| 1 | /* Post reload partially redundant load elimination |
| 2 | Copyright (C) 2004-2025 Free Software Foundation, Inc. |
| 3 | |
| 4 | This file is part of GCC. |
| 5 | |
| 6 | GCC is free software; you can redistribute it and/or modify it under |
| 7 | the terms of the GNU General Public License as published by the Free |
| 8 | Software Foundation; either version 3, or (at your option) any later |
| 9 | version. |
| 10 | |
| 11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 14 | for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License |
| 17 | along with GCC; see the file COPYING3. If not see |
| 18 | <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include "config.h" |
| 21 | #include "system.h" |
| 22 | #include "coretypes.h" |
| 23 | #include "backend.h" |
| 24 | #include "target.h" |
| 25 | #include "rtl.h" |
| 26 | #include "tree.h" |
| 27 | #include "predict.h" |
| 28 | #include "df.h" |
| 29 | #include "memmodel.h" |
| 30 | #include "tm_p.h" |
| 31 | #include "insn-config.h" |
| 32 | #include "emit-rtl.h" |
| 33 | #include "recog.h" |
| 34 | |
| 35 | #include "cfgrtl.h" |
| 36 | #include "profile.h" |
| 37 | #include "expr.h" |
| 38 | #include "tree-pass.h" |
| 39 | #include "dbgcnt.h" |
| 40 | #include "intl.h" |
| 41 | #include "gcse-common.h" |
| 42 | #include "gcse.h" |
| 43 | #include "regs.h" |
| 44 | #include "function-abi.h" |
| 45 | |
| 46 | /* The following code implements gcse after reload, the purpose of this |
| 47 | pass is to cleanup redundant loads generated by reload and other |
| 48 | optimizations that come after gcse. It searches for simple inter-block |
| 49 | redundancies and tries to eliminate them by adding moves and loads |
| 50 | in cold places. |
| 51 | |
| 52 | Perform partially redundant load elimination, try to eliminate redundant |
| 53 | loads created by the reload pass. We try to look for full or partial |
| 54 | redundant loads fed by one or more loads/stores in predecessor BBs, |
| 55 | and try adding loads to make them fully redundant. We also check if |
| 56 | it's worth adding loads to be able to delete the redundant load. |
| 57 | |
| 58 | Algorithm: |
| 59 | 1. Build available expressions hash table: |
| 60 | For each load/store instruction, if the loaded/stored memory didn't |
| 61 | change until the end of the basic block add this memory expression to |
| 62 | the hash table. |
| 63 | 2. Perform Redundancy elimination: |
| 64 | For each load instruction do the following: |
| 65 | perform partial redundancy elimination, check if it's worth adding |
| 66 | loads to make the load fully redundant. If so add loads and |
| 67 | register copies and delete the load. |
| 68 | 3. Delete instructions made redundant in step 2. |
| 69 | |
| 70 | Future enhancement: |
| 71 | If the loaded register is used/defined between load and some store, |
| 72 | look for some other free register between load and all its stores, |
| 73 | and replace the load with a copy from this register to the loaded |
| 74 | register. |
| 75 | */ |
| 76 | |
| 77 | |
| 78 | /* Keep statistics of this pass. */ |
| 79 | static struct |
| 80 | { |
| 81 | int moves_inserted; |
| 82 | int copies_inserted; |
| 83 | int insns_deleted; |
| 84 | } stats; |
| 85 | |
| 86 | /* We need to keep a hash table of expressions. The table entries are of |
| 87 | type 'struct expr', and for each expression there is a single linked |
| 88 | list of occurrences. */ |
| 89 | |
| 90 | /* Expression elements in the hash table. */ |
| 91 | struct expr |
| 92 | { |
| 93 | /* The expression (SET_SRC for expressions, PATTERN for assignments). */ |
| 94 | rtx expr; |
| 95 | |
| 96 | /* The same hash for this entry. */ |
| 97 | hashval_t hash; |
| 98 | |
| 99 | /* Index in the transparent bitmaps. */ |
| 100 | unsigned int bitmap_index; |
| 101 | |
| 102 | /* List of available occurrence in basic blocks in the function. */ |
| 103 | struct occr *avail_occr; |
| 104 | }; |
| 105 | |
| 106 | /* Hashtable helpers. */ |
| 107 | |
| 108 | struct expr_hasher : nofree_ptr_hash <expr> |
| 109 | { |
| 110 | static inline hashval_t hash (const expr *); |
| 111 | static inline bool equal (const expr *, const expr *); |
| 112 | }; |
| 113 | |
| 114 | |
| 115 | /* Hash expression X. |
| 116 | DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found |
| 117 | or if the expression contains something we don't want to insert in the |
| 118 | table. */ |
| 119 | |
| 120 | static hashval_t |
| 121 | hash_expr (rtx x, int *do_not_record_p) |
| 122 | { |
| 123 | *do_not_record_p = 0; |
| 124 | return hash_rtx (x, GET_MODE (x), do_not_record_p, |
| 125 | NULL, /*have_reg_qty=*/false); |
| 126 | } |
| 127 | |
| 128 | /* Callback for hashtab. |
| 129 | Return the hash value for expression EXP. We don't actually hash |
| 130 | here, we just return the cached hash value. */ |
| 131 | |
| 132 | inline hashval_t |
| 133 | expr_hasher::hash (const expr *exp) |
| 134 | { |
| 135 | return exp->hash; |
| 136 | } |
| 137 | |
| 138 | /* Callback for hashtab. |
| 139 | Return nonzero if exp1 is equivalent to exp2. */ |
| 140 | |
| 141 | inline bool |
| 142 | expr_hasher::equal (const expr *exp1, const expr *exp2) |
| 143 | { |
| 144 | bool equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true); |
| 145 | |
| 146 | gcc_assert (!equiv_p || exp1->hash == exp2->hash); |
| 147 | return equiv_p; |
| 148 | } |
| 149 | |
| 150 | /* The table itself. */ |
| 151 | static hash_table<expr_hasher> *expr_table; |
| 152 | |
| 153 | |
| 154 | static struct obstack expr_obstack; |
| 155 | |
| 156 | /* Occurrence of an expression. |
| 157 | There is at most one occurrence per basic block. If a pattern appears |
| 158 | more than once, the last appearance is used. */ |
| 159 | |
| 160 | struct occr |
| 161 | { |
| 162 | /* Next occurrence of this expression. */ |
| 163 | struct occr *next; |
| 164 | /* The insn that computes the expression. */ |
| 165 | rtx_insn *insn; |
| 166 | /* Nonzero if this [anticipatable] occurrence has been deleted. */ |
| 167 | char deleted_p; |
| 168 | }; |
| 169 | |
| 170 | static struct obstack occr_obstack; |
| 171 | |
| 172 | /* The following structure holds the information about the occurrences of |
| 173 | the redundant instructions. */ |
| 174 | struct unoccr |
| 175 | { |
| 176 | struct unoccr *next; |
| 177 | edge pred; |
| 178 | rtx_insn *insn; |
| 179 | }; |
| 180 | |
| 181 | static struct obstack unoccr_obstack; |
| 182 | |
| 183 | /* Array where each element is the CUID if the insn that last set the hard |
| 184 | register with the number of the element, since the start of the current |
| 185 | basic block. |
| 186 | |
| 187 | This array is used during the building of the hash table (step 1) to |
| 188 | determine if a reg is killed before the end of a basic block. |
| 189 | |
| 190 | It is also used when eliminating partial redundancies (step 2) to see |
| 191 | if a reg was modified since the start of a basic block. */ |
| 192 | static int *reg_avail_info; |
| 193 | |
| 194 | /* A list of insns that may modify memory within the current basic block. */ |
| 195 | struct modifies_mem |
| 196 | { |
| 197 | rtx_insn *insn; |
| 198 | struct modifies_mem *next; |
| 199 | }; |
| 200 | static struct modifies_mem *modifies_mem_list; |
| 201 | |
| 202 | /* The modifies_mem structs also go on an obstack, only this obstack is |
| 203 | freed each time after completing the analysis or transformations on |
| 204 | a basic block. So we allocate a dummy modifies_mem_obstack_bottom |
| 205 | object on the obstack to keep track of the bottom of the obstack. */ |
| 206 | static struct obstack modifies_mem_obstack; |
| 207 | static struct modifies_mem *modifies_mem_obstack_bottom; |
| 208 | |
| 209 | /* Mapping of insn UIDs to CUIDs. |
| 210 | CUIDs are like UIDs except they increase monotonically in each basic |
| 211 | block, have no gaps, and only apply to real insns. */ |
| 212 | static int *uid_cuid; |
| 213 | #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)]) |
| 214 | |
| 215 | /* Bitmap of blocks which have memory stores. */ |
| 216 | static bitmap modify_mem_list_set; |
| 217 | |
| 218 | /* Bitmap of blocks which have calls. */ |
| 219 | static bitmap blocks_with_calls; |
| 220 | |
| 221 | /* Vector indexed by block # with a list of all the insns that |
| 222 | modify memory within the block. */ |
| 223 | static vec<rtx_insn *> *modify_mem_list; |
| 224 | |
| 225 | /* Vector indexed by block # with a canonicalized list of insns |
| 226 | that modify memory in the block. */ |
| 227 | static vec<modify_pair> *canon_modify_mem_list; |
| 228 | |
| 229 | /* Vector of simple bitmaps indexed by block number. Each component sbitmap |
| 230 | indicates which expressions are transparent through the block. */ |
| 231 | static sbitmap *transp; |
| 232 | |
| 233 | |
| 234 | /* Helpers for memory allocation/freeing. */ |
| 235 | static void alloc_mem (void); |
| 236 | static void free_mem (void); |
| 237 | |
| 238 | /* Support for hash table construction and transformations. */ |
| 239 | static bool oprs_unchanged_p (rtx, rtx_insn *, bool); |
| 240 | static void record_last_reg_set_info (rtx_insn *, rtx); |
| 241 | static void record_last_reg_set_info_regno (rtx_insn *, int); |
| 242 | static void record_last_mem_set_info (rtx_insn *); |
| 243 | static void record_last_set_info (rtx, const_rtx, void *); |
| 244 | static void record_opr_changes (rtx_insn *); |
| 245 | |
| 246 | static void find_mem_conflicts (rtx, const_rtx, void *); |
| 247 | static bool load_killed_in_block_p (int, rtx, bool); |
| 248 | static void reset_opr_set_tables (void); |
| 249 | |
| 250 | /* Hash table support. */ |
| 251 | static hashval_t hash_expr (rtx, int *); |
| 252 | static void insert_expr_in_table (rtx, rtx_insn *); |
| 253 | static struct expr *lookup_expr_in_table (rtx); |
| 254 | static void dump_hash_table (FILE *); |
| 255 | |
| 256 | /* Helpers for eliminate_partially_redundant_load. */ |
| 257 | static bool reg_killed_on_edge (rtx, edge); |
| 258 | static bool reg_used_on_edge (rtx, edge); |
| 259 | |
| 260 | static rtx get_avail_load_store_reg (rtx_insn *); |
| 261 | |
| 262 | static bool bb_has_well_behaved_predecessors (basic_block); |
| 263 | static struct occr* get_bb_avail_insn (basic_block, struct occr *, int); |
| 264 | static void hash_scan_set (rtx_insn *); |
| 265 | static void compute_hash_table (void); |
| 266 | |
| 267 | /* The work horses of this pass. */ |
| 268 | static void eliminate_partially_redundant_load (basic_block, |
| 269 | rtx_insn *, |
| 270 | struct expr *); |
| 271 | static void eliminate_partially_redundant_loads (void); |
| 272 | |
| 273 | |
| 274 | /* Allocate memory for the CUID mapping array and register/memory |
| 275 | tracking tables. */ |
| 276 | |
| 277 | static void |
| 278 | alloc_mem (void) |
| 279 | { |
| 280 | int i; |
| 281 | basic_block bb; |
| 282 | rtx_insn *insn; |
| 283 | |
| 284 | /* Find the largest UID and create a mapping from UIDs to CUIDs. */ |
| 285 | uid_cuid = XCNEWVEC (int, get_max_uid () + 1); |
| 286 | i = 1; |
| 287 | FOR_EACH_BB_FN (bb, cfun) |
| 288 | FOR_BB_INSNS (bb, insn) |
| 289 | { |
| 290 | if (INSN_P (insn)) |
| 291 | uid_cuid[INSN_UID (insn)] = i++; |
| 292 | else |
| 293 | uid_cuid[INSN_UID (insn)] = i; |
| 294 | } |
| 295 | |
| 296 | /* Allocate the available expressions hash table. We don't want to |
| 297 | make the hash table too small, but unnecessarily making it too large |
| 298 | also doesn't help. The i/4 is a gcse.cc relic, and seems like a |
| 299 | reasonable choice. */ |
| 300 | expr_table = new hash_table<expr_hasher> (MAX (i / 4, 13)); |
| 301 | |
| 302 | /* We allocate everything on obstacks because we often can roll back |
| 303 | the whole obstack to some point. Freeing obstacks is very fast. */ |
| 304 | gcc_obstack_init (&expr_obstack); |
| 305 | gcc_obstack_init (&occr_obstack); |
| 306 | gcc_obstack_init (&unoccr_obstack); |
| 307 | gcc_obstack_init (&modifies_mem_obstack); |
| 308 | |
| 309 | /* Working array used to track the last set for each register |
| 310 | in the current block. */ |
| 311 | reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int)); |
| 312 | |
| 313 | /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we |
| 314 | can roll it back in reset_opr_set_tables. */ |
| 315 | modifies_mem_obstack_bottom = |
| 316 | (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack, |
| 317 | sizeof (struct modifies_mem)); |
| 318 | |
| 319 | blocks_with_calls = BITMAP_ALLOC (NULL); |
| 320 | modify_mem_list_set = BITMAP_ALLOC (NULL); |
| 321 | |
| 322 | modify_mem_list = (vec_rtx_heap *) xcalloc (last_basic_block_for_fn (cfun), |
| 323 | sizeof (vec_rtx_heap)); |
| 324 | canon_modify_mem_list |
| 325 | = (vec_modify_pair_heap *) xcalloc (last_basic_block_for_fn (cfun), |
| 326 | sizeof (vec_modify_pair_heap)); |
| 327 | } |
| 328 | |
| 329 | /* Free memory allocated by alloc_mem. */ |
| 330 | |
| 331 | static void |
| 332 | free_mem (void) |
| 333 | { |
| 334 | free (ptr: uid_cuid); |
| 335 | |
| 336 | delete expr_table; |
| 337 | expr_table = NULL; |
| 338 | |
| 339 | obstack_free (&expr_obstack, NULL); |
| 340 | obstack_free (&occr_obstack, NULL); |
| 341 | obstack_free (&unoccr_obstack, NULL); |
| 342 | obstack_free (&modifies_mem_obstack, NULL); |
| 343 | |
| 344 | unsigned i; |
| 345 | bitmap_iterator bi; |
| 346 | EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi) |
| 347 | { |
| 348 | modify_mem_list[i].release (); |
| 349 | canon_modify_mem_list[i].release (); |
| 350 | } |
| 351 | |
| 352 | BITMAP_FREE (blocks_with_calls); |
| 353 | BITMAP_FREE (modify_mem_list_set); |
| 354 | free (ptr: reg_avail_info); |
| 355 | free (ptr: modify_mem_list); |
| 356 | free (ptr: canon_modify_mem_list); |
| 357 | } |
| 358 | |
| 359 | |
| 360 | /* Insert expression X in INSN in the hash TABLE. |
| 361 | If it is already present, record it as the last occurrence in INSN's |
| 362 | basic block. */ |
| 363 | |
| 364 | static void |
| 365 | insert_expr_in_table (rtx x, rtx_insn *insn) |
| 366 | { |
| 367 | int do_not_record_p; |
| 368 | hashval_t hash; |
| 369 | struct expr *cur_expr, **slot; |
| 370 | struct occr *avail_occr; |
| 371 | |
| 372 | hash = hash_expr (x, &do_not_record_p); |
| 373 | |
| 374 | /* Do not insert expression in the table if it contains volatile operands, |
| 375 | or if hash_expr determines the expression is something we don't want |
| 376 | to or can't handle. */ |
| 377 | if (do_not_record_p) |
| 378 | return; |
| 379 | |
| 380 | /* We anticipate that redundant expressions are rare, so for convenience |
| 381 | allocate a new hash table element here already and set its fields. |
| 382 | If we don't do this, we need a hack with a static struct expr. Anyway, |
| 383 | obstack_free is really fast and one more obstack_alloc doesn't hurt if |
| 384 | we're going to see more expressions later on. */ |
| 385 | cur_expr = (struct expr *) obstack_alloc (&expr_obstack, |
| 386 | sizeof (struct expr)); |
| 387 | cur_expr->expr = x; |
| 388 | cur_expr->hash = hash; |
| 389 | cur_expr->avail_occr = NULL; |
| 390 | |
| 391 | slot = expr_table->find_slot_with_hash (comparable: cur_expr, hash, insert: INSERT); |
| 392 | |
| 393 | if (! (*slot)) |
| 394 | { |
| 395 | /* The expression isn't found, so insert it. */ |
| 396 | *slot = cur_expr; |
| 397 | |
| 398 | /* Anytime we add an entry to the table, record the index |
| 399 | of the new entry. The bitmap index starts counting |
| 400 | at zero. */ |
| 401 | cur_expr->bitmap_index = expr_table->elements () - 1; |
| 402 | } |
| 403 | else |
| 404 | { |
| 405 | /* The expression is already in the table, so roll back the |
| 406 | obstack and use the existing table entry. */ |
| 407 | obstack_free (&expr_obstack, cur_expr); |
| 408 | cur_expr = *slot; |
| 409 | } |
| 410 | |
| 411 | /* Search for another occurrence in the same basic block. We insert |
| 412 | insns blockwise from start to end, so keep appending to the |
| 413 | start of the list so we have to check only a single element. */ |
| 414 | avail_occr = cur_expr->avail_occr; |
| 415 | if (avail_occr |
| 416 | && BLOCK_FOR_INSN (insn: avail_occr->insn) == BLOCK_FOR_INSN (insn)) |
| 417 | avail_occr->insn = insn; |
| 418 | else |
| 419 | { |
| 420 | /* First occurrence of this expression in this basic block. */ |
| 421 | avail_occr = (struct occr *) obstack_alloc (&occr_obstack, |
| 422 | sizeof (struct occr)); |
| 423 | avail_occr->insn = insn; |
| 424 | avail_occr->next = cur_expr->avail_occr; |
| 425 | avail_occr->deleted_p = 0; |
| 426 | cur_expr->avail_occr = avail_occr; |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | |
| 431 | /* Lookup pattern PAT in the expression hash table. |
| 432 | The result is a pointer to the table entry, or NULL if not found. */ |
| 433 | |
| 434 | static struct expr * |
| 435 | lookup_expr_in_table (rtx pat) |
| 436 | { |
| 437 | int do_not_record_p; |
| 438 | struct expr **slot, *tmp_expr; |
| 439 | hashval_t hash = hash_expr (pat, &do_not_record_p); |
| 440 | |
| 441 | if (do_not_record_p) |
| 442 | return NULL; |
| 443 | |
| 444 | tmp_expr = (struct expr *) obstack_alloc (&expr_obstack, |
| 445 | sizeof (struct expr)); |
| 446 | tmp_expr->expr = pat; |
| 447 | tmp_expr->hash = hash; |
| 448 | tmp_expr->avail_occr = NULL; |
| 449 | |
| 450 | slot = expr_table->find_slot_with_hash (comparable: tmp_expr, hash, insert: NO_INSERT); |
| 451 | obstack_free (&expr_obstack, tmp_expr); |
| 452 | |
| 453 | if (!slot) |
| 454 | return NULL; |
| 455 | else |
| 456 | return (*slot); |
| 457 | } |
| 458 | |
| 459 | |
| 460 | /* Dump all expressions and occurrences that are currently in the |
| 461 | expression hash table to FILE. */ |
| 462 | |
| 463 | /* This helper is called via htab_traverse. */ |
| 464 | int |
| 465 | dump_expr_hash_table_entry (expr **slot, FILE *file) |
| 466 | { |
| 467 | struct expr *exprs = *slot; |
| 468 | struct occr *occr; |
| 469 | |
| 470 | fprintf (stream: file, format: "expr: " ); |
| 471 | print_rtl (file, exprs->expr); |
| 472 | fprintf (stream: file,format: "\nhashcode: %u\n" , exprs->hash); |
| 473 | fprintf (stream: file,format: "list of occurrences:\n" ); |
| 474 | occr = exprs->avail_occr; |
| 475 | while (occr) |
| 476 | { |
| 477 | rtx_insn *insn = occr->insn; |
| 478 | print_rtl_single (file, insn); |
| 479 | fprintf (stream: file, format: "\n" ); |
| 480 | occr = occr->next; |
| 481 | } |
| 482 | fprintf (stream: file, format: "\n" ); |
| 483 | return 1; |
| 484 | } |
| 485 | |
| 486 | static void |
| 487 | dump_hash_table (FILE *file) |
| 488 | { |
| 489 | fprintf (stream: file, format: "\n\nexpression hash table\n" ); |
| 490 | fprintf (stream: file, format: "size " HOST_SIZE_T_PRINT_DEC ", " HOST_SIZE_T_PRINT_DEC |
| 491 | " elements, %f collision/search ratio\n" , |
| 492 | (fmt_size_t) expr_table->size (), |
| 493 | (fmt_size_t) expr_table->elements (), |
| 494 | expr_table->collisions ()); |
| 495 | if (!expr_table->is_empty ()) |
| 496 | { |
| 497 | fprintf (stream: file, format: "\n\ntable entries:\n" ); |
| 498 | expr_table->traverse <FILE *, dump_expr_hash_table_entry> (argument: file); |
| 499 | } |
| 500 | fprintf (stream: file, format: "\n" ); |
| 501 | } |
| 502 | |
| 503 | /* Return true if register X is recorded as being set by an instruction |
| 504 | whose CUID is greater than the one given. */ |
| 505 | |
| 506 | static bool |
| 507 | reg_changed_after_insn_p (rtx x, int cuid) |
| 508 | { |
| 509 | unsigned int regno, end_regno; |
| 510 | |
| 511 | regno = REGNO (x); |
| 512 | end_regno = END_REGNO (x); |
| 513 | do |
| 514 | if (reg_avail_info[regno] > cuid) |
| 515 | return true; |
| 516 | while (++regno < end_regno); |
| 517 | return false; |
| 518 | } |
| 519 | |
| 520 | /* Return nonzero if the operands of expression X are unchanged |
| 521 | 1) from the start of INSN's basic block up to but not including INSN |
| 522 | if AFTER_INSN is false, or |
| 523 | 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */ |
| 524 | |
| 525 | static bool |
| 526 | oprs_unchanged_p (rtx x, rtx_insn *insn, bool after_insn) |
| 527 | { |
| 528 | int i, j; |
| 529 | enum rtx_code code; |
| 530 | const char *fmt; |
| 531 | |
| 532 | if (x == 0) |
| 533 | return true; |
| 534 | |
| 535 | code = GET_CODE (x); |
| 536 | switch (code) |
| 537 | { |
| 538 | case REG: |
| 539 | /* We are called after register allocation. */ |
| 540 | gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER); |
| 541 | if (after_insn) |
| 542 | return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1); |
| 543 | else |
| 544 | return !reg_changed_after_insn_p (x, cuid: 0); |
| 545 | |
| 546 | case MEM: |
| 547 | if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn)) |
| 548 | return false; |
| 549 | else |
| 550 | return oprs_unchanged_p (XEXP (x, 0), insn, after_insn); |
| 551 | |
| 552 | case PC: |
| 553 | case CONST: |
| 554 | CASE_CONST_ANY: |
| 555 | case SYMBOL_REF: |
| 556 | case LABEL_REF: |
| 557 | case ADDR_VEC: |
| 558 | case ADDR_DIFF_VEC: |
| 559 | return true; |
| 560 | |
| 561 | case PRE_DEC: |
| 562 | case PRE_INC: |
| 563 | case POST_DEC: |
| 564 | case POST_INC: |
| 565 | case PRE_MODIFY: |
| 566 | case POST_MODIFY: |
| 567 | if (after_insn) |
| 568 | return false; |
| 569 | break; |
| 570 | |
| 571 | default: |
| 572 | break; |
| 573 | } |
| 574 | |
| 575 | for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) |
| 576 | { |
| 577 | if (fmt[i] == 'e') |
| 578 | { |
| 579 | if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn)) |
| 580 | return false; |
| 581 | } |
| 582 | else if (fmt[i] == 'E') |
| 583 | for (j = 0; j < XVECLEN (x, i); j++) |
| 584 | if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn)) |
| 585 | return false; |
| 586 | } |
| 587 | |
| 588 | return true; |
| 589 | } |
| 590 | |
| 591 | |
| 592 | /* Used for communication between find_mem_conflicts and |
| 593 | load_killed_in_block_p. Nonzero if find_mem_conflicts finds a |
| 594 | conflict between two memory references. |
| 595 | This is a bit of a hack to work around the limitations of note_stores. */ |
| 596 | static int mems_conflict_p; |
| 597 | |
| 598 | /* DEST is the output of an instruction. If it is a memory reference, and |
| 599 | possibly conflicts with the load found in DATA, then set mems_conflict_p |
| 600 | to a nonzero value. */ |
| 601 | |
| 602 | static void |
| 603 | find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, |
| 604 | void *data) |
| 605 | { |
| 606 | rtx mem_op = (rtx) data; |
| 607 | |
| 608 | while (GET_CODE (dest) == SUBREG |
| 609 | || GET_CODE (dest) == ZERO_EXTRACT |
| 610 | || GET_CODE (dest) == STRICT_LOW_PART) |
| 611 | dest = XEXP (dest, 0); |
| 612 | |
| 613 | /* If DEST is not a MEM, then it will not conflict with the load. Note |
| 614 | that function calls are assumed to clobber memory, but are handled |
| 615 | elsewhere. */ |
| 616 | if (! MEM_P (dest)) |
| 617 | return; |
| 618 | |
| 619 | if (true_dependence (dest, GET_MODE (dest), mem_op)) |
| 620 | mems_conflict_p = 1; |
| 621 | } |
| 622 | |
| 623 | |
| 624 | /* Return nonzero if the expression in X (a memory reference) is killed |
| 625 | in the current basic block before (if AFTER_INSN is false) or after |
| 626 | (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT. |
| 627 | |
| 628 | This function assumes that the modifies_mem table is flushed when |
| 629 | the hash table construction or redundancy elimination phases start |
| 630 | processing a new basic block. */ |
| 631 | |
| 632 | static bool |
| 633 | load_killed_in_block_p (int uid_limit, rtx x, bool after_insn) |
| 634 | { |
| 635 | struct modifies_mem *list_entry = modifies_mem_list; |
| 636 | |
| 637 | while (list_entry) |
| 638 | { |
| 639 | rtx_insn *setter = list_entry->insn; |
| 640 | |
| 641 | /* Ignore entries in the list that do not apply. */ |
| 642 | if ((after_insn |
| 643 | && INSN_CUID (setter) < uid_limit) |
| 644 | || (! after_insn |
| 645 | && INSN_CUID (setter) > uid_limit)) |
| 646 | { |
| 647 | list_entry = list_entry->next; |
| 648 | continue; |
| 649 | } |
| 650 | |
| 651 | /* If SETTER is a call everything is clobbered. Note that calls |
| 652 | to pure functions are never put on the list, so we need not |
| 653 | worry about them. */ |
| 654 | if (CALL_P (setter)) |
| 655 | return true; |
| 656 | |
| 657 | /* SETTER must be an insn of some kind that sets memory. Call |
| 658 | note_stores to examine each hunk of memory that is modified. |
| 659 | It will set mems_conflict_p to nonzero if there may be a |
| 660 | conflict between X and SETTER. */ |
| 661 | mems_conflict_p = 0; |
| 662 | note_stores (setter, find_mem_conflicts, x); |
| 663 | if (mems_conflict_p) |
| 664 | return true; |
| 665 | |
| 666 | list_entry = list_entry->next; |
| 667 | } |
| 668 | return false; |
| 669 | } |
| 670 | |
| 671 | |
| 672 | /* Record register first/last/block set information for REGNO in INSN. */ |
| 673 | |
| 674 | static inline void |
| 675 | record_last_reg_set_info (rtx_insn *insn, rtx reg) |
| 676 | { |
| 677 | unsigned int regno, end_regno; |
| 678 | |
| 679 | regno = REGNO (reg); |
| 680 | end_regno = END_REGNO (x: reg); |
| 681 | do |
| 682 | reg_avail_info[regno] = INSN_CUID (insn); |
| 683 | while (++regno < end_regno); |
| 684 | } |
| 685 | |
| 686 | static inline void |
| 687 | record_last_reg_set_info_regno (rtx_insn *insn, int regno) |
| 688 | { |
| 689 | reg_avail_info[regno] = INSN_CUID (insn); |
| 690 | } |
| 691 | |
| 692 | |
| 693 | /* Record memory modification information for INSN. We do not actually care |
| 694 | about the memory location(s) that are set, or even how they are set (consider |
| 695 | a CALL_INSN). We merely need to record which insns modify memory. */ |
| 696 | |
| 697 | static void |
| 698 | record_last_mem_set_info (rtx_insn *insn) |
| 699 | { |
| 700 | struct modifies_mem *list_entry; |
| 701 | |
| 702 | list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack, |
| 703 | sizeof (struct modifies_mem)); |
| 704 | list_entry->insn = insn; |
| 705 | list_entry->next = modifies_mem_list; |
| 706 | modifies_mem_list = list_entry; |
| 707 | |
| 708 | record_last_mem_set_info_common (insn, modify_mem_list, |
| 709 | canon_modify_mem_list, |
| 710 | modify_mem_list_set, |
| 711 | blocks_with_calls); |
| 712 | } |
| 713 | |
| 714 | /* Called from compute_hash_table via note_stores to handle one |
| 715 | SET or CLOBBER in an insn. DATA is really the instruction in which |
| 716 | the SET is taking place. */ |
| 717 | |
| 718 | static void |
| 719 | record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data) |
| 720 | { |
| 721 | rtx_insn *last_set_insn = (rtx_insn *) data; |
| 722 | |
| 723 | if (GET_CODE (dest) == SUBREG) |
| 724 | dest = SUBREG_REG (dest); |
| 725 | |
| 726 | if (REG_P (dest)) |
| 727 | record_last_reg_set_info (insn: last_set_insn, reg: dest); |
| 728 | else if (MEM_P (dest)) |
| 729 | { |
| 730 | /* Ignore pushes, they don't clobber memory. They may still |
| 731 | clobber the stack pointer though. Some targets do argument |
| 732 | pushes without adding REG_INC notes. See e.g. PR25196, |
| 733 | where a pushsi2 on i386 doesn't have REG_INC notes. Note |
| 734 | such changes here too. */ |
| 735 | if (! push_operand (dest, GET_MODE (dest))) |
| 736 | record_last_mem_set_info (insn: last_set_insn); |
| 737 | else |
| 738 | record_last_reg_set_info_regno (insn: last_set_insn, STACK_POINTER_REGNUM); |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | |
| 743 | /* Reset tables used to keep track of what's still available since the |
| 744 | start of the block. */ |
| 745 | |
| 746 | static void |
| 747 | reset_opr_set_tables (void) |
| 748 | { |
| 749 | memset (s: reg_avail_info, c: 0, FIRST_PSEUDO_REGISTER * sizeof (int)); |
| 750 | obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom); |
| 751 | modifies_mem_list = NULL; |
| 752 | } |
| 753 | |
| 754 | |
| 755 | /* Record things set by INSN. |
| 756 | This data is used by oprs_unchanged_p. */ |
| 757 | |
| 758 | static void |
| 759 | record_opr_changes (rtx_insn *insn) |
| 760 | { |
| 761 | rtx note; |
| 762 | |
| 763 | /* Find all stores and record them. */ |
| 764 | note_stores (insn, record_last_set_info, insn); |
| 765 | |
| 766 | /* Also record autoincremented REGs for this insn as changed. */ |
| 767 | for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) |
| 768 | if (REG_NOTE_KIND (note) == REG_INC) |
| 769 | record_last_reg_set_info (insn, XEXP (note, 0)); |
| 770 | |
| 771 | /* Finally, if this is a call, record all call clobbers. */ |
| 772 | if (CALL_P (insn)) |
| 773 | { |
| 774 | unsigned int regno; |
| 775 | hard_reg_set_iterator hrsi; |
| 776 | /* We don't track modes of hard registers, so we need to be |
| 777 | conservative and assume that partial kills are full kills. */ |
| 778 | HARD_REG_SET callee_clobbers |
| 779 | = insn_callee_abi (insn).full_and_partial_reg_clobbers (); |
| 780 | EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi) |
| 781 | record_last_reg_set_info_regno (insn, regno); |
| 782 | |
| 783 | if (! RTL_CONST_OR_PURE_CALL_P (insn) |
| 784 | || RTL_LOOPING_CONST_OR_PURE_CALL_P (insn) |
| 785 | || can_throw_external (insn)) |
| 786 | record_last_mem_set_info (insn); |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | |
| 791 | /* Scan the pattern of INSN and add an entry to the hash TABLE. |
| 792 | After reload we are interested in loads/stores only. */ |
| 793 | |
| 794 | static void |
| 795 | hash_scan_set (rtx_insn *insn) |
| 796 | { |
| 797 | rtx pat = PATTERN (insn); |
| 798 | rtx src = SET_SRC (pat); |
| 799 | rtx dest = SET_DEST (pat); |
| 800 | |
| 801 | /* We are only interested in loads and stores. */ |
| 802 | if (! MEM_P (src) && ! MEM_P (dest)) |
| 803 | return; |
| 804 | |
| 805 | /* Don't mess with jumps and nops. */ |
| 806 | if (JUMP_P (insn) || set_noop_p (pat)) |
| 807 | return; |
| 808 | |
| 809 | if (REG_P (dest)) |
| 810 | { |
| 811 | if (/* Don't CSE something if we can't do a reg/reg copy. */ |
| 812 | can_copy_p (GET_MODE (dest)) |
| 813 | /* Is SET_SRC something we want to gcse? */ |
| 814 | && general_operand (src, GET_MODE (src)) |
| 815 | #ifdef STACK_REGS |
| 816 | /* Never consider insns touching the register stack. It may |
| 817 | create situations that reg-stack cannot handle (e.g. a stack |
| 818 | register live across an abnormal edge). */ |
| 819 | && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG) |
| 820 | #endif |
| 821 | /* An expression is not available if its operands are |
| 822 | subsequently modified, including this insn. */ |
| 823 | && oprs_unchanged_p (x: src, insn, after_insn: true)) |
| 824 | { |
| 825 | insert_expr_in_table (x: src, insn); |
| 826 | } |
| 827 | } |
| 828 | else if (REG_P (src)) |
| 829 | { |
| 830 | /* Only record sets of pseudo-regs in the hash table. */ |
| 831 | if (/* Don't CSE something if we can't do a reg/reg copy. */ |
| 832 | can_copy_p (GET_MODE (src)) |
| 833 | /* Is SET_DEST something we want to gcse? */ |
| 834 | && general_operand (dest, GET_MODE (dest)) |
| 835 | #ifdef STACK_REGS |
| 836 | /* As above for STACK_REGS. */ |
| 837 | && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG) |
| 838 | #endif |
| 839 | && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest))) |
| 840 | /* Check if the memory expression is killed after insn. */ |
| 841 | && ! load_killed_in_block_p (INSN_CUID (insn) + 1, x: dest, after_insn: true) |
| 842 | && oprs_unchanged_p (XEXP (dest, 0), insn, after_insn: true)) |
| 843 | { |
| 844 | insert_expr_in_table (x: dest, insn); |
| 845 | } |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | |
| 850 | /* Create hash table of memory expressions available at end of basic |
| 851 | blocks. Basically you should think of this hash table as the |
| 852 | representation of AVAIL_OUT. This is the set of expressions that |
| 853 | is generated in a basic block and not killed before the end of the |
| 854 | same basic block. Notice that this is really a local computation. */ |
| 855 | |
| 856 | static void |
| 857 | compute_hash_table (void) |
| 858 | { |
| 859 | basic_block bb; |
| 860 | |
| 861 | FOR_EACH_BB_FN (bb, cfun) |
| 862 | { |
| 863 | rtx_insn *insn; |
| 864 | |
| 865 | /* First pass over the instructions records information used to |
| 866 | determine when registers and memory are last set. |
| 867 | Since we compute a "local" AVAIL_OUT, reset the tables that |
| 868 | help us keep track of what has been modified since the start |
| 869 | of the block. */ |
| 870 | reset_opr_set_tables (); |
| 871 | FOR_BB_INSNS (bb, insn) |
| 872 | { |
| 873 | if (INSN_P (insn)) |
| 874 | record_opr_changes (insn); |
| 875 | } |
| 876 | |
| 877 | /* The next pass actually builds the hash table. */ |
| 878 | FOR_BB_INSNS (bb, insn) |
| 879 | if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET) |
| 880 | hash_scan_set (insn); |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | |
| 885 | /* Check if register REG is killed in any insn waiting to be inserted on |
| 886 | edge E. This function is required to check that our data flow analysis |
| 887 | is still valid prior to commit_edge_insertions. */ |
| 888 | |
| 889 | static bool |
| 890 | reg_killed_on_edge (rtx reg, edge e) |
| 891 | { |
| 892 | rtx_insn *insn; |
| 893 | |
| 894 | for (insn = e->insns.r; insn; insn = NEXT_INSN (insn)) |
| 895 | if (INSN_P (insn) && reg_set_p (reg, insn)) |
| 896 | return true; |
| 897 | |
| 898 | return false; |
| 899 | } |
| 900 | |
| 901 | /* Similar to above - check if register REG is used in any insn waiting |
| 902 | to be inserted on edge E. |
| 903 | Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p |
| 904 | with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */ |
| 905 | |
| 906 | static bool |
| 907 | reg_used_on_edge (rtx reg, edge e) |
| 908 | { |
| 909 | rtx_insn *insn; |
| 910 | |
| 911 | for (insn = e->insns.r; insn; insn = NEXT_INSN (insn)) |
| 912 | if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn))) |
| 913 | return true; |
| 914 | |
| 915 | return false; |
| 916 | } |
| 917 | |
| 918 | /* Return the loaded/stored register of a load/store instruction. */ |
| 919 | |
| 920 | static rtx |
| 921 | get_avail_load_store_reg (rtx_insn *insn) |
| 922 | { |
| 923 | if (REG_P (SET_DEST (PATTERN (insn)))) |
| 924 | /* A load. */ |
| 925 | return SET_DEST (PATTERN (insn)); |
| 926 | else |
| 927 | { |
| 928 | /* A store. */ |
| 929 | gcc_assert (REG_P (SET_SRC (PATTERN (insn)))); |
| 930 | return SET_SRC (PATTERN (insn)); |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | /* Return true if the predecessors of BB are "well behaved". */ |
| 935 | |
| 936 | static bool |
| 937 | bb_has_well_behaved_predecessors (basic_block bb) |
| 938 | { |
| 939 | edge pred; |
| 940 | edge_iterator ei; |
| 941 | |
| 942 | if (EDGE_COUNT (bb->preds) == 0) |
| 943 | return false; |
| 944 | |
| 945 | FOR_EACH_EDGE (pred, ei, bb->preds) |
| 946 | { |
| 947 | /* commit_one_edge_insertion refuses to insert on abnormal edges even if |
| 948 | the source has only one successor so EDGE_CRITICAL_P is too weak. */ |
| 949 | if ((pred->flags & EDGE_ABNORMAL) && !single_pred_p (bb: pred->dest)) |
| 950 | return false; |
| 951 | |
| 952 | if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label) |
| 953 | return false; |
| 954 | |
| 955 | if (tablejump_p (BB_END (pred->src), NULL, NULL)) |
| 956 | return false; |
| 957 | } |
| 958 | return true; |
| 959 | } |
| 960 | |
| 961 | |
| 962 | /* Search for the occurrences of expression in BB. */ |
| 963 | |
| 964 | static struct occr* |
| 965 | get_bb_avail_insn (basic_block bb, struct occr *orig_occr, int bitmap_index) |
| 966 | { |
| 967 | struct occr *occr = orig_occr; |
| 968 | |
| 969 | for (; occr != NULL; occr = occr->next) |
| 970 | if (BLOCK_FOR_INSN (insn: occr->insn) == bb) |
| 971 | return occr; |
| 972 | |
| 973 | /* If we could not find an occurrence in BB, see if BB |
| 974 | has a single predecessor with an occurrence that is |
| 975 | transparent through BB. */ |
| 976 | if (transp |
| 977 | && single_pred_p (bb) |
| 978 | && bitmap_bit_p (map: transp[bb->index], bitno: bitmap_index) |
| 979 | && (occr = get_bb_avail_insn (bb: single_pred (bb), orig_occr, bitmap_index))) |
| 980 | { |
| 981 | rtx avail_reg = get_avail_load_store_reg (insn: occr->insn); |
| 982 | if (!reg_set_between_p (avail_reg, |
| 983 | PREV_INSN (BB_HEAD (bb)), |
| 984 | NEXT_INSN (BB_END (bb))) |
| 985 | && !reg_killed_on_edge (reg: avail_reg, e: single_pred_edge (bb))) |
| 986 | return occr; |
| 987 | } |
| 988 | |
| 989 | return NULL; |
| 990 | } |
| 991 | |
| 992 | |
| 993 | /* This helper is called via htab_traverse. */ |
| 994 | int |
| 995 | compute_expr_transp (expr **slot, FILE *dump_file ATTRIBUTE_UNUSED) |
| 996 | { |
| 997 | struct expr *expr = *slot; |
| 998 | |
| 999 | compute_transp (expr->expr, expr->bitmap_index, transp, |
| 1000 | blocks_with_calls, modify_mem_list_set, |
| 1001 | canon_modify_mem_list); |
| 1002 | return 1; |
| 1003 | } |
| 1004 | |
| 1005 | /* This handles the case where several stores feed a partially redundant |
| 1006 | load. It checks if the redundancy elimination is possible and if it's |
| 1007 | worth it. |
| 1008 | |
| 1009 | Redundancy elimination is possible if, |
| 1010 | 1) None of the operands of an insn have been modified since the start |
| 1011 | of the current basic block. |
| 1012 | 2) In any predecessor of the current basic block, the same expression |
| 1013 | is generated. |
| 1014 | |
| 1015 | See the function body for the heuristics that determine if eliminating |
| 1016 | a redundancy is also worth doing, assuming it is possible. */ |
| 1017 | |
| 1018 | static void |
| 1019 | eliminate_partially_redundant_load (basic_block bb, rtx_insn *insn, |
| 1020 | struct expr *expr) |
| 1021 | { |
| 1022 | edge pred; |
| 1023 | rtx_insn *avail_insn = NULL; |
| 1024 | rtx avail_reg; |
| 1025 | rtx dest, pat; |
| 1026 | struct occr *a_occr; |
| 1027 | struct unoccr *occr, *avail_occrs = NULL; |
| 1028 | struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL; |
| 1029 | int npred_ok = 0; |
| 1030 | profile_count ok_count = profile_count::zero (); |
| 1031 | /* Redundant load execution count. */ |
| 1032 | profile_count critical_count = profile_count::zero (); |
| 1033 | /* Execution count of critical edges. */ |
| 1034 | edge_iterator ei; |
| 1035 | bool critical_edge_split = false; |
| 1036 | |
| 1037 | /* The execution count of the loads to be added to make the |
| 1038 | load fully redundant. */ |
| 1039 | profile_count not_ok_count = profile_count::zero (); |
| 1040 | basic_block pred_bb; |
| 1041 | |
| 1042 | pat = PATTERN (insn); |
| 1043 | dest = SET_DEST (pat); |
| 1044 | |
| 1045 | /* Check that the loaded register is not used, set, or killed from the |
| 1046 | beginning of the block. */ |
| 1047 | if (reg_changed_after_insn_p (x: dest, cuid: 0) |
| 1048 | || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn)) |
| 1049 | return; |
| 1050 | |
| 1051 | /* Check potential for replacing load with copy for predecessors. */ |
| 1052 | FOR_EACH_EDGE (pred, ei, bb->preds) |
| 1053 | { |
| 1054 | rtx_insn *next_pred_bb_end; |
| 1055 | |
| 1056 | avail_insn = NULL; |
| 1057 | avail_reg = NULL_RTX; |
| 1058 | pred_bb = pred->src; |
| 1059 | for (a_occr = get_bb_avail_insn (bb: pred_bb, |
| 1060 | orig_occr: expr->avail_occr, |
| 1061 | bitmap_index: expr->bitmap_index); |
| 1062 | a_occr; |
| 1063 | a_occr = get_bb_avail_insn (bb: pred_bb, |
| 1064 | orig_occr: a_occr->next, |
| 1065 | bitmap_index: expr->bitmap_index)) |
| 1066 | { |
| 1067 | /* Check if the loaded register is not used. */ |
| 1068 | avail_insn = a_occr->insn; |
| 1069 | avail_reg = get_avail_load_store_reg (insn: avail_insn); |
| 1070 | gcc_assert (avail_reg); |
| 1071 | |
| 1072 | /* Make sure we can generate a move from register avail_reg to |
| 1073 | dest. */ |
| 1074 | rtx_insn *move = gen_move_insn (copy_rtx (dest), |
| 1075 | copy_rtx (avail_reg)); |
| 1076 | extract_insn (move); |
| 1077 | if (! constrain_operands (1, get_preferred_alternatives (insn, |
| 1078 | pred_bb)) |
| 1079 | || reg_killed_on_edge (reg: avail_reg, e: pred) |
| 1080 | || reg_used_on_edge (reg: dest, e: pred)) |
| 1081 | { |
| 1082 | avail_insn = NULL; |
| 1083 | continue; |
| 1084 | } |
| 1085 | next_pred_bb_end = NEXT_INSN (BB_END (BLOCK_FOR_INSN (avail_insn))); |
| 1086 | if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end)) |
| 1087 | /* AVAIL_INSN remains non-null. */ |
| 1088 | break; |
| 1089 | else |
| 1090 | avail_insn = NULL; |
| 1091 | } |
| 1092 | |
| 1093 | if (EDGE_CRITICAL_P (pred) && pred->count ().initialized_p ()) |
| 1094 | critical_count += pred->count (); |
| 1095 | |
| 1096 | if (avail_insn != NULL_RTX) |
| 1097 | { |
| 1098 | npred_ok++; |
| 1099 | if (pred->count ().initialized_p ()) |
| 1100 | ok_count = ok_count + pred->count (); |
| 1101 | if (! set_noop_p (PATTERN (insn: gen_move_insn (copy_rtx (dest), |
| 1102 | copy_rtx (avail_reg))))) |
| 1103 | { |
| 1104 | /* Check if there is going to be a split. */ |
| 1105 | if (EDGE_CRITICAL_P (pred)) |
| 1106 | critical_edge_split = true; |
| 1107 | } |
| 1108 | else /* Its a dead move no need to generate. */ |
| 1109 | continue; |
| 1110 | occr = (struct unoccr *) obstack_alloc (&unoccr_obstack, |
| 1111 | sizeof (struct unoccr)); |
| 1112 | occr->insn = avail_insn; |
| 1113 | occr->pred = pred; |
| 1114 | occr->next = avail_occrs; |
| 1115 | avail_occrs = occr; |
| 1116 | if (! rollback_unoccr) |
| 1117 | rollback_unoccr = occr; |
| 1118 | } |
| 1119 | else |
| 1120 | { |
| 1121 | /* Adding a load on a critical edge will cause a split. */ |
| 1122 | if (EDGE_CRITICAL_P (pred)) |
| 1123 | critical_edge_split = true; |
| 1124 | if (pred->count ().initialized_p ()) |
| 1125 | not_ok_count = not_ok_count + pred->count (); |
| 1126 | unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack, |
| 1127 | sizeof (struct unoccr)); |
| 1128 | unoccr->insn = NULL; |
| 1129 | unoccr->pred = pred; |
| 1130 | unoccr->next = unavail_occrs; |
| 1131 | unavail_occrs = unoccr; |
| 1132 | if (! rollback_unoccr) |
| 1133 | rollback_unoccr = unoccr; |
| 1134 | } |
| 1135 | } |
| 1136 | |
| 1137 | if (/* No load can be replaced by copy. */ |
| 1138 | npred_ok == 0 |
| 1139 | /* Prevent exploding the code. */ |
| 1140 | || (optimize_bb_for_size_p (bb) && npred_ok > 1) |
| 1141 | /* If we don't have profile information we cannot tell if splitting |
| 1142 | a critical edge is profitable or not so don't do it. */ |
| 1143 | || ((!profile_info || profile_status_for_fn (cfun) != PROFILE_READ |
| 1144 | || targetm.cannot_modify_jumps_p ()) |
| 1145 | && critical_edge_split)) |
| 1146 | goto cleanup; |
| 1147 | |
| 1148 | /* Check if it's worth applying the partial redundancy elimination. */ |
| 1149 | if (ok_count.to_gcov_type () |
| 1150 | < param_gcse_after_reload_partial_fraction * not_ok_count.to_gcov_type ()) |
| 1151 | goto cleanup; |
| 1152 | |
| 1153 | gcov_type threshold; |
| 1154 | #if (GCC_VERSION >= 5000) |
| 1155 | if (__builtin_mul_overflow (param_gcse_after_reload_critical_fraction, |
| 1156 | critical_count.to_gcov_type (), &threshold)) |
| 1157 | threshold = profile_count::max_count; |
| 1158 | #else |
| 1159 | threshold |
| 1160 | = (param_gcse_after_reload_critical_fraction |
| 1161 | * critical_count.to_gcov_type ()); |
| 1162 | #endif |
| 1163 | |
| 1164 | if (ok_count.to_gcov_type () < threshold) |
| 1165 | goto cleanup; |
| 1166 | |
| 1167 | /* Generate moves to the loaded register from where |
| 1168 | the memory is available. */ |
| 1169 | for (occr = avail_occrs; occr; occr = occr->next) |
| 1170 | { |
| 1171 | avail_insn = occr->insn; |
| 1172 | pred = occr->pred; |
| 1173 | /* Set avail_reg to be the register having the value of the |
| 1174 | memory. */ |
| 1175 | avail_reg = get_avail_load_store_reg (insn: avail_insn); |
| 1176 | gcc_assert (avail_reg); |
| 1177 | |
| 1178 | insert_insn_on_edge (gen_move_insn (copy_rtx (dest), |
| 1179 | copy_rtx (avail_reg)), |
| 1180 | pred); |
| 1181 | stats.moves_inserted++; |
| 1182 | |
| 1183 | if (dump_file) |
| 1184 | fprintf (stream: dump_file, |
| 1185 | format: "generating move from %d to %d on edge from %d to %d\n" , |
| 1186 | REGNO (avail_reg), |
| 1187 | REGNO (dest), |
| 1188 | pred->src->index, |
| 1189 | pred->dest->index); |
| 1190 | } |
| 1191 | |
| 1192 | /* Regenerate loads where the memory is unavailable. */ |
| 1193 | for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next) |
| 1194 | { |
| 1195 | pred = unoccr->pred; |
| 1196 | insert_insn_on_edge (copy_insn (PATTERN (insn)), pred); |
| 1197 | stats.copies_inserted++; |
| 1198 | |
| 1199 | if (dump_file) |
| 1200 | { |
| 1201 | fprintf (stream: dump_file, |
| 1202 | format: "generating on edge from %d to %d a copy of load: " , |
| 1203 | pred->src->index, |
| 1204 | pred->dest->index); |
| 1205 | print_rtl (dump_file, PATTERN (insn)); |
| 1206 | fprintf (stream: dump_file, format: "\n" ); |
| 1207 | } |
| 1208 | } |
| 1209 | |
| 1210 | /* Delete the insn if it is not available in this block and mark it |
| 1211 | for deletion if it is available. If insn is available it may help |
| 1212 | discover additional redundancies, so mark it for later deletion. */ |
| 1213 | for (a_occr = get_bb_avail_insn (bb, orig_occr: expr->avail_occr, bitmap_index: expr->bitmap_index); |
| 1214 | a_occr && (a_occr->insn != insn); |
| 1215 | a_occr = get_bb_avail_insn (bb, orig_occr: a_occr->next, bitmap_index: expr->bitmap_index)) |
| 1216 | ; |
| 1217 | |
| 1218 | if (!a_occr) |
| 1219 | { |
| 1220 | stats.insns_deleted++; |
| 1221 | |
| 1222 | if (dump_file) |
| 1223 | { |
| 1224 | fprintf (stream: dump_file, format: "deleting insn:\n" ); |
| 1225 | print_rtl_single (dump_file, insn); |
| 1226 | fprintf (stream: dump_file, format: "\n" ); |
| 1227 | } |
| 1228 | delete_insn (insn); |
| 1229 | } |
| 1230 | else |
| 1231 | a_occr->deleted_p = 1; |
| 1232 | |
| 1233 | cleanup: |
| 1234 | if (rollback_unoccr) |
| 1235 | obstack_free (&unoccr_obstack, rollback_unoccr); |
| 1236 | } |
| 1237 | |
| 1238 | /* Performing the redundancy elimination as described before. */ |
| 1239 | |
| 1240 | static void |
| 1241 | eliminate_partially_redundant_loads (void) |
| 1242 | { |
| 1243 | rtx_insn *insn; |
| 1244 | basic_block bb; |
| 1245 | |
| 1246 | /* Note we start at block 1. */ |
| 1247 | |
| 1248 | if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)) |
| 1249 | return; |
| 1250 | |
| 1251 | FOR_BB_BETWEEN (bb, |
| 1252 | ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->next_bb, |
| 1253 | EXIT_BLOCK_PTR_FOR_FN (cfun), |
| 1254 | next_bb) |
| 1255 | { |
| 1256 | /* Don't try anything on basic blocks with strange predecessors. */ |
| 1257 | if (! bb_has_well_behaved_predecessors (bb)) |
| 1258 | continue; |
| 1259 | |
| 1260 | /* Do not try anything on cold basic blocks. */ |
| 1261 | if (optimize_bb_for_size_p (bb)) |
| 1262 | continue; |
| 1263 | |
| 1264 | /* Reset the table of things changed since the start of the current |
| 1265 | basic block. */ |
| 1266 | reset_opr_set_tables (); |
| 1267 | |
| 1268 | /* Look at all insns in the current basic block and see if there are |
| 1269 | any loads in it that we can record. */ |
| 1270 | FOR_BB_INSNS (bb, insn) |
| 1271 | { |
| 1272 | /* Is it a load - of the form (set (reg) (mem))? */ |
| 1273 | if (NONJUMP_INSN_P (insn) |
| 1274 | && GET_CODE (PATTERN (insn)) == SET |
| 1275 | && REG_P (SET_DEST (PATTERN (insn))) |
| 1276 | && MEM_P (SET_SRC (PATTERN (insn)))) |
| 1277 | { |
| 1278 | rtx pat = PATTERN (insn); |
| 1279 | rtx src = SET_SRC (pat); |
| 1280 | struct expr *expr; |
| 1281 | |
| 1282 | if (!MEM_VOLATILE_P (src) |
| 1283 | && GET_MODE (src) != BLKmode |
| 1284 | && general_operand (src, GET_MODE (src)) |
| 1285 | /* Are the operands unchanged since the start of the |
| 1286 | block? */ |
| 1287 | && oprs_unchanged_p (x: src, insn, after_insn: false) |
| 1288 | && !(cfun->can_throw_non_call_exceptions && may_trap_p (src)) |
| 1289 | && !side_effects_p (src) |
| 1290 | /* Is the expression recorded? */ |
| 1291 | && (expr = lookup_expr_in_table (pat: src)) != NULL) |
| 1292 | { |
| 1293 | /* We now have a load (insn) and an available memory at |
| 1294 | its BB start (expr). Try to remove the loads if it is |
| 1295 | redundant. */ |
| 1296 | eliminate_partially_redundant_load (bb, insn, expr); |
| 1297 | } |
| 1298 | } |
| 1299 | |
| 1300 | /* Keep track of everything modified by this insn, so that we |
| 1301 | know what has been modified since the start of the current |
| 1302 | basic block. */ |
| 1303 | if (INSN_P (insn)) |
| 1304 | record_opr_changes (insn); |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | commit_edge_insertions (); |
| 1309 | } |
| 1310 | |
| 1311 | /* Go over the expression hash table and delete insns that were |
| 1312 | marked for later deletion. */ |
| 1313 | |
| 1314 | /* This helper is called via htab_traverse. */ |
| 1315 | int |
| 1316 | delete_redundant_insns_1 (expr **slot, void *data ATTRIBUTE_UNUSED) |
| 1317 | { |
| 1318 | struct expr *exprs = *slot; |
| 1319 | struct occr *occr; |
| 1320 | |
| 1321 | for (occr = exprs->avail_occr; occr != NULL; occr = occr->next) |
| 1322 | { |
| 1323 | if (occr->deleted_p && dbg_cnt (index: gcse2_delete)) |
| 1324 | { |
| 1325 | delete_insn (occr->insn); |
| 1326 | stats.insns_deleted++; |
| 1327 | |
| 1328 | if (dump_file) |
| 1329 | { |
| 1330 | fprintf (stream: dump_file, format: "deleting insn:\n" ); |
| 1331 | print_rtl_single (dump_file, occr->insn); |
| 1332 | fprintf (stream: dump_file, format: "\n" ); |
| 1333 | } |
| 1334 | } |
| 1335 | } |
| 1336 | |
| 1337 | return 1; |
| 1338 | } |
| 1339 | |
| 1340 | static void |
| 1341 | delete_redundant_insns (void) |
| 1342 | { |
| 1343 | expr_table->traverse <void *, delete_redundant_insns_1> (NULL); |
| 1344 | if (dump_file) |
| 1345 | fprintf (stream: dump_file, format: "\n" ); |
| 1346 | } |
| 1347 | |
| 1348 | /* Main entry point of the GCSE after reload - clean some redundant loads |
| 1349 | due to spilling. */ |
| 1350 | |
| 1351 | static void |
| 1352 | gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED) |
| 1353 | { |
| 1354 | /* Disable computing transparentness if it is too expensive. */ |
| 1355 | bool do_transp |
| 1356 | = !gcse_or_cprop_is_too_expensive (_("using simple load CSE after register " |
| 1357 | "allocation" )); |
| 1358 | |
| 1359 | memset (s: &stats, c: 0, n: sizeof (stats)); |
| 1360 | |
| 1361 | /* Allocate memory for this pass. |
| 1362 | Also computes and initializes the insns' CUIDs. */ |
| 1363 | alloc_mem (); |
| 1364 | |
| 1365 | /* We need alias analysis. */ |
| 1366 | init_alias_analysis (); |
| 1367 | |
| 1368 | compute_hash_table (); |
| 1369 | |
| 1370 | if (dump_file) |
| 1371 | dump_hash_table (file: dump_file); |
| 1372 | |
| 1373 | if (!expr_table->is_empty ()) |
| 1374 | { |
| 1375 | /* Knowing which MEMs are transparent through a block can signifiantly |
| 1376 | increase the number of redundant loads found. So compute transparency |
| 1377 | information for each memory expression in the hash table. */ |
| 1378 | df_analyze (); |
| 1379 | if (do_transp) |
| 1380 | { |
| 1381 | /* This cannot be part of the normal allocation routine because |
| 1382 | we have to know the number of elements in the hash table. */ |
| 1383 | transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), |
| 1384 | expr_table->elements ()); |
| 1385 | bitmap_vector_ones (transp, last_basic_block_for_fn (cfun)); |
| 1386 | expr_table->traverse <FILE *, compute_expr_transp> (argument: dump_file); |
| 1387 | } |
| 1388 | else |
| 1389 | transp = NULL; |
| 1390 | eliminate_partially_redundant_loads (); |
| 1391 | delete_redundant_insns (); |
| 1392 | if (do_transp) |
| 1393 | sbitmap_vector_free (vec: transp); |
| 1394 | |
| 1395 | if (dump_file) |
| 1396 | { |
| 1397 | fprintf (stream: dump_file, format: "GCSE AFTER RELOAD stats:\n" ); |
| 1398 | fprintf (stream: dump_file, format: "copies inserted: %d\n" , stats.copies_inserted); |
| 1399 | fprintf (stream: dump_file, format: "moves inserted: %d\n" , stats.moves_inserted); |
| 1400 | fprintf (stream: dump_file, format: "insns deleted: %d\n" , stats.insns_deleted); |
| 1401 | fprintf (stream: dump_file, format: "\n\n" ); |
| 1402 | } |
| 1403 | |
| 1404 | statistics_counter_event (cfun, "copies inserted" , |
| 1405 | stats.copies_inserted); |
| 1406 | statistics_counter_event (cfun, "moves inserted" , |
| 1407 | stats.moves_inserted); |
| 1408 | statistics_counter_event (cfun, "insns deleted" , |
| 1409 | stats.insns_deleted); |
| 1410 | } |
| 1411 | |
| 1412 | /* We are finished with alias. */ |
| 1413 | end_alias_analysis (); |
| 1414 | |
| 1415 | free_mem (); |
| 1416 | } |
| 1417 | |
| 1418 | |
| 1419 | |
| 1420 | static void |
| 1421 | rest_of_handle_gcse2 (void) |
| 1422 | { |
| 1423 | gcse_after_reload_main (f: get_insns ()); |
| 1424 | rebuild_jump_labels (get_insns ()); |
| 1425 | } |
| 1426 | |
| 1427 | namespace { |
| 1428 | |
| 1429 | const pass_data pass_data_gcse2 = |
| 1430 | { |
| 1431 | .type: RTL_PASS, /* type */ |
| 1432 | .name: "gcse2" , /* name */ |
| 1433 | .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */ |
| 1434 | .tv_id: TV_GCSE_AFTER_RELOAD, /* tv_id */ |
| 1435 | .properties_required: 0, /* properties_required */ |
| 1436 | .properties_provided: 0, /* properties_provided */ |
| 1437 | .properties_destroyed: 0, /* properties_destroyed */ |
| 1438 | .todo_flags_start: 0, /* todo_flags_start */ |
| 1439 | .todo_flags_finish: 0, /* todo_flags_finish */ |
| 1440 | }; |
| 1441 | |
| 1442 | class pass_gcse2 : public rtl_opt_pass |
| 1443 | { |
| 1444 | public: |
| 1445 | pass_gcse2 (gcc::context *ctxt) |
| 1446 | : rtl_opt_pass (pass_data_gcse2, ctxt) |
| 1447 | {} |
| 1448 | |
| 1449 | /* opt_pass methods: */ |
| 1450 | bool gate (function *fun) final override |
| 1451 | { |
| 1452 | return (optimize > 0 && flag_gcse_after_reload |
| 1453 | && optimize_function_for_speed_p (fun)); |
| 1454 | } |
| 1455 | |
| 1456 | unsigned int execute (function *) final override |
| 1457 | { |
| 1458 | rest_of_handle_gcse2 (); |
| 1459 | return 0; |
| 1460 | } |
| 1461 | |
| 1462 | }; // class pass_gcse2 |
| 1463 | |
| 1464 | } // anon namespace |
| 1465 | |
| 1466 | rtl_opt_pass * |
| 1467 | make_pass_gcse2 (gcc::context *ctxt) |
| 1468 | { |
| 1469 | return new pass_gcse2 (ctxt); |
| 1470 | } |
| 1471 | |