |
| 1773 | ira_traverse_loop_tree (bool bb_p, ira_loop_tree_node_t loop_node, |
| 1774 | void (*preorder_func) (ira_loop_tree_node_t), |
| 1775 | void (*postorder_func) (ira_loop_tree_node_t)) |
| 1776 | { |
| 1777 | ira_loop_tree_node_t subloop_node; |
| 1778 | |
| 1779 | ira_assert (loop_node->bb == NULL); |
| 1780 | ira_curr_loop_tree_node = loop_node; |
| 1781 | ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map; |
| 1782 | |
| 1783 | if (preorder_func != NULL) |
| 1784 | (*preorder_func) (loop_node); |
| 1785 | |
| 1786 | if (bb_p) |
| 1787 | { |
| 1788 | auto_vec<ira_loop_tree_node_t> loop_preorder; |
| 1789 | unsigned int i; |
| 1790 | |
| 1791 | /* Add all nodes to the set of nodes to visit. The IRA loop tree |
| 1792 | is set up such that nodes in the loop body appear in a pre-order |
| 1793 | of their place in the CFG. */ |
| 1794 | for (subloop_node = loop_node->children; |
| 1795 | subloop_node != NULL; |
| 1796 | subloop_node = subloop_node->next) |
| 1797 | if (subloop_node->bb != NULL) |
| 1798 | loop_preorder.safe_push (obj: subloop_node); |
| 1799 | |
| 1800 | if (preorder_func != NULL) |
| 1801 | FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node) |
| 1802 | (*preorder_func) (subloop_node); |
| 1803 | |
| 1804 | if (postorder_func != NULL) |
| 1805 | { |
| 1806 | vec<ira_loop_tree_node_t> loop_rev_postorder = |
| 1807 | ira_loop_tree_body_rev_postorder (loop_node, loop_preorder); |
| 1808 | FOR_EACH_VEC_ELT_REVERSE (loop_rev_postorder, i, subloop_node) |
| 1809 | (*postorder_func) (subloop_node); |
| 1810 | loop_rev_postorder.release (); |
| 1811 | } |
| 1812 | } |
| 1813 | |
| 1814 | for (subloop_node = loop_node->subloops; |
| 1815 | subloop_node != NULL; |
| 1816 | subloop_node = subloop_node->subloop_next) |
| 1817 | { |
| 1818 | ira_assert (subloop_node->bb == NULL); |
| 1819 | ira_traverse_loop_tree (bb_p, loop_node: subloop_node, |
| 1820 | preorder_func, postorder_func); |
| 1821 | } |
| 1822 | |
| 1823 | ira_curr_loop_tree_node = loop_node; |
| 1824 | ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map; |
| 1825 | |
| 1826 | if (postorder_func != NULL) |
| 1827 | (*postorder_func) (loop_node); |
| 1828 | } |
| 1829 | |
| 1830 | |
| 1831 | |
| 1832 | /* The basic block currently being processed. */ |
| 1833 | static basic_block curr_bb; |
| 1834 | |
| 1835 | /* This recursive function creates allocnos corresponding to |
| 1836 | pseudo-registers containing in X. True OUTPUT_P means that X is |
| 1837 | an lvalue. OUTER corresponds to the parent expression of X. */ |
| 1838 | static void |
| 1839 | create_insn_allocnos (rtx x, rtx outer, bool output_p) |
| 1840 | { |
| 1841 | int i, j; |
| 1842 | const char *fmt; |
| 1843 | enum rtx_code code = GET_CODE (x); |
| 1844 | |
| 1845 | if (code == REG) |
| 1846 | { |
| 1847 | int regno; |
| 1848 | |
| 1849 | if ((regno = REGNO (x)) >= FIRST_PSEUDO_REGISTER) |
| 1850 | { |
| 1851 | ira_allocno_t a; |
| 1852 | |
| 1853 | if ((a = ira_curr_regno_allocno_map[regno]) == NULL) |
| 1854 | a = ira_create_allocno (regno, cap_p: false, loop_tree_node: ira_curr_loop_tree_node); |
| 1855 | |
| 1856 | /* This used to only trigger at allocno creation which seems |
| 1857 | wrong. We care about the WMODE propery across all the uses. */ |
| 1858 | if (outer != NULL && GET_CODE (outer) == SUBREG) |
| 1859 | { |
| 1860 | machine_mode wmode = GET_MODE (outer); |
| 1861 | if (partial_subreg_p (ALLOCNO_WMODE (a), innermode: wmode)) |
| 1862 | ALLOCNO_WMODE (a) = wmode; |
| 1863 | } |
| 1864 | |
| 1865 | ALLOCNO_NREFS (a)++; |
| 1866 | ALLOCNO_FREQ (a) += REG_FREQ_FROM_BB (curr_bb); |
| 1867 | if (output_p) |
| 1868 | bitmap_set_bit (ira_curr_loop_tree_node->modified_regnos, regno); |
| 1869 | } |
| 1870 | return; |
| 1871 | } |
| 1872 | else if (code == SET) |
| 1873 | { |
| 1874 | create_insn_allocnos (SET_DEST (x), NULL, output_p: true); |
| 1875 | create_insn_allocnos (SET_SRC (x), NULL, output_p: false); |
| 1876 | return; |
| 1877 | } |
| 1878 | else if (code == CLOBBER) |
| 1879 | { |
| 1880 | create_insn_allocnos (XEXP (x, 0), NULL, output_p: true); |
| 1881 | return; |
| 1882 | } |
| 1883 | else if (code == MEM) |
| 1884 | { |
| 1885 | create_insn_allocnos (XEXP (x, 0), NULL, output_p: false); |
| 1886 | return; |
| 1887 | } |
| 1888 | else if (code == PRE_DEC || code == POST_DEC || code == PRE_INC || |
| 1889 | code == POST_INC || code == POST_MODIFY || code == PRE_MODIFY) |
| 1890 | { |
| 1891 | create_insn_allocnos (XEXP (x, 0), NULL, output_p: true); |
| 1892 | create_insn_allocnos (XEXP (x, 0), NULL, output_p: false); |
| 1893 | return; |
| 1894 | } |
| 1895 | |
| 1896 | fmt = GET_RTX_FORMAT (code); |
| 1897 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| 1898 | { |
| 1899 | if (fmt[i] == 'e') |
| 1900 | create_insn_allocnos (XEXP (x, i), outer: x, output_p); |
| 1901 | else if (fmt[i] == 'E') |
| 1902 | for (j = 0; j < XVECLEN (x, i); j++) |
| 1903 | create_insn_allocnos (XVECEXP (x, i, j), outer: x, output_p); |
| 1904 | } |
| 1905 | } |
| 1906 | |
| 1907 | /* Create allocnos corresponding to pseudo-registers living in the |
| 1908 | basic block represented by the corresponding loop tree node |
| 1909 | BB_NODE. */ |
| 1910 | static void |
| 1911 | create_bb_allocnos (ira_loop_tree_node_t bb_node) |
| 1912 | { |
| 1913 | basic_block bb; |
| 1914 | rtx_insn *insn; |
| 1915 | unsigned int i; |
| 1916 | bitmap_iterator bi; |
| 1917 | |
| 1918 | curr_bb = bb = bb_node->bb; |
| 1919 | ira_assert (bb != NULL); |
| 1920 | FOR_BB_INSNS_REVERSE (bb, insn) |
| 1921 | if (NONDEBUG_INSN_P (insn)) |
| 1922 | create_insn_allocnos (x: PATTERN (insn), NULL, output_p: false); |
| 1923 | /* It might be a allocno living through from one subloop to |
| 1924 | another. */ |
| 1925 | EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (bb), FIRST_PSEUDO_REGISTER, i, bi) |
| 1926 | if (ira_curr_regno_allocno_map[i] == NULL) |
| 1927 | ira_create_allocno (regno: i, cap_p: false, loop_tree_node: ira_curr_loop_tree_node); |
| 1928 | } |
| 1929 | |
| 1930 | /* Create allocnos corresponding to pseudo-registers living on edge E |
| 1931 | (a loop entry or exit). Also mark the allocnos as living on the |
| 1932 | loop border. */ |
| 1933 | static void |
| 1934 | create_loop_allocnos (edge e) |
| 1935 | { |
| 1936 | unsigned int i; |
| 1937 | bitmap live_in_regs, border_allocnos; |
| 1938 | bitmap_iterator bi; |
| 1939 | ira_loop_tree_node_t parent; |
| 1940 | |
| 1941 | live_in_regs = df_get_live_in (bb: e->dest); |
| 1942 | border_allocnos = ira_curr_loop_tree_node->border_allocnos; |
| 1943 | EXECUTE_IF_SET_IN_REG_SET (df_get_live_out (e->src), |
| 1944 | FIRST_PSEUDO_REGISTER, i, bi) |
| 1945 | if (bitmap_bit_p (live_in_regs, i)) |
| 1946 | { |
| 1947 | if (ira_curr_regno_allocno_map[i] == NULL) |
| 1948 | { |
| 1949 | /* The order of creations is important for right |
| 1950 | ira_regno_allocno_map. */ |
| 1951 | if ((parent = ira_curr_loop_tree_node->parent) != NULL |
| 1952 | && parent->regno_allocno_map[i] == NULL) |
| 1953 | ira_create_allocno (regno: i, cap_p: false, loop_tree_node: parent); |
| 1954 | ira_create_allocno (regno: i, cap_p: false, loop_tree_node: ira_curr_loop_tree_node); |
| 1955 | } |
| 1956 | bitmap_set_bit (border_allocnos, |
| 1957 | ALLOCNO_NUM (ira_curr_regno_allocno_map[i])); |
| 1958 | } |
| 1959 | } |
| 1960 | |
| 1961 | /* Create allocnos corresponding to pseudo-registers living in loop |
| 1962 | represented by the corresponding loop tree node LOOP_NODE. This |
| 1963 | function is called by ira_traverse_loop_tree. */ |
| 1964 | static void |
| 1965 | create_loop_tree_node_allocnos (ira_loop_tree_node_t loop_node) |
| 1966 | { |
| 1967 | if (loop_node->bb != NULL) |
| 1968 | create_bb_allocnos (bb_node: loop_node); |
| 1969 | else if (loop_node != ira_loop_tree_root) |
| 1970 | { |
| 1971 | int i; |
| 1972 | edge_iterator ei; |
| 1973 | edge e; |
| 1974 | |
| 1975 | ira_assert (current_loops != NULL); |
| 1976 | FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds) |
| 1977 | if (e->src != loop_node->loop->latch) |
| 1978 | create_loop_allocnos (e); |
| 1979 | |
| 1980 | auto_vec<edge> edges = get_loop_exit_edges (loop_node->loop); |
| 1981 | FOR_EACH_VEC_ELT (edges, i, e) |
| 1982 | create_loop_allocnos (e); |
| 1983 | } |
| 1984 | } |
| 1985 | |
| 1986 | /* Propagate information about allocnos modified inside the loop given |
| 1987 | by its LOOP_TREE_NODE to its parent. */ |
| 1988 | static void |
| 1989 | propagate_modified_regnos (ira_loop_tree_node_t loop_tree_node) |
| 1990 | { |
| 1991 | if (loop_tree_node == ira_loop_tree_root) |
| 1992 | return; |
| 1993 | ira_assert (loop_tree_node->bb == NULL); |
| 1994 | bitmap_ior_into (loop_tree_node->parent->modified_regnos, |
| 1995 | loop_tree_node->modified_regnos); |
| 1996 | } |
| 1997 | |
| 1998 | /* Propagate ALLOCNO_HARD_REG_COSTS from A to PARENT_A. Use SPILL_COST |
| 1999 | as the cost of spilling a register throughout A (which we have to do |
| 2000 | for PARENT_A allocations that conflict with A). */ |
| 2001 | static void |
| 2002 | ira_propagate_hard_reg_costs (ira_allocno_t parent_a, ira_allocno_t a, |
| 2003 | int spill_cost) |
| 2004 | { |
| 2005 | HARD_REG_SET conflicts = ira_total_conflict_hard_regs (a); |
| 2006 | if (ira_caller_save_loop_spill_p (a: parent_a, subloop_a: a, spill_cost)) |
| 2007 | conflicts |= ira_need_caller_save_regs (a); |
| 2008 | conflicts &= ~ira_total_conflict_hard_regs (a: parent_a); |
| 2009 | |
| 2010 | auto costs = ALLOCNO_HARD_REG_COSTS (a); |
| 2011 | if (!hard_reg_set_empty_p (x: conflicts)) |
| 2012 | ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (a) = true; |
| 2013 | else if (!costs) |
| 2014 | return; |
| 2015 | |
| 2016 | auto aclass = ALLOCNO_CLASS (a); |
| 2017 | ira_allocate_and_set_costs (vec: &ALLOCNO_HARD_REG_COSTS (parent_a), |
| 2018 | aclass, ALLOCNO_CLASS_COST (parent_a)); |
| 2019 | auto parent_costs = ALLOCNO_HARD_REG_COSTS (parent_a); |
| 2020 | for (int i = 0; i < ira_class_hard_regs_num[aclass]; ++i) |
| 2021 | if (TEST_HARD_REG_BIT (set: conflicts, ira_class_hard_regs[aclass][i])) |
| 2022 | parent_costs[i] += spill_cost; |
| 2023 | else if (costs) |
| 2024 | /* The cost to A of allocating this register to PARENT_A can't |
| 2025 | be more than the cost of spilling the register throughout A. */ |
| 2026 | parent_costs[i] += MIN (costs[i], spill_cost); |
| 2027 | } |
| 2028 | |
| 2029 | /* Propagate new info about allocno A (see comments about accumulated |
| 2030 | info in allocno definition) to the corresponding allocno on upper |
| 2031 | loop tree level. So allocnos on upper levels accumulate |
| 2032 | information about the corresponding allocnos in nested regions. |
| 2033 | The new info means allocno info finally calculated in this |
| 2034 | file. */ |
| 2035 | static void |
| 2036 | propagate_allocno_info (void) |
| 2037 | { |
| 2038 | int i; |
| 2039 | ira_allocno_t a, parent_a; |
| 2040 | ira_loop_tree_node_t parent; |
| 2041 | enum reg_class aclass; |
| 2042 | |
| 2043 | if (flag_ira_region != IRA_REGION_ALL |
| 2044 | && flag_ira_region != IRA_REGION_MIXED) |
| 2045 | return; |
| 2046 | for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--) |
| 2047 | for (a = ira_regno_allocno_map[i]; |
| 2048 | a != NULL; |
| 2049 | a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) |
| 2050 | if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL |
| 2051 | && (parent_a = parent->regno_allocno_map[i]) != NULL |
| 2052 | /* There are no caps yet at this point. So use |
| 2053 | border_allocnos to find allocnos for the propagation. */ |
| 2054 | && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a)->border_allocnos, |
| 2055 | ALLOCNO_NUM (a))) |
| 2056 | { |
| 2057 | /* Calculate the cost of storing to memory on entry to A's loop, |
| 2058 | referencing as memory within A's loop, and restoring from |
| 2059 | memory on exit from A's loop. */ |
| 2060 | ira_loop_border_costs border_costs (a); |
| 2061 | int spill_cost = INT_MAX; |
| 2062 | if (ira_subloop_allocnos_can_differ_p (a: parent_a)) |
| 2063 | spill_cost = (border_costs.spill_inside_loop_cost () |
| 2064 | + ALLOCNO_MEMORY_COST (a)); |
| 2065 | |
| 2066 | if (! ALLOCNO_BAD_SPILL_P (a)) |
| 2067 | ALLOCNO_BAD_SPILL_P (parent_a) = false; |
| 2068 | ALLOCNO_NREFS (parent_a) += ALLOCNO_NREFS (a); |
| 2069 | ALLOCNO_FREQ (parent_a) += ALLOCNO_FREQ (a); |
| 2070 | ALLOCNO_SET_REGISTER_FILTERS (parent_a, |
| 2071 | ALLOCNO_REGISTER_FILTERS (parent_a) |
| 2072 | | ALLOCNO_REGISTER_FILTERS (a)); |
| 2073 | |
| 2074 | /* If A's allocation can differ from PARENT_A's, we can if necessary |
| 2075 | spill PARENT_A on entry to A's loop and restore it afterwards. |
| 2076 | Doing that has cost SPILL_COST. */ |
| 2077 | if (!ira_subloop_allocnos_can_differ_p (a: parent_a)) |
| 2078 | merge_hard_reg_conflicts (from: a, to: parent_a, total_only: true); |
| 2079 | |
| 2080 | if (!ira_caller_save_loop_spill_p (a: parent_a, subloop_a: a, spill_cost)) |
| 2081 | { |
| 2082 | ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a); |
| 2083 | ALLOCNO_CALLS_CROSSED_NUM (parent_a) |
| 2084 | += ALLOCNO_CALLS_CROSSED_NUM (a); |
| 2085 | ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a) |
| 2086 | += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a); |
| 2087 | ALLOCNO_CROSSED_CALLS_ABIS (parent_a) |
| 2088 | |= ALLOCNO_CROSSED_CALLS_ABIS (a); |
| 2089 | ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (parent_a) |
| 2090 | |= ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a); |
| 2091 | } |
| 2092 | ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a) |
| 2093 | += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a); |
| 2094 | aclass = ALLOCNO_CLASS (a); |
| 2095 | ira_assert (aclass == ALLOCNO_CLASS (parent_a)); |
| 2096 | ira_propagate_hard_reg_costs (parent_a, a, spill_cost); |
| 2097 | ira_allocate_and_accumulate_costs |
| 2098 | (vec: &ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a), |
| 2099 | aclass, |
| 2100 | ALLOCNO_CONFLICT_HARD_REG_COSTS (a)); |
| 2101 | /* The cost to A of allocating a register to PARENT_A can't be |
| 2102 | more than the cost of spilling the register throughout A. */ |
| 2103 | ALLOCNO_CLASS_COST (parent_a) |
| 2104 | += MIN (ALLOCNO_CLASS_COST (a), spill_cost); |
| 2105 | ALLOCNO_MEMORY_COST (parent_a) += ALLOCNO_MEMORY_COST (a); |
| 2106 | } |
| 2107 | } |
| 2108 | |
| 2109 | /* Create allocnos corresponding to pseudo-registers in the current |
| 2110 | function. Traverse the loop tree for this. */ |
| 2111 | static void |
| 2112 | create_allocnos (void) |
| 2113 | { |
| 2114 | /* We need to process BB first to correctly link allocnos by member |
| 2115 | next_regno_allocno. */ |
| 2116 | ira_traverse_loop_tree (bb_p: true, loop_node: ira_loop_tree_root, |
| 2117 | preorder_func: create_loop_tree_node_allocnos, NULL); |
| 2118 | if (optimize) |
| 2119 | ira_traverse_loop_tree (bb_p: false, loop_node: ira_loop_tree_root, NULL, |
| 2120 | postorder_func: propagate_modified_regnos); |
| 2121 | } |
| 2122 | |
| 2123 | |
| 2124 | |
| 2125 | /* The page contains function to remove some regions from a separate |
| 2126 | register allocation. We remove regions whose separate allocation |
| 2127 | will hardly improve the result. As a result we speed up regional |
| 2128 | register allocation. */ |
| 2129 | |
| 2130 | /* The function changes the object in range list given by R to OBJ. */ |
| 2131 | static void |
| 2132 | change_object_in_range_list (live_range_t r, ira_object_t obj) |
| 2133 | { |
| 2134 | for (; r != NULL; r = r->next) |
| 2135 | r->object = obj; |
| 2136 | } |
| 2137 | |
| 2138 | /* Move all live ranges associated with allocno FROM to allocno TO. */ |
| 2139 | static void |
| 2140 | move_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to) |
| 2141 | { |
| 2142 | int i; |
| 2143 | int n = ALLOCNO_NUM_OBJECTS (from); |
| 2144 | |
| 2145 | gcc_assert (n == ALLOCNO_NUM_OBJECTS (to)); |
| 2146 | |
| 2147 | for (i = 0; i < n; i++) |
| 2148 | { |
| 2149 | ira_object_t from_obj = ALLOCNO_OBJECT (from, i); |
| 2150 | ira_object_t to_obj = ALLOCNO_OBJECT (to, i); |
| 2151 | live_range_t lr = OBJECT_LIVE_RANGES (from_obj); |
| 2152 | |
| 2153 | if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL) |
| 2154 | { |
| 2155 | fprintf (stream: ira_dump_file, |
| 2156 | format: " Moving ranges of a%dr%d to a%dr%d: " , |
| 2157 | ALLOCNO_NUM (from), ALLOCNO_REGNO (from), |
| 2158 | ALLOCNO_NUM (to), ALLOCNO_REGNO (to)); |
| 2159 | ira_print_live_range_list (ira_dump_file, lr); |
| 2160 | } |
| 2161 | change_object_in_range_list (r: lr, obj: to_obj); |
| 2162 | OBJECT_LIVE_RANGES (to_obj) |
| 2163 | = ira_merge_live_ranges (r1: lr, OBJECT_LIVE_RANGES (to_obj)); |
| 2164 | OBJECT_LIVE_RANGES (from_obj) = NULL; |
| 2165 | } |
| 2166 | } |
| 2167 | |
| 2168 | static void |
| 2169 | copy_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to) |
| 2170 | { |
| 2171 | int i; |
| 2172 | int n = ALLOCNO_NUM_OBJECTS (from); |
| 2173 | |
| 2174 | gcc_assert (n == ALLOCNO_NUM_OBJECTS (to)); |
| 2175 | |
| 2176 | for (i = 0; i < n; i++) |
| 2177 | { |
| 2178 | ira_object_t from_obj = ALLOCNO_OBJECT (from, i); |
| 2179 | ira_object_t to_obj = ALLOCNO_OBJECT (to, i); |
| 2180 | live_range_t lr = OBJECT_LIVE_RANGES (from_obj); |
| 2181 | |
| 2182 | if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL) |
| 2183 | { |
| 2184 | fprintf (stream: ira_dump_file, format: " Copying ranges of a%dr%d to a%dr%d: " , |
| 2185 | ALLOCNO_NUM (from), ALLOCNO_REGNO (from), |
| 2186 | ALLOCNO_NUM (to), ALLOCNO_REGNO (to)); |
| 2187 | ira_print_live_range_list (ira_dump_file, lr); |
| 2188 | } |
| 2189 | lr = ira_copy_live_range_list (r: lr); |
| 2190 | change_object_in_range_list (r: lr, obj: to_obj); |
| 2191 | OBJECT_LIVE_RANGES (to_obj) |
| 2192 | = ira_merge_live_ranges (r1: lr, OBJECT_LIVE_RANGES (to_obj)); |
| 2193 | } |
| 2194 | } |
| 2195 | |
| 2196 | /* Return TRUE if NODE represents a loop with low register |
| 2197 | pressure. */ |
| 2198 | static bool |
| 2199 | low_pressure_loop_node_p (ira_loop_tree_node_t node) |
| 2200 | { |
| 2201 | int i; |
| 2202 | enum reg_class pclass; |
| 2203 | |
| 2204 | if (node->bb != NULL) |
| 2205 | return false; |
| 2206 | |
| 2207 | for (i = 0; i < ira_pressure_classes_num; i++) |
| 2208 | { |
| 2209 | pclass = ira_pressure_classes[i]; |
| 2210 | if (node->reg_pressure[pclass] > ira_class_hard_regs_num[pclass] |
| 2211 | && ira_class_hard_regs_num[pclass] > 1) |
| 2212 | return false; |
| 2213 | } |
| 2214 | return true; |
| 2215 | } |
| 2216 | |
| 2217 | #ifdef STACK_REGS |
| 2218 | /* Return TRUE if LOOP has a complex enter or exit edge. We don't |
| 2219 | form a region from such loop if the target use stack register |
| 2220 | because reg-stack.cc cannot deal with such edges. */ |
| 2221 | static bool |
| 2222 | loop_with_complex_edge_p (class loop *loop) |
| 2223 | { |
| 2224 | int i; |
| 2225 | edge_iterator ei; |
| 2226 | edge e; |
| 2227 | bool res; |
| 2228 | |
| 2229 | FOR_EACH_EDGE (e, ei, loop->header->preds) |
| 2230 | if (e->flags & EDGE_EH) |
| 2231 | return true; |
| 2232 | auto_vec<edge> edges = get_loop_exit_edges (loop); |
| 2233 | res = false; |
| 2234 | FOR_EACH_VEC_ELT (edges, i, e) |
| 2235 | if (e->flags & EDGE_COMPLEX) |
| 2236 | { |
| 2237 | res = true; |
| 2238 | break; |
| 2239 | } |
| 2240 | return res; |
| 2241 | } |
| 2242 | #endif |
| 2243 | |
| 2244 | /* Sort loops for marking them for removal. We put already marked |
| 2245 | loops first, then less frequent loops next, and then outer loops |
| 2246 | next. */ |
| 2247 | static int |
| 2248 | loop_compare_func (const void *v1p, const void *v2p) |
| 2249 | { |
| 2250 | int diff; |
| 2251 | ira_loop_tree_node_t l1 = *(const ira_loop_tree_node_t *) v1p; |
| 2252 | ira_loop_tree_node_t l2 = *(const ira_loop_tree_node_t *) v2p; |
| 2253 | |
| 2254 | ira_assert (l1->parent != NULL && l2->parent != NULL); |
| 2255 | if (l1->to_remove_p && ! l2->to_remove_p) |
| 2256 | return -1; |
| 2257 | if (! l1->to_remove_p && l2->to_remove_p) |
| 2258 | return 1; |
| 2259 | if ((diff = l1->loop->header->count.to_frequency (cfun) |
| 2260 | - l2->loop->header->count.to_frequency (cfun)) != 0) |
| 2261 | return diff; |
| 2262 | if ((diff = (int) loop_depth (loop: l1->loop) - (int) loop_depth (loop: l2->loop)) != 0) |
| 2263 | return diff; |
| 2264 | /* Make sorting stable. */ |
| 2265 | return l1->loop_num - l2->loop_num; |
| 2266 | } |
| 2267 | |
| 2268 | /* Mark loops which should be removed from regional allocation. We |
| 2269 | remove a loop with low register pressure inside another loop with |
| 2270 | register pressure. In this case a separate allocation of the loop |
| 2271 | hardly helps (for irregular register file architecture it could |
| 2272 | help by choosing a better hard register in the loop but we prefer |
| 2273 | faster allocation even in this case). We also remove cheap loops |
| 2274 | if there are more than param_ira_max_loops_num of them. Loop with EH |
| 2275 | exit or enter edges are removed too because the allocation might |
| 2276 | require put pseudo moves on the EH edges (we could still do this |
| 2277 | for pseudos with caller saved hard registers in some cases but it |
| 2278 | is impossible to say here or during top-down allocation pass what |
| 2279 | hard register the pseudos get finally). */ |
| 2280 | static void |
| 2281 | mark_loops_for_removal (void) |
| 2282 | { |
| 2283 | int i, n; |
| 2284 | ira_loop_tree_node_t *sorted_loops; |
| 2285 | loop_p loop; |
| 2286 | |
| 2287 | ira_assert (current_loops != NULL); |
| 2288 | sorted_loops |
| 2289 | = (ira_loop_tree_node_t *) ira_allocate (sizeof (ira_loop_tree_node_t) |
| 2290 | * number_of_loops (cfun)); |
| 2291 | for (n = i = 0; vec_safe_iterate (v: get_loops (cfun), ix: i, ptr: &loop); i++) |
| 2292 | if (ira_loop_nodes[i].regno_allocno_map != NULL) |
| 2293 | { |
| 2294 | if (ira_loop_nodes[i].parent == NULL) |
| 2295 | { |
| 2296 | /* Don't remove the root. */ |
| 2297 | ira_loop_nodes[i].to_remove_p = false; |
| 2298 | continue; |
| 2299 | } |
| 2300 | sorted_loops[n++] = &ira_loop_nodes[i]; |
| 2301 | ira_loop_nodes[i].to_remove_p |
| 2302 | = ((low_pressure_loop_node_p (node: ira_loop_nodes[i].parent) |
| 2303 | && low_pressure_loop_node_p (node: &ira_loop_nodes[i])) |
| 2304 | #ifdef STACK_REGS |
| 2305 | || loop_with_complex_edge_p (loop: ira_loop_nodes[i].loop) |
| 2306 | #endif |
| 2307 | ); |
| 2308 | } |
| 2309 | qsort (sorted_loops, n, sizeof (ira_loop_tree_node_t), loop_compare_func); |
| 2310 | for (i = 0; i < n - param_ira_max_loops_num; i++) |
| 2311 | { |
| 2312 | sorted_loops[i]->to_remove_p = true; |
| 2313 | if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL) |
| 2314 | fprintf |
| 2315 | (stream: ira_dump_file, |
| 2316 | format: " Mark loop %d (header %d, freq %d, depth %d) for removal (%s)\n" , |
| 2317 | sorted_loops[i]->loop_num, sorted_loops[i]->loop->header->index, |
| 2318 | sorted_loops[i]->loop->header->count.to_frequency (cfun), |
| 2319 | loop_depth (loop: sorted_loops[i]->loop), |
| 2320 | low_pressure_loop_node_p (node: sorted_loops[i]->parent) |
| 2321 | && low_pressure_loop_node_p (node: sorted_loops[i]) |
| 2322 | ? "low pressure" : "cheap loop" ); |
| 2323 | } |
| 2324 | ira_free (addr: sorted_loops); |
| 2325 | } |
| 2326 | |
| 2327 | /* Mark all loops but root for removing. */ |
| 2328 | static void |
| 2329 | mark_all_loops_for_removal (void) |
| 2330 | { |
| 2331 | int i; |
| 2332 | loop_p loop; |
| 2333 | |
| 2334 | ira_assert (current_loops != NULL); |
| 2335 | FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop) |
| 2336 | if (ira_loop_nodes[i].regno_allocno_map != NULL) |
| 2337 | { |
| 2338 | if (ira_loop_nodes[i].parent == NULL) |
| 2339 | { |
| 2340 | /* Don't remove the root. */ |
| 2341 | ira_loop_nodes[i].to_remove_p = false; |
| 2342 | continue; |
| 2343 | } |
| 2344 | ira_loop_nodes[i].to_remove_p = true; |
| 2345 | if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL) |
| 2346 | fprintf |
| 2347 | (stream: ira_dump_file, |
| 2348 | format: " Mark loop %d (header %d, freq %d, depth %d) for removal\n" , |
| 2349 | ira_loop_nodes[i].loop_num, |
| 2350 | ira_loop_nodes[i].loop->header->index, |
| 2351 | ira_loop_nodes[i].loop->header->count.to_frequency (cfun), |
| 2352 | loop_depth (loop: ira_loop_nodes[i].loop)); |
| 2353 | } |
| 2354 | } |
| 2355 | |
| 2356 | /* Definition of vector of loop tree nodes. */ |
| 2357 | |
| 2358 | /* Vec containing references to all removed loop tree nodes. */ |
| 2359 | static vec<ira_loop_tree_node_t> removed_loop_vec; |
| 2360 | |
| 2361 | /* Vec containing references to all children of loop tree nodes. */ |
| 2362 | static vec<ira_loop_tree_node_t> children_vec; |
| 2363 | |
| 2364 | /* Remove subregions of NODE if their separate allocation will not |
| 2365 | improve the result. */ |
| 2366 | static void |
| 2367 | remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_node_t node) |
| 2368 | { |
| 2369 | unsigned int start; |
| 2370 | bool remove_p; |
| 2371 | ira_loop_tree_node_t subnode; |
| 2372 | |
| 2373 | remove_p = node->to_remove_p; |
| 2374 | if (! remove_p) |
| 2375 | children_vec.safe_push (obj: node); |
| 2376 | start = children_vec.length (); |
| 2377 | for (subnode = node->children; subnode != NULL; subnode = subnode->next) |
| 2378 | if (subnode->bb == NULL) |
| 2379 | remove_uneccesary_loop_nodes_from_loop_tree (node: subnode); |
| 2380 | else |
| 2381 | children_vec.safe_push (obj: subnode); |
| 2382 | node->children = node->subloops = NULL; |
| 2383 | if (remove_p) |
| 2384 | { |
| 2385 | removed_loop_vec.safe_push (obj: node); |
| 2386 | return; |
| 2387 | } |
| 2388 | while (children_vec.length () > start) |
| 2389 | { |
| 2390 | subnode = children_vec.pop (); |
| 2391 | subnode->parent = node; |
| 2392 | subnode->next = node->children; |
| 2393 | node->children = subnode; |
| 2394 | if (subnode->bb == NULL) |
| 2395 | { |
| 2396 | subnode->subloop_next = node->subloops; |
| 2397 | node->subloops = subnode; |
| 2398 | } |
| 2399 | } |
| 2400 | } |
| 2401 | |
| 2402 | /* Return TRUE if NODE is inside PARENT. */ |
| 2403 | static bool |
| 2404 | loop_is_inside_p (ira_loop_tree_node_t node, ira_loop_tree_node_t parent) |
| 2405 | { |
| 2406 | for (node = node->parent; node != NULL; node = node->parent) |
| 2407 | if (node == parent) |
| 2408 | return true; |
| 2409 | return false; |
| 2410 | } |
| 2411 | |
| 2412 | /* Sort allocnos according to their order in regno allocno list. */ |
| 2413 | static int |
| 2414 | regno_allocno_order_compare_func (const void *v1p, const void *v2p) |
| 2415 | { |
| 2416 | ira_allocno_t a1 = *(const ira_allocno_t *) v1p; |
| 2417 | ira_allocno_t a2 = *(const ira_allocno_t *) v2p; |
| 2418 | ira_loop_tree_node_t n1 = ALLOCNO_LOOP_TREE_NODE (a1); |
| 2419 | ira_loop_tree_node_t n2 = ALLOCNO_LOOP_TREE_NODE (a2); |
| 2420 | |
| 2421 | if (loop_is_inside_p (node: n1, parent: n2)) |
| 2422 | return -1; |
| 2423 | else if (loop_is_inside_p (node: n2, parent: n1)) |
| 2424 | return 1; |
| 2425 | /* If allocnos are equally good, sort by allocno numbers, so that |
| 2426 | the results of qsort leave nothing to chance. We put allocnos |
| 2427 | with higher number first in the list because it is the original |
| 2428 | order for allocnos from loops on the same levels. */ |
| 2429 | return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1); |
| 2430 | } |
| 2431 | |
| 2432 | /* This array is used to sort allocnos to restore allocno order in |
| 2433 | the regno allocno list. */ |
| 2434 | static ira_allocno_t *regno_allocnos; |
| 2435 | |
| 2436 | /* Restore allocno order for REGNO in the regno allocno list. */ |
| 2437 | static void |
| 2438 | ira_rebuild_regno_allocno_list (int regno) |
| 2439 | { |
| 2440 | int i, n; |
| 2441 | ira_allocno_t a; |
| 2442 | |
| 2443 | for (n = 0, a = ira_regno_allocno_map[regno]; |
| 2444 | a != NULL; |
| 2445 | a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) |
| 2446 | regno_allocnos[n++] = a; |
| 2447 | ira_assert (n > 0); |
| 2448 | qsort (regno_allocnos, n, sizeof (ira_allocno_t), |
| 2449 | regno_allocno_order_compare_func); |
| 2450 | for (i = 1; i < n; i++) |
| 2451 | ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[i - 1]) = regno_allocnos[i]; |
| 2452 | ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[n - 1]) = NULL; |
| 2453 | ira_regno_allocno_map[regno] = regno_allocnos[0]; |
| 2454 | if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL) |
| 2455 | fprintf (stream: ira_dump_file, format: " Rebuilding regno allocno list for %d\n" , regno); |
| 2456 | } |
| 2457 | |
| 2458 | /* Propagate info from allocno FROM_A to allocno A. */ |
| 2459 | static void |
| 2460 | propagate_some_info_from_allocno (ira_allocno_t a, ira_allocno_t from_a) |
| 2461 | { |
| 2462 | enum reg_class aclass; |
| 2463 | |
| 2464 | merge_hard_reg_conflicts (from: from_a, to: a, total_only: false); |
| 2465 | ALLOCNO_NREFS (a) += ALLOCNO_NREFS (from_a); |
| 2466 | ALLOCNO_FREQ (a) += ALLOCNO_FREQ (from_a); |
| 2467 | ALLOCNO_CALL_FREQ (a) += ALLOCNO_CALL_FREQ (from_a); |
| 2468 | ALLOCNO_CALLS_CROSSED_NUM (a) += ALLOCNO_CALLS_CROSSED_NUM (from_a); |
| 2469 | ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a) |
| 2470 | += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (from_a); |
| 2471 | ALLOCNO_CROSSED_CALLS_ABIS (a) |= ALLOCNO_CROSSED_CALLS_ABIS (from_a); |
| 2472 | ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a) |
| 2473 | |= ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (from_a); |
| 2474 | ALLOCNO_SET_REGISTER_FILTERS (a, |
| 2475 | ALLOCNO_REGISTER_FILTERS (from_a) |
| 2476 | | ALLOCNO_REGISTER_FILTERS (a)); |
| 2477 | |
| 2478 | ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) |
| 2479 | += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (from_a); |
| 2480 | if (! ALLOCNO_BAD_SPILL_P (from_a)) |
| 2481 | ALLOCNO_BAD_SPILL_P (a) = false; |
| 2482 | aclass = ALLOCNO_CLASS (from_a); |
| 2483 | ira_assert (aclass == ALLOCNO_CLASS (a)); |
| 2484 | ira_allocate_and_accumulate_costs (vec: &ALLOCNO_HARD_REG_COSTS (a), aclass, |
| 2485 | ALLOCNO_HARD_REG_COSTS (from_a)); |
| 2486 | ira_allocate_and_accumulate_costs (vec: &ALLOCNO_CONFLICT_HARD_REG_COSTS (a), |
| 2487 | aclass, |
| 2488 | ALLOCNO_CONFLICT_HARD_REG_COSTS (from_a)); |
| 2489 | ALLOCNO_CLASS_COST (a) += ALLOCNO_CLASS_COST (from_a); |
| 2490 | ALLOCNO_MEMORY_COST (a) += ALLOCNO_MEMORY_COST (from_a); |
| 2491 | } |
| 2492 | |
| 2493 | /* Remove allocnos from loops removed from the allocation |
| 2494 | consideration. */ |
| 2495 | static void |
| 2496 | remove_unnecessary_allocnos (void) |
| 2497 | { |
| 2498 | int regno; |
| 2499 | bool merged_p, rebuild_p; |
| 2500 | ira_allocno_t a, prev_a, next_a, parent_a; |
| 2501 | ira_loop_tree_node_t a_node, parent; |
| 2502 | |
| 2503 | merged_p = false; |
| 2504 | regno_allocnos = NULL; |
| 2505 | for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--) |
| 2506 | { |
| 2507 | rebuild_p = false; |
| 2508 | for (prev_a = NULL, a = ira_regno_allocno_map[regno]; |
| 2509 | a != NULL; |
| 2510 | a = next_a) |
| 2511 | { |
| 2512 | next_a = ALLOCNO_NEXT_REGNO_ALLOCNO (a); |
| 2513 | a_node = ALLOCNO_LOOP_TREE_NODE (a); |
| 2514 | if (! a_node->to_remove_p) |
| 2515 | prev_a = a; |
| 2516 | else |
| 2517 | { |
| 2518 | for (parent = a_node->parent; |
| 2519 | (parent_a = parent->regno_allocno_map[regno]) == NULL |
| 2520 | && parent->to_remove_p; |
| 2521 | parent = parent->parent) |
| 2522 | ; |
| 2523 | if (parent_a == NULL) |
| 2524 | { |
| 2525 | /* There are no allocnos with the same regno in |
| 2526 | upper region -- just move the allocno to the |
| 2527 | upper region. */ |
| 2528 | prev_a = a; |
| 2529 | ALLOCNO_LOOP_TREE_NODE (a) = parent; |
| 2530 | parent->regno_allocno_map[regno] = a; |
| 2531 | bitmap_set_bit (parent->all_allocnos, ALLOCNO_NUM (a)); |
| 2532 | rebuild_p = true; |
| 2533 | } |
| 2534 | else |
| 2535 | { |
| 2536 | /* Remove the allocno and update info of allocno in |
| 2537 | the upper region. */ |
| 2538 | if (prev_a == NULL) |
| 2539 | ira_regno_allocno_map[regno] = next_a; |
| 2540 | else |
| 2541 | ALLOCNO_NEXT_REGNO_ALLOCNO (prev_a) = next_a; |
| 2542 | move_allocno_live_ranges (from: a, to: parent_a); |
| 2543 | merged_p = true; |
| 2544 | propagate_some_info_from_allocno (a: parent_a, from_a: a); |
| 2545 | /* Remove it from the corresponding regno allocno |
| 2546 | map to avoid info propagation of subsequent |
| 2547 | allocno into this already removed allocno. */ |
| 2548 | a_node->regno_allocno_map[regno] = NULL; |
| 2549 | ira_remove_allocno_prefs (a); |
| 2550 | finish_allocno (a); |
| 2551 | } |
| 2552 | } |
| 2553 | } |
| 2554 | if (rebuild_p) |
| 2555 | /* We need to restore the order in regno allocno list. */ |
| 2556 | { |
| 2557 | if (regno_allocnos == NULL) |
| 2558 | regno_allocnos |
| 2559 | = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) |
| 2560 | * ira_allocnos_num); |
| 2561 | ira_rebuild_regno_allocno_list (regno); |
| 2562 | } |
| 2563 | } |
| 2564 | if (merged_p) |
| 2565 | ira_rebuild_start_finish_chains (); |
| 2566 | if (regno_allocnos != NULL) |
| 2567 | ira_free (addr: regno_allocnos); |
| 2568 | } |
| 2569 | |
| 2570 | /* Remove allocnos from all loops but the root. */ |
| 2571 | static void |
| 2572 | remove_low_level_allocnos (void) |
| 2573 | { |
| 2574 | int regno; |
| 2575 | bool merged_p, propagate_p; |
| 2576 | ira_allocno_t a, top_a; |
| 2577 | ira_loop_tree_node_t a_node, parent; |
| 2578 | ira_allocno_iterator ai; |
| 2579 | |
| 2580 | merged_p = false; |
| 2581 | FOR_EACH_ALLOCNO (a, ai) |
| 2582 | { |
| 2583 | a_node = ALLOCNO_LOOP_TREE_NODE (a); |
| 2584 | if (a_node == ira_loop_tree_root || ALLOCNO_CAP_MEMBER (a) != NULL) |
| 2585 | continue; |
| 2586 | regno = ALLOCNO_REGNO (a); |
| 2587 | if ((top_a = ira_loop_tree_root->regno_allocno_map[regno]) == NULL) |
| 2588 | { |
| 2589 | ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root; |
| 2590 | ira_loop_tree_root->regno_allocno_map[regno] = a; |
| 2591 | continue; |
| 2592 | } |
| 2593 | propagate_p = a_node->parent->regno_allocno_map[regno] == NULL; |
| 2594 | /* Remove the allocno and update info of allocno in the upper |
| 2595 | region. */ |
| 2596 | move_allocno_live_ranges (from: a, to: top_a); |
| 2597 | merged_p = true; |
| 2598 | if (propagate_p) |
| 2599 | propagate_some_info_from_allocno (a: top_a, from_a: a); |
| 2600 | } |
| 2601 | FOR_EACH_ALLOCNO (a, ai) |
| 2602 | { |
| 2603 | a_node = ALLOCNO_LOOP_TREE_NODE (a); |
| 2604 | if (a_node == ira_loop_tree_root) |
| 2605 | continue; |
| 2606 | parent = a_node->parent; |
| 2607 | regno = ALLOCNO_REGNO (a); |
| 2608 | if (ALLOCNO_CAP_MEMBER (a) != NULL) |
| 2609 | ira_assert (ALLOCNO_CAP (a) != NULL); |
| 2610 | else if (ALLOCNO_CAP (a) == NULL) |
| 2611 | ira_assert (parent->regno_allocno_map[regno] != NULL); |
| 2612 | } |
| 2613 | FOR_EACH_ALLOCNO (a, ai) |
| 2614 | { |
| 2615 | regno = ALLOCNO_REGNO (a); |
| 2616 | if (ira_loop_tree_root->regno_allocno_map[regno] == a) |
| 2617 | { |
| 2618 | ira_object_t obj; |
| 2619 | ira_allocno_object_iterator oi; |
| 2620 | |
| 2621 | ira_regno_allocno_map[regno] = a; |
| 2622 | ALLOCNO_NEXT_REGNO_ALLOCNO (a) = NULL; |
| 2623 | ALLOCNO_CAP_MEMBER (a) = NULL; |
| 2624 | FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) |
| 2625 | OBJECT_CONFLICT_HARD_REGS (obj) |
| 2626 | = OBJECT_TOTAL_CONFLICT_HARD_REGS (obj); |
| 2627 | #ifdef STACK_REGS |
| 2628 | if (ALLOCNO_TOTAL_NO_STACK_REG_P (a)) |
| 2629 | ALLOCNO_NO_STACK_REG_P (a) = true; |
| 2630 | #endif |
| 2631 | } |
| 2632 | else |
| 2633 | { |
| 2634 | ira_remove_allocno_prefs (a); |
| 2635 | finish_allocno (a); |
| 2636 | } |
| 2637 | } |
| 2638 | if (merged_p) |
| 2639 | ira_rebuild_start_finish_chains (); |
| 2640 | } |
| 2641 | |
| 2642 | /* Remove loops from consideration. We remove all loops except for |
| 2643 | root if ALL_P or loops for which a separate allocation will not |
| 2644 | improve the result. We have to do this after allocno creation and |
| 2645 | their costs and allocno class evaluation because only after that |
| 2646 | the register pressure can be known and is calculated. */ |
| 2647 | static void |
| 2648 | remove_unnecessary_regions (bool all_p) |
| 2649 | { |
| 2650 | if (current_loops == NULL) |
| 2651 | return; |
| 2652 | if (all_p) |
| 2653 | mark_all_loops_for_removal (); |
| 2654 | else |
| 2655 | mark_loops_for_removal (); |
| 2656 | children_vec.create (last_basic_block_for_fn (cfun) |
| 2657 | + number_of_loops (cfun)); |
| 2658 | removed_loop_vec.create (last_basic_block_for_fn (cfun) |
| 2659 | + number_of_loops (cfun)); |
| 2660 | remove_uneccesary_loop_nodes_from_loop_tree (node: ira_loop_tree_root); |
| 2661 | children_vec.release (); |
| 2662 | if (all_p) |
| 2663 | remove_low_level_allocnos (); |
| 2664 | else |
| 2665 | remove_unnecessary_allocnos (); |
| 2666 | while (removed_loop_vec.length () > 0) |
| 2667 | finish_loop_tree_node (loop: removed_loop_vec.pop ()); |
| 2668 | removed_loop_vec.release (); |
| 2669 | } |
| 2670 | |
| 2671 | |
| 2672 | |
| 2673 | /* At this point true value of allocno attribute bad_spill_p means |
| 2674 | that there is an insn where allocno occurs and where the allocno |
| 2675 | cannot be used as memory. The function updates the attribute, now |
| 2676 | it can be true only for allocnos which cannot be used as memory in |
| 2677 | an insn and in whose live ranges there is other allocno deaths. |
| 2678 | Spilling allocnos with true value will not improve the code because |
| 2679 | it will not make other allocnos colorable and additional reloads |
| 2680 | for the corresponding pseudo will be generated in reload pass for |
| 2681 | each insn it occurs. |
| 2682 | |
| 2683 | This is a trick mentioned in one classic article of Chaitin etc |
| 2684 | which is frequently omitted in other implementations of RA based on |
| 2685 | graph coloring. */ |
| 2686 | static void |
| 2687 | update_bad_spill_attribute (void) |
| 2688 | { |
| 2689 | int i; |
| 2690 | ira_allocno_t a; |
| 2691 | ira_allocno_iterator ai; |
| 2692 | ira_allocno_object_iterator aoi; |
| 2693 | ira_object_t obj; |
| 2694 | live_range_t r; |
| 2695 | enum reg_class aclass; |
| 2696 | bitmap_head dead_points[N_REG_CLASSES]; |
| 2697 | |
| 2698 | for (i = 0; i < ira_allocno_classes_num; i++) |
| 2699 | { |
| 2700 | aclass = ira_allocno_classes[i]; |
| 2701 | bitmap_initialize (head: &dead_points[aclass], obstack: ®_obstack); |
| 2702 | } |
| 2703 | FOR_EACH_ALLOCNO (a, ai) |
| 2704 | { |
| 2705 | aclass = ALLOCNO_CLASS (a); |
| 2706 | if (aclass == NO_REGS) |
| 2707 | continue; |
| 2708 | FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi) |
| 2709 | for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next) |
| 2710 | bitmap_set_bit (&dead_points[aclass], r->finish); |
| 2711 | } |
| 2712 | FOR_EACH_ALLOCNO (a, ai) |
| 2713 | { |
| 2714 | aclass = ALLOCNO_CLASS (a); |
| 2715 | if (aclass == NO_REGS) |
| 2716 | continue; |
| 2717 | if (! ALLOCNO_BAD_SPILL_P (a)) |
| 2718 | continue; |
| 2719 | FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi) |
| 2720 | { |
| 2721 | for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next) |
| 2722 | { |
| 2723 | for (i = r->start + 1; i < r->finish; i++) |
| 2724 | if (bitmap_bit_p (&dead_points[aclass], i)) |
| 2725 | break; |
| 2726 | if (i < r->finish) |
| 2727 | break; |
| 2728 | } |
| 2729 | if (r != NULL) |
| 2730 | { |
| 2731 | ALLOCNO_BAD_SPILL_P (a) = false; |
| 2732 | break; |
| 2733 | } |
| 2734 | } |
| 2735 | } |
| 2736 | for (i = 0; i < ira_allocno_classes_num; i++) |
| 2737 | { |
| 2738 | aclass = ira_allocno_classes[i]; |
| 2739 | bitmap_clear (&dead_points[aclass]); |
| 2740 | } |
| 2741 | } |
| 2742 | |
| 2743 | |
| 2744 | |
| 2745 | /* Set up minimal and maximal live range points for allocnos. */ |
| 2746 | static void |
| 2747 | setup_min_max_allocno_live_range_point (void) |
| 2748 | { |
| 2749 | int i; |
| 2750 | ira_allocno_t a, parent_a, cap; |
| 2751 | ira_allocno_iterator ai; |
| 2752 | #ifdef ENABLE_IRA_CHECKING |
| 2753 | ira_object_iterator oi; |
| 2754 | ira_object_t obj; |
| 2755 | #endif |
| 2756 | live_range_t r; |
| 2757 | ira_loop_tree_node_t parent; |
| 2758 | |
| 2759 | FOR_EACH_ALLOCNO (a, ai) |
| 2760 | { |
| 2761 | int n = ALLOCNO_NUM_OBJECTS (a); |
| 2762 | |
| 2763 | for (i = 0; i < n; i++) |
| 2764 | { |
| 2765 | ira_object_t obj = ALLOCNO_OBJECT (a, i); |
| 2766 | r = OBJECT_LIVE_RANGES (obj); |
| 2767 | if (r == NULL) |
| 2768 | continue; |
| 2769 | OBJECT_MAX (obj) = r->finish; |
| 2770 | for (; r->next != NULL; r = r->next) |
| 2771 | ; |
| 2772 | OBJECT_MIN (obj) = r->start; |
| 2773 | } |
| 2774 | } |
| 2775 | for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--) |
| 2776 | for (a = ira_regno_allocno_map[i]; |
| 2777 | a != NULL; |
| 2778 | a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) |
| 2779 | { |
| 2780 | int j; |
| 2781 | int n = ALLOCNO_NUM_OBJECTS (a); |
| 2782 | |
| 2783 | for (j = 0; j < n; j++) |
| 2784 | { |
| 2785 | ira_object_t obj = ALLOCNO_OBJECT (a, j); |
| 2786 | ira_object_t parent_obj; |
| 2787 | |
| 2788 | if (OBJECT_MAX (obj) < 0) |
| 2789 | { |
| 2790 | /* The object is not used and hence does not live. */ |
| 2791 | ira_assert (OBJECT_LIVE_RANGES (obj) == NULL); |
| 2792 | OBJECT_MAX (obj) = 0; |
| 2793 | OBJECT_MIN (obj) = 1; |
| 2794 | continue; |
| 2795 | } |
| 2796 | ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL); |
| 2797 | /* Accumulation of range info. */ |
| 2798 | if (ALLOCNO_CAP (a) != NULL) |
| 2799 | { |
| 2800 | for (cap = ALLOCNO_CAP (a); cap != NULL; cap = ALLOCNO_CAP (cap)) |
| 2801 | { |
| 2802 | ira_object_t cap_obj = ALLOCNO_OBJECT (cap, j); |
| 2803 | if (OBJECT_MAX (cap_obj) < OBJECT_MAX (obj)) |
| 2804 | OBJECT_MAX (cap_obj) = OBJECT_MAX (obj); |
| 2805 | if (OBJECT_MIN (cap_obj) > OBJECT_MIN (obj)) |
| 2806 | OBJECT_MIN (cap_obj) = OBJECT_MIN (obj); |
| 2807 | } |
| 2808 | continue; |
| 2809 | } |
| 2810 | if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL) |
| 2811 | continue; |
| 2812 | parent_a = parent->regno_allocno_map[i]; |
| 2813 | parent_obj = ALLOCNO_OBJECT (parent_a, j); |
| 2814 | if (OBJECT_MAX (parent_obj) < OBJECT_MAX (obj)) |
| 2815 | OBJECT_MAX (parent_obj) = OBJECT_MAX (obj); |
| 2816 | if (OBJECT_MIN (parent_obj) > OBJECT_MIN (obj)) |
| 2817 | OBJECT_MIN (parent_obj) = OBJECT_MIN (obj); |
| 2818 | } |
| 2819 | } |
| 2820 | #ifdef ENABLE_IRA_CHECKING |
| 2821 | FOR_EACH_OBJECT (obj, oi) |
| 2822 | { |
| 2823 | if ((OBJECT_MIN (obj) >= 0 && OBJECT_MIN (obj) <= ira_max_point) |
| 2824 | && (OBJECT_MAX (obj) >= 0 && OBJECT_MAX (obj) <= ira_max_point)) |
| 2825 | continue; |
| 2826 | gcc_unreachable (); |
| 2827 | } |
| 2828 | #endif |
| 2829 | } |
| 2830 | |
| 2831 | /* Sort allocnos according to their live ranges. Allocnos with |
| 2832 | smaller allocno class are put first unless we use priority |
| 2833 | coloring. Allocnos with the same class are ordered according |
| 2834 | their start (min). Allocnos with the same start are ordered |
| 2835 | according their finish (max). */ |
| 2836 | static int |
| 2837 | object_range_compare_func (const void *v1p, const void *v2p) |
| 2838 | { |
| 2839 | int diff; |
| 2840 | ira_object_t obj1 = *(const ira_object_t *) v1p; |
| 2841 | ira_object_t obj2 = *(const ira_object_t *) v2p; |
| 2842 | ira_allocno_t a1 = OBJECT_ALLOCNO (obj1); |
| 2843 | ira_allocno_t a2 = OBJECT_ALLOCNO (obj2); |
| 2844 | |
| 2845 | if ((diff = OBJECT_MIN (obj1) - OBJECT_MIN (obj2)) != 0) |
| 2846 | return diff; |
| 2847 | if ((diff = OBJECT_MAX (obj1) - OBJECT_MAX (obj2)) != 0) |
| 2848 | return diff; |
| 2849 | return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2); |
| 2850 | } |
| 2851 | |
| 2852 | /* Sort ira_object_id_map and set up conflict id of allocnos. */ |
| 2853 | static void |
| 2854 | sort_conflict_id_map (void) |
| 2855 | { |
| 2856 | int i, num; |
| 2857 | ira_allocno_t a; |
| 2858 | ira_allocno_iterator ai; |
| 2859 | |
| 2860 | num = 0; |
| 2861 | FOR_EACH_ALLOCNO (a, ai) |
| 2862 | { |
| 2863 | ira_allocno_object_iterator oi; |
| 2864 | ira_object_t obj; |
| 2865 | |
| 2866 | FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) |
| 2867 | ira_object_id_map[num++] = obj; |
| 2868 | } |
| 2869 | if (num > 1) |
| 2870 | qsort (ira_object_id_map, num, sizeof (ira_object_t), |
| 2871 | object_range_compare_func); |
| 2872 | for (i = 0; i < num; i++) |
| 2873 | { |
| 2874 | ira_object_t obj = ira_object_id_map[i]; |
| 2875 | |
| 2876 | gcc_assert (obj != NULL); |
| 2877 | OBJECT_CONFLICT_ID (obj) = i; |
| 2878 | } |
| 2879 | for (i = num; i < ira_objects_num; i++) |
| 2880 | ira_object_id_map[i] = NULL; |
| 2881 | } |
| 2882 | |
| 2883 | /* Set up minimal and maximal conflict ids of allocnos with which |
| 2884 | given allocno can conflict. */ |
| 2885 | static void |
| 2886 | setup_min_max_conflict_allocno_ids (void) |
| 2887 | { |
| 2888 | int aclass; |
| 2889 | int i, j, min, max, start, finish, first_not_finished, filled_area_start; |
| 2890 | int *live_range_min, *last_lived; |
| 2891 | int word0_min, word0_max; |
| 2892 | ira_allocno_t a; |
| 2893 | ira_allocno_iterator ai; |
| 2894 | |
| 2895 | live_range_min = (int *) ira_allocate (sizeof (int) * ira_objects_num); |
| 2896 | aclass = -1; |
| 2897 | first_not_finished = -1; |
| 2898 | for (i = 0; i < ira_objects_num; i++) |
| 2899 | { |
| 2900 | ira_object_t obj = ira_object_id_map[i]; |
| 2901 | |
| 2902 | if (obj == NULL) |
| 2903 | continue; |
| 2904 | |
| 2905 | a = OBJECT_ALLOCNO (obj); |
| 2906 | |
| 2907 | if (aclass < 0) |
| 2908 | { |
| 2909 | aclass = ALLOCNO_CLASS (a); |
| 2910 | min = i; |
| 2911 | first_not_finished = i; |
| 2912 | } |
| 2913 | else |
| 2914 | { |
| 2915 | start = OBJECT_MIN (obj); |
| 2916 | /* If we skip an allocno, the allocno with smaller ids will |
| 2917 | be also skipped because of the secondary sorting the |
| 2918 | range finishes (see function |
| 2919 | object_range_compare_func). */ |
| 2920 | while (first_not_finished < i |
| 2921 | && start > OBJECT_MAX (ira_object_id_map |
| 2922 | [first_not_finished])) |
| 2923 | first_not_finished++; |
| 2924 | min = first_not_finished; |
| 2925 | } |
| 2926 | if (min == i) |
| 2927 | /* We could increase min further in this case but it is good |
| 2928 | enough. */ |
| 2929 | min++; |
| 2930 | live_range_min[i] = OBJECT_MIN (obj); |
| 2931 | OBJECT_MIN (obj) = min; |
| 2932 | } |
| 2933 | last_lived = (int *) ira_allocate (sizeof (int) * ira_max_point); |
| 2934 | aclass = -1; |
| 2935 | filled_area_start = -1; |
| 2936 | for (i = ira_objects_num - 1; i >= 0; i--) |
| 2937 | { |
| 2938 | ira_object_t obj = ira_object_id_map[i]; |
| 2939 | |
| 2940 | if (obj == NULL) |
| 2941 | continue; |
| 2942 | |
| 2943 | a = OBJECT_ALLOCNO (obj); |
| 2944 | if (aclass < 0) |
| 2945 | { |
| 2946 | aclass = ALLOCNO_CLASS (a); |
| 2947 | for (j = 0; j < ira_max_point; j++) |
| 2948 | last_lived[j] = -1; |
| 2949 | filled_area_start = ira_max_point; |
| 2950 | } |
| 2951 | min = live_range_min[i]; |
| 2952 | finish = OBJECT_MAX (obj); |
| 2953 | max = last_lived[finish]; |
| 2954 | if (max < 0) |
| 2955 | /* We could decrease max further in this case but it is good |
| 2956 | enough. */ |
| 2957 | max = OBJECT_CONFLICT_ID (obj) - 1; |
| 2958 | OBJECT_MAX (obj) = max; |
| 2959 | /* In filling, we can go further A range finish to recognize |
| 2960 | intersection quickly because if the finish of subsequently |
| 2961 | processed allocno (it has smaller conflict id) range is |
| 2962 | further A range finish than they are definitely intersected |
| 2963 | (the reason for this is the allocnos with bigger conflict id |
| 2964 | have their range starts not smaller than allocnos with |
| 2965 | smaller ids. */ |
| 2966 | for (j = min; j < filled_area_start; j++) |
| 2967 | last_lived[j] = i; |
| 2968 | filled_area_start = min; |
| 2969 | } |
| 2970 | ira_free (addr: last_lived); |
| 2971 | ira_free (addr: live_range_min); |
| 2972 | |
| 2973 | /* For allocnos with more than one object, we may later record extra conflicts in |
| 2974 | subobject 0 that we cannot really know about here. |
| 2975 | For now, simply widen the min/max range of these subobjects. */ |
| 2976 | |
| 2977 | word0_min = INT_MAX; |
| 2978 | word0_max = INT_MIN; |
| 2979 | |
| 2980 | FOR_EACH_ALLOCNO (a, ai) |
| 2981 | { |
| 2982 | int n = ALLOCNO_NUM_OBJECTS (a); |
| 2983 | ira_object_t obj0; |
| 2984 | |
| 2985 | if (n < 2) |
| 2986 | continue; |
| 2987 | obj0 = ALLOCNO_OBJECT (a, 0); |
| 2988 | if (OBJECT_CONFLICT_ID (obj0) < word0_min) |
| 2989 | word0_min = OBJECT_CONFLICT_ID (obj0); |
| 2990 | if (OBJECT_CONFLICT_ID (obj0) > word0_max) |
| 2991 | word0_max = OBJECT_CONFLICT_ID (obj0); |
| 2992 | } |
| 2993 | FOR_EACH_ALLOCNO (a, ai) |
| 2994 | { |
| 2995 | int n = ALLOCNO_NUM_OBJECTS (a); |
| 2996 | ira_object_t obj0; |
| 2997 | |
| 2998 | if (n < 2) |
| 2999 | continue; |
| 3000 | obj0 = ALLOCNO_OBJECT (a, 0); |
| 3001 | if (OBJECT_MIN (obj0) > word0_min) |
| 3002 | OBJECT_MIN (obj0) = word0_min; |
| 3003 | if (OBJECT_MAX (obj0) < word0_max) |
| 3004 | OBJECT_MAX (obj0) = word0_max; |
| 3005 | } |
| 3006 | } |
| 3007 | |
| 3008 | |
| 3009 | |
| 3010 | static void |
| 3011 | create_caps (void) |
| 3012 | { |
| 3013 | ira_allocno_t a; |
| 3014 | ira_allocno_iterator ai; |
| 3015 | ira_loop_tree_node_t loop_tree_node; |
| 3016 | |
| 3017 | FOR_EACH_ALLOCNO (a, ai) |
| 3018 | { |
| 3019 | if (ALLOCNO_LOOP_TREE_NODE (a) == ira_loop_tree_root) |
| 3020 | continue; |
| 3021 | if (ALLOCNO_CAP_MEMBER (a) != NULL) |
| 3022 | create_cap_allocno (a); |
| 3023 | else if (ALLOCNO_CAP (a) == NULL) |
| 3024 | { |
| 3025 | loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a); |
| 3026 | if (!bitmap_bit_p (loop_tree_node->border_allocnos, ALLOCNO_NUM (a))) |
| 3027 | create_cap_allocno (a); |
| 3028 | } |
| 3029 | } |
| 3030 | } |
| 3031 | |
| 3032 | |
| 3033 | |
| 3034 | /* The page contains code transforming more one region internal |
| 3035 | representation (IR) to one region IR which is necessary for reload. |
| 3036 | This transformation is called IR flattening. We might just rebuild |
| 3037 | the IR for one region but we don't do it because it takes a lot of |
| 3038 | time. */ |
| 3039 | |
| 3040 | /* Map: regno -> allocnos which will finally represent the regno for |
| 3041 | IR with one region. */ |
| 3042 | static ira_allocno_t *regno_top_level_allocno_map; |
| 3043 | |
| 3044 | /* Find the allocno that corresponds to A at a level one higher up in the |
| 3045 | loop tree. Returns NULL if A is a cap, or if it has no parent. */ |
| 3046 | ira_allocno_t |
| 3047 | ira_parent_allocno (ira_allocno_t a) |
| 3048 | { |
| 3049 | ira_loop_tree_node_t parent; |
| 3050 | |
| 3051 | if (ALLOCNO_CAP (a) != NULL) |
| 3052 | return NULL; |
| 3053 | |
| 3054 | parent = ALLOCNO_LOOP_TREE_NODE (a)->parent; |
| 3055 | if (parent == NULL) |
| 3056 | return NULL; |
| 3057 | |
| 3058 | return parent->regno_allocno_map[ALLOCNO_REGNO (a)]; |
| 3059 | } |
| 3060 | |
| 3061 | /* Find the allocno that corresponds to A at a level one higher up in the |
| 3062 | loop tree. If ALLOCNO_CAP is set for A, return that. */ |
| 3063 | ira_allocno_t |
| 3064 | ira_parent_or_cap_allocno (ira_allocno_t a) |
| 3065 | { |
| 3066 | if (ALLOCNO_CAP (a) != NULL) |
| 3067 | return ALLOCNO_CAP (a); |
| 3068 | |
| 3069 | return ira_parent_allocno (a); |
| 3070 | } |
| 3071 | |
| 3072 | /* Process all allocnos originated from pseudo REGNO and copy live |
| 3073 | ranges, hard reg conflicts, and allocno stack reg attributes from |
| 3074 | low level allocnos to final allocnos which are destinations of |
| 3075 | removed stores at a loop exit. Return true if we copied live |
| 3076 | ranges. */ |
| 3077 | static bool |
| 3078 | copy_info_to_removed_store_destinations (int regno) |
| 3079 | { |
| 3080 | ira_allocno_t a; |
| 3081 | ira_allocno_t parent_a = NULL; |
| 3082 | ira_loop_tree_node_t parent; |
| 3083 | bool merged_p; |
| 3084 | |
| 3085 | merged_p = false; |
| 3086 | for (a = ira_regno_allocno_map[regno]; |
| 3087 | a != NULL; |
| 3088 | a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) |
| 3089 | { |
| 3090 | if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]) |
| 3091 | /* This allocno will be removed. */ |
| 3092 | continue; |
| 3093 | |
| 3094 | /* Caps will be removed. */ |
| 3095 | ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL); |
| 3096 | for (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent; |
| 3097 | parent != NULL; |
| 3098 | parent = parent->parent) |
| 3099 | if ((parent_a = parent->regno_allocno_map[regno]) == NULL |
| 3100 | || (parent_a |
| 3101 | == regno_top_level_allocno_map[REGNO |
| 3102 | (allocno_emit_reg (parent_a))] |
| 3103 | && ALLOCNO_EMIT_DATA (parent_a)->mem_optimized_dest_p)) |
| 3104 | break; |
| 3105 | if (parent == NULL || parent_a == NULL) |
| 3106 | continue; |
| 3107 | |
| 3108 | copy_allocno_live_ranges (from: a, to: parent_a); |
| 3109 | merge_hard_reg_conflicts (from: a, to: parent_a, total_only: true); |
| 3110 | |
| 3111 | ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a); |
| 3112 | ALLOCNO_CALLS_CROSSED_NUM (parent_a) |
| 3113 | += ALLOCNO_CALLS_CROSSED_NUM (a); |
| 3114 | ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a) |
| 3115 | += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a); |
| 3116 | ALLOCNO_CROSSED_CALLS_ABIS (parent_a) |
| 3117 | |= ALLOCNO_CROSSED_CALLS_ABIS (a); |
| 3118 | ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (parent_a) |
| 3119 | |= ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a); |
| 3120 | ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a) |
| 3121 | += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a); |
| 3122 | merged_p = true; |
| 3123 | } |
| 3124 | return merged_p; |
| 3125 | } |
| 3126 | |
| 3127 | /* Flatten the IR. In other words, this function transforms IR as if |
| 3128 | it were built with one region (without loops). We could make it |
| 3129 | much simpler by rebuilding IR with one region, but unfortunately it |
| 3130 | takes a lot of time. MAX_REGNO_BEFORE_EMIT and |
| 3131 | IRA_MAX_POINT_BEFORE_EMIT are correspondingly MAX_REG_NUM () and |
| 3132 | IRA_MAX_POINT before emitting insns on the loop borders. */ |
| 3133 | void |
| 3134 | ira_flattening (int max_regno_before_emit, int ira_max_point_before_emit) |
| 3135 | { |
| 3136 | int i, j; |
| 3137 | bool keep_p; |
| 3138 | int hard_regs_num; |
| 3139 | bool new_pseudos_p, merged_p, mem_dest_p; |
| 3140 | unsigned int n; |
| 3141 | enum reg_class aclass; |
| 3142 | ira_allocno_t a, parent_a, first, second, node_first, node_second; |
| 3143 | ira_copy_t cp; |
| 3144 | ira_loop_tree_node_t node; |
| 3145 | live_range_t r; |
| 3146 | ira_allocno_iterator ai; |
| 3147 | ira_copy_iterator ci; |
| 3148 | |
| 3149 | regno_top_level_allocno_map |
| 3150 | = (ira_allocno_t *) ira_allocate (max_reg_num () |
| 3151 | * sizeof (ira_allocno_t)); |
| 3152 | memset (s: regno_top_level_allocno_map, c: 0, |
| 3153 | n: max_reg_num () * sizeof (ira_allocno_t)); |
| 3154 | new_pseudos_p = merged_p = false; |
| 3155 | FOR_EACH_ALLOCNO (a, ai) |
| 3156 | { |
| 3157 | ira_allocno_object_iterator oi; |
| 3158 | ira_object_t obj; |
| 3159 | |
| 3160 | if (ALLOCNO_CAP_MEMBER (a) != NULL) |
| 3161 | /* Caps are not in the regno allocno maps and they are never |
| 3162 | will be transformed into allocnos existing after IR |
| 3163 | flattening. */ |
| 3164 | continue; |
| 3165 | FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) |
| 3166 | OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |
| 3167 | = OBJECT_CONFLICT_HARD_REGS (obj); |
| 3168 | #ifdef STACK_REGS |
| 3169 | ALLOCNO_TOTAL_NO_STACK_REG_P (a) = ALLOCNO_NO_STACK_REG_P (a); |
| 3170 | #endif |
| 3171 | } |
| 3172 | /* Fix final allocno attributes. */ |
| 3173 | for (i = max_regno_before_emit - 1; i >= FIRST_PSEUDO_REGISTER; i--) |
| 3174 | { |
| 3175 | mem_dest_p = false; |
| 3176 | for (a = ira_regno_allocno_map[i]; |
| 3177 | a != NULL; |
| 3178 | a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) |
| 3179 | { |
| 3180 | ira_emit_data_t parent_data, data = ALLOCNO_EMIT_DATA (a); |
| 3181 | |
| 3182 | ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL); |
| 3183 | if (data->somewhere_renamed_p) |
| 3184 | new_pseudos_p = true; |
| 3185 | parent_a = ira_parent_allocno (a); |
| 3186 | if (parent_a == NULL) |
| 3187 | { |
| 3188 | ALLOCNO_COPIES (a) = NULL; |
| 3189 | regno_top_level_allocno_map[REGNO (data->reg)] = a; |
| 3190 | continue; |
| 3191 | } |
| 3192 | ira_assert (ALLOCNO_CAP_MEMBER (parent_a) == NULL); |
| 3193 | |
| 3194 | if (data->mem_optimized_dest != NULL) |
| 3195 | mem_dest_p = true; |
| 3196 | parent_data = ALLOCNO_EMIT_DATA (parent_a); |
| 3197 | if (REGNO (data->reg) == REGNO (parent_data->reg)) |
| 3198 | { |
| 3199 | merge_hard_reg_conflicts (from: a, to: parent_a, total_only: true); |
| 3200 | move_allocno_live_ranges (from: a, to: parent_a); |
| 3201 | merged_p = true; |
| 3202 | parent_data->mem_optimized_dest_p |
| 3203 | = (parent_data->mem_optimized_dest_p |
| 3204 | || data->mem_optimized_dest_p); |
| 3205 | continue; |
| 3206 | } |
| 3207 | new_pseudos_p = true; |
| 3208 | for (;;) |
| 3209 | { |
| 3210 | ALLOCNO_NREFS (parent_a) -= ALLOCNO_NREFS (a); |
| 3211 | ALLOCNO_FREQ (parent_a) -= ALLOCNO_FREQ (a); |
| 3212 | ALLOCNO_CALL_FREQ (parent_a) -= ALLOCNO_CALL_FREQ (a); |
| 3213 | ALLOCNO_CALLS_CROSSED_NUM (parent_a) |
| 3214 | -= ALLOCNO_CALLS_CROSSED_NUM (a); |
| 3215 | ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a) |
| 3216 | -= ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a); |
| 3217 | /* Assume that ALLOCNO_CROSSED_CALLS_ABIS and |
| 3218 | ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS stay the same. |
| 3219 | We'd need to rebuild the IR to do better. */ |
| 3220 | ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a) |
| 3221 | -= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a); |
| 3222 | ira_assert (ALLOCNO_CALLS_CROSSED_NUM (parent_a) >= 0 |
| 3223 | && ALLOCNO_NREFS (parent_a) >= 0 |
| 3224 | && ALLOCNO_FREQ (parent_a) >= 0); |
| 3225 | aclass = ALLOCNO_CLASS (parent_a); |
| 3226 | hard_regs_num = ira_class_hard_regs_num[aclass]; |
| 3227 | if (ALLOCNO_HARD_REG_COSTS (a) != NULL |
| 3228 | && ALLOCNO_HARD_REG_COSTS (parent_a) != NULL) |
| 3229 | for (j = 0; j < hard_regs_num; j++) |
| 3230 | ALLOCNO_HARD_REG_COSTS (parent_a)[j] |
| 3231 | -= ALLOCNO_HARD_REG_COSTS (a)[j]; |
| 3232 | if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL |
| 3233 | && ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a) != NULL) |
| 3234 | for (j = 0; j < hard_regs_num; j++) |
| 3235 | ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a)[j] |
| 3236 | -= ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[j]; |
| 3237 | ALLOCNO_CLASS_COST (parent_a) |
| 3238 | -= ALLOCNO_CLASS_COST (a); |
| 3239 | ALLOCNO_MEMORY_COST (parent_a) -= ALLOCNO_MEMORY_COST (a); |
| 3240 | parent_a = ira_parent_allocno (a: parent_a); |
| 3241 | if (parent_a == NULL) |
| 3242 | break; |
| 3243 | } |
| 3244 | ALLOCNO_COPIES (a) = NULL; |
| 3245 | regno_top_level_allocno_map[REGNO (data->reg)] = a; |
| 3246 | } |
| 3247 | if (mem_dest_p && copy_info_to_removed_store_destinations (regno: i)) |
| 3248 | merged_p = true; |
| 3249 | } |
| 3250 | ira_assert (new_pseudos_p || ira_max_point_before_emit == ira_max_point); |
| 3251 | if (merged_p || ira_max_point_before_emit != ira_max_point) |
| 3252 | ira_rebuild_start_finish_chains (); |
| 3253 | if (new_pseudos_p) |
| 3254 | { |
| 3255 | sparseset objects_live; |
| 3256 | |
| 3257 | /* Rebuild conflicts. */ |
| 3258 | FOR_EACH_ALLOCNO (a, ai) |
| 3259 | { |
| 3260 | ira_allocno_object_iterator oi; |
| 3261 | ira_object_t obj; |
| 3262 | |
| 3263 | if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))] |
| 3264 | || ALLOCNO_CAP_MEMBER (a) != NULL) |
| 3265 | continue; |
| 3266 | FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) |
| 3267 | { |
| 3268 | for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next) |
| 3269 | ira_assert (r->object == obj); |
| 3270 | clear_conflicts (obj); |
| 3271 | } |
| 3272 | } |
| 3273 | objects_live = sparseset_alloc (n_elms: ira_objects_num); |
| 3274 | for (i = 0; i < ira_max_point; i++) |
| 3275 | { |
| 3276 | for (r = ira_start_point_ranges[i]; r != NULL; r = r->start_next) |
| 3277 | { |
| 3278 | ira_object_t obj = r->object; |
| 3279 | |
| 3280 | a = OBJECT_ALLOCNO (obj); |
| 3281 | if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))] |
| 3282 | || ALLOCNO_CAP_MEMBER (a) != NULL) |
| 3283 | continue; |
| 3284 | |
| 3285 | aclass = ALLOCNO_CLASS (a); |
| 3286 | EXECUTE_IF_SET_IN_SPARSESET (objects_live, n) |
| 3287 | { |
| 3288 | ira_object_t live_obj = ira_object_id_map[n]; |
| 3289 | ira_allocno_t live_a = OBJECT_ALLOCNO (live_obj); |
| 3290 | enum reg_class live_aclass = ALLOCNO_CLASS (live_a); |
| 3291 | |
| 3292 | if (ira_reg_classes_intersect_p[aclass][live_aclass] |
| 3293 | /* Don't set up conflict for the allocno with itself. */ |
| 3294 | && live_a != a) |
| 3295 | ira_add_conflict (obj1: obj, obj2: live_obj); |
| 3296 | } |
| 3297 | sparseset_set_bit (s: objects_live, OBJECT_CONFLICT_ID (obj)); |
| 3298 | } |
| 3299 | |
| 3300 | for (r = ira_finish_point_ranges[i]; r != NULL; r = r->finish_next) |
| 3301 | sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (r->object)); |
| 3302 | } |
| 3303 | sparseset_free (objects_live); |
| 3304 | compress_conflict_vecs (); |
| 3305 | } |
| 3306 | /* Mark some copies for removing and change allocnos in the rest |
| 3307 | copies. */ |
| 3308 | FOR_EACH_COPY (cp, ci) |
| 3309 | { |
| 3310 | if (ALLOCNO_CAP_MEMBER (cp->first) != NULL |
| 3311 | || ALLOCNO_CAP_MEMBER (cp->second) != NULL) |
| 3312 | { |
| 3313 | if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL) |
| 3314 | fprintf |
| 3315 | (stream: ira_dump_file, format: " Remove cp%d:%c%dr%d-%c%dr%d\n" , |
| 3316 | cp->num, ALLOCNO_CAP_MEMBER (cp->first) != NULL ? 'c' : 'a', |
| 3317 | ALLOCNO_NUM (cp->first), |
| 3318 | REGNO (allocno_emit_reg (cp->first)), |
| 3319 | ALLOCNO_CAP_MEMBER (cp->second) != NULL ? 'c' : 'a', |
| 3320 | ALLOCNO_NUM (cp->second), |
| 3321 | REGNO (allocno_emit_reg (cp->second))); |
| 3322 | cp->loop_tree_node = NULL; |
| 3323 | continue; |
| 3324 | } |
| 3325 | first |
| 3326 | = regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->first))]; |
| 3327 | second |
| 3328 | = regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->second))]; |
| 3329 | node = cp->loop_tree_node; |
| 3330 | if (node == NULL) |
| 3331 | keep_p = true; /* It copy generated in ira-emit.cc. */ |
| 3332 | else |
| 3333 | { |
| 3334 | /* Check that the copy was not propagated from level on |
| 3335 | which we will have different pseudos. */ |
| 3336 | node_first = node->regno_allocno_map[ALLOCNO_REGNO (cp->first)]; |
| 3337 | node_second = node->regno_allocno_map[ALLOCNO_REGNO (cp->second)]; |
| 3338 | keep_p = ((REGNO (allocno_emit_reg (first)) |
| 3339 | == REGNO (allocno_emit_reg (node_first))) |
| 3340 | && (REGNO (allocno_emit_reg (second)) |
| 3341 | == REGNO (allocno_emit_reg (node_second)))); |
| 3342 | } |
| 3343 | if (keep_p) |
| 3344 | { |
| 3345 | cp->loop_tree_node = ira_loop_tree_root; |
| 3346 | cp->first = first; |
| 3347 | cp->second = second; |
| 3348 | } |
| 3349 | else |
| 3350 | { |
| 3351 | cp->loop_tree_node = NULL; |
| 3352 | if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL) |
| 3353 | fprintf (stream: ira_dump_file, format: " Remove cp%d:a%dr%d-a%dr%d\n" , |
| 3354 | cp->num, ALLOCNO_NUM (cp->first), |
| 3355 | REGNO (allocno_emit_reg (cp->first)), |
| 3356 | ALLOCNO_NUM (cp->second), |
| 3357 | REGNO (allocno_emit_reg (cp->second))); |
| 3358 | } |
| 3359 | } |
| 3360 | /* Remove unnecessary allocnos on lower levels of the loop tree. */ |
| 3361 | FOR_EACH_ALLOCNO (a, ai) |
| 3362 | { |
| 3363 | if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))] |
| 3364 | || ALLOCNO_CAP_MEMBER (a) != NULL) |
| 3365 | { |
| 3366 | if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL) |
| 3367 | fprintf (stream: ira_dump_file, format: " Remove a%dr%d\n" , |
| 3368 | ALLOCNO_NUM (a), REGNO (allocno_emit_reg (a))); |
| 3369 | ira_remove_allocno_prefs (a); |
| 3370 | finish_allocno (a); |
| 3371 | continue; |
| 3372 | } |
| 3373 | ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root; |
| 3374 | ALLOCNO_REGNO (a) = REGNO (allocno_emit_reg (a)); |
| 3375 | ALLOCNO_CAP (a) = NULL; |
| 3376 | /* Restore updated costs for assignments from reload. */ |
| 3377 | ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a); |
| 3378 | ALLOCNO_UPDATED_CLASS_COST (a) = ALLOCNO_CLASS_COST (a); |
| 3379 | if (! ALLOCNO_ASSIGNED_P (a)) |
| 3380 | ira_free_allocno_updated_costs (a); |
| 3381 | ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL); |
| 3382 | ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL); |
| 3383 | } |
| 3384 | /* Remove unnecessary copies. */ |
| 3385 | FOR_EACH_COPY (cp, ci) |
| 3386 | { |
| 3387 | if (cp->loop_tree_node == NULL) |
| 3388 | { |
| 3389 | ira_copies[cp->num] = NULL; |
| 3390 | finish_copy (cp); |
| 3391 | continue; |
| 3392 | } |
| 3393 | ira_assert |
| 3394 | (ALLOCNO_LOOP_TREE_NODE (cp->first) == ira_loop_tree_root |
| 3395 | && ALLOCNO_LOOP_TREE_NODE (cp->second) == ira_loop_tree_root); |
| 3396 | add_allocno_copy_to_list (cp); |
| 3397 | swap_allocno_copy_ends_if_necessary (cp); |
| 3398 | } |
| 3399 | rebuild_regno_allocno_maps (); |
| 3400 | if (ira_max_point != ira_max_point_before_emit) |
| 3401 | ira_compress_allocno_live_ranges (); |
| 3402 | ira_free (addr: regno_top_level_allocno_map); |
| 3403 | } |
| 3404 | |
| 3405 | |
| 3406 | |
| 3407 | #ifdef ENABLE_IRA_CHECKING |
| 3408 | /* Check creation of all allocnos. Allocnos on lower levels should |
| 3409 | have allocnos or caps on all upper levels. */ |
| 3410 | static void |
| 3411 | check_allocno_creation (void) |
| 3412 | { |
| 3413 | ira_allocno_t a; |
| 3414 | ira_allocno_iterator ai; |
| 3415 | ira_loop_tree_node_t loop_tree_node; |
| 3416 | |
| 3417 | FOR_EACH_ALLOCNO (a, ai) |
| 3418 | { |
| 3419 | loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a); |
| 3420 | ira_assert (bitmap_bit_p (loop_tree_node->all_allocnos, |
| 3421 | ALLOCNO_NUM (a))); |
| 3422 | if (loop_tree_node == ira_loop_tree_root) |
| 3423 | continue; |
| 3424 | if (ALLOCNO_CAP_MEMBER (a) != NULL) |
| 3425 | ira_assert (ALLOCNO_CAP (a) != NULL); |
| 3426 | else if (ALLOCNO_CAP (a) == NULL) |
| 3427 | ira_assert (loop_tree_node->parent |
| 3428 | ->regno_allocno_map[ALLOCNO_REGNO (a)] != NULL |
| 3429 | && bitmap_bit_p (loop_tree_node->border_allocnos, |
| 3430 | ALLOCNO_NUM (a))); |
| 3431 | } |
| 3432 | } |
| 3433 | #endif |
| 3434 | |
| 3435 | /* Identify allocnos which prefer a register class with a single hard register. |
| 3436 | Adjust ALLOCNO_CONFLICT_HARD_REG_COSTS so that conflicting allocnos are |
| 3437 | less likely to use the preferred singleton register. */ |
| 3438 | static void |
| 3439 | update_conflict_hard_reg_costs (void) |
| 3440 | { |
| 3441 | ira_allocno_t a; |
| 3442 | ira_allocno_iterator ai; |
| 3443 | int i, index, min; |
| 3444 | |
| 3445 | FOR_EACH_ALLOCNO (a, ai) |
| 3446 | { |
| 3447 | reg_class_t aclass = ALLOCNO_CLASS (a); |
| 3448 | reg_class_t pref = reg_preferred_class (ALLOCNO_REGNO (a)); |
| 3449 | int singleton = ira_class_singleton[pref][ALLOCNO_MODE (a)]; |
| 3450 | if (singleton < 0) |
| 3451 | continue; |
| 3452 | index = ira_class_hard_reg_index[(int) aclass][singleton]; |
| 3453 | if (index < 0) |
| 3454 | continue; |
| 3455 | if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) == NULL |
| 3456 | || ALLOCNO_HARD_REG_COSTS (a) == NULL) |
| 3457 | continue; |
| 3458 | min = INT_MAX; |
| 3459 | for (i = ira_class_hard_regs_num[(int) aclass] - 1; i >= 0; i--) |
| 3460 | if (ALLOCNO_HARD_REG_COSTS (a)[i] > ALLOCNO_CLASS_COST (a) |
| 3461 | && min > ALLOCNO_HARD_REG_COSTS (a)[i]) |
| 3462 | min = ALLOCNO_HARD_REG_COSTS (a)[i]; |
| 3463 | if (min == INT_MAX) |
| 3464 | continue; |
| 3465 | ira_allocate_and_set_costs (vec: &ALLOCNO_CONFLICT_HARD_REG_COSTS (a), |
| 3466 | aclass, val: 0); |
| 3467 | ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[index] |
| 3468 | -= min - ALLOCNO_CLASS_COST (a); |
| 3469 | } |
| 3470 | } |
| 3471 | |
| 3472 | /* Create a internal representation (IR) for IRA (allocnos, copies, |
| 3473 | loop tree nodes). The function returns TRUE if we generate loop |
| 3474 | structure (besides nodes representing all function and the basic |
| 3475 | blocks) for regional allocation. A true return means that we |
| 3476 | really need to flatten IR before the reload. */ |
| 3477 | bool |
| 3478 | ira_build (void) |
| 3479 | { |
| 3480 | bool loops_p; |
| 3481 | |
| 3482 | df_analyze (); |
| 3483 | initiate_cost_vectors (); |
| 3484 | initiate_allocnos (); |
| 3485 | initiate_prefs (); |
| 3486 | initiate_copies (); |
| 3487 | create_loop_tree_nodes (); |
| 3488 | form_loop_tree (); |
| 3489 | create_allocnos (); |
| 3490 | ira_costs (); |
| 3491 | create_allocno_objects (); |
| 3492 | ira_create_allocno_live_ranges (); |
| 3493 | remove_unnecessary_regions (all_p: false); |
| 3494 | ira_compress_allocno_live_ranges (); |
| 3495 | update_bad_spill_attribute (); |
| 3496 | loops_p = more_one_region_p (); |
| 3497 | if (loops_p) |
| 3498 | { |
| 3499 | propagate_allocno_info (); |
| 3500 | create_caps (); |
| 3501 | } |
| 3502 | ira_tune_allocno_costs (); |
| 3503 | #ifdef ENABLE_IRA_CHECKING |
| 3504 | check_allocno_creation (); |
| 3505 | #endif |
| 3506 | setup_min_max_allocno_live_range_point (); |
| 3507 | sort_conflict_id_map (); |
| 3508 | setup_min_max_conflict_allocno_ids (); |
| 3509 | ira_build_conflicts (); |
| 3510 | update_conflict_hard_reg_costs (); |
| 3511 | if (! ira_conflicts_p) |
| 3512 | { |
| 3513 | ira_allocno_t a; |
| 3514 | ira_allocno_iterator ai; |
| 3515 | |
| 3516 | /* Remove all regions but root one. */ |
| 3517 | if (loops_p) |
| 3518 | { |
| 3519 | remove_unnecessary_regions (all_p: true); |
| 3520 | loops_p = false; |
| 3521 | } |
| 3522 | /* We don't save hard registers around calls for fast allocation |
| 3523 | -- add caller clobbered registers as conflicting ones to |
| 3524 | allocno crossing calls. */ |
| 3525 | FOR_EACH_ALLOCNO (a, ai) |
| 3526 | if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0) |
| 3527 | ior_hard_reg_conflicts (a, set: ira_need_caller_save_regs (a)); |
| 3528 | } |
| 3529 | if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL) |
| 3530 | print_copies (f: ira_dump_file); |
| 3531 | if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL) |
| 3532 | print_prefs (f: ira_dump_file); |
| 3533 | if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL) |
| 3534 | { |
| 3535 | int n, nr, nr_big; |
| 3536 | ira_allocno_t a; |
| 3537 | live_range_t r; |
| 3538 | ira_allocno_iterator ai; |
| 3539 | |
| 3540 | n = 0; |
| 3541 | nr = 0; |
| 3542 | nr_big = 0; |
| 3543 | FOR_EACH_ALLOCNO (a, ai) |
| 3544 | { |
| 3545 | int j, nobj = ALLOCNO_NUM_OBJECTS (a); |
| 3546 | |
| 3547 | if (nobj > 1) |
| 3548 | nr_big++; |
| 3549 | for (j = 0; j < nobj; j++) |
| 3550 | { |
| 3551 | ira_object_t obj = ALLOCNO_OBJECT (a, j); |
| 3552 | n += OBJECT_NUM_CONFLICTS (obj); |
| 3553 | for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next) |
| 3554 | nr++; |
| 3555 | } |
| 3556 | } |
| 3557 | fprintf (stream: ira_dump_file, format: " regions=%d, blocks=%d, points=%d\n" , |
| 3558 | current_loops == NULL ? 1 : number_of_loops (cfun), |
| 3559 | n_basic_blocks_for_fn (cfun), ira_max_point); |
| 3560 | fprintf (stream: ira_dump_file, |
| 3561 | format: " allocnos=%d (big %d), copies=%d, conflicts=%d, ranges=%d\n" , |
| 3562 | ira_allocnos_num, nr_big, ira_copies_num, n, nr); |
| 3563 | } |
| 3564 | return loops_p; |
| 3565 | } |
| 3566 | |
| 3567 | /* Release the data created by function ira_build. */ |
| 3568 | void |
| 3569 | ira_destroy (void) |
| 3570 | { |
| 3571 | finish_loop_tree_nodes (); |
| 3572 | finish_prefs (); |
| 3573 | finish_copies (); |
| 3574 | finish_allocnos (); |
| 3575 | finish_cost_vectors (); |
| 3576 | ira_finish_allocno_live_ranges (); |
| 3577 | } |
| 3578 | |