1/* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2025 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "backend.h"
25#include "target.h"
26#include "rtl.h"
27#include "tree.h"
28#include "predict.h"
29#include "memmodel.h"
30#include "tm_p.h"
31#include "insn-config.h"
32#include "regs.h"
33#include "regset.h"
34#include "ira.h"
35#include "ira-int.h"
36#include "addresses.h"
37#include "reload.h"
38#include "print-rtl.h"
39
40/* The flags is set up every time when we calculate pseudo register
41 classes through function ira_set_pseudo_classes. */
42static bool pseudo_classes_defined_p = false;
43
44/* TRUE if we work with allocnos. Otherwise we work with pseudos. */
45static bool allocno_p;
46
47/* Number of elements in array `costs'. */
48static int cost_elements_num;
49
50/* The `costs' struct records the cost of using hard registers of each
51 class considered for the calculation and of using memory for each
52 allocno or pseudo. */
53struct costs
54{
55 int mem_cost;
56 /* Costs for register classes start here. We process only some
57 allocno classes. */
58 int cost[1];
59};
60
61#define max_struct_costs_size \
62 (this_target_ira_int->x_max_struct_costs_size)
63#define init_cost \
64 (this_target_ira_int->x_init_cost)
65#define temp_costs \
66 (this_target_ira_int->x_temp_costs)
67#define op_costs \
68 (this_target_ira_int->x_op_costs)
69#define this_op_costs \
70 (this_target_ira_int->x_this_op_costs)
71
72/* Costs of each class for each allocno or pseudo. */
73static struct costs *costs;
74
75/* Accumulated costs of each class for each allocno. */
76static struct costs *total_allocno_costs;
77
78/* It is the current size of struct costs. */
79static size_t struct_costs_size;
80
81/* Return pointer to structure containing costs of allocno or pseudo
82 with given NUM in array ARR. */
83#define COSTS(arr, num) \
84 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
85
86/* Return index in COSTS when processing reg with REGNO. */
87#define COST_INDEX(regno) (allocno_p \
88 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
89 : (int) regno)
90
91/* Record register class preferences of each allocno or pseudo. Null
92 value means no preferences. It happens on the 1st iteration of the
93 cost calculation. */
94static enum reg_class *pref;
95
96/* Allocated buffers for pref. */
97static enum reg_class *pref_buffer;
98
99/* Record allocno class of each allocno with the same regno. */
100static enum reg_class *regno_aclass;
101
102/* Record cost gains for not allocating a register with an invariant
103 equivalence. */
104static int *regno_equiv_gains;
105
106/* Execution frequency of the current insn. */
107static int frequency;
108
109
110
111/* Info about reg classes whose costs are calculated for a pseudo. */
112struct cost_classes
113{
114 /* Number of the cost classes in the subsequent array. */
115 int num;
116 /* Container of the cost classes. */
117 enum reg_class classes[N_REG_CLASSES];
118 /* Map reg class -> index of the reg class in the previous array.
119 -1 if it is not a cost class. */
120 int index[N_REG_CLASSES];
121 /* Map hard regno index of first class in array CLASSES containing
122 the hard regno, -1 otherwise. */
123 int hard_regno_index[FIRST_PSEUDO_REGISTER];
124};
125
126/* Types of pointers to the structure above. */
127typedef struct cost_classes *cost_classes_t;
128typedef const struct cost_classes *const_cost_classes_t;
129
130/* Info about cost classes for each pseudo. */
131static cost_classes_t *regno_cost_classes;
132
133/* Helper for cost_classes hashing. */
134
135struct cost_classes_hasher : pointer_hash <cost_classes>
136{
137 static inline hashval_t hash (const cost_classes *);
138 static inline bool equal (const cost_classes *, const cost_classes *);
139 static inline void remove (cost_classes *);
140};
141
142/* Returns hash value for cost classes info HV. */
143inline hashval_t
144cost_classes_hasher::hash (const cost_classes *hv)
145{
146 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
147}
148
149/* Compares cost classes info HV1 and HV2. */
150inline bool
151cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
152{
153 return (hv1->num == hv2->num
154 && memcmp (s1: hv1->classes, s2: hv2->classes,
155 n: sizeof (enum reg_class) * hv1->num) == 0);
156}
157
158/* Delete cost classes info V from the hash table. */
159inline void
160cost_classes_hasher::remove (cost_classes *v)
161{
162 ira_free (addr: v);
163}
164
165/* Hash table of unique cost classes. */
166static hash_table<cost_classes_hasher> *cost_classes_htab;
167
168/* Map allocno class -> cost classes for pseudo of given allocno
169 class. */
170static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
171
172/* Map mode -> cost classes for pseudo of give mode. */
173static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
174
175/* Cost classes that include all classes in ira_important_classes. */
176static cost_classes all_cost_classes;
177
178/* Use the array of classes in CLASSES_PTR to fill out the rest of
179 the structure. */
180static void
181complete_cost_classes (cost_classes_t classes_ptr)
182{
183 for (int i = 0; i < N_REG_CLASSES; i++)
184 classes_ptr->index[i] = -1;
185 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
186 classes_ptr->hard_regno_index[i] = -1;
187 for (int i = 0; i < classes_ptr->num; i++)
188 {
189 enum reg_class cl = classes_ptr->classes[i];
190 classes_ptr->index[cl] = i;
191 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
192 {
193 unsigned int hard_regno = ira_class_hard_regs[cl][j];
194 if (classes_ptr->hard_regno_index[hard_regno] < 0)
195 classes_ptr->hard_regno_index[hard_regno] = i;
196 }
197 }
198}
199
200/* Initialize info about the cost classes for each pseudo. */
201static void
202initiate_regno_cost_classes (void)
203{
204 int size = sizeof (cost_classes_t) * max_reg_num ();
205
206 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
207 memset (s: regno_cost_classes, c: 0, n: size);
208 memset (s: cost_classes_aclass_cache, c: 0,
209 n: sizeof (cost_classes_t) * N_REG_CLASSES);
210 memset (s: cost_classes_mode_cache, c: 0,
211 n: sizeof (cost_classes_t) * MAX_MACHINE_MODE);
212 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
213 all_cost_classes.num = ira_important_classes_num;
214 for (int i = 0; i < ira_important_classes_num; i++)
215 all_cost_classes.classes[i] = ira_important_classes[i];
216 complete_cost_classes (classes_ptr: &all_cost_classes);
217}
218
219/* Create new cost classes from cost classes FROM and set up members
220 index and hard_regno_index. Return the new classes. The function
221 implements some common code of two functions
222 setup_regno_cost_classes_by_aclass and
223 setup_regno_cost_classes_by_mode. */
224static cost_classes_t
225setup_cost_classes (cost_classes_t from)
226{
227 cost_classes_t classes_ptr;
228
229 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
230 classes_ptr->num = from->num;
231 for (int i = 0; i < from->num; i++)
232 classes_ptr->classes[i] = from->classes[i];
233 complete_cost_classes (classes_ptr);
234 return classes_ptr;
235}
236
237/* Return a version of FULL that only considers registers in REGS that are
238 valid for mode MODE. Both FULL and the returned class are globally
239 allocated. */
240static cost_classes_t
241restrict_cost_classes (cost_classes_t full, machine_mode mode,
242 const_hard_reg_set regs)
243{
244 static struct cost_classes narrow;
245 int map[N_REG_CLASSES];
246 narrow.num = 0;
247 for (int i = 0; i < full->num; i++)
248 {
249 /* Assume that we'll drop the class. */
250 map[i] = -1;
251
252 /* Ignore classes that are too small for the mode. */
253 enum reg_class cl = full->classes[i];
254 if (!contains_reg_of_mode[cl][mode])
255 continue;
256
257 /* Calculate the set of registers in CL that belong to REGS and
258 are valid for MODE. */
259 HARD_REG_SET valid_for_cl = reg_class_contents[cl] & regs;
260 valid_for_cl &= ~(ira_prohibited_class_mode_regs[cl][mode]
261 | ira_no_alloc_regs);
262 if (hard_reg_set_empty_p (x: valid_for_cl))
263 continue;
264
265 /* Don't use this class if the set of valid registers is a subset
266 of an existing class. For example, suppose we have two classes
267 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
268 that the mode changes allowed by FR_REGS are not as general as
269 the mode changes allowed by GR_REGS.
270
271 In this situation, the mode changes for GR_AND_FR_REGS could
272 either be seen as the union or the intersection of the mode
273 changes allowed by the two subclasses. The justification for
274 the union-based definition would be that, if you want a mode
275 change that's only allowed by GR_REGS, you can pick a register
276 from the GR_REGS subclass. The justification for the
277 intersection-based definition would be that every register
278 from the class would allow the mode change.
279
280 However, if we have a register that needs to be in GR_REGS,
281 using GR_AND_FR_REGS with the intersection-based definition
282 would be too pessimistic, since it would bring in restrictions
283 that only apply to FR_REGS. Conversely, if we have a register
284 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
285 union-based definition would lose the extra restrictions
286 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
287 for cases where GR_REGS and FP_REGS are both valid. */
288 int pos;
289 for (pos = 0; pos < narrow.num; ++pos)
290 {
291 enum reg_class cl2 = narrow.classes[pos];
292 if (hard_reg_set_subset_p (x: valid_for_cl, reg_class_contents[cl2]))
293 break;
294 }
295 map[i] = pos;
296 if (pos == narrow.num)
297 {
298 /* If several classes are equivalent, prefer to use the one
299 that was chosen as the allocno class. */
300 enum reg_class cl2 = ira_allocno_class_translate[cl];
301 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
302 cl = cl2;
303 narrow.classes[narrow.num++] = cl;
304 }
305 }
306 if (narrow.num == full->num)
307 return full;
308
309 cost_classes **slot = cost_classes_htab->find_slot (value: &narrow, insert: INSERT);
310 if (*slot == NULL)
311 {
312 cost_classes_t classes = setup_cost_classes (&narrow);
313 /* Map equivalent classes to the representative that we chose above. */
314 for (int i = 0; i < ira_important_classes_num; i++)
315 {
316 enum reg_class cl = ira_important_classes[i];
317 int index = full->index[cl];
318 if (index >= 0)
319 classes->index[cl] = map[index];
320 }
321 *slot = classes;
322 }
323 return *slot;
324}
325
326/* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
327 This function is used when we know an initial approximation of
328 allocno class of the pseudo already, e.g. on the second iteration
329 of class cost calculation or after class cost calculation in
330 register-pressure sensitive insn scheduling or register-pressure
331 sensitive loop-invariant motion. */
332static void
333setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
334{
335 static struct cost_classes classes;
336 cost_classes_t classes_ptr;
337 enum reg_class cl;
338 int i;
339 cost_classes **slot;
340 HARD_REG_SET temp, temp2;
341 bool exclude_p;
342
343 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
344 {
345 temp = reg_class_contents[aclass] & ~ira_no_alloc_regs;
346 /* We exclude classes from consideration which are subsets of
347 ACLASS only if ACLASS is an uniform class. */
348 exclude_p = ira_uniform_class_p[aclass];
349 classes.num = 0;
350 for (i = 0; i < ira_important_classes_num; i++)
351 {
352 cl = ira_important_classes[i];
353 if (exclude_p)
354 {
355 /* Exclude non-uniform classes which are subsets of
356 ACLASS. */
357 temp2 = reg_class_contents[cl] & ~ira_no_alloc_regs;
358 if (hard_reg_set_subset_p (x: temp2, y: temp) && cl != aclass)
359 continue;
360 }
361 classes.classes[classes.num++] = cl;
362 }
363 slot = cost_classes_htab->find_slot (value: &classes, insert: INSERT);
364 if (*slot == NULL)
365 {
366 classes_ptr = setup_cost_classes (&classes);
367 *slot = classes_ptr;
368 }
369 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
370 }
371 if (regno_reg_rtx[regno] != NULL_RTX)
372 {
373 /* Restrict the classes to those that are valid for REGNO's mode
374 (which might for example exclude singleton classes if the mode
375 requires two registers). Also restrict the classes to those that
376 are valid for subregs of REGNO. */
377 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
378 if (!valid_regs)
379 valid_regs = &reg_class_contents[ALL_REGS];
380 classes_ptr = restrict_cost_classes (full: classes_ptr,
381 PSEUDO_REGNO_MODE (regno),
382 regs: *valid_regs);
383 }
384 regno_cost_classes[regno] = classes_ptr;
385}
386
387/* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
388 decrease number of cost classes for the pseudo, if hard registers
389 of some important classes cannot hold a value of MODE. So the
390 pseudo cannot get hard register of some important classes and cost
391 calculation for such important classes is only wasting CPU
392 time. */
393static void
394setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
395{
396 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
397 regno_cost_classes[regno] = restrict_cost_classes (full: &all_cost_classes,
398 mode, regs: *valid_regs);
399 else
400 {
401 if (cost_classes_mode_cache[mode] == NULL)
402 cost_classes_mode_cache[mode]
403 = restrict_cost_classes (full: &all_cost_classes, mode,
404 reg_class_contents[ALL_REGS]);
405 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
406 }
407}
408
409/* Finalize info about the cost classes for each pseudo. */
410static void
411finish_regno_cost_classes (void)
412{
413 ira_free (addr: regno_cost_classes);
414 delete cost_classes_htab;
415 cost_classes_htab = NULL;
416}
417
418
419
420/* Compute the cost of loading X into (if TO_P is TRUE) or from (if
421 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
422 be a pseudo register. */
423static int
424copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
425 secondary_reload_info *prev_sri)
426{
427 secondary_reload_info sri;
428 reg_class_t secondary_class = NO_REGS;
429
430 /* If X is a SCRATCH, there is actually nothing to move since we are
431 assuming optimal allocation. */
432 if (GET_CODE (x) == SCRATCH)
433 return 0;
434
435 /* Get the class we will actually use for a reload. */
436 rclass = targetm.preferred_reload_class (x, rclass);
437
438 /* If we need a secondary reload for an intermediate, the cost is
439 that to load the input into the intermediate register, then to
440 copy it. */
441 sri.prev_sri = prev_sri;
442 sri.extra_cost = 0;
443 /* PR 68770: Secondary reload might examine the t_icode field. */
444 sri.t_icode = CODE_FOR_nothing;
445
446 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
447
448 if (secondary_class != NO_REGS)
449 {
450 ira_init_register_move_cost_if_necessary (mode);
451 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
452 + sri.extra_cost
453 + copy_cost (x, mode, rclass: secondary_class, to_p, prev_sri: &sri));
454 }
455
456 /* For memory, use the memory move cost, for (hard) registers, use
457 the cost to move between the register classes, and use 2 for
458 everything else (constants). */
459 if (MEM_P (x) || rclass == NO_REGS)
460 return sri.extra_cost
461 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
462 else if (REG_P (x))
463 {
464 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
465
466 ira_init_register_move_cost_if_necessary (mode);
467 return (sri.extra_cost
468 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
469 }
470 else
471 /* If this is a constant, we may eventually want to call rtx_cost
472 here. */
473 return sri.extra_cost + COSTS_N_INSNS (1);
474}
475
476
477
478/* Record the cost of using memory or hard registers of various
479 classes for the operands in INSN.
480
481 N_ALTS is the number of alternatives.
482 N_OPS is the number of operands.
483 OPS is an array of the operands.
484 MODES are the modes of the operands, in case any are VOIDmode.
485 CONSTRAINTS are the constraints to use for the operands. This array
486 is modified by this procedure.
487
488 This procedure works alternative by alternative. For each
489 alternative we assume that we will be able to allocate all allocnos
490 to their ideal register class and calculate the cost of using that
491 alternative. Then we compute, for each operand that is a
492 pseudo-register, the cost of having the allocno allocated to each
493 register class and using it in that alternative. To this cost is
494 added the cost of the alternative.
495
496 The cost of each class for this insn is its lowest cost among all
497 the alternatives. */
498static void
499record_reg_classes (int n_alts, int n_ops, rtx *ops,
500 machine_mode *modes, const char **constraints,
501 rtx_insn *insn, enum reg_class *pref)
502{
503 int alt;
504 int i, j, k;
505 int insn_allows_mem[MAX_RECOG_OPERANDS];
506 move_table *move_in_cost, *move_out_cost;
507 short (*mem_cost)[2];
508 const char *p;
509
510 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
511 {
512 fprintf (stream: ira_dump_file, format: " Processing insn %u", INSN_UID (insn));
513 if (INSN_CODE (insn) >= 0
514 && (p = get_insn_name (INSN_CODE (insn))) != NULL)
515 fprintf (stream: ira_dump_file, format: " {%s}", p);
516 fprintf (stream: ira_dump_file, format: " (freq=%d)\n",
517 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)));
518 dump_insn_slim (ira_dump_file, insn);
519 }
520
521 for (i = 0; i < n_ops; i++)
522 insn_allows_mem[i] = 0;
523
524 /* Process each alternative, each time minimizing an operand's cost
525 with the cost for each operand in that alternative. */
526 alternative_mask preferred = get_preferred_alternatives (insn);
527 for (alt = 0; alt < n_alts; alt++)
528 {
529 enum reg_class classes[MAX_RECOG_OPERANDS];
530 int allows_mem[MAX_RECOG_OPERANDS];
531 enum reg_class rclass;
532 int alt_fail = 0;
533 int alt_cost = 0, op_cost_add;
534
535 if (!TEST_BIT (preferred, alt))
536 {
537 for (i = 0; i < recog_data.n_operands; i++)
538 constraints[i] = skip_alternative (p: constraints[i]);
539
540 continue;
541 }
542
543 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
544 {
545 fprintf (stream: ira_dump_file, format: " Alt %d:", alt);
546 for (i = 0; i < n_ops; i++)
547 {
548 p = constraints[i];
549 if (*p == '\0')
550 continue;
551 fprintf (stream: ira_dump_file, format: " (%d) ", i);
552 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
553 fputc (c: *p, stream: ira_dump_file);
554 }
555 fprintf (stream: ira_dump_file, format: "\n");
556 }
557
558 for (i = 0; i < n_ops; i++)
559 {
560 unsigned char c;
561 const char *p = constraints[i];
562 rtx op = ops[i];
563 machine_mode mode = modes[i];
564 int allows_addr = 0;
565 int win = 0;
566
567 /* Initially show we know nothing about the register class. */
568 classes[i] = NO_REGS;
569 allows_mem[i] = 0;
570
571 /* If this operand has no constraints at all, we can
572 conclude nothing about it since anything is valid. */
573 if (*p == 0)
574 {
575 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
576 memset (this_op_costs[i], c: 0, n: struct_costs_size);
577 continue;
578 }
579
580 /* If this alternative is only relevant when this operand
581 matches a previous operand, we do different things
582 depending on whether this operand is a allocno-reg or not.
583 We must process any modifiers for the operand before we
584 can make this test. */
585 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
586 p++;
587
588 if (p[0] >= '0' && p[0] <= '0' + i)
589 {
590 /* Copy class and whether memory is allowed from the
591 matching alternative. Then perform any needed cost
592 computations and/or adjustments. */
593 j = p[0] - '0';
594 classes[i] = classes[j];
595 allows_mem[i] = allows_mem[j];
596 if (allows_mem[i])
597 insn_allows_mem[i] = 1;
598
599 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
600 {
601 /* If this matches the other operand, we have no
602 added cost and we win. */
603 if (rtx_equal_p (ops[j], op))
604 win = 1;
605 /* If we can put the other operand into a register,
606 add to the cost of this alternative the cost to
607 copy this operand to the register used for the
608 other operand. */
609 else if (classes[j] != NO_REGS)
610 {
611 alt_cost += copy_cost (x: op, mode, rclass: classes[j], to_p: 1, NULL);
612 win = 1;
613 }
614 }
615 else if (! REG_P (ops[j])
616 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
617 {
618 /* This op is an allocno but the one it matches is
619 not. */
620
621 /* If we can't put the other operand into a
622 register, this alternative can't be used. */
623
624 if (classes[j] == NO_REGS)
625 {
626 alt_fail = 1;
627 }
628 else
629 /* Otherwise, add to the cost of this alternative the cost
630 to copy the other operand to the hard register used for
631 this operand. */
632 {
633 alt_cost += copy_cost (x: ops[j], mode, rclass: classes[j], to_p: 1, NULL);
634 }
635 }
636 else
637 {
638 /* The costs of this operand are not the same as the
639 other operand since move costs are not symmetric.
640 Moreover, if we cannot tie them, this alternative
641 needs to do a copy, which is one insn. */
642 struct costs *pp = this_op_costs[i];
643 int *pp_costs = pp->cost;
644 cost_classes_t cost_classes_ptr
645 = regno_cost_classes[REGNO (op)];
646 enum reg_class *cost_classes = cost_classes_ptr->classes;
647 bool in_p = recog_data.operand_type[i] != OP_OUT;
648 bool out_p = recog_data.operand_type[i] != OP_IN;
649 enum reg_class op_class = classes[i];
650
651 ira_init_register_move_cost_if_necessary (mode);
652 if (! in_p)
653 {
654 ira_assert (out_p);
655 if (op_class == NO_REGS)
656 {
657 mem_cost = ira_memory_move_cost[mode];
658 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
659 {
660 rclass = cost_classes[k];
661 pp_costs[k] = mem_cost[rclass][0] * frequency;
662 }
663 }
664 else
665 {
666 move_out_cost = ira_may_move_out_cost[mode];
667 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
668 {
669 rclass = cost_classes[k];
670 pp_costs[k]
671 = move_out_cost[op_class][rclass] * frequency;
672 }
673 }
674 }
675 else if (! out_p)
676 {
677 ira_assert (in_p);
678 if (op_class == NO_REGS)
679 {
680 mem_cost = ira_memory_move_cost[mode];
681 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
682 {
683 rclass = cost_classes[k];
684 pp_costs[k] = mem_cost[rclass][1] * frequency;
685 }
686 }
687 else
688 {
689 move_in_cost = ira_may_move_in_cost[mode];
690 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
691 {
692 rclass = cost_classes[k];
693 pp_costs[k]
694 = move_in_cost[rclass][op_class] * frequency;
695 }
696 }
697 }
698 else
699 {
700 if (op_class == NO_REGS)
701 {
702 mem_cost = ira_memory_move_cost[mode];
703 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
704 {
705 rclass = cost_classes[k];
706 pp_costs[k] = ((mem_cost[rclass][0]
707 + mem_cost[rclass][1])
708 * frequency);
709 }
710 }
711 else
712 {
713 move_in_cost = ira_may_move_in_cost[mode];
714 move_out_cost = ira_may_move_out_cost[mode];
715 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
716 {
717 rclass = cost_classes[k];
718 pp_costs[k] = ((move_in_cost[rclass][op_class]
719 + move_out_cost[op_class][rclass])
720 * frequency);
721 }
722 }
723 }
724
725 /* If the alternative actually allows memory, make
726 things a bit cheaper since we won't need an extra
727 insn to load it. */
728 pp->mem_cost
729 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
730 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
731 - allows_mem[i]) * frequency;
732
733 /* If we have assigned a class to this allocno in
734 our first pass, add a cost to this alternative
735 corresponding to what we would add if this
736 allocno were not in the appropriate class. */
737 if (pref)
738 {
739 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
740
741 if (pref_class == NO_REGS)
742 alt_cost
743 += ((out_p
744 ? ira_memory_move_cost[mode][op_class][0] : 0)
745 + (in_p
746 ? ira_memory_move_cost[mode][op_class][1]
747 : 0));
748 else if (ira_reg_class_intersect
749 [pref_class][op_class] == NO_REGS)
750 alt_cost
751 += ira_register_move_cost[mode][pref_class][op_class];
752 }
753 if (REGNO (ops[i]) != REGNO (ops[j])
754 && ! find_reg_note (insn, REG_DEAD, op))
755 alt_cost += 2;
756
757 p++;
758 }
759 }
760
761 /* Scan all the constraint letters. See if the operand
762 matches any of the constraints. Collect the valid
763 register classes and see if this operand accepts
764 memory. */
765 while ((c = *p))
766 {
767 switch (c)
768 {
769 case '*':
770 /* Ignore the next letter for this pass. */
771 c = *++p;
772 break;
773
774 case '^':
775 alt_cost += 2;
776 break;
777
778 case '?':
779 alt_cost += 2;
780 break;
781
782 case 'g':
783 if (MEM_P (op)
784 || (CONSTANT_P (op)
785 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
786 win = 1;
787 insn_allows_mem[i] = allows_mem[i] = 1;
788 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
789 break;
790
791 default:
792 enum constraint_num cn = lookup_constraint (p);
793 enum reg_class cl;
794 switch (get_constraint_type (c: cn))
795 {
796 case CT_REGISTER:
797 cl = reg_class_for_constraint (c: cn);
798 if (cl != NO_REGS)
799 classes[i] = ira_reg_class_subunion[classes[i]][cl];
800 break;
801
802 case CT_CONST_INT:
803 if (CONST_INT_P (op)
804 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
805 win = 1;
806 break;
807
808 case CT_MEMORY:
809 case CT_RELAXED_MEMORY:
810 /* Every MEM can be reloaded to fit. */
811 insn_allows_mem[i] = allows_mem[i] = 1;
812 if (MEM_P (op))
813 win = 1;
814 break;
815
816 case CT_SPECIAL_MEMORY:
817 insn_allows_mem[i] = allows_mem[i] = 1;
818 if (MEM_P (extract_mem_from_operand (op))
819 && constraint_satisfied_p (x: op, c: cn))
820 win = 1;
821 break;
822
823 case CT_ADDRESS:
824 /* Every address can be reloaded to fit. */
825 allows_addr = 1;
826 if (address_operand (op, GET_MODE (op))
827 || constraint_satisfied_p (x: op, c: cn))
828 win = 1;
829 /* We know this operand is an address, so we
830 want it to be allocated to a hard register
831 that can be the base of an address,
832 i.e. BASE_REG_CLASS. */
833 classes[i]
834 = ira_reg_class_subunion[classes[i]]
835 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
836 outer_code: ADDRESS, index_code: SCRATCH)];
837 break;
838
839 case CT_FIXED_FORM:
840 if (constraint_satisfied_p (x: op, c: cn))
841 win = 1;
842 break;
843 }
844 break;
845 }
846 p += CONSTRAINT_LEN (c, p);
847 if (c == ',')
848 break;
849 }
850
851 constraints[i] = p;
852
853 if (alt_fail)
854 break;
855
856 /* How we account for this operand now depends on whether it
857 is a pseudo register or not. If it is, we first check if
858 any register classes are valid. If not, we ignore this
859 alternative, since we want to assume that all allocnos get
860 allocated for register preferencing. If some register
861 class is valid, compute the costs of moving the allocno
862 into that class. */
863 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
864 {
865 if (classes[i] == NO_REGS && ! allows_mem[i])
866 {
867 /* We must always fail if the operand is a REG, but
868 we did not find a suitable class and memory is
869 not allowed.
870
871 Otherwise we may perform an uninitialized read
872 from this_op_costs after the `continue' statement
873 below. */
874 alt_fail = 1;
875 }
876 else
877 {
878 unsigned int regno = REGNO (op);
879 struct costs *pp = this_op_costs[i];
880 int *pp_costs = pp->cost;
881 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
882 enum reg_class *cost_classes = cost_classes_ptr->classes;
883 bool in_p = recog_data.operand_type[i] != OP_OUT;
884 bool out_p = recog_data.operand_type[i] != OP_IN;
885 enum reg_class op_class = classes[i];
886
887 ira_init_register_move_cost_if_necessary (mode);
888 if (! in_p)
889 {
890 ira_assert (out_p);
891 if (op_class == NO_REGS)
892 {
893 mem_cost = ira_memory_move_cost[mode];
894 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
895 {
896 rclass = cost_classes[k];
897 pp_costs[k] = mem_cost[rclass][0] * frequency;
898 }
899 }
900 else
901 {
902 move_out_cost = ira_may_move_out_cost[mode];
903 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
904 {
905 rclass = cost_classes[k];
906 pp_costs[k]
907 = move_out_cost[op_class][rclass] * frequency;
908 }
909 }
910 }
911 else if (! out_p)
912 {
913 ira_assert (in_p);
914 if (op_class == NO_REGS)
915 {
916 mem_cost = ira_memory_move_cost[mode];
917 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
918 {
919 rclass = cost_classes[k];
920 pp_costs[k] = mem_cost[rclass][1] * frequency;
921 }
922 }
923 else
924 {
925 move_in_cost = ira_may_move_in_cost[mode];
926 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
927 {
928 rclass = cost_classes[k];
929 pp_costs[k]
930 = move_in_cost[rclass][op_class] * frequency;
931 }
932 }
933 }
934 else
935 {
936 if (op_class == NO_REGS)
937 {
938 mem_cost = ira_memory_move_cost[mode];
939 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
940 {
941 rclass = cost_classes[k];
942 pp_costs[k] = ((mem_cost[rclass][0]
943 + mem_cost[rclass][1])
944 * frequency);
945 }
946 }
947 else
948 {
949 move_in_cost = ira_may_move_in_cost[mode];
950 move_out_cost = ira_may_move_out_cost[mode];
951 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
952 {
953 rclass = cost_classes[k];
954 pp_costs[k] = ((move_in_cost[rclass][op_class]
955 + move_out_cost[op_class][rclass])
956 * frequency);
957 }
958 }
959 }
960
961 if (op_class == NO_REGS)
962 /* Although we don't need insn to reload from
963 memory, still accessing memory is usually more
964 expensive than a register. */
965 pp->mem_cost = frequency;
966 else
967 /* If the alternative actually allows memory, make
968 things a bit cheaper since we won't need an
969 extra insn to load it. */
970 pp->mem_cost
971 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
972 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
973 - allows_mem[i]) * frequency;
974 /* If we have assigned a class to this allocno in
975 our first pass, add a cost to this alternative
976 corresponding to what we would add if this
977 allocno were not in the appropriate class. */
978 if (pref)
979 {
980 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
981
982 if (pref_class == NO_REGS)
983 {
984 if (op_class != NO_REGS)
985 alt_cost
986 += ((out_p
987 ? ira_memory_move_cost[mode][op_class][0]
988 : 0)
989 + (in_p
990 ? ira_memory_move_cost[mode][op_class][1]
991 : 0));
992 }
993 else if (op_class == NO_REGS)
994 alt_cost
995 += ((out_p
996 ? ira_memory_move_cost[mode][pref_class][1]
997 : 0)
998 + (in_p
999 ? ira_memory_move_cost[mode][pref_class][0]
1000 : 0));
1001 else if (ira_reg_class_intersect[pref_class][op_class]
1002 == NO_REGS)
1003 alt_cost += (ira_register_move_cost
1004 [mode][pref_class][op_class]);
1005 }
1006 }
1007 }
1008
1009 /* Otherwise, if this alternative wins, either because we
1010 have already determined that or if we have a hard
1011 register of the proper class, there is no cost for this
1012 alternative. */
1013 else if (win || (REG_P (op)
1014 && reg_fits_class_p (op, classes[i],
1015 0, GET_MODE (op))))
1016 ;
1017
1018 /* If registers are valid, the cost of this alternative
1019 includes copying the object to and/or from a
1020 register. */
1021 else if (classes[i] != NO_REGS)
1022 {
1023 if (recog_data.operand_type[i] != OP_OUT)
1024 alt_cost += copy_cost (x: op, mode, rclass: classes[i], to_p: 1, NULL);
1025
1026 if (recog_data.operand_type[i] != OP_IN)
1027 alt_cost += copy_cost (x: op, mode, rclass: classes[i], to_p: 0, NULL);
1028 }
1029 /* The only other way this alternative can be used is if
1030 this is a constant that could be placed into memory. */
1031 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1032 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1033 else
1034 alt_fail = 1;
1035
1036 if (alt_fail)
1037 break;
1038 }
1039
1040 if (alt_fail)
1041 {
1042 /* The loop above might have exited early once the failure
1043 was seen. Skip over the constraints for the remaining
1044 operands. */
1045 i += 1;
1046 for (; i < n_ops; ++i)
1047 constraints[i] = skip_alternative (p: constraints[i]);
1048 continue;
1049 }
1050
1051 op_cost_add = alt_cost * frequency;
1052 /* Finally, update the costs with the information we've
1053 calculated about this alternative. */
1054 for (i = 0; i < n_ops; i++)
1055 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1056 {
1057 int old_cost;
1058 bool cost_change_p = false;
1059 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1060 int *pp_costs = pp->cost, *qq_costs = qq->cost;
1061 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1062 cost_classes_t cost_classes_ptr
1063 = regno_cost_classes[REGNO (ops[i])];
1064
1065 old_cost = pp->mem_cost;
1066 pp->mem_cost = MIN (old_cost,
1067 (qq->mem_cost + op_cost_add) * scale);
1068
1069 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1070 && pp->mem_cost < old_cost)
1071 {
1072 cost_change_p = true;
1073 fprintf (stream: ira_dump_file, format: " op %d(r=%u) new costs MEM:%d",
1074 i, REGNO(ops[i]), pp->mem_cost);
1075 }
1076 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1077 {
1078 old_cost = pp_costs[k];
1079 pp_costs[k]
1080 = MIN (old_cost, (qq_costs[k] + op_cost_add) * scale);
1081 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1082 && pp_costs[k] < old_cost)
1083 {
1084 if (!cost_change_p)
1085 fprintf (stream: ira_dump_file, format: " op %d(r=%u) new costs",
1086 i, REGNO(ops[i]));
1087 cost_change_p = true;
1088 fprintf (stream: ira_dump_file, format: " %s:%d",
1089 reg_class_names[cost_classes_ptr->classes[k]],
1090 pp_costs[k]);
1091 }
1092 }
1093 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1094 && cost_change_p)
1095 fprintf (stream: ira_dump_file, format: "\n");
1096 }
1097 }
1098
1099 if (allocno_p)
1100 for (i = 0; i < n_ops; i++)
1101 {
1102 ira_allocno_t a;
1103 rtx op = ops[i];
1104
1105 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1106 continue;
1107 a = ira_curr_regno_allocno_map [REGNO (op)];
1108 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1109 ALLOCNO_BAD_SPILL_P (a) = true;
1110 }
1111
1112}
1113
1114
1115
1116/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1117static inline bool
1118ok_for_index_p_nonstrict (rtx reg)
1119{
1120 unsigned regno = REGNO (reg);
1121
1122 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1123}
1124
1125/* A version of regno_ok_for_base_p for use here, when all
1126 pseudo-registers should count as OK. Arguments as for
1127 regno_ok_for_base_p. */
1128static inline bool
1129ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1130 enum rtx_code outer_code, enum rtx_code index_code)
1131{
1132 unsigned regno = REGNO (reg);
1133
1134 if (regno >= FIRST_PSEUDO_REGISTER)
1135 return true;
1136 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1137}
1138
1139/* Record the pseudo registers we must reload into hard registers in a
1140 subexpression of a memory address, X.
1141
1142 If CONTEXT is 0, we are looking at the base part of an address,
1143 otherwise we are looking at the index part.
1144
1145 MODE and AS are the mode and address space of the memory reference;
1146 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1147 These four arguments are passed down to base_reg_class.
1148
1149 SCALE is twice the amount to multiply the cost by (it is twice so
1150 we can represent half-cost adjustments). */
1151static void
1152record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1153 int context, enum rtx_code outer_code,
1154 enum rtx_code index_code, int scale)
1155{
1156 enum rtx_code code = GET_CODE (x);
1157 enum reg_class rclass;
1158
1159 if (context == 1)
1160 rclass = INDEX_REG_CLASS;
1161 else
1162 rclass = base_reg_class (mode, as, outer_code, index_code);
1163
1164 switch (code)
1165 {
1166 case CONST_INT:
1167 case CONST:
1168 case PC:
1169 case SYMBOL_REF:
1170 case LABEL_REF:
1171 return;
1172
1173 case PLUS:
1174 /* When we have an address that is a sum, we must determine
1175 whether registers are "base" or "index" regs. If there is a
1176 sum of two registers, we must choose one to be the "base".
1177 Luckily, we can use the REG_POINTER to make a good choice
1178 most of the time. We only need to do this on machines that
1179 can have two registers in an address and where the base and
1180 index register classes are different.
1181
1182 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1183 but that seems bogus since it should only be set when we are
1184 sure the register is being used as a pointer. */
1185 {
1186 rtx arg0 = XEXP (x, 0);
1187 rtx arg1 = XEXP (x, 1);
1188 enum rtx_code code0 = GET_CODE (arg0);
1189 enum rtx_code code1 = GET_CODE (arg1);
1190
1191 /* Look inside subregs. */
1192 if (code0 == SUBREG)
1193 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1194 if (code1 == SUBREG)
1195 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1196
1197 /* If index registers do not appear, or coincide with base registers,
1198 just record registers in any non-constant operands. We
1199 assume here, as well as in the tests below, that all
1200 addresses are in canonical form. */
1201 if (MAX_REGS_PER_ADDRESS == 1
1202 || INDEX_REG_CLASS == base_reg_class (VOIDmode, as, outer_code: PLUS, index_code: SCRATCH))
1203 {
1204 record_address_regs (mode, as, x: arg0, context, outer_code: PLUS, index_code: code1, scale);
1205 if (! CONSTANT_P (arg1))
1206 record_address_regs (mode, as, x: arg1, context, outer_code: PLUS, index_code: code0, scale);
1207 }
1208
1209 /* If the second operand is a constant integer, it doesn't
1210 change what class the first operand must be. */
1211 else if (CONST_SCALAR_INT_P (arg1))
1212 record_address_regs (mode, as, x: arg0, context, outer_code: PLUS, index_code: code1, scale);
1213 /* If the second operand is a symbolic constant, the first
1214 operand must be an index register. */
1215 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1216 record_address_regs (mode, as, x: arg0, context: 1, outer_code: PLUS, index_code: code1, scale);
1217 /* If both operands are registers but one is already a hard
1218 register of index or reg-base class, give the other the
1219 class that the hard register is not. */
1220 else if (code0 == REG && code1 == REG
1221 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1222 && (ok_for_base_p_nonstrict (reg: arg0, mode, as, outer_code: PLUS, index_code: REG)
1223 || ok_for_index_p_nonstrict (reg: arg0)))
1224 record_address_regs (mode, as, x: arg1,
1225 context: ok_for_base_p_nonstrict (reg: arg0, mode, as,
1226 outer_code: PLUS, index_code: REG) ? 1 : 0,
1227 outer_code: PLUS, index_code: REG, scale);
1228 else if (code0 == REG && code1 == REG
1229 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1230 && (ok_for_base_p_nonstrict (reg: arg1, mode, as, outer_code: PLUS, index_code: REG)
1231 || ok_for_index_p_nonstrict (reg: arg1)))
1232 record_address_regs (mode, as, x: arg0,
1233 context: ok_for_base_p_nonstrict (reg: arg1, mode, as,
1234 outer_code: PLUS, index_code: REG) ? 1 : 0,
1235 outer_code: PLUS, index_code: REG, scale);
1236 /* If one operand is known to be a pointer, it must be the
1237 base with the other operand the index. Likewise if the
1238 other operand is a MULT. */
1239 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1240 {
1241 record_address_regs (mode, as, x: arg0, context: 0, outer_code: PLUS, index_code: code1, scale);
1242 record_address_regs (mode, as, x: arg1, context: 1, outer_code: PLUS, index_code: code0, scale);
1243 }
1244 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1245 {
1246 record_address_regs (mode, as, x: arg0, context: 1, outer_code: PLUS, index_code: code1, scale);
1247 record_address_regs (mode, as, x: arg1, context: 0, outer_code: PLUS, index_code: code0, scale);
1248 }
1249 /* Otherwise, count equal chances that each might be a base or
1250 index register. This case should be rare. */
1251 else
1252 {
1253 record_address_regs (mode, as, x: arg0, context: 0, outer_code: PLUS, index_code: code1, scale: scale / 2);
1254 record_address_regs (mode, as, x: arg0, context: 1, outer_code: PLUS, index_code: code1, scale: scale / 2);
1255 record_address_regs (mode, as, x: arg1, context: 0, outer_code: PLUS, index_code: code0, scale: scale / 2);
1256 record_address_regs (mode, as, x: arg1, context: 1, outer_code: PLUS, index_code: code0, scale: scale / 2);
1257 }
1258 }
1259 break;
1260
1261 /* Double the importance of an allocno that is incremented or
1262 decremented, since it would take two extra insns if it ends
1263 up in the wrong place. */
1264 case POST_MODIFY:
1265 case PRE_MODIFY:
1266 record_address_regs (mode, as, XEXP (x, 0), context: 0, outer_code: code,
1267 GET_CODE (XEXP (XEXP (x, 1), 1)), scale: 2 * scale);
1268 if (REG_P (XEXP (XEXP (x, 1), 1)))
1269 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), context: 1, outer_code: code, index_code: REG,
1270 scale: 2 * scale);
1271 break;
1272
1273 case POST_INC:
1274 case PRE_INC:
1275 case POST_DEC:
1276 case PRE_DEC:
1277 /* Double the importance of an allocno that is incremented or
1278 decremented, since it would take two extra insns if it ends
1279 up in the wrong place. */
1280 record_address_regs (mode, as, XEXP (x, 0), context: 0, outer_code: code, index_code: SCRATCH, scale: 2 * scale);
1281 break;
1282
1283 case REG:
1284 {
1285 struct costs *pp;
1286 int *pp_costs;
1287 enum reg_class i;
1288 int k, regno, add_cost;
1289 cost_classes_t cost_classes_ptr;
1290 enum reg_class *cost_classes;
1291 move_table *move_in_cost;
1292
1293 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1294 break;
1295
1296 regno = REGNO (x);
1297 if (allocno_p)
1298 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1299 pp = COSTS (costs, COST_INDEX (regno));
1300 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1301 if (INT_MAX - add_cost < pp->mem_cost)
1302 pp->mem_cost = INT_MAX;
1303 else
1304 pp->mem_cost += add_cost;
1305 cost_classes_ptr = regno_cost_classes[regno];
1306 cost_classes = cost_classes_ptr->classes;
1307 pp_costs = pp->cost;
1308 ira_init_register_move_cost_if_necessary (Pmode);
1309 move_in_cost = ira_may_move_in_cost[Pmode];
1310 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1311 {
1312 i = cost_classes[k];
1313 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1314 if (INT_MAX - add_cost < pp_costs[k])
1315 pp_costs[k] = INT_MAX;
1316 else
1317 pp_costs[k] += add_cost;
1318 }
1319 }
1320 break;
1321
1322 default:
1323 {
1324 const char *fmt = GET_RTX_FORMAT (code);
1325 int i;
1326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1327 if (fmt[i] == 'e')
1328 record_address_regs (mode, as, XEXP (x, i), context, outer_code: code, index_code: SCRATCH,
1329 scale);
1330 }
1331 }
1332}
1333
1334
1335
1336/* Calculate the costs of insn operands. */
1337static void
1338record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1339{
1340 const char *constraints[MAX_RECOG_OPERANDS];
1341 machine_mode modes[MAX_RECOG_OPERANDS];
1342 rtx set;
1343 int i;
1344
1345 if ((set = single_set (insn)) != NULL_RTX
1346 /* In rare cases the single set insn might have less 2 operands
1347 as the source can be a fixed special reg. */
1348 && recog_data.n_operands > 1
1349 && recog_data.operand[0] == SET_DEST (set)
1350 && recog_data.operand[1] == SET_SRC (set))
1351 {
1352 int regno, other_regno;
1353 rtx dest = SET_DEST (set);
1354 rtx src = SET_SRC (set);
1355
1356 if (GET_CODE (dest) == SUBREG
1357 && known_eq (GET_MODE_SIZE (GET_MODE (dest)),
1358 GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1359 dest = SUBREG_REG (dest);
1360 if (GET_CODE (src) == SUBREG
1361 && known_eq (GET_MODE_SIZE (GET_MODE (src)),
1362 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1363 src = SUBREG_REG (src);
1364 if (REG_P (src) && REG_P (dest)
1365 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1366 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1367 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1368 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1369 {
1370 machine_mode mode = GET_MODE (SET_SRC (set)), cost_mode = mode;
1371 machine_mode hard_reg_mode = GET_MODE(regno_reg_rtx[other_regno]);
1372 poly_int64 pmode_size = GET_MODE_SIZE (mode);
1373 poly_int64 phard_reg_mode_size = GET_MODE_SIZE (mode: hard_reg_mode);
1374 HOST_WIDE_INT mode_size, hard_reg_mode_size;
1375 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1376 enum reg_class *cost_classes = cost_classes_ptr->classes;
1377 reg_class_t rclass, hard_reg_class, bigger_hard_reg_class;
1378 int cost_factor = 1, cost, k;
1379 move_table *move_costs;
1380 bool dead_p = find_regno_note (insn, REG_DEAD, REGNO (src));
1381
1382 hard_reg_class = REGNO_REG_CLASS (other_regno);
1383 bigger_hard_reg_class = ira_pressure_class_translate[hard_reg_class];
1384 /* Target code may return any cost for mode which does not fit the
1385 hard reg class (e.g. DImode for AREG on i386). Check this and use
1386 a bigger class to get the right cost. */
1387 if (bigger_hard_reg_class != NO_REGS
1388 && ! ira_hard_reg_in_set_p (hard_regno: other_regno, mode,
1389 reg_class_contents[hard_reg_class]))
1390 hard_reg_class = bigger_hard_reg_class;
1391 ira_init_register_move_cost_if_necessary (mode);
1392 ira_init_register_move_cost_if_necessary (mode: hard_reg_mode);
1393 /* Use smaller movement cost for natural hard reg mode or its mode as
1394 operand. */
1395 if (pmode_size.is_constant (const_value: &mode_size)
1396 && phard_reg_mode_size.is_constant (const_value: &hard_reg_mode_size))
1397 {
1398 /* Assume we are moving in the natural modes: */
1399 cost_factor = mode_size / hard_reg_mode_size;
1400 if (mode_size % hard_reg_mode_size != 0)
1401 cost_factor++;
1402 if (cost_factor
1403 * (ira_register_move_cost
1404 [hard_reg_mode][hard_reg_class][hard_reg_class])
1405 < (ira_register_move_cost
1406 [mode][hard_reg_class][hard_reg_class]))
1407 cost_mode = hard_reg_mode;
1408 else
1409 cost_factor = 1;
1410 }
1411 move_costs = ira_register_move_cost[cost_mode];
1412 i = regno == (int) REGNO (src) ? 1 : 0;
1413 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1414 {
1415 rclass = cost_classes[k];
1416 cost = (i == 0
1417 ? move_costs[hard_reg_class][rclass]
1418 : move_costs[rclass][hard_reg_class]);
1419 cost *= cost_factor;
1420 op_costs[i]->cost[k] = cost * frequency;
1421 /* If this insn is a single set copying operand 1 to
1422 operand 0 and one operand is an allocno with the
1423 other a hard reg or an allocno that prefers a hard
1424 register that is in its own register class then we
1425 may want to adjust the cost of that register class to
1426 -1.
1427
1428 Avoid the adjustment if the source does not die to
1429 avoid stressing of register allocator by preferencing
1430 two colliding registers into single class. */
1431 if (dead_p
1432 && TEST_HARD_REG_BIT (reg_class_contents[rclass], bit: other_regno)
1433 && (reg_class_size[(int) rclass]
1434 == (ira_reg_class_max_nregs
1435 [(int) rclass][(int) GET_MODE(src)])))
1436 {
1437 if (reg_class_size[rclass] == 1)
1438 op_costs[i]->cost[k] = -frequency;
1439 else if (in_hard_reg_set_p (reg_class_contents[rclass],
1440 GET_MODE(src), regno: other_regno))
1441 op_costs[i]->cost[k] = -frequency;
1442 }
1443 }
1444 op_costs[i]->mem_cost
1445 = ira_memory_move_cost[mode][hard_reg_class][i] * frequency;
1446 return;
1447 }
1448 }
1449
1450 for (i = 0; i < recog_data.n_operands; i++)
1451 {
1452 constraints[i] = recog_data.constraints[i];
1453 modes[i] = recog_data.operand_mode[i];
1454 }
1455
1456 /* If we get here, we are set up to record the costs of all the
1457 operands for this insn. Start by initializing the costs. Then
1458 handle any address registers. Finally record the desired classes
1459 for any allocnos, doing it twice if some pair of operands are
1460 commutative. */
1461 for (i = 0; i < recog_data.n_operands; i++)
1462 {
1463 rtx op_mem = extract_mem_from_operand (recog_data.operand[i]);
1464 memcpy (op_costs[i], init_cost, n: struct_costs_size);
1465
1466 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1467 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1468
1469 if (MEM_P (op_mem))
1470 record_address_regs (GET_MODE (op_mem),
1471 MEM_ADDR_SPACE (op_mem),
1472 XEXP (op_mem, 0),
1473 context: 0, outer_code: MEM, index_code: SCRATCH, scale: frequency * 2);
1474 else if (constraints[i][0] == 'p'
1475 || (insn_extra_address_constraint
1476 (c: lookup_constraint (p: constraints[i]))))
1477 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1478 x: recog_data.operand[i], context: 0, outer_code: ADDRESS, index_code: SCRATCH,
1479 scale: frequency * 2);
1480 }
1481
1482 /* Check for commutative in a separate loop so everything will have
1483 been initialized. We must do this even if one operand is a
1484 constant--see addsi3 in m68k.md. */
1485 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1486 if (constraints[i][0] == '%')
1487 {
1488 const char *xconstraints[MAX_RECOG_OPERANDS];
1489 int j;
1490
1491 /* Handle commutative operands by swapping the
1492 constraints. We assume the modes are the same. */
1493 for (j = 0; j < recog_data.n_operands; j++)
1494 xconstraints[j] = constraints[j];
1495
1496 xconstraints[i] = constraints[i+1];
1497 xconstraints[i+1] = constraints[i];
1498 record_reg_classes (n_alts: recog_data.n_alternatives, n_ops: recog_data.n_operands,
1499 ops: recog_data.operand, modes,
1500 constraints: xconstraints, insn, pref);
1501 }
1502 record_reg_classes (n_alts: recog_data.n_alternatives, n_ops: recog_data.n_operands,
1503 ops: recog_data.operand, modes,
1504 constraints, insn, pref);
1505}
1506
1507
1508
1509/* Process one insn INSN. Scan it and record each time it would save
1510 code to put a certain allocnos in a certain class. Return the last
1511 insn processed, so that the scan can be continued from there. */
1512static rtx_insn *
1513scan_one_insn (rtx_insn *insn)
1514{
1515 enum rtx_code pat_code;
1516 rtx set, note;
1517 int i, k;
1518 bool counted_mem;
1519
1520 if (!NONDEBUG_INSN_P (insn))
1521 return insn;
1522
1523 pat_code = GET_CODE (PATTERN (insn));
1524 if (pat_code == ASM_INPUT)
1525 return insn;
1526
1527 /* If INSN is a USE/CLOBBER of a pseudo in a mode M then go ahead
1528 and initialize the register move costs of mode M.
1529
1530 The pseudo may be related to another pseudo via a copy (implicit or
1531 explicit) and if there are no mode M uses/sets of the original
1532 pseudo, then we may leave the register move costs uninitialized for
1533 mode M. */
1534 if (pat_code == USE || pat_code == CLOBBER)
1535 {
1536 rtx x = XEXP (PATTERN (insn), 0);
1537 if (GET_CODE (x) == REG
1538 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1539 && have_regs_of_mode[GET_MODE (x)])
1540 ira_init_register_move_cost_if_necessary (GET_MODE (x));
1541 return insn;
1542 }
1543
1544 counted_mem = false;
1545 set = single_set (insn);
1546 extract_insn (insn);
1547
1548 /* If this insn loads a parameter from its stack slot, then it
1549 represents a savings, rather than a cost, if the parameter is
1550 stored in memory. Record this fact.
1551
1552 Similarly if we're loading other constants from memory (constant
1553 pool, TOC references, small data areas, etc) and this is the only
1554 assignment to the destination pseudo.
1555
1556 Don't do this if SET_SRC (set) isn't a general operand, if it is
1557 a memory requiring special instructions to load it, decreasing
1558 mem_cost might result in it being loaded using the specialized
1559 instruction into a register, then stored into stack and loaded
1560 again from the stack. See PR52208.
1561
1562 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1563 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1564 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1565 && ((MEM_P (XEXP (note, 0))
1566 && !side_effects_p (SET_SRC (set)))
1567 || (CONSTANT_P (XEXP (note, 0))
1568 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1569 XEXP (note, 0))
1570 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1571 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set)))
1572 /* LRA does not use equiv with a symbol for PIC code. */
1573 && (! ira_use_lra_p || ! pic_offset_table_rtx
1574 || ! contains_symbol_ref_p (XEXP (note, 0))))
1575 {
1576 enum reg_class cl = GENERAL_REGS;
1577 rtx reg = SET_DEST (set);
1578 int num = COST_INDEX (REGNO (reg));
1579 /* Costs for NO_REGS are used in cost calculation on the
1580 1st pass when the preferred register classes are not
1581 known yet. In this case we take the best scenario when
1582 mode can't be put into GENERAL_REGS. */
1583 if (!targetm.hard_regno_mode_ok (ira_class_hard_regs[cl][0],
1584 GET_MODE (reg)))
1585 cl = NO_REGS;
1586
1587 COSTS (costs, num)->mem_cost
1588 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1589 record_address_regs (GET_MODE (SET_SRC (set)),
1590 MEM_ADDR_SPACE (SET_SRC (set)),
1591 XEXP (SET_SRC (set), 0), context: 0, outer_code: MEM, index_code: SCRATCH,
1592 scale: frequency * 2);
1593 counted_mem = true;
1594 }
1595
1596 record_operand_costs (insn, pref);
1597
1598 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1599 {
1600 const char *p;
1601 fprintf (stream: ira_dump_file, format: " Final costs after insn %u", INSN_UID (insn));
1602 if (INSN_CODE (insn) >= 0
1603 && (p = get_insn_name (INSN_CODE (insn))) != NULL)
1604 fprintf (stream: ira_dump_file, format: " {%s}", p);
1605 fprintf (stream: ira_dump_file, format: " (freq=%d)\n",
1606 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)));
1607 dump_insn_slim (ira_dump_file, insn);
1608 }
1609
1610 /* Now add the cost for each operand to the total costs for its
1611 allocno. */
1612 for (i = 0; i < recog_data.n_operands; i++)
1613 {
1614 rtx op = recog_data.operand[i];
1615
1616 if (GET_CODE (op) == SUBREG)
1617 op = SUBREG_REG (op);
1618 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1619 {
1620 int regno = REGNO (op);
1621 struct costs *p = COSTS (costs, COST_INDEX (regno));
1622 struct costs *q = op_costs[i];
1623 int *p_costs = p->cost, *q_costs = q->cost;
1624 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1625 int add_cost = 0;
1626
1627 /* If the already accounted for the memory "cost" above, don't
1628 do so again. */
1629 if (!counted_mem)
1630 {
1631 add_cost = q->mem_cost;
1632 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1633 p->mem_cost = INT_MAX;
1634 else
1635 p->mem_cost += add_cost;
1636 }
1637 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1638 {
1639 fprintf (stream: ira_dump_file, format: " op %d(r=%u) MEM:%d(+%d)",
1640 i, REGNO(op), p->mem_cost, add_cost);
1641 }
1642 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1643 {
1644 add_cost = q_costs[k];
1645 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1646 p_costs[k] = INT_MAX;
1647 else
1648 p_costs[k] += add_cost;
1649 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1650 {
1651 fprintf (stream: ira_dump_file, format: " %s:%d(+%d)",
1652 reg_class_names[cost_classes_ptr->classes[k]],
1653 p_costs[k], add_cost);
1654 }
1655 }
1656 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1657 fprintf (stream: ira_dump_file, format: "\n");
1658 }
1659 }
1660 return insn;
1661}
1662
1663
1664
1665/* Print allocnos costs to the dump file. */
1666static void
1667print_allocno_costs (void)
1668{
1669 int k;
1670 ira_allocno_t a;
1671 ira_allocno_iterator ai;
1672
1673 ira_assert (allocno_p);
1674 fprintf (stream: ira_dump_file, format: "\n");
1675 FOR_EACH_ALLOCNO (a, ai)
1676 {
1677 int i, rclass;
1678 basic_block bb;
1679 int regno = ALLOCNO_REGNO (a);
1680 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1681 enum reg_class *cost_classes = cost_classes_ptr->classes;
1682
1683 i = ALLOCNO_NUM (a);
1684 fprintf (stream: ira_dump_file, format: " a%d(r%d,", i, regno);
1685 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1686 fprintf (stream: ira_dump_file, format: "b%d", bb->index);
1687 else
1688 fprintf (stream: ira_dump_file, format: "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1689 fprintf (stream: ira_dump_file, format: ") costs:");
1690 for (k = 0; k < cost_classes_ptr->num; k++)
1691 {
1692 rclass = cost_classes[k];
1693 fprintf (stream: ira_dump_file, format: " %s:%d", reg_class_names[rclass],
1694 COSTS (costs, i)->cost[k]);
1695 if (flag_ira_region == IRA_REGION_ALL
1696 || flag_ira_region == IRA_REGION_MIXED)
1697 fprintf (stream: ira_dump_file, format: ",%d",
1698 COSTS (total_allocno_costs, i)->cost[k]);
1699 }
1700 fprintf (stream: ira_dump_file, format: " MEM:%i", COSTS (costs, i)->mem_cost);
1701 if (flag_ira_region == IRA_REGION_ALL
1702 || flag_ira_region == IRA_REGION_MIXED)
1703 fprintf (stream: ira_dump_file, format: ",%d",
1704 COSTS (total_allocno_costs, i)->mem_cost);
1705 fprintf (stream: ira_dump_file, format: "\n");
1706 }
1707}
1708
1709/* Print pseudo costs to the dump file. */
1710static void
1711print_pseudo_costs (void)
1712{
1713 int regno, k;
1714 int rclass;
1715 cost_classes_t cost_classes_ptr;
1716 enum reg_class *cost_classes;
1717
1718 ira_assert (! allocno_p);
1719 fprintf (stream: ira_dump_file, format: "\n");
1720 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1721 {
1722 if (REG_N_REFS (regno) <= 0)
1723 continue;
1724 cost_classes_ptr = regno_cost_classes[regno];
1725 cost_classes = cost_classes_ptr->classes;
1726 fprintf (stream: ira_dump_file, format: " r%d costs:", regno);
1727 for (k = 0; k < cost_classes_ptr->num; k++)
1728 {
1729 rclass = cost_classes[k];
1730 fprintf (stream: ira_dump_file, format: " %s:%d", reg_class_names[rclass],
1731 COSTS (costs, regno)->cost[k]);
1732 }
1733 fprintf (stream: ira_dump_file, format: " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1734 }
1735}
1736
1737/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1738 costs. */
1739static void
1740process_bb_for_costs (basic_block bb)
1741{
1742 rtx_insn *insn;
1743
1744 frequency = REG_FREQ_FROM_BB (bb);
1745 if (frequency == 0)
1746 frequency = 1;
1747 FOR_BB_INSNS (bb, insn)
1748 insn = scan_one_insn (insn);
1749}
1750
1751/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1752 costs. */
1753static void
1754process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1755{
1756 basic_block bb;
1757
1758 bb = loop_tree_node->bb;
1759 if (bb != NULL)
1760 process_bb_for_costs (bb);
1761}
1762
1763/* Return true if all autoinc rtx in X change only a register and memory is
1764 valid. */
1765static bool
1766validate_autoinc_and_mem_addr_p (rtx x)
1767{
1768 enum rtx_code code = GET_CODE (x);
1769 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
1770 return REG_P (XEXP (x, 0));
1771 const char *fmt = GET_RTX_FORMAT (code);
1772 for (int i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1773 if (fmt[i] == 'e')
1774 {
1775 if (!validate_autoinc_and_mem_addr_p (XEXP (x, i)))
1776 return false;
1777 }
1778 else if (fmt[i] == 'E')
1779 {
1780 for (int j = 0; j < XVECLEN (x, i); j++)
1781 if (!validate_autoinc_and_mem_addr_p (XVECEXP (x, i, j)))
1782 return false;
1783 }
1784 /* Check memory after checking autoinc to guarantee that autoinc is already
1785 valid for machine-dependent code checking memory address. */
1786 return (!MEM_P (x)
1787 || memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
1788 MEM_ADDR_SPACE (x)));
1789}
1790
1791/* Check that reg REGNO in INSN can be changed by TO (which is an invariant
1792 equiv when INVARIANT_P is true). Return true in case the result insn would
1793 be valid one. */
1794static bool
1795equiv_can_be_consumed_p (int regno, rtx to, rtx_insn *insn, bool invariant_p)
1796{
1797 validate_replace_src_group (regno_reg_rtx[regno], to, insn);
1798 /* We can change register to equivalent memory in autoinc rtl. Some code
1799 including verify_changes assumes that autoinc contains only a register.
1800 So check this first. */
1801 bool res = validate_autoinc_and_mem_addr_p (x: PATTERN (insn));
1802 if (res)
1803 res = verify_changes (0);
1804 cancel_changes (0);
1805 if (!res && invariant_p)
1806 {
1807 /* Here we use more expensive code for the invariant because we need to
1808 simplify the result insn as the invariant can be arithmetic rtx
1809 inserted into another arithmetic rtx, e.g. into memory address. */
1810 rtx pat = PATTERN (insn);
1811 int code = INSN_CODE (insn);
1812 PATTERN (insn) = copy_rtx (pat);
1813 PATTERN (insn)
1814 = simplify_replace_rtx (PATTERN (insn), regno_reg_rtx[regno], to);
1815 res = !insn_invalid_p (insn, false);
1816 PATTERN (insn) = pat;
1817 INSN_CODE (insn) = code;
1818 }
1819 return res;
1820}
1821
1822/* Return true if X contains a pseudo with equivalence. In this case also
1823 return the pseudo through parameter REG. If the pseudo is a part of subreg,
1824 return the subreg through parameter SUBREG. */
1825
1826static bool
1827get_equiv_regno (rtx x, int &regno, rtx &subreg)
1828{
1829 subreg = NULL_RTX;
1830 if (GET_CODE (x) == SUBREG)
1831 {
1832 subreg = x;
1833 x = SUBREG_REG (x);
1834 }
1835 if (REG_P (x)
1836 && (ira_reg_equiv[REGNO (x)].memory != NULL
1837 || ira_reg_equiv[REGNO (x)].invariant != NULL
1838 || ira_reg_equiv[REGNO (x)].constant != NULL))
1839 {
1840 regno = REGNO (x);
1841 return true;
1842 }
1843 RTX_CODE code = GET_CODE (x);
1844 const char *fmt = GET_RTX_FORMAT (code);
1845
1846 for (int i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1847 if (fmt[i] == 'e')
1848 {
1849 if (get_equiv_regno (XEXP (x, i), regno, subreg))
1850 return true;
1851 }
1852 else if (fmt[i] == 'E')
1853 {
1854 for (int j = 0; j < XVECLEN (x, i); j++)
1855 if (get_equiv_regno (XVECEXP (x, i, j), regno, subreg))
1856 return true;
1857 }
1858 return false;
1859}
1860
1861/* A pass through the current function insns. Calculate costs of using
1862 equivalences for pseudos and store them in regno_equiv_gains. */
1863
1864static void
1865calculate_equiv_gains (void)
1866{
1867 basic_block bb;
1868 int regno, freq, cost;
1869 rtx subreg;
1870 rtx_insn *insn;
1871 machine_mode mode;
1872 enum reg_class rclass;
1873 bitmap_head equiv_pseudos;
1874
1875 ira_assert (allocno_p);
1876 bitmap_initialize (head: &equiv_pseudos, obstack: &reg_obstack);
1877 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1878 if (ira_reg_equiv[regno].init_insns != NULL
1879 && (ira_reg_equiv[regno].memory != NULL
1880 || ira_reg_equiv[regno].invariant != NULL
1881 || (ira_reg_equiv[regno].constant != NULL
1882 /* Ignore complicated constants which probably will be placed
1883 in memory: */
1884 && GET_CODE (ira_reg_equiv[regno].constant) != CONST_DOUBLE
1885 && GET_CODE (ira_reg_equiv[regno].constant) != CONST_VECTOR
1886 && GET_CODE (ira_reg_equiv[regno].constant) != LABEL_REF)))
1887 {
1888 rtx_insn_list *x;
1889 for (x = ira_reg_equiv[regno].init_insns; x != NULL; x = x->next ())
1890 {
1891 insn = x->insn ();
1892 rtx set = single_set (insn);
1893
1894 if (set == NULL_RTX || SET_DEST (set) != regno_reg_rtx[regno])
1895 break;
1896 bb = BLOCK_FOR_INSN (insn);
1897 ira_curr_regno_allocno_map
1898 = ira_bb_nodes[bb->index].parent->regno_allocno_map;
1899 mode = PSEUDO_REGNO_MODE (regno);
1900 rclass = pref[COST_INDEX (regno)];
1901 ira_init_register_move_cost_if_necessary (mode);
1902 if (ira_reg_equiv[regno].memory != NULL)
1903 cost = ira_memory_move_cost[mode][rclass][1];
1904 else
1905 cost = ira_register_move_cost[mode][rclass][rclass];
1906 freq = REG_FREQ_FROM_BB (bb);
1907 regno_equiv_gains[regno] += cost * freq;
1908 }
1909 if (x != NULL)
1910 /* We found complicated equiv or reverse equiv mem=reg. Ignore
1911 them. */
1912 regno_equiv_gains[regno] = 0;
1913 else
1914 bitmap_set_bit (&equiv_pseudos, regno);
1915 }
1916
1917 FOR_EACH_BB_FN (bb, cfun)
1918 {
1919 freq = REG_FREQ_FROM_BB (bb);
1920 ira_curr_regno_allocno_map
1921 = ira_bb_nodes[bb->index].parent->regno_allocno_map;
1922 FOR_BB_INSNS (bb, insn)
1923 {
1924 if (!NONDEBUG_INSN_P (insn)
1925 || !get_equiv_regno (x: PATTERN (insn), regno, subreg)
1926 || !bitmap_bit_p (&equiv_pseudos, regno))
1927 continue;
1928
1929 if (ira_reg_equiv[regno].invariant != NULL)
1930 {
1931 rtx_insn_list *x = ira_reg_equiv[regno].init_insns;
1932 for (; x != NULL; x = x->next ())
1933 if (insn == x->insn ())
1934 break;
1935 if (x != NULL)
1936 continue; /* skip equiv init insn for invariant */
1937 }
1938
1939 rtx subst = ira_reg_equiv[regno].memory;
1940
1941 if (subst == NULL)
1942 subst = ira_reg_equiv[regno].constant;
1943 if (subst == NULL)
1944 subst = ira_reg_equiv[regno].invariant;
1945 ira_assert (subst != NULL);
1946 mode = PSEUDO_REGNO_MODE (regno);
1947 ira_init_register_move_cost_if_necessary (mode);
1948 bool consumed_p
1949 = equiv_can_be_consumed_p (regno, to: subst, insn,
1950 invariant_p: subst == ira_reg_equiv[regno].invariant);
1951
1952 rclass = pref[COST_INDEX (regno)];
1953 if (MEM_P (subst)
1954 /* If it is a change of constant into double for example, the
1955 result constant probably will be placed in memory. */
1956 || (ira_reg_equiv[regno].invariant == NULL
1957 && subreg != NULL_RTX
1958 && !INTEGRAL_MODE_P (GET_MODE (subreg))))
1959 cost = ira_memory_move_cost[mode][rclass][1] + (consumed_p ? 0 : 1);
1960 else if (consumed_p)
1961 continue;
1962 else
1963 cost = ira_register_move_cost[mode][rclass][rclass];
1964 regno_equiv_gains[regno] -= cost * freq;
1965 }
1966 }
1967 bitmap_clear (&equiv_pseudos);
1968}
1969
1970/* Find costs of register classes and memory for allocnos or pseudos
1971 and their best costs. Set up preferred, alternative and allocno
1972 classes for pseudos. */
1973static void
1974find_costs_and_classes (void)
1975{
1976 int i, k, start, max_cost_classes_num;
1977 int pass;
1978 basic_block bb;
1979 enum reg_class *regno_best_class, new_class;
1980
1981 init_recog ();
1982 regno_best_class
1983 = (enum reg_class *) ira_allocate (max_reg_num ()
1984 * sizeof (enum reg_class));
1985 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1986 regno_best_class[i] = NO_REGS;
1987 if (!resize_reg_info () && allocno_p
1988 && pseudo_classes_defined_p && flag_expensive_optimizations)
1989 {
1990 ira_allocno_t a;
1991 ira_allocno_iterator ai;
1992
1993 pref = pref_buffer;
1994 max_cost_classes_num = 1;
1995 FOR_EACH_ALLOCNO (a, ai)
1996 {
1997 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1998 setup_regno_cost_classes_by_aclass
1999 (ALLOCNO_REGNO (a), aclass: pref[ALLOCNO_NUM (a)]);
2000 max_cost_classes_num
2001 = MAX (max_cost_classes_num,
2002 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
2003 }
2004 start = 1;
2005 }
2006 else
2007 {
2008 pref = NULL;
2009 max_cost_classes_num = ira_important_classes_num;
2010 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2011 if (regno_reg_rtx[i] != NULL_RTX)
2012 setup_regno_cost_classes_by_mode (regno: i, PSEUDO_REGNO_MODE (i));
2013 else
2014 setup_regno_cost_classes_by_aclass (regno: i, aclass: ALL_REGS);
2015 start = 0;
2016 }
2017 if (allocno_p)
2018 /* Clear the flag for the next compiled function. */
2019 pseudo_classes_defined_p = false;
2020 /* Normally we scan the insns once and determine the best class to
2021 use for each allocno. However, if -fexpensive-optimizations are
2022 on, we do so twice, the second time using the tentative best
2023 classes to guide the selection. */
2024 for (pass = start; pass <= flag_expensive_optimizations; pass++)
2025 {
2026 if ((!allocno_p || internal_flag_ira_verbose > 0) && ira_dump_file)
2027 fprintf (stream: ira_dump_file,
2028 format: "\nPass %i for finding pseudo/allocno costs\n\n", pass);
2029
2030 if (pass != start)
2031 {
2032 max_cost_classes_num = 1;
2033 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2034 {
2035 setup_regno_cost_classes_by_aclass (regno: i, aclass: regno_best_class[i]);
2036 max_cost_classes_num
2037 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
2038 }
2039 }
2040
2041 struct_costs_size
2042 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
2043 /* Zero out our accumulation of the cost of each class for each
2044 allocno. */
2045 memset (s: costs, c: 0, n: cost_elements_num * struct_costs_size);
2046
2047 if (allocno_p)
2048 {
2049 /* Scan the instructions and record each time it would save code
2050 to put a certain allocno in a certain class. */
2051 ira_traverse_loop_tree (true, ira_loop_tree_root,
2052 process_bb_node_for_costs, NULL);
2053
2054 memcpy (dest: total_allocno_costs, src: costs,
2055 max_struct_costs_size * ira_allocnos_num);
2056 }
2057 else
2058 {
2059 basic_block bb;
2060
2061 FOR_EACH_BB_FN (bb, cfun)
2062 process_bb_for_costs (bb);
2063 }
2064
2065 if (pass == 0)
2066 pref = pref_buffer;
2067
2068 if (ira_use_lra_p && allocno_p && pass == 1)
2069 /* It is a pass through all insns. So do it once and only for RA (not
2070 for insn scheduler) when we already found preferable pseudo register
2071 classes on the previous pass. */
2072 calculate_equiv_gains ();
2073
2074 /* Now for each allocno look at how desirable each class is and
2075 find which class is preferred. */
2076 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2077 {
2078 ira_allocno_t a, parent_a;
2079 int rclass, a_num, parent_a_num, add_cost;
2080 ira_loop_tree_node_t parent;
2081 int best_cost, allocno_cost;
2082 enum reg_class best, alt_class;
2083 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
2084 enum reg_class *cost_classes;
2085 int *i_costs = temp_costs->cost;
2086 int i_mem_cost;
2087 int equiv_savings = regno_equiv_gains[i];
2088
2089 if (! allocno_p)
2090 {
2091 if (regno_reg_rtx[i] == NULL_RTX)
2092 continue;
2093 memcpy (temp_costs, COSTS (costs, i), n: struct_costs_size);
2094 i_mem_cost = temp_costs->mem_cost;
2095 cost_classes = cost_classes_ptr->classes;
2096 }
2097 else
2098 {
2099 if (ira_regno_allocno_map[i] == NULL)
2100 continue;
2101 memset (temp_costs, c: 0, n: struct_costs_size);
2102 i_mem_cost = 0;
2103 cost_classes = cost_classes_ptr->classes;
2104 /* Find cost of all allocnos with the same regno. */
2105 for (a = ira_regno_allocno_map[i];
2106 a != NULL;
2107 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2108 {
2109 int *a_costs, *p_costs;
2110
2111 a_num = ALLOCNO_NUM (a);
2112 if ((flag_ira_region == IRA_REGION_ALL
2113 || flag_ira_region == IRA_REGION_MIXED)
2114 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
2115 && (parent_a = parent->regno_allocno_map[i]) != NULL
2116 /* There are no caps yet. */
2117 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
2118 (a)->border_allocnos,
2119 ALLOCNO_NUM (a)))
2120 {
2121 /* Propagate costs to upper levels in the region
2122 tree. */
2123 parent_a_num = ALLOCNO_NUM (parent_a);
2124 a_costs = COSTS (total_allocno_costs, a_num)->cost;
2125 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
2126 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
2127 {
2128 add_cost = a_costs[k];
2129 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
2130 p_costs[k] = INT_MAX;
2131 else
2132 p_costs[k] += add_cost;
2133 }
2134 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
2135 if (add_cost > 0
2136 && (INT_MAX - add_cost
2137 < COSTS (total_allocno_costs,
2138 parent_a_num)->mem_cost))
2139 COSTS (total_allocno_costs, parent_a_num)->mem_cost
2140 = INT_MAX;
2141 else
2142 COSTS (total_allocno_costs, parent_a_num)->mem_cost
2143 += add_cost;
2144
2145 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
2146 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
2147 }
2148 a_costs = COSTS (costs, a_num)->cost;
2149 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
2150 {
2151 add_cost = a_costs[k];
2152 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
2153 i_costs[k] = INT_MAX;
2154 else
2155 i_costs[k] += add_cost;
2156 }
2157 add_cost = COSTS (costs, a_num)->mem_cost;
2158 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
2159 i_mem_cost = INT_MAX;
2160 else
2161 i_mem_cost += add_cost;
2162 }
2163 }
2164 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
2165 i_mem_cost = 0;
2166 else if (ira_use_lra_p)
2167 {
2168 if (equiv_savings > 0)
2169 {
2170 i_mem_cost = 0;
2171 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
2172 fprintf (stream: ira_dump_file,
2173 format: " Use MEM for r%d as the equiv savings is %d\n",
2174 i, equiv_savings);
2175 }
2176 }
2177 else if (equiv_savings < 0)
2178 i_mem_cost = -equiv_savings;
2179 else if (equiv_savings > 0)
2180 {
2181 i_mem_cost = 0;
2182 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
2183 i_costs[k] += equiv_savings;
2184 }
2185
2186 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
2187 best = ALL_REGS;
2188 alt_class = NO_REGS;
2189 /* Find best common class for all allocnos with the same
2190 regno. */
2191 for (k = 0; k < cost_classes_ptr->num; k++)
2192 {
2193 rclass = cost_classes[k];
2194 if (i_costs[k] < best_cost)
2195 {
2196 best_cost = i_costs[k];
2197 best = (enum reg_class) rclass;
2198 }
2199 else if (i_costs[k] == best_cost)
2200 best = ira_reg_class_subunion[best][rclass];
2201 if (pass == flag_expensive_optimizations
2202 /* We still prefer registers to memory even at this
2203 stage if their costs are the same. We will make
2204 a final decision during assigning hard registers
2205 when we have all info including more accurate
2206 costs which might be affected by assigning hard
2207 registers to other pseudos because the pseudos
2208 involved in moves can be coalesced. */
2209 && i_costs[k] <= i_mem_cost
2210 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
2211 > reg_class_size[alt_class]))
2212 alt_class = reg_class_subunion[alt_class][rclass];
2213 }
2214 alt_class = ira_allocno_class_translate[alt_class];
2215 if (best_cost > i_mem_cost
2216 && ! non_spilled_static_chain_regno_p (regno: i))
2217 regno_aclass[i] = NO_REGS;
2218 else if (!optimize && !targetm.class_likely_spilled_p (best))
2219 /* Registers in the alternative class are likely to need
2220 longer or slower sequences than registers in the best class.
2221 When optimizing we make some effort to use the best class
2222 over the alternative class where possible, but at -O0 we
2223 effectively give the alternative class equal weight.
2224 We then run the risk of using slower alternative registers
2225 when plenty of registers from the best class are still free.
2226 This is especially true because live ranges tend to be very
2227 short in -O0 code and so register pressure tends to be low.
2228
2229 Avoid that by ignoring the alternative class if the best
2230 class has plenty of registers.
2231
2232 The union class arrays give important classes and only
2233 part of it are allocno classes. So translate them into
2234 allocno classes. */
2235 regno_aclass[i] = ira_allocno_class_translate[best];
2236 else
2237 {
2238 /* Make the common class the biggest class of best and
2239 alt_class. Translate the common class into an
2240 allocno class too. */
2241 regno_aclass[i] = (ira_allocno_class_translate
2242 [ira_reg_class_superunion[best][alt_class]]);
2243 ira_assert (regno_aclass[i] != NO_REGS
2244 && ira_reg_allocno_class_p[regno_aclass[i]]);
2245 }
2246 if (pic_offset_table_rtx != NULL
2247 && i == (int) REGNO (pic_offset_table_rtx))
2248 {
2249 /* For some targets, integer pseudos can be assigned to fp
2250 regs. As we don't want reload pic offset table pseudo, we
2251 should avoid using non-integer regs. */
2252 regno_aclass[i]
2253 = ira_reg_class_intersect[regno_aclass[i]][GENERAL_REGS];
2254 alt_class = ira_reg_class_intersect[alt_class][GENERAL_REGS];
2255 }
2256 if ((new_class
2257 = (reg_class) (targetm.ira_change_pseudo_allocno_class
2258 (i, regno_aclass[i], best))) != regno_aclass[i])
2259 {
2260 regno_aclass[i] = new_class;
2261 if (hard_reg_set_subset_p (reg_class_contents[new_class],
2262 reg_class_contents[best]))
2263 best = new_class;
2264 if (hard_reg_set_subset_p (reg_class_contents[new_class],
2265 reg_class_contents[alt_class]))
2266 alt_class = new_class;
2267 }
2268 if (pass == flag_expensive_optimizations)
2269 {
2270 if (best_cost > i_mem_cost
2271 /* Do not assign NO_REGS to static chain pointer
2272 pseudo when non-local goto is used. */
2273 && ! non_spilled_static_chain_regno_p (regno: i))
2274 best = alt_class = NO_REGS;
2275 else if (best == alt_class)
2276 alt_class = NO_REGS;
2277 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
2278 if ((!allocno_p || internal_flag_ira_verbose > 2)
2279 && ira_dump_file != NULL)
2280 fprintf (stream: ira_dump_file,
2281 format: " r%d: preferred %s, alternative %s, allocno %s\n",
2282 i, reg_class_names[best], reg_class_names[alt_class],
2283 reg_class_names[regno_aclass[i]]);
2284 }
2285 regno_best_class[i] = best;
2286 if (! allocno_p)
2287 {
2288 pref[i] = (best_cost > i_mem_cost
2289 && ! non_spilled_static_chain_regno_p (regno: i)
2290 ? NO_REGS : best);
2291 continue;
2292 }
2293 for (a = ira_regno_allocno_map[i];
2294 a != NULL;
2295 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2296 {
2297 enum reg_class aclass = regno_aclass[i];
2298 int a_num = ALLOCNO_NUM (a);
2299 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
2300 int *a_costs = COSTS (costs, a_num)->cost;
2301
2302 if (aclass == NO_REGS)
2303 best = NO_REGS;
2304 else
2305 {
2306 /* Finding best class which is subset of the common
2307 class. */
2308 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
2309 allocno_cost = best_cost;
2310 best = ALL_REGS;
2311 for (k = 0; k < cost_classes_ptr->num; k++)
2312 {
2313 rclass = cost_classes[k];
2314 if (! ira_class_subset_p[rclass][aclass])
2315 continue;
2316 if (total_a_costs[k] < best_cost)
2317 {
2318 best_cost = total_a_costs[k];
2319 allocno_cost = a_costs[k];
2320 best = (enum reg_class) rclass;
2321 }
2322 else if (total_a_costs[k] == best_cost)
2323 {
2324 best = ira_reg_class_subunion[best][rclass];
2325 allocno_cost = MAX (allocno_cost, a_costs[k]);
2326 }
2327 }
2328 ALLOCNO_CLASS_COST (a) = allocno_cost;
2329 }
2330 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL
2331 && (pass == 0 || pref[a_num] != best))
2332 {
2333 fprintf (stream: ira_dump_file, format: " a%d (r%d,", a_num, i);
2334 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
2335 fprintf (stream: ira_dump_file, format: "b%d", bb->index);
2336 else
2337 fprintf (stream: ira_dump_file, format: "l%d",
2338 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
2339 fprintf (stream: ira_dump_file, format: ") best %s, allocno %s\n",
2340 reg_class_names[best],
2341 reg_class_names[aclass]);
2342 }
2343 pref[a_num] = best;
2344 if (pass == flag_expensive_optimizations && best != aclass
2345 && ira_class_hard_regs_num[best] > 0
2346 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
2347 >= ira_class_hard_regs_num[best]))
2348 {
2349 int ind = cost_classes_ptr->index[aclass];
2350
2351 ira_assert (ind >= 0);
2352 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
2353 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
2354 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
2355 / (ira_register_move_cost
2356 [ALLOCNO_MODE (a)][best][aclass]));
2357 for (k = 0; k < cost_classes_ptr->num; k++)
2358 if (ira_class_subset_p[cost_classes[k]][best])
2359 a_costs[k] = a_costs[ind];
2360 }
2361 }
2362 }
2363
2364 if (internal_flag_ira_verbose > 4 && ira_dump_file)
2365 {
2366 if (allocno_p)
2367 print_allocno_costs ();
2368 else
2369 print_pseudo_costs ();
2370 fprintf (stream: ira_dump_file,format: "\n");
2371 }
2372 }
2373 ira_free (addr: regno_best_class);
2374}
2375
2376
2377
2378/* Process moves involving hard regs to modify allocno hard register
2379 costs. We can do this only after determining allocno class. If a
2380 hard register forms a register class, then moves with the hard
2381 register are already taken into account in class costs for the
2382 allocno. */
2383static void
2384process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
2385{
2386 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
2387 bool to_p;
2388 ira_allocno_t a, curr_a;
2389 ira_loop_tree_node_t curr_loop_tree_node;
2390 enum reg_class rclass;
2391 basic_block bb;
2392 rtx_insn *insn;
2393 rtx set, src, dst;
2394
2395 bb = loop_tree_node->bb;
2396 if (bb == NULL)
2397 return;
2398 freq = REG_FREQ_FROM_BB (bb);
2399 if (freq == 0)
2400 freq = 1;
2401 FOR_BB_INSNS (bb, insn)
2402 {
2403 if (!NONDEBUG_INSN_P (insn))
2404 continue;
2405 set = single_set (insn);
2406 if (set == NULL_RTX)
2407 continue;
2408 dst = SET_DEST (set);
2409 src = SET_SRC (set);
2410 if (! REG_P (dst) || ! REG_P (src))
2411 continue;
2412 dst_regno = REGNO (dst);
2413 src_regno = REGNO (src);
2414 if (dst_regno >= FIRST_PSEUDO_REGISTER
2415 && src_regno < FIRST_PSEUDO_REGISTER)
2416 {
2417 hard_regno = src_regno;
2418 a = ira_curr_regno_allocno_map[dst_regno];
2419 to_p = true;
2420 }
2421 else if (src_regno >= FIRST_PSEUDO_REGISTER
2422 && dst_regno < FIRST_PSEUDO_REGISTER)
2423 {
2424 hard_regno = dst_regno;
2425 a = ira_curr_regno_allocno_map[src_regno];
2426 to_p = false;
2427 }
2428 else
2429 continue;
2430 if (reg_class_size[(int) REGNO_REG_CLASS (hard_regno)]
2431 == (ira_reg_class_max_nregs
2432 [REGNO_REG_CLASS (hard_regno)][(int) ALLOCNO_MODE(a)]))
2433 /* If the class can provide only one hard reg to the allocno,
2434 we processed the insn record_operand_costs already and we
2435 actually updated the hard reg cost there. */
2436 continue;
2437 rclass = ALLOCNO_CLASS (a);
2438 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], bit: hard_regno))
2439 continue;
2440 i = ira_class_hard_reg_index[rclass][hard_regno];
2441 if (i < 0)
2442 continue;
2443 a_regno = ALLOCNO_REGNO (a);
2444 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2445 curr_loop_tree_node != NULL;
2446 curr_loop_tree_node = curr_loop_tree_node->parent)
2447 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2448 ira_add_allocno_pref (curr_a, hard_regno, freq);
2449 {
2450 int cost;
2451 enum reg_class hard_reg_class;
2452 machine_mode mode;
2453
2454 mode = ALLOCNO_MODE (a);
2455 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2456 ira_init_register_move_cost_if_necessary (mode);
2457 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2458 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2459 ira_allocate_and_set_costs (vec: &ALLOCNO_HARD_REG_COSTS (a), aclass: rclass,
2460 ALLOCNO_CLASS_COST (a));
2461 ira_allocate_and_set_costs (vec: &ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2462 aclass: rclass, val: 0);
2463 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2464 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2465 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2466 ALLOCNO_HARD_REG_COSTS (a)[i]);
2467 }
2468 }
2469}
2470
2471/* After we find hard register and memory costs for allocnos, define
2472 its class and modify hard register cost because insns moving
2473 allocno to/from hard registers. */
2474static void
2475setup_allocno_class_and_costs (void)
2476{
2477 int i, j, n, regno, hard_regno, num;
2478 int *reg_costs;
2479 enum reg_class aclass, rclass;
2480 ira_allocno_t a;
2481 ira_allocno_iterator ai;
2482 cost_classes_t cost_classes_ptr;
2483
2484 ira_assert (allocno_p);
2485 FOR_EACH_ALLOCNO (a, ai)
2486 {
2487 i = ALLOCNO_NUM (a);
2488 regno = ALLOCNO_REGNO (a);
2489 aclass = regno_aclass[regno];
2490 cost_classes_ptr = regno_cost_classes[regno];
2491 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2492 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2493 ira_set_allocno_class (a, aclass);
2494 if (aclass == NO_REGS)
2495 continue;
2496 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2497 {
2498 n = ira_class_hard_regs_num[aclass];
2499 ALLOCNO_HARD_REG_COSTS (a)
2500 = reg_costs = ira_allocate_cost_vector (aclass);
2501 for (j = n - 1; j >= 0; j--)
2502 {
2503 hard_regno = ira_class_hard_regs[aclass][j];
2504 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], bit: hard_regno))
2505 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2506 else
2507 {
2508 rclass = REGNO_REG_CLASS (hard_regno);
2509 num = cost_classes_ptr->index[rclass];
2510 if (num < 0)
2511 {
2512 num = cost_classes_ptr->hard_regno_index[hard_regno];
2513 ira_assert (num >= 0);
2514 }
2515 reg_costs[j] = COSTS (costs, i)->cost[num];
2516 }
2517 }
2518 }
2519 }
2520 if (optimize)
2521 ira_traverse_loop_tree (true, ira_loop_tree_root,
2522 process_bb_node_for_hard_reg_moves, NULL);
2523}
2524
2525
2526
2527/* Function called once during compiler work. */
2528void
2529ira_init_costs_once (void)
2530{
2531 int i;
2532
2533 init_cost = NULL;
2534 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2535 {
2536 op_costs[i] = NULL;
2537 this_op_costs[i] = NULL;
2538 }
2539 temp_costs = NULL;
2540}
2541
2542/* Free allocated temporary cost vectors. */
2543void
2544target_ira_int::free_ira_costs ()
2545{
2546 int i;
2547
2548 free (ptr: x_init_cost);
2549 x_init_cost = NULL;
2550 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2551 {
2552 free (ptr: x_op_costs[i]);
2553 free (ptr: x_this_op_costs[i]);
2554 x_op_costs[i] = x_this_op_costs[i] = NULL;
2555 }
2556 free (ptr: x_temp_costs);
2557 x_temp_costs = NULL;
2558}
2559
2560/* This is called each time register related information is
2561 changed. */
2562void
2563ira_init_costs (void)
2564{
2565 int i;
2566
2567 this_target_ira_int->free_ira_costs ();
2568 max_struct_costs_size
2569 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2570 /* Don't use ira_allocate because vectors live through several IRA
2571 calls. */
2572 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2573 init_cost->mem_cost = 1000000;
2574 for (i = 0; i < ira_important_classes_num; i++)
2575 init_cost->cost[i] = 1000000;
2576 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2577 {
2578 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2579 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2580 }
2581 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2582}
2583
2584
2585
2586/* Common initialization function for ira_costs and
2587 ira_set_pseudo_classes. */
2588static void
2589init_costs (void)
2590{
2591 init_subregs_of_mode ();
2592 costs = (struct costs *) ira_allocate (max_struct_costs_size
2593 * cost_elements_num);
2594 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2595 * cost_elements_num);
2596 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2597 * max_reg_num ());
2598 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2599 memset (s: regno_equiv_gains, c: 0, n: sizeof (int) * max_reg_num ());
2600}
2601
2602/* Common finalization function for ira_costs and
2603 ira_set_pseudo_classes. */
2604static void
2605finish_costs (void)
2606{
2607 finish_subregs_of_mode ();
2608 ira_free (addr: regno_equiv_gains);
2609 ira_free (addr: regno_aclass);
2610 ira_free (addr: pref_buffer);
2611 ira_free (addr: costs);
2612}
2613
2614/* Entry function which defines register class, memory and hard
2615 register costs for each allocno. */
2616void
2617ira_costs (void)
2618{
2619 allocno_p = true;
2620 cost_elements_num = ira_allocnos_num;
2621 init_costs ();
2622 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2623 * ira_allocnos_num);
2624 initiate_regno_cost_classes ();
2625 if (!ira_use_lra_p)
2626 /* Process equivs in reload to update costs through hook
2627 ira_adjust_equiv_reg_cost. */
2628 calculate_elim_costs_all_insns ();
2629 find_costs_and_classes ();
2630 setup_allocno_class_and_costs ();
2631 finish_regno_cost_classes ();
2632 finish_costs ();
2633 ira_free (addr: total_allocno_costs);
2634}
2635
2636/* Entry function which defines classes for pseudos.
2637 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2638void
2639ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2640{
2641 FILE *saved_file = ira_dump_file;
2642 allocno_p = false;
2643 internal_flag_ira_verbose = flag_ira_verbose;
2644 ira_dump_file = dump_file;
2645 cost_elements_num = max_reg_num ();
2646 init_costs ();
2647 initiate_regno_cost_classes ();
2648 find_costs_and_classes ();
2649 finish_regno_cost_classes ();
2650 if (define_pseudo_classes)
2651 pseudo_classes_defined_p = true;
2652
2653 finish_costs ();
2654 ira_dump_file = saved_file;
2655}
2656
2657
2658
2659/* Change hard register costs for allocnos which lives through
2660 function calls. This is called only when we found all intersected
2661 calls during building allocno live ranges. */
2662void
2663ira_tune_allocno_costs (void)
2664{
2665 int j, n, regno;
2666 int cost, min_cost, *reg_costs;
2667 enum reg_class aclass;
2668 machine_mode mode;
2669 ira_allocno_t a;
2670 ira_allocno_iterator ai;
2671 ira_allocno_object_iterator oi;
2672 ira_object_t obj;
2673 bool skip_p;
2674
2675 FOR_EACH_ALLOCNO (a, ai)
2676 {
2677 aclass = ALLOCNO_CLASS (a);
2678 if (aclass == NO_REGS)
2679 continue;
2680 mode = ALLOCNO_MODE (a);
2681 n = ira_class_hard_regs_num[aclass];
2682 min_cost = INT_MAX;
2683 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2684 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2685 {
2686 ira_allocate_and_set_costs
2687 (vec: &ALLOCNO_HARD_REG_COSTS (a), aclass,
2688 ALLOCNO_CLASS_COST (a));
2689 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2690 for (j = n - 1; j >= 0; j--)
2691 {
2692 regno = ira_class_hard_regs[aclass][j];
2693 skip_p = false;
2694 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2695 {
2696 if (ira_hard_reg_set_intersection_p (hard_regno: regno, mode,
2697 OBJECT_CONFLICT_HARD_REGS
2698 (obj)))
2699 {
2700 skip_p = true;
2701 break;
2702 }
2703 }
2704 if (skip_p)
2705 continue;
2706 cost = 0;
2707 if (ira_need_caller_save_p (a, regno))
2708 cost += ira_caller_save_cost (a);
2709#ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2710 {
2711 auto rclass = REGNO_REG_CLASS (regno);
2712 cost += ((ira_memory_move_cost[mode][rclass][0]
2713 + ira_memory_move_cost[mode][rclass][1])
2714 * ALLOCNO_FREQ (a)
2715 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2716 }
2717#endif
2718 if (INT_MAX - cost < reg_costs[j])
2719 reg_costs[j] = INT_MAX;
2720 else
2721 reg_costs[j] += cost;
2722 if (min_cost > reg_costs[j])
2723 min_cost = reg_costs[j];
2724 }
2725 }
2726 if (min_cost != INT_MAX)
2727 ALLOCNO_CLASS_COST (a) = min_cost;
2728
2729 /* Some targets allow pseudos to be allocated to unaligned sequences
2730 of hard registers. However, selecting an unaligned sequence can
2731 unnecessarily restrict later allocations. So increase the cost of
2732 unaligned hard regs to encourage the use of aligned hard regs. */
2733 {
2734 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2735
2736 if (nregs > 1)
2737 {
2738 ira_allocate_and_set_costs
2739 (vec: &ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2740 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2741 for (j = n - 1; j >= 0; j--)
2742 {
2743 regno = ira_non_ordered_class_hard_regs[aclass][j];
2744 if ((regno % nregs) != 0)
2745 {
2746 int index = ira_class_hard_reg_index[aclass][regno];
2747 ira_assert (index != -1);
2748 reg_costs[index] += ALLOCNO_FREQ (a);
2749 }
2750 }
2751 }
2752 }
2753 }
2754}
2755
2756/* A hook from the reload pass. Add COST to the estimated gain for eliminating
2757 REGNO with its equivalence. If COST is zero, record that no such
2758 elimination is possible. */
2759
2760void
2761ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2762{
2763 ira_assert (!ira_use_lra_p);
2764 if (cost == 0)
2765 regno_equiv_gains[regno] = 0;
2766 else
2767 regno_equiv_gains[regno] += cost;
2768}
2769
2770void
2771ira_costs_cc_finalize (void)
2772{
2773 this_target_ira_int->free_ira_costs ();
2774}
2775

source code of gcc/ira-costs.cc