1/* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2023 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "backend.h"
25#include "target.h"
26#include "rtl.h"
27#include "tree.h"
28#include "predict.h"
29#include "memmodel.h"
30#include "tm_p.h"
31#include "insn-config.h"
32#include "regs.h"
33#include "regset.h"
34#include "ira.h"
35#include "ira-int.h"
36#include "addresses.h"
37#include "reload.h"
38#include "print-rtl.h"
39
40/* The flags is set up every time when we calculate pseudo register
41 classes through function ira_set_pseudo_classes. */
42static bool pseudo_classes_defined_p = false;
43
44/* TRUE if we work with allocnos. Otherwise we work with pseudos. */
45static bool allocno_p;
46
47/* Number of elements in array `costs'. */
48static int cost_elements_num;
49
50/* The `costs' struct records the cost of using hard registers of each
51 class considered for the calculation and of using memory for each
52 allocno or pseudo. */
53struct costs
54{
55 int mem_cost;
56 /* Costs for register classes start here. We process only some
57 allocno classes. */
58 int cost[1];
59};
60
61#define max_struct_costs_size \
62 (this_target_ira_int->x_max_struct_costs_size)
63#define init_cost \
64 (this_target_ira_int->x_init_cost)
65#define temp_costs \
66 (this_target_ira_int->x_temp_costs)
67#define op_costs \
68 (this_target_ira_int->x_op_costs)
69#define this_op_costs \
70 (this_target_ira_int->x_this_op_costs)
71
72/* Costs of each class for each allocno or pseudo. */
73static struct costs *costs;
74
75/* Accumulated costs of each class for each allocno. */
76static struct costs *total_allocno_costs;
77
78/* It is the current size of struct costs. */
79static size_t struct_costs_size;
80
81/* Return pointer to structure containing costs of allocno or pseudo
82 with given NUM in array ARR. */
83#define COSTS(arr, num) \
84 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
85
86/* Return index in COSTS when processing reg with REGNO. */
87#define COST_INDEX(regno) (allocno_p \
88 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
89 : (int) regno)
90
91/* Record register class preferences of each allocno or pseudo. Null
92 value means no preferences. It happens on the 1st iteration of the
93 cost calculation. */
94static enum reg_class *pref;
95
96/* Allocated buffers for pref. */
97static enum reg_class *pref_buffer;
98
99/* Record allocno class of each allocno with the same regno. */
100static enum reg_class *regno_aclass;
101
102/* Record cost gains for not allocating a register with an invariant
103 equivalence. */
104static int *regno_equiv_gains;
105
106/* Execution frequency of the current insn. */
107static int frequency;
108
109
110
111/* Info about reg classes whose costs are calculated for a pseudo. */
112struct cost_classes
113{
114 /* Number of the cost classes in the subsequent array. */
115 int num;
116 /* Container of the cost classes. */
117 enum reg_class classes[N_REG_CLASSES];
118 /* Map reg class -> index of the reg class in the previous array.
119 -1 if it is not a cost class. */
120 int index[N_REG_CLASSES];
121 /* Map hard regno index of first class in array CLASSES containing
122 the hard regno, -1 otherwise. */
123 int hard_regno_index[FIRST_PSEUDO_REGISTER];
124};
125
126/* Types of pointers to the structure above. */
127typedef struct cost_classes *cost_classes_t;
128typedef const struct cost_classes *const_cost_classes_t;
129
130/* Info about cost classes for each pseudo. */
131static cost_classes_t *regno_cost_classes;
132
133/* Helper for cost_classes hashing. */
134
135struct cost_classes_hasher : pointer_hash <cost_classes>
136{
137 static inline hashval_t hash (const cost_classes *);
138 static inline bool equal (const cost_classes *, const cost_classes *);
139 static inline void remove (cost_classes *);
140};
141
142/* Returns hash value for cost classes info HV. */
143inline hashval_t
144cost_classes_hasher::hash (const cost_classes *hv)
145{
146 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
147}
148
149/* Compares cost classes info HV1 and HV2. */
150inline bool
151cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
152{
153 return (hv1->num == hv2->num
154 && memcmp (s1: hv1->classes, s2: hv2->classes,
155 n: sizeof (enum reg_class) * hv1->num) == 0);
156}
157
158/* Delete cost classes info V from the hash table. */
159inline void
160cost_classes_hasher::remove (cost_classes *v)
161{
162 ira_free (addr: v);
163}
164
165/* Hash table of unique cost classes. */
166static hash_table<cost_classes_hasher> *cost_classes_htab;
167
168/* Map allocno class -> cost classes for pseudo of given allocno
169 class. */
170static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
171
172/* Map mode -> cost classes for pseudo of give mode. */
173static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
174
175/* Cost classes that include all classes in ira_important_classes. */
176static cost_classes all_cost_classes;
177
178/* Use the array of classes in CLASSES_PTR to fill out the rest of
179 the structure. */
180static void
181complete_cost_classes (cost_classes_t classes_ptr)
182{
183 for (int i = 0; i < N_REG_CLASSES; i++)
184 classes_ptr->index[i] = -1;
185 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
186 classes_ptr->hard_regno_index[i] = -1;
187 for (int i = 0; i < classes_ptr->num; i++)
188 {
189 enum reg_class cl = classes_ptr->classes[i];
190 classes_ptr->index[cl] = i;
191 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
192 {
193 unsigned int hard_regno = ira_class_hard_regs[cl][j];
194 if (classes_ptr->hard_regno_index[hard_regno] < 0)
195 classes_ptr->hard_regno_index[hard_regno] = i;
196 }
197 }
198}
199
200/* Initialize info about the cost classes for each pseudo. */
201static void
202initiate_regno_cost_classes (void)
203{
204 int size = sizeof (cost_classes_t) * max_reg_num ();
205
206 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
207 memset (s: regno_cost_classes, c: 0, n: size);
208 memset (s: cost_classes_aclass_cache, c: 0,
209 n: sizeof (cost_classes_t) * N_REG_CLASSES);
210 memset (s: cost_classes_mode_cache, c: 0,
211 n: sizeof (cost_classes_t) * MAX_MACHINE_MODE);
212 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
213 all_cost_classes.num = ira_important_classes_num;
214 for (int i = 0; i < ira_important_classes_num; i++)
215 all_cost_classes.classes[i] = ira_important_classes[i];
216 complete_cost_classes (classes_ptr: &all_cost_classes);
217}
218
219/* Create new cost classes from cost classes FROM and set up members
220 index and hard_regno_index. Return the new classes. The function
221 implements some common code of two functions
222 setup_regno_cost_classes_by_aclass and
223 setup_regno_cost_classes_by_mode. */
224static cost_classes_t
225setup_cost_classes (cost_classes_t from)
226{
227 cost_classes_t classes_ptr;
228
229 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
230 classes_ptr->num = from->num;
231 for (int i = 0; i < from->num; i++)
232 classes_ptr->classes[i] = from->classes[i];
233 complete_cost_classes (classes_ptr);
234 return classes_ptr;
235}
236
237/* Return a version of FULL that only considers registers in REGS that are
238 valid for mode MODE. Both FULL and the returned class are globally
239 allocated. */
240static cost_classes_t
241restrict_cost_classes (cost_classes_t full, machine_mode mode,
242 const_hard_reg_set regs)
243{
244 static struct cost_classes narrow;
245 int map[N_REG_CLASSES];
246 narrow.num = 0;
247 for (int i = 0; i < full->num; i++)
248 {
249 /* Assume that we'll drop the class. */
250 map[i] = -1;
251
252 /* Ignore classes that are too small for the mode. */
253 enum reg_class cl = full->classes[i];
254 if (!contains_reg_of_mode[cl][mode])
255 continue;
256
257 /* Calculate the set of registers in CL that belong to REGS and
258 are valid for MODE. */
259 HARD_REG_SET valid_for_cl = reg_class_contents[cl] & regs;
260 valid_for_cl &= ~(ira_prohibited_class_mode_regs[cl][mode]
261 | ira_no_alloc_regs);
262 if (hard_reg_set_empty_p (x: valid_for_cl))
263 continue;
264
265 /* Don't use this class if the set of valid registers is a subset
266 of an existing class. For example, suppose we have two classes
267 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
268 that the mode changes allowed by FR_REGS are not as general as
269 the mode changes allowed by GR_REGS.
270
271 In this situation, the mode changes for GR_AND_FR_REGS could
272 either be seen as the union or the intersection of the mode
273 changes allowed by the two subclasses. The justification for
274 the union-based definition would be that, if you want a mode
275 change that's only allowed by GR_REGS, you can pick a register
276 from the GR_REGS subclass. The justification for the
277 intersection-based definition would be that every register
278 from the class would allow the mode change.
279
280 However, if we have a register that needs to be in GR_REGS,
281 using GR_AND_FR_REGS with the intersection-based definition
282 would be too pessimistic, since it would bring in restrictions
283 that only apply to FR_REGS. Conversely, if we have a register
284 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
285 union-based definition would lose the extra restrictions
286 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
287 for cases where GR_REGS and FP_REGS are both valid. */
288 int pos;
289 for (pos = 0; pos < narrow.num; ++pos)
290 {
291 enum reg_class cl2 = narrow.classes[pos];
292 if (hard_reg_set_subset_p (x: valid_for_cl, reg_class_contents[cl2]))
293 break;
294 }
295 map[i] = pos;
296 if (pos == narrow.num)
297 {
298 /* If several classes are equivalent, prefer to use the one
299 that was chosen as the allocno class. */
300 enum reg_class cl2 = ira_allocno_class_translate[cl];
301 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
302 cl = cl2;
303 narrow.classes[narrow.num++] = cl;
304 }
305 }
306 if (narrow.num == full->num)
307 return full;
308
309 cost_classes **slot = cost_classes_htab->find_slot (value: &narrow, insert: INSERT);
310 if (*slot == NULL)
311 {
312 cost_classes_t classes = setup_cost_classes (&narrow);
313 /* Map equivalent classes to the representative that we chose above. */
314 for (int i = 0; i < ira_important_classes_num; i++)
315 {
316 enum reg_class cl = ira_important_classes[i];
317 int index = full->index[cl];
318 if (index >= 0)
319 classes->index[cl] = map[index];
320 }
321 *slot = classes;
322 }
323 return *slot;
324}
325
326/* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
327 This function is used when we know an initial approximation of
328 allocno class of the pseudo already, e.g. on the second iteration
329 of class cost calculation or after class cost calculation in
330 register-pressure sensitive insn scheduling or register-pressure
331 sensitive loop-invariant motion. */
332static void
333setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
334{
335 static struct cost_classes classes;
336 cost_classes_t classes_ptr;
337 enum reg_class cl;
338 int i;
339 cost_classes **slot;
340 HARD_REG_SET temp, temp2;
341 bool exclude_p;
342
343 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
344 {
345 temp = reg_class_contents[aclass] & ~ira_no_alloc_regs;
346 /* We exclude classes from consideration which are subsets of
347 ACLASS only if ACLASS is an uniform class. */
348 exclude_p = ira_uniform_class_p[aclass];
349 classes.num = 0;
350 for (i = 0; i < ira_important_classes_num; i++)
351 {
352 cl = ira_important_classes[i];
353 if (exclude_p)
354 {
355 /* Exclude non-uniform classes which are subsets of
356 ACLASS. */
357 temp2 = reg_class_contents[cl] & ~ira_no_alloc_regs;
358 if (hard_reg_set_subset_p (x: temp2, y: temp) && cl != aclass)
359 continue;
360 }
361 classes.classes[classes.num++] = cl;
362 }
363 slot = cost_classes_htab->find_slot (value: &classes, insert: INSERT);
364 if (*slot == NULL)
365 {
366 classes_ptr = setup_cost_classes (&classes);
367 *slot = classes_ptr;
368 }
369 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
370 }
371 if (regno_reg_rtx[regno] != NULL_RTX)
372 {
373 /* Restrict the classes to those that are valid for REGNO's mode
374 (which might for example exclude singleton classes if the mode
375 requires two registers). Also restrict the classes to those that
376 are valid for subregs of REGNO. */
377 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
378 if (!valid_regs)
379 valid_regs = &reg_class_contents[ALL_REGS];
380 classes_ptr = restrict_cost_classes (full: classes_ptr,
381 PSEUDO_REGNO_MODE (regno),
382 regs: *valid_regs);
383 }
384 regno_cost_classes[regno] = classes_ptr;
385}
386
387/* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
388 decrease number of cost classes for the pseudo, if hard registers
389 of some important classes cannot hold a value of MODE. So the
390 pseudo cannot get hard register of some important classes and cost
391 calculation for such important classes is only wasting CPU
392 time. */
393static void
394setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
395{
396 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
397 regno_cost_classes[regno] = restrict_cost_classes (full: &all_cost_classes,
398 mode, regs: *valid_regs);
399 else
400 {
401 if (cost_classes_mode_cache[mode] == NULL)
402 cost_classes_mode_cache[mode]
403 = restrict_cost_classes (full: &all_cost_classes, mode,
404 reg_class_contents[ALL_REGS]);
405 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
406 }
407}
408
409/* Finalize info about the cost classes for each pseudo. */
410static void
411finish_regno_cost_classes (void)
412{
413 ira_free (addr: regno_cost_classes);
414 delete cost_classes_htab;
415 cost_classes_htab = NULL;
416}
417
418
419
420/* Compute the cost of loading X into (if TO_P is TRUE) or from (if
421 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
422 be a pseudo register. */
423static int
424copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
425 secondary_reload_info *prev_sri)
426{
427 secondary_reload_info sri;
428 reg_class_t secondary_class = NO_REGS;
429
430 /* If X is a SCRATCH, there is actually nothing to move since we are
431 assuming optimal allocation. */
432 if (GET_CODE (x) == SCRATCH)
433 return 0;
434
435 /* Get the class we will actually use for a reload. */
436 rclass = targetm.preferred_reload_class (x, rclass);
437
438 /* If we need a secondary reload for an intermediate, the cost is
439 that to load the input into the intermediate register, then to
440 copy it. */
441 sri.prev_sri = prev_sri;
442 sri.extra_cost = 0;
443 /* PR 68770: Secondary reload might examine the t_icode field. */
444 sri.t_icode = CODE_FOR_nothing;
445
446 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
447
448 if (secondary_class != NO_REGS)
449 {
450 ira_init_register_move_cost_if_necessary (mode);
451 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
452 + sri.extra_cost
453 + copy_cost (x, mode, rclass: secondary_class, to_p, prev_sri: &sri));
454 }
455
456 /* For memory, use the memory move cost, for (hard) registers, use
457 the cost to move between the register classes, and use 2 for
458 everything else (constants). */
459 if (MEM_P (x) || rclass == NO_REGS)
460 return sri.extra_cost
461 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
462 else if (REG_P (x))
463 {
464 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
465
466 ira_init_register_move_cost_if_necessary (mode);
467 return (sri.extra_cost
468 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
469 }
470 else
471 /* If this is a constant, we may eventually want to call rtx_cost
472 here. */
473 return sri.extra_cost + COSTS_N_INSNS (1);
474}
475
476
477
478/* Record the cost of using memory or hard registers of various
479 classes for the operands in INSN.
480
481 N_ALTS is the number of alternatives.
482 N_OPS is the number of operands.
483 OPS is an array of the operands.
484 MODES are the modes of the operands, in case any are VOIDmode.
485 CONSTRAINTS are the constraints to use for the operands. This array
486 is modified by this procedure.
487
488 This procedure works alternative by alternative. For each
489 alternative we assume that we will be able to allocate all allocnos
490 to their ideal register class and calculate the cost of using that
491 alternative. Then we compute, for each operand that is a
492 pseudo-register, the cost of having the allocno allocated to each
493 register class and using it in that alternative. To this cost is
494 added the cost of the alternative.
495
496 The cost of each class for this insn is its lowest cost among all
497 the alternatives. */
498static void
499record_reg_classes (int n_alts, int n_ops, rtx *ops,
500 machine_mode *modes, const char **constraints,
501 rtx_insn *insn, enum reg_class *pref)
502{
503 int alt;
504 int i, j, k;
505 int insn_allows_mem[MAX_RECOG_OPERANDS];
506 move_table *move_in_cost, *move_out_cost;
507 short (*mem_cost)[2];
508 const char *p;
509
510 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
511 {
512 fprintf (stream: ira_dump_file, format: " Processing insn %u", INSN_UID (insn));
513 if (INSN_CODE (insn) >= 0
514 && (p = get_insn_name (INSN_CODE (insn))) != NULL)
515 fprintf (stream: ira_dump_file, format: " {%s}", p);
516 fprintf (stream: ira_dump_file, format: " (freq=%d)\n",
517 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)));
518 dump_insn_slim (ira_dump_file, insn);
519 }
520
521 for (i = 0; i < n_ops; i++)
522 insn_allows_mem[i] = 0;
523
524 /* Process each alternative, each time minimizing an operand's cost
525 with the cost for each operand in that alternative. */
526 alternative_mask preferred = get_preferred_alternatives (insn);
527 for (alt = 0; alt < n_alts; alt++)
528 {
529 enum reg_class classes[MAX_RECOG_OPERANDS];
530 int allows_mem[MAX_RECOG_OPERANDS];
531 enum reg_class rclass;
532 int alt_fail = 0;
533 int alt_cost = 0, op_cost_add;
534
535 if (!TEST_BIT (preferred, alt))
536 {
537 for (i = 0; i < recog_data.n_operands; i++)
538 constraints[i] = skip_alternative (p: constraints[i]);
539
540 continue;
541 }
542
543 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
544 {
545 fprintf (stream: ira_dump_file, format: " Alt %d:", alt);
546 for (i = 0; i < n_ops; i++)
547 {
548 p = constraints[i];
549 if (*p == '\0')
550 continue;
551 fprintf (stream: ira_dump_file, format: " (%d) ", i);
552 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
553 fputc (c: *p, stream: ira_dump_file);
554 }
555 fprintf (stream: ira_dump_file, format: "\n");
556 }
557
558 for (i = 0; i < n_ops; i++)
559 {
560 unsigned char c;
561 const char *p = constraints[i];
562 rtx op = ops[i];
563 machine_mode mode = modes[i];
564 int allows_addr = 0;
565 int win = 0;
566
567 /* Initially show we know nothing about the register class. */
568 classes[i] = NO_REGS;
569 allows_mem[i] = 0;
570
571 /* If this operand has no constraints at all, we can
572 conclude nothing about it since anything is valid. */
573 if (*p == 0)
574 {
575 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
576 memset (this_op_costs[i], c: 0, n: struct_costs_size);
577 continue;
578 }
579
580 /* If this alternative is only relevant when this operand
581 matches a previous operand, we do different things
582 depending on whether this operand is a allocno-reg or not.
583 We must process any modifiers for the operand before we
584 can make this test. */
585 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
586 p++;
587
588 if (p[0] >= '0' && p[0] <= '0' + i)
589 {
590 /* Copy class and whether memory is allowed from the
591 matching alternative. Then perform any needed cost
592 computations and/or adjustments. */
593 j = p[0] - '0';
594 classes[i] = classes[j];
595 allows_mem[i] = allows_mem[j];
596 if (allows_mem[i])
597 insn_allows_mem[i] = 1;
598
599 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
600 {
601 /* If this matches the other operand, we have no
602 added cost and we win. */
603 if (rtx_equal_p (ops[j], op))
604 win = 1;
605 /* If we can put the other operand into a register,
606 add to the cost of this alternative the cost to
607 copy this operand to the register used for the
608 other operand. */
609 else if (classes[j] != NO_REGS)
610 {
611 alt_cost += copy_cost (x: op, mode, rclass: classes[j], to_p: 1, NULL);
612 win = 1;
613 }
614 }
615 else if (! REG_P (ops[j])
616 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
617 {
618 /* This op is an allocno but the one it matches is
619 not. */
620
621 /* If we can't put the other operand into a
622 register, this alternative can't be used. */
623
624 if (classes[j] == NO_REGS)
625 {
626 alt_fail = 1;
627 }
628 else
629 /* Otherwise, add to the cost of this alternative the cost
630 to copy the other operand to the hard register used for
631 this operand. */
632 {
633 alt_cost += copy_cost (x: ops[j], mode, rclass: classes[j], to_p: 1, NULL);
634 }
635 }
636 else
637 {
638 /* The costs of this operand are not the same as the
639 other operand since move costs are not symmetric.
640 Moreover, if we cannot tie them, this alternative
641 needs to do a copy, which is one insn. */
642 struct costs *pp = this_op_costs[i];
643 int *pp_costs = pp->cost;
644 cost_classes_t cost_classes_ptr
645 = regno_cost_classes[REGNO (op)];
646 enum reg_class *cost_classes = cost_classes_ptr->classes;
647 bool in_p = recog_data.operand_type[i] != OP_OUT;
648 bool out_p = recog_data.operand_type[i] != OP_IN;
649 enum reg_class op_class = classes[i];
650
651 ira_init_register_move_cost_if_necessary (mode);
652 if (! in_p)
653 {
654 ira_assert (out_p);
655 if (op_class == NO_REGS)
656 {
657 mem_cost = ira_memory_move_cost[mode];
658 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
659 {
660 rclass = cost_classes[k];
661 pp_costs[k] = mem_cost[rclass][0] * frequency;
662 }
663 }
664 else
665 {
666 move_out_cost = ira_may_move_out_cost[mode];
667 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
668 {
669 rclass = cost_classes[k];
670 pp_costs[k]
671 = move_out_cost[op_class][rclass] * frequency;
672 }
673 }
674 }
675 else if (! out_p)
676 {
677 ira_assert (in_p);
678 if (op_class == NO_REGS)
679 {
680 mem_cost = ira_memory_move_cost[mode];
681 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
682 {
683 rclass = cost_classes[k];
684 pp_costs[k] = mem_cost[rclass][1] * frequency;
685 }
686 }
687 else
688 {
689 move_in_cost = ira_may_move_in_cost[mode];
690 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
691 {
692 rclass = cost_classes[k];
693 pp_costs[k]
694 = move_in_cost[rclass][op_class] * frequency;
695 }
696 }
697 }
698 else
699 {
700 if (op_class == NO_REGS)
701 {
702 mem_cost = ira_memory_move_cost[mode];
703 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
704 {
705 rclass = cost_classes[k];
706 pp_costs[k] = ((mem_cost[rclass][0]
707 + mem_cost[rclass][1])
708 * frequency);
709 }
710 }
711 else
712 {
713 move_in_cost = ira_may_move_in_cost[mode];
714 move_out_cost = ira_may_move_out_cost[mode];
715 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
716 {
717 rclass = cost_classes[k];
718 pp_costs[k] = ((move_in_cost[rclass][op_class]
719 + move_out_cost[op_class][rclass])
720 * frequency);
721 }
722 }
723 }
724
725 /* If the alternative actually allows memory, make
726 things a bit cheaper since we won't need an extra
727 insn to load it. */
728 pp->mem_cost
729 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
730 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
731 - allows_mem[i]) * frequency;
732
733 /* If we have assigned a class to this allocno in
734 our first pass, add a cost to this alternative
735 corresponding to what we would add if this
736 allocno were not in the appropriate class. */
737 if (pref)
738 {
739 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
740
741 if (pref_class == NO_REGS)
742 alt_cost
743 += ((out_p
744 ? ira_memory_move_cost[mode][op_class][0] : 0)
745 + (in_p
746 ? ira_memory_move_cost[mode][op_class][1]
747 : 0));
748 else if (ira_reg_class_intersect
749 [pref_class][op_class] == NO_REGS)
750 alt_cost
751 += ira_register_move_cost[mode][pref_class][op_class];
752 }
753 if (REGNO (ops[i]) != REGNO (ops[j])
754 && ! find_reg_note (insn, REG_DEAD, op))
755 alt_cost += 2;
756
757 p++;
758 }
759 }
760
761 /* Scan all the constraint letters. See if the operand
762 matches any of the constraints. Collect the valid
763 register classes and see if this operand accepts
764 memory. */
765 while ((c = *p))
766 {
767 switch (c)
768 {
769 case '*':
770 /* Ignore the next letter for this pass. */
771 c = *++p;
772 break;
773
774 case '^':
775 alt_cost += 2;
776 break;
777
778 case '?':
779 alt_cost += 2;
780 break;
781
782 case 'g':
783 if (MEM_P (op)
784 || (CONSTANT_P (op)
785 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
786 win = 1;
787 insn_allows_mem[i] = allows_mem[i] = 1;
788 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
789 break;
790
791 default:
792 enum constraint_num cn = lookup_constraint (p);
793 enum reg_class cl;
794 switch (get_constraint_type (c: cn))
795 {
796 case CT_REGISTER:
797 cl = reg_class_for_constraint (c: cn);
798 if (cl != NO_REGS)
799 classes[i] = ira_reg_class_subunion[classes[i]][cl];
800 break;
801
802 case CT_CONST_INT:
803 if (CONST_INT_P (op)
804 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
805 win = 1;
806 break;
807
808 case CT_MEMORY:
809 case CT_RELAXED_MEMORY:
810 /* Every MEM can be reloaded to fit. */
811 insn_allows_mem[i] = allows_mem[i] = 1;
812 if (MEM_P (op))
813 win = 1;
814 break;
815
816 case CT_SPECIAL_MEMORY:
817 insn_allows_mem[i] = allows_mem[i] = 1;
818 if (MEM_P (extract_mem_from_operand (op))
819 && constraint_satisfied_p (x: op, c: cn))
820 win = 1;
821 break;
822
823 case CT_ADDRESS:
824 /* Every address can be reloaded to fit. */
825 allows_addr = 1;
826 if (address_operand (op, GET_MODE (op))
827 || constraint_satisfied_p (x: op, c: cn))
828 win = 1;
829 /* We know this operand is an address, so we
830 want it to be allocated to a hard register
831 that can be the base of an address,
832 i.e. BASE_REG_CLASS. */
833 classes[i]
834 = ira_reg_class_subunion[classes[i]]
835 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
836 outer_code: ADDRESS, index_code: SCRATCH)];
837 break;
838
839 case CT_FIXED_FORM:
840 if (constraint_satisfied_p (x: op, c: cn))
841 win = 1;
842 break;
843 }
844 break;
845 }
846 p += CONSTRAINT_LEN (c, p);
847 if (c == ',')
848 break;
849 }
850
851 constraints[i] = p;
852
853 if (alt_fail)
854 break;
855
856 /* How we account for this operand now depends on whether it
857 is a pseudo register or not. If it is, we first check if
858 any register classes are valid. If not, we ignore this
859 alternative, since we want to assume that all allocnos get
860 allocated for register preferencing. If some register
861 class is valid, compute the costs of moving the allocno
862 into that class. */
863 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
864 {
865 if (classes[i] == NO_REGS && ! allows_mem[i])
866 {
867 /* We must always fail if the operand is a REG, but
868 we did not find a suitable class and memory is
869 not allowed.
870
871 Otherwise we may perform an uninitialized read
872 from this_op_costs after the `continue' statement
873 below. */
874 alt_fail = 1;
875 }
876 else
877 {
878 unsigned int regno = REGNO (op);
879 struct costs *pp = this_op_costs[i];
880 int *pp_costs = pp->cost;
881 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
882 enum reg_class *cost_classes = cost_classes_ptr->classes;
883 bool in_p = recog_data.operand_type[i] != OP_OUT;
884 bool out_p = recog_data.operand_type[i] != OP_IN;
885 enum reg_class op_class = classes[i];
886
887 ira_init_register_move_cost_if_necessary (mode);
888 if (! in_p)
889 {
890 ira_assert (out_p);
891 if (op_class == NO_REGS)
892 {
893 mem_cost = ira_memory_move_cost[mode];
894 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
895 {
896 rclass = cost_classes[k];
897 pp_costs[k] = mem_cost[rclass][0] * frequency;
898 }
899 }
900 else
901 {
902 move_out_cost = ira_may_move_out_cost[mode];
903 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
904 {
905 rclass = cost_classes[k];
906 pp_costs[k]
907 = move_out_cost[op_class][rclass] * frequency;
908 }
909 }
910 }
911 else if (! out_p)
912 {
913 ira_assert (in_p);
914 if (op_class == NO_REGS)
915 {
916 mem_cost = ira_memory_move_cost[mode];
917 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
918 {
919 rclass = cost_classes[k];
920 pp_costs[k] = mem_cost[rclass][1] * frequency;
921 }
922 }
923 else
924 {
925 move_in_cost = ira_may_move_in_cost[mode];
926 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
927 {
928 rclass = cost_classes[k];
929 pp_costs[k]
930 = move_in_cost[rclass][op_class] * frequency;
931 }
932 }
933 }
934 else
935 {
936 if (op_class == NO_REGS)
937 {
938 mem_cost = ira_memory_move_cost[mode];
939 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
940 {
941 rclass = cost_classes[k];
942 pp_costs[k] = ((mem_cost[rclass][0]
943 + mem_cost[rclass][1])
944 * frequency);
945 }
946 }
947 else
948 {
949 move_in_cost = ira_may_move_in_cost[mode];
950 move_out_cost = ira_may_move_out_cost[mode];
951 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
952 {
953 rclass = cost_classes[k];
954 pp_costs[k] = ((move_in_cost[rclass][op_class]
955 + move_out_cost[op_class][rclass])
956 * frequency);
957 }
958 }
959 }
960
961 if (op_class == NO_REGS)
962 /* Although we don't need insn to reload from
963 memory, still accessing memory is usually more
964 expensive than a register. */
965 pp->mem_cost = frequency;
966 else
967 /* If the alternative actually allows memory, make
968 things a bit cheaper since we won't need an
969 extra insn to load it. */
970 pp->mem_cost
971 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
972 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
973 - allows_mem[i]) * frequency;
974 /* If we have assigned a class to this allocno in
975 our first pass, add a cost to this alternative
976 corresponding to what we would add if this
977 allocno were not in the appropriate class. */
978 if (pref)
979 {
980 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
981
982 if (pref_class == NO_REGS)
983 {
984 if (op_class != NO_REGS)
985 alt_cost
986 += ((out_p
987 ? ira_memory_move_cost[mode][op_class][0]
988 : 0)
989 + (in_p
990 ? ira_memory_move_cost[mode][op_class][1]
991 : 0));
992 }
993 else if (op_class == NO_REGS)
994 alt_cost
995 += ((out_p
996 ? ira_memory_move_cost[mode][pref_class][1]
997 : 0)
998 + (in_p
999 ? ira_memory_move_cost[mode][pref_class][0]
1000 : 0));
1001 else if (ira_reg_class_intersect[pref_class][op_class]
1002 == NO_REGS)
1003 alt_cost += (ira_register_move_cost
1004 [mode][pref_class][op_class]);
1005 }
1006 }
1007 }
1008
1009 /* Otherwise, if this alternative wins, either because we
1010 have already determined that or if we have a hard
1011 register of the proper class, there is no cost for this
1012 alternative. */
1013 else if (win || (REG_P (op)
1014 && reg_fits_class_p (op, classes[i],
1015 0, GET_MODE (op))))
1016 ;
1017
1018 /* If registers are valid, the cost of this alternative
1019 includes copying the object to and/or from a
1020 register. */
1021 else if (classes[i] != NO_REGS)
1022 {
1023 if (recog_data.operand_type[i] != OP_OUT)
1024 alt_cost += copy_cost (x: op, mode, rclass: classes[i], to_p: 1, NULL);
1025
1026 if (recog_data.operand_type[i] != OP_IN)
1027 alt_cost += copy_cost (x: op, mode, rclass: classes[i], to_p: 0, NULL);
1028 }
1029 /* The only other way this alternative can be used is if
1030 this is a constant that could be placed into memory. */
1031 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1032 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1033 else
1034 alt_fail = 1;
1035
1036 if (alt_fail)
1037 break;
1038 }
1039
1040 if (alt_fail)
1041 {
1042 /* The loop above might have exited early once the failure
1043 was seen. Skip over the constraints for the remaining
1044 operands. */
1045 i += 1;
1046 for (; i < n_ops; ++i)
1047 constraints[i] = skip_alternative (p: constraints[i]);
1048 continue;
1049 }
1050
1051 op_cost_add = alt_cost * frequency;
1052 /* Finally, update the costs with the information we've
1053 calculated about this alternative. */
1054 for (i = 0; i < n_ops; i++)
1055 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1056 {
1057 int old_cost;
1058 bool cost_change_p = false;
1059 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1060 int *pp_costs = pp->cost, *qq_costs = qq->cost;
1061 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1062 cost_classes_t cost_classes_ptr
1063 = regno_cost_classes[REGNO (ops[i])];
1064
1065 old_cost = pp->mem_cost;
1066 pp->mem_cost = MIN (old_cost,
1067 (qq->mem_cost + op_cost_add) * scale);
1068
1069 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1070 && pp->mem_cost < old_cost)
1071 {
1072 cost_change_p = true;
1073 fprintf (stream: ira_dump_file, format: " op %d(r=%u) new costs MEM:%d",
1074 i, REGNO(ops[i]), pp->mem_cost);
1075 }
1076 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1077 {
1078 old_cost = pp_costs[k];
1079 pp_costs[k]
1080 = MIN (old_cost, (qq_costs[k] + op_cost_add) * scale);
1081 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1082 && pp_costs[k] < old_cost)
1083 {
1084 if (!cost_change_p)
1085 fprintf (stream: ira_dump_file, format: " op %d(r=%u) new costs",
1086 i, REGNO(ops[i]));
1087 cost_change_p = true;
1088 fprintf (stream: ira_dump_file, format: " %s:%d",
1089 reg_class_names[cost_classes_ptr->classes[k]],
1090 pp_costs[k]);
1091 }
1092 }
1093 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1094 && cost_change_p)
1095 fprintf (stream: ira_dump_file, format: "\n");
1096 }
1097 }
1098
1099 if (allocno_p)
1100 for (i = 0; i < n_ops; i++)
1101 {
1102 ira_allocno_t a;
1103 rtx op = ops[i];
1104
1105 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1106 continue;
1107 a = ira_curr_regno_allocno_map [REGNO (op)];
1108 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1109 ALLOCNO_BAD_SPILL_P (a) = true;
1110 }
1111
1112}
1113
1114
1115
1116/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1117static inline bool
1118ok_for_index_p_nonstrict (rtx reg)
1119{
1120 unsigned regno = REGNO (reg);
1121
1122 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1123}
1124
1125/* A version of regno_ok_for_base_p for use here, when all
1126 pseudo-registers should count as OK. Arguments as for
1127 regno_ok_for_base_p. */
1128static inline bool
1129ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1130 enum rtx_code outer_code, enum rtx_code index_code)
1131{
1132 unsigned regno = REGNO (reg);
1133
1134 if (regno >= FIRST_PSEUDO_REGISTER)
1135 return true;
1136 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1137}
1138
1139/* Record the pseudo registers we must reload into hard registers in a
1140 subexpression of a memory address, X.
1141
1142 If CONTEXT is 0, we are looking at the base part of an address,
1143 otherwise we are looking at the index part.
1144
1145 MODE and AS are the mode and address space of the memory reference;
1146 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1147 These four arguments are passed down to base_reg_class.
1148
1149 SCALE is twice the amount to multiply the cost by (it is twice so
1150 we can represent half-cost adjustments). */
1151static void
1152record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1153 int context, enum rtx_code outer_code,
1154 enum rtx_code index_code, int scale)
1155{
1156 enum rtx_code code = GET_CODE (x);
1157 enum reg_class rclass;
1158
1159 if (context == 1)
1160 rclass = INDEX_REG_CLASS;
1161 else
1162 rclass = base_reg_class (mode, as, outer_code, index_code);
1163
1164 switch (code)
1165 {
1166 case CONST_INT:
1167 case CONST:
1168 case PC:
1169 case SYMBOL_REF:
1170 case LABEL_REF:
1171 return;
1172
1173 case PLUS:
1174 /* When we have an address that is a sum, we must determine
1175 whether registers are "base" or "index" regs. If there is a
1176 sum of two registers, we must choose one to be the "base".
1177 Luckily, we can use the REG_POINTER to make a good choice
1178 most of the time. We only need to do this on machines that
1179 can have two registers in an address and where the base and
1180 index register classes are different.
1181
1182 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1183 but that seems bogus since it should only be set when we are
1184 sure the register is being used as a pointer. */
1185 {
1186 rtx arg0 = XEXP (x, 0);
1187 rtx arg1 = XEXP (x, 1);
1188 enum rtx_code code0 = GET_CODE (arg0);
1189 enum rtx_code code1 = GET_CODE (arg1);
1190
1191 /* Look inside subregs. */
1192 if (code0 == SUBREG)
1193 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1194 if (code1 == SUBREG)
1195 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1196
1197 /* If index registers do not appear, or coincide with base registers,
1198 just record registers in any non-constant operands. We
1199 assume here, as well as in the tests below, that all
1200 addresses are in canonical form. */
1201 if (MAX_REGS_PER_ADDRESS == 1
1202 || INDEX_REG_CLASS == base_reg_class (VOIDmode, as, outer_code: PLUS, index_code: SCRATCH))
1203 {
1204 record_address_regs (mode, as, x: arg0, context, outer_code: PLUS, index_code: code1, scale);
1205 if (! CONSTANT_P (arg1))
1206 record_address_regs (mode, as, x: arg1, context, outer_code: PLUS, index_code: code0, scale);
1207 }
1208
1209 /* If the second operand is a constant integer, it doesn't
1210 change what class the first operand must be. */
1211 else if (CONST_SCALAR_INT_P (arg1))
1212 record_address_regs (mode, as, x: arg0, context, outer_code: PLUS, index_code: code1, scale);
1213 /* If the second operand is a symbolic constant, the first
1214 operand must be an index register. */
1215 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1216 record_address_regs (mode, as, x: arg0, context: 1, outer_code: PLUS, index_code: code1, scale);
1217 /* If both operands are registers but one is already a hard
1218 register of index or reg-base class, give the other the
1219 class that the hard register is not. */
1220 else if (code0 == REG && code1 == REG
1221 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1222 && (ok_for_base_p_nonstrict (reg: arg0, mode, as, outer_code: PLUS, index_code: REG)
1223 || ok_for_index_p_nonstrict (reg: arg0)))
1224 record_address_regs (mode, as, x: arg1,
1225 context: ok_for_base_p_nonstrict (reg: arg0, mode, as,
1226 outer_code: PLUS, index_code: REG) ? 1 : 0,
1227 outer_code: PLUS, index_code: REG, scale);
1228 else if (code0 == REG && code1 == REG
1229 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1230 && (ok_for_base_p_nonstrict (reg: arg1, mode, as, outer_code: PLUS, index_code: REG)
1231 || ok_for_index_p_nonstrict (reg: arg1)))
1232 record_address_regs (mode, as, x: arg0,
1233 context: ok_for_base_p_nonstrict (reg: arg1, mode, as,
1234 outer_code: PLUS, index_code: REG) ? 1 : 0,
1235 outer_code: PLUS, index_code: REG, scale);
1236 /* If one operand is known to be a pointer, it must be the
1237 base with the other operand the index. Likewise if the
1238 other operand is a MULT. */
1239 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1240 {
1241 record_address_regs (mode, as, x: arg0, context: 0, outer_code: PLUS, index_code: code1, scale);
1242 record_address_regs (mode, as, x: arg1, context: 1, outer_code: PLUS, index_code: code0, scale);
1243 }
1244 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1245 {
1246 record_address_regs (mode, as, x: arg0, context: 1, outer_code: PLUS, index_code: code1, scale);
1247 record_address_regs (mode, as, x: arg1, context: 0, outer_code: PLUS, index_code: code0, scale);
1248 }
1249 /* Otherwise, count equal chances that each might be a base or
1250 index register. This case should be rare. */
1251 else
1252 {
1253 record_address_regs (mode, as, x: arg0, context: 0, outer_code: PLUS, index_code: code1, scale: scale / 2);
1254 record_address_regs (mode, as, x: arg0, context: 1, outer_code: PLUS, index_code: code1, scale: scale / 2);
1255 record_address_regs (mode, as, x: arg1, context: 0, outer_code: PLUS, index_code: code0, scale: scale / 2);
1256 record_address_regs (mode, as, x: arg1, context: 1, outer_code: PLUS, index_code: code0, scale: scale / 2);
1257 }
1258 }
1259 break;
1260
1261 /* Double the importance of an allocno that is incremented or
1262 decremented, since it would take two extra insns if it ends
1263 up in the wrong place. */
1264 case POST_MODIFY:
1265 case PRE_MODIFY:
1266 record_address_regs (mode, as, XEXP (x, 0), context: 0, outer_code: code,
1267 GET_CODE (XEXP (XEXP (x, 1), 1)), scale: 2 * scale);
1268 if (REG_P (XEXP (XEXP (x, 1), 1)))
1269 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), context: 1, outer_code: code, index_code: REG,
1270 scale: 2 * scale);
1271 break;
1272
1273 case POST_INC:
1274 case PRE_INC:
1275 case POST_DEC:
1276 case PRE_DEC:
1277 /* Double the importance of an allocno that is incremented or
1278 decremented, since it would take two extra insns if it ends
1279 up in the wrong place. */
1280 record_address_regs (mode, as, XEXP (x, 0), context: 0, outer_code: code, index_code: SCRATCH, scale: 2 * scale);
1281 break;
1282
1283 case REG:
1284 {
1285 struct costs *pp;
1286 int *pp_costs;
1287 enum reg_class i;
1288 int k, regno, add_cost;
1289 cost_classes_t cost_classes_ptr;
1290 enum reg_class *cost_classes;
1291 move_table *move_in_cost;
1292
1293 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1294 break;
1295
1296 regno = REGNO (x);
1297 if (allocno_p)
1298 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1299 pp = COSTS (costs, COST_INDEX (regno));
1300 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1301 if (INT_MAX - add_cost < pp->mem_cost)
1302 pp->mem_cost = INT_MAX;
1303 else
1304 pp->mem_cost += add_cost;
1305 cost_classes_ptr = regno_cost_classes[regno];
1306 cost_classes = cost_classes_ptr->classes;
1307 pp_costs = pp->cost;
1308 ira_init_register_move_cost_if_necessary (Pmode);
1309 move_in_cost = ira_may_move_in_cost[Pmode];
1310 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1311 {
1312 i = cost_classes[k];
1313 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1314 if (INT_MAX - add_cost < pp_costs[k])
1315 pp_costs[k] = INT_MAX;
1316 else
1317 pp_costs[k] += add_cost;
1318 }
1319 }
1320 break;
1321
1322 default:
1323 {
1324 const char *fmt = GET_RTX_FORMAT (code);
1325 int i;
1326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1327 if (fmt[i] == 'e')
1328 record_address_regs (mode, as, XEXP (x, i), context, outer_code: code, index_code: SCRATCH,
1329 scale);
1330 }
1331 }
1332}
1333
1334
1335
1336/* Calculate the costs of insn operands. */
1337static void
1338record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1339{
1340 const char *constraints[MAX_RECOG_OPERANDS];
1341 machine_mode modes[MAX_RECOG_OPERANDS];
1342 rtx set;
1343 int i;
1344
1345 if ((set = single_set (insn)) != NULL_RTX
1346 /* In rare cases the single set insn might have less 2 operands
1347 as the source can be a fixed special reg. */
1348 && recog_data.n_operands > 1
1349 && recog_data.operand[0] == SET_DEST (set)
1350 && recog_data.operand[1] == SET_SRC (set))
1351 {
1352 int regno, other_regno;
1353 rtx dest = SET_DEST (set);
1354 rtx src = SET_SRC (set);
1355
1356 if (GET_CODE (dest) == SUBREG
1357 && known_eq (GET_MODE_SIZE (GET_MODE (dest)),
1358 GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1359 dest = SUBREG_REG (dest);
1360 if (GET_CODE (src) == SUBREG
1361 && known_eq (GET_MODE_SIZE (GET_MODE (src)),
1362 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1363 src = SUBREG_REG (src);
1364 if (REG_P (src) && REG_P (dest)
1365 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1366 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1367 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1368 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1369 {
1370 machine_mode mode = GET_MODE (SET_SRC (set)), cost_mode = mode;
1371 machine_mode hard_reg_mode = GET_MODE(regno_reg_rtx[other_regno]);
1372 poly_int64 pmode_size = GET_MODE_SIZE (mode);
1373 poly_int64 phard_reg_mode_size = GET_MODE_SIZE (mode: hard_reg_mode);
1374 HOST_WIDE_INT mode_size, hard_reg_mode_size;
1375 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1376 enum reg_class *cost_classes = cost_classes_ptr->classes;
1377 reg_class_t rclass, hard_reg_class, bigger_hard_reg_class;
1378 int cost_factor = 1, cost, k;
1379 move_table *move_costs;
1380 bool dead_p = find_regno_note (insn, REG_DEAD, REGNO (src));
1381
1382 hard_reg_class = REGNO_REG_CLASS (other_regno);
1383 bigger_hard_reg_class = ira_pressure_class_translate[hard_reg_class];
1384 /* Target code may return any cost for mode which does not fit the
1385 hard reg class (e.g. DImode for AREG on i386). Check this and use
1386 a bigger class to get the right cost. */
1387 if (bigger_hard_reg_class != NO_REGS
1388 && ! ira_hard_reg_in_set_p (hard_regno: other_regno, mode,
1389 reg_class_contents[hard_reg_class]))
1390 hard_reg_class = bigger_hard_reg_class;
1391 ira_init_register_move_cost_if_necessary (mode);
1392 ira_init_register_move_cost_if_necessary (mode: hard_reg_mode);
1393 /* Use smaller movement cost for natural hard reg mode or its mode as
1394 operand. */
1395 if (pmode_size.is_constant (const_value: &mode_size)
1396 && phard_reg_mode_size.is_constant (const_value: &hard_reg_mode_size))
1397 {
1398 /* Assume we are moving in the natural modes: */
1399 cost_factor = mode_size / hard_reg_mode_size;
1400 if (mode_size % hard_reg_mode_size != 0)
1401 cost_factor++;
1402 if (cost_factor
1403 * (ira_register_move_cost
1404 [hard_reg_mode][hard_reg_class][hard_reg_class])
1405 < (ira_register_move_cost
1406 [mode][hard_reg_class][hard_reg_class]))
1407 cost_mode = hard_reg_mode;
1408 else
1409 cost_factor = 1;
1410 }
1411 move_costs = ira_register_move_cost[cost_mode];
1412 i = regno == (int) REGNO (src) ? 1 : 0;
1413 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1414 {
1415 rclass = cost_classes[k];
1416 cost = (i == 0
1417 ? move_costs[hard_reg_class][rclass]
1418 : move_costs[rclass][hard_reg_class]);
1419 cost *= cost_factor;
1420 op_costs[i]->cost[k] = cost * frequency;
1421 /* If this insn is a single set copying operand 1 to
1422 operand 0 and one operand is an allocno with the
1423 other a hard reg or an allocno that prefers a hard
1424 register that is in its own register class then we
1425 may want to adjust the cost of that register class to
1426 -1.
1427
1428 Avoid the adjustment if the source does not die to
1429 avoid stressing of register allocator by preferencing
1430 two colliding registers into single class. */
1431 if (dead_p
1432 && TEST_HARD_REG_BIT (reg_class_contents[rclass], bit: other_regno)
1433 && (reg_class_size[(int) rclass]
1434 == (ira_reg_class_max_nregs
1435 [(int) rclass][(int) GET_MODE(src)])))
1436 {
1437 if (reg_class_size[rclass] == 1)
1438 op_costs[i]->cost[k] = -frequency;
1439 else if (in_hard_reg_set_p (reg_class_contents[rclass],
1440 GET_MODE(src), regno: other_regno))
1441 op_costs[i]->cost[k] = -frequency;
1442 }
1443 }
1444 op_costs[i]->mem_cost
1445 = ira_memory_move_cost[mode][hard_reg_class][i] * frequency;
1446 return;
1447 }
1448 }
1449
1450 for (i = 0; i < recog_data.n_operands; i++)
1451 {
1452 constraints[i] = recog_data.constraints[i];
1453 modes[i] = recog_data.operand_mode[i];
1454 }
1455
1456 /* If we get here, we are set up to record the costs of all the
1457 operands for this insn. Start by initializing the costs. Then
1458 handle any address registers. Finally record the desired classes
1459 for any allocnos, doing it twice if some pair of operands are
1460 commutative. */
1461 for (i = 0; i < recog_data.n_operands; i++)
1462 {
1463 rtx op_mem = extract_mem_from_operand (recog_data.operand[i]);
1464 memcpy (op_costs[i], init_cost, n: struct_costs_size);
1465
1466 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1467 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1468
1469 if (MEM_P (op_mem))
1470 record_address_regs (GET_MODE (op_mem),
1471 MEM_ADDR_SPACE (op_mem),
1472 XEXP (op_mem, 0),
1473 context: 0, outer_code: MEM, index_code: SCRATCH, scale: frequency * 2);
1474 else if (constraints[i][0] == 'p'
1475 || (insn_extra_address_constraint
1476 (c: lookup_constraint (p: constraints[i]))))
1477 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1478 x: recog_data.operand[i], context: 0, outer_code: ADDRESS, index_code: SCRATCH,
1479 scale: frequency * 2);
1480 }
1481
1482 /* Check for commutative in a separate loop so everything will have
1483 been initialized. We must do this even if one operand is a
1484 constant--see addsi3 in m68k.md. */
1485 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1486 if (constraints[i][0] == '%')
1487 {
1488 const char *xconstraints[MAX_RECOG_OPERANDS];
1489 int j;
1490
1491 /* Handle commutative operands by swapping the
1492 constraints. We assume the modes are the same. */
1493 for (j = 0; j < recog_data.n_operands; j++)
1494 xconstraints[j] = constraints[j];
1495
1496 xconstraints[i] = constraints[i+1];
1497 xconstraints[i+1] = constraints[i];
1498 record_reg_classes (n_alts: recog_data.n_alternatives, n_ops: recog_data.n_operands,
1499 ops: recog_data.operand, modes,
1500 constraints: xconstraints, insn, pref);
1501 }
1502 record_reg_classes (n_alts: recog_data.n_alternatives, n_ops: recog_data.n_operands,
1503 ops: recog_data.operand, modes,
1504 constraints, insn, pref);
1505}
1506
1507
1508
1509/* Process one insn INSN. Scan it and record each time it would save
1510 code to put a certain allocnos in a certain class. Return the last
1511 insn processed, so that the scan can be continued from there. */
1512static rtx_insn *
1513scan_one_insn (rtx_insn *insn)
1514{
1515 enum rtx_code pat_code;
1516 rtx set, note;
1517 int i, k;
1518 bool counted_mem;
1519
1520 if (!NONDEBUG_INSN_P (insn))
1521 return insn;
1522
1523 pat_code = GET_CODE (PATTERN (insn));
1524 if (pat_code == ASM_INPUT)
1525 return insn;
1526
1527 /* If INSN is a USE/CLOBBER of a pseudo in a mode M then go ahead
1528 and initialize the register move costs of mode M.
1529
1530 The pseudo may be related to another pseudo via a copy (implicit or
1531 explicit) and if there are no mode M uses/sets of the original
1532 pseudo, then we may leave the register move costs uninitialized for
1533 mode M. */
1534 if (pat_code == USE || pat_code == CLOBBER)
1535 {
1536 rtx x = XEXP (PATTERN (insn), 0);
1537 if (GET_CODE (x) == REG
1538 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1539 && have_regs_of_mode[GET_MODE (x)])
1540 ira_init_register_move_cost_if_necessary (GET_MODE (x));
1541 return insn;
1542 }
1543
1544 counted_mem = false;
1545 set = single_set (insn);
1546 extract_insn (insn);
1547
1548 /* If this insn loads a parameter from its stack slot, then it
1549 represents a savings, rather than a cost, if the parameter is
1550 stored in memory. Record this fact.
1551
1552 Similarly if we're loading other constants from memory (constant
1553 pool, TOC references, small data areas, etc) and this is the only
1554 assignment to the destination pseudo.
1555
1556 Don't do this if SET_SRC (set) isn't a general operand, if it is
1557 a memory requiring special instructions to load it, decreasing
1558 mem_cost might result in it being loaded using the specialized
1559 instruction into a register, then stored into stack and loaded
1560 again from the stack. See PR52208.
1561
1562 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1563 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1564 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1565 && ((MEM_P (XEXP (note, 0))
1566 && !side_effects_p (SET_SRC (set)))
1567 || (CONSTANT_P (XEXP (note, 0))
1568 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1569 XEXP (note, 0))
1570 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1571 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set)))
1572 /* LRA does not use equiv with a symbol for PIC code. */
1573 && (! ira_use_lra_p || ! pic_offset_table_rtx
1574 || ! contains_symbol_ref_p (XEXP (note, 0))))
1575 {
1576 enum reg_class cl = GENERAL_REGS;
1577 rtx reg = SET_DEST (set);
1578 int num = COST_INDEX (REGNO (reg));
1579 /* Costs for NO_REGS are used in cost calculation on the
1580 1st pass when the preferred register classes are not
1581 known yet. In this case we take the best scenario when
1582 mode can't be put into GENERAL_REGS. */
1583 if (!targetm.hard_regno_mode_ok (ira_class_hard_regs[cl][0],
1584 GET_MODE (reg)))
1585 cl = NO_REGS;
1586
1587 COSTS (costs, num)->mem_cost
1588 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1589 record_address_regs (GET_MODE (SET_SRC (set)),
1590 MEM_ADDR_SPACE (SET_SRC (set)),
1591 XEXP (SET_SRC (set), 0), context: 0, outer_code: MEM, index_code: SCRATCH,
1592 scale: frequency * 2);
1593 counted_mem = true;
1594 }
1595
1596 record_operand_costs (insn, pref);
1597
1598 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1599 {
1600 const char *p;
1601 fprintf (stream: ira_dump_file, format: " Final costs after insn %u", INSN_UID (insn));
1602 if (INSN_CODE (insn) >= 0
1603 && (p = get_insn_name (INSN_CODE (insn))) != NULL)
1604 fprintf (stream: ira_dump_file, format: " {%s}", p);
1605 fprintf (stream: ira_dump_file, format: " (freq=%d)\n",
1606 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)));
1607 dump_insn_slim (ira_dump_file, insn);
1608 }
1609
1610 /* Now add the cost for each operand to the total costs for its
1611 allocno. */
1612 for (i = 0; i < recog_data.n_operands; i++)
1613 {
1614 rtx op = recog_data.operand[i];
1615
1616 if (GET_CODE (op) == SUBREG)
1617 op = SUBREG_REG (op);
1618 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1619 {
1620 int regno = REGNO (op);
1621 struct costs *p = COSTS (costs, COST_INDEX (regno));
1622 struct costs *q = op_costs[i];
1623 int *p_costs = p->cost, *q_costs = q->cost;
1624 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1625 int add_cost = 0;
1626
1627 /* If the already accounted for the memory "cost" above, don't
1628 do so again. */
1629 if (!counted_mem)
1630 {
1631 add_cost = q->mem_cost;
1632 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1633 p->mem_cost = INT_MAX;
1634 else
1635 p->mem_cost += add_cost;
1636 }
1637 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1638 {
1639 fprintf (stream: ira_dump_file, format: " op %d(r=%u) MEM:%d(+%d)",
1640 i, REGNO(op), p->mem_cost, add_cost);
1641 }
1642 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1643 {
1644 add_cost = q_costs[k];
1645 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1646 p_costs[k] = INT_MAX;
1647 else
1648 p_costs[k] += add_cost;
1649 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1650 {
1651 fprintf (stream: ira_dump_file, format: " %s:%d(+%d)",
1652 reg_class_names[cost_classes_ptr->classes[k]],
1653 p_costs[k], add_cost);
1654 }
1655 }
1656 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1657 fprintf (stream: ira_dump_file, format: "\n");
1658 }
1659 }
1660 return insn;
1661}
1662
1663
1664
1665/* Print allocnos costs to file F. */
1666static void
1667print_allocno_costs (FILE *f)
1668{
1669 int k;
1670 ira_allocno_t a;
1671 ira_allocno_iterator ai;
1672
1673 ira_assert (allocno_p);
1674 fprintf (stream: f, format: "\n");
1675 FOR_EACH_ALLOCNO (a, ai)
1676 {
1677 int i, rclass;
1678 basic_block bb;
1679 int regno = ALLOCNO_REGNO (a);
1680 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1681 enum reg_class *cost_classes = cost_classes_ptr->classes;
1682
1683 i = ALLOCNO_NUM (a);
1684 fprintf (stream: f, format: " a%d(r%d,", i, regno);
1685 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1686 fprintf (stream: f, format: "b%d", bb->index);
1687 else
1688 fprintf (stream: f, format: "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1689 fprintf (stream: f, format: ") costs:");
1690 for (k = 0; k < cost_classes_ptr->num; k++)
1691 {
1692 rclass = cost_classes[k];
1693 fprintf (stream: f, format: " %s:%d", reg_class_names[rclass],
1694 COSTS (costs, i)->cost[k]);
1695 if (flag_ira_region == IRA_REGION_ALL
1696 || flag_ira_region == IRA_REGION_MIXED)
1697 fprintf (stream: f, format: ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1698 }
1699 fprintf (stream: f, format: " MEM:%i", COSTS (costs, i)->mem_cost);
1700 if (flag_ira_region == IRA_REGION_ALL
1701 || flag_ira_region == IRA_REGION_MIXED)
1702 fprintf (stream: f, format: ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1703 fprintf (stream: f, format: "\n");
1704 }
1705}
1706
1707/* Print pseudo costs to file F. */
1708static void
1709print_pseudo_costs (FILE *f)
1710{
1711 int regno, k;
1712 int rclass;
1713 cost_classes_t cost_classes_ptr;
1714 enum reg_class *cost_classes;
1715
1716 ira_assert (! allocno_p);
1717 fprintf (stream: f, format: "\n");
1718 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1719 {
1720 if (REG_N_REFS (regno) <= 0)
1721 continue;
1722 cost_classes_ptr = regno_cost_classes[regno];
1723 cost_classes = cost_classes_ptr->classes;
1724 fprintf (stream: f, format: " r%d costs:", regno);
1725 for (k = 0; k < cost_classes_ptr->num; k++)
1726 {
1727 rclass = cost_classes[k];
1728 fprintf (stream: f, format: " %s:%d", reg_class_names[rclass],
1729 COSTS (costs, regno)->cost[k]);
1730 }
1731 fprintf (stream: f, format: " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1732 }
1733}
1734
1735/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1736 costs. */
1737static void
1738process_bb_for_costs (basic_block bb)
1739{
1740 rtx_insn *insn;
1741
1742 frequency = REG_FREQ_FROM_BB (bb);
1743 if (frequency == 0)
1744 frequency = 1;
1745 FOR_BB_INSNS (bb, insn)
1746 insn = scan_one_insn (insn);
1747}
1748
1749/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1750 costs. */
1751static void
1752process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1753{
1754 basic_block bb;
1755
1756 bb = loop_tree_node->bb;
1757 if (bb != NULL)
1758 process_bb_for_costs (bb);
1759}
1760
1761/* Check that reg REGNO can be changed by TO in INSN. Return true in case the
1762 result insn would be valid one. */
1763static bool
1764equiv_can_be_consumed_p (int regno, rtx to, rtx_insn *insn)
1765{
1766 validate_replace_src_group (regno_reg_rtx[regno], to, insn);
1767 bool res = verify_changes (0);
1768 cancel_changes (0);
1769 return res;
1770}
1771
1772/* Return true if X contains a pseudo with equivalence. In this case also
1773 return the pseudo through parameter REG. If the pseudo is a part of subreg,
1774 return the subreg through parameter SUBREG. */
1775
1776static bool
1777get_equiv_regno (rtx x, int &regno, rtx &subreg)
1778{
1779 subreg = NULL_RTX;
1780 if (GET_CODE (x) == SUBREG)
1781 {
1782 subreg = x;
1783 x = SUBREG_REG (x);
1784 }
1785 if (REG_P (x)
1786 && (ira_reg_equiv[REGNO (x)].memory != NULL
1787 || ira_reg_equiv[REGNO (x)].invariant != NULL
1788 || ira_reg_equiv[REGNO (x)].constant != NULL))
1789 {
1790 regno = REGNO (x);
1791 return true;
1792 }
1793 RTX_CODE code = GET_CODE (x);
1794 const char *fmt = GET_RTX_FORMAT (code);
1795
1796 for (int i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1797 if (fmt[i] == 'e')
1798 {
1799 if (get_equiv_regno (XEXP (x, i), regno, subreg))
1800 return true;
1801 }
1802 else if (fmt[i] == 'E')
1803 {
1804 for (int j = 0; j < XVECLEN (x, i); j++)
1805 if (get_equiv_regno (XVECEXP (x, i, j), regno, subreg))
1806 return true;
1807 }
1808 return false;
1809}
1810
1811/* A pass through the current function insns. Calculate costs of using
1812 equivalences for pseudos and store them in regno_equiv_gains. */
1813
1814static void
1815calculate_equiv_gains (void)
1816{
1817 basic_block bb;
1818 int regno, freq, cost;
1819 rtx subreg;
1820 rtx_insn *insn;
1821 machine_mode mode;
1822 enum reg_class rclass;
1823 bitmap_head equiv_pseudos;
1824
1825 ira_assert (allocno_p);
1826 bitmap_initialize (head: &equiv_pseudos, obstack: &reg_obstack);
1827 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1828 if (ira_reg_equiv[regno].init_insns != NULL
1829 && (ira_reg_equiv[regno].memory != NULL
1830 || ira_reg_equiv[regno].invariant != NULL
1831 || (ira_reg_equiv[regno].constant != NULL
1832 /* Ignore complicated constants which probably will be placed
1833 in memory: */
1834 && GET_CODE (ira_reg_equiv[regno].constant) != CONST_DOUBLE
1835 && GET_CODE (ira_reg_equiv[regno].constant) != CONST_VECTOR
1836 && GET_CODE (ira_reg_equiv[regno].constant) != LABEL_REF)))
1837 {
1838 rtx_insn_list *x;
1839 for (x = ira_reg_equiv[regno].init_insns; x != NULL; x = x->next ())
1840 {
1841 insn = x->insn ();
1842 rtx set = single_set (insn);
1843
1844 if (set == NULL_RTX || SET_DEST (set) != regno_reg_rtx[regno])
1845 break;
1846 bb = BLOCK_FOR_INSN (insn);
1847 ira_curr_regno_allocno_map
1848 = ira_bb_nodes[bb->index].parent->regno_allocno_map;
1849 mode = PSEUDO_REGNO_MODE (regno);
1850 rclass = pref[COST_INDEX (regno)];
1851 ira_init_register_move_cost_if_necessary (mode);
1852 if (ira_reg_equiv[regno].memory != NULL)
1853 cost = ira_memory_move_cost[mode][rclass][1];
1854 else
1855 cost = ira_register_move_cost[mode][rclass][rclass];
1856 freq = REG_FREQ_FROM_BB (bb);
1857 regno_equiv_gains[regno] += cost * freq;
1858 }
1859 if (x != NULL)
1860 /* We found complicated equiv or reverse equiv mem=reg. Ignore
1861 them. */
1862 regno_equiv_gains[regno] = 0;
1863 else
1864 bitmap_set_bit (&equiv_pseudos, regno);
1865 }
1866
1867 FOR_EACH_BB_FN (bb, cfun)
1868 {
1869 freq = REG_FREQ_FROM_BB (bb);
1870 ira_curr_regno_allocno_map
1871 = ira_bb_nodes[bb->index].parent->regno_allocno_map;
1872 FOR_BB_INSNS (bb, insn)
1873 {
1874 if (!NONDEBUG_INSN_P (insn)
1875 || !get_equiv_regno (x: PATTERN (insn), regno, subreg)
1876 || !bitmap_bit_p (&equiv_pseudos, regno))
1877 continue;
1878 rtx subst = ira_reg_equiv[regno].memory;
1879
1880 if (subst == NULL)
1881 subst = ira_reg_equiv[regno].constant;
1882 if (subst == NULL)
1883 subst = ira_reg_equiv[regno].invariant;
1884 ira_assert (subst != NULL);
1885 mode = PSEUDO_REGNO_MODE (regno);
1886 ira_init_register_move_cost_if_necessary (mode);
1887 bool consumed_p = equiv_can_be_consumed_p (regno, to: subst, insn);
1888
1889 rclass = pref[COST_INDEX (regno)];
1890 if (MEM_P (subst)
1891 /* If it is a change of constant into double for example, the
1892 result constant probably will be placed in memory. */
1893 || (subreg != NULL_RTX && !INTEGRAL_MODE_P (GET_MODE (subreg))))
1894 cost = ira_memory_move_cost[mode][rclass][1] + (consumed_p ? 0 : 1);
1895 else if (consumed_p)
1896 continue;
1897 else
1898 cost = ira_register_move_cost[mode][rclass][rclass];
1899 regno_equiv_gains[regno] -= cost * freq;
1900 }
1901 }
1902 bitmap_clear (&equiv_pseudos);
1903}
1904
1905/* Find costs of register classes and memory for allocnos or pseudos
1906 and their best costs. Set up preferred, alternative and allocno
1907 classes for pseudos. */
1908static void
1909find_costs_and_classes (FILE *dump_file)
1910{
1911 int i, k, start, max_cost_classes_num;
1912 int pass;
1913 basic_block bb;
1914 enum reg_class *regno_best_class, new_class;
1915
1916 init_recog ();
1917 regno_best_class
1918 = (enum reg_class *) ira_allocate (max_reg_num ()
1919 * sizeof (enum reg_class));
1920 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1921 regno_best_class[i] = NO_REGS;
1922 if (!resize_reg_info () && allocno_p
1923 && pseudo_classes_defined_p && flag_expensive_optimizations)
1924 {
1925 ira_allocno_t a;
1926 ira_allocno_iterator ai;
1927
1928 pref = pref_buffer;
1929 max_cost_classes_num = 1;
1930 FOR_EACH_ALLOCNO (a, ai)
1931 {
1932 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1933 setup_regno_cost_classes_by_aclass
1934 (ALLOCNO_REGNO (a), aclass: pref[ALLOCNO_NUM (a)]);
1935 max_cost_classes_num
1936 = MAX (max_cost_classes_num,
1937 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1938 }
1939 start = 1;
1940 }
1941 else
1942 {
1943 pref = NULL;
1944 max_cost_classes_num = ira_important_classes_num;
1945 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1946 if (regno_reg_rtx[i] != NULL_RTX)
1947 setup_regno_cost_classes_by_mode (regno: i, PSEUDO_REGNO_MODE (i));
1948 else
1949 setup_regno_cost_classes_by_aclass (regno: i, aclass: ALL_REGS);
1950 start = 0;
1951 }
1952 if (allocno_p)
1953 /* Clear the flag for the next compiled function. */
1954 pseudo_classes_defined_p = false;
1955 /* Normally we scan the insns once and determine the best class to
1956 use for each allocno. However, if -fexpensive-optimizations are
1957 on, we do so twice, the second time using the tentative best
1958 classes to guide the selection. */
1959 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1960 {
1961 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1962 fprintf (stream: dump_file,
1963 format: "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1964
1965 if (pass != start)
1966 {
1967 max_cost_classes_num = 1;
1968 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1969 {
1970 setup_regno_cost_classes_by_aclass (regno: i, aclass: regno_best_class[i]);
1971 max_cost_classes_num
1972 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1973 }
1974 }
1975
1976 struct_costs_size
1977 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1978 /* Zero out our accumulation of the cost of each class for each
1979 allocno. */
1980 memset (s: costs, c: 0, n: cost_elements_num * struct_costs_size);
1981
1982 if (allocno_p)
1983 {
1984 /* Scan the instructions and record each time it would save code
1985 to put a certain allocno in a certain class. */
1986 ira_traverse_loop_tree (true, ira_loop_tree_root,
1987 process_bb_node_for_costs, NULL);
1988
1989 memcpy (dest: total_allocno_costs, src: costs,
1990 max_struct_costs_size * ira_allocnos_num);
1991 }
1992 else
1993 {
1994 basic_block bb;
1995
1996 FOR_EACH_BB_FN (bb, cfun)
1997 process_bb_for_costs (bb);
1998 }
1999
2000 if (pass == 0)
2001 pref = pref_buffer;
2002
2003 if (ira_use_lra_p && allocno_p && pass == 1)
2004 /* It is a pass through all insns. So do it once and only for RA (not
2005 for insn scheduler) when we already found preferable pseudo register
2006 classes on the previous pass. */
2007 calculate_equiv_gains ();
2008
2009 /* Now for each allocno look at how desirable each class is and
2010 find which class is preferred. */
2011 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2012 {
2013 ira_allocno_t a, parent_a;
2014 int rclass, a_num, parent_a_num, add_cost;
2015 ira_loop_tree_node_t parent;
2016 int best_cost, allocno_cost;
2017 enum reg_class best, alt_class;
2018 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
2019 enum reg_class *cost_classes;
2020 int *i_costs = temp_costs->cost;
2021 int i_mem_cost;
2022 int equiv_savings = regno_equiv_gains[i];
2023
2024 if (! allocno_p)
2025 {
2026 if (regno_reg_rtx[i] == NULL_RTX)
2027 continue;
2028 memcpy (temp_costs, COSTS (costs, i), n: struct_costs_size);
2029 i_mem_cost = temp_costs->mem_cost;
2030 cost_classes = cost_classes_ptr->classes;
2031 }
2032 else
2033 {
2034 if (ira_regno_allocno_map[i] == NULL)
2035 continue;
2036 memset (temp_costs, c: 0, n: struct_costs_size);
2037 i_mem_cost = 0;
2038 cost_classes = cost_classes_ptr->classes;
2039 /* Find cost of all allocnos with the same regno. */
2040 for (a = ira_regno_allocno_map[i];
2041 a != NULL;
2042 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2043 {
2044 int *a_costs, *p_costs;
2045
2046 a_num = ALLOCNO_NUM (a);
2047 if ((flag_ira_region == IRA_REGION_ALL
2048 || flag_ira_region == IRA_REGION_MIXED)
2049 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
2050 && (parent_a = parent->regno_allocno_map[i]) != NULL
2051 /* There are no caps yet. */
2052 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
2053 (a)->border_allocnos,
2054 ALLOCNO_NUM (a)))
2055 {
2056 /* Propagate costs to upper levels in the region
2057 tree. */
2058 parent_a_num = ALLOCNO_NUM (parent_a);
2059 a_costs = COSTS (total_allocno_costs, a_num)->cost;
2060 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
2061 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
2062 {
2063 add_cost = a_costs[k];
2064 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
2065 p_costs[k] = INT_MAX;
2066 else
2067 p_costs[k] += add_cost;
2068 }
2069 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
2070 if (add_cost > 0
2071 && (INT_MAX - add_cost
2072 < COSTS (total_allocno_costs,
2073 parent_a_num)->mem_cost))
2074 COSTS (total_allocno_costs, parent_a_num)->mem_cost
2075 = INT_MAX;
2076 else
2077 COSTS (total_allocno_costs, parent_a_num)->mem_cost
2078 += add_cost;
2079
2080 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
2081 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
2082 }
2083 a_costs = COSTS (costs, a_num)->cost;
2084 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
2085 {
2086 add_cost = a_costs[k];
2087 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
2088 i_costs[k] = INT_MAX;
2089 else
2090 i_costs[k] += add_cost;
2091 }
2092 add_cost = COSTS (costs, a_num)->mem_cost;
2093 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
2094 i_mem_cost = INT_MAX;
2095 else
2096 i_mem_cost += add_cost;
2097 }
2098 }
2099 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
2100 i_mem_cost = 0;
2101 else if (ira_use_lra_p)
2102 {
2103 if (equiv_savings > 0)
2104 {
2105 i_mem_cost = 0;
2106 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
2107 fprintf (stream: ira_dump_file,
2108 format: " Use MEM for r%d as the equiv savings is %d\n",
2109 i, equiv_savings);
2110 }
2111 }
2112 else if (equiv_savings < 0)
2113 i_mem_cost = -equiv_savings;
2114 else if (equiv_savings > 0)
2115 {
2116 i_mem_cost = 0;
2117 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
2118 i_costs[k] += equiv_savings;
2119 }
2120
2121 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
2122 best = ALL_REGS;
2123 alt_class = NO_REGS;
2124 /* Find best common class for all allocnos with the same
2125 regno. */
2126 for (k = 0; k < cost_classes_ptr->num; k++)
2127 {
2128 rclass = cost_classes[k];
2129 if (i_costs[k] < best_cost)
2130 {
2131 best_cost = i_costs[k];
2132 best = (enum reg_class) rclass;
2133 }
2134 else if (i_costs[k] == best_cost)
2135 best = ira_reg_class_subunion[best][rclass];
2136 if (pass == flag_expensive_optimizations
2137 /* We still prefer registers to memory even at this
2138 stage if their costs are the same. We will make
2139 a final decision during assigning hard registers
2140 when we have all info including more accurate
2141 costs which might be affected by assigning hard
2142 registers to other pseudos because the pseudos
2143 involved in moves can be coalesced. */
2144 && i_costs[k] <= i_mem_cost
2145 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
2146 > reg_class_size[alt_class]))
2147 alt_class = reg_class_subunion[alt_class][rclass];
2148 }
2149 alt_class = ira_allocno_class_translate[alt_class];
2150 if (best_cost > i_mem_cost
2151 && ! non_spilled_static_chain_regno_p (regno: i))
2152 regno_aclass[i] = NO_REGS;
2153 else if (!optimize && !targetm.class_likely_spilled_p (best))
2154 /* Registers in the alternative class are likely to need
2155 longer or slower sequences than registers in the best class.
2156 When optimizing we make some effort to use the best class
2157 over the alternative class where possible, but at -O0 we
2158 effectively give the alternative class equal weight.
2159 We then run the risk of using slower alternative registers
2160 when plenty of registers from the best class are still free.
2161 This is especially true because live ranges tend to be very
2162 short in -O0 code and so register pressure tends to be low.
2163
2164 Avoid that by ignoring the alternative class if the best
2165 class has plenty of registers.
2166
2167 The union class arrays give important classes and only
2168 part of it are allocno classes. So translate them into
2169 allocno classes. */
2170 regno_aclass[i] = ira_allocno_class_translate[best];
2171 else
2172 {
2173 /* Make the common class the biggest class of best and
2174 alt_class. Translate the common class into an
2175 allocno class too. */
2176 regno_aclass[i] = (ira_allocno_class_translate
2177 [ira_reg_class_superunion[best][alt_class]]);
2178 ira_assert (regno_aclass[i] != NO_REGS
2179 && ira_reg_allocno_class_p[regno_aclass[i]]);
2180 }
2181 if (pic_offset_table_rtx != NULL
2182 && i == (int) REGNO (pic_offset_table_rtx))
2183 {
2184 /* For some targets, integer pseudos can be assigned to fp
2185 regs. As we don't want reload pic offset table pseudo, we
2186 should avoid using non-integer regs. */
2187 regno_aclass[i]
2188 = ira_reg_class_intersect[regno_aclass[i]][GENERAL_REGS];
2189 alt_class = ira_reg_class_intersect[alt_class][GENERAL_REGS];
2190 }
2191 if ((new_class
2192 = (reg_class) (targetm.ira_change_pseudo_allocno_class
2193 (i, regno_aclass[i], best))) != regno_aclass[i])
2194 {
2195 regno_aclass[i] = new_class;
2196 if (hard_reg_set_subset_p (reg_class_contents[new_class],
2197 reg_class_contents[best]))
2198 best = new_class;
2199 if (hard_reg_set_subset_p (reg_class_contents[new_class],
2200 reg_class_contents[alt_class]))
2201 alt_class = new_class;
2202 }
2203 if (pass == flag_expensive_optimizations)
2204 {
2205 if (best_cost > i_mem_cost
2206 /* Do not assign NO_REGS to static chain pointer
2207 pseudo when non-local goto is used. */
2208 && ! non_spilled_static_chain_regno_p (regno: i))
2209 best = alt_class = NO_REGS;
2210 else if (best == alt_class)
2211 alt_class = NO_REGS;
2212 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
2213 if ((!allocno_p || internal_flag_ira_verbose > 2)
2214 && dump_file != NULL)
2215 fprintf (stream: dump_file,
2216 format: " r%d: preferred %s, alternative %s, allocno %s\n",
2217 i, reg_class_names[best], reg_class_names[alt_class],
2218 reg_class_names[regno_aclass[i]]);
2219 }
2220 regno_best_class[i] = best;
2221 if (! allocno_p)
2222 {
2223 pref[i] = (best_cost > i_mem_cost
2224 && ! non_spilled_static_chain_regno_p (regno: i)
2225 ? NO_REGS : best);
2226 continue;
2227 }
2228 for (a = ira_regno_allocno_map[i];
2229 a != NULL;
2230 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2231 {
2232 enum reg_class aclass = regno_aclass[i];
2233 int a_num = ALLOCNO_NUM (a);
2234 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
2235 int *a_costs = COSTS (costs, a_num)->cost;
2236
2237 if (aclass == NO_REGS)
2238 best = NO_REGS;
2239 else
2240 {
2241 /* Finding best class which is subset of the common
2242 class. */
2243 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
2244 allocno_cost = best_cost;
2245 best = ALL_REGS;
2246 for (k = 0; k < cost_classes_ptr->num; k++)
2247 {
2248 rclass = cost_classes[k];
2249 if (! ira_class_subset_p[rclass][aclass])
2250 continue;
2251 if (total_a_costs[k] < best_cost)
2252 {
2253 best_cost = total_a_costs[k];
2254 allocno_cost = a_costs[k];
2255 best = (enum reg_class) rclass;
2256 }
2257 else if (total_a_costs[k] == best_cost)
2258 {
2259 best = ira_reg_class_subunion[best][rclass];
2260 allocno_cost = MAX (allocno_cost, a_costs[k]);
2261 }
2262 }
2263 ALLOCNO_CLASS_COST (a) = allocno_cost;
2264 }
2265 if (internal_flag_ira_verbose > 2 && dump_file != NULL
2266 && (pass == 0 || pref[a_num] != best))
2267 {
2268 fprintf (stream: dump_file, format: " a%d (r%d,", a_num, i);
2269 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
2270 fprintf (stream: dump_file, format: "b%d", bb->index);
2271 else
2272 fprintf (stream: dump_file, format: "l%d",
2273 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
2274 fprintf (stream: dump_file, format: ") best %s, allocno %s\n",
2275 reg_class_names[best],
2276 reg_class_names[aclass]);
2277 }
2278 pref[a_num] = best;
2279 if (pass == flag_expensive_optimizations && best != aclass
2280 && ira_class_hard_regs_num[best] > 0
2281 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
2282 >= ira_class_hard_regs_num[best]))
2283 {
2284 int ind = cost_classes_ptr->index[aclass];
2285
2286 ira_assert (ind >= 0);
2287 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
2288 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
2289 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
2290 / (ira_register_move_cost
2291 [ALLOCNO_MODE (a)][best][aclass]));
2292 for (k = 0; k < cost_classes_ptr->num; k++)
2293 if (ira_class_subset_p[cost_classes[k]][best])
2294 a_costs[k] = a_costs[ind];
2295 }
2296 }
2297 }
2298
2299 if (internal_flag_ira_verbose > 4 && dump_file)
2300 {
2301 if (allocno_p)
2302 print_allocno_costs (f: dump_file);
2303 else
2304 print_pseudo_costs (f: dump_file);
2305 fprintf (stream: dump_file,format: "\n");
2306 }
2307 }
2308 ira_free (addr: regno_best_class);
2309}
2310
2311
2312
2313/* Process moves involving hard regs to modify allocno hard register
2314 costs. We can do this only after determining allocno class. If a
2315 hard register forms a register class, then moves with the hard
2316 register are already taken into account in class costs for the
2317 allocno. */
2318static void
2319process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
2320{
2321 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
2322 bool to_p;
2323 ira_allocno_t a, curr_a;
2324 ira_loop_tree_node_t curr_loop_tree_node;
2325 enum reg_class rclass;
2326 basic_block bb;
2327 rtx_insn *insn;
2328 rtx set, src, dst;
2329
2330 bb = loop_tree_node->bb;
2331 if (bb == NULL)
2332 return;
2333 freq = REG_FREQ_FROM_BB (bb);
2334 if (freq == 0)
2335 freq = 1;
2336 FOR_BB_INSNS (bb, insn)
2337 {
2338 if (!NONDEBUG_INSN_P (insn))
2339 continue;
2340 set = single_set (insn);
2341 if (set == NULL_RTX)
2342 continue;
2343 dst = SET_DEST (set);
2344 src = SET_SRC (set);
2345 if (! REG_P (dst) || ! REG_P (src))
2346 continue;
2347 dst_regno = REGNO (dst);
2348 src_regno = REGNO (src);
2349 if (dst_regno >= FIRST_PSEUDO_REGISTER
2350 && src_regno < FIRST_PSEUDO_REGISTER)
2351 {
2352 hard_regno = src_regno;
2353 a = ira_curr_regno_allocno_map[dst_regno];
2354 to_p = true;
2355 }
2356 else if (src_regno >= FIRST_PSEUDO_REGISTER
2357 && dst_regno < FIRST_PSEUDO_REGISTER)
2358 {
2359 hard_regno = dst_regno;
2360 a = ira_curr_regno_allocno_map[src_regno];
2361 to_p = false;
2362 }
2363 else
2364 continue;
2365 if (reg_class_size[(int) REGNO_REG_CLASS (hard_regno)]
2366 == (ira_reg_class_max_nregs
2367 [REGNO_REG_CLASS (hard_regno)][(int) ALLOCNO_MODE(a)]))
2368 /* If the class can provide only one hard reg to the allocno,
2369 we processed the insn record_operand_costs already and we
2370 actually updated the hard reg cost there. */
2371 continue;
2372 rclass = ALLOCNO_CLASS (a);
2373 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], bit: hard_regno))
2374 continue;
2375 i = ira_class_hard_reg_index[rclass][hard_regno];
2376 if (i < 0)
2377 continue;
2378 a_regno = ALLOCNO_REGNO (a);
2379 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2380 curr_loop_tree_node != NULL;
2381 curr_loop_tree_node = curr_loop_tree_node->parent)
2382 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2383 ira_add_allocno_pref (curr_a, hard_regno, freq);
2384 {
2385 int cost;
2386 enum reg_class hard_reg_class;
2387 machine_mode mode;
2388
2389 mode = ALLOCNO_MODE (a);
2390 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2391 ira_init_register_move_cost_if_necessary (mode);
2392 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2393 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2394 ira_allocate_and_set_costs (vec: &ALLOCNO_HARD_REG_COSTS (a), aclass: rclass,
2395 ALLOCNO_CLASS_COST (a));
2396 ira_allocate_and_set_costs (vec: &ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2397 aclass: rclass, val: 0);
2398 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2399 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2400 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2401 ALLOCNO_HARD_REG_COSTS (a)[i]);
2402 }
2403 }
2404}
2405
2406/* After we find hard register and memory costs for allocnos, define
2407 its class and modify hard register cost because insns moving
2408 allocno to/from hard registers. */
2409static void
2410setup_allocno_class_and_costs (void)
2411{
2412 int i, j, n, regno, hard_regno, num;
2413 int *reg_costs;
2414 enum reg_class aclass, rclass;
2415 ira_allocno_t a;
2416 ira_allocno_iterator ai;
2417 cost_classes_t cost_classes_ptr;
2418
2419 ira_assert (allocno_p);
2420 FOR_EACH_ALLOCNO (a, ai)
2421 {
2422 i = ALLOCNO_NUM (a);
2423 regno = ALLOCNO_REGNO (a);
2424 aclass = regno_aclass[regno];
2425 cost_classes_ptr = regno_cost_classes[regno];
2426 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2427 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2428 ira_set_allocno_class (a, aclass);
2429 if (aclass == NO_REGS)
2430 continue;
2431 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2432 {
2433 n = ira_class_hard_regs_num[aclass];
2434 ALLOCNO_HARD_REG_COSTS (a)
2435 = reg_costs = ira_allocate_cost_vector (aclass);
2436 for (j = n - 1; j >= 0; j--)
2437 {
2438 hard_regno = ira_class_hard_regs[aclass][j];
2439 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], bit: hard_regno))
2440 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2441 else
2442 {
2443 rclass = REGNO_REG_CLASS (hard_regno);
2444 num = cost_classes_ptr->index[rclass];
2445 if (num < 0)
2446 {
2447 num = cost_classes_ptr->hard_regno_index[hard_regno];
2448 ira_assert (num >= 0);
2449 }
2450 reg_costs[j] = COSTS (costs, i)->cost[num];
2451 }
2452 }
2453 }
2454 }
2455 if (optimize)
2456 ira_traverse_loop_tree (true, ira_loop_tree_root,
2457 process_bb_node_for_hard_reg_moves, NULL);
2458}
2459
2460
2461
2462/* Function called once during compiler work. */
2463void
2464ira_init_costs_once (void)
2465{
2466 int i;
2467
2468 init_cost = NULL;
2469 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2470 {
2471 op_costs[i] = NULL;
2472 this_op_costs[i] = NULL;
2473 }
2474 temp_costs = NULL;
2475}
2476
2477/* Free allocated temporary cost vectors. */
2478void
2479target_ira_int::free_ira_costs ()
2480{
2481 int i;
2482
2483 free (ptr: x_init_cost);
2484 x_init_cost = NULL;
2485 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2486 {
2487 free (ptr: x_op_costs[i]);
2488 free (ptr: x_this_op_costs[i]);
2489 x_op_costs[i] = x_this_op_costs[i] = NULL;
2490 }
2491 free (ptr: x_temp_costs);
2492 x_temp_costs = NULL;
2493}
2494
2495/* This is called each time register related information is
2496 changed. */
2497void
2498ira_init_costs (void)
2499{
2500 int i;
2501
2502 this_target_ira_int->free_ira_costs ();
2503 max_struct_costs_size
2504 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2505 /* Don't use ira_allocate because vectors live through several IRA
2506 calls. */
2507 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2508 init_cost->mem_cost = 1000000;
2509 for (i = 0; i < ira_important_classes_num; i++)
2510 init_cost->cost[i] = 1000000;
2511 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2512 {
2513 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2514 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2515 }
2516 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2517}
2518
2519
2520
2521/* Common initialization function for ira_costs and
2522 ira_set_pseudo_classes. */
2523static void
2524init_costs (void)
2525{
2526 init_subregs_of_mode ();
2527 costs = (struct costs *) ira_allocate (max_struct_costs_size
2528 * cost_elements_num);
2529 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2530 * cost_elements_num);
2531 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2532 * max_reg_num ());
2533 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2534 memset (s: regno_equiv_gains, c: 0, n: sizeof (int) * max_reg_num ());
2535}
2536
2537/* Common finalization function for ira_costs and
2538 ira_set_pseudo_classes. */
2539static void
2540finish_costs (void)
2541{
2542 finish_subregs_of_mode ();
2543 ira_free (addr: regno_equiv_gains);
2544 ira_free (addr: regno_aclass);
2545 ira_free (addr: pref_buffer);
2546 ira_free (addr: costs);
2547}
2548
2549/* Entry function which defines register class, memory and hard
2550 register costs for each allocno. */
2551void
2552ira_costs (void)
2553{
2554 allocno_p = true;
2555 cost_elements_num = ira_allocnos_num;
2556 init_costs ();
2557 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2558 * ira_allocnos_num);
2559 initiate_regno_cost_classes ();
2560 if (!ira_use_lra_p)
2561 /* Process equivs in reload to update costs through hook
2562 ira_adjust_equiv_reg_cost. */
2563 calculate_elim_costs_all_insns ();
2564 find_costs_and_classes (dump_file: ira_dump_file);
2565 setup_allocno_class_and_costs ();
2566 finish_regno_cost_classes ();
2567 finish_costs ();
2568 ira_free (addr: total_allocno_costs);
2569}
2570
2571/* Entry function which defines classes for pseudos.
2572 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2573void
2574ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2575{
2576 allocno_p = false;
2577 internal_flag_ira_verbose = flag_ira_verbose;
2578 cost_elements_num = max_reg_num ();
2579 init_costs ();
2580 initiate_regno_cost_classes ();
2581 find_costs_and_classes (dump_file);
2582 finish_regno_cost_classes ();
2583 if (define_pseudo_classes)
2584 pseudo_classes_defined_p = true;
2585
2586 finish_costs ();
2587}
2588
2589
2590
2591/* Change hard register costs for allocnos which lives through
2592 function calls. This is called only when we found all intersected
2593 calls during building allocno live ranges. */
2594void
2595ira_tune_allocno_costs (void)
2596{
2597 int j, n, regno;
2598 int cost, min_cost, *reg_costs;
2599 enum reg_class aclass;
2600 machine_mode mode;
2601 ira_allocno_t a;
2602 ira_allocno_iterator ai;
2603 ira_allocno_object_iterator oi;
2604 ira_object_t obj;
2605 bool skip_p;
2606
2607 FOR_EACH_ALLOCNO (a, ai)
2608 {
2609 aclass = ALLOCNO_CLASS (a);
2610 if (aclass == NO_REGS)
2611 continue;
2612 mode = ALLOCNO_MODE (a);
2613 n = ira_class_hard_regs_num[aclass];
2614 min_cost = INT_MAX;
2615 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2616 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2617 {
2618 ira_allocate_and_set_costs
2619 (vec: &ALLOCNO_HARD_REG_COSTS (a), aclass,
2620 ALLOCNO_CLASS_COST (a));
2621 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2622 for (j = n - 1; j >= 0; j--)
2623 {
2624 regno = ira_class_hard_regs[aclass][j];
2625 skip_p = false;
2626 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2627 {
2628 if (ira_hard_reg_set_intersection_p (hard_regno: regno, mode,
2629 OBJECT_CONFLICT_HARD_REGS
2630 (obj)))
2631 {
2632 skip_p = true;
2633 break;
2634 }
2635 }
2636 if (skip_p)
2637 continue;
2638 cost = 0;
2639 if (ira_need_caller_save_p (a, regno))
2640 cost += ira_caller_save_cost (a);
2641#ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2642 {
2643 auto rclass = REGNO_REG_CLASS (regno);
2644 cost += ((ira_memory_move_cost[mode][rclass][0]
2645 + ira_memory_move_cost[mode][rclass][1])
2646 * ALLOCNO_FREQ (a)
2647 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2648 }
2649#endif
2650 if (INT_MAX - cost < reg_costs[j])
2651 reg_costs[j] = INT_MAX;
2652 else
2653 reg_costs[j] += cost;
2654 if (min_cost > reg_costs[j])
2655 min_cost = reg_costs[j];
2656 }
2657 }
2658 if (min_cost != INT_MAX)
2659 ALLOCNO_CLASS_COST (a) = min_cost;
2660
2661 /* Some targets allow pseudos to be allocated to unaligned sequences
2662 of hard registers. However, selecting an unaligned sequence can
2663 unnecessarily restrict later allocations. So increase the cost of
2664 unaligned hard regs to encourage the use of aligned hard regs. */
2665 {
2666 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2667
2668 if (nregs > 1)
2669 {
2670 ira_allocate_and_set_costs
2671 (vec: &ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2672 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2673 for (j = n - 1; j >= 0; j--)
2674 {
2675 regno = ira_non_ordered_class_hard_regs[aclass][j];
2676 if ((regno % nregs) != 0)
2677 {
2678 int index = ira_class_hard_reg_index[aclass][regno];
2679 ira_assert (index != -1);
2680 reg_costs[index] += ALLOCNO_FREQ (a);
2681 }
2682 }
2683 }
2684 }
2685 }
2686}
2687
2688/* A hook from the reload pass. Add COST to the estimated gain for eliminating
2689 REGNO with its equivalence. If COST is zero, record that no such
2690 elimination is possible. */
2691
2692void
2693ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2694{
2695 ira_assert (!ira_use_lra_p);
2696 if (cost == 0)
2697 regno_equiv_gains[regno] = 0;
2698 else
2699 regno_equiv_gains[regno] += cost;
2700}
2701
2702void
2703ira_costs_cc_finalize (void)
2704{
2705 this_target_ira_int->free_ira_costs ();
2706}
2707

source code of gcc/ira-costs.cc