1/* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2023 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
76
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.cc) and initializes most of their attributes.
151
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
155
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.cc).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.cc).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.cc).
167
168 * IRA creates all caps (file ira-build.cc).
169
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.cc). At this point IRA creates allocno copies.
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.cc). There are following subpasses:
179
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
203
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
215
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
234
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA cannot assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
246
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
253
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
263
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
276
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.cc). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
302
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.cc). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
308
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.cc). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
315
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.cc to improve its decisions in
319
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
322
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
325
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
329
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.cc.
332
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
339
340 Literature is worth to read for better understanding the code:
341
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
344
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
347
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
351
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
354
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
357
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
359
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
362
363*/
364
365
366#include "config.h"
367#include "system.h"
368#include "coretypes.h"
369#include "backend.h"
370#include "target.h"
371#include "rtl.h"
372#include "tree.h"
373#include "df.h"
374#include "memmodel.h"
375#include "tm_p.h"
376#include "insn-config.h"
377#include "regs.h"
378#include "ira.h"
379#include "ira-int.h"
380#include "diagnostic-core.h"
381#include "cfgrtl.h"
382#include "cfgbuild.h"
383#include "cfgcleanup.h"
384#include "expr.h"
385#include "tree-pass.h"
386#include "output.h"
387#include "reload.h"
388#include "cfgloop.h"
389#include "lra.h"
390#include "dce.h"
391#include "dbgcnt.h"
392#include "rtl-iter.h"
393#include "shrink-wrap.h"
394#include "print-rtl.h"
395
396struct target_ira default_target_ira;
397class target_ira_int default_target_ira_int;
398#if SWITCHABLE_TARGET
399struct target_ira *this_target_ira = &default_target_ira;
400class target_ira_int *this_target_ira_int = &default_target_ira_int;
401#endif
402
403/* A modified value of flag `-fira-verbose' used internally. */
404int internal_flag_ira_verbose;
405
406/* Dump file of the allocator if it is not NULL. */
407FILE *ira_dump_file;
408
409/* The number of elements in the following array. */
410int ira_spilled_reg_stack_slots_num;
411
412/* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415
416/* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.cc). */
421int64_t ira_overall_cost, overall_cost_before;
422int64_t ira_reg_cost, ira_mem_cost;
423int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424int ira_move_loops_num, ira_additional_jumps_num;
425
426/* All registers that can be eliminated. */
427
428HARD_REG_SET eliminable_regset;
429
430/* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433static int max_regno_before_ira;
434
435/* Temporary hard reg set used for a different calculation. */
436static HARD_REG_SET temp_hard_regset;
437
438#define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
440
441
442/* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443static void
444setup_reg_mode_hard_regset (void)
445{
446 int i, m, hard_regno;
447
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 {
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs (regno: hard_regno, mode: (machine_mode) m) - 1;
453 i >= 0; i--)
454 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 bit: hard_regno + i);
457 }
458}
459
460
461#define no_unit_alloc_regs \
462 (this_target_ira_int->x_no_unit_alloc_regs)
463
464/* The function sets up the three arrays declared above. */
465static void
466setup_class_hard_regs (void)
467{
468 int cl, i, hard_regno, n;
469 HARD_REG_SET processed_hard_reg_set;
470
471 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473 {
474 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
475 CLEAR_HARD_REG_SET (set&: processed_hard_reg_set);
476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 {
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
480 }
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 {
483#ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485#else
486 hard_regno = i;
487#endif
488 if (TEST_HARD_REG_BIT (set: processed_hard_reg_set, bit: hard_regno))
489 continue;
490 SET_HARD_REG_BIT (set&: processed_hard_reg_set, bit: hard_regno);
491 if (! TEST_HARD_REG_BIT (set: temp_hard_regset, bit: hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
494 {
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
497 }
498 }
499 ira_class_hard_regs_num[cl] = n;
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (set: temp_hard_regset, bit: i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
504 }
505}
506
507/* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510static void
511setup_alloc_regs (bool use_hard_frame_p)
512{
513#ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515#endif
516 no_unit_alloc_regs = fixed_nonglobal_reg_set;
517 if (! use_hard_frame_p)
518 add_to_hard_reg_set (regs: &no_unit_alloc_regs, Pmode,
519 HARD_FRAME_POINTER_REGNUM);
520 setup_class_hard_regs ();
521}
522
523
524
525#define alloc_reg_class_subclasses \
526 (this_target_ira_int->x_alloc_reg_class_subclasses)
527
528/* Initialize the table of subclasses of each reg class. */
529static void
530setup_reg_subclasses (void)
531{
532 int i, j;
533 HARD_REG_SET temp_hard_regset2;
534
535 for (i = 0; i < N_REG_CLASSES; i++)
536 for (j = 0; j < N_REG_CLASSES; j++)
537 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538
539 for (i = 0; i < N_REG_CLASSES; i++)
540 {
541 if (i == (int) NO_REGS)
542 continue;
543
544 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
545 if (hard_reg_set_empty_p (x: temp_hard_regset))
546 continue;
547 for (j = 0; j < N_REG_CLASSES; j++)
548 if (i != j)
549 {
550 enum reg_class *p;
551
552 temp_hard_regset2 = reg_class_contents[j] & ~no_unit_alloc_regs;
553 if (! hard_reg_set_subset_p (x: temp_hard_regset,
554 y: temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
559 }
560 }
561}
562
563
564
565/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566static void
567setup_class_subset_and_memory_move_costs (void)
568{
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
571
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
576 {
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
579 {
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (!targetm.hard_regno_mode_ok (ira_class_hard_regs[cl][0],
592 (machine_mode) mode))
593 continue;
594
595 if (ira_memory_move_cost[mode][NO_REGS][0]
596 > ira_memory_move_cost[mode][cl][0])
597 ira_max_memory_move_cost[mode][NO_REGS][0]
598 = ira_memory_move_cost[mode][NO_REGS][0]
599 = ira_memory_move_cost[mode][cl][0];
600 if (ira_memory_move_cost[mode][NO_REGS][1]
601 > ira_memory_move_cost[mode][cl][1])
602 ira_max_memory_move_cost[mode][NO_REGS][1]
603 = ira_memory_move_cost[mode][NO_REGS][1]
604 = ira_memory_move_cost[mode][cl][1];
605 }
606 }
607 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
608 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
609 {
610 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
611 temp_hard_regset2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
612 ira_class_subset_p[cl][cl2]
613 = hard_reg_set_subset_p (x: temp_hard_regset, y: temp_hard_regset2);
614 if (! hard_reg_set_empty_p (x: temp_hard_regset2)
615 && hard_reg_set_subset_p (reg_class_contents[cl2],
616 reg_class_contents[cl]))
617 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
618 {
619 cost = ira_memory_move_cost[mode][cl2][0];
620 if (cost > ira_max_memory_move_cost[mode][cl][0])
621 ira_max_memory_move_cost[mode][cl][0] = cost;
622 cost = ira_memory_move_cost[mode][cl2][1];
623 if (cost > ira_max_memory_move_cost[mode][cl][1])
624 ira_max_memory_move_cost[mode][cl][1] = cost;
625 }
626 }
627 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
628 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
629 {
630 ira_memory_move_cost[mode][cl][0]
631 = ira_max_memory_move_cost[mode][cl][0];
632 ira_memory_move_cost[mode][cl][1]
633 = ira_max_memory_move_cost[mode][cl][1];
634 }
635 setup_reg_subclasses ();
636}
637
638
639
640/* Define the following macro if allocation through malloc if
641 preferable. */
642#define IRA_NO_OBSTACK
643
644#ifndef IRA_NO_OBSTACK
645/* Obstack used for storing all dynamic data (except bitmaps) of the
646 IRA. */
647static struct obstack ira_obstack;
648#endif
649
650/* Obstack used for storing all bitmaps of the IRA. */
651static struct bitmap_obstack ira_bitmap_obstack;
652
653/* Allocate memory of size LEN for IRA data. */
654void *
655ira_allocate (size_t len)
656{
657 void *res;
658
659#ifndef IRA_NO_OBSTACK
660 res = obstack_alloc (&ira_obstack, len);
661#else
662 res = xmalloc (len);
663#endif
664 return res;
665}
666
667/* Free memory ADDR allocated for IRA data. */
668void
669ira_free (void *addr ATTRIBUTE_UNUSED)
670{
671#ifndef IRA_NO_OBSTACK
672 /* do nothing */
673#else
674 free (ptr: addr);
675#endif
676}
677
678
679/* Allocate and returns bitmap for IRA. */
680bitmap
681ira_allocate_bitmap (void)
682{
683 return BITMAP_ALLOC (obstack: &ira_bitmap_obstack);
684}
685
686/* Free bitmap B allocated for IRA. */
687void
688ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
689{
690 /* do nothing */
691}
692
693
694
695/* Output information about allocation of all allocnos (except for
696 caps) into file F. */
697void
698ira_print_disposition (FILE *f)
699{
700 int i, n, max_regno;
701 ira_allocno_t a;
702 basic_block bb;
703
704 fprintf (stream: f, format: "Disposition:");
705 max_regno = max_reg_num ();
706 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
707 for (a = ira_regno_allocno_map[i];
708 a != NULL;
709 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
710 {
711 if (n % 4 == 0)
712 fprintf (stream: f, format: "\n");
713 n++;
714 fprintf (stream: f, format: " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
715 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
716 fprintf (stream: f, format: "b%-3d", bb->index);
717 else
718 fprintf (stream: f, format: "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
719 if (ALLOCNO_HARD_REGNO (a) >= 0)
720 fprintf (stream: f, format: " %3d", ALLOCNO_HARD_REGNO (a));
721 else
722 fprintf (stream: f, format: " mem");
723 }
724 fprintf (stream: f, format: "\n");
725}
726
727/* Outputs information about allocation of all allocnos into
728 stderr. */
729void
730ira_debug_disposition (void)
731{
732 ira_print_disposition (stderr);
733}
734
735
736
737/* Set up ira_stack_reg_pressure_class which is the biggest pressure
738 register class containing stack registers or NO_REGS if there are
739 no stack registers. To find this class, we iterate through all
740 register pressure classes and choose the first register pressure
741 class containing all the stack registers and having the biggest
742 size. */
743static void
744setup_stack_reg_pressure_class (void)
745{
746 ira_stack_reg_pressure_class = NO_REGS;
747#ifdef STACK_REGS
748 {
749 int i, best, size;
750 enum reg_class cl;
751 HARD_REG_SET temp_hard_regset2;
752
753 CLEAR_HARD_REG_SET (set&: temp_hard_regset);
754 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
755 SET_HARD_REG_BIT (set&: temp_hard_regset, bit: i);
756 best = 0;
757 for (i = 0; i < ira_pressure_classes_num; i++)
758 {
759 cl = ira_pressure_classes[i];
760 temp_hard_regset2 = temp_hard_regset & reg_class_contents[cl];
761 size = hard_reg_set_size (set: temp_hard_regset2);
762 if (best < size)
763 {
764 best = size;
765 ira_stack_reg_pressure_class = cl;
766 }
767 }
768 }
769#endif
770}
771
772/* Find pressure classes which are register classes for which we
773 calculate register pressure in IRA, register pressure sensitive
774 insn scheduling, and register pressure sensitive loop invariant
775 motion.
776
777 To make register pressure calculation easy, we always use
778 non-intersected register pressure classes. A move of hard
779 registers from one register pressure class is not more expensive
780 than load and store of the hard registers. Most likely an allocno
781 class will be a subset of a register pressure class and in many
782 cases a register pressure class. That makes usage of register
783 pressure classes a good approximation to find a high register
784 pressure. */
785static void
786setup_pressure_classes (void)
787{
788 int cost, i, n, curr;
789 int cl, cl2;
790 enum reg_class pressure_classes[N_REG_CLASSES];
791 int m;
792 HARD_REG_SET temp_hard_regset2;
793 bool insert_p;
794
795 if (targetm.compute_pressure_classes)
796 n = targetm.compute_pressure_classes (pressure_classes);
797 else
798 {
799 n = 0;
800 for (cl = 0; cl < N_REG_CLASSES; cl++)
801 {
802 if (ira_class_hard_regs_num[cl] == 0)
803 continue;
804 if (ira_class_hard_regs_num[cl] != 1
805 /* A register class without subclasses may contain a few
806 hard registers and movement between them is costly
807 (e.g. SPARC FPCC registers). We still should consider it
808 as a candidate for a pressure class. */
809 && alloc_reg_class_subclasses[cl][0] < cl)
810 {
811 /* Check that the moves between any hard registers of the
812 current class are not more expensive for a legal mode
813 than load/store of the hard registers of the current
814 class. Such class is a potential candidate to be a
815 register pressure class. */
816 for (m = 0; m < NUM_MACHINE_MODES; m++)
817 {
818 temp_hard_regset
819 = (reg_class_contents[cl]
820 & ~(no_unit_alloc_regs
821 | ira_prohibited_class_mode_regs[cl][m]));
822 if (hard_reg_set_empty_p (x: temp_hard_regset))
823 continue;
824 ira_init_register_move_cost_if_necessary (mode: (machine_mode) m);
825 cost = ira_register_move_cost[m][cl][cl];
826 if (cost <= ira_max_memory_move_cost[m][cl][1]
827 || cost <= ira_max_memory_move_cost[m][cl][0])
828 break;
829 }
830 if (m >= NUM_MACHINE_MODES)
831 continue;
832 }
833 curr = 0;
834 insert_p = true;
835 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
836 /* Remove so far added pressure classes which are subset of the
837 current candidate class. Prefer GENERAL_REGS as a pressure
838 register class to another class containing the same
839 allocatable hard registers. We do this because machine
840 dependent cost hooks might give wrong costs for the latter
841 class but always give the right cost for the former class
842 (GENERAL_REGS). */
843 for (i = 0; i < n; i++)
844 {
845 cl2 = pressure_classes[i];
846 temp_hard_regset2 = (reg_class_contents[cl2]
847 & ~no_unit_alloc_regs);
848 if (hard_reg_set_subset_p (x: temp_hard_regset, y: temp_hard_regset2)
849 && (temp_hard_regset != temp_hard_regset2
850 || cl2 == (int) GENERAL_REGS))
851 {
852 pressure_classes[curr++] = (enum reg_class) cl2;
853 insert_p = false;
854 continue;
855 }
856 if (hard_reg_set_subset_p (x: temp_hard_regset2, y: temp_hard_regset)
857 && (temp_hard_regset2 != temp_hard_regset
858 || cl == (int) GENERAL_REGS))
859 continue;
860 if (temp_hard_regset2 == temp_hard_regset)
861 insert_p = false;
862 pressure_classes[curr++] = (enum reg_class) cl2;
863 }
864 /* If the current candidate is a subset of a so far added
865 pressure class, don't add it to the list of the pressure
866 classes. */
867 if (insert_p)
868 pressure_classes[curr++] = (enum reg_class) cl;
869 n = curr;
870 }
871 }
872#ifdef ENABLE_IRA_CHECKING
873 {
874 HARD_REG_SET ignore_hard_regs;
875
876 /* Check pressure classes correctness: here we check that hard
877 registers from all register pressure classes contains all hard
878 registers available for the allocation. */
879 CLEAR_HARD_REG_SET (set&: temp_hard_regset);
880 CLEAR_HARD_REG_SET (set&: temp_hard_regset2);
881 ignore_hard_regs = no_unit_alloc_regs;
882 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
883 {
884 /* For some targets (like MIPS with MD_REGS), there are some
885 classes with hard registers available for allocation but
886 not able to hold value of any mode. */
887 for (m = 0; m < NUM_MACHINE_MODES; m++)
888 if (contains_reg_of_mode[cl][m])
889 break;
890 if (m >= NUM_MACHINE_MODES)
891 {
892 ignore_hard_regs |= reg_class_contents[cl];
893 continue;
894 }
895 for (i = 0; i < n; i++)
896 if ((int) pressure_classes[i] == cl)
897 break;
898 temp_hard_regset2 |= reg_class_contents[cl];
899 if (i < n)
900 temp_hard_regset |= reg_class_contents[cl];
901 }
902 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
903 /* Some targets (like SPARC with ICC reg) have allocatable regs
904 for which no reg class is defined. */
905 if (REGNO_REG_CLASS (i) == NO_REGS)
906 SET_HARD_REG_BIT (set&: ignore_hard_regs, bit: i);
907 temp_hard_regset &= ~ignore_hard_regs;
908 temp_hard_regset2 &= ~ignore_hard_regs;
909 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
910 }
911#endif
912 ira_pressure_classes_num = 0;
913 for (i = 0; i < n; i++)
914 {
915 cl = (int) pressure_classes[i];
916 ira_reg_pressure_class_p[cl] = true;
917 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
918 }
919 setup_stack_reg_pressure_class ();
920}
921
922/* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
923 whose register move cost between any registers of the class is the
924 same as for all its subclasses. We use the data to speed up the
925 2nd pass of calculations of allocno costs. */
926static void
927setup_uniform_class_p (void)
928{
929 int i, cl, cl2, m;
930
931 for (cl = 0; cl < N_REG_CLASSES; cl++)
932 {
933 ira_uniform_class_p[cl] = false;
934 if (ira_class_hard_regs_num[cl] == 0)
935 continue;
936 /* We cannot use alloc_reg_class_subclasses here because move
937 cost hooks does not take into account that some registers are
938 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
939 is element of alloc_reg_class_subclasses for GENERAL_REGS
940 because SSE regs are unavailable. */
941 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
942 {
943 if (ira_class_hard_regs_num[cl2] == 0)
944 continue;
945 for (m = 0; m < NUM_MACHINE_MODES; m++)
946 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
947 {
948 ira_init_register_move_cost_if_necessary (mode: (machine_mode) m);
949 if (ira_register_move_cost[m][cl][cl]
950 != ira_register_move_cost[m][cl2][cl2])
951 break;
952 }
953 if (m < NUM_MACHINE_MODES)
954 break;
955 }
956 if (cl2 == LIM_REG_CLASSES)
957 ira_uniform_class_p[cl] = true;
958 }
959}
960
961/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
962 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
963
964 Target may have many subtargets and not all target hard registers can
965 be used for allocation, e.g. x86 port in 32-bit mode cannot use
966 hard registers introduced in x86-64 like r8-r15). Some classes
967 might have the same allocatable hard registers, e.g. INDEX_REGS
968 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
969 calculations efforts we introduce allocno classes which contain
970 unique non-empty sets of allocatable hard-registers.
971
972 Pseudo class cost calculation in ira-costs.cc is very expensive.
973 Therefore we are trying to decrease number of classes involved in
974 such calculation. Register classes used in the cost calculation
975 are called important classes. They are allocno classes and other
976 non-empty classes whose allocatable hard register sets are inside
977 of an allocno class hard register set. From the first sight, it
978 looks like that they are just allocno classes. It is not true. In
979 example of x86-port in 32-bit mode, allocno classes will contain
980 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
981 registers are the same for the both classes). The important
982 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
983 because a machine description insn constraint may refers for
984 LEGACY_REGS and code in ira-costs.cc is mostly base on investigation
985 of the insn constraints. */
986static void
987setup_allocno_and_important_classes (void)
988{
989 int i, j, n, cl;
990 bool set_p;
991 HARD_REG_SET temp_hard_regset2;
992 static enum reg_class classes[LIM_REG_CLASSES + 1];
993
994 n = 0;
995 /* Collect classes which contain unique sets of allocatable hard
996 registers. Prefer GENERAL_REGS to other classes containing the
997 same set of hard registers. */
998 for (i = 0; i < LIM_REG_CLASSES; i++)
999 {
1000 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
1001 for (j = 0; j < n; j++)
1002 {
1003 cl = classes[j];
1004 temp_hard_regset2 = reg_class_contents[cl] & ~no_unit_alloc_regs;
1005 if (temp_hard_regset == temp_hard_regset2)
1006 break;
1007 }
1008 if (j >= n || targetm.additional_allocno_class_p (i))
1009 classes[n++] = (enum reg_class) i;
1010 else if (i == GENERAL_REGS)
1011 /* Prefer general regs. For i386 example, it means that
1012 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1013 (all of them consists of the same available hard
1014 registers). */
1015 classes[j] = (enum reg_class) i;
1016 }
1017 classes[n] = LIM_REG_CLASSES;
1018
1019 /* Set up classes which can be used for allocnos as classes
1020 containing non-empty unique sets of allocatable hard
1021 registers. */
1022 ira_allocno_classes_num = 0;
1023 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1024 if (ira_class_hard_regs_num[cl] > 0)
1025 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1026 ira_important_classes_num = 0;
1027 /* Add non-allocno classes containing to non-empty set of
1028 allocatable hard regs. */
1029 for (cl = 0; cl < N_REG_CLASSES; cl++)
1030 if (ira_class_hard_regs_num[cl] > 0)
1031 {
1032 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1033 set_p = false;
1034 for (j = 0; j < ira_allocno_classes_num; j++)
1035 {
1036 temp_hard_regset2 = (reg_class_contents[ira_allocno_classes[j]]
1037 & ~no_unit_alloc_regs);
1038 if ((enum reg_class) cl == ira_allocno_classes[j])
1039 break;
1040 else if (hard_reg_set_subset_p (x: temp_hard_regset,
1041 y: temp_hard_regset2))
1042 set_p = true;
1043 }
1044 if (set_p && j >= ira_allocno_classes_num)
1045 ira_important_classes[ira_important_classes_num++]
1046 = (enum reg_class) cl;
1047 }
1048 /* Now add allocno classes to the important classes. */
1049 for (j = 0; j < ira_allocno_classes_num; j++)
1050 ira_important_classes[ira_important_classes_num++]
1051 = ira_allocno_classes[j];
1052 for (cl = 0; cl < N_REG_CLASSES; cl++)
1053 {
1054 ira_reg_allocno_class_p[cl] = false;
1055 ira_reg_pressure_class_p[cl] = false;
1056 }
1057 for (j = 0; j < ira_allocno_classes_num; j++)
1058 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1059 setup_pressure_classes ();
1060 setup_uniform_class_p ();
1061}
1062
1063/* Setup translation in CLASS_TRANSLATE of all classes into a class
1064 given by array CLASSES of length CLASSES_NUM. The function is used
1065 make translation any reg class to an allocno class or to an
1066 pressure class. This translation is necessary for some
1067 calculations when we can use only allocno or pressure classes and
1068 such translation represents an approximate representation of all
1069 classes.
1070
1071 The translation in case when allocatable hard register set of a
1072 given class is subset of allocatable hard register set of a class
1073 in CLASSES is pretty simple. We use smallest classes from CLASSES
1074 containing a given class. If allocatable hard register set of a
1075 given class is not a subset of any corresponding set of a class
1076 from CLASSES, we use the cheapest (with load/store point of view)
1077 class from CLASSES whose set intersects with given class set. */
1078static void
1079setup_class_translate_array (enum reg_class *class_translate,
1080 int classes_num, enum reg_class *classes)
1081{
1082 int cl, mode;
1083 enum reg_class aclass, best_class, *cl_ptr;
1084 int i, cost, min_cost, best_cost;
1085
1086 for (cl = 0; cl < N_REG_CLASSES; cl++)
1087 class_translate[cl] = NO_REGS;
1088
1089 for (i = 0; i < classes_num; i++)
1090 {
1091 aclass = classes[i];
1092 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1093 (cl = *cl_ptr) != LIM_REG_CLASSES;
1094 cl_ptr++)
1095 if (class_translate[cl] == NO_REGS)
1096 class_translate[cl] = aclass;
1097 class_translate[aclass] = aclass;
1098 }
1099 /* For classes which are not fully covered by one of given classes
1100 (in other words covered by more one given class), use the
1101 cheapest class. */
1102 for (cl = 0; cl < N_REG_CLASSES; cl++)
1103 {
1104 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1105 continue;
1106 best_class = NO_REGS;
1107 best_cost = INT_MAX;
1108 for (i = 0; i < classes_num; i++)
1109 {
1110 aclass = classes[i];
1111 temp_hard_regset = (reg_class_contents[aclass]
1112 & reg_class_contents[cl]
1113 & ~no_unit_alloc_regs);
1114 if (! hard_reg_set_empty_p (x: temp_hard_regset))
1115 {
1116 min_cost = INT_MAX;
1117 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1118 {
1119 cost = (ira_memory_move_cost[mode][aclass][0]
1120 + ira_memory_move_cost[mode][aclass][1]);
1121 if (min_cost > cost)
1122 min_cost = cost;
1123 }
1124 if (best_class == NO_REGS || best_cost > min_cost)
1125 {
1126 best_class = aclass;
1127 best_cost = min_cost;
1128 }
1129 }
1130 }
1131 class_translate[cl] = best_class;
1132 }
1133}
1134
1135/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1136 IRA_PRESSURE_CLASS_TRANSLATE. */
1137static void
1138setup_class_translate (void)
1139{
1140 setup_class_translate_array (ira_allocno_class_translate,
1141 ira_allocno_classes_num, ira_allocno_classes);
1142 setup_class_translate_array (ira_pressure_class_translate,
1143 ira_pressure_classes_num, ira_pressure_classes);
1144}
1145
1146/* Order numbers of allocno classes in original target allocno class
1147 array, -1 for non-allocno classes. */
1148static int allocno_class_order[N_REG_CLASSES];
1149
1150/* The function used to sort the important classes. */
1151static int
1152comp_reg_classes_func (const void *v1p, const void *v2p)
1153{
1154 enum reg_class cl1 = *(const enum reg_class *) v1p;
1155 enum reg_class cl2 = *(const enum reg_class *) v2p;
1156 enum reg_class tcl1, tcl2;
1157 int diff;
1158
1159 tcl1 = ira_allocno_class_translate[cl1];
1160 tcl2 = ira_allocno_class_translate[cl2];
1161 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1162 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1163 return diff;
1164 return (int) cl1 - (int) cl2;
1165}
1166
1167/* For correct work of function setup_reg_class_relation we need to
1168 reorder important classes according to the order of their allocno
1169 classes. It places important classes containing the same
1170 allocatable hard register set adjacent to each other and allocno
1171 class with the allocatable hard register set right after the other
1172 important classes with the same set.
1173
1174 In example from comments of function
1175 setup_allocno_and_important_classes, it places LEGACY_REGS and
1176 GENERAL_REGS close to each other and GENERAL_REGS is after
1177 LEGACY_REGS. */
1178static void
1179reorder_important_classes (void)
1180{
1181 int i;
1182
1183 for (i = 0; i < N_REG_CLASSES; i++)
1184 allocno_class_order[i] = -1;
1185 for (i = 0; i < ira_allocno_classes_num; i++)
1186 allocno_class_order[ira_allocno_classes[i]] = i;
1187 qsort (ira_important_classes, ira_important_classes_num,
1188 sizeof (enum reg_class), comp_reg_classes_func);
1189 for (i = 0; i < ira_important_classes_num; i++)
1190 ira_important_class_nums[ira_important_classes[i]] = i;
1191}
1192
1193/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1194 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1195 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1196 please see corresponding comments in ira-int.h. */
1197static void
1198setup_reg_class_relations (void)
1199{
1200 int i, cl1, cl2, cl3;
1201 HARD_REG_SET intersection_set, union_set, temp_set2;
1202 bool important_class_p[N_REG_CLASSES];
1203
1204 memset (s: important_class_p, c: 0, n: sizeof (important_class_p));
1205 for (i = 0; i < ira_important_classes_num; i++)
1206 important_class_p[ira_important_classes[i]] = true;
1207 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1208 {
1209 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1210 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1211 {
1212 ira_reg_classes_intersect_p[cl1][cl2] = false;
1213 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1214 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1215 temp_hard_regset = reg_class_contents[cl1] & ~no_unit_alloc_regs;
1216 temp_set2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
1217 if (hard_reg_set_empty_p (x: temp_hard_regset)
1218 && hard_reg_set_empty_p (x: temp_set2))
1219 {
1220 /* The both classes have no allocatable hard registers
1221 -- take all class hard registers into account and use
1222 reg_class_subunion and reg_class_superunion. */
1223 for (i = 0;; i++)
1224 {
1225 cl3 = reg_class_subclasses[cl1][i];
1226 if (cl3 == LIM_REG_CLASSES)
1227 break;
1228 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1229 (enum reg_class) cl3))
1230 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1231 }
1232 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1233 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1234 continue;
1235 }
1236 ira_reg_classes_intersect_p[cl1][cl2]
1237 = hard_reg_set_intersect_p (x: temp_hard_regset, y: temp_set2);
1238 if (important_class_p[cl1] && important_class_p[cl2]
1239 && hard_reg_set_subset_p (x: temp_hard_regset, y: temp_set2))
1240 {
1241 /* CL1 and CL2 are important classes and CL1 allocatable
1242 hard register set is inside of CL2 allocatable hard
1243 registers -- make CL1 a superset of CL2. */
1244 enum reg_class *p;
1245
1246 p = &ira_reg_class_super_classes[cl1][0];
1247 while (*p != LIM_REG_CLASSES)
1248 p++;
1249 *p++ = (enum reg_class) cl2;
1250 *p = LIM_REG_CLASSES;
1251 }
1252 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1253 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1254 intersection_set = (reg_class_contents[cl1]
1255 & reg_class_contents[cl2]
1256 & ~no_unit_alloc_regs);
1257 union_set = ((reg_class_contents[cl1] | reg_class_contents[cl2])
1258 & ~no_unit_alloc_regs);
1259 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1260 {
1261 temp_hard_regset = reg_class_contents[cl3] & ~no_unit_alloc_regs;
1262 if (hard_reg_set_empty_p (x: temp_hard_regset))
1263 continue;
1264
1265 if (hard_reg_set_subset_p (x: temp_hard_regset, y: intersection_set))
1266 {
1267 /* CL3 allocatable hard register set is inside of
1268 intersection of allocatable hard register sets
1269 of CL1 and CL2. */
1270 if (important_class_p[cl3])
1271 {
1272 temp_set2
1273 = (reg_class_contents
1274 [ira_reg_class_intersect[cl1][cl2]]);
1275 temp_set2 &= ~no_unit_alloc_regs;
1276 if (! hard_reg_set_subset_p (x: temp_hard_regset, y: temp_set2)
1277 /* If the allocatable hard register sets are
1278 the same, prefer GENERAL_REGS or the
1279 smallest class for debugging
1280 purposes. */
1281 || (temp_hard_regset == temp_set2
1282 && (cl3 == GENERAL_REGS
1283 || ((ira_reg_class_intersect[cl1][cl2]
1284 != GENERAL_REGS)
1285 && hard_reg_set_subset_p
1286 (reg_class_contents[cl3],
1287 reg_class_contents
1288 [(int)
1289 ira_reg_class_intersect[cl1][cl2]])))))
1290 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1291 }
1292 temp_set2
1293 = (reg_class_contents[ira_reg_class_subset[cl1][cl2]]
1294 & ~no_unit_alloc_regs);
1295 if (! hard_reg_set_subset_p (x: temp_hard_regset, y: temp_set2)
1296 /* Ignore unavailable hard registers and prefer
1297 smallest class for debugging purposes. */
1298 || (temp_hard_regset == temp_set2
1299 && hard_reg_set_subset_p
1300 (reg_class_contents[cl3],
1301 reg_class_contents
1302 [(int) ira_reg_class_subset[cl1][cl2]])))
1303 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1304 }
1305 if (important_class_p[cl3]
1306 && hard_reg_set_subset_p (x: temp_hard_regset, y: union_set))
1307 {
1308 /* CL3 allocatable hard register set is inside of
1309 union of allocatable hard register sets of CL1
1310 and CL2. */
1311 temp_set2
1312 = (reg_class_contents[ira_reg_class_subunion[cl1][cl2]]
1313 & ~no_unit_alloc_regs);
1314 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1315 || (hard_reg_set_subset_p (x: temp_set2, y: temp_hard_regset)
1316
1317 && (temp_set2 != temp_hard_regset
1318 || cl3 == GENERAL_REGS
1319 /* If the allocatable hard register sets are the
1320 same, prefer GENERAL_REGS or the smallest
1321 class for debugging purposes. */
1322 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1323 && hard_reg_set_subset_p
1324 (reg_class_contents[cl3],
1325 reg_class_contents
1326 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1327 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1328 }
1329 if (hard_reg_set_subset_p (x: union_set, y: temp_hard_regset))
1330 {
1331 /* CL3 allocatable hard register set contains union
1332 of allocatable hard register sets of CL1 and
1333 CL2. */
1334 temp_set2
1335 = (reg_class_contents[ira_reg_class_superunion[cl1][cl2]]
1336 & ~no_unit_alloc_regs);
1337 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1338 || (hard_reg_set_subset_p (x: temp_hard_regset, y: temp_set2)
1339
1340 && (temp_set2 != temp_hard_regset
1341 || cl3 == GENERAL_REGS
1342 /* If the allocatable hard register sets are the
1343 same, prefer GENERAL_REGS or the smallest
1344 class for debugging purposes. */
1345 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1346 && hard_reg_set_subset_p
1347 (reg_class_contents[cl3],
1348 reg_class_contents
1349 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1350 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1351 }
1352 }
1353 }
1354 }
1355}
1356
1357/* Output all uniform and important classes into file F. */
1358static void
1359print_uniform_and_important_classes (FILE *f)
1360{
1361 int i, cl;
1362
1363 fprintf (stream: f, format: "Uniform classes:\n");
1364 for (cl = 0; cl < N_REG_CLASSES; cl++)
1365 if (ira_uniform_class_p[cl])
1366 fprintf (stream: f, format: " %s", reg_class_names[cl]);
1367 fprintf (stream: f, format: "\nImportant classes:\n");
1368 for (i = 0; i < ira_important_classes_num; i++)
1369 fprintf (stream: f, format: " %s", reg_class_names[ira_important_classes[i]]);
1370 fprintf (stream: f, format: "\n");
1371}
1372
1373/* Output all possible allocno or pressure classes and their
1374 translation map into file F. */
1375static void
1376print_translated_classes (FILE *f, bool pressure_p)
1377{
1378 int classes_num = (pressure_p
1379 ? ira_pressure_classes_num : ira_allocno_classes_num);
1380 enum reg_class *classes = (pressure_p
1381 ? ira_pressure_classes : ira_allocno_classes);
1382 enum reg_class *class_translate = (pressure_p
1383 ? ira_pressure_class_translate
1384 : ira_allocno_class_translate);
1385 int i;
1386
1387 fprintf (stream: f, format: "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1388 for (i = 0; i < classes_num; i++)
1389 fprintf (stream: f, format: " %s", reg_class_names[classes[i]]);
1390 fprintf (stream: f, format: "\nClass translation:\n");
1391 for (i = 0; i < N_REG_CLASSES; i++)
1392 fprintf (stream: f, format: " %s -> %s\n", reg_class_names[i],
1393 reg_class_names[class_translate[i]]);
1394}
1395
1396/* Output all possible allocno and translation classes and the
1397 translation maps into stderr. */
1398void
1399ira_debug_allocno_classes (void)
1400{
1401 print_uniform_and_important_classes (stderr);
1402 print_translated_classes (stderr, pressure_p: false);
1403 print_translated_classes (stderr, pressure_p: true);
1404}
1405
1406/* Set up different arrays concerning class subsets, allocno and
1407 important classes. */
1408static void
1409find_reg_classes (void)
1410{
1411 setup_allocno_and_important_classes ();
1412 setup_class_translate ();
1413 reorder_important_classes ();
1414 setup_reg_class_relations ();
1415}
1416
1417
1418
1419/* Set up the array above. */
1420static void
1421setup_hard_regno_aclass (void)
1422{
1423 int i;
1424
1425 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1426 {
1427#if 1
1428 ira_hard_regno_allocno_class[i]
1429 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, bit: i)
1430 ? NO_REGS
1431 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1432#else
1433 int j;
1434 enum reg_class cl;
1435 ira_hard_regno_allocno_class[i] = NO_REGS;
1436 for (j = 0; j < ira_allocno_classes_num; j++)
1437 {
1438 cl = ira_allocno_classes[j];
1439 if (ira_class_hard_reg_index[cl][i] >= 0)
1440 {
1441 ira_hard_regno_allocno_class[i] = cl;
1442 break;
1443 }
1444 }
1445#endif
1446 }
1447}
1448
1449
1450
1451/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1452static void
1453setup_reg_class_nregs (void)
1454{
1455 int i, cl, cl2, m;
1456
1457 for (m = 0; m < MAX_MACHINE_MODE; m++)
1458 {
1459 for (cl = 0; cl < N_REG_CLASSES; cl++)
1460 ira_reg_class_max_nregs[cl][m]
1461 = ira_reg_class_min_nregs[cl][m]
1462 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1463 for (cl = 0; cl < N_REG_CLASSES; cl++)
1464 for (i = 0;
1465 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1466 i++)
1467 if (ira_reg_class_min_nregs[cl2][m]
1468 < ira_reg_class_min_nregs[cl][m])
1469 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1470 }
1471}
1472
1473
1474
1475/* Set up IRA_PROHIBITED_CLASS_MODE_REGS, IRA_EXCLUDE_CLASS_MODE_REGS, and
1476 IRA_CLASS_SINGLETON. This function is called once IRA_CLASS_HARD_REGS has
1477 been initialized. */
1478static void
1479setup_prohibited_and_exclude_class_mode_regs (void)
1480{
1481 int j, k, hard_regno, cl, last_hard_regno, count;
1482
1483 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1484 {
1485 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1486 for (j = 0; j < NUM_MACHINE_MODES; j++)
1487 {
1488 count = 0;
1489 last_hard_regno = -1;
1490 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1491 CLEAR_HARD_REG_SET (ira_exclude_class_mode_regs[cl][j]);
1492 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1493 {
1494 hard_regno = ira_class_hard_regs[cl][k];
1495 if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1496 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1497 bit: hard_regno);
1498 else if (in_hard_reg_set_p (regs: temp_hard_regset,
1499 mode: (machine_mode) j, regno: hard_regno))
1500 {
1501 last_hard_regno = hard_regno;
1502 count++;
1503 }
1504 else
1505 {
1506 SET_HARD_REG_BIT (ira_exclude_class_mode_regs[cl][j], bit: hard_regno);
1507 }
1508 }
1509 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1510 }
1511 }
1512}
1513
1514/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1515 spanning from one register pressure class to another one. It is
1516 called after defining the pressure classes. */
1517static void
1518clarify_prohibited_class_mode_regs (void)
1519{
1520 int j, k, hard_regno, cl, pclass, nregs;
1521
1522 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1523 for (j = 0; j < NUM_MACHINE_MODES; j++)
1524 {
1525 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1526 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1527 {
1528 hard_regno = ira_class_hard_regs[cl][k];
1529 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], bit: hard_regno))
1530 continue;
1531 nregs = hard_regno_nregs (regno: hard_regno, mode: (machine_mode) j);
1532 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1533 {
1534 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1535 bit: hard_regno);
1536 continue;
1537 }
1538 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1539 for (nregs-- ;nregs >= 0; nregs--)
1540 if (((enum reg_class) pclass
1541 != ira_pressure_class_translate[REGNO_REG_CLASS
1542 (hard_regno + nregs)]))
1543 {
1544 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1545 bit: hard_regno);
1546 break;
1547 }
1548 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1549 bit: hard_regno))
1550 add_to_hard_reg_set (regs: &ira_useful_class_mode_regs[cl][j],
1551 mode: (machine_mode) j, regno: hard_regno);
1552 }
1553 }
1554}
1555
1556/* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1557 and IRA_MAY_MOVE_OUT_COST for MODE. */
1558void
1559ira_init_register_move_cost (machine_mode mode)
1560{
1561 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1562 bool all_match = true;
1563 unsigned int i, cl1, cl2;
1564 HARD_REG_SET ok_regs;
1565
1566 ira_assert (ira_register_move_cost[mode] == NULL
1567 && ira_may_move_in_cost[mode] == NULL
1568 && ira_may_move_out_cost[mode] == NULL);
1569 CLEAR_HARD_REG_SET (set&: ok_regs);
1570 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1571 if (targetm.hard_regno_mode_ok (i, mode))
1572 SET_HARD_REG_BIT (set&: ok_regs, bit: i);
1573
1574 /* Note that we might be asked about the move costs of modes that
1575 cannot be stored in any hard register, for example if an inline
1576 asm tries to create a register operand with an impossible mode.
1577 We therefore can't assert have_regs_of_mode[mode] here. */
1578 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1579 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1580 {
1581 int cost;
1582 if (!hard_reg_set_intersect_p (x: ok_regs, reg_class_contents[cl1])
1583 || !hard_reg_set_intersect_p (x: ok_regs, reg_class_contents[cl2]))
1584 {
1585 if ((ira_reg_class_max_nregs[cl1][mode]
1586 > ira_class_hard_regs_num[cl1])
1587 || (ira_reg_class_max_nregs[cl2][mode]
1588 > ira_class_hard_regs_num[cl2]))
1589 cost = 65535;
1590 else
1591 cost = (ira_memory_move_cost[mode][cl1][0]
1592 + ira_memory_move_cost[mode][cl2][1]) * 2;
1593 }
1594 else
1595 {
1596 cost = register_move_cost (mode, (enum reg_class) cl1,
1597 (enum reg_class) cl2);
1598 ira_assert (cost < 65535);
1599 }
1600 all_match &= (last_move_cost[cl1][cl2] == cost);
1601 last_move_cost[cl1][cl2] = cost;
1602 }
1603 if (all_match && last_mode_for_init_move_cost != -1)
1604 {
1605 ira_register_move_cost[mode]
1606 = ira_register_move_cost[last_mode_for_init_move_cost];
1607 ira_may_move_in_cost[mode]
1608 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1609 ira_may_move_out_cost[mode]
1610 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1611 return;
1612 }
1613 last_mode_for_init_move_cost = mode;
1614 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1615 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1616 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1617 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1618 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1619 {
1620 int cost;
1621 enum reg_class *p1, *p2;
1622
1623 if (last_move_cost[cl1][cl2] == 65535)
1624 {
1625 ira_register_move_cost[mode][cl1][cl2] = 65535;
1626 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1627 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1628 }
1629 else
1630 {
1631 cost = last_move_cost[cl1][cl2];
1632
1633 for (p2 = &reg_class_subclasses[cl2][0];
1634 *p2 != LIM_REG_CLASSES; p2++)
1635 if (ira_class_hard_regs_num[*p2] > 0
1636 && (ira_reg_class_max_nregs[*p2][mode]
1637 <= ira_class_hard_regs_num[*p2]))
1638 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1639
1640 for (p1 = &reg_class_subclasses[cl1][0];
1641 *p1 != LIM_REG_CLASSES; p1++)
1642 if (ira_class_hard_regs_num[*p1] > 0
1643 && (ira_reg_class_max_nregs[*p1][mode]
1644 <= ira_class_hard_regs_num[*p1]))
1645 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1646
1647 ira_assert (cost <= 65535);
1648 ira_register_move_cost[mode][cl1][cl2] = cost;
1649
1650 if (ira_class_subset_p[cl1][cl2])
1651 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1652 else
1653 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1654
1655 if (ira_class_subset_p[cl2][cl1])
1656 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1657 else
1658 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1659 }
1660 }
1661}
1662
1663
1664
1665/* This is called once during compiler work. It sets up
1666 different arrays whose values don't depend on the compiled
1667 function. */
1668void
1669ira_init_once (void)
1670{
1671 ira_init_costs_once ();
1672 lra_init_once ();
1673
1674 ira_use_lra_p = targetm.lra_p ();
1675}
1676
1677/* Free ira_max_register_move_cost, ira_may_move_in_cost and
1678 ira_may_move_out_cost for each mode. */
1679void
1680target_ira_int::free_register_move_costs (void)
1681{
1682 int mode, i;
1683
1684 /* Reset move_cost and friends, making sure we only free shared
1685 table entries once. */
1686 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1687 if (x_ira_register_move_cost[mode])
1688 {
1689 for (i = 0;
1690 i < mode && (x_ira_register_move_cost[i]
1691 != x_ira_register_move_cost[mode]);
1692 i++)
1693 ;
1694 if (i == mode)
1695 {
1696 free (ptr: x_ira_register_move_cost[mode]);
1697 free (ptr: x_ira_may_move_in_cost[mode]);
1698 free (ptr: x_ira_may_move_out_cost[mode]);
1699 }
1700 }
1701 memset (s: x_ira_register_move_cost, c: 0, n: sizeof x_ira_register_move_cost);
1702 memset (s: x_ira_may_move_in_cost, c: 0, n: sizeof x_ira_may_move_in_cost);
1703 memset (s: x_ira_may_move_out_cost, c: 0, n: sizeof x_ira_may_move_out_cost);
1704 last_mode_for_init_move_cost = -1;
1705}
1706
1707target_ira_int::~target_ira_int ()
1708{
1709 free_ira_costs ();
1710 free_register_move_costs ();
1711}
1712
1713/* This is called every time when register related information is
1714 changed. */
1715void
1716ira_init (void)
1717{
1718 this_target_ira_int->free_register_move_costs ();
1719 setup_reg_mode_hard_regset ();
1720 setup_alloc_regs (flag_omit_frame_pointer != 0);
1721 setup_class_subset_and_memory_move_costs ();
1722 setup_reg_class_nregs ();
1723 setup_prohibited_and_exclude_class_mode_regs ();
1724 find_reg_classes ();
1725 clarify_prohibited_class_mode_regs ();
1726 setup_hard_regno_aclass ();
1727 ira_init_costs ();
1728}
1729
1730
1731#define ira_prohibited_mode_move_regs_initialized_p \
1732 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1733
1734/* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1735static void
1736setup_prohibited_mode_move_regs (void)
1737{
1738 int i, j;
1739 rtx test_reg1, test_reg2, move_pat;
1740 rtx_insn *move_insn;
1741
1742 if (ira_prohibited_mode_move_regs_initialized_p)
1743 return;
1744 ira_prohibited_mode_move_regs_initialized_p = true;
1745 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1746 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1747 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1748 move_insn = gen_rtx_INSN (VOIDmode, prev_insn: 0, next_insn: 0, bb: 0, pattern: move_pat, location: 0, code: -1, reg_notes: 0);
1749 for (i = 0; i < NUM_MACHINE_MODES; i++)
1750 {
1751 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1752 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1753 {
1754 if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1755 continue;
1756 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1757 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1758 INSN_CODE (move_insn) = -1;
1759 recog_memoized (insn: move_insn);
1760 if (INSN_CODE (move_insn) < 0)
1761 continue;
1762 extract_insn (move_insn);
1763 /* We don't know whether the move will be in code that is optimized
1764 for size or speed, so consider all enabled alternatives. */
1765 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1766 continue;
1767 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], bit: j);
1768 }
1769 }
1770}
1771
1772
1773
1774/* Extract INSN and return the set of alternatives that we should consider.
1775 This excludes any alternatives whose constraints are obviously impossible
1776 to meet (e.g. because the constraint requires a constant and the operand
1777 is nonconstant). It also excludes alternatives that are bound to need
1778 a spill or reload, as long as we have other alternatives that match
1779 exactly. */
1780alternative_mask
1781ira_setup_alts (rtx_insn *insn)
1782{
1783 int nop, nalt;
1784 bool curr_swapped;
1785 const char *p;
1786 int commutative = -1;
1787
1788 extract_insn (insn);
1789 preprocess_constraints (insn);
1790 alternative_mask preferred = get_preferred_alternatives (insn);
1791 alternative_mask alts = 0;
1792 alternative_mask exact_alts = 0;
1793 /* Check that the hard reg set is enough for holding all
1794 alternatives. It is hard to imagine the situation when the
1795 assertion is wrong. */
1796 ira_assert (recog_data.n_alternatives
1797 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1798 FIRST_PSEUDO_REGISTER));
1799 for (nop = 0; nop < recog_data.n_operands; nop++)
1800 if (recog_data.constraints[nop][0] == '%')
1801 {
1802 commutative = nop;
1803 break;
1804 }
1805 for (curr_swapped = false;; curr_swapped = true)
1806 {
1807 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1808 {
1809 if (!TEST_BIT (preferred, nalt) || TEST_BIT (exact_alts, nalt))
1810 continue;
1811
1812 const operand_alternative *op_alt
1813 = &recog_op_alt[nalt * recog_data.n_operands];
1814 int this_reject = 0;
1815 for (nop = 0; nop < recog_data.n_operands; nop++)
1816 {
1817 int c, len;
1818
1819 this_reject += op_alt[nop].reject;
1820
1821 rtx op = recog_data.operand[nop];
1822 p = op_alt[nop].constraint;
1823 if (*p == 0 || *p == ',')
1824 continue;
1825
1826 bool win_p = false;
1827 do
1828 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1829 {
1830 case '#':
1831 case ',':
1832 c = '\0';
1833 /* FALLTHRU */
1834 case '\0':
1835 len = 0;
1836 break;
1837
1838 case '%':
1839 /* The commutative modifier is handled above. */
1840 break;
1841
1842 case '0': case '1': case '2': case '3': case '4':
1843 case '5': case '6': case '7': case '8': case '9':
1844 {
1845 char *end;
1846 unsigned long dup = strtoul (nptr: p, endptr: &end, base: 10);
1847 rtx other = recog_data.operand[dup];
1848 len = end - p;
1849 if (MEM_P (other)
1850 ? rtx_equal_p (other, op)
1851 : REG_P (op) || SUBREG_P (op))
1852 goto op_success;
1853 win_p = true;
1854 }
1855 break;
1856
1857 case 'g':
1858 goto op_success;
1859 break;
1860
1861 default:
1862 {
1863 enum constraint_num cn = lookup_constraint (p);
1864 rtx mem = NULL;
1865 switch (get_constraint_type (c: cn))
1866 {
1867 case CT_REGISTER:
1868 if (reg_class_for_constraint (c: cn) != NO_REGS)
1869 {
1870 if (REG_P (op) || SUBREG_P (op))
1871 goto op_success;
1872 win_p = true;
1873 }
1874 break;
1875
1876 case CT_CONST_INT:
1877 if (CONST_INT_P (op)
1878 && (insn_const_int_ok_for_constraint
1879 (INTVAL (op), cn)))
1880 goto op_success;
1881 break;
1882
1883 case CT_ADDRESS:
1884 goto op_success;
1885
1886 case CT_MEMORY:
1887 case CT_RELAXED_MEMORY:
1888 mem = op;
1889 /* Fall through. */
1890 case CT_SPECIAL_MEMORY:
1891 if (!mem)
1892 mem = extract_mem_from_operand (op);
1893 if (MEM_P (mem))
1894 goto op_success;
1895 win_p = true;
1896 break;
1897
1898 case CT_FIXED_FORM:
1899 if (constraint_satisfied_p (x: op, c: cn))
1900 goto op_success;
1901 break;
1902 }
1903 break;
1904 }
1905 }
1906 while (p += len, c);
1907 if (!win_p)
1908 break;
1909 /* We can make the alternative match by spilling a register
1910 to memory or loading something into a register. Count a
1911 cost of one reload (the equivalent of the '?' constraint). */
1912 this_reject += 6;
1913 op_success:
1914 ;
1915 }
1916
1917 if (nop >= recog_data.n_operands)
1918 {
1919 alts |= ALTERNATIVE_BIT (nalt);
1920 if (this_reject == 0)
1921 exact_alts |= ALTERNATIVE_BIT (nalt);
1922 }
1923 }
1924 if (commutative < 0)
1925 break;
1926 /* Swap forth and back to avoid changing recog_data. */
1927 std::swap (a&: recog_data.operand[commutative],
1928 b&: recog_data.operand[commutative + 1]);
1929 if (curr_swapped)
1930 break;
1931 }
1932 return exact_alts ? exact_alts : alts;
1933}
1934
1935/* Return the number of the output non-early clobber operand which
1936 should be the same in any case as operand with number OP_NUM (or
1937 negative value if there is no such operand). ALTS is the mask
1938 of alternatives that we should consider. SINGLE_INPUT_OP_HAS_CSTR_P
1939 should be set in this function, it indicates whether there is only
1940 a single input operand which has the matching constraint on the
1941 output operand at the position specified in return value. If the
1942 pattern allows any one of several input operands holds the matching
1943 constraint, it's set as false, one typical case is destructive FMA
1944 instruction on target rs6000. Note that for a non-NO_REG preferred
1945 register class with no free register move copy, if the parameter
1946 PARAM_IRA_CONSIDER_DUP_IN_ALL_ALTS is set to one, this function
1947 will check all available alternatives for matching constraints,
1948 even if it has found or will find one alternative with non-NO_REG
1949 regclass, it can respect more cases with matching constraints. If
1950 PARAM_IRA_CONSIDER_DUP_IN_ALL_ALTS is set to zero,
1951 SINGLE_INPUT_OP_HAS_CSTR_P is always true, it will stop to find
1952 matching constraint relationship once it hits some alternative with
1953 some non-NO_REG regclass. */
1954int
1955ira_get_dup_out_num (int op_num, alternative_mask alts,
1956 bool &single_input_op_has_cstr_p)
1957{
1958 int curr_alt, c, original;
1959 bool ignore_p, use_commut_op_p;
1960 const char *str;
1961
1962 if (op_num < 0 || recog_data.n_alternatives == 0)
1963 return -1;
1964 /* We should find duplications only for input operands. */
1965 if (recog_data.operand_type[op_num] != OP_IN)
1966 return -1;
1967 str = recog_data.constraints[op_num];
1968 use_commut_op_p = false;
1969 single_input_op_has_cstr_p = true;
1970
1971 rtx op = recog_data.operand[op_num];
1972 int op_regno = reg_or_subregno (op);
1973 enum reg_class op_pref_cl = reg_preferred_class (op_regno);
1974 machine_mode op_mode = GET_MODE (op);
1975
1976 ira_init_register_move_cost_if_necessary (mode: op_mode);
1977 /* If the preferred regclass isn't NO_REG, continue to find the matching
1978 constraint in all available alternatives with preferred regclass, even
1979 if we have found or will find one alternative whose constraint stands
1980 for a REG (non-NO_REG) regclass. Note that it would be fine not to
1981 respect matching constraint if the register copy is free, so exclude
1982 it. */
1983 bool respect_dup_despite_reg_cstr
1984 = param_ira_consider_dup_in_all_alts
1985 && op_pref_cl != NO_REGS
1986 && ira_register_move_cost[op_mode][op_pref_cl][op_pref_cl] > 0;
1987
1988 /* Record the alternative whose constraint uses the same regclass as the
1989 preferred regclass, later if we find one matching constraint for this
1990 operand with preferred reclass, we will visit these recorded
1991 alternatives to check whether if there is one alternative in which no
1992 any INPUT operands have one matching constraint same as our candidate.
1993 If yes, it means there is one alternative which is perfectly fine
1994 without satisfying this matching constraint. If no, it means in any
1995 alternatives there is one other INPUT operand holding this matching
1996 constraint, it's fine to respect this matching constraint and further
1997 create this constraint copy since it would become harmless once some
1998 other takes preference and it's interfered. */
1999 alternative_mask pref_cl_alts;
2000
2001 for (;;)
2002 {
2003 pref_cl_alts = 0;
2004
2005 for (curr_alt = 0, ignore_p = !TEST_BIT (alts, curr_alt),
2006 original = -1;;)
2007 {
2008 c = *str;
2009 if (c == '\0')
2010 break;
2011 if (c == '#')
2012 ignore_p = true;
2013 else if (c == ',')
2014 {
2015 curr_alt++;
2016 ignore_p = !TEST_BIT (alts, curr_alt);
2017 }
2018 else if (! ignore_p)
2019 switch (c)
2020 {
2021 case 'g':
2022 goto fail;
2023 default:
2024 {
2025 enum constraint_num cn = lookup_constraint (p: str);
2026 enum reg_class cl = reg_class_for_constraint (c: cn);
2027 if (cl != NO_REGS && !targetm.class_likely_spilled_p (cl))
2028 {
2029 if (respect_dup_despite_reg_cstr)
2030 {
2031 /* If it's free to move from one preferred class to
2032 the one without matching constraint, it doesn't
2033 have to respect this constraint with costs. */
2034 if (cl != op_pref_cl
2035 && (ira_reg_class_intersect[cl][op_pref_cl]
2036 != NO_REGS)
2037 && (ira_may_move_in_cost[op_mode][op_pref_cl][cl]
2038 == 0))
2039 goto fail;
2040 else if (cl == op_pref_cl)
2041 pref_cl_alts |= ALTERNATIVE_BIT (curr_alt);
2042 }
2043 else
2044 goto fail;
2045 }
2046 if (constraint_satisfied_p (x: op, c: cn))
2047 goto fail;
2048 break;
2049 }
2050
2051 case '0': case '1': case '2': case '3': case '4':
2052 case '5': case '6': case '7': case '8': case '9':
2053 {
2054 char *end;
2055 int n = (int) strtoul (nptr: str, endptr: &end, base: 10);
2056 str = end;
2057 if (original != -1 && original != n)
2058 goto fail;
2059 gcc_assert (n < recog_data.n_operands);
2060 if (respect_dup_despite_reg_cstr)
2061 {
2062 const operand_alternative *op_alt
2063 = &recog_op_alt[curr_alt * recog_data.n_operands];
2064 /* Only respect the one with preferred rclass, without
2065 respect_dup_despite_reg_cstr it's possible to get
2066 one whose regclass isn't preferred first before,
2067 but it would fail since there should be other
2068 alternatives with preferred regclass. */
2069 if (op_alt[n].cl == op_pref_cl)
2070 original = n;
2071 }
2072 else
2073 original = n;
2074 continue;
2075 }
2076 }
2077 str += CONSTRAINT_LEN (c, str);
2078 }
2079 if (original == -1)
2080 goto fail;
2081 if (recog_data.operand_type[original] == OP_OUT)
2082 {
2083 if (pref_cl_alts == 0)
2084 return original;
2085 /* Visit these recorded alternatives to check whether
2086 there is one alternative in which no any INPUT operands
2087 have one matching constraint same as our candidate.
2088 Give up this candidate if so. */
2089 int nop, nalt;
2090 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
2091 {
2092 if (!TEST_BIT (pref_cl_alts, nalt))
2093 continue;
2094 const operand_alternative *op_alt
2095 = &recog_op_alt[nalt * recog_data.n_operands];
2096 bool dup_in_other = false;
2097 for (nop = 0; nop < recog_data.n_operands; nop++)
2098 {
2099 if (recog_data.operand_type[nop] != OP_IN)
2100 continue;
2101 if (nop == op_num)
2102 continue;
2103 if (op_alt[nop].matches == original)
2104 {
2105 dup_in_other = true;
2106 break;
2107 }
2108 }
2109 if (!dup_in_other)
2110 return -1;
2111 }
2112 single_input_op_has_cstr_p = false;
2113 return original;
2114 }
2115 fail:
2116 if (use_commut_op_p)
2117 break;
2118 use_commut_op_p = true;
2119 if (recog_data.constraints[op_num][0] == '%')
2120 str = recog_data.constraints[op_num + 1];
2121 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2122 str = recog_data.constraints[op_num - 1];
2123 else
2124 break;
2125 }
2126 return -1;
2127}
2128
2129
2130
2131/* Search forward to see if the source register of a copy insn dies
2132 before either it or the destination register is modified, but don't
2133 scan past the end of the basic block. If so, we can replace the
2134 source with the destination and let the source die in the copy
2135 insn.
2136
2137 This will reduce the number of registers live in that range and may
2138 enable the destination and the source coalescing, thus often saving
2139 one register in addition to a register-register copy. */
2140
2141static void
2142decrease_live_ranges_number (void)
2143{
2144 basic_block bb;
2145 rtx_insn *insn;
2146 rtx set, src, dest, dest_death, note;
2147 rtx_insn *p, *q;
2148 int sregno, dregno;
2149
2150 if (! flag_expensive_optimizations)
2151 return;
2152
2153 if (ira_dump_file)
2154 fprintf (stream: ira_dump_file, format: "Starting decreasing number of live ranges...\n");
2155
2156 FOR_EACH_BB_FN (bb, cfun)
2157 FOR_BB_INSNS (bb, insn)
2158 {
2159 set = single_set (insn);
2160 if (! set)
2161 continue;
2162 src = SET_SRC (set);
2163 dest = SET_DEST (set);
2164 if (! REG_P (src) || ! REG_P (dest)
2165 || find_reg_note (insn, REG_DEAD, src))
2166 continue;
2167 sregno = REGNO (src);
2168 dregno = REGNO (dest);
2169
2170 /* We don't want to mess with hard regs if register classes
2171 are small. */
2172 if (sregno == dregno
2173 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2174 && (sregno < FIRST_PSEUDO_REGISTER
2175 || dregno < FIRST_PSEUDO_REGISTER))
2176 /* We don't see all updates to SP if they are in an
2177 auto-inc memory reference, so we must disallow this
2178 optimization on them. */
2179 || sregno == STACK_POINTER_REGNUM
2180 || dregno == STACK_POINTER_REGNUM)
2181 continue;
2182
2183 dest_death = NULL_RTX;
2184
2185 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (insn: p))
2186 {
2187 if (! INSN_P (p))
2188 continue;
2189 if (BLOCK_FOR_INSN (insn: p) != bb)
2190 break;
2191
2192 if (reg_set_p (src, p) || reg_set_p (dest, p)
2193 /* If SRC is an asm-declared register, it must not be
2194 replaced in any asm. Unfortunately, the REG_EXPR
2195 tree for the asm variable may be absent in the SRC
2196 rtx, so we can't check the actual register
2197 declaration easily (the asm operand will have it,
2198 though). To avoid complicating the test for a rare
2199 case, we just don't perform register replacement
2200 for a hard reg mentioned in an asm. */
2201 || (sregno < FIRST_PSEUDO_REGISTER
2202 && asm_noperands (PATTERN (insn: p)) >= 0
2203 && reg_overlap_mentioned_p (src, PATTERN (insn: p)))
2204 /* Don't change hard registers used by a call. */
2205 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2206 && find_reg_fusage (p, USE, src))
2207 /* Don't change a USE of a register. */
2208 || (GET_CODE (PATTERN (p)) == USE
2209 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2210 break;
2211
2212 /* See if all of SRC dies in P. This test is slightly
2213 more conservative than it needs to be. */
2214 if ((note = find_regno_note (p, REG_DEAD, sregno))
2215 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2216 {
2217 int failed = 0;
2218
2219 /* We can do the optimization. Scan forward from INSN
2220 again, replacing regs as we go. Set FAILED if a
2221 replacement can't be done. In that case, we can't
2222 move the death note for SRC. This should be
2223 rare. */
2224
2225 /* Set to stop at next insn. */
2226 for (q = next_real_insn (insn);
2227 q != next_real_insn (p);
2228 q = next_real_insn (q))
2229 {
2230 if (reg_overlap_mentioned_p (src, PATTERN (insn: q)))
2231 {
2232 /* If SRC is a hard register, we might miss
2233 some overlapping registers with
2234 validate_replace_rtx, so we would have to
2235 undo it. We can't if DEST is present in
2236 the insn, so fail in that combination of
2237 cases. */
2238 if (sregno < FIRST_PSEUDO_REGISTER
2239 && reg_mentioned_p (dest, PATTERN (insn: q)))
2240 failed = 1;
2241
2242 /* Attempt to replace all uses. */
2243 else if (!validate_replace_rtx (src, dest, q))
2244 failed = 1;
2245
2246 /* If this succeeded, but some part of the
2247 register is still present, undo the
2248 replacement. */
2249 else if (sregno < FIRST_PSEUDO_REGISTER
2250 && reg_overlap_mentioned_p (src, PATTERN (insn: q)))
2251 {
2252 validate_replace_rtx (dest, src, q);
2253 failed = 1;
2254 }
2255 }
2256
2257 /* If DEST dies here, remove the death note and
2258 save it for later. Make sure ALL of DEST dies
2259 here; again, this is overly conservative. */
2260 if (! dest_death
2261 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2262 {
2263 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2264 remove_note (q, dest_death);
2265 else
2266 {
2267 failed = 1;
2268 dest_death = 0;
2269 }
2270 }
2271 }
2272
2273 if (! failed)
2274 {
2275 /* Move death note of SRC from P to INSN. */
2276 remove_note (p, note);
2277 XEXP (note, 1) = REG_NOTES (insn);
2278 REG_NOTES (insn) = note;
2279 }
2280
2281 /* DEST is also dead if INSN has a REG_UNUSED note for
2282 DEST. */
2283 if (! dest_death
2284 && (dest_death
2285 = find_regno_note (insn, REG_UNUSED, dregno)))
2286 {
2287 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2288 remove_note (insn, dest_death);
2289 }
2290
2291 /* Put death note of DEST on P if we saw it die. */
2292 if (dest_death)
2293 {
2294 XEXP (dest_death, 1) = REG_NOTES (p);
2295 REG_NOTES (p) = dest_death;
2296 }
2297 break;
2298 }
2299
2300 /* If SRC is a hard register which is set or killed in
2301 some other way, we can't do this optimization. */
2302 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2303 break;
2304 }
2305 }
2306}
2307
2308
2309
2310/* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2311static bool
2312ira_bad_reload_regno_1 (int regno, rtx x)
2313{
2314 int x_regno, n, i;
2315 ira_allocno_t a;
2316 enum reg_class pref;
2317
2318 /* We only deal with pseudo regs. */
2319 if (! x || GET_CODE (x) != REG)
2320 return false;
2321
2322 x_regno = REGNO (x);
2323 if (x_regno < FIRST_PSEUDO_REGISTER)
2324 return false;
2325
2326 /* If the pseudo prefers REGNO explicitly, then do not consider
2327 REGNO a bad spill choice. */
2328 pref = reg_preferred_class (x_regno);
2329 if (reg_class_size[pref] == 1)
2330 return !TEST_HARD_REG_BIT (reg_class_contents[pref], bit: regno);
2331
2332 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2333 poor choice for a reload regno. */
2334 a = ira_regno_allocno_map[x_regno];
2335 n = ALLOCNO_NUM_OBJECTS (a);
2336 for (i = 0; i < n; i++)
2337 {
2338 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2339 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), bit: regno))
2340 return true;
2341 }
2342 return false;
2343}
2344
2345/* Return nonzero if REGNO is a particularly bad choice for reloading
2346 IN or OUT. */
2347bool
2348ira_bad_reload_regno (int regno, rtx in, rtx out)
2349{
2350 return (ira_bad_reload_regno_1 (regno, x: in)
2351 || ira_bad_reload_regno_1 (regno, x: out));
2352}
2353
2354/* Add register clobbers from asm statements. */
2355static void
2356compute_regs_asm_clobbered (void)
2357{
2358 basic_block bb;
2359
2360 FOR_EACH_BB_FN (bb, cfun)
2361 {
2362 rtx_insn *insn;
2363 FOR_BB_INSNS_REVERSE (bb, insn)
2364 {
2365 df_ref def;
2366
2367 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2368 FOR_EACH_INSN_DEF (def, insn)
2369 {
2370 unsigned int dregno = DF_REF_REGNO (def);
2371 if (HARD_REGISTER_NUM_P (dregno))
2372 add_to_hard_reg_set (regs: &crtl->asm_clobbers,
2373 GET_MODE (DF_REF_REAL_REG (def)),
2374 regno: dregno);
2375 }
2376 }
2377 }
2378}
2379
2380
2381/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2382 REGS_EVER_LIVE. */
2383void
2384ira_setup_eliminable_regset (void)
2385{
2386 int i;
2387 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2388 int fp_reg_count = hard_regno_nregs (HARD_FRAME_POINTER_REGNUM, Pmode);
2389
2390 /* Setup is_leaf as frame_pointer_required may use it. This function
2391 is called by sched_init before ira if scheduling is enabled. */
2392 crtl->is_leaf = leaf_function_p ();
2393
2394 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2395 sp for alloca. So we can't eliminate the frame pointer in that
2396 case. At some point, we should improve this by emitting the
2397 sp-adjusting insns for this case. */
2398 frame_pointer_needed
2399 = (! flag_omit_frame_pointer
2400 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2401 /* We need the frame pointer to catch stack overflow exceptions if
2402 the stack pointer is moving (as for the alloca case just above). */
2403 || (STACK_CHECK_MOVING_SP
2404 && flag_stack_check
2405 && flag_exceptions
2406 && cfun->can_throw_non_call_exceptions)
2407 || crtl->accesses_prior_frames
2408 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2409 || targetm.frame_pointer_required ());
2410
2411 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2412 RTL is very small. So if we use frame pointer for RA and RTL
2413 actually prevents this, we will spill pseudos assigned to the
2414 frame pointer in LRA. */
2415
2416 if (frame_pointer_needed)
2417 for (i = 0; i < fp_reg_count; i++)
2418 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2419
2420 ira_no_alloc_regs = no_unit_alloc_regs;
2421 CLEAR_HARD_REG_SET (set&: eliminable_regset);
2422
2423 compute_regs_asm_clobbered ();
2424
2425 /* Build the regset of all eliminable registers and show we can't
2426 use those that we already know won't be eliminated. */
2427 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2428 {
2429 bool cannot_elim
2430 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2431 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2432
2433 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, bit: eliminables[i].from))
2434 {
2435 SET_HARD_REG_BIT (set&: eliminable_regset, bit: eliminables[i].from);
2436
2437 if (cannot_elim)
2438 SET_HARD_REG_BIT (ira_no_alloc_regs, bit: eliminables[i].from);
2439 }
2440 else if (cannot_elim)
2441 error ("%s cannot be used in %<asm%> here",
2442 reg_names[eliminables[i].from]);
2443 else
2444 df_set_regs_ever_live (eliminables[i].from, true);
2445 }
2446 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2447 {
2448 for (i = 0; i < fp_reg_count; i++)
2449 if (global_regs[HARD_FRAME_POINTER_REGNUM + i])
2450 /* Nothing to do: the register is already treated as live
2451 where appropriate, and cannot be eliminated. */
2452 ;
2453 else if (!TEST_HARD_REG_BIT (crtl->asm_clobbers,
2454 HARD_FRAME_POINTER_REGNUM + i))
2455 {
2456 SET_HARD_REG_BIT (set&: eliminable_regset,
2457 HARD_FRAME_POINTER_REGNUM + i);
2458 if (frame_pointer_needed)
2459 SET_HARD_REG_BIT (ira_no_alloc_regs,
2460 HARD_FRAME_POINTER_REGNUM + i);
2461 }
2462 else if (frame_pointer_needed)
2463 error ("%s cannot be used in %<asm%> here",
2464 reg_names[HARD_FRAME_POINTER_REGNUM + i]);
2465 else
2466 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2467 }
2468}
2469
2470
2471
2472/* Vector of substitutions of register numbers,
2473 used to map pseudo regs into hardware regs.
2474 This is set up as a result of register allocation.
2475 Element N is the hard reg assigned to pseudo reg N,
2476 or is -1 if no hard reg was assigned.
2477 If N is a hard reg number, element N is N. */
2478short *reg_renumber;
2479
2480/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2481 the allocation found by IRA. */
2482static void
2483setup_reg_renumber (void)
2484{
2485 int regno, hard_regno;
2486 ira_allocno_t a;
2487 ira_allocno_iterator ai;
2488
2489 caller_save_needed = 0;
2490 FOR_EACH_ALLOCNO (a, ai)
2491 {
2492 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2493 continue;
2494 /* There are no caps at this point. */
2495 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2496 if (! ALLOCNO_ASSIGNED_P (a))
2497 /* It can happen if A is not referenced but partially anticipated
2498 somewhere in a region. */
2499 ALLOCNO_ASSIGNED_P (a) = true;
2500 ira_free_allocno_updated_costs (a);
2501 hard_regno = ALLOCNO_HARD_REGNO (a);
2502 regno = ALLOCNO_REGNO (a);
2503 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2504 if (hard_regno >= 0)
2505 {
2506 int i, nwords;
2507 enum reg_class pclass;
2508 ira_object_t obj;
2509
2510 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2511 nwords = ALLOCNO_NUM_OBJECTS (a);
2512 for (i = 0; i < nwords; i++)
2513 {
2514 obj = ALLOCNO_OBJECT (a, i);
2515 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
2516 |= ~reg_class_contents[pclass];
2517 }
2518 if (ira_need_caller_save_p (a, regno: hard_regno))
2519 {
2520 ira_assert (!optimize || flag_caller_saves
2521 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2522 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2523 || regno >= ira_reg_equiv_len
2524 || ira_equiv_no_lvalue_p (regno));
2525 caller_save_needed = 1;
2526 }
2527 }
2528 }
2529}
2530
2531/* Set up allocno assignment flags for further allocation
2532 improvements. */
2533static void
2534setup_allocno_assignment_flags (void)
2535{
2536 int hard_regno;
2537 ira_allocno_t a;
2538 ira_allocno_iterator ai;
2539
2540 FOR_EACH_ALLOCNO (a, ai)
2541 {
2542 if (! ALLOCNO_ASSIGNED_P (a))
2543 /* It can happen if A is not referenced but partially anticipated
2544 somewhere in a region. */
2545 ira_free_allocno_updated_costs (a);
2546 hard_regno = ALLOCNO_HARD_REGNO (a);
2547 /* Don't assign hard registers to allocnos which are destination
2548 of removed store at the end of loop. It has no sense to keep
2549 the same value in different hard registers. It is also
2550 impossible to assign hard registers correctly to such
2551 allocnos because the cost info and info about intersected
2552 calls are incorrect for them. */
2553 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2554 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2555 || (ALLOCNO_MEMORY_COST (a)
2556 - ALLOCNO_CLASS_COST (a)) < 0);
2557 ira_assert
2558 (hard_regno < 0
2559 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2560 reg_class_contents[ALLOCNO_CLASS (a)]));
2561 }
2562}
2563
2564/* Evaluate overall allocation cost and the costs for using hard
2565 registers and memory for allocnos. */
2566static void
2567calculate_allocation_cost (void)
2568{
2569 int hard_regno, cost;
2570 ira_allocno_t a;
2571 ira_allocno_iterator ai;
2572
2573 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2574 FOR_EACH_ALLOCNO (a, ai)
2575 {
2576 hard_regno = ALLOCNO_HARD_REGNO (a);
2577 ira_assert (hard_regno < 0
2578 || (ira_hard_reg_in_set_p
2579 (hard_regno, ALLOCNO_MODE (a),
2580 reg_class_contents[ALLOCNO_CLASS (a)])));
2581 if (hard_regno < 0)
2582 {
2583 cost = ALLOCNO_MEMORY_COST (a);
2584 ira_mem_cost += cost;
2585 }
2586 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2587 {
2588 cost = (ALLOCNO_HARD_REG_COSTS (a)
2589 [ira_class_hard_reg_index
2590 [ALLOCNO_CLASS (a)][hard_regno]]);
2591 ira_reg_cost += cost;
2592 }
2593 else
2594 {
2595 cost = ALLOCNO_CLASS_COST (a);
2596 ira_reg_cost += cost;
2597 }
2598 ira_overall_cost += cost;
2599 }
2600
2601 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2602 {
2603 fprintf (stream: ira_dump_file,
2604 format: "+++Costs: overall %" PRId64
2605 ", reg %" PRId64
2606 ", mem %" PRId64
2607 ", ld %" PRId64
2608 ", st %" PRId64
2609 ", move %" PRId64,
2610 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2611 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2612 fprintf (stream: ira_dump_file, format: "\n+++ move loops %d, new jumps %d\n",
2613 ira_move_loops_num, ira_additional_jumps_num);
2614 }
2615
2616}
2617
2618#ifdef ENABLE_IRA_CHECKING
2619/* Check the correctness of the allocation. We do need this because
2620 of complicated code to transform more one region internal
2621 representation into one region representation. */
2622static void
2623check_allocation (void)
2624{
2625 ira_allocno_t a;
2626 int hard_regno, nregs, conflict_nregs;
2627 ira_allocno_iterator ai;
2628
2629 FOR_EACH_ALLOCNO (a, ai)
2630 {
2631 int n = ALLOCNO_NUM_OBJECTS (a);
2632 int i;
2633
2634 if (ALLOCNO_CAP_MEMBER (a) != NULL
2635 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2636 continue;
2637 nregs = hard_regno_nregs (regno: hard_regno, ALLOCNO_MODE (a));
2638 if (nregs == 1)
2639 /* We allocated a single hard register. */
2640 n = 1;
2641 else if (n > 1)
2642 /* We allocated multiple hard registers, and we will test
2643 conflicts in a granularity of single hard regs. */
2644 nregs = 1;
2645
2646 for (i = 0; i < n; i++)
2647 {
2648 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2649 ira_object_t conflict_obj;
2650 ira_object_conflict_iterator oci;
2651 int this_regno = hard_regno;
2652 if (n > 1)
2653 {
2654 if (REG_WORDS_BIG_ENDIAN)
2655 this_regno += n - i - 1;
2656 else
2657 this_regno += i;
2658 }
2659 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2660 {
2661 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2662 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2663 if (conflict_hard_regno < 0)
2664 continue;
2665 if (ira_soft_conflict (a, conflict_a))
2666 continue;
2667
2668 conflict_nregs = hard_regno_nregs (regno: conflict_hard_regno,
2669 ALLOCNO_MODE (conflict_a));
2670
2671 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2672 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2673 {
2674 if (REG_WORDS_BIG_ENDIAN)
2675 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2676 - OBJECT_SUBWORD (conflict_obj) - 1);
2677 else
2678 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2679 conflict_nregs = 1;
2680 }
2681
2682 if ((conflict_hard_regno <= this_regno
2683 && this_regno < conflict_hard_regno + conflict_nregs)
2684 || (this_regno <= conflict_hard_regno
2685 && conflict_hard_regno < this_regno + nregs))
2686 {
2687 fprintf (stderr, format: "bad allocation for %d and %d\n",
2688 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2689 gcc_unreachable ();
2690 }
2691 }
2692 }
2693 }
2694}
2695#endif
2696
2697/* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2698 be already calculated. */
2699static void
2700setup_reg_equiv_init (void)
2701{
2702 int i;
2703 int max_regno = max_reg_num ();
2704
2705 for (i = 0; i < max_regno; i++)
2706 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2707}
2708
2709/* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2710 are insns which were generated for such movement. It is assumed
2711 that FROM_REGNO and TO_REGNO always have the same value at the
2712 point of any move containing such registers. This function is used
2713 to update equiv info for register shuffles on the region borders
2714 and for caller save/restore insns. */
2715void
2716ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2717{
2718 rtx_insn *insn;
2719 rtx x, note;
2720
2721 if (! ira_reg_equiv[from_regno].defined_p
2722 && (! ira_reg_equiv[to_regno].defined_p
2723 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2724 && ! MEM_READONLY_P (x))))
2725 return;
2726 insn = insns;
2727 if (NEXT_INSN (insn) != NULL_RTX)
2728 {
2729 if (! ira_reg_equiv[to_regno].defined_p)
2730 {
2731 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2732 return;
2733 }
2734 ira_reg_equiv[to_regno].defined_p = false;
2735 ira_reg_equiv[to_regno].caller_save_p = false;
2736 ira_reg_equiv[to_regno].memory
2737 = ira_reg_equiv[to_regno].constant
2738 = ira_reg_equiv[to_regno].invariant
2739 = ira_reg_equiv[to_regno].init_insns = NULL;
2740 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2741 fprintf (stream: ira_dump_file,
2742 format: " Invalidating equiv info for reg %d\n", to_regno);
2743 return;
2744 }
2745 /* It is possible that FROM_REGNO still has no equivalence because
2746 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2747 insn was not processed yet. */
2748 if (ira_reg_equiv[from_regno].defined_p)
2749 {
2750 ira_reg_equiv[to_regno].defined_p = true;
2751 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2752 {
2753 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2754 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2755 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2756 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2757 ira_reg_equiv[to_regno].memory = x;
2758 if (! MEM_READONLY_P (x))
2759 /* We don't add the insn to insn init list because memory
2760 equivalence is just to say what memory is better to use
2761 when the pseudo is spilled. */
2762 return;
2763 }
2764 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2765 {
2766 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2767 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2768 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2769 ira_reg_equiv[to_regno].constant = x;
2770 }
2771 else
2772 {
2773 x = ira_reg_equiv[from_regno].invariant;
2774 ira_assert (x != NULL_RTX);
2775 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2776 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2777 ira_reg_equiv[to_regno].invariant = x;
2778 }
2779 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2780 {
2781 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2782 gcc_assert (note != NULL_RTX);
2783 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2784 {
2785 fprintf (stream: ira_dump_file,
2786 format: " Adding equiv note to insn %u for reg %d ",
2787 INSN_UID (insn), to_regno);
2788 dump_value_slim (ira_dump_file, x, 1);
2789 fprintf (stream: ira_dump_file, format: "\n");
2790 }
2791 }
2792 }
2793 ira_reg_equiv[to_regno].init_insns
2794 = gen_rtx_INSN_LIST (VOIDmode, insn,
2795 ira_reg_equiv[to_regno].init_insns);
2796 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2797 fprintf (stream: ira_dump_file,
2798 format: " Adding equiv init move insn %u to reg %d\n",
2799 INSN_UID (insn), to_regno);
2800}
2801
2802/* Fix values of array REG_EQUIV_INIT after live range splitting done
2803 by IRA. */
2804static void
2805fix_reg_equiv_init (void)
2806{
2807 int max_regno = max_reg_num ();
2808 int i, new_regno, max;
2809 rtx set;
2810 rtx_insn_list *x, *next, *prev;
2811 rtx_insn *insn;
2812
2813 if (max_regno_before_ira < max_regno)
2814 {
2815 max = vec_safe_length (v: reg_equivs);
2816 grow_reg_equivs ();
2817 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2818 for (prev = NULL, x = reg_equiv_init (i);
2819 x != NULL_RTX;
2820 x = next)
2821 {
2822 next = x->next ();
2823 insn = x->insn ();
2824 set = single_set (insn);
2825 ira_assert (set != NULL_RTX
2826 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2827 if (REG_P (SET_DEST (set))
2828 && ((int) REGNO (SET_DEST (set)) == i
2829 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2830 new_regno = REGNO (SET_DEST (set));
2831 else if (REG_P (SET_SRC (set))
2832 && ((int) REGNO (SET_SRC (set)) == i
2833 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2834 new_regno = REGNO (SET_SRC (set));
2835 else
2836 gcc_unreachable ();
2837 if (new_regno == i)
2838 prev = x;
2839 else
2840 {
2841 /* Remove the wrong list element. */
2842 if (prev == NULL_RTX)
2843 reg_equiv_init (i) = next;
2844 else
2845 XEXP (prev, 1) = next;
2846 XEXP (x, 1) = reg_equiv_init (new_regno);
2847 reg_equiv_init (new_regno) = x;
2848 }
2849 }
2850 }
2851}
2852
2853#ifdef ENABLE_IRA_CHECKING
2854/* Print redundant memory-memory copies. */
2855static void
2856print_redundant_copies (void)
2857{
2858 int hard_regno;
2859 ira_allocno_t a;
2860 ira_copy_t cp, next_cp;
2861 ira_allocno_iterator ai;
2862
2863 FOR_EACH_ALLOCNO (a, ai)
2864 {
2865 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2866 /* It is a cap. */
2867 continue;
2868 hard_regno = ALLOCNO_HARD_REGNO (a);
2869 if (hard_regno >= 0)
2870 continue;
2871 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2872 if (cp->first == a)
2873 next_cp = cp->next_first_allocno_copy;
2874 else
2875 {
2876 next_cp = cp->next_second_allocno_copy;
2877 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2878 && cp->insn != NULL_RTX
2879 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2880 fprintf (stream: ira_dump_file,
2881 format: " Redundant move from %d(freq %d):%d\n",
2882 INSN_UID (insn: cp->insn), cp->freq, hard_regno);
2883 }
2884 }
2885}
2886#endif
2887
2888/* Setup preferred and alternative classes for new pseudo-registers
2889 created by IRA starting with START. */
2890static void
2891setup_preferred_alternate_classes_for_new_pseudos (int start)
2892{
2893 int i, old_regno;
2894 int max_regno = max_reg_num ();
2895
2896 for (i = start; i < max_regno; i++)
2897 {
2898 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2899 ira_assert (i != old_regno);
2900 setup_reg_classes (i, reg_preferred_class (old_regno),
2901 reg_alternate_class (old_regno),
2902 reg_allocno_class (old_regno));
2903 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2904 fprintf (stream: ira_dump_file,
2905 format: " New r%d: setting preferred %s, alternative %s\n",
2906 i, reg_class_names[reg_preferred_class (old_regno)],
2907 reg_class_names[reg_alternate_class (old_regno)]);
2908 }
2909}
2910
2911
2912/* The number of entries allocated in reg_info. */
2913static int allocated_reg_info_size;
2914
2915/* Regional allocation can create new pseudo-registers. This function
2916 expands some arrays for pseudo-registers. */
2917static void
2918expand_reg_info (void)
2919{
2920 int i;
2921 int size = max_reg_num ();
2922
2923 resize_reg_info ();
2924 for (i = allocated_reg_info_size; i < size; i++)
2925 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2926 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2927 allocated_reg_info_size = size;
2928}
2929
2930/* Return TRUE if there is too high register pressure in the function.
2931 It is used to decide when stack slot sharing is worth to do. */
2932static bool
2933too_high_register_pressure_p (void)
2934{
2935 int i;
2936 enum reg_class pclass;
2937
2938 for (i = 0; i < ira_pressure_classes_num; i++)
2939 {
2940 pclass = ira_pressure_classes[i];
2941 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2942 return true;
2943 }
2944 return false;
2945}
2946
2947
2948
2949/* Indicate that hard register number FROM was eliminated and replaced with
2950 an offset from hard register number TO. The status of hard registers live
2951 at the start of a basic block is updated by replacing a use of FROM with
2952 a use of TO. */
2953
2954void
2955mark_elimination (int from, int to)
2956{
2957 basic_block bb;
2958 bitmap r;
2959
2960 FOR_EACH_BB_FN (bb, cfun)
2961 {
2962 r = DF_LR_IN (bb);
2963 if (bitmap_bit_p (r, from))
2964 {
2965 bitmap_clear_bit (r, from);
2966 bitmap_set_bit (r, to);
2967 }
2968 if (! df_live)
2969 continue;
2970 r = DF_LIVE_IN (bb);
2971 if (bitmap_bit_p (r, from))
2972 {
2973 bitmap_clear_bit (r, from);
2974 bitmap_set_bit (r, to);
2975 }
2976 }
2977}
2978
2979
2980
2981/* The length of the following array. */
2982int ira_reg_equiv_len;
2983
2984/* Info about equiv. info for each register. */
2985struct ira_reg_equiv_s *ira_reg_equiv;
2986
2987/* Expand ira_reg_equiv if necessary. */
2988void
2989ira_expand_reg_equiv (void)
2990{
2991 int old = ira_reg_equiv_len;
2992
2993 if (ira_reg_equiv_len > max_reg_num ())
2994 return;
2995 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2996 ira_reg_equiv
2997 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2998 ira_reg_equiv_len
2999 * sizeof (struct ira_reg_equiv_s));
3000 gcc_assert (old < ira_reg_equiv_len);
3001 memset (s: ira_reg_equiv + old, c: 0,
3002 n: sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
3003}
3004
3005static void
3006init_reg_equiv (void)
3007{
3008 ira_reg_equiv_len = 0;
3009 ira_reg_equiv = NULL;
3010 ira_expand_reg_equiv ();
3011}
3012
3013static void
3014finish_reg_equiv (void)
3015{
3016 free (ptr: ira_reg_equiv);
3017}
3018
3019
3020
3021struct equivalence
3022{
3023 /* Set when a REG_EQUIV note is found or created. Use to
3024 keep track of what memory accesses might be created later,
3025 e.g. by reload. */
3026 rtx replacement;
3027 rtx *src_p;
3028
3029 /* The list of each instruction which initializes this register.
3030
3031 NULL indicates we know nothing about this register's equivalence
3032 properties.
3033
3034 An INSN_LIST with a NULL insn indicates this pseudo is already
3035 known to not have a valid equivalence. */
3036 rtx_insn_list *init_insns;
3037
3038 /* Loop depth is used to recognize equivalences which appear
3039 to be present within the same loop (or in an inner loop). */
3040 short loop_depth;
3041 /* Nonzero if this had a preexisting REG_EQUIV note. */
3042 unsigned char is_arg_equivalence : 1;
3043 /* Set when an attempt should be made to replace a register
3044 with the associated src_p entry. */
3045 unsigned char replace : 1;
3046 /* Set if this register has no known equivalence. */
3047 unsigned char no_equiv : 1;
3048 /* Set if this register is mentioned in a paradoxical subreg. */
3049 unsigned char pdx_subregs : 1;
3050};
3051
3052/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
3053 structure for that register. */
3054static struct equivalence *reg_equiv;
3055
3056/* Used for communication between the following two functions. */
3057struct equiv_mem_data
3058{
3059 /* A MEM that we wish to ensure remains unchanged. */
3060 rtx equiv_mem;
3061
3062 /* Set true if EQUIV_MEM is modified. */
3063 bool equiv_mem_modified;
3064};
3065
3066/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
3067 Called via note_stores. */
3068static void
3069validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
3070 void *data)
3071{
3072 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
3073
3074 if ((REG_P (dest)
3075 && reg_overlap_mentioned_p (dest, info->equiv_mem))
3076 || (MEM_P (dest)
3077 && anti_dependence (info->equiv_mem, dest)))
3078 info->equiv_mem_modified = true;
3079}
3080
3081static bool equiv_init_varies_p (rtx x);
3082
3083enum valid_equiv { valid_none, valid_combine, valid_reload };
3084
3085/* Verify that no store between START and the death of REG invalidates
3086 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
3087 by storing into an overlapping memory location, or with a non-const
3088 CALL_INSN.
3089
3090 Return VALID_RELOAD if MEMREF remains valid for both reload and
3091 combine_and_move insns, VALID_COMBINE if only valid for
3092 combine_and_move_insns, and VALID_NONE otherwise. */
3093static enum valid_equiv
3094validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
3095{
3096 rtx_insn *insn;
3097 rtx note;
3098 struct equiv_mem_data info = { .equiv_mem: memref, .equiv_mem_modified: false };
3099 enum valid_equiv ret = valid_reload;
3100
3101 /* If the memory reference has side effects or is volatile, it isn't a
3102 valid equivalence. */
3103 if (side_effects_p (memref))
3104 return valid_none;
3105
3106 for (insn = start; insn; insn = NEXT_INSN (insn))
3107 {
3108 if (!INSN_P (insn))
3109 continue;
3110
3111 if (find_reg_note (insn, REG_DEAD, reg))
3112 return ret;
3113
3114 if (CALL_P (insn))
3115 {
3116 /* We can combine a reg def from one insn into a reg use in
3117 another over a call if the memory is readonly or the call
3118 const/pure. However, we can't set reg_equiv notes up for
3119 reload over any call. The problem is the equivalent form
3120 may reference a pseudo which gets assigned a call
3121 clobbered hard reg. When we later replace REG with its
3122 equivalent form, the value in the call-clobbered reg has
3123 been changed and all hell breaks loose. */
3124 ret = valid_combine;
3125 if (!MEM_READONLY_P (memref)
3126 && (!RTL_CONST_OR_PURE_CALL_P (insn)
3127 || equiv_init_varies_p (XEXP (memref, 0))))
3128 return valid_none;
3129 }
3130
3131 note_stores (insn, validate_equiv_mem_from_store, &info);
3132 if (info.equiv_mem_modified)
3133 return valid_none;
3134
3135 /* If a register mentioned in MEMREF is modified via an
3136 auto-increment, we lose the equivalence. Do the same if one
3137 dies; although we could extend the life, it doesn't seem worth
3138 the trouble. */
3139
3140 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3141 if ((REG_NOTE_KIND (note) == REG_INC
3142 || REG_NOTE_KIND (note) == REG_DEAD)
3143 && REG_P (XEXP (note, 0))
3144 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3145 return valid_none;
3146 }
3147
3148 return valid_none;
3149}
3150
3151/* Returns false if X is known to be invariant. */
3152static bool
3153equiv_init_varies_p (rtx x)
3154{
3155 RTX_CODE code = GET_CODE (x);
3156 int i;
3157 const char *fmt;
3158
3159 switch (code)
3160 {
3161 case MEM:
3162 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3163
3164 case CONST:
3165 CASE_CONST_ANY:
3166 case SYMBOL_REF:
3167 case LABEL_REF:
3168 return false;
3169
3170 case REG:
3171 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3172
3173 case ASM_OPERANDS:
3174 if (MEM_VOLATILE_P (x))
3175 return true;
3176
3177 /* Fall through. */
3178
3179 default:
3180 break;
3181 }
3182
3183 fmt = GET_RTX_FORMAT (code);
3184 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3185 if (fmt[i] == 'e')
3186 {
3187 if (equiv_init_varies_p (XEXP (x, i)))
3188 return true;
3189 }
3190 else if (fmt[i] == 'E')
3191 {
3192 int j;
3193 for (j = 0; j < XVECLEN (x, i); j++)
3194 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3195 return true;
3196 }
3197
3198 return false;
3199}
3200
3201/* Returns true if X (used to initialize register REGNO) is movable.
3202 X is only movable if the registers it uses have equivalent initializations
3203 which appear to be within the same loop (or in an inner loop) and movable
3204 or if they are not candidates for local_alloc and don't vary. */
3205static bool
3206equiv_init_movable_p (rtx x, int regno)
3207{
3208 int i, j;
3209 const char *fmt;
3210 enum rtx_code code = GET_CODE (x);
3211
3212 switch (code)
3213 {
3214 case SET:
3215 return equiv_init_movable_p (SET_SRC (x), regno);
3216
3217 case CLOBBER:
3218 return false;
3219
3220 case PRE_INC:
3221 case PRE_DEC:
3222 case POST_INC:
3223 case POST_DEC:
3224 case PRE_MODIFY:
3225 case POST_MODIFY:
3226 return false;
3227
3228 case REG:
3229 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3230 && reg_equiv[REGNO (x)].replace)
3231 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3232 && ! rtx_varies_p (x, 0)));
3233
3234 case UNSPEC_VOLATILE:
3235 return false;
3236
3237 case ASM_OPERANDS:
3238 if (MEM_VOLATILE_P (x))
3239 return false;
3240
3241 /* Fall through. */
3242
3243 default:
3244 break;
3245 }
3246
3247 fmt = GET_RTX_FORMAT (code);
3248 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3249 switch (fmt[i])
3250 {
3251 case 'e':
3252 if (! equiv_init_movable_p (XEXP (x, i), regno))
3253 return false;
3254 break;
3255 case 'E':
3256 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3257 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3258 return false;
3259 break;
3260 }
3261
3262 return true;
3263}
3264
3265static bool memref_referenced_p (rtx memref, rtx x, bool read_p);
3266
3267/* Auxiliary function for memref_referenced_p. Process setting X for
3268 MEMREF store. */
3269static bool
3270process_set_for_memref_referenced_p (rtx memref, rtx x)
3271{
3272 /* If we are setting a MEM, it doesn't count (its address does), but any
3273 other SET_DEST that has a MEM in it is referencing the MEM. */
3274 if (MEM_P (x))
3275 {
3276 if (memref_referenced_p (memref, XEXP (x, 0), read_p: true))
3277 return true;
3278 }
3279 else if (memref_referenced_p (memref, x, read_p: false))
3280 return true;
3281
3282 return false;
3283}
3284
3285/* TRUE if X references a memory location (as a read if READ_P) that
3286 would be affected by a store to MEMREF. */
3287static bool
3288memref_referenced_p (rtx memref, rtx x, bool read_p)
3289{
3290 int i, j;
3291 const char *fmt;
3292 enum rtx_code code = GET_CODE (x);
3293
3294 switch (code)
3295 {
3296 case CONST:
3297 case LABEL_REF:
3298 case SYMBOL_REF:
3299 CASE_CONST_ANY:
3300 case PC:
3301 case HIGH:
3302 case LO_SUM:
3303 return false;
3304
3305 case REG:
3306 return (reg_equiv[REGNO (x)].replacement
3307 && memref_referenced_p (memref,
3308 x: reg_equiv[REGNO (x)].replacement, read_p));
3309
3310 case MEM:
3311 /* Memory X might have another effective type than MEMREF. */
3312 if (read_p || true_dependence (memref, VOIDmode, x))
3313 return true;
3314 break;
3315
3316 case SET:
3317 if (process_set_for_memref_referenced_p (memref, SET_DEST (x)))
3318 return true;
3319
3320 return memref_referenced_p (memref, SET_SRC (x), read_p: true);
3321
3322 case CLOBBER:
3323 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3324 return true;
3325
3326 return false;
3327
3328 case PRE_DEC:
3329 case POST_DEC:
3330 case PRE_INC:
3331 case POST_INC:
3332 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3333 return true;
3334
3335 return memref_referenced_p (memref, XEXP (x, 0), read_p: true);
3336
3337 case POST_MODIFY:
3338 case PRE_MODIFY:
3339 /* op0 = op0 + op1 */
3340 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3341 return true;
3342
3343 if (memref_referenced_p (memref, XEXP (x, 0), read_p: true))
3344 return true;
3345
3346 return memref_referenced_p (memref, XEXP (x, 1), read_p: true);
3347
3348 default:
3349 break;
3350 }
3351
3352 fmt = GET_RTX_FORMAT (code);
3353 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3354 switch (fmt[i])
3355 {
3356 case 'e':
3357 if (memref_referenced_p (memref, XEXP (x, i), read_p))
3358 return true;
3359 break;
3360 case 'E':
3361 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3362 if (memref_referenced_p (memref, XVECEXP (x, i, j), read_p))
3363 return true;
3364 break;
3365 }
3366
3367 return false;
3368}
3369
3370/* TRUE if some insn in the range (START, END] references a memory location
3371 that would be affected by a store to MEMREF.
3372
3373 Callers should not call this routine if START is after END in the
3374 RTL chain. */
3375
3376static bool
3377memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3378{
3379 rtx_insn *insn;
3380
3381 for (insn = NEXT_INSN (insn: start);
3382 insn && insn != NEXT_INSN (insn: end);
3383 insn = NEXT_INSN (insn))
3384 {
3385 if (!NONDEBUG_INSN_P (insn))
3386 continue;
3387
3388 if (memref_referenced_p (memref, x: PATTERN (insn), read_p: false))
3389 return true;
3390
3391 /* Nonconst functions may access memory. */
3392 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3393 return true;
3394 }
3395
3396 gcc_assert (insn == NEXT_INSN (end));
3397 return false;
3398}
3399
3400/* Mark REG as having no known equivalence.
3401 Some instructions might have been processed before and furnished
3402 with REG_EQUIV notes for this register; these notes will have to be
3403 removed.
3404 STORE is the piece of RTL that does the non-constant / conflicting
3405 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3406 but needs to be there because this function is called from note_stores. */
3407static void
3408no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3409 void *data ATTRIBUTE_UNUSED)
3410{
3411 int regno;
3412 rtx_insn_list *list;
3413
3414 if (!REG_P (reg))
3415 return;
3416 regno = REGNO (reg);
3417 reg_equiv[regno].no_equiv = 1;
3418 list = reg_equiv[regno].init_insns;
3419 if (list && list->insn () == NULL)
3420 return;
3421 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3422 reg_equiv[regno].replacement = NULL_RTX;
3423 /* This doesn't matter for equivalences made for argument registers, we
3424 should keep their initialization insns. */
3425 if (reg_equiv[regno].is_arg_equivalence)
3426 return;
3427 ira_reg_equiv[regno].defined_p = false;
3428 ira_reg_equiv[regno].caller_save_p = false;
3429 ira_reg_equiv[regno].init_insns = NULL;
3430 for (; list; list = list->next ())
3431 {
3432 rtx_insn *insn = list->insn ();
3433 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3434 }
3435}
3436
3437/* Check whether the SUBREG is a paradoxical subreg and set the result
3438 in PDX_SUBREGS. */
3439
3440static void
3441set_paradoxical_subreg (rtx_insn *insn)
3442{
3443 subrtx_iterator::array_type array;
3444 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3445 {
3446 const_rtx subreg = *iter;
3447 if (GET_CODE (subreg) == SUBREG)
3448 {
3449 const_rtx reg = SUBREG_REG (subreg);
3450 if (REG_P (reg) && paradoxical_subreg_p (x: subreg))
3451 reg_equiv[REGNO (reg)].pdx_subregs = true;
3452 }
3453 }
3454}
3455
3456/* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3457 equivalent replacement. */
3458
3459static rtx
3460adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3461{
3462 if (REG_P (loc))
3463 {
3464 bitmap cleared_regs = (bitmap) data;
3465 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3466 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3467 NULL_RTX, fn: adjust_cleared_regs, data);
3468 }
3469 return NULL_RTX;
3470}
3471
3472/* Given register REGNO is set only once, return true if the defining
3473 insn dominates all uses. */
3474
3475static bool
3476def_dominates_uses (int regno)
3477{
3478 df_ref def = DF_REG_DEF_CHAIN (regno);
3479
3480 struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3481 /* If this is an artificial def (eh handler regs, hard frame pointer
3482 for non-local goto, regs defined on function entry) then def_info
3483 is NULL and the reg is always live before any use. We might
3484 reasonably return true in that case, but since the only call
3485 of this function is currently here in ira.cc when we are looking
3486 at a defining insn we can't have an artificial def as that would
3487 bump DF_REG_DEF_COUNT. */
3488 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3489
3490 rtx_insn *def_insn = DF_REF_INSN (def);
3491 basic_block def_bb = BLOCK_FOR_INSN (insn: def_insn);
3492
3493 for (df_ref use = DF_REG_USE_CHAIN (regno);
3494 use;
3495 use = DF_REF_NEXT_REG (use))
3496 {
3497 struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3498 /* Only check real uses, not artificial ones. */
3499 if (use_info)
3500 {
3501 rtx_insn *use_insn = DF_REF_INSN (use);
3502 if (!DEBUG_INSN_P (use_insn))
3503 {
3504 basic_block use_bb = BLOCK_FOR_INSN (insn: use_insn);
3505 if (use_bb != def_bb
3506 ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3507 : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3508 return false;
3509 }
3510 }
3511 }
3512 return true;
3513}
3514
3515/* Scan the instructions before update_equiv_regs. Record which registers
3516 are referenced as paradoxical subregs. Also check for cases in which
3517 the current function needs to save a register that one of its call
3518 instructions clobbers.
3519
3520 These things are logically unrelated, but it's more efficient to do
3521 them together. */
3522
3523static void
3524update_equiv_regs_prescan (void)
3525{
3526 basic_block bb;
3527 rtx_insn *insn;
3528 function_abi_aggregator callee_abis;
3529
3530 FOR_EACH_BB_FN (bb, cfun)
3531 FOR_BB_INSNS (bb, insn)
3532 if (NONDEBUG_INSN_P (insn))
3533 {
3534 set_paradoxical_subreg (insn);
3535 if (CALL_P (insn))
3536 callee_abis.note_callee_abi (abi: insn_callee_abi (insn));
3537 }
3538
3539 HARD_REG_SET extra_caller_saves = callee_abis.caller_save_regs (*crtl->abi);
3540 if (!hard_reg_set_empty_p (x: extra_caller_saves))
3541 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
3542 if (TEST_HARD_REG_BIT (set: extra_caller_saves, bit: regno))
3543 df_set_regs_ever_live (regno, true);
3544}
3545
3546/* Find registers that are equivalent to a single value throughout the
3547 compilation (either because they can be referenced in memory or are
3548 set once from a single constant). Lower their priority for a
3549 register.
3550
3551 If such a register is only referenced once, try substituting its
3552 value into the using insn. If it succeeds, we can eliminate the
3553 register completely.
3554
3555 Initialize init_insns in ira_reg_equiv array. */
3556static void
3557update_equiv_regs (void)
3558{
3559 rtx_insn *insn;
3560 basic_block bb;
3561
3562 /* Scan the insns and find which registers have equivalences. Do this
3563 in a separate scan of the insns because (due to -fcse-follow-jumps)
3564 a register can be set below its use. */
3565 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3566 FOR_EACH_BB_FN (bb, cfun)
3567 {
3568 int loop_depth = bb_loop_depth (bb);
3569
3570 for (insn = BB_HEAD (bb);
3571 insn != NEXT_INSN (BB_END (bb));
3572 insn = NEXT_INSN (insn))
3573 {
3574 rtx note;
3575 rtx set;
3576 rtx dest, src;
3577 int regno;
3578
3579 if (! INSN_P (insn))
3580 continue;
3581
3582 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3583 if (REG_NOTE_KIND (note) == REG_INC)
3584 no_equiv (XEXP (note, 0), store: note, NULL);
3585
3586 set = single_set (insn);
3587
3588 /* If this insn contains more (or less) than a single SET,
3589 only mark all destinations as having no known equivalence. */
3590 if (set == NULL_RTX
3591 || side_effects_p (SET_SRC (set)))
3592 {
3593 note_pattern_stores (PATTERN (insn), no_equiv, NULL);
3594 continue;
3595 }
3596 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3597 {
3598 int i;
3599
3600 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3601 {
3602 rtx part = XVECEXP (PATTERN (insn), 0, i);
3603 if (part != set)
3604 note_pattern_stores (part, no_equiv, NULL);
3605 }
3606 }
3607
3608 dest = SET_DEST (set);
3609 src = SET_SRC (set);
3610
3611 /* See if this is setting up the equivalence between an argument
3612 register and its stack slot. */
3613 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3614 if (note)
3615 {
3616 gcc_assert (REG_P (dest));
3617 regno = REGNO (dest);
3618
3619 /* Note that we don't want to clear init_insns in
3620 ira_reg_equiv even if there are multiple sets of this
3621 register. */
3622 reg_equiv[regno].is_arg_equivalence = 1;
3623
3624 /* The insn result can have equivalence memory although
3625 the equivalence is not set up by the insn. We add
3626 this insn to init insns as it is a flag for now that
3627 regno has an equivalence. We will remove the insn
3628 from init insn list later. */
3629 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3630 ira_reg_equiv[regno].init_insns
3631 = gen_rtx_INSN_LIST (VOIDmode, insn,
3632 ira_reg_equiv[regno].init_insns);
3633
3634 /* Continue normally in case this is a candidate for
3635 replacements. */
3636 }
3637
3638 if (!optimize)
3639 continue;
3640
3641 /* We only handle the case of a pseudo register being set
3642 once, or always to the same value. */
3643 /* ??? The mn10200 port breaks if we add equivalences for
3644 values that need an ADDRESS_REGS register and set them equivalent
3645 to a MEM of a pseudo. The actual problem is in the over-conservative
3646 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3647 calculate_needs, but we traditionally work around this problem
3648 here by rejecting equivalences when the destination is in a register
3649 that's likely spilled. This is fragile, of course, since the
3650 preferred class of a pseudo depends on all instructions that set
3651 or use it. */
3652
3653 if (!REG_P (dest)
3654 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3655 || (reg_equiv[regno].init_insns
3656 && reg_equiv[regno].init_insns->insn () == NULL)
3657 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3658 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3659 {
3660 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3661 also set somewhere else to a constant. */
3662 note_pattern_stores (set, no_equiv, NULL);
3663 continue;
3664 }
3665
3666 /* Don't set reg mentioned in a paradoxical subreg
3667 equivalent to a mem. */
3668 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3669 {
3670 note_pattern_stores (set, no_equiv, NULL);
3671 continue;
3672 }
3673
3674 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3675
3676 /* cse sometimes generates function invariants, but doesn't put a
3677 REG_EQUAL note on the insn. Since this note would be redundant,
3678 there's no point creating it earlier than here. */
3679 if (! note && ! rtx_varies_p (src, 0))
3680 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3681
3682 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3683 since it represents a function call. */
3684 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3685 note = NULL_RTX;
3686
3687 if (DF_REG_DEF_COUNT (regno) != 1)
3688 {
3689 bool equal_p = true;
3690 rtx_insn_list *list;
3691
3692 /* If we have already processed this pseudo and determined it
3693 cannot have an equivalence, then honor that decision. */
3694 if (reg_equiv[regno].no_equiv)
3695 continue;
3696
3697 if (! note
3698 || rtx_varies_p (XEXP (note, 0), 0)
3699 || (reg_equiv[regno].replacement
3700 && ! rtx_equal_p (XEXP (note, 0),
3701 reg_equiv[regno].replacement)))
3702 {
3703 no_equiv (reg: dest, store: set, NULL);
3704 continue;
3705 }
3706
3707 list = reg_equiv[regno].init_insns;
3708 for (; list; list = list->next ())
3709 {
3710 rtx note_tmp;
3711 rtx_insn *insn_tmp;
3712
3713 insn_tmp = list->insn ();
3714 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3715 gcc_assert (note_tmp);
3716 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3717 {
3718 equal_p = false;
3719 break;
3720 }
3721 }
3722
3723 if (! equal_p)
3724 {
3725 no_equiv (reg: dest, store: set, NULL);
3726 continue;
3727 }
3728 }
3729
3730 /* Record this insn as initializing this register. */
3731 reg_equiv[regno].init_insns
3732 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3733
3734 /* If this register is known to be equal to a constant, record that
3735 it is always equivalent to the constant.
3736 Note that it is possible to have a register use before
3737 the def in loops (see gcc.c-torture/execute/pr79286.c)
3738 where the reg is undefined on first use. If the def insn
3739 won't trap we can use it as an equivalence, effectively
3740 choosing the "undefined" value for the reg to be the
3741 same as the value set by the def. */
3742 if (DF_REG_DEF_COUNT (regno) == 1
3743 && note
3744 && !rtx_varies_p (XEXP (note, 0), 0)
3745 && (!may_trap_or_fault_p (XEXP (note, 0))
3746 || def_dominates_uses (regno)))
3747 {
3748 rtx note_value = XEXP (note, 0);
3749 remove_note (insn, note);
3750 set_unique_reg_note (insn, REG_EQUIV, note_value);
3751 }
3752
3753 /* If this insn introduces a "constant" register, decrease the priority
3754 of that register. Record this insn if the register is only used once
3755 more and the equivalence value is the same as our source.
3756
3757 The latter condition is checked for two reasons: First, it is an
3758 indication that it may be more efficient to actually emit the insn
3759 as written (if no registers are available, reload will substitute
3760 the equivalence). Secondly, it avoids problems with any registers
3761 dying in this insn whose death notes would be missed.
3762
3763 If we don't have a REG_EQUIV note, see if this insn is loading
3764 a register used only in one basic block from a MEM. If so, and the
3765 MEM remains unchanged for the life of the register, add a REG_EQUIV
3766 note. */
3767 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3768
3769 rtx replacement = NULL_RTX;
3770 if (note)
3771 replacement = XEXP (note, 0);
3772 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3773 && MEM_P (SET_SRC (set)))
3774 {
3775 enum valid_equiv validity;
3776 validity = validate_equiv_mem (start: insn, reg: dest, SET_SRC (set));
3777 if (validity != valid_none)
3778 {
3779 replacement = copy_rtx (SET_SRC (set));
3780 if (validity == valid_reload)
3781 {
3782 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3783 }
3784 else if (ira_use_lra_p)
3785 {
3786 /* We still can use this equivalence for caller save
3787 optimization in LRA. Mark this. */
3788 ira_reg_equiv[regno].caller_save_p = true;
3789 ira_reg_equiv[regno].init_insns
3790 = gen_rtx_INSN_LIST (VOIDmode, insn,
3791 ira_reg_equiv[regno].init_insns);
3792 }
3793 }
3794 }
3795
3796 /* If we haven't done so, record for reload that this is an
3797 equivalencing insn. */
3798 if (note && !reg_equiv[regno].is_arg_equivalence)
3799 ira_reg_equiv[regno].init_insns
3800 = gen_rtx_INSN_LIST (VOIDmode, insn,
3801 ira_reg_equiv[regno].init_insns);
3802
3803 if (replacement)
3804 {
3805 reg_equiv[regno].replacement = replacement;
3806 reg_equiv[regno].src_p = &SET_SRC (set);
3807 reg_equiv[regno].loop_depth = (short) loop_depth;
3808
3809 /* Don't mess with things live during setjmp. */
3810 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3811 {
3812 /* If the register is referenced exactly twice, meaning it is
3813 set once and used once, indicate that the reference may be
3814 replaced by the equivalence we computed above. Do this
3815 even if the register is only used in one block so that
3816 dependencies can be handled where the last register is
3817 used in a different block (i.e. HIGH / LO_SUM sequences)
3818 and to reduce the number of registers alive across
3819 calls. */
3820
3821 if (REG_N_REFS (regno) == 2
3822 && (rtx_equal_p (replacement, src)
3823 || ! equiv_init_varies_p (x: src))
3824 && NONJUMP_INSN_P (insn)
3825 && equiv_init_movable_p (x: PATTERN (insn), regno))
3826 reg_equiv[regno].replace = 1;
3827 }
3828 }
3829 }
3830 }
3831}
3832
3833/* For insns that set a MEM to the contents of a REG that is only used
3834 in a single basic block, see if the register is always equivalent
3835 to that memory location and if moving the store from INSN to the
3836 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3837 initializing insn. */
3838static void
3839add_store_equivs (void)
3840{
3841 auto_bitmap seen_insns;
3842
3843 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3844 {
3845 rtx set, src, dest;
3846 unsigned regno;
3847 rtx_insn *init_insn;
3848
3849 bitmap_set_bit (seen_insns, INSN_UID (insn));
3850
3851 if (! INSN_P (insn))
3852 continue;
3853
3854 set = single_set (insn);
3855 if (! set)
3856 continue;
3857
3858 dest = SET_DEST (set);
3859 src = SET_SRC (set);
3860
3861 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3862 REG_EQUIV is likely more useful than the one we are adding. */
3863 if (MEM_P (dest) && REG_P (src)
3864 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3865 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3866 && DF_REG_DEF_COUNT (regno) == 1
3867 && ! reg_equiv[regno].pdx_subregs
3868 && reg_equiv[regno].init_insns != NULL
3869 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3870 && bitmap_bit_p (seen_insns, INSN_UID (insn: init_insn))
3871 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3872 && validate_equiv_mem (start: init_insn, reg: src, memref: dest) == valid_reload
3873 && ! memref_used_between_p (memref: dest, start: init_insn, end: insn)
3874 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3875 multiple sets. */
3876 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3877 {
3878 /* This insn makes the equivalence, not the one initializing
3879 the register. */
3880 ira_reg_equiv[regno].init_insns
3881 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3882 df_notes_rescan (init_insn);
3883 if (dump_file)
3884 fprintf (stream: dump_file,
3885 format: "Adding REG_EQUIV to insn %d for source of insn %d\n",
3886 INSN_UID (insn: init_insn),
3887 INSN_UID (insn));
3888 }
3889 }
3890}
3891
3892/* Scan all regs killed in an insn to see if any of them are registers
3893 only used that once. If so, see if we can replace the reference
3894 with the equivalent form. If we can, delete the initializing
3895 reference and this register will go away. If we can't replace the
3896 reference, and the initializing reference is within the same loop
3897 (or in an inner loop), then move the register initialization just
3898 before the use, so that they are in the same basic block. */
3899static void
3900combine_and_move_insns (void)
3901{
3902 auto_bitmap cleared_regs;
3903 int max = max_reg_num ();
3904
3905 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3906 {
3907 if (!reg_equiv[regno].replace)
3908 continue;
3909
3910 rtx_insn *use_insn = 0;
3911 for (df_ref use = DF_REG_USE_CHAIN (regno);
3912 use;
3913 use = DF_REF_NEXT_REG (use))
3914 if (DF_REF_INSN_INFO (use))
3915 {
3916 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3917 continue;
3918 gcc_assert (!use_insn);
3919 use_insn = DF_REF_INSN (use);
3920 }
3921 gcc_assert (use_insn);
3922
3923 /* Don't substitute into jumps. indirect_jump_optimize does
3924 this for anything we are prepared to handle. */
3925 if (JUMP_P (use_insn))
3926 continue;
3927
3928 /* Also don't substitute into a conditional trap insn -- it can become
3929 an unconditional trap, and that is a flow control insn. */
3930 if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3931 continue;
3932
3933 df_ref def = DF_REG_DEF_CHAIN (regno);
3934 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3935 rtx_insn *def_insn = DF_REF_INSN (def);
3936
3937 /* We may not move instructions that can throw, since that
3938 changes basic block boundaries and we are not prepared to
3939 adjust the CFG to match. */
3940 if (can_throw_internal (def_insn))
3941 continue;
3942
3943 /* Instructions with multiple sets can only be moved if DF analysis is
3944 performed for all of the registers set. See PR91052. */
3945 if (multiple_sets (def_insn))
3946 continue;
3947
3948 basic_block use_bb = BLOCK_FOR_INSN (insn: use_insn);
3949 basic_block def_bb = BLOCK_FOR_INSN (insn: def_insn);
3950 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3951 continue;
3952
3953 if (asm_noperands (PATTERN (insn: def_insn)) < 0
3954 && validate_replace_rtx (regno_reg_rtx[regno],
3955 *reg_equiv[regno].src_p, use_insn))
3956 {
3957 rtx link;
3958 /* Append the REG_DEAD notes from def_insn. */
3959 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3960 {
3961 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3962 {
3963 *p = XEXP (link, 1);
3964 XEXP (link, 1) = REG_NOTES (use_insn);
3965 REG_NOTES (use_insn) = link;
3966 }
3967 else
3968 p = &XEXP (link, 1);
3969 }
3970
3971 remove_death (regno, use_insn);
3972 SET_REG_N_REFS (regno, 0);
3973 REG_FREQ (regno) = 0;
3974 df_ref use;
3975 FOR_EACH_INSN_USE (use, def_insn)
3976 {
3977 unsigned int use_regno = DF_REF_REGNO (use);
3978 if (!HARD_REGISTER_NUM_P (use_regno))
3979 reg_equiv[use_regno].replace = 0;
3980 }
3981
3982 delete_insn (def_insn);
3983
3984 reg_equiv[regno].init_insns = NULL;
3985 ira_reg_equiv[regno].init_insns = NULL;
3986 bitmap_set_bit (cleared_regs, regno);
3987 }
3988
3989 /* Move the initialization of the register to just before
3990 USE_INSN. Update the flow information. */
3991 else if (prev_nondebug_insn (use_insn) != def_insn)
3992 {
3993 rtx_insn *new_insn;
3994
3995 new_insn = emit_insn_before (PATTERN (insn: def_insn), use_insn);
3996 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3997 REG_NOTES (def_insn) = 0;
3998 /* Rescan it to process the notes. */
3999 df_insn_rescan (new_insn);
4000
4001 /* Make sure this insn is recognized before reload begins,
4002 otherwise eliminate_regs_in_insn will die. */
4003 INSN_CODE (new_insn) = INSN_CODE (def_insn);
4004
4005 delete_insn (def_insn);
4006
4007 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
4008
4009 REG_BASIC_BLOCK (regno) = use_bb->index;
4010 REG_N_CALLS_CROSSED (regno) = 0;
4011
4012 if (use_insn == BB_HEAD (use_bb))
4013 BB_HEAD (use_bb) = new_insn;
4014
4015 /* We know regno dies in use_insn, but inside a loop
4016 REG_DEAD notes might be missing when def_insn was in
4017 another basic block. However, when we move def_insn into
4018 this bb we'll definitely get a REG_DEAD note and reload
4019 will see the death. It's possible that update_equiv_regs
4020 set up an equivalence referencing regno for a reg set by
4021 use_insn, when regno was seen as non-local. Now that
4022 regno is local to this block, and dies, such an
4023 equivalence is invalid. */
4024 if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
4025 {
4026 rtx set = single_set (insn: use_insn);
4027 if (set && REG_P (SET_DEST (set)))
4028 no_equiv (SET_DEST (set), store: set, NULL);
4029 }
4030
4031 ira_reg_equiv[regno].init_insns
4032 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
4033 bitmap_set_bit (cleared_regs, regno);
4034 }
4035 }
4036
4037 if (!bitmap_empty_p (map: cleared_regs))
4038 {
4039 basic_block bb;
4040
4041 FOR_EACH_BB_FN (bb, cfun)
4042 {
4043 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
4044 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
4045 if (!df_live)
4046 continue;
4047 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
4048 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
4049 }
4050
4051 /* Last pass - adjust debug insns referencing cleared regs. */
4052 if (MAY_HAVE_DEBUG_BIND_INSNS)
4053 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
4054 if (DEBUG_BIND_INSN_P (insn))
4055 {
4056 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
4057 INSN_VAR_LOCATION_LOC (insn)
4058 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
4059 fn: adjust_cleared_regs,
4060 (void *) cleared_regs);
4061 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
4062 df_insn_rescan (insn);
4063 }
4064 }
4065}
4066
4067/* A pass over indirect jumps, converting simple cases to direct jumps.
4068 Combine does this optimization too, but only within a basic block. */
4069static void
4070indirect_jump_optimize (void)
4071{
4072 basic_block bb;
4073 bool rebuild_p = false;
4074
4075 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4076 {
4077 rtx_insn *insn = BB_END (bb);
4078 if (!JUMP_P (insn)
4079 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
4080 continue;
4081
4082 rtx x = pc_set (insn);
4083 if (!x || !REG_P (SET_SRC (x)))
4084 continue;
4085
4086 int regno = REGNO (SET_SRC (x));
4087 if (DF_REG_DEF_COUNT (regno) == 1)
4088 {
4089 df_ref def = DF_REG_DEF_CHAIN (regno);
4090 if (!DF_REF_IS_ARTIFICIAL (def))
4091 {
4092 rtx_insn *def_insn = DF_REF_INSN (def);
4093 rtx lab = NULL_RTX;
4094 rtx set = single_set (insn: def_insn);
4095 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
4096 lab = SET_SRC (set);
4097 else
4098 {
4099 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
4100 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
4101 lab = XEXP (eqnote, 0);
4102 }
4103 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
4104 rebuild_p = true;
4105 }
4106 }
4107 }
4108
4109 if (rebuild_p)
4110 {
4111 timevar_push (tv: TV_JUMP);
4112 rebuild_jump_labels (get_insns ());
4113 if (purge_all_dead_edges ())
4114 delete_unreachable_blocks ();
4115 timevar_pop (tv: TV_JUMP);
4116 }
4117}
4118
4119/* Set up fields memory, constant, and invariant from init_insns in
4120 the structures of array ira_reg_equiv. */
4121static void
4122setup_reg_equiv (void)
4123{
4124 int i;
4125 rtx_insn_list *elem, *prev_elem, *next_elem;
4126 rtx_insn *insn;
4127 rtx set, x;
4128
4129 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
4130 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
4131 elem;
4132 prev_elem = elem, elem = next_elem)
4133 {
4134 next_elem = elem->next ();
4135 insn = elem->insn ();
4136 set = single_set (insn);
4137
4138 /* Init insns can set up equivalence when the reg is a destination or
4139 a source (in this case the destination is memory). */
4140 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
4141 {
4142 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
4143 {
4144 x = XEXP (x, 0);
4145 if (REG_P (SET_DEST (set))
4146 && REGNO (SET_DEST (set)) == (unsigned int) i
4147 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
4148 {
4149 /* This insn reporting the equivalence but
4150 actually not setting it. Remove it from the
4151 list. */
4152 if (prev_elem == NULL)
4153 ira_reg_equiv[i].init_insns = next_elem;
4154 else
4155 XEXP (prev_elem, 1) = next_elem;
4156 elem = prev_elem;
4157 }
4158 }
4159 else if (REG_P (SET_DEST (set))
4160 && REGNO (SET_DEST (set)) == (unsigned int) i)
4161 x = SET_SRC (set);
4162 else
4163 {
4164 gcc_assert (REG_P (SET_SRC (set))
4165 && REGNO (SET_SRC (set)) == (unsigned int) i);
4166 x = SET_DEST (set);
4167 }
4168 if (! function_invariant_p (x)
4169 || ! flag_pic
4170 /* A function invariant is often CONSTANT_P but may
4171 include a register. We promise to only pass
4172 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
4173 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
4174 {
4175 /* It can happen that a REG_EQUIV note contains a MEM
4176 that is not a legitimate memory operand. As later
4177 stages of reload assume that all addresses found in
4178 the lra_regno_equiv_* arrays were originally
4179 legitimate, we ignore such REG_EQUIV notes. */
4180 if (memory_operand (x, VOIDmode))
4181 {
4182 ira_reg_equiv[i].defined_p = !ira_reg_equiv[i].caller_save_p;
4183 ira_reg_equiv[i].memory = x;
4184 continue;
4185 }
4186 else if (function_invariant_p (x))
4187 {
4188 machine_mode mode;
4189
4190 mode = GET_MODE (SET_DEST (set));
4191 if (GET_CODE (x) == PLUS
4192 || x == frame_pointer_rtx || x == arg_pointer_rtx)
4193 /* This is PLUS of frame pointer and a constant,
4194 or fp, or argp. */
4195 ira_reg_equiv[i].invariant = x;
4196 else if (targetm.legitimate_constant_p (mode, x))
4197 ira_reg_equiv[i].constant = x;
4198 else
4199 {
4200 ira_reg_equiv[i].memory = force_const_mem (mode, x);
4201 if (ira_reg_equiv[i].memory == NULL_RTX)
4202 {
4203 ira_reg_equiv[i].defined_p = false;
4204 ira_reg_equiv[i].caller_save_p = false;
4205 ira_reg_equiv[i].init_insns = NULL;
4206 break;
4207 }
4208 }
4209 ira_reg_equiv[i].defined_p = true;
4210 continue;
4211 }
4212 }
4213 }
4214 ira_reg_equiv[i].defined_p = false;
4215 ira_reg_equiv[i].caller_save_p = false;
4216 ira_reg_equiv[i].init_insns = NULL;
4217 break;
4218 }
4219}
4220
4221
4222
4223/* Print chain C to FILE. */
4224static void
4225print_insn_chain (FILE *file, class insn_chain *c)
4226{
4227 fprintf (stream: file, format: "insn=%d, ", INSN_UID (insn: c->insn));
4228 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4229 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4230}
4231
4232
4233/* Print all reload_insn_chains to FILE. */
4234static void
4235print_insn_chains (FILE *file)
4236{
4237 class insn_chain *c;
4238 for (c = reload_insn_chain; c ; c = c->next)
4239 print_insn_chain (file, c);
4240}
4241
4242/* Return true if pseudo REGNO should be added to set live_throughout
4243 or dead_or_set of the insn chains for reload consideration. */
4244static bool
4245pseudo_for_reload_consideration_p (int regno)
4246{
4247 /* Consider spilled pseudos too for IRA because they still have a
4248 chance to get hard-registers in the reload when IRA is used. */
4249 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4250}
4251
4252/* Return true if we can track the individual bytes of subreg X.
4253 When returning true, set *OUTER_SIZE to the number of bytes in
4254 X itself, *INNER_SIZE to the number of bytes in the inner register
4255 and *START to the offset of the first byte. */
4256static bool
4257get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4258 HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4259{
4260 rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4261 return (GET_MODE_SIZE (GET_MODE (x)).is_constant (const_value: outer_size)
4262 && GET_MODE_SIZE (GET_MODE (reg)).is_constant (const_value: inner_size)
4263 && SUBREG_BYTE (x).is_constant (const_value: start));
4264}
4265
4266/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4267 a register with SIZE bytes, making the register live if INIT_VALUE. */
4268static void
4269init_live_subregs (bool init_value, sbitmap *live_subregs,
4270 bitmap live_subregs_used, int allocnum, int size)
4271{
4272 gcc_assert (size > 0);
4273
4274 /* Been there, done that. */
4275 if (bitmap_bit_p (live_subregs_used, allocnum))
4276 return;
4277
4278 /* Create a new one. */
4279 if (live_subregs[allocnum] == NULL)
4280 live_subregs[allocnum] = sbitmap_alloc (size);
4281
4282 /* If the entire reg was live before blasting into subregs, we need
4283 to init all of the subregs to ones else init to 0. */
4284 if (init_value)
4285 bitmap_ones (live_subregs[allocnum]);
4286 else
4287 bitmap_clear (live_subregs[allocnum]);
4288
4289 bitmap_set_bit (live_subregs_used, allocnum);
4290}
4291
4292/* Walk the insns of the current function and build reload_insn_chain,
4293 and record register life information. */
4294static void
4295build_insn_chain (void)
4296{
4297 unsigned int i;
4298 class insn_chain **p = &reload_insn_chain;
4299 basic_block bb;
4300 class insn_chain *c = NULL;
4301 class insn_chain *next = NULL;
4302 auto_bitmap live_relevant_regs;
4303 auto_bitmap elim_regset;
4304 /* live_subregs is a vector used to keep accurate information about
4305 which hardregs are live in multiword pseudos. live_subregs and
4306 live_subregs_used are indexed by pseudo number. The live_subreg
4307 entry for a particular pseudo is only used if the corresponding
4308 element is non zero in live_subregs_used. The sbitmap size of
4309 live_subreg[allocno] is number of bytes that the pseudo can
4310 occupy. */
4311 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4312 auto_bitmap live_subregs_used;
4313
4314 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4315 if (TEST_HARD_REG_BIT (set: eliminable_regset, bit: i))
4316 bitmap_set_bit (elim_regset, i);
4317 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4318 {
4319 bitmap_iterator bi;
4320 rtx_insn *insn;
4321
4322 CLEAR_REG_SET (live_relevant_regs);
4323 bitmap_clear (live_subregs_used);
4324
4325 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4326 {
4327 if (i >= FIRST_PSEUDO_REGISTER)
4328 break;
4329 bitmap_set_bit (live_relevant_regs, i);
4330 }
4331
4332 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4333 FIRST_PSEUDO_REGISTER, i, bi)
4334 {
4335 if (pseudo_for_reload_consideration_p (regno: i))
4336 bitmap_set_bit (live_relevant_regs, i);
4337 }
4338
4339 FOR_BB_INSNS_REVERSE (bb, insn)
4340 {
4341 if (!NOTE_P (insn) && !BARRIER_P (insn))
4342 {
4343 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4344 df_ref def, use;
4345
4346 c = new_insn_chain ();
4347 c->next = next;
4348 next = c;
4349 *p = c;
4350 p = &c->prev;
4351
4352 c->insn = insn;
4353 c->block = bb->index;
4354
4355 if (NONDEBUG_INSN_P (insn))
4356 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4357 {
4358 unsigned int regno = DF_REF_REGNO (def);
4359
4360 /* Ignore may clobbers because these are generated
4361 from calls. However, every other kind of def is
4362 added to dead_or_set. */
4363 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4364 {
4365 if (regno < FIRST_PSEUDO_REGISTER)
4366 {
4367 if (!fixed_regs[regno])
4368 bitmap_set_bit (&c->dead_or_set, regno);
4369 }
4370 else if (pseudo_for_reload_consideration_p (regno))
4371 bitmap_set_bit (&c->dead_or_set, regno);
4372 }
4373
4374 if ((regno < FIRST_PSEUDO_REGISTER
4375 || reg_renumber[regno] >= 0
4376 || ira_conflicts_p)
4377 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4378 {
4379 rtx reg = DF_REF_REG (def);
4380 HOST_WIDE_INT outer_size, inner_size, start;
4381
4382 /* We can usually track the liveness of individual
4383 bytes within a subreg. The only exceptions are
4384 subregs wrapped in ZERO_EXTRACTs and subregs whose
4385 size is not known; in those cases we need to be
4386 conservative and treat the definition as a partial
4387 definition of the full register rather than a full
4388 definition of a specific part of the register. */
4389 if (GET_CODE (reg) == SUBREG
4390 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4391 && get_subreg_tracking_sizes (x: reg, outer_size: &outer_size,
4392 inner_size: &inner_size, start: &start))
4393 {
4394 HOST_WIDE_INT last = start + outer_size;
4395
4396 init_live_subregs
4397 (init_value: bitmap_bit_p (live_relevant_regs, regno),
4398 live_subregs, live_subregs_used, allocnum: regno,
4399 size: inner_size);
4400
4401 if (!DF_REF_FLAGS_IS_SET
4402 (def, DF_REF_STRICT_LOW_PART))
4403 {
4404 /* Expand the range to cover entire words.
4405 Bytes added here are "don't care". */
4406 start
4407 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4408 last = ((last + UNITS_PER_WORD - 1)
4409 / UNITS_PER_WORD * UNITS_PER_WORD);
4410 }
4411
4412 /* Ignore the paradoxical bits. */
4413 if (last > SBITMAP_SIZE (live_subregs[regno]))
4414 last = SBITMAP_SIZE (live_subregs[regno]);
4415
4416 while (start < last)
4417 {
4418 bitmap_clear_bit (map: live_subregs[regno], bitno: start);
4419 start++;
4420 }
4421
4422 if (bitmap_empty_p (live_subregs[regno]))
4423 {
4424 bitmap_clear_bit (live_subregs_used, regno);
4425 bitmap_clear_bit (live_relevant_regs, regno);
4426 }
4427 else
4428 /* Set live_relevant_regs here because
4429 that bit has to be true to get us to
4430 look at the live_subregs fields. */
4431 bitmap_set_bit (live_relevant_regs, regno);
4432 }
4433 else
4434 {
4435 /* DF_REF_PARTIAL is generated for
4436 subregs, STRICT_LOW_PART, and
4437 ZERO_EXTRACT. We handle the subreg
4438 case above so here we have to keep from
4439 modeling the def as a killing def. */
4440 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4441 {
4442 bitmap_clear_bit (live_subregs_used, regno);
4443 bitmap_clear_bit (live_relevant_regs, regno);
4444 }
4445 }
4446 }
4447 }
4448
4449 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4450 bitmap_copy (&c->live_throughout, live_relevant_regs);
4451
4452 if (NONDEBUG_INSN_P (insn))
4453 FOR_EACH_INSN_INFO_USE (use, insn_info)
4454 {
4455 unsigned int regno = DF_REF_REGNO (use);
4456 rtx reg = DF_REF_REG (use);
4457
4458 /* DF_REF_READ_WRITE on a use means that this use
4459 is fabricated from a def that is a partial set
4460 to a multiword reg. Here, we only model the
4461 subreg case that is not wrapped in ZERO_EXTRACT
4462 precisely so we do not need to look at the
4463 fabricated use. */
4464 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4465 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4466 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4467 continue;
4468
4469 /* Add the last use of each var to dead_or_set. */
4470 if (!bitmap_bit_p (live_relevant_regs, regno))
4471 {
4472 if (regno < FIRST_PSEUDO_REGISTER)
4473 {
4474 if (!fixed_regs[regno])
4475 bitmap_set_bit (&c->dead_or_set, regno);
4476 }
4477 else if (pseudo_for_reload_consideration_p (regno))
4478 bitmap_set_bit (&c->dead_or_set, regno);
4479 }
4480
4481 if (regno < FIRST_PSEUDO_REGISTER
4482 || pseudo_for_reload_consideration_p (regno))
4483 {
4484 HOST_WIDE_INT outer_size, inner_size, start;
4485 if (GET_CODE (reg) == SUBREG
4486 && !DF_REF_FLAGS_IS_SET (use,
4487 DF_REF_SIGN_EXTRACT
4488 | DF_REF_ZERO_EXTRACT)
4489 && get_subreg_tracking_sizes (x: reg, outer_size: &outer_size,
4490 inner_size: &inner_size, start: &start))
4491 {
4492 HOST_WIDE_INT last = start + outer_size;
4493
4494 init_live_subregs
4495 (init_value: bitmap_bit_p (live_relevant_regs, regno),
4496 live_subregs, live_subregs_used, allocnum: regno,
4497 size: inner_size);
4498
4499 /* Ignore the paradoxical bits. */
4500 if (last > SBITMAP_SIZE (live_subregs[regno]))
4501 last = SBITMAP_SIZE (live_subregs[regno]);
4502
4503 while (start < last)
4504 {
4505 bitmap_set_bit (map: live_subregs[regno], bitno: start);
4506 start++;
4507 }
4508 }
4509 else
4510 /* Resetting the live_subregs_used is
4511 effectively saying do not use the subregs
4512 because we are reading the whole
4513 pseudo. */
4514 bitmap_clear_bit (live_subregs_used, regno);
4515 bitmap_set_bit (live_relevant_regs, regno);
4516 }
4517 }
4518 }
4519 }
4520
4521 /* FIXME!! The following code is a disaster. Reload needs to see the
4522 labels and jump tables that are just hanging out in between
4523 the basic blocks. See pr33676. */
4524 insn = BB_HEAD (bb);
4525
4526 /* Skip over the barriers and cruft. */
4527 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4528 || BLOCK_FOR_INSN (insn) == bb))
4529 insn = PREV_INSN (insn);
4530
4531 /* While we add anything except barriers and notes, the focus is
4532 to get the labels and jump tables into the
4533 reload_insn_chain. */
4534 while (insn)
4535 {
4536 if (!NOTE_P (insn) && !BARRIER_P (insn))
4537 {
4538 if (BLOCK_FOR_INSN (insn))
4539 break;
4540
4541 c = new_insn_chain ();
4542 c->next = next;
4543 next = c;
4544 *p = c;
4545 p = &c->prev;
4546
4547 /* The block makes no sense here, but it is what the old
4548 code did. */
4549 c->block = bb->index;
4550 c->insn = insn;
4551 bitmap_copy (&c->live_throughout, live_relevant_regs);
4552 }
4553 insn = PREV_INSN (insn);
4554 }
4555 }
4556
4557 reload_insn_chain = c;
4558 *p = NULL;
4559
4560 for (i = 0; i < (unsigned int) max_regno; i++)
4561 if (live_subregs[i] != NULL)
4562 sbitmap_free (map: live_subregs[i]);
4563 free (ptr: live_subregs);
4564
4565 if (dump_file)
4566 print_insn_chains (file: dump_file);
4567}
4568
4569/* Examine the rtx found in *LOC, which is read or written to as determined
4570 by TYPE. Return false if we find a reason why an insn containing this
4571 rtx should not be moved (such as accesses to non-constant memory), true
4572 otherwise. */
4573static bool
4574rtx_moveable_p (rtx *loc, enum op_type type)
4575{
4576 const char *fmt;
4577 rtx x = *loc;
4578 int i, j;
4579
4580 enum rtx_code code = GET_CODE (x);
4581 switch (code)
4582 {
4583 case CONST:
4584 CASE_CONST_ANY:
4585 case SYMBOL_REF:
4586 case LABEL_REF:
4587 return true;
4588
4589 case PC:
4590 return type == OP_IN;
4591
4592 case REG:
4593 if (x == frame_pointer_rtx)
4594 return true;
4595 if (HARD_REGISTER_P (x))
4596 return false;
4597
4598 return true;
4599
4600 case MEM:
4601 if (type == OP_IN && MEM_READONLY_P (x))
4602 return rtx_moveable_p (loc: &XEXP (x, 0), type: OP_IN);
4603 return false;
4604
4605 case SET:
4606 return (rtx_moveable_p (loc: &SET_SRC (x), type: OP_IN)
4607 && rtx_moveable_p (loc: &SET_DEST (x), type: OP_OUT));
4608
4609 case STRICT_LOW_PART:
4610 return rtx_moveable_p (loc: &XEXP (x, 0), type: OP_OUT);
4611
4612 case ZERO_EXTRACT:
4613 case SIGN_EXTRACT:
4614 return (rtx_moveable_p (loc: &XEXP (x, 0), type)
4615 && rtx_moveable_p (loc: &XEXP (x, 1), type: OP_IN)
4616 && rtx_moveable_p (loc: &XEXP (x, 2), type: OP_IN));
4617
4618 case CLOBBER:
4619 return rtx_moveable_p (loc: &SET_DEST (x), type: OP_OUT);
4620
4621 case UNSPEC_VOLATILE:
4622 /* It is a bad idea to consider insns with such rtl
4623 as moveable ones. The insn scheduler also considers them as barrier
4624 for a reason. */
4625 return false;
4626
4627 case ASM_OPERANDS:
4628 /* The same is true for volatile asm: it has unknown side effects, it
4629 cannot be moved at will. */
4630 if (MEM_VOLATILE_P (x))
4631 return false;
4632
4633 default:
4634 break;
4635 }
4636
4637 fmt = GET_RTX_FORMAT (code);
4638 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4639 {
4640 if (fmt[i] == 'e')
4641 {
4642 if (!rtx_moveable_p (loc: &XEXP (x, i), type))
4643 return false;
4644 }
4645 else if (fmt[i] == 'E')
4646 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4647 {
4648 if (!rtx_moveable_p (loc: &XVECEXP (x, i, j), type))
4649 return false;
4650 }
4651 }
4652 return true;
4653}
4654
4655/* A wrapper around dominated_by_p, which uses the information in UID_LUID
4656 to give dominance relationships between two insns I1 and I2. */
4657static bool
4658insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4659{
4660 basic_block bb1 = BLOCK_FOR_INSN (insn: i1);
4661 basic_block bb2 = BLOCK_FOR_INSN (insn: i2);
4662
4663 if (bb1 == bb2)
4664 return uid_luid[INSN_UID (insn: i2)] < uid_luid[INSN_UID (insn: i1)];
4665 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4666}
4667
4668/* Record the range of register numbers added by find_moveable_pseudos. */
4669int first_moveable_pseudo, last_moveable_pseudo;
4670
4671/* These two vectors hold data for every register added by
4672 find_movable_pseudos, with index 0 holding data for the
4673 first_moveable_pseudo. */
4674/* The original home register. */
4675static vec<rtx> pseudo_replaced_reg;
4676
4677/* Look for instances where we have an instruction that is known to increase
4678 register pressure, and whose result is not used immediately. If it is
4679 possible to move the instruction downwards to just before its first use,
4680 split its lifetime into two ranges. We create a new pseudo to compute the
4681 value, and emit a move instruction just before the first use. If, after
4682 register allocation, the new pseudo remains unallocated, the function
4683 move_unallocated_pseudos then deletes the move instruction and places
4684 the computation just before the first use.
4685
4686 Such a move is safe and profitable if all the input registers remain live
4687 and unchanged between the original computation and its first use. In such
4688 a situation, the computation is known to increase register pressure, and
4689 moving it is known to at least not worsen it.
4690
4691 We restrict moves to only those cases where a register remains unallocated,
4692 in order to avoid interfering too much with the instruction schedule. As
4693 an exception, we may move insns which only modify their input register
4694 (typically induction variables), as this increases the freedom for our
4695 intended transformation, and does not limit the second instruction
4696 scheduler pass. */
4697
4698static void
4699find_moveable_pseudos (void)
4700{
4701 unsigned i;
4702 int max_regs = max_reg_num ();
4703 int max_uid = get_max_uid ();
4704 basic_block bb;
4705 int *uid_luid = XNEWVEC (int, max_uid);
4706 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4707 /* A set of registers which are live but not modified throughout a block. */
4708 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4709 last_basic_block_for_fn (cfun));
4710 /* A set of registers which only exist in a given basic block. */
4711 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4712 last_basic_block_for_fn (cfun));
4713 /* A set of registers which are set once, in an instruction that can be
4714 moved freely downwards, but are otherwise transparent to a block. */
4715 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4716 last_basic_block_for_fn (cfun));
4717 auto_bitmap live, used, set, interesting, unusable_as_input;
4718 bitmap_iterator bi;
4719
4720 first_moveable_pseudo = max_regs;
4721 pseudo_replaced_reg.release ();
4722 pseudo_replaced_reg.safe_grow_cleared (len: max_regs, exact: true);
4723
4724 df_analyze ();
4725 calculate_dominance_info (CDI_DOMINATORS);
4726
4727 i = 0;
4728 FOR_EACH_BB_FN (bb, cfun)
4729 {
4730 rtx_insn *insn;
4731 bitmap transp = bb_transp_live + bb->index;
4732 bitmap moveable = bb_moveable_reg_sets + bb->index;
4733 bitmap local = bb_local + bb->index;
4734
4735 bitmap_initialize (head: local, obstack: 0);
4736 bitmap_initialize (head: transp, obstack: 0);
4737 bitmap_initialize (head: moveable, obstack: 0);
4738 bitmap_copy (live, df_get_live_out (bb));
4739 bitmap_and_into (live, df_get_live_in (bb));
4740 bitmap_copy (transp, live);
4741 bitmap_clear (moveable);
4742 bitmap_clear (live);
4743 bitmap_clear (used);
4744 bitmap_clear (set);
4745 FOR_BB_INSNS (bb, insn)
4746 if (NONDEBUG_INSN_P (insn))
4747 {
4748 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4749 df_ref def, use;
4750
4751 uid_luid[INSN_UID (insn)] = i++;
4752
4753 def = df_single_def (info: insn_info);
4754 use = df_single_use (info: insn_info);
4755 if (use
4756 && def
4757 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4758 && !bitmap_bit_p (set, DF_REF_REGNO (use))
4759 && rtx_moveable_p (loc: &PATTERN (insn), type: OP_IN))
4760 {
4761 unsigned regno = DF_REF_REGNO (use);
4762 bitmap_set_bit (moveable, regno);
4763 bitmap_set_bit (set, regno);
4764 bitmap_set_bit (used, regno);
4765 bitmap_clear_bit (transp, regno);
4766 continue;
4767 }
4768 FOR_EACH_INSN_INFO_USE (use, insn_info)
4769 {
4770 unsigned regno = DF_REF_REGNO (use);
4771 bitmap_set_bit (used, regno);
4772 if (bitmap_clear_bit (moveable, regno))
4773 bitmap_clear_bit (transp, regno);
4774 }
4775
4776 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4777 {
4778 unsigned regno = DF_REF_REGNO (def);
4779 bitmap_set_bit (set, regno);
4780 bitmap_clear_bit (transp, regno);
4781 bitmap_clear_bit (moveable, regno);
4782 }
4783 }
4784 }
4785
4786 FOR_EACH_BB_FN (bb, cfun)
4787 {
4788 bitmap local = bb_local + bb->index;
4789 rtx_insn *insn;
4790
4791 FOR_BB_INSNS (bb, insn)
4792 if (NONDEBUG_INSN_P (insn))
4793 {
4794 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4795 rtx_insn *def_insn;
4796 rtx closest_use, note;
4797 df_ref def, use;
4798 unsigned regno;
4799 bool all_dominated, all_local;
4800 machine_mode mode;
4801
4802 def = df_single_def (info: insn_info);
4803 /* There must be exactly one def in this insn. */
4804 if (!def || !single_set (insn))
4805 continue;
4806 /* This must be the only definition of the reg. We also limit
4807 which modes we deal with so that we can assume we can generate
4808 move instructions. */
4809 regno = DF_REF_REGNO (def);
4810 mode = GET_MODE (DF_REF_REG (def));
4811 if (DF_REG_DEF_COUNT (regno) != 1
4812 || !DF_REF_INSN_INFO (def)
4813 || HARD_REGISTER_NUM_P (regno)
4814 || DF_REG_EQ_USE_COUNT (regno) > 0
4815 || (!INTEGRAL_MODE_P (mode)
4816 && !FLOAT_MODE_P (mode)
4817 && !OPAQUE_MODE_P (mode)))
4818 continue;
4819 def_insn = DF_REF_INSN (def);
4820
4821 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4822 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4823 break;
4824
4825 if (note)
4826 {
4827 if (dump_file)
4828 fprintf (stream: dump_file, format: "Ignoring reg %d, has equiv memory\n",
4829 regno);
4830 bitmap_set_bit (unusable_as_input, regno);
4831 continue;
4832 }
4833
4834 use = DF_REG_USE_CHAIN (regno);
4835 all_dominated = true;
4836 all_local = true;
4837 closest_use = NULL_RTX;
4838 for (; use; use = DF_REF_NEXT_REG (use))
4839 {
4840 rtx_insn *insn;
4841 if (!DF_REF_INSN_INFO (use))
4842 {
4843 all_dominated = false;
4844 all_local = false;
4845 break;
4846 }
4847 insn = DF_REF_INSN (use);
4848 if (DEBUG_INSN_P (insn))
4849 continue;
4850 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (insn: def_insn))
4851 all_local = false;
4852 if (!insn_dominated_by_p (i1: insn, i2: def_insn, uid_luid))
4853 all_dominated = false;
4854 if (closest_use != insn && closest_use != const0_rtx)
4855 {
4856 if (closest_use == NULL_RTX)
4857 closest_use = insn;
4858 else if (insn_dominated_by_p (i1: closest_use, i2: insn, uid_luid))
4859 closest_use = insn;
4860 else if (!insn_dominated_by_p (i1: insn, i2: closest_use, uid_luid))
4861 closest_use = const0_rtx;
4862 }
4863 }
4864 if (!all_dominated)
4865 {
4866 if (dump_file)
4867 fprintf (stream: dump_file, format: "Reg %d not all uses dominated by set\n",
4868 regno);
4869 continue;
4870 }
4871 if (all_local)
4872 bitmap_set_bit (local, regno);
4873 if (closest_use == const0_rtx || closest_use == NULL
4874 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4875 {
4876 if (dump_file)
4877 fprintf (stream: dump_file, format: "Reg %d uninteresting%s\n", regno,
4878 closest_use == const0_rtx || closest_use == NULL
4879 ? " (no unique first use)" : "");
4880 continue;
4881 }
4882
4883 bitmap_set_bit (interesting, regno);
4884 /* If we get here, we know closest_use is a non-NULL insn
4885 (as opposed to const_0_rtx). */
4886 closest_uses[regno] = as_a <rtx_insn *> (p: closest_use);
4887
4888 if (dump_file && (all_local || all_dominated))
4889 {
4890 fprintf (stream: dump_file, format: "Reg %u:", regno);
4891 if (all_local)
4892 fprintf (stream: dump_file, format: " local to bb %d", bb->index);
4893 if (all_dominated)
4894 fprintf (stream: dump_file, format: " def dominates all uses");
4895 if (closest_use != const0_rtx)
4896 fprintf (stream: dump_file, format: " has unique first use");
4897 fputs (s: "\n", stream: dump_file);
4898 }
4899 }
4900 }
4901
4902 EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4903 {
4904 df_ref def = DF_REG_DEF_CHAIN (i);
4905 rtx_insn *def_insn = DF_REF_INSN (def);
4906 basic_block def_block = BLOCK_FOR_INSN (insn: def_insn);
4907 bitmap def_bb_local = bb_local + def_block->index;
4908 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4909 bitmap def_bb_transp = bb_transp_live + def_block->index;
4910 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4911 rtx_insn *use_insn = closest_uses[i];
4912 df_ref use;
4913 bool all_ok = true;
4914 bool all_transp = true;
4915
4916 if (!REG_P (DF_REF_REG (def)))
4917 continue;
4918
4919 if (!local_to_bb_p)
4920 {
4921 if (dump_file)
4922 fprintf (stream: dump_file, format: "Reg %u not local to one basic block\n",
4923 i);
4924 continue;
4925 }
4926 if (reg_equiv_init (i) != NULL_RTX)
4927 {
4928 if (dump_file)
4929 fprintf (stream: dump_file, format: "Ignoring reg %u with equiv init insn\n",
4930 i);
4931 continue;
4932 }
4933 if (!rtx_moveable_p (loc: &PATTERN (insn: def_insn), type: OP_IN))
4934 {
4935 if (dump_file)
4936 fprintf (stream: dump_file, format: "Found def insn %d for %d to be not moveable\n",
4937 INSN_UID (insn: def_insn), i);
4938 continue;
4939 }
4940 if (dump_file)
4941 fprintf (stream: dump_file, format: "Examining insn %d, def for %d\n",
4942 INSN_UID (insn: def_insn), i);
4943 FOR_EACH_INSN_USE (use, def_insn)
4944 {
4945 unsigned regno = DF_REF_REGNO (use);
4946 if (bitmap_bit_p (unusable_as_input, regno))
4947 {
4948 all_ok = false;
4949 if (dump_file)
4950 fprintf (stream: dump_file, format: " found unusable input reg %u.\n", regno);
4951 break;
4952 }
4953 if (!bitmap_bit_p (def_bb_transp, regno))
4954 {
4955 if (bitmap_bit_p (def_bb_moveable, regno)
4956 && !control_flow_insn_p (use_insn))
4957 {
4958 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4959 {
4960 rtx_insn *x = NEXT_INSN (insn: def_insn);
4961 while (!modified_in_p (DF_REF_REG (use), x))
4962 {
4963 gcc_assert (x != use_insn);
4964 x = NEXT_INSN (insn: x);
4965 }
4966 if (dump_file)
4967 fprintf (stream: dump_file, format: " input reg %u modified but insn %d moveable\n",
4968 regno, INSN_UID (insn: x));
4969 emit_insn_after (PATTERN (insn: x), use_insn);
4970 set_insn_deleted (x);
4971 }
4972 else
4973 {
4974 if (dump_file)
4975 fprintf (stream: dump_file, format: " input reg %u modified between def and use\n",
4976 regno);
4977 all_transp = false;
4978 }
4979 }
4980 else
4981 all_transp = false;
4982 }
4983 }
4984 if (!all_ok)
4985 continue;
4986 if (!dbg_cnt (index: ira_move))
4987 break;
4988 if (dump_file)
4989 fprintf (stream: dump_file, format: " all ok%s\n", all_transp ? " and transp" : "");
4990
4991 if (all_transp)
4992 {
4993 rtx def_reg = DF_REF_REG (def);
4994 rtx newreg = ira_create_new_reg (def_reg);
4995 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4996 {
4997 unsigned nregno = REGNO (newreg);
4998 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4999 nregno -= max_regs;
5000 pseudo_replaced_reg[nregno] = def_reg;
5001 }
5002 }
5003 }
5004
5005 FOR_EACH_BB_FN (bb, cfun)
5006 {
5007 bitmap_clear (bb_local + bb->index);
5008 bitmap_clear (bb_transp_live + bb->index);
5009 bitmap_clear (bb_moveable_reg_sets + bb->index);
5010 }
5011 free (ptr: uid_luid);
5012 free (ptr: closest_uses);
5013 free (ptr: bb_local);
5014 free (ptr: bb_transp_live);
5015 free (ptr: bb_moveable_reg_sets);
5016
5017 last_moveable_pseudo = max_reg_num ();
5018
5019 fix_reg_equiv_init ();
5020 expand_reg_info ();
5021 regstat_free_n_sets_and_refs ();
5022 regstat_free_ri ();
5023 regstat_init_n_sets_and_refs ();
5024 regstat_compute_ri ();
5025 free_dominance_info (CDI_DOMINATORS);
5026}
5027
5028/* If SET pattern SET is an assignment from a hard register to a pseudo which
5029 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
5030 the destination. Otherwise return NULL. */
5031
5032static rtx
5033interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
5034{
5035 rtx src = SET_SRC (set);
5036 rtx dest = SET_DEST (set);
5037 if (!REG_P (src) || !HARD_REGISTER_P (src)
5038 || !REG_P (dest) || HARD_REGISTER_P (dest)
5039 || (call_dom && !bitmap_bit_p (df_get_live_in (bb: call_dom), REGNO (dest))))
5040 return NULL;
5041 return dest;
5042}
5043
5044/* If insn is interesting for parameter range-splitting shrink-wrapping
5045 preparation, i.e. it is a single set from a hard register to a pseudo, which
5046 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
5047 parallel statement with only one such statement, return the destination.
5048 Otherwise return NULL. */
5049
5050static rtx
5051interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
5052{
5053 if (!INSN_P (insn))
5054 return NULL;
5055 rtx pat = PATTERN (insn);
5056 if (GET_CODE (pat) == SET)
5057 return interesting_dest_for_shprep_1 (set: pat, call_dom);
5058
5059 if (GET_CODE (pat) != PARALLEL)
5060 return NULL;
5061 rtx ret = NULL;
5062 for (int i = 0; i < XVECLEN (pat, 0); i++)
5063 {
5064 rtx sub = XVECEXP (pat, 0, i);
5065 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
5066 continue;
5067 if (GET_CODE (sub) != SET
5068 || side_effects_p (sub))
5069 return NULL;
5070 rtx dest = interesting_dest_for_shprep_1 (set: sub, call_dom);
5071 if (dest && ret)
5072 return NULL;
5073 if (dest)
5074 ret = dest;
5075 }
5076 return ret;
5077}
5078
5079/* Split live ranges of pseudos that are loaded from hard registers in the
5080 first BB in a BB that dominates all non-sibling call if such a BB can be
5081 found and is not in a loop. Return true if the function has made any
5082 changes. */
5083
5084static bool
5085split_live_ranges_for_shrink_wrap (void)
5086{
5087 basic_block bb, call_dom = NULL;
5088 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5089 rtx_insn *insn, *last_interesting_insn = NULL;
5090 auto_bitmap need_new, reachable;
5091 vec<basic_block> queue;
5092
5093 if (!SHRINK_WRAPPING_ENABLED)
5094 return false;
5095
5096 queue.create (n_basic_blocks_for_fn (cfun));
5097
5098 FOR_EACH_BB_FN (bb, cfun)
5099 FOR_BB_INSNS (bb, insn)
5100 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
5101 {
5102 if (bb == first)
5103 {
5104 queue.release ();
5105 return false;
5106 }
5107
5108 bitmap_set_bit (need_new, bb->index);
5109 bitmap_set_bit (reachable, bb->index);
5110 queue.quick_push (obj: bb);
5111 break;
5112 }
5113
5114 if (queue.is_empty ())
5115 {
5116 queue.release ();
5117 return false;
5118 }
5119
5120 while (!queue.is_empty ())
5121 {
5122 edge e;
5123 edge_iterator ei;
5124
5125 bb = queue.pop ();
5126 FOR_EACH_EDGE (e, ei, bb->succs)
5127 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
5128 && bitmap_set_bit (reachable, e->dest->index))
5129 queue.quick_push (obj: e->dest);
5130 }
5131 queue.release ();
5132
5133 FOR_BB_INSNS (first, insn)
5134 {
5135 rtx dest = interesting_dest_for_shprep (insn, NULL);
5136 if (!dest)
5137 continue;
5138
5139 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
5140 return false;
5141
5142 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
5143 use;
5144 use = DF_REF_NEXT_REG (use))
5145 {
5146 int ubbi = DF_REF_BB (use)->index;
5147 if (bitmap_bit_p (reachable, ubbi))
5148 bitmap_set_bit (need_new, ubbi);
5149 }
5150 last_interesting_insn = insn;
5151 }
5152
5153 if (!last_interesting_insn)
5154 return false;
5155
5156 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
5157 if (call_dom == first)
5158 return false;
5159
5160 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5161 while (bb_loop_depth (call_dom) > 0)
5162 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
5163 loop_optimizer_finalize ();
5164
5165 if (call_dom == first)
5166 return false;
5167
5168 calculate_dominance_info (CDI_POST_DOMINATORS);
5169 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
5170 {
5171 free_dominance_info (CDI_POST_DOMINATORS);
5172 return false;
5173 }
5174 free_dominance_info (CDI_POST_DOMINATORS);
5175
5176 if (dump_file)
5177 fprintf (stream: dump_file, format: "Will split live ranges of parameters at BB %i\n",
5178 call_dom->index);
5179
5180 bool ret = false;
5181 FOR_BB_INSNS (first, insn)
5182 {
5183 rtx dest = interesting_dest_for_shprep (insn, call_dom);
5184 if (!dest || dest == pic_offset_table_rtx)
5185 continue;
5186
5187 bool need_newreg = false;
5188 df_ref use, next;
5189 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5190 {
5191 rtx_insn *uin = DF_REF_INSN (use);
5192 next = DF_REF_NEXT_REG (use);
5193
5194 if (DEBUG_INSN_P (uin))
5195 continue;
5196
5197 basic_block ubb = BLOCK_FOR_INSN (insn: uin);
5198 if (ubb == call_dom
5199 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5200 {
5201 need_newreg = true;
5202 break;
5203 }
5204 }
5205
5206 if (need_newreg)
5207 {
5208 rtx newreg = ira_create_new_reg (dest);
5209
5210 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5211 {
5212 rtx_insn *uin = DF_REF_INSN (use);
5213 next = DF_REF_NEXT_REG (use);
5214
5215 basic_block ubb = BLOCK_FOR_INSN (insn: uin);
5216 if (ubb == call_dom
5217 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5218 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5219 }
5220
5221 rtx_insn *new_move = gen_move_insn (newreg, dest);
5222 emit_insn_after (new_move, bb_note (call_dom));
5223 if (dump_file)
5224 {
5225 fprintf (stream: dump_file, format: "Split live-range of register ");
5226 print_rtl_single (dump_file, dest);
5227 }
5228 ret = true;
5229 }
5230
5231 if (insn == last_interesting_insn)
5232 break;
5233 }
5234 apply_change_group ();
5235 return ret;
5236}
5237
5238/* Perform the second half of the transformation started in
5239 find_moveable_pseudos. We look for instances where the newly introduced
5240 pseudo remains unallocated, and remove it by moving the definition to
5241 just before its use, replacing the move instruction generated by
5242 find_moveable_pseudos. */
5243static void
5244move_unallocated_pseudos (void)
5245{
5246 int i;
5247 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5248 if (reg_renumber[i] < 0)
5249 {
5250 int idx = i - first_moveable_pseudo;
5251 rtx other_reg = pseudo_replaced_reg[idx];
5252 /* The iterating range [first_moveable_pseudo, last_moveable_pseudo)
5253 covers every new pseudo created in find_moveable_pseudos,
5254 regardless of the validation with it is successful or not.
5255 So we need to skip the pseudos which were used in those failed
5256 validations to avoid unexpected DF info and consequent ICE.
5257 We only set pseudo_replaced_reg[] when the validation is successful
5258 in find_moveable_pseudos, it's enough to check it here. */
5259 if (!other_reg)
5260 continue;
5261 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5262 /* The use must follow all definitions of OTHER_REG, so we can
5263 insert the new definition immediately after any of them. */
5264 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5265 rtx_insn *move_insn = DF_REF_INSN (other_def);
5266 rtx_insn *newinsn = emit_insn_after (PATTERN (insn: def_insn), move_insn);
5267 rtx set;
5268 int success;
5269
5270 if (dump_file)
5271 fprintf (stream: dump_file, format: "moving def of %d (insn %d now) ",
5272 REGNO (other_reg), INSN_UID (insn: def_insn));
5273
5274 delete_insn (move_insn);
5275 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5276 delete_insn (DF_REF_INSN (other_def));
5277 delete_insn (def_insn);
5278
5279 set = single_set (insn: newinsn);
5280 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5281 gcc_assert (success);
5282 if (dump_file)
5283 fprintf (stream: dump_file, format: " %d) rather than keep unallocated replacement %d\n",
5284 INSN_UID (insn: newinsn), i);
5285 SET_REG_N_REFS (i, 0);
5286 }
5287
5288 first_moveable_pseudo = last_moveable_pseudo = 0;
5289}
5290
5291
5292
5293/* Code dealing with scratches (changing them onto
5294 pseudos and restoring them from the pseudos).
5295
5296 We change scratches into pseudos at the beginning of IRA to
5297 simplify dealing with them (conflicts, hard register assignments).
5298
5299 If the pseudo denoting scratch was spilled it means that we do not
5300 need a hard register for it. Such pseudos are transformed back to
5301 scratches at the end of LRA. */
5302
5303/* Description of location of a former scratch operand. */
5304struct sloc
5305{
5306 rtx_insn *insn; /* Insn where the scratch was. */
5307 int nop; /* Number of the operand which was a scratch. */
5308 unsigned regno; /* regno gnerated instead of scratch */
5309 int icode; /* Original icode from which scratch was removed. */
5310};
5311
5312typedef struct sloc *sloc_t;
5313
5314/* Locations of the former scratches. */
5315static vec<sloc_t> scratches;
5316
5317/* Bitmap of scratch regnos. */
5318static bitmap_head scratch_bitmap;
5319
5320/* Bitmap of scratch operands. */
5321static bitmap_head scratch_operand_bitmap;
5322
5323/* Return true if pseudo REGNO is made of SCRATCH. */
5324bool
5325ira_former_scratch_p (int regno)
5326{
5327 return bitmap_bit_p (&scratch_bitmap, regno);
5328}
5329
5330/* Return true if the operand NOP of INSN is a former scratch. */
5331bool
5332ira_former_scratch_operand_p (rtx_insn *insn, int nop)
5333{
5334 return bitmap_bit_p (&scratch_operand_bitmap,
5335 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
5336}
5337
5338/* Register operand NOP in INSN as a former scratch. It will be
5339 changed to scratch back, if it is necessary, at the LRA end. */
5340void
5341ira_register_new_scratch_op (rtx_insn *insn, int nop, int icode)
5342{
5343 rtx op = *recog_data.operand_loc[nop];
5344 sloc_t loc = XNEW (struct sloc);
5345 ira_assert (REG_P (op));
5346 loc->insn = insn;
5347 loc->nop = nop;
5348 loc->regno = REGNO (op);
5349 loc->icode = icode;
5350 scratches.safe_push (obj: loc);
5351 bitmap_set_bit (&scratch_bitmap, REGNO (op));
5352 bitmap_set_bit (&scratch_operand_bitmap,
5353 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
5354 add_reg_note (insn, REG_UNUSED, op);
5355}
5356
5357/* Return true if string STR contains constraint 'X'. */
5358static bool
5359contains_X_constraint_p (const char *str)
5360{
5361 int c;
5362
5363 while ((c = *str))
5364 {
5365 str += CONSTRAINT_LEN (c, str);
5366 if (c == 'X') return true;
5367 }
5368 return false;
5369}
5370
5371/* Change INSN's scratches into pseudos and save their location.
5372 Return true if we changed any scratch. */
5373bool
5374ira_remove_insn_scratches (rtx_insn *insn, bool all_p, FILE *dump_file,
5375 rtx (*get_reg) (rtx original))
5376{
5377 int i;
5378 bool insn_changed_p;
5379 rtx reg, *loc;
5380
5381 extract_insn (insn);
5382 insn_changed_p = false;
5383 for (i = 0; i < recog_data.n_operands; i++)
5384 {
5385 loc = recog_data.operand_loc[i];
5386 if (GET_CODE (*loc) == SCRATCH && GET_MODE (*loc) != VOIDmode)
5387 {
5388 if (! all_p && contains_X_constraint_p (str: recog_data.constraints[i]))
5389 continue;
5390 insn_changed_p = true;
5391 *loc = reg = get_reg (*loc);
5392 ira_register_new_scratch_op (insn, nop: i, INSN_CODE (insn));
5393 if (ira_dump_file != NULL)
5394 fprintf (stream: dump_file,
5395 format: "Removing SCRATCH to p%u in insn #%u (nop %d)\n",
5396 REGNO (reg), INSN_UID (insn), i);
5397 }
5398 }
5399 return insn_changed_p;
5400}
5401
5402/* Return new register of the same mode as ORIGINAL. Used in
5403 remove_scratches. */
5404static rtx
5405get_scratch_reg (rtx original)
5406{
5407 return gen_reg_rtx (GET_MODE (original));
5408}
5409
5410/* Change scratches into pseudos and save their location. Return true
5411 if we changed any scratch. */
5412static bool
5413remove_scratches (void)
5414{
5415 bool change_p = false;
5416 basic_block bb;
5417 rtx_insn *insn;
5418
5419 scratches.create (nelems: get_max_uid ());
5420 bitmap_initialize (head: &scratch_bitmap, obstack: &reg_obstack);
5421 bitmap_initialize (head: &scratch_operand_bitmap, obstack: &reg_obstack);
5422 FOR_EACH_BB_FN (bb, cfun)
5423 FOR_BB_INSNS (bb, insn)
5424 if (INSN_P (insn)
5425 && ira_remove_insn_scratches (insn, all_p: false, dump_file: ira_dump_file, get_reg: get_scratch_reg))
5426 {
5427 /* Because we might use DF, we need to keep DF info up to date. */
5428 df_insn_rescan (insn);
5429 change_p = true;
5430 }
5431 return change_p;
5432}
5433
5434/* Changes pseudos created by function remove_scratches onto scratches. */
5435void
5436ira_restore_scratches (FILE *dump_file)
5437{
5438 int regno, n;
5439 unsigned i;
5440 rtx *op_loc;
5441 sloc_t loc;
5442
5443 for (i = 0; scratches.iterate (ix: i, ptr: &loc); i++)
5444 {
5445 /* Ignore already deleted insns. */
5446 if (NOTE_P (loc->insn)
5447 && NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
5448 continue;
5449 extract_insn (loc->insn);
5450 if (loc->icode != INSN_CODE (loc->insn))
5451 {
5452 /* The icode doesn't match, which means the insn has been modified
5453 (e.g. register elimination). The scratch cannot be restored. */
5454 continue;
5455 }
5456 op_loc = recog_data.operand_loc[loc->nop];
5457 if (REG_P (*op_loc)
5458 && ((regno = REGNO (*op_loc)) >= FIRST_PSEUDO_REGISTER)
5459 && reg_renumber[regno] < 0)
5460 {
5461 /* It should be only case when scratch register with chosen
5462 constraint 'X' did not get memory or hard register. */
5463 ira_assert (ira_former_scratch_p (regno));
5464 *op_loc = gen_rtx_SCRATCH (GET_MODE (*op_loc));
5465 for (n = 0; n < recog_data.n_dups; n++)
5466 *recog_data.dup_loc[n]
5467 = *recog_data.operand_loc[(int) recog_data.dup_num[n]];
5468 if (dump_file != NULL)
5469 fprintf (stream: dump_file, format: "Restoring SCRATCH in insn #%u(nop %d)\n",
5470 INSN_UID (insn: loc->insn), loc->nop);
5471 }
5472 }
5473 for (i = 0; scratches.iterate (ix: i, ptr: &loc); i++)
5474 free (ptr: loc);
5475 scratches.release ();
5476 bitmap_clear (&scratch_bitmap);
5477 bitmap_clear (&scratch_operand_bitmap);
5478}
5479
5480
5481
5482/* If the backend knows where to allocate pseudos for hard
5483 register initial values, register these allocations now. */
5484static void
5485allocate_initial_values (void)
5486{
5487 if (targetm.allocate_initial_value)
5488 {
5489 rtx hreg, preg, x;
5490 int i, regno;
5491
5492 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5493 {
5494 if (! initial_value_entry (i, &hreg, &preg))
5495 break;
5496
5497 x = targetm.allocate_initial_value (hreg);
5498 regno = REGNO (preg);
5499 if (x && REG_N_SETS (regno) <= 1)
5500 {
5501 if (MEM_P (x))
5502 reg_equiv_memory_loc (regno) = x;
5503 else
5504 {
5505 basic_block bb;
5506 int new_regno;
5507
5508 gcc_assert (REG_P (x));
5509 new_regno = REGNO (x);
5510 reg_renumber[regno] = new_regno;
5511 /* Poke the regno right into regno_reg_rtx so that even
5512 fixed regs are accepted. */
5513 SET_REGNO (preg, new_regno);
5514 /* Update global register liveness information. */
5515 FOR_EACH_BB_FN (bb, cfun)
5516 {
5517 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5518 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5519 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5520 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5521 }
5522 }
5523 }
5524 }
5525
5526 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5527 &hreg, &preg));
5528 }
5529}
5530
5531
5532
5533
5534/* True when we use LRA instead of reload pass for the current
5535 function. */
5536bool ira_use_lra_p;
5537
5538/* True if we have allocno conflicts. It is false for non-optimized
5539 mode or when the conflict table is too big. */
5540bool ira_conflicts_p;
5541
5542/* Saved between IRA and reload. */
5543static int saved_flag_ira_share_spill_slots;
5544
5545/* Set to true while in IRA. */
5546bool ira_in_progress = false;
5547
5548/* This is the main entry of IRA. */
5549static void
5550ira (FILE *f)
5551{
5552 bool loops_p;
5553 int ira_max_point_before_emit;
5554 bool saved_flag_caller_saves = flag_caller_saves;
5555 enum ira_region saved_flag_ira_region = flag_ira_region;
5556 basic_block bb;
5557 edge_iterator ei;
5558 edge e;
5559 bool output_jump_reload_p = false;
5560
5561 if (ira_use_lra_p)
5562 {
5563 /* First put potential jump output reloads on the output edges
5564 as USE which will be removed at the end of LRA. The major
5565 goal is actually to create BBs for critical edges for LRA and
5566 populate them later by live info. In LRA it will be
5567 difficult to do this. */
5568 FOR_EACH_BB_FN (bb, cfun)
5569 {
5570 rtx_insn *end = BB_END (bb);
5571 if (!JUMP_P (end))
5572 continue;
5573 extract_insn (end);
5574 for (int i = 0; i < recog_data.n_operands; i++)
5575 if (recog_data.operand_type[i] != OP_IN)
5576 {
5577 bool skip_p = false;
5578 FOR_EACH_EDGE (e, ei, bb->succs)
5579 if (EDGE_CRITICAL_P (e)
5580 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
5581 && (e->flags & EDGE_ABNORMAL))
5582 {
5583 skip_p = true;
5584 break;
5585 }
5586 if (skip_p)
5587 break;
5588 output_jump_reload_p = true;
5589 FOR_EACH_EDGE (e, ei, bb->succs)
5590 if (EDGE_CRITICAL_P (e)
5591 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
5592 {
5593 start_sequence ();
5594 /* We need to put some no-op insn here. We can
5595 not put a note as commit_edges insertion will
5596 fail. */
5597 emit_insn (gen_rtx_USE (VOIDmode, const1_rtx));
5598 rtx_insn *insns = get_insns ();
5599 end_sequence ();
5600 insert_insn_on_edge (insns, e);
5601 }
5602 break;
5603 }
5604 }
5605 if (output_jump_reload_p)
5606 commit_edge_insertions ();
5607 }
5608
5609 if (flag_ira_verbose < 10)
5610 {
5611 internal_flag_ira_verbose = flag_ira_verbose;
5612 ira_dump_file = f;
5613 }
5614 else
5615 {
5616 internal_flag_ira_verbose = flag_ira_verbose - 10;
5617 ira_dump_file = stderr;
5618 }
5619
5620 clear_bb_flags ();
5621
5622 /* Determine if the current function is a leaf before running IRA
5623 since this can impact optimizations done by the prologue and
5624 epilogue thus changing register elimination offsets.
5625 Other target callbacks may use crtl->is_leaf too, including
5626 SHRINK_WRAPPING_ENABLED, so initialize as early as possible. */
5627 crtl->is_leaf = leaf_function_p ();
5628
5629 /* Perform target specific PIC register initialization. */
5630 targetm.init_pic_reg ();
5631
5632 ira_conflicts_p = optimize > 0;
5633
5634 /* Determine the number of pseudos actually requiring coloring. */
5635 unsigned int num_used_regs = 0;
5636 for (unsigned int i = FIRST_PSEUDO_REGISTER; i < DF_REG_SIZE (df); i++)
5637 if (DF_REG_DEF_COUNT (i) || DF_REG_USE_COUNT (i))
5638 num_used_regs++;
5639
5640 /* If there are too many pseudos and/or basic blocks (e.g. 10K pseudos and
5641 10K blocks or 100K pseudos and 1K blocks) or we have too many function
5642 insns, we will use simplified and faster algorithms in LRA. */
5643 lra_simple_p
5644 = (ira_use_lra_p
5645 && (num_used_regs >= (1U << 26) / last_basic_block_for_fn (cfun)
5646 /* max uid is a good evaluation of the number of insns as most
5647 optimizations are done on tree-SSA level. */
5648 || ((uint64_t) get_max_uid ()
5649 > (uint64_t) param_ira_simple_lra_insn_threshold * 1000)));
5650
5651 if (lra_simple_p)
5652 {
5653 /* It permits to skip live range splitting in LRA. */
5654 flag_caller_saves = false;
5655 /* There is no sense to do regional allocation when we use
5656 simplified LRA. */
5657 flag_ira_region = IRA_REGION_ONE;
5658 ira_conflicts_p = false;
5659 }
5660
5661#ifndef IRA_NO_OBSTACK
5662 gcc_obstack_init (&ira_obstack);
5663#endif
5664 bitmap_obstack_initialize (&ira_bitmap_obstack);
5665
5666 /* LRA uses its own infrastructure to handle caller save registers. */
5667 if (flag_caller_saves && !ira_use_lra_p)
5668 init_caller_save ();
5669
5670 setup_prohibited_mode_move_regs ();
5671 decrease_live_ranges_number ();
5672 df_note_add_problem ();
5673
5674 /* DF_LIVE can't be used in the register allocator, too many other
5675 parts of the compiler depend on using the "classic" liveness
5676 interpretation of the DF_LR problem. See PR38711.
5677 Remove the problem, so that we don't spend time updating it in
5678 any of the df_analyze() calls during IRA/LRA. */
5679 if (optimize > 1)
5680 df_remove_problem (df_live);
5681 gcc_checking_assert (df_live == NULL);
5682
5683 if (flag_checking)
5684 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5685
5686 df_analyze ();
5687
5688 init_reg_equiv ();
5689 if (ira_conflicts_p)
5690 {
5691 calculate_dominance_info (CDI_DOMINATORS);
5692
5693 if (split_live_ranges_for_shrink_wrap ())
5694 df_analyze ();
5695
5696 free_dominance_info (CDI_DOMINATORS);
5697 }
5698
5699 df_clear_flags (DF_NO_INSN_RESCAN);
5700
5701 indirect_jump_optimize ();
5702 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5703 df_analyze ();
5704
5705 regstat_init_n_sets_and_refs ();
5706 regstat_compute_ri ();
5707
5708 /* If we are not optimizing, then this is the only place before
5709 register allocation where dataflow is done. And that is needed
5710 to generate these warnings. */
5711 if (warn_clobbered)
5712 generate_setjmp_warnings ();
5713
5714 /* update_equiv_regs can use reg classes of pseudos and they are set up in
5715 register pressure sensitive scheduling and loop invariant motion and in
5716 live range shrinking. This info can become obsolete if we add new pseudos
5717 since the last set up. Recalculate it again if the new pseudos were
5718 added. */
5719 if (resize_reg_info () && (flag_sched_pressure || flag_live_range_shrinkage
5720 || flag_ira_loop_pressure))
5721 ira_set_pseudo_classes (true, ira_dump_file);
5722
5723 init_alias_analysis ();
5724 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5725 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5726 update_equiv_regs_prescan ();
5727 update_equiv_regs ();
5728
5729 /* Don't move insns if live range shrinkage or register
5730 pressure-sensitive scheduling were done because it will not
5731 improve allocation but likely worsen insn scheduling. */
5732 if (optimize
5733 && !flag_live_range_shrinkage
5734 && !(flag_sched_pressure && flag_schedule_insns))
5735 combine_and_move_insns ();
5736
5737 /* Gather additional equivalences with memory. */
5738 if (optimize)
5739 add_store_equivs ();
5740
5741 loop_optimizer_finalize ();
5742 free_dominance_info (CDI_DOMINATORS);
5743 end_alias_analysis ();
5744 free (ptr: reg_equiv);
5745
5746 /* Once max_regno changes, we need to free and re-init/re-compute
5747 some data structures like regstat_n_sets_and_refs and reg_info_p. */
5748 auto regstat_recompute_for_max_regno = []() {
5749 regstat_free_n_sets_and_refs ();
5750 regstat_free_ri ();
5751 regstat_init_n_sets_and_refs ();
5752 regstat_compute_ri ();
5753 resize_reg_info ();
5754 };
5755
5756 int max_regno_before_rm = max_reg_num ();
5757 if (ira_use_lra_p && remove_scratches ())
5758 {
5759 ira_expand_reg_equiv ();
5760 /* For now remove_scatches is supposed to create pseudos when it
5761 succeeds, assert this happens all the time. Once it doesn't
5762 hold, we should guard the regstat recompute for the case
5763 max_regno changes. */
5764 gcc_assert (max_regno_before_rm != max_reg_num ());
5765 regstat_recompute_for_max_regno ();
5766 }
5767
5768 setup_reg_equiv ();
5769 grow_reg_equivs ();
5770 setup_reg_equiv_init ();
5771
5772 allocated_reg_info_size = max_reg_num ();
5773
5774 /* It is not worth to do such improvement when we use a simple
5775 allocation because of -O0 usage or because the function is too
5776 big. */
5777 if (ira_conflicts_p)
5778 find_moveable_pseudos ();
5779
5780 max_regno_before_ira = max_reg_num ();
5781 ira_setup_eliminable_regset ();
5782
5783 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5784 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5785 ira_move_loops_num = ira_additional_jumps_num = 0;
5786
5787 ira_assert (current_loops == NULL);
5788 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5789 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5790
5791 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5792 fprintf (stream: ira_dump_file, format: "Building IRA IR\n");
5793 loops_p = ira_build ();
5794
5795 ira_assert (ira_conflicts_p || !loops_p);
5796
5797 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5798 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5799 /* It is just wasting compiler's time to pack spilled pseudos into
5800 stack slots in this case -- prohibit it. We also do this if
5801 there is setjmp call because a variable not modified between
5802 setjmp and longjmp the compiler is required to preserve its
5803 value and sharing slots does not guarantee it. */
5804 flag_ira_share_spill_slots = false;
5805
5806 ira_color ();
5807
5808 ira_max_point_before_emit = ira_max_point;
5809
5810 ira_initiate_emit_data ();
5811
5812 ira_emit (loops_p);
5813
5814 max_regno = max_reg_num ();
5815 if (ira_conflicts_p)
5816 {
5817 if (! loops_p)
5818 {
5819 if (! ira_use_lra_p)
5820 ira_initiate_assign ();
5821 }
5822 else
5823 {
5824 expand_reg_info ();
5825
5826 if (ira_use_lra_p)
5827 {
5828 ira_allocno_t a;
5829 ira_allocno_iterator ai;
5830
5831 FOR_EACH_ALLOCNO (a, ai)
5832 {
5833 int old_regno = ALLOCNO_REGNO (a);
5834 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5835
5836 ALLOCNO_REGNO (a) = new_regno;
5837
5838 if (old_regno != new_regno)
5839 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5840 reg_alternate_class (old_regno),
5841 reg_allocno_class (old_regno));
5842 }
5843 }
5844 else
5845 {
5846 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5847 fprintf (stream: ira_dump_file, format: "Flattening IR\n");
5848 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5849 }
5850 /* New insns were generated: add notes and recalculate live
5851 info. */
5852 df_analyze ();
5853
5854 /* ??? Rebuild the loop tree, but why? Does the loop tree
5855 change if new insns were generated? Can that be handled
5856 by updating the loop tree incrementally? */
5857 loop_optimizer_finalize ();
5858 free_dominance_info (CDI_DOMINATORS);
5859 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5860 | LOOPS_HAVE_RECORDED_EXITS);
5861
5862 if (! ira_use_lra_p)
5863 {
5864 setup_allocno_assignment_flags ();
5865 ira_initiate_assign ();
5866 ira_reassign_conflict_allocnos (max_regno);
5867 }
5868 }
5869 }
5870
5871 ira_finish_emit_data ();
5872
5873 setup_reg_renumber ();
5874
5875 calculate_allocation_cost ();
5876
5877#ifdef ENABLE_IRA_CHECKING
5878 if (ira_conflicts_p && ! ira_use_lra_p)
5879 /* Opposite to reload pass, LRA does not use any conflict info
5880 from IRA. We don't rebuild conflict info for LRA (through
5881 ira_flattening call) and cannot use the check here. We could
5882 rebuild this info for LRA in the check mode but there is a risk
5883 that code generated with the check and without it will be a bit
5884 different. Calling ira_flattening in any mode would be a
5885 wasting CPU time. So do not check the allocation for LRA. */
5886 check_allocation ();
5887#endif
5888
5889 if (max_regno != max_regno_before_ira)
5890 regstat_recompute_for_max_regno ();
5891
5892 overall_cost_before = ira_overall_cost;
5893 if (! ira_conflicts_p)
5894 grow_reg_equivs ();
5895 else
5896 {
5897 fix_reg_equiv_init ();
5898
5899#ifdef ENABLE_IRA_CHECKING
5900 print_redundant_copies ();
5901#endif
5902 if (! ira_use_lra_p)
5903 {
5904 ira_spilled_reg_stack_slots_num = 0;
5905 ira_spilled_reg_stack_slots
5906 = ((class ira_spilled_reg_stack_slot *)
5907 ira_allocate (len: max_regno
5908 * sizeof (class ira_spilled_reg_stack_slot)));
5909 memset (s: (void *)ira_spilled_reg_stack_slots, c: 0,
5910 n: max_regno * sizeof (class ira_spilled_reg_stack_slot));
5911 }
5912 }
5913 allocate_initial_values ();
5914
5915 /* See comment for find_moveable_pseudos call. */
5916 if (ira_conflicts_p)
5917 move_unallocated_pseudos ();
5918
5919 /* Restore original values. */
5920 if (lra_simple_p)
5921 {
5922 flag_caller_saves = saved_flag_caller_saves;
5923 flag_ira_region = saved_flag_ira_region;
5924 }
5925}
5926
5927/* Modify asm goto to avoid further trouble with this insn. We can
5928 not replace the insn by USE as in other asm insns as we still
5929 need to keep CFG consistency. */
5930void
5931ira_nullify_asm_goto (rtx_insn *insn)
5932{
5933 ira_assert (JUMP_P (insn) && INSN_CODE (insn) < 0);
5934 rtx tmp = extract_asm_operands (PATTERN (insn));
5935 PATTERN (insn) = gen_rtx_ASM_OPERANDS (VOIDmode, ggc_strdup (""), "", 0,
5936 rtvec_alloc (0),
5937 rtvec_alloc (0),
5938 ASM_OPERANDS_LABEL_VEC (tmp),
5939 ASM_OPERANDS_SOURCE_LOCATION(tmp));
5940}
5941
5942static void
5943do_reload (void)
5944{
5945 basic_block bb;
5946 bool need_dce;
5947 unsigned pic_offset_table_regno = INVALID_REGNUM;
5948
5949 if (flag_ira_verbose < 10)
5950 ira_dump_file = dump_file;
5951
5952 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5953 after reload to avoid possible wrong usages of hard reg assigned
5954 to it. */
5955 if (pic_offset_table_rtx
5956 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5957 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5958
5959 timevar_push (tv: TV_RELOAD);
5960 if (ira_use_lra_p)
5961 {
5962 if (current_loops != NULL)
5963 {
5964 loop_optimizer_finalize ();
5965 free_dominance_info (CDI_DOMINATORS);
5966 }
5967 FOR_ALL_BB_FN (bb, cfun)
5968 bb->loop_father = NULL;
5969 current_loops = NULL;
5970
5971 ira_destroy ();
5972
5973 lra (ira_dump_file);
5974 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5975 LRA. */
5976 vec_free (v&: reg_equivs);
5977 reg_equivs = NULL;
5978 need_dce = false;
5979 }
5980 else
5981 {
5982 df_set_flags (DF_NO_INSN_RESCAN);
5983 build_insn_chain ();
5984
5985 need_dce = reload (get_insns (), ira_conflicts_p);
5986 }
5987
5988 timevar_pop (tv: TV_RELOAD);
5989
5990 timevar_push (tv: TV_IRA);
5991
5992 if (ira_conflicts_p && ! ira_use_lra_p)
5993 {
5994 ira_free (addr: ira_spilled_reg_stack_slots);
5995 ira_finish_assign ();
5996 }
5997
5998 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5999 && overall_cost_before != ira_overall_cost)
6000 fprintf (stream: ira_dump_file, format: "+++Overall after reload %" PRId64 "\n",
6001 ira_overall_cost);
6002
6003 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
6004
6005 if (! ira_use_lra_p)
6006 {
6007 ira_destroy ();
6008 if (current_loops != NULL)
6009 {
6010 loop_optimizer_finalize ();
6011 free_dominance_info (CDI_DOMINATORS);
6012 }
6013 FOR_ALL_BB_FN (bb, cfun)
6014 bb->loop_father = NULL;
6015 current_loops = NULL;
6016
6017 regstat_free_ri ();
6018 regstat_free_n_sets_and_refs ();
6019 }
6020
6021 if (optimize)
6022 cleanup_cfg (CLEANUP_EXPENSIVE);
6023
6024 finish_reg_equiv ();
6025
6026 bitmap_obstack_release (&ira_bitmap_obstack);
6027#ifndef IRA_NO_OBSTACK
6028 obstack_free (&ira_obstack, NULL);
6029#endif
6030
6031 /* The code after the reload has changed so much that at this point
6032 we might as well just rescan everything. Note that
6033 df_rescan_all_insns is not going to help here because it does not
6034 touch the artificial uses and defs. */
6035 df_finish_pass (true);
6036 df_scan_alloc (NULL);
6037 df_scan_blocks ();
6038
6039 if (optimize > 1)
6040 {
6041 df_live_add_problem ();
6042 df_live_set_all_dirty ();
6043 }
6044
6045 if (optimize)
6046 df_analyze ();
6047
6048 if (need_dce && optimize)
6049 run_fast_dce ();
6050
6051 /* Diagnose uses of the hard frame pointer when it is used as a global
6052 register. Often we can get away with letting the user appropriate
6053 the frame pointer, but we should let them know when code generation
6054 makes that impossible. */
6055 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
6056 {
6057 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
6058 error_at (DECL_SOURCE_LOCATION (current_function_decl),
6059 "frame pointer required, but reserved");
6060 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
6061 }
6062
6063 /* If we are doing generic stack checking, give a warning if this
6064 function's frame size is larger than we expect. */
6065 if (flag_stack_check == GENERIC_STACK_CHECK)
6066 {
6067 poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
6068
6069 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6070 if (df_regs_ever_live_p (i)
6071 && !fixed_regs[i]
6072 && !crtl->abi->clobbers_full_reg_p (regno: i))
6073 size += UNITS_PER_WORD;
6074
6075 if (constant_lower_bound (a: size) > STACK_CHECK_MAX_FRAME_SIZE)
6076 warning (0, "frame size too large for reliable stack checking");
6077 }
6078
6079 if (pic_offset_table_regno != INVALID_REGNUM)
6080 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
6081
6082 timevar_pop (tv: TV_IRA);
6083}
6084
6085/* Run the integrated register allocator. */
6086
6087namespace {
6088
6089const pass_data pass_data_ira =
6090{
6091 .type: RTL_PASS, /* type */
6092 .name: "ira", /* name */
6093 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
6094 .tv_id: TV_IRA, /* tv_id */
6095 .properties_required: 0, /* properties_required */
6096 .properties_provided: 0, /* properties_provided */
6097 .properties_destroyed: 0, /* properties_destroyed */
6098 .todo_flags_start: 0, /* todo_flags_start */
6099 TODO_do_not_ggc_collect, /* todo_flags_finish */
6100};
6101
6102class pass_ira : public rtl_opt_pass
6103{
6104public:
6105 pass_ira (gcc::context *ctxt)
6106 : rtl_opt_pass (pass_data_ira, ctxt)
6107 {}
6108
6109 /* opt_pass methods: */
6110 bool gate (function *) final override
6111 {
6112 return !targetm.no_register_allocation;
6113 }
6114 unsigned int execute (function *) final override
6115 {
6116 ira_in_progress = true;
6117 ira (f: dump_file);
6118 ira_in_progress = false;
6119 return 0;
6120 }
6121
6122}; // class pass_ira
6123
6124} // anon namespace
6125
6126rtl_opt_pass *
6127make_pass_ira (gcc::context *ctxt)
6128{
6129 return new pass_ira (ctxt);
6130}
6131
6132namespace {
6133
6134const pass_data pass_data_reload =
6135{
6136 .type: RTL_PASS, /* type */
6137 .name: "reload", /* name */
6138 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
6139 .tv_id: TV_RELOAD, /* tv_id */
6140 .properties_required: 0, /* properties_required */
6141 .properties_provided: 0, /* properties_provided */
6142 .properties_destroyed: 0, /* properties_destroyed */
6143 .todo_flags_start: 0, /* todo_flags_start */
6144 .todo_flags_finish: 0, /* todo_flags_finish */
6145};
6146
6147class pass_reload : public rtl_opt_pass
6148{
6149public:
6150 pass_reload (gcc::context *ctxt)
6151 : rtl_opt_pass (pass_data_reload, ctxt)
6152 {}
6153
6154 /* opt_pass methods: */
6155 bool gate (function *) final override
6156 {
6157 return !targetm.no_register_allocation;
6158 }
6159 unsigned int execute (function *) final override
6160 {
6161 do_reload ();
6162 return 0;
6163 }
6164
6165}; // class pass_reload
6166
6167} // anon namespace
6168
6169rtl_opt_pass *
6170make_pass_reload (gcc::context *ctxt)
6171{
6172 return new pass_reload (ctxt);
6173}
6174

source code of gcc/ira.cc