1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 *
6 * Authors:
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
10 *
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
13 *
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
16 */
17
18#include <linux/kvm_host.h>
19#include <linux/kernel.h>
20#include <linux/err.h>
21#include <linux/slab.h>
22#include <linux/preempt.h>
23#include <linux/sched/signal.h>
24#include <linux/sched/stat.h>
25#include <linux/delay.h>
26#include <linux/export.h>
27#include <linux/fs.h>
28#include <linux/anon_inodes.h>
29#include <linux/cpu.h>
30#include <linux/cpumask.h>
31#include <linux/spinlock.h>
32#include <linux/page-flags.h>
33#include <linux/srcu.h>
34#include <linux/miscdevice.h>
35#include <linux/debugfs.h>
36#include <linux/gfp.h>
37#include <linux/vmalloc.h>
38#include <linux/highmem.h>
39#include <linux/hugetlb.h>
40#include <linux/kvm_irqfd.h>
41#include <linux/irqbypass.h>
42#include <linux/module.h>
43#include <linux/compiler.h>
44#include <linux/of.h>
45#include <linux/irqdomain.h>
46#include <linux/smp.h>
47
48#include <asm/ftrace.h>
49#include <asm/reg.h>
50#include <asm/ppc-opcode.h>
51#include <asm/asm-prototypes.h>
52#include <asm/archrandom.h>
53#include <asm/debug.h>
54#include <asm/disassemble.h>
55#include <asm/cputable.h>
56#include <asm/cacheflush.h>
57#include <linux/uaccess.h>
58#include <asm/interrupt.h>
59#include <asm/io.h>
60#include <asm/kvm_ppc.h>
61#include <asm/kvm_book3s.h>
62#include <asm/mmu_context.h>
63#include <asm/lppaca.h>
64#include <asm/pmc.h>
65#include <asm/processor.h>
66#include <asm/cputhreads.h>
67#include <asm/page.h>
68#include <asm/hvcall.h>
69#include <asm/switch_to.h>
70#include <asm/smp.h>
71#include <asm/dbell.h>
72#include <asm/hmi.h>
73#include <asm/pnv-pci.h>
74#include <asm/mmu.h>
75#include <asm/opal.h>
76#include <asm/xics.h>
77#include <asm/xive.h>
78#include <asm/hw_breakpoint.h>
79#include <asm/kvm_book3s_uvmem.h>
80#include <asm/ultravisor.h>
81#include <asm/dtl.h>
82#include <asm/plpar_wrappers.h>
83
84#include <trace/events/ipi.h>
85
86#include "book3s.h"
87#include "book3s_hv.h"
88
89#define CREATE_TRACE_POINTS
90#include "trace_hv.h"
91
92/* #define EXIT_DEBUG */
93/* #define EXIT_DEBUG_SIMPLE */
94/* #define EXIT_DEBUG_INT */
95
96/* Used to indicate that a guest page fault needs to be handled */
97#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
98/* Used to indicate that a guest passthrough interrupt needs to be handled */
99#define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
100
101/* Used as a "null" value for timebase values */
102#define TB_NIL (~(u64)0)
103
104static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
105
106static int dynamic_mt_modes = 6;
107module_param(dynamic_mt_modes, int, 0644);
108MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
109static int target_smt_mode;
110module_param(target_smt_mode, int, 0644);
111MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
112
113static bool one_vm_per_core;
114module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
115MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
116
117#ifdef CONFIG_KVM_XICS
118static const struct kernel_param_ops module_param_ops = {
119 .set = param_set_int,
120 .get = param_get_int,
121};
122
123module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
124MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
125
126module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
127MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
128#endif
129
130/* If set, guests are allowed to create and control nested guests */
131static bool nested = true;
132module_param(nested, bool, S_IRUGO | S_IWUSR);
133MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
134
135static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
136
137/*
138 * RWMR values for POWER8. These control the rate at which PURR
139 * and SPURR count and should be set according to the number of
140 * online threads in the vcore being run.
141 */
142#define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
143#define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
144#define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
145#define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
146#define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
147#define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
148#define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
149#define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
150
151static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
152 RWMR_RPA_P8_1THREAD,
153 RWMR_RPA_P8_1THREAD,
154 RWMR_RPA_P8_2THREAD,
155 RWMR_RPA_P8_3THREAD,
156 RWMR_RPA_P8_4THREAD,
157 RWMR_RPA_P8_5THREAD,
158 RWMR_RPA_P8_6THREAD,
159 RWMR_RPA_P8_7THREAD,
160 RWMR_RPA_P8_8THREAD,
161};
162
163static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
164 int *ip)
165{
166 int i = *ip;
167 struct kvm_vcpu *vcpu;
168
169 while (++i < MAX_SMT_THREADS) {
170 vcpu = READ_ONCE(vc->runnable_threads[i]);
171 if (vcpu) {
172 *ip = i;
173 return vcpu;
174 }
175 }
176 return NULL;
177}
178
179/* Used to traverse the list of runnable threads for a given vcore */
180#define for_each_runnable_thread(i, vcpu, vc) \
181 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
182
183static bool kvmppc_ipi_thread(int cpu)
184{
185 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
186
187 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
188 if (kvmhv_on_pseries())
189 return false;
190
191 /* On POWER9 we can use msgsnd to IPI any cpu */
192 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
193 msg |= get_hard_smp_processor_id(cpu);
194 smp_mb();
195 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
196 return true;
197 }
198
199 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
200 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
201 preempt_disable();
202 if (cpu_first_thread_sibling(cpu) ==
203 cpu_first_thread_sibling(smp_processor_id())) {
204 msg |= cpu_thread_in_core(cpu);
205 smp_mb();
206 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
207 preempt_enable();
208 return true;
209 }
210 preempt_enable();
211 }
212
213#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
214 if (cpu >= 0 && cpu < nr_cpu_ids) {
215 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
216 xics_wake_cpu(cpu);
217 return true;
218 }
219 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
220 return true;
221 }
222#endif
223
224 return false;
225}
226
227static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
228{
229 int cpu;
230 struct rcuwait *waitp;
231
232 /*
233 * rcuwait_wake_up contains smp_mb() which orders prior stores that
234 * create pending work vs below loads of cpu fields. The other side
235 * is the barrier in vcpu run that orders setting the cpu fields vs
236 * testing for pending work.
237 */
238
239 waitp = kvm_arch_vcpu_get_wait(vcpu);
240 if (rcuwait_wake_up(w: waitp))
241 ++vcpu->stat.generic.halt_wakeup;
242
243 cpu = READ_ONCE(vcpu->arch.thread_cpu);
244 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
245 return;
246
247 /* CPU points to the first thread of the core */
248 cpu = vcpu->cpu;
249 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
250 smp_send_reschedule(cpu);
251}
252
253/*
254 * We use the vcpu_load/put functions to measure stolen time.
255 *
256 * Stolen time is counted as time when either the vcpu is able to
257 * run as part of a virtual core, but the task running the vcore
258 * is preempted or sleeping, or when the vcpu needs something done
259 * in the kernel by the task running the vcpu, but that task is
260 * preempted or sleeping. Those two things have to be counted
261 * separately, since one of the vcpu tasks will take on the job
262 * of running the core, and the other vcpu tasks in the vcore will
263 * sleep waiting for it to do that, but that sleep shouldn't count
264 * as stolen time.
265 *
266 * Hence we accumulate stolen time when the vcpu can run as part of
267 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
268 * needs its task to do other things in the kernel (for example,
269 * service a page fault) in busy_stolen. We don't accumulate
270 * stolen time for a vcore when it is inactive, or for a vcpu
271 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
272 * a misnomer; it means that the vcpu task is not executing in
273 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
274 * the kernel. We don't have any way of dividing up that time
275 * between time that the vcpu is genuinely stopped, time that
276 * the task is actively working on behalf of the vcpu, and time
277 * that the task is preempted, so we don't count any of it as
278 * stolen.
279 *
280 * Updates to busy_stolen are protected by arch.tbacct_lock;
281 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
282 * lock. The stolen times are measured in units of timebase ticks.
283 * (Note that the != TB_NIL checks below are purely defensive;
284 * they should never fail.)
285 *
286 * The POWER9 path is simpler, one vcpu per virtual core so the
287 * former case does not exist. If a vcpu is preempted when it is
288 * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
289 * the stolen cycles in busy_stolen. RUNNING is not a preemptible
290 * state in the P9 path.
291 */
292
293static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
294{
295 unsigned long flags;
296
297 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
298
299 spin_lock_irqsave(&vc->stoltb_lock, flags);
300 vc->preempt_tb = tb;
301 spin_unlock_irqrestore(lock: &vc->stoltb_lock, flags);
302}
303
304static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
305{
306 unsigned long flags;
307
308 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
309
310 spin_lock_irqsave(&vc->stoltb_lock, flags);
311 if (vc->preempt_tb != TB_NIL) {
312 vc->stolen_tb += tb - vc->preempt_tb;
313 vc->preempt_tb = TB_NIL;
314 }
315 spin_unlock_irqrestore(lock: &vc->stoltb_lock, flags);
316}
317
318static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
319{
320 struct kvmppc_vcore *vc = vcpu->arch.vcore;
321 unsigned long flags;
322 u64 now;
323
324 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
325 if (vcpu->arch.busy_preempt != TB_NIL) {
326 WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
327 vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
328 vcpu->arch.busy_preempt = TB_NIL;
329 }
330 return;
331 }
332
333 now = mftb();
334
335 /*
336 * We can test vc->runner without taking the vcore lock,
337 * because only this task ever sets vc->runner to this
338 * vcpu, and once it is set to this vcpu, only this task
339 * ever sets it to NULL.
340 */
341 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
342 kvmppc_core_end_stolen(vc, tb: now);
343
344 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
345 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
346 vcpu->arch.busy_preempt != TB_NIL) {
347 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
348 vcpu->arch.busy_preempt = TB_NIL;
349 }
350 spin_unlock_irqrestore(lock: &vcpu->arch.tbacct_lock, flags);
351}
352
353static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
354{
355 struct kvmppc_vcore *vc = vcpu->arch.vcore;
356 unsigned long flags;
357 u64 now;
358
359 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
360 /*
361 * In the P9 path, RUNNABLE is not preemptible
362 * (nor takes host interrupts)
363 */
364 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
365 /*
366 * Account stolen time when preempted while the vcpu task is
367 * running in the kernel (but not in qemu, which is INACTIVE).
368 */
369 if (task_is_running(current) &&
370 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
371 vcpu->arch.busy_preempt = mftb();
372 return;
373 }
374
375 now = mftb();
376
377 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
378 kvmppc_core_start_stolen(vc, tb: now);
379
380 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
381 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
382 vcpu->arch.busy_preempt = now;
383 spin_unlock_irqrestore(lock: &vcpu->arch.tbacct_lock, flags);
384}
385
386static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
387{
388 vcpu->arch.pvr = pvr;
389}
390
391/* Dummy value used in computing PCR value below */
392#define PCR_ARCH_31 (PCR_ARCH_300 << 1)
393
394static inline unsigned long map_pcr_to_cap(unsigned long pcr)
395{
396 unsigned long cap = 0;
397
398 switch (pcr) {
399 case PCR_ARCH_300:
400 cap = H_GUEST_CAP_POWER9;
401 break;
402 case PCR_ARCH_31:
403 cap = H_GUEST_CAP_POWER10;
404 break;
405 default:
406 break;
407 }
408
409 return cap;
410}
411
412static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
413{
414 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0, cap = 0;
415 struct kvmppc_vcore *vc = vcpu->arch.vcore;
416
417 /* We can (emulate) our own architecture version and anything older */
418 if (cpu_has_feature(CPU_FTR_ARCH_31))
419 host_pcr_bit = PCR_ARCH_31;
420 else if (cpu_has_feature(CPU_FTR_ARCH_300))
421 host_pcr_bit = PCR_ARCH_300;
422 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
423 host_pcr_bit = PCR_ARCH_207;
424 else if (cpu_has_feature(CPU_FTR_ARCH_206))
425 host_pcr_bit = PCR_ARCH_206;
426 else
427 host_pcr_bit = PCR_ARCH_205;
428
429 /* Determine lowest PCR bit needed to run guest in given PVR level */
430 guest_pcr_bit = host_pcr_bit;
431 if (arch_compat) {
432 switch (arch_compat) {
433 case PVR_ARCH_205:
434 guest_pcr_bit = PCR_ARCH_205;
435 break;
436 case PVR_ARCH_206:
437 case PVR_ARCH_206p:
438 guest_pcr_bit = PCR_ARCH_206;
439 break;
440 case PVR_ARCH_207:
441 guest_pcr_bit = PCR_ARCH_207;
442 break;
443 case PVR_ARCH_300:
444 guest_pcr_bit = PCR_ARCH_300;
445 break;
446 case PVR_ARCH_31:
447 case PVR_ARCH_31_P11:
448 guest_pcr_bit = PCR_ARCH_31;
449 break;
450 default:
451 return -EINVAL;
452 }
453 }
454
455 /* Check requested PCR bits don't exceed our capabilities */
456 if (guest_pcr_bit > host_pcr_bit)
457 return -EINVAL;
458
459 if (kvmhv_on_pseries() && kvmhv_is_nestedv2()) {
460 /*
461 * 'arch_compat == 0' would mean the guest should default to
462 * L1's compatibility. In this case, the guest would pick
463 * host's PCR and evaluate the corresponding capabilities.
464 */
465 cap = map_pcr_to_cap(pcr: guest_pcr_bit);
466 if (!(cap & nested_capabilities))
467 return -EINVAL;
468 }
469
470 spin_lock(lock: &vc->lock);
471 vc->arch_compat = arch_compat;
472 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LOGICAL_PVR);
473 /*
474 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
475 * Also set all reserved PCR bits
476 */
477 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
478 spin_unlock(lock: &vc->lock);
479
480 return 0;
481}
482
483static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
484{
485 int r;
486
487 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
488 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
489 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
490 for (r = 0; r < 16; ++r)
491 pr_err("r%2d = %.16lx r%d = %.16lx\n",
492 r, kvmppc_get_gpr(vcpu, r),
493 r+16, kvmppc_get_gpr(vcpu, r+16));
494 pr_err("ctr = %.16lx lr = %.16lx\n",
495 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
496 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
497 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
498 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
499 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
500 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
501 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
502 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
503 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
504 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
505 pr_err("fault dar = %.16lx dsisr = %.8x\n",
506 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
507 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
508 for (r = 0; r < vcpu->arch.slb_max; ++r)
509 pr_err(" ESID = %.16llx VSID = %.16llx\n",
510 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
511 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n",
512 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
513 vcpu->arch.last_inst);
514}
515
516static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
517{
518 return kvm_get_vcpu_by_id(kvm, id);
519}
520
521static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
522{
523 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
524 vpa->yield_count = cpu_to_be32(1);
525}
526
527static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
528 unsigned long addr, unsigned long len)
529{
530 /* check address is cacheline aligned */
531 if (addr & (L1_CACHE_BYTES - 1))
532 return -EINVAL;
533 spin_lock(lock: &vcpu->arch.vpa_update_lock);
534 if (v->next_gpa != addr || v->len != len) {
535 v->next_gpa = addr;
536 v->len = addr ? len : 0;
537 v->update_pending = 1;
538 }
539 spin_unlock(lock: &vcpu->arch.vpa_update_lock);
540 return 0;
541}
542
543/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
544struct reg_vpa {
545 u32 dummy;
546 union {
547 __be16 hword;
548 __be32 word;
549 } length;
550};
551
552static int vpa_is_registered(struct kvmppc_vpa *vpap)
553{
554 if (vpap->update_pending)
555 return vpap->next_gpa != 0;
556 return vpap->pinned_addr != NULL;
557}
558
559static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
560 unsigned long flags,
561 unsigned long vcpuid, unsigned long vpa)
562{
563 struct kvm *kvm = vcpu->kvm;
564 unsigned long len, nb;
565 void *va;
566 struct kvm_vcpu *tvcpu;
567 int err;
568 int subfunc;
569 struct kvmppc_vpa *vpap;
570
571 tvcpu = kvmppc_find_vcpu(kvm, id: vcpuid);
572 if (!tvcpu)
573 return H_PARAMETER;
574
575 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
576 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
577 subfunc == H_VPA_REG_SLB) {
578 /* Registering new area - address must be cache-line aligned */
579 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
580 return H_PARAMETER;
581
582 /* convert logical addr to kernel addr and read length */
583 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
584 if (va == NULL)
585 return H_PARAMETER;
586 if (subfunc == H_VPA_REG_VPA)
587 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
588 else
589 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
590 kvmppc_unpin_guest_page(kvm, va, vpa, false);
591
592 /* Check length */
593 if (len > nb || len < sizeof(struct reg_vpa))
594 return H_PARAMETER;
595 } else {
596 vpa = 0;
597 len = 0;
598 }
599
600 err = H_PARAMETER;
601 vpap = NULL;
602 spin_lock(lock: &tvcpu->arch.vpa_update_lock);
603
604 switch (subfunc) {
605 case H_VPA_REG_VPA: /* register VPA */
606 /*
607 * The size of our lppaca is 1kB because of the way we align
608 * it for the guest to avoid crossing a 4kB boundary. We only
609 * use 640 bytes of the structure though, so we should accept
610 * clients that set a size of 640.
611 */
612 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
613 if (len < sizeof(struct lppaca))
614 break;
615 vpap = &tvcpu->arch.vpa;
616 err = 0;
617 break;
618
619 case H_VPA_REG_DTL: /* register DTL */
620 if (len < sizeof(struct dtl_entry))
621 break;
622 len -= len % sizeof(struct dtl_entry);
623
624 /* Check that they have previously registered a VPA */
625 err = H_RESOURCE;
626 if (!vpa_is_registered(vpap: &tvcpu->arch.vpa))
627 break;
628
629 vpap = &tvcpu->arch.dtl;
630 err = 0;
631 break;
632
633 case H_VPA_REG_SLB: /* register SLB shadow buffer */
634 /* Check that they have previously registered a VPA */
635 err = H_RESOURCE;
636 if (!vpa_is_registered(vpap: &tvcpu->arch.vpa))
637 break;
638
639 vpap = &tvcpu->arch.slb_shadow;
640 err = 0;
641 break;
642
643 case H_VPA_DEREG_VPA: /* deregister VPA */
644 /* Check they don't still have a DTL or SLB buf registered */
645 err = H_RESOURCE;
646 if (vpa_is_registered(vpap: &tvcpu->arch.dtl) ||
647 vpa_is_registered(vpap: &tvcpu->arch.slb_shadow))
648 break;
649
650 vpap = &tvcpu->arch.vpa;
651 err = 0;
652 break;
653
654 case H_VPA_DEREG_DTL: /* deregister DTL */
655 vpap = &tvcpu->arch.dtl;
656 err = 0;
657 break;
658
659 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
660 vpap = &tvcpu->arch.slb_shadow;
661 err = 0;
662 break;
663 }
664
665 if (vpap) {
666 vpap->next_gpa = vpa;
667 vpap->len = len;
668 vpap->update_pending = 1;
669 }
670
671 spin_unlock(lock: &tvcpu->arch.vpa_update_lock);
672
673 return err;
674}
675
676static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap,
677 struct kvmppc_vpa *old_vpap)
678{
679 struct kvm *kvm = vcpu->kvm;
680 void *va;
681 unsigned long nb;
682 unsigned long gpa;
683
684 /*
685 * We need to pin the page pointed to by vpap->next_gpa,
686 * but we can't call kvmppc_pin_guest_page under the lock
687 * as it does get_user_pages() and down_read(). So we
688 * have to drop the lock, pin the page, then get the lock
689 * again and check that a new area didn't get registered
690 * in the meantime.
691 */
692 for (;;) {
693 gpa = vpap->next_gpa;
694 spin_unlock(lock: &vcpu->arch.vpa_update_lock);
695 va = NULL;
696 nb = 0;
697 if (gpa)
698 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
699 spin_lock(lock: &vcpu->arch.vpa_update_lock);
700 if (gpa == vpap->next_gpa)
701 break;
702 /* sigh... unpin that one and try again */
703 if (va)
704 kvmppc_unpin_guest_page(kvm, va, gpa, false);
705 }
706
707 vpap->update_pending = 0;
708 if (va && nb < vpap->len) {
709 /*
710 * If it's now too short, it must be that userspace
711 * has changed the mappings underlying guest memory,
712 * so unregister the region.
713 */
714 kvmppc_unpin_guest_page(kvm, va, gpa, false);
715 va = NULL;
716 }
717 *old_vpap = *vpap;
718
719 vpap->gpa = gpa;
720 vpap->pinned_addr = va;
721 vpap->dirty = false;
722 if (va)
723 vpap->pinned_end = va + vpap->len;
724}
725
726static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
727{
728 struct kvm *kvm = vcpu->kvm;
729 struct kvmppc_vpa old_vpa = { 0 };
730
731 if (!(vcpu->arch.vpa.update_pending ||
732 vcpu->arch.slb_shadow.update_pending ||
733 vcpu->arch.dtl.update_pending))
734 return;
735
736 spin_lock(lock: &vcpu->arch.vpa_update_lock);
737 if (vcpu->arch.vpa.update_pending) {
738 kvmppc_update_vpa(vcpu, vpap: &vcpu->arch.vpa, old_vpap: &old_vpa);
739 if (old_vpa.pinned_addr) {
740 if (kvmhv_is_nestedv2())
741 kvmhv_nestedv2_set_vpa(vcpu, ~0ull);
742 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
743 old_vpa.dirty);
744 }
745 if (vcpu->arch.vpa.pinned_addr) {
746 init_vpa(vcpu, vpa: vcpu->arch.vpa.pinned_addr);
747 if (kvmhv_is_nestedv2())
748 kvmhv_nestedv2_set_vpa(vcpu, __pa(vcpu->arch.vpa.pinned_addr));
749 }
750 }
751 if (vcpu->arch.dtl.update_pending) {
752 kvmppc_update_vpa(vcpu, vpap: &vcpu->arch.dtl, old_vpap: &old_vpa);
753 if (old_vpa.pinned_addr)
754 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
755 old_vpa.dirty);
756 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
757 vcpu->arch.dtl_index = 0;
758 }
759 if (vcpu->arch.slb_shadow.update_pending) {
760 kvmppc_update_vpa(vcpu, vpap: &vcpu->arch.slb_shadow, old_vpap: &old_vpa);
761 if (old_vpa.pinned_addr)
762 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
763 old_vpa.dirty);
764 }
765
766 spin_unlock(lock: &vcpu->arch.vpa_update_lock);
767}
768
769/*
770 * Return the accumulated stolen time for the vcore up until `now'.
771 * The caller should hold the vcore lock.
772 */
773static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
774{
775 u64 p;
776 unsigned long flags;
777
778 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
779
780 spin_lock_irqsave(&vc->stoltb_lock, flags);
781 p = vc->stolen_tb;
782 if (vc->vcore_state != VCORE_INACTIVE &&
783 vc->preempt_tb != TB_NIL)
784 p += now - vc->preempt_tb;
785 spin_unlock_irqrestore(lock: &vc->stoltb_lock, flags);
786 return p;
787}
788
789static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
790 struct lppaca *vpa,
791 unsigned int pcpu, u64 now,
792 unsigned long stolen)
793{
794 struct dtl_entry *dt;
795
796 dt = vcpu->arch.dtl_ptr;
797
798 if (!dt)
799 return;
800
801 dt->dispatch_reason = 7;
802 dt->preempt_reason = 0;
803 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
804 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
805 dt->ready_to_enqueue_time = 0;
806 dt->waiting_to_ready_time = 0;
807 dt->timebase = cpu_to_be64(now);
808 dt->fault_addr = 0;
809 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
810 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
811
812 ++dt;
813 if (dt == vcpu->arch.dtl.pinned_end)
814 dt = vcpu->arch.dtl.pinned_addr;
815 vcpu->arch.dtl_ptr = dt;
816 /* order writing *dt vs. writing vpa->dtl_idx */
817 smp_wmb();
818 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
819
820 /* vcpu->arch.dtl.dirty is set by the caller */
821}
822
823static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
824 struct kvmppc_vcore *vc)
825{
826 struct lppaca *vpa;
827 unsigned long stolen;
828 unsigned long core_stolen;
829 u64 now;
830 unsigned long flags;
831
832 vpa = vcpu->arch.vpa.pinned_addr;
833 if (!vpa)
834 return;
835
836 now = mftb();
837
838 core_stolen = vcore_stolen_time(vc, now);
839 stolen = core_stolen - vcpu->arch.stolen_logged;
840 vcpu->arch.stolen_logged = core_stolen;
841 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
842 stolen += vcpu->arch.busy_stolen;
843 vcpu->arch.busy_stolen = 0;
844 spin_unlock_irqrestore(lock: &vcpu->arch.tbacct_lock, flags);
845
846 vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
847
848 __kvmppc_create_dtl_entry(vcpu, vpa, pcpu: vc->pcpu, now: now + kvmppc_get_tb_offset(vcpu), stolen);
849
850 vcpu->arch.vpa.dirty = true;
851}
852
853static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
854 struct kvmppc_vcore *vc,
855 u64 now)
856{
857 struct lppaca *vpa;
858 unsigned long stolen;
859 unsigned long stolen_delta;
860
861 vpa = vcpu->arch.vpa.pinned_addr;
862 if (!vpa)
863 return;
864
865 stolen = vc->stolen_tb;
866 stolen_delta = stolen - vcpu->arch.stolen_logged;
867 vcpu->arch.stolen_logged = stolen;
868
869 vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
870
871 __kvmppc_create_dtl_entry(vcpu, vpa, pcpu: vc->pcpu, now, stolen: stolen_delta);
872
873 vcpu->arch.vpa.dirty = true;
874}
875
876/* See if there is a doorbell interrupt pending for a vcpu */
877static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
878{
879 int thr;
880 struct kvmppc_vcore *vc;
881
882 if (vcpu->arch.doorbell_request)
883 return true;
884 if (cpu_has_feature(CPU_FTR_ARCH_300))
885 return false;
886 /*
887 * Ensure that the read of vcore->dpdes comes after the read
888 * of vcpu->doorbell_request. This barrier matches the
889 * smp_wmb() in kvmppc_guest_entry_inject().
890 */
891 smp_rmb();
892 vc = vcpu->arch.vcore;
893 thr = vcpu->vcpu_id - vc->first_vcpuid;
894 return !!(vc->dpdes & (1 << thr));
895}
896
897static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
898{
899 if (kvmppc_get_arch_compat(vcpu) >= PVR_ARCH_207)
900 return true;
901 if ((!kvmppc_get_arch_compat(vcpu)) &&
902 cpu_has_feature(CPU_FTR_ARCH_207S))
903 return true;
904 return false;
905}
906
907static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
908 unsigned long resource, unsigned long value1,
909 unsigned long value2)
910{
911 switch (resource) {
912 case H_SET_MODE_RESOURCE_SET_CIABR:
913 if (!kvmppc_power8_compatible(vcpu))
914 return H_P2;
915 if (value2)
916 return H_P4;
917 if (mflags)
918 return H_UNSUPPORTED_FLAG_START;
919 /* Guests can't breakpoint the hypervisor */
920 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
921 return H_P3;
922 kvmppc_set_ciabr_hv(vcpu, val: value1);
923 return H_SUCCESS;
924 case H_SET_MODE_RESOURCE_SET_DAWR0:
925 if (!kvmppc_power8_compatible(vcpu))
926 return H_P2;
927 if (!ppc_breakpoint_available())
928 return H_P2;
929 if (mflags)
930 return H_UNSUPPORTED_FLAG_START;
931 if (value2 & DABRX_HYP)
932 return H_P4;
933 kvmppc_set_dawr0_hv(vcpu, val: value1);
934 kvmppc_set_dawrx0_hv(vcpu, val: value2);
935 return H_SUCCESS;
936 case H_SET_MODE_RESOURCE_SET_DAWR1:
937 if (!kvmppc_power8_compatible(vcpu))
938 return H_P2;
939 if (!ppc_breakpoint_available())
940 return H_P2;
941 if (!cpu_has_feature(CPU_FTR_DAWR1))
942 return H_P2;
943 if (!vcpu->kvm->arch.dawr1_enabled)
944 return H_FUNCTION;
945 if (mflags)
946 return H_UNSUPPORTED_FLAG_START;
947 if (value2 & DABRX_HYP)
948 return H_P4;
949 kvmppc_set_dawr1_hv(vcpu, val: value1);
950 kvmppc_set_dawrx1_hv(vcpu, val: value2);
951 return H_SUCCESS;
952 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
953 /*
954 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
955 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
956 */
957 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
958 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
959 return H_UNSUPPORTED_FLAG_START;
960 return H_TOO_HARD;
961 default:
962 return H_TOO_HARD;
963 }
964}
965
966/* Copy guest memory in place - must reside within a single memslot */
967static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
968 unsigned long len)
969{
970 struct kvm_memory_slot *to_memslot = NULL;
971 struct kvm_memory_slot *from_memslot = NULL;
972 unsigned long to_addr, from_addr;
973 int r;
974
975 /* Get HPA for from address */
976 from_memslot = gfn_to_memslot(kvm, gfn: from >> PAGE_SHIFT);
977 if (!from_memslot)
978 return -EFAULT;
979 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
980 << PAGE_SHIFT))
981 return -EINVAL;
982 from_addr = gfn_to_hva_memslot(slot: from_memslot, gfn: from >> PAGE_SHIFT);
983 if (kvm_is_error_hva(addr: from_addr))
984 return -EFAULT;
985 from_addr |= (from & (PAGE_SIZE - 1));
986
987 /* Get HPA for to address */
988 to_memslot = gfn_to_memslot(kvm, gfn: to >> PAGE_SHIFT);
989 if (!to_memslot)
990 return -EFAULT;
991 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
992 << PAGE_SHIFT))
993 return -EINVAL;
994 to_addr = gfn_to_hva_memslot(slot: to_memslot, gfn: to >> PAGE_SHIFT);
995 if (kvm_is_error_hva(addr: to_addr))
996 return -EFAULT;
997 to_addr |= (to & (PAGE_SIZE - 1));
998
999 /* Perform copy */
1000 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
1001 len);
1002 if (r)
1003 return -EFAULT;
1004 mark_page_dirty(kvm, gfn: to >> PAGE_SHIFT);
1005 return 0;
1006}
1007
1008static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
1009 unsigned long dest, unsigned long src)
1010{
1011 u64 pg_sz = SZ_4K; /* 4K page size */
1012 u64 pg_mask = SZ_4K - 1;
1013 int ret;
1014
1015 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
1016 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
1017 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
1018 return H_PARAMETER;
1019
1020 /* dest (and src if copy_page flag set) must be page aligned */
1021 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
1022 return H_PARAMETER;
1023
1024 /* zero and/or copy the page as determined by the flags */
1025 if (flags & H_COPY_PAGE) {
1026 ret = kvmppc_copy_guest(kvm: vcpu->kvm, to: dest, from: src, len: pg_sz);
1027 if (ret < 0)
1028 return H_PARAMETER;
1029 } else if (flags & H_ZERO_PAGE) {
1030 ret = kvm_clear_guest(kvm: vcpu->kvm, gpa: dest, len: pg_sz);
1031 if (ret < 0)
1032 return H_PARAMETER;
1033 }
1034
1035 /* We can ignore the remaining flags */
1036
1037 return H_SUCCESS;
1038}
1039
1040static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
1041{
1042 struct kvmppc_vcore *vcore = target->arch.vcore;
1043
1044 /*
1045 * We expect to have been called by the real mode handler
1046 * (kvmppc_rm_h_confer()) which would have directly returned
1047 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
1048 * have useful work to do and should not confer) so we don't
1049 * recheck that here.
1050 *
1051 * In the case of the P9 single vcpu per vcore case, the real
1052 * mode handler is not called but no other threads are in the
1053 * source vcore.
1054 */
1055 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1056 spin_lock(lock: &vcore->lock);
1057 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
1058 vcore->vcore_state != VCORE_INACTIVE &&
1059 vcore->runner)
1060 target = vcore->runner;
1061 spin_unlock(lock: &vcore->lock);
1062 }
1063
1064 return kvm_vcpu_yield_to(target);
1065}
1066
1067static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
1068{
1069 int yield_count = 0;
1070 struct lppaca *lppaca;
1071
1072 spin_lock(lock: &vcpu->arch.vpa_update_lock);
1073 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
1074 if (lppaca)
1075 yield_count = be32_to_cpu(lppaca->yield_count);
1076 spin_unlock(lock: &vcpu->arch.vpa_update_lock);
1077 return yield_count;
1078}
1079
1080/*
1081 * H_RPT_INVALIDATE hcall handler for nested guests.
1082 *
1083 * Handles only nested process-scoped invalidation requests in L0.
1084 */
1085static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
1086{
1087 unsigned long type = kvmppc_get_gpr(vcpu, 6);
1088 unsigned long pid, pg_sizes, start, end;
1089
1090 /*
1091 * The partition-scoped invalidations aren't handled here in L0.
1092 */
1093 if (type & H_RPTI_TYPE_NESTED)
1094 return RESUME_HOST;
1095
1096 pid = kvmppc_get_gpr(vcpu, 4);
1097 pg_sizes = kvmppc_get_gpr(vcpu, 7);
1098 start = kvmppc_get_gpr(vcpu, 8);
1099 end = kvmppc_get_gpr(vcpu, 9);
1100
1101 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
1102 type, pg_sizes, start, end);
1103
1104 kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
1105 return RESUME_GUEST;
1106}
1107
1108static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
1109 unsigned long id, unsigned long target,
1110 unsigned long type, unsigned long pg_sizes,
1111 unsigned long start, unsigned long end)
1112{
1113 if (!kvm_is_radix(vcpu->kvm))
1114 return H_UNSUPPORTED;
1115
1116 if (end < start)
1117 return H_P5;
1118
1119 /*
1120 * Partition-scoped invalidation for nested guests.
1121 */
1122 if (type & H_RPTI_TYPE_NESTED) {
1123 if (!nesting_enabled(vcpu->kvm))
1124 return H_FUNCTION;
1125
1126 /* Support only cores as target */
1127 if (target != H_RPTI_TARGET_CMMU)
1128 return H_P2;
1129
1130 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1131 start, end);
1132 }
1133
1134 /*
1135 * Process-scoped invalidation for L1 guests.
1136 */
1137 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1138 type, pg_sizes, start, end);
1139 return H_SUCCESS;
1140}
1141
1142int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1143{
1144 struct kvm *kvm = vcpu->kvm;
1145 unsigned long req = kvmppc_get_gpr(vcpu, 3);
1146 unsigned long target, ret = H_SUCCESS;
1147 int yield_count;
1148 struct kvm_vcpu *tvcpu;
1149 int idx, rc;
1150
1151 if (req <= MAX_HCALL_OPCODE &&
1152 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1153 return RESUME_HOST;
1154
1155 switch (req) {
1156 case H_REMOVE:
1157 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1158 kvmppc_get_gpr(vcpu, 5),
1159 kvmppc_get_gpr(vcpu, 6));
1160 if (ret == H_TOO_HARD)
1161 return RESUME_HOST;
1162 break;
1163 case H_ENTER:
1164 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1165 kvmppc_get_gpr(vcpu, 5),
1166 kvmppc_get_gpr(vcpu, 6),
1167 kvmppc_get_gpr(vcpu, 7));
1168 if (ret == H_TOO_HARD)
1169 return RESUME_HOST;
1170 break;
1171 case H_READ:
1172 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1173 kvmppc_get_gpr(vcpu, 5));
1174 if (ret == H_TOO_HARD)
1175 return RESUME_HOST;
1176 break;
1177 case H_CLEAR_MOD:
1178 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1179 kvmppc_get_gpr(vcpu, 5));
1180 if (ret == H_TOO_HARD)
1181 return RESUME_HOST;
1182 break;
1183 case H_CLEAR_REF:
1184 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1185 kvmppc_get_gpr(vcpu, 5));
1186 if (ret == H_TOO_HARD)
1187 return RESUME_HOST;
1188 break;
1189 case H_PROTECT:
1190 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1191 kvmppc_get_gpr(vcpu, 5),
1192 kvmppc_get_gpr(vcpu, 6));
1193 if (ret == H_TOO_HARD)
1194 return RESUME_HOST;
1195 break;
1196 case H_BULK_REMOVE:
1197 ret = kvmppc_h_bulk_remove(vcpu);
1198 if (ret == H_TOO_HARD)
1199 return RESUME_HOST;
1200 break;
1201
1202 case H_CEDE:
1203 break;
1204 case H_PROD:
1205 target = kvmppc_get_gpr(vcpu, 4);
1206 tvcpu = kvmppc_find_vcpu(kvm, id: target);
1207 if (!tvcpu) {
1208 ret = H_PARAMETER;
1209 break;
1210 }
1211 tvcpu->arch.prodded = 1;
1212 smp_mb(); /* This orders prodded store vs ceded load */
1213 if (tvcpu->arch.ceded)
1214 kvmppc_fast_vcpu_kick_hv(vcpu: tvcpu);
1215 break;
1216 case H_CONFER:
1217 target = kvmppc_get_gpr(vcpu, 4);
1218 if (target == -1)
1219 break;
1220 tvcpu = kvmppc_find_vcpu(kvm, id: target);
1221 if (!tvcpu) {
1222 ret = H_PARAMETER;
1223 break;
1224 }
1225 yield_count = kvmppc_get_gpr(vcpu, 5);
1226 if (kvmppc_get_yield_count(vcpu: tvcpu) != yield_count)
1227 break;
1228 kvm_arch_vcpu_yield_to(target: tvcpu);
1229 break;
1230 case H_REGISTER_VPA:
1231 ret = do_h_register_vpa(vcpu, flags: kvmppc_get_gpr(vcpu, 4),
1232 vcpuid: kvmppc_get_gpr(vcpu, 5),
1233 vpa: kvmppc_get_gpr(vcpu, 6));
1234 break;
1235 case H_RTAS:
1236 if (list_empty(&kvm->arch.rtas_tokens))
1237 return RESUME_HOST;
1238
1239 idx = srcu_read_lock(ssp: &kvm->srcu);
1240 rc = kvmppc_rtas_hcall(vcpu);
1241 srcu_read_unlock(ssp: &kvm->srcu, idx);
1242
1243 if (rc == -ENOENT)
1244 return RESUME_HOST;
1245 else if (rc == 0)
1246 break;
1247
1248 /* Send the error out to userspace via KVM_RUN */
1249 return rc;
1250 case H_LOGICAL_CI_LOAD:
1251 ret = kvmppc_h_logical_ci_load(vcpu);
1252 if (ret == H_TOO_HARD)
1253 return RESUME_HOST;
1254 break;
1255 case H_LOGICAL_CI_STORE:
1256 ret = kvmppc_h_logical_ci_store(vcpu);
1257 if (ret == H_TOO_HARD)
1258 return RESUME_HOST;
1259 break;
1260 case H_SET_MODE:
1261 ret = kvmppc_h_set_mode(vcpu, mflags: kvmppc_get_gpr(vcpu, 4),
1262 resource: kvmppc_get_gpr(vcpu, 5),
1263 value1: kvmppc_get_gpr(vcpu, 6),
1264 value2: kvmppc_get_gpr(vcpu, 7));
1265 if (ret == H_TOO_HARD)
1266 return RESUME_HOST;
1267 break;
1268 case H_XIRR:
1269 case H_CPPR:
1270 case H_EOI:
1271 case H_IPI:
1272 case H_IPOLL:
1273 case H_XIRR_X:
1274 if (kvmppc_xics_enabled(vcpu)) {
1275 if (xics_on_xive()) {
1276 ret = H_NOT_AVAILABLE;
1277 return RESUME_GUEST;
1278 }
1279 ret = kvmppc_xics_hcall(vcpu, req);
1280 break;
1281 }
1282 return RESUME_HOST;
1283 case H_SET_DABR:
1284 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1285 break;
1286 case H_SET_XDABR:
1287 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1288 kvmppc_get_gpr(vcpu, 5));
1289 break;
1290#ifdef CONFIG_SPAPR_TCE_IOMMU
1291 case H_GET_TCE:
1292 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1293 kvmppc_get_gpr(vcpu, 5));
1294 if (ret == H_TOO_HARD)
1295 return RESUME_HOST;
1296 break;
1297 case H_PUT_TCE:
1298 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1299 kvmppc_get_gpr(vcpu, 5),
1300 kvmppc_get_gpr(vcpu, 6));
1301 if (ret == H_TOO_HARD)
1302 return RESUME_HOST;
1303 break;
1304 case H_PUT_TCE_INDIRECT:
1305 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1306 kvmppc_get_gpr(vcpu, 5),
1307 kvmppc_get_gpr(vcpu, 6),
1308 kvmppc_get_gpr(vcpu, 7));
1309 if (ret == H_TOO_HARD)
1310 return RESUME_HOST;
1311 break;
1312 case H_STUFF_TCE:
1313 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1314 kvmppc_get_gpr(vcpu, 5),
1315 kvmppc_get_gpr(vcpu, 6),
1316 kvmppc_get_gpr(vcpu, 7));
1317 if (ret == H_TOO_HARD)
1318 return RESUME_HOST;
1319 break;
1320#endif
1321 case H_RANDOM: {
1322 unsigned long rand;
1323
1324 if (!arch_get_random_seed_longs(&rand, 1))
1325 ret = H_HARDWARE;
1326 kvmppc_set_gpr(vcpu, 4, rand);
1327 break;
1328 }
1329 case H_RPT_INVALIDATE:
1330 ret = kvmppc_h_rpt_invalidate(vcpu, id: kvmppc_get_gpr(vcpu, 4),
1331 target: kvmppc_get_gpr(vcpu, 5),
1332 type: kvmppc_get_gpr(vcpu, 6),
1333 pg_sizes: kvmppc_get_gpr(vcpu, 7),
1334 start: kvmppc_get_gpr(vcpu, 8),
1335 end: kvmppc_get_gpr(vcpu, 9));
1336 break;
1337
1338 case H_SET_PARTITION_TABLE:
1339 ret = H_FUNCTION;
1340 if (nesting_enabled(kvm))
1341 ret = kvmhv_set_partition_table(vcpu);
1342 break;
1343 case H_ENTER_NESTED:
1344 ret = H_FUNCTION;
1345 if (!nesting_enabled(kvm))
1346 break;
1347 ret = kvmhv_enter_nested_guest(vcpu);
1348 if (ret == H_INTERRUPT) {
1349 kvmppc_set_gpr(vcpu, 3, 0);
1350 vcpu->arch.hcall_needed = 0;
1351 return -EINTR;
1352 } else if (ret == H_TOO_HARD) {
1353 kvmppc_set_gpr(vcpu, 3, 0);
1354 vcpu->arch.hcall_needed = 0;
1355 return RESUME_HOST;
1356 }
1357 break;
1358 case H_TLB_INVALIDATE:
1359 ret = H_FUNCTION;
1360 if (nesting_enabled(kvm))
1361 ret = kvmhv_do_nested_tlbie(vcpu);
1362 break;
1363 case H_COPY_TOFROM_GUEST:
1364 ret = H_FUNCTION;
1365 if (nesting_enabled(kvm))
1366 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1367 break;
1368 case H_PAGE_INIT:
1369 ret = kvmppc_h_page_init(vcpu, flags: kvmppc_get_gpr(vcpu, 4),
1370 dest: kvmppc_get_gpr(vcpu, 5),
1371 src: kvmppc_get_gpr(vcpu, 6));
1372 break;
1373 case H_SVM_PAGE_IN:
1374 ret = H_UNSUPPORTED;
1375 if (kvmppc_get_srr1(vcpu) & MSR_S)
1376 ret = kvmppc_h_svm_page_in(kvm,
1377 kvmppc_get_gpr(vcpu, 4),
1378 kvmppc_get_gpr(vcpu, 5),
1379 kvmppc_get_gpr(vcpu, 6));
1380 break;
1381 case H_SVM_PAGE_OUT:
1382 ret = H_UNSUPPORTED;
1383 if (kvmppc_get_srr1(vcpu) & MSR_S)
1384 ret = kvmppc_h_svm_page_out(kvm,
1385 kvmppc_get_gpr(vcpu, 4),
1386 kvmppc_get_gpr(vcpu, 5),
1387 kvmppc_get_gpr(vcpu, 6));
1388 break;
1389 case H_SVM_INIT_START:
1390 ret = H_UNSUPPORTED;
1391 if (kvmppc_get_srr1(vcpu) & MSR_S)
1392 ret = kvmppc_h_svm_init_start(kvm);
1393 break;
1394 case H_SVM_INIT_DONE:
1395 ret = H_UNSUPPORTED;
1396 if (kvmppc_get_srr1(vcpu) & MSR_S)
1397 ret = kvmppc_h_svm_init_done(kvm);
1398 break;
1399 case H_SVM_INIT_ABORT:
1400 /*
1401 * Even if that call is made by the Ultravisor, the SSR1 value
1402 * is the guest context one, with the secure bit clear as it has
1403 * not yet been secured. So we can't check it here.
1404 * Instead the kvm->arch.secure_guest flag is checked inside
1405 * kvmppc_h_svm_init_abort().
1406 */
1407 ret = kvmppc_h_svm_init_abort(kvm);
1408 break;
1409
1410 default:
1411 return RESUME_HOST;
1412 }
1413 WARN_ON_ONCE(ret == H_TOO_HARD);
1414 kvmppc_set_gpr(vcpu, 3, ret);
1415 vcpu->arch.hcall_needed = 0;
1416 return RESUME_GUEST;
1417}
1418
1419/*
1420 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1421 * handlers in book3s_hv_rmhandlers.S.
1422 *
1423 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1424 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1425 */
1426static void kvmppc_cede(struct kvm_vcpu *vcpu)
1427{
1428 __kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE);
1429 vcpu->arch.ceded = 1;
1430 smp_mb();
1431 if (vcpu->arch.prodded) {
1432 vcpu->arch.prodded = 0;
1433 smp_mb();
1434 vcpu->arch.ceded = 0;
1435 }
1436}
1437
1438static int kvmppc_hcall_impl_hv(unsigned long cmd)
1439{
1440 switch (cmd) {
1441 case H_CEDE:
1442 case H_PROD:
1443 case H_CONFER:
1444 case H_REGISTER_VPA:
1445 case H_SET_MODE:
1446#ifdef CONFIG_SPAPR_TCE_IOMMU
1447 case H_GET_TCE:
1448 case H_PUT_TCE:
1449 case H_PUT_TCE_INDIRECT:
1450 case H_STUFF_TCE:
1451#endif
1452 case H_LOGICAL_CI_LOAD:
1453 case H_LOGICAL_CI_STORE:
1454#ifdef CONFIG_KVM_XICS
1455 case H_XIRR:
1456 case H_CPPR:
1457 case H_EOI:
1458 case H_IPI:
1459 case H_IPOLL:
1460 case H_XIRR_X:
1461#endif
1462 case H_PAGE_INIT:
1463 case H_RPT_INVALIDATE:
1464 return 1;
1465 }
1466
1467 /* See if it's in the real-mode table */
1468 return kvmppc_hcall_impl_hv_realmode(cmd);
1469}
1470
1471static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1472{
1473 ppc_inst_t last_inst;
1474
1475 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1476 EMULATE_DONE) {
1477 /*
1478 * Fetch failed, so return to guest and
1479 * try executing it again.
1480 */
1481 return RESUME_GUEST;
1482 }
1483
1484 if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) {
1485 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1486 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1487 return RESUME_HOST;
1488 } else {
1489 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1490 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1491 return RESUME_GUEST;
1492 }
1493}
1494
1495static void do_nothing(void *x)
1496{
1497}
1498
1499static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1500{
1501 int thr, cpu, pcpu, nthreads;
1502 struct kvm_vcpu *v;
1503 unsigned long dpdes;
1504
1505 nthreads = vcpu->kvm->arch.emul_smt_mode;
1506 dpdes = 0;
1507 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1508 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1509 v = kvmppc_find_vcpu(kvm: vcpu->kvm, id: cpu);
1510 if (!v)
1511 continue;
1512 /*
1513 * If the vcpu is currently running on a physical cpu thread,
1514 * interrupt it in order to pull it out of the guest briefly,
1515 * which will update its vcore->dpdes value.
1516 */
1517 pcpu = READ_ONCE(v->cpu);
1518 if (pcpu >= 0)
1519 smp_call_function_single(cpuid: pcpu, func: do_nothing, NULL, wait: 1);
1520 if (kvmppc_doorbell_pending(vcpu: v))
1521 dpdes |= 1 << thr;
1522 }
1523 return dpdes;
1524}
1525
1526/*
1527 * On POWER9, emulate doorbell-related instructions in order to
1528 * give the guest the illusion of running on a multi-threaded core.
1529 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1530 * and mfspr DPDES.
1531 */
1532static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1533{
1534 u32 inst, rb, thr;
1535 unsigned long arg;
1536 struct kvm *kvm = vcpu->kvm;
1537 struct kvm_vcpu *tvcpu;
1538 ppc_inst_t pinst;
1539
1540 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE)
1541 return RESUME_GUEST;
1542 inst = ppc_inst_val(pinst);
1543 if (get_op(inst) != 31)
1544 return EMULATE_FAIL;
1545 rb = get_rb(inst);
1546 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1547 switch (get_xop(inst)) {
1548 case OP_31_XOP_MSGSNDP:
1549 arg = kvmppc_get_gpr(vcpu, rb);
1550 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1551 break;
1552 arg &= 0x7f;
1553 if (arg >= kvm->arch.emul_smt_mode)
1554 break;
1555 tvcpu = kvmppc_find_vcpu(kvm, id: vcpu->vcpu_id - thr + arg);
1556 if (!tvcpu)
1557 break;
1558 if (!tvcpu->arch.doorbell_request) {
1559 tvcpu->arch.doorbell_request = 1;
1560 kvmppc_fast_vcpu_kick_hv(vcpu: tvcpu);
1561 }
1562 break;
1563 case OP_31_XOP_MSGCLRP:
1564 arg = kvmppc_get_gpr(vcpu, rb);
1565 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1566 break;
1567 vcpu->arch.vcore->dpdes = 0;
1568 vcpu->arch.doorbell_request = 0;
1569 break;
1570 case OP_31_XOP_MFSPR:
1571 switch (get_sprn(inst)) {
1572 case SPRN_TIR:
1573 arg = thr;
1574 break;
1575 case SPRN_DPDES:
1576 arg = kvmppc_read_dpdes(vcpu);
1577 break;
1578 default:
1579 return EMULATE_FAIL;
1580 }
1581 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1582 break;
1583 default:
1584 return EMULATE_FAIL;
1585 }
1586 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1587 return RESUME_GUEST;
1588}
1589
1590/*
1591 * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1592 * HFSCR_PM is cleared for next entry. If the guest then tries to access
1593 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1594 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1595 * allow the guest access to continue.
1596 */
1597static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1598{
1599 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1600 return EMULATE_FAIL;
1601
1602 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM);
1603
1604 return RESUME_GUEST;
1605}
1606
1607static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1608{
1609 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1610 return EMULATE_FAIL;
1611
1612 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB);
1613
1614 return RESUME_GUEST;
1615}
1616
1617static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1618{
1619 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1620 return EMULATE_FAIL;
1621
1622 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
1623
1624 return RESUME_GUEST;
1625}
1626
1627static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1628 struct task_struct *tsk)
1629{
1630 struct kvm_run *run = vcpu->run;
1631 int r = RESUME_HOST;
1632
1633 vcpu->stat.sum_exits++;
1634
1635 /*
1636 * This can happen if an interrupt occurs in the last stages
1637 * of guest entry or the first stages of guest exit (i.e. after
1638 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1639 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1640 * That can happen due to a bug, or due to a machine check
1641 * occurring at just the wrong time.
1642 */
1643 if (!kvmhv_is_nestedv2() && (__kvmppc_get_msr_hv(vcpu) & MSR_HV)) {
1644 printk(KERN_EMERG "KVM trap in HV mode!\n");
1645 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1646 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1647 vcpu->arch.shregs.msr);
1648 kvmppc_dump_regs(vcpu);
1649 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1650 run->hw.hardware_exit_reason = vcpu->arch.trap;
1651 return RESUME_HOST;
1652 }
1653 run->exit_reason = KVM_EXIT_UNKNOWN;
1654 run->ready_for_interrupt_injection = 1;
1655 switch (vcpu->arch.trap) {
1656 /* We're good on these - the host merely wanted to get our attention */
1657 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1658 WARN_ON_ONCE(1); /* Should never happen */
1659 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1660 fallthrough;
1661 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1662 vcpu->stat.dec_exits++;
1663 r = RESUME_GUEST;
1664 break;
1665 case BOOK3S_INTERRUPT_EXTERNAL:
1666 case BOOK3S_INTERRUPT_H_DOORBELL:
1667 case BOOK3S_INTERRUPT_H_VIRT:
1668 vcpu->stat.ext_intr_exits++;
1669 r = RESUME_GUEST;
1670 break;
1671 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1672 case BOOK3S_INTERRUPT_HMI:
1673 case BOOK3S_INTERRUPT_PERFMON:
1674 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1675 r = RESUME_GUEST;
1676 break;
1677 case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1678 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1679 DEFAULT_RATELIMIT_BURST);
1680 /*
1681 * Print the MCE event to host console. Ratelimit so the guest
1682 * can't flood the host log.
1683 */
1684 if (__ratelimit(&rs))
1685 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1686
1687 /*
1688 * If the guest can do FWNMI, exit to userspace so it can
1689 * deliver a FWNMI to the guest.
1690 * Otherwise we synthesize a machine check for the guest
1691 * so that it knows that the machine check occurred.
1692 */
1693 if (!vcpu->kvm->arch.fwnmi_enabled) {
1694 ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) |
1695 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1696 kvmppc_core_queue_machine_check(vcpu, flags);
1697 r = RESUME_GUEST;
1698 break;
1699 }
1700
1701 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1702 run->exit_reason = KVM_EXIT_NMI;
1703 run->hw.hardware_exit_reason = vcpu->arch.trap;
1704 /* Clear out the old NMI status from run->flags */
1705 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1706 /* Now set the NMI status */
1707 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1708 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1709 else
1710 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1711
1712 r = RESUME_HOST;
1713 break;
1714 }
1715 case BOOK3S_INTERRUPT_PROGRAM:
1716 {
1717 ulong flags;
1718 /*
1719 * Normally program interrupts are delivered directly
1720 * to the guest by the hardware, but we can get here
1721 * as a result of a hypervisor emulation interrupt
1722 * (e40) getting turned into a 700 by BML RTAS.
1723 */
1724 flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) |
1725 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1726 kvmppc_core_queue_program(vcpu, flags);
1727 r = RESUME_GUEST;
1728 break;
1729 }
1730 case BOOK3S_INTERRUPT_SYSCALL:
1731 {
1732 int i;
1733
1734 if (!kvmhv_is_nestedv2() && unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
1735 /*
1736 * Guest userspace executed sc 1. This can only be
1737 * reached by the P9 path because the old path
1738 * handles this case in realmode hcall handlers.
1739 */
1740 if (!kvmhv_vcpu_is_radix(vcpu)) {
1741 /*
1742 * A guest could be running PR KVM, so this
1743 * may be a PR KVM hcall. It must be reflected
1744 * to the guest kernel as a sc interrupt.
1745 */
1746 kvmppc_core_queue_syscall(vcpu);
1747 } else {
1748 /*
1749 * Radix guests can not run PR KVM or nested HV
1750 * hash guests which might run PR KVM, so this
1751 * is always a privilege fault. Send a program
1752 * check to guest kernel.
1753 */
1754 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1755 }
1756 r = RESUME_GUEST;
1757 break;
1758 }
1759
1760 /*
1761 * hcall - gather args and set exit_reason. This will next be
1762 * handled by kvmppc_pseries_do_hcall which may be able to deal
1763 * with it and resume guest, or may punt to userspace.
1764 */
1765 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1766 for (i = 0; i < 9; ++i)
1767 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1768 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1769 vcpu->arch.hcall_needed = 1;
1770 r = RESUME_HOST;
1771 break;
1772 }
1773 /*
1774 * We get these next two if the guest accesses a page which it thinks
1775 * it has mapped but which is not actually present, either because
1776 * it is for an emulated I/O device or because the corresonding
1777 * host page has been paged out.
1778 *
1779 * Any other HDSI/HISI interrupts have been handled already for P7/8
1780 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1781 * fault handling is done here.
1782 */
1783 case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1784 unsigned long vsid;
1785 long err;
1786
1787 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1788 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1789 r = RESUME_GUEST; /* Just retry if it's the canary */
1790 break;
1791 }
1792
1793 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1794 /*
1795 * Radix doesn't require anything, and pre-ISAv3.0 hash
1796 * already attempted to handle this in rmhandlers. The
1797 * hash fault handling below is v3 only (it uses ASDR
1798 * via fault_gpa).
1799 */
1800 r = RESUME_PAGE_FAULT;
1801 break;
1802 }
1803
1804 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1805 kvmppc_core_queue_data_storage(vcpu,
1806 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1807 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1808 r = RESUME_GUEST;
1809 break;
1810 }
1811
1812 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR))
1813 vsid = vcpu->kvm->arch.vrma_slb_v;
1814 else
1815 vsid = vcpu->arch.fault_gpa;
1816
1817 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1818 vsid, vcpu->arch.fault_dsisr, true);
1819 if (err == 0) {
1820 r = RESUME_GUEST;
1821 } else if (err == -1 || err == -2) {
1822 r = RESUME_PAGE_FAULT;
1823 } else {
1824 kvmppc_core_queue_data_storage(vcpu,
1825 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1826 vcpu->arch.fault_dar, err);
1827 r = RESUME_GUEST;
1828 }
1829 break;
1830 }
1831 case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1832 unsigned long vsid;
1833 long err;
1834
1835 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1836 vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) &
1837 DSISR_SRR1_MATCH_64S;
1838 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1839 /*
1840 * Radix doesn't require anything, and pre-ISAv3.0 hash
1841 * already attempted to handle this in rmhandlers. The
1842 * hash fault handling below is v3 only (it uses ASDR
1843 * via fault_gpa).
1844 */
1845 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
1846 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1847 r = RESUME_PAGE_FAULT;
1848 break;
1849 }
1850
1851 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1852 kvmppc_core_queue_inst_storage(vcpu,
1853 vcpu->arch.fault_dsisr |
1854 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1855 r = RESUME_GUEST;
1856 break;
1857 }
1858
1859 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR))
1860 vsid = vcpu->kvm->arch.vrma_slb_v;
1861 else
1862 vsid = vcpu->arch.fault_gpa;
1863
1864 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1865 vsid, vcpu->arch.fault_dsisr, false);
1866 if (err == 0) {
1867 r = RESUME_GUEST;
1868 } else if (err == -1) {
1869 r = RESUME_PAGE_FAULT;
1870 } else {
1871 kvmppc_core_queue_inst_storage(vcpu,
1872 err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1873 r = RESUME_GUEST;
1874 }
1875 break;
1876 }
1877
1878 /*
1879 * This occurs if the guest executes an illegal instruction.
1880 * If the guest debug is disabled, generate a program interrupt
1881 * to the guest. If guest debug is enabled, we need to check
1882 * whether the instruction is a software breakpoint instruction.
1883 * Accordingly return to Guest or Host.
1884 */
1885 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1886 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1887 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1888 swab32(vcpu->arch.emul_inst) :
1889 vcpu->arch.emul_inst;
1890 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1891 r = kvmppc_emulate_debug_inst(vcpu);
1892 } else {
1893 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1894 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1895 r = RESUME_GUEST;
1896 }
1897 break;
1898
1899#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1900 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1901 /*
1902 * This occurs for various TM-related instructions that
1903 * we need to emulate on POWER9 DD2.2. We have already
1904 * handled the cases where the guest was in real-suspend
1905 * mode and was transitioning to transactional state.
1906 */
1907 r = kvmhv_p9_tm_emulation(vcpu);
1908 if (r != -1)
1909 break;
1910 fallthrough; /* go to facility unavailable handler */
1911#endif
1912
1913 /*
1914 * This occurs if the guest (kernel or userspace), does something that
1915 * is prohibited by HFSCR.
1916 * On POWER9, this could be a doorbell instruction that we need
1917 * to emulate.
1918 * Otherwise, we just generate a program interrupt to the guest.
1919 */
1920 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1921 u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56;
1922
1923 r = EMULATE_FAIL;
1924 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1925 if (cause == FSCR_MSGP_LG)
1926 r = kvmppc_emulate_doorbell_instr(vcpu);
1927 if (cause == FSCR_PM_LG)
1928 r = kvmppc_pmu_unavailable(vcpu);
1929 if (cause == FSCR_EBB_LG)
1930 r = kvmppc_ebb_unavailable(vcpu);
1931 if (cause == FSCR_TM_LG)
1932 r = kvmppc_tm_unavailable(vcpu);
1933 }
1934 if (r == EMULATE_FAIL) {
1935 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1936 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1937 r = RESUME_GUEST;
1938 }
1939 break;
1940 }
1941
1942 case BOOK3S_INTERRUPT_HV_RM_HARD:
1943 r = RESUME_PASSTHROUGH;
1944 break;
1945 default:
1946 kvmppc_dump_regs(vcpu);
1947 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1948 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1949 __kvmppc_get_msr_hv(vcpu));
1950 run->hw.hardware_exit_reason = vcpu->arch.trap;
1951 r = RESUME_HOST;
1952 break;
1953 }
1954
1955 return r;
1956}
1957
1958static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1959{
1960 int r;
1961 int srcu_idx;
1962
1963 vcpu->stat.sum_exits++;
1964
1965 /*
1966 * This can happen if an interrupt occurs in the last stages
1967 * of guest entry or the first stages of guest exit (i.e. after
1968 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1969 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1970 * That can happen due to a bug, or due to a machine check
1971 * occurring at just the wrong time.
1972 */
1973 if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
1974 pr_emerg("KVM trap in HV mode while nested!\n");
1975 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1976 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1977 __kvmppc_get_msr_hv(vcpu));
1978 kvmppc_dump_regs(vcpu);
1979 return RESUME_HOST;
1980 }
1981 switch (vcpu->arch.trap) {
1982 /* We're good on these - the host merely wanted to get our attention */
1983 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1984 vcpu->stat.dec_exits++;
1985 r = RESUME_GUEST;
1986 break;
1987 case BOOK3S_INTERRUPT_EXTERNAL:
1988 vcpu->stat.ext_intr_exits++;
1989 r = RESUME_HOST;
1990 break;
1991 case BOOK3S_INTERRUPT_H_DOORBELL:
1992 case BOOK3S_INTERRUPT_H_VIRT:
1993 vcpu->stat.ext_intr_exits++;
1994 r = RESUME_GUEST;
1995 break;
1996 /* These need to go to the nested HV */
1997 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1998 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1999 vcpu->stat.dec_exits++;
2000 r = RESUME_HOST;
2001 break;
2002 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
2003 case BOOK3S_INTERRUPT_HMI:
2004 case BOOK3S_INTERRUPT_PERFMON:
2005 case BOOK3S_INTERRUPT_SYSTEM_RESET:
2006 r = RESUME_GUEST;
2007 break;
2008 case BOOK3S_INTERRUPT_MACHINE_CHECK:
2009 {
2010 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
2011 DEFAULT_RATELIMIT_BURST);
2012 /* Pass the machine check to the L1 guest */
2013 r = RESUME_HOST;
2014 /* Print the MCE event to host console. */
2015 if (__ratelimit(&rs))
2016 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
2017 break;
2018 }
2019 /*
2020 * We get these next two if the guest accesses a page which it thinks
2021 * it has mapped but which is not actually present, either because
2022 * it is for an emulated I/O device or because the corresonding
2023 * host page has been paged out.
2024 */
2025 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
2026 srcu_idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
2027 r = kvmhv_nested_page_fault(vcpu);
2028 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx: srcu_idx);
2029 break;
2030 case BOOK3S_INTERRUPT_H_INST_STORAGE:
2031 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
2032 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
2033 DSISR_SRR1_MATCH_64S;
2034 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
2035 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
2036 srcu_idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
2037 r = kvmhv_nested_page_fault(vcpu);
2038 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx: srcu_idx);
2039 break;
2040
2041#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2042 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
2043 /*
2044 * This occurs for various TM-related instructions that
2045 * we need to emulate on POWER9 DD2.2. We have already
2046 * handled the cases where the guest was in real-suspend
2047 * mode and was transitioning to transactional state.
2048 */
2049 r = kvmhv_p9_tm_emulation(vcpu);
2050 if (r != -1)
2051 break;
2052 fallthrough; /* go to facility unavailable handler */
2053#endif
2054
2055 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
2056 u64 cause = vcpu->arch.hfscr >> 56;
2057
2058 /*
2059 * Only pass HFU interrupts to the L1 if the facility is
2060 * permitted but disabled by the L1's HFSCR, otherwise
2061 * the interrupt does not make sense to the L1 so turn
2062 * it into a HEAI.
2063 */
2064 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
2065 (vcpu->arch.nested_hfscr & (1UL << cause))) {
2066 ppc_inst_t pinst;
2067 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
2068
2069 /*
2070 * If the fetch failed, return to guest and
2071 * try executing it again.
2072 */
2073 r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
2074 vcpu->arch.emul_inst = ppc_inst_val(pinst);
2075 if (r != EMULATE_DONE)
2076 r = RESUME_GUEST;
2077 else
2078 r = RESUME_HOST;
2079 } else {
2080 r = RESUME_HOST;
2081 }
2082
2083 break;
2084 }
2085
2086 case BOOK3S_INTERRUPT_HV_RM_HARD:
2087 vcpu->arch.trap = 0;
2088 r = RESUME_GUEST;
2089 if (!xics_on_xive())
2090 kvmppc_xics_rm_complete(vcpu, 0);
2091 break;
2092 case BOOK3S_INTERRUPT_SYSCALL:
2093 {
2094 unsigned long req = kvmppc_get_gpr(vcpu, 3);
2095
2096 /*
2097 * The H_RPT_INVALIDATE hcalls issued by nested
2098 * guests for process-scoped invalidations when
2099 * GTSE=0, are handled here in L0.
2100 */
2101 if (req == H_RPT_INVALIDATE) {
2102 r = kvmppc_nested_h_rpt_invalidate(vcpu);
2103 break;
2104 }
2105
2106 r = RESUME_HOST;
2107 break;
2108 }
2109 default:
2110 r = RESUME_HOST;
2111 break;
2112 }
2113
2114 return r;
2115}
2116
2117static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
2118 struct kvm_sregs *sregs)
2119{
2120 int i;
2121
2122 memset(sregs, 0, sizeof(struct kvm_sregs));
2123 sregs->pvr = vcpu->arch.pvr;
2124 for (i = 0; i < vcpu->arch.slb_max; i++) {
2125 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
2126 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
2127 }
2128
2129 return 0;
2130}
2131
2132static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2133 struct kvm_sregs *sregs)
2134{
2135 int i, j;
2136
2137 /* Only accept the same PVR as the host's, since we can't spoof it */
2138 if (sregs->pvr != vcpu->arch.pvr)
2139 return -EINVAL;
2140
2141 j = 0;
2142 for (i = 0; i < vcpu->arch.slb_nr; i++) {
2143 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2144 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2145 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2146 ++j;
2147 }
2148 }
2149 vcpu->arch.slb_max = j;
2150
2151 return 0;
2152}
2153
2154/*
2155 * Enforce limits on guest LPCR values based on hardware availability,
2156 * guest configuration, and possibly hypervisor support and security
2157 * concerns.
2158 */
2159unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2160{
2161 /* LPCR_TC only applies to HPT guests */
2162 if (kvm_is_radix(kvm))
2163 lpcr &= ~LPCR_TC;
2164
2165 /* On POWER8 and above, userspace can modify AIL */
2166 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2167 lpcr &= ~LPCR_AIL;
2168 if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2169 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2170 /*
2171 * On some POWER9s we force AIL off for radix guests to prevent
2172 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2173 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2174 * be cached, which the host TLB management does not expect.
2175 */
2176 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2177 lpcr &= ~LPCR_AIL;
2178
2179 /*
2180 * On POWER9, allow userspace to enable large decrementer for the
2181 * guest, whether or not the host has it enabled.
2182 */
2183 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2184 lpcr &= ~LPCR_LD;
2185
2186 return lpcr;
2187}
2188
2189static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2190{
2191 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2192 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2193 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2194 }
2195}
2196
2197static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2198 bool preserve_top32)
2199{
2200 struct kvm *kvm = vcpu->kvm;
2201 struct kvmppc_vcore *vc = vcpu->arch.vcore;
2202 u64 mask;
2203
2204 spin_lock(lock: &vc->lock);
2205
2206 /*
2207 * Userspace can only modify
2208 * DPFD (default prefetch depth), ILE (interrupt little-endian),
2209 * TC (translation control), AIL (alternate interrupt location),
2210 * LD (large decrementer).
2211 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2212 */
2213 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2214
2215 /* Broken 32-bit version of LPCR must not clear top bits */
2216 if (preserve_top32)
2217 mask &= 0xFFFFFFFF;
2218
2219 new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2220 lpcr: (vc->lpcr & ~mask) | (new_lpcr & mask));
2221
2222 /*
2223 * If ILE (interrupt little-endian) has changed, update the
2224 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2225 */
2226 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2227 struct kvm_vcpu *vcpu;
2228 unsigned long i;
2229
2230 kvm_for_each_vcpu(i, vcpu, kvm) {
2231 if (vcpu->arch.vcore != vc)
2232 continue;
2233 if (new_lpcr & LPCR_ILE)
2234 vcpu->arch.intr_msr |= MSR_LE;
2235 else
2236 vcpu->arch.intr_msr &= ~MSR_LE;
2237 }
2238 }
2239
2240 vc->lpcr = new_lpcr;
2241 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
2242
2243 spin_unlock(lock: &vc->lock);
2244}
2245
2246static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2247 union kvmppc_one_reg *val)
2248{
2249 int r = 0;
2250 long int i;
2251
2252 switch (id) {
2253 case KVM_REG_PPC_DEBUG_INST:
2254 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2255 break;
2256 case KVM_REG_PPC_HIOR:
2257 *val = get_reg_val(id, 0);
2258 break;
2259 case KVM_REG_PPC_DABR:
2260 *val = get_reg_val(id, vcpu->arch.dabr);
2261 break;
2262 case KVM_REG_PPC_DABRX:
2263 *val = get_reg_val(id, vcpu->arch.dabrx);
2264 break;
2265 case KVM_REG_PPC_DSCR:
2266 *val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu));
2267 break;
2268 case KVM_REG_PPC_PURR:
2269 *val = get_reg_val(id, kvmppc_get_purr_hv(vcpu));
2270 break;
2271 case KVM_REG_PPC_SPURR:
2272 *val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu));
2273 break;
2274 case KVM_REG_PPC_AMR:
2275 *val = get_reg_val(id, kvmppc_get_amr_hv(vcpu));
2276 break;
2277 case KVM_REG_PPC_UAMOR:
2278 *val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu));
2279 break;
2280 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2281 i = id - KVM_REG_PPC_MMCR0;
2282 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i));
2283 break;
2284 case KVM_REG_PPC_MMCR2:
2285 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i: 2));
2286 break;
2287 case KVM_REG_PPC_MMCRA:
2288 *val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu));
2289 break;
2290 case KVM_REG_PPC_MMCRS:
2291 *val = get_reg_val(id, vcpu->arch.mmcrs);
2292 break;
2293 case KVM_REG_PPC_MMCR3:
2294 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i: 3));
2295 break;
2296 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2297 i = id - KVM_REG_PPC_PMC1;
2298 *val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i));
2299 break;
2300 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2301 i = id - KVM_REG_PPC_SPMC1;
2302 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2303 break;
2304 case KVM_REG_PPC_SIAR:
2305 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2306 break;
2307 case KVM_REG_PPC_SDAR:
2308 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2309 break;
2310 case KVM_REG_PPC_SIER:
2311 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, i: 0));
2312 break;
2313 case KVM_REG_PPC_SIER2:
2314 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, i: 1));
2315 break;
2316 case KVM_REG_PPC_SIER3:
2317 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, i: 2));
2318 break;
2319 case KVM_REG_PPC_IAMR:
2320 *val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu));
2321 break;
2322 case KVM_REG_PPC_PSPB:
2323 *val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu));
2324 break;
2325 case KVM_REG_PPC_DPDES:
2326 /*
2327 * On POWER9, where we are emulating msgsndp etc.,
2328 * we return 1 bit for each vcpu, which can come from
2329 * either vcore->dpdes or doorbell_request.
2330 * On POWER8, doorbell_request is 0.
2331 */
2332 if (cpu_has_feature(CPU_FTR_ARCH_300))
2333 *val = get_reg_val(id, vcpu->arch.doorbell_request);
2334 else
2335 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2336 break;
2337 case KVM_REG_PPC_VTB:
2338 *val = get_reg_val(id, kvmppc_get_vtb(vcpu));
2339 break;
2340 case KVM_REG_PPC_DAWR:
2341 *val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu));
2342 break;
2343 case KVM_REG_PPC_DAWRX:
2344 *val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu));
2345 break;
2346 case KVM_REG_PPC_DAWR1:
2347 *val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu));
2348 break;
2349 case KVM_REG_PPC_DAWRX1:
2350 *val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu));
2351 break;
2352 case KVM_REG_PPC_CIABR:
2353 *val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu));
2354 break;
2355 case KVM_REG_PPC_CSIGR:
2356 *val = get_reg_val(id, vcpu->arch.csigr);
2357 break;
2358 case KVM_REG_PPC_TACR:
2359 *val = get_reg_val(id, vcpu->arch.tacr);
2360 break;
2361 case KVM_REG_PPC_TCSCR:
2362 *val = get_reg_val(id, vcpu->arch.tcscr);
2363 break;
2364 case KVM_REG_PPC_PID:
2365 *val = get_reg_val(id, kvmppc_get_pid(vcpu));
2366 break;
2367 case KVM_REG_PPC_ACOP:
2368 *val = get_reg_val(id, vcpu->arch.acop);
2369 break;
2370 case KVM_REG_PPC_WORT:
2371 *val = get_reg_val(id, kvmppc_get_wort_hv(vcpu));
2372 break;
2373 case KVM_REG_PPC_TIDR:
2374 *val = get_reg_val(id, vcpu->arch.tid);
2375 break;
2376 case KVM_REG_PPC_PSSCR:
2377 *val = get_reg_val(id, vcpu->arch.psscr);
2378 break;
2379 case KVM_REG_PPC_VPA_ADDR:
2380 spin_lock(lock: &vcpu->arch.vpa_update_lock);
2381 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2382 spin_unlock(lock: &vcpu->arch.vpa_update_lock);
2383 break;
2384 case KVM_REG_PPC_VPA_SLB:
2385 spin_lock(lock: &vcpu->arch.vpa_update_lock);
2386 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2387 val->vpaval.length = vcpu->arch.slb_shadow.len;
2388 spin_unlock(lock: &vcpu->arch.vpa_update_lock);
2389 break;
2390 case KVM_REG_PPC_VPA_DTL:
2391 spin_lock(lock: &vcpu->arch.vpa_update_lock);
2392 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2393 val->vpaval.length = vcpu->arch.dtl.len;
2394 spin_unlock(lock: &vcpu->arch.vpa_update_lock);
2395 break;
2396 case KVM_REG_PPC_TB_OFFSET:
2397 *val = get_reg_val(id, kvmppc_get_tb_offset(vcpu));
2398 break;
2399 case KVM_REG_PPC_LPCR:
2400 case KVM_REG_PPC_LPCR_64:
2401 *val = get_reg_val(id, kvmppc_get_lpcr(vcpu));
2402 break;
2403 case KVM_REG_PPC_PPR:
2404 *val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu));
2405 break;
2406#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2407 case KVM_REG_PPC_TFHAR:
2408 *val = get_reg_val(id, vcpu->arch.tfhar);
2409 break;
2410 case KVM_REG_PPC_TFIAR:
2411 *val = get_reg_val(id, vcpu->arch.tfiar);
2412 break;
2413 case KVM_REG_PPC_TEXASR:
2414 *val = get_reg_val(id, vcpu->arch.texasr);
2415 break;
2416 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2417 i = id - KVM_REG_PPC_TM_GPR0;
2418 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2419 break;
2420 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2421 {
2422 int j;
2423 i = id - KVM_REG_PPC_TM_VSR0;
2424 if (i < 32)
2425 for (j = 0; j < TS_FPRWIDTH; j++)
2426 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2427 else {
2428 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2429 val->vval = vcpu->arch.vr_tm.vr[i-32];
2430 else
2431 r = -ENXIO;
2432 }
2433 break;
2434 }
2435 case KVM_REG_PPC_TM_CR:
2436 *val = get_reg_val(id, vcpu->arch.cr_tm);
2437 break;
2438 case KVM_REG_PPC_TM_XER:
2439 *val = get_reg_val(id, vcpu->arch.xer_tm);
2440 break;
2441 case KVM_REG_PPC_TM_LR:
2442 *val = get_reg_val(id, vcpu->arch.lr_tm);
2443 break;
2444 case KVM_REG_PPC_TM_CTR:
2445 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2446 break;
2447 case KVM_REG_PPC_TM_FPSCR:
2448 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2449 break;
2450 case KVM_REG_PPC_TM_AMR:
2451 *val = get_reg_val(id, vcpu->arch.amr_tm);
2452 break;
2453 case KVM_REG_PPC_TM_PPR:
2454 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2455 break;
2456 case KVM_REG_PPC_TM_VRSAVE:
2457 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2458 break;
2459 case KVM_REG_PPC_TM_VSCR:
2460 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2461 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2462 else
2463 r = -ENXIO;
2464 break;
2465 case KVM_REG_PPC_TM_DSCR:
2466 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2467 break;
2468 case KVM_REG_PPC_TM_TAR:
2469 *val = get_reg_val(id, vcpu->arch.tar_tm);
2470 break;
2471#endif
2472 case KVM_REG_PPC_ARCH_COMPAT:
2473 *val = get_reg_val(id, kvmppc_get_arch_compat(vcpu));
2474 break;
2475 case KVM_REG_PPC_DEC_EXPIRY:
2476 *val = get_reg_val(id, kvmppc_get_dec_expires(vcpu));
2477 break;
2478 case KVM_REG_PPC_ONLINE:
2479 *val = get_reg_val(id, vcpu->arch.online);
2480 break;
2481 case KVM_REG_PPC_PTCR:
2482 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2483 break;
2484 case KVM_REG_PPC_FSCR:
2485 *val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu));
2486 break;
2487 default:
2488 r = -EINVAL;
2489 break;
2490 }
2491
2492 return r;
2493}
2494
2495static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2496 union kvmppc_one_reg *val)
2497{
2498 int r = 0;
2499 long int i;
2500 unsigned long addr, len;
2501
2502 switch (id) {
2503 case KVM_REG_PPC_HIOR:
2504 /* Only allow this to be set to zero */
2505 if (set_reg_val(id, *val))
2506 r = -EINVAL;
2507 break;
2508 case KVM_REG_PPC_DABR:
2509 vcpu->arch.dabr = set_reg_val(id, *val);
2510 break;
2511 case KVM_REG_PPC_DABRX:
2512 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2513 break;
2514 case KVM_REG_PPC_DSCR:
2515 kvmppc_set_dscr_hv(vcpu, val: set_reg_val(id, *val));
2516 break;
2517 case KVM_REG_PPC_PURR:
2518 kvmppc_set_purr_hv(vcpu, val: set_reg_val(id, *val));
2519 break;
2520 case KVM_REG_PPC_SPURR:
2521 kvmppc_set_spurr_hv(vcpu, val: set_reg_val(id, *val));
2522 break;
2523 case KVM_REG_PPC_AMR:
2524 kvmppc_set_amr_hv(vcpu, val: set_reg_val(id, *val));
2525 break;
2526 case KVM_REG_PPC_UAMOR:
2527 kvmppc_set_uamor_hv(vcpu, val: set_reg_val(id, *val));
2528 break;
2529 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2530 i = id - KVM_REG_PPC_MMCR0;
2531 kvmppc_set_mmcr_hv(vcpu, i, val: set_reg_val(id, *val));
2532 break;
2533 case KVM_REG_PPC_MMCR2:
2534 kvmppc_set_mmcr_hv(vcpu, i: 2, val: set_reg_val(id, *val));
2535 break;
2536 case KVM_REG_PPC_MMCRA:
2537 kvmppc_set_mmcra_hv(vcpu, val: set_reg_val(id, *val));
2538 break;
2539 case KVM_REG_PPC_MMCRS:
2540 vcpu->arch.mmcrs = set_reg_val(id, *val);
2541 break;
2542 case KVM_REG_PPC_MMCR3:
2543 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2544 break;
2545 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2546 i = id - KVM_REG_PPC_PMC1;
2547 kvmppc_set_pmc_hv(vcpu, i, val: set_reg_val(id, *val));
2548 break;
2549 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2550 i = id - KVM_REG_PPC_SPMC1;
2551 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2552 break;
2553 case KVM_REG_PPC_SIAR:
2554 kvmppc_set_siar_hv(vcpu, val: set_reg_val(id, *val));
2555 break;
2556 case KVM_REG_PPC_SDAR:
2557 kvmppc_set_sdar_hv(vcpu, val: set_reg_val(id, *val));
2558 break;
2559 case KVM_REG_PPC_SIER:
2560 kvmppc_set_sier_hv(vcpu, i: 0, val: set_reg_val(id, *val));
2561 break;
2562 case KVM_REG_PPC_SIER2:
2563 kvmppc_set_sier_hv(vcpu, i: 1, val: set_reg_val(id, *val));
2564 break;
2565 case KVM_REG_PPC_SIER3:
2566 kvmppc_set_sier_hv(vcpu, i: 2, val: set_reg_val(id, *val));
2567 break;
2568 case KVM_REG_PPC_IAMR:
2569 kvmppc_set_iamr_hv(vcpu, val: set_reg_val(id, *val));
2570 break;
2571 case KVM_REG_PPC_PSPB:
2572 kvmppc_set_pspb_hv(vcpu, val: set_reg_val(id, *val));
2573 break;
2574 case KVM_REG_PPC_DPDES:
2575 if (cpu_has_feature(CPU_FTR_ARCH_300))
2576 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2577 else
2578 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2579 break;
2580 case KVM_REG_PPC_VTB:
2581 kvmppc_set_vtb(vcpu, set_reg_val(id, *val));
2582 break;
2583 case KVM_REG_PPC_DAWR:
2584 kvmppc_set_dawr0_hv(vcpu, val: set_reg_val(id, *val));
2585 break;
2586 case KVM_REG_PPC_DAWRX:
2587 kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2588 break;
2589 case KVM_REG_PPC_DAWR1:
2590 kvmppc_set_dawr1_hv(vcpu, val: set_reg_val(id, *val));
2591 break;
2592 case KVM_REG_PPC_DAWRX1:
2593 kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2594 break;
2595 case KVM_REG_PPC_CIABR:
2596 kvmppc_set_ciabr_hv(vcpu, val: set_reg_val(id, *val));
2597 /* Don't allow setting breakpoints in hypervisor code */
2598 if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER)
2599 kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV);
2600 break;
2601 case KVM_REG_PPC_CSIGR:
2602 vcpu->arch.csigr = set_reg_val(id, *val);
2603 break;
2604 case KVM_REG_PPC_TACR:
2605 vcpu->arch.tacr = set_reg_val(id, *val);
2606 break;
2607 case KVM_REG_PPC_TCSCR:
2608 vcpu->arch.tcscr = set_reg_val(id, *val);
2609 break;
2610 case KVM_REG_PPC_PID:
2611 kvmppc_set_pid(vcpu, set_reg_val(id, *val));
2612 break;
2613 case KVM_REG_PPC_ACOP:
2614 vcpu->arch.acop = set_reg_val(id, *val);
2615 break;
2616 case KVM_REG_PPC_WORT:
2617 kvmppc_set_wort_hv(vcpu, val: set_reg_val(id, *val));
2618 break;
2619 case KVM_REG_PPC_TIDR:
2620 vcpu->arch.tid = set_reg_val(id, *val);
2621 break;
2622 case KVM_REG_PPC_PSSCR:
2623 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2624 break;
2625 case KVM_REG_PPC_VPA_ADDR:
2626 addr = set_reg_val(id, *val);
2627 r = -EINVAL;
2628 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2629 vcpu->arch.dtl.next_gpa))
2630 break;
2631 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2632 break;
2633 case KVM_REG_PPC_VPA_SLB:
2634 addr = val->vpaval.addr;
2635 len = val->vpaval.length;
2636 r = -EINVAL;
2637 if (addr && !vcpu->arch.vpa.next_gpa)
2638 break;
2639 r = set_vpa(vcpu, v: &vcpu->arch.slb_shadow, addr, len);
2640 break;
2641 case KVM_REG_PPC_VPA_DTL:
2642 addr = val->vpaval.addr;
2643 len = val->vpaval.length;
2644 r = -EINVAL;
2645 if (addr && (len < sizeof(struct dtl_entry) ||
2646 !vcpu->arch.vpa.next_gpa))
2647 break;
2648 len -= len % sizeof(struct dtl_entry);
2649 r = set_vpa(vcpu, v: &vcpu->arch.dtl, addr, len);
2650 break;
2651 case KVM_REG_PPC_TB_OFFSET:
2652 {
2653 /* round up to multiple of 2^24 */
2654 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
2655
2656 /*
2657 * Now that we know the timebase offset, update the
2658 * decrementer expiry with a guest timebase value. If
2659 * the userspace does not set DEC_EXPIRY, this ensures
2660 * a migrated vcpu at least starts with an expired
2661 * decrementer, which is better than a large one that
2662 * causes a hang.
2663 */
2664 kvmppc_set_tb_offset(vcpu, tb_offset);
2665 if (!kvmppc_get_dec_expires(vcpu) && tb_offset)
2666 kvmppc_set_dec_expires(vcpu, get_tb() + tb_offset);
2667
2668 kvmppc_set_tb_offset(vcpu, tb_offset);
2669 break;
2670 }
2671 case KVM_REG_PPC_LPCR:
2672 kvmppc_set_lpcr(vcpu, new_lpcr: set_reg_val(id, *val), preserve_top32: true);
2673 break;
2674 case KVM_REG_PPC_LPCR_64:
2675 kvmppc_set_lpcr(vcpu, new_lpcr: set_reg_val(id, *val), preserve_top32: false);
2676 break;
2677 case KVM_REG_PPC_PPR:
2678 kvmppc_set_ppr_hv(vcpu, val: set_reg_val(id, *val));
2679 break;
2680#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2681 case KVM_REG_PPC_TFHAR:
2682 vcpu->arch.tfhar = set_reg_val(id, *val);
2683 break;
2684 case KVM_REG_PPC_TFIAR:
2685 vcpu->arch.tfiar = set_reg_val(id, *val);
2686 break;
2687 case KVM_REG_PPC_TEXASR:
2688 vcpu->arch.texasr = set_reg_val(id, *val);
2689 break;
2690 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2691 i = id - KVM_REG_PPC_TM_GPR0;
2692 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2693 break;
2694 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2695 {
2696 int j;
2697 i = id - KVM_REG_PPC_TM_VSR0;
2698 if (i < 32)
2699 for (j = 0; j < TS_FPRWIDTH; j++)
2700 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2701 else
2702 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2703 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2704 else
2705 r = -ENXIO;
2706 break;
2707 }
2708 case KVM_REG_PPC_TM_CR:
2709 vcpu->arch.cr_tm = set_reg_val(id, *val);
2710 break;
2711 case KVM_REG_PPC_TM_XER:
2712 vcpu->arch.xer_tm = set_reg_val(id, *val);
2713 break;
2714 case KVM_REG_PPC_TM_LR:
2715 vcpu->arch.lr_tm = set_reg_val(id, *val);
2716 break;
2717 case KVM_REG_PPC_TM_CTR:
2718 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2719 break;
2720 case KVM_REG_PPC_TM_FPSCR:
2721 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2722 break;
2723 case KVM_REG_PPC_TM_AMR:
2724 vcpu->arch.amr_tm = set_reg_val(id, *val);
2725 break;
2726 case KVM_REG_PPC_TM_PPR:
2727 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2728 break;
2729 case KVM_REG_PPC_TM_VRSAVE:
2730 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2731 break;
2732 case KVM_REG_PPC_TM_VSCR:
2733 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2734 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2735 else
2736 r = - ENXIO;
2737 break;
2738 case KVM_REG_PPC_TM_DSCR:
2739 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2740 break;
2741 case KVM_REG_PPC_TM_TAR:
2742 vcpu->arch.tar_tm = set_reg_val(id, *val);
2743 break;
2744#endif
2745 case KVM_REG_PPC_ARCH_COMPAT:
2746 r = kvmppc_set_arch_compat(vcpu, arch_compat: set_reg_val(id, *val));
2747 break;
2748 case KVM_REG_PPC_DEC_EXPIRY:
2749 kvmppc_set_dec_expires(vcpu, set_reg_val(id, *val));
2750 break;
2751 case KVM_REG_PPC_ONLINE:
2752 i = set_reg_val(id, *val);
2753 if (i && !vcpu->arch.online)
2754 atomic_inc(v: &vcpu->arch.vcore->online_count);
2755 else if (!i && vcpu->arch.online)
2756 atomic_dec(v: &vcpu->arch.vcore->online_count);
2757 vcpu->arch.online = i;
2758 break;
2759 case KVM_REG_PPC_PTCR:
2760 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2761 break;
2762 case KVM_REG_PPC_FSCR:
2763 kvmppc_set_fscr_hv(vcpu, val: set_reg_val(id, *val));
2764 break;
2765 default:
2766 r = -EINVAL;
2767 break;
2768 }
2769
2770 return r;
2771}
2772
2773/*
2774 * On POWER9, threads are independent and can be in different partitions.
2775 * Therefore we consider each thread to be a subcore.
2776 * There is a restriction that all threads have to be in the same
2777 * MMU mode (radix or HPT), unfortunately, but since we only support
2778 * HPT guests on a HPT host so far, that isn't an impediment yet.
2779 */
2780static int threads_per_vcore(struct kvm *kvm)
2781{
2782 if (cpu_has_feature(CPU_FTR_ARCH_300))
2783 return 1;
2784 return threads_per_subcore;
2785}
2786
2787static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2788{
2789 struct kvmppc_vcore *vcore;
2790
2791 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2792
2793 if (vcore == NULL)
2794 return NULL;
2795
2796 spin_lock_init(&vcore->lock);
2797 spin_lock_init(&vcore->stoltb_lock);
2798 rcuwait_init(w: &vcore->wait);
2799 vcore->preempt_tb = TB_NIL;
2800 vcore->lpcr = kvm->arch.lpcr;
2801 vcore->first_vcpuid = id;
2802 vcore->kvm = kvm;
2803 INIT_LIST_HEAD(list: &vcore->preempt_list);
2804
2805 return vcore;
2806}
2807
2808#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2809static struct debugfs_timings_element {
2810 const char *name;
2811 size_t offset;
2812} timings[] = {
2813#ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2814 {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2815 {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)},
2816 {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)},
2817 {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)},
2818 {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2819 {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)},
2820 {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)},
2821#else
2822 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2823 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2824 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2825 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2826 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2827#endif
2828};
2829
2830#define N_TIMINGS (ARRAY_SIZE(timings))
2831
2832struct debugfs_timings_state {
2833 struct kvm_vcpu *vcpu;
2834 unsigned int buflen;
2835 char buf[N_TIMINGS * 100];
2836};
2837
2838static int debugfs_timings_open(struct inode *inode, struct file *file)
2839{
2840 struct kvm_vcpu *vcpu = inode->i_private;
2841 struct debugfs_timings_state *p;
2842
2843 p = kzalloc(sizeof(*p), GFP_KERNEL);
2844 if (!p)
2845 return -ENOMEM;
2846
2847 kvm_get_kvm(vcpu->kvm);
2848 p->vcpu = vcpu;
2849 file->private_data = p;
2850
2851 return nonseekable_open(inode, file);
2852}
2853
2854static int debugfs_timings_release(struct inode *inode, struct file *file)
2855{
2856 struct debugfs_timings_state *p = file->private_data;
2857
2858 kvm_put_kvm(p->vcpu->kvm);
2859 kfree(p);
2860 return 0;
2861}
2862
2863static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2864 size_t len, loff_t *ppos)
2865{
2866 struct debugfs_timings_state *p = file->private_data;
2867 struct kvm_vcpu *vcpu = p->vcpu;
2868 char *s, *buf_end;
2869 struct kvmhv_tb_accumulator tb;
2870 u64 count;
2871 loff_t pos;
2872 ssize_t n;
2873 int i, loops;
2874 bool ok;
2875
2876 if (!p->buflen) {
2877 s = p->buf;
2878 buf_end = s + sizeof(p->buf);
2879 for (i = 0; i < N_TIMINGS; ++i) {
2880 struct kvmhv_tb_accumulator *acc;
2881
2882 acc = (struct kvmhv_tb_accumulator *)
2883 ((unsigned long)vcpu + timings[i].offset);
2884 ok = false;
2885 for (loops = 0; loops < 1000; ++loops) {
2886 count = acc->seqcount;
2887 if (!(count & 1)) {
2888 smp_rmb();
2889 tb = *acc;
2890 smp_rmb();
2891 if (count == acc->seqcount) {
2892 ok = true;
2893 break;
2894 }
2895 }
2896 udelay(1);
2897 }
2898 if (!ok)
2899 snprintf(s, buf_end - s, "%s: stuck\n",
2900 timings[i].name);
2901 else
2902 snprintf(s, buf_end - s,
2903 "%s: %llu %llu %llu %llu\n",
2904 timings[i].name, count / 2,
2905 tb_to_ns(tb.tb_total),
2906 tb_to_ns(tb.tb_min),
2907 tb_to_ns(tb.tb_max));
2908 s += strlen(s);
2909 }
2910 p->buflen = s - p->buf;
2911 }
2912
2913 pos = *ppos;
2914 if (pos >= p->buflen)
2915 return 0;
2916 if (len > p->buflen - pos)
2917 len = p->buflen - pos;
2918 n = copy_to_user(buf, p->buf + pos, len);
2919 if (n) {
2920 if (n == len)
2921 return -EFAULT;
2922 len -= n;
2923 }
2924 *ppos = pos + len;
2925 return len;
2926}
2927
2928static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2929 size_t len, loff_t *ppos)
2930{
2931 return -EACCES;
2932}
2933
2934static const struct file_operations debugfs_timings_ops = {
2935 .owner = THIS_MODULE,
2936 .open = debugfs_timings_open,
2937 .release = debugfs_timings_release,
2938 .read = debugfs_timings_read,
2939 .write = debugfs_timings_write,
2940 .llseek = generic_file_llseek,
2941};
2942
2943/* Create a debugfs directory for the vcpu */
2944static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2945{
2946 if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2947 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2948 &debugfs_timings_ops);
2949 return 0;
2950}
2951
2952#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2953static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2954{
2955 return 0;
2956}
2957#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2958
2959static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2960{
2961 int err;
2962 int core;
2963 struct kvmppc_vcore *vcore;
2964 struct kvm *kvm;
2965 unsigned int id;
2966
2967 kvm = vcpu->kvm;
2968 id = vcpu->vcpu_id;
2969
2970 vcpu->arch.shared = &vcpu->arch.shregs;
2971#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2972 /*
2973 * The shared struct is never shared on HV,
2974 * so we can always use host endianness
2975 */
2976#ifdef __BIG_ENDIAN__
2977 vcpu->arch.shared_big_endian = true;
2978#else
2979 vcpu->arch.shared_big_endian = false;
2980#endif
2981#endif
2982
2983 if (kvmhv_is_nestedv2()) {
2984 err = kvmhv_nestedv2_vcpu_create(vcpu, &vcpu->arch.nestedv2_io);
2985 if (err < 0)
2986 return err;
2987 }
2988
2989 kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC);
2990 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2991 kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT);
2992 kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE);
2993 }
2994
2995 kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH);
2996 /* default to host PVR, since we can't spoof it */
2997 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2998 spin_lock_init(&vcpu->arch.vpa_update_lock);
2999 spin_lock_init(&vcpu->arch.tbacct_lock);
3000 vcpu->arch.busy_preempt = TB_NIL;
3001 __kvmppc_set_msr_hv(vcpu, MSR_ME);
3002 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
3003
3004 /*
3005 * Set the default HFSCR for the guest from the host value.
3006 * This value is only used on POWER9 and later.
3007 * On >= POWER9, we want to virtualize the doorbell facility, so we
3008 * don't set the HFSCR_MSGP bit, and that causes those instructions
3009 * to trap and then we emulate them.
3010 */
3011 kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
3012 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP);
3013
3014 /* On POWER10 and later, allow prefixed instructions */
3015 if (cpu_has_feature(CPU_FTR_ARCH_31))
3016 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX);
3017
3018 if (cpu_has_feature(CPU_FTR_HVMODE)) {
3019 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR));
3020
3021#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3022 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3023 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
3024#endif
3025 }
3026 if (cpu_has_feature(CPU_FTR_TM_COMP))
3027 vcpu->arch.hfscr |= HFSCR_TM;
3028
3029 vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu);
3030
3031 /*
3032 * PM, EBB, TM are demand-faulted so start with it clear.
3033 */
3034 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM));
3035
3036 kvmppc_mmu_book3s_hv_init(vcpu);
3037
3038 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3039
3040 init_waitqueue_head(&vcpu->arch.cpu_run);
3041
3042 mutex_lock(&kvm->lock);
3043 vcore = NULL;
3044 err = -EINVAL;
3045 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3046 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
3047 pr_devel("KVM: VCPU ID too high\n");
3048 core = KVM_MAX_VCORES;
3049 } else {
3050 BUG_ON(kvm->arch.smt_mode != 1);
3051 core = kvmppc_pack_vcpu_id(kvm, id);
3052 }
3053 } else {
3054 core = id / kvm->arch.smt_mode;
3055 }
3056 if (core < KVM_MAX_VCORES) {
3057 vcore = kvm->arch.vcores[core];
3058 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
3059 pr_devel("KVM: collision on id %u", id);
3060 vcore = NULL;
3061 } else if (!vcore) {
3062 /*
3063 * Take mmu_setup_lock for mutual exclusion
3064 * with kvmppc_update_lpcr().
3065 */
3066 err = -ENOMEM;
3067 vcore = kvmppc_vcore_create(kvm,
3068 id: id & ~(kvm->arch.smt_mode - 1));
3069 mutex_lock(&kvm->arch.mmu_setup_lock);
3070 kvm->arch.vcores[core] = vcore;
3071 kvm->arch.online_vcores++;
3072 mutex_unlock(lock: &kvm->arch.mmu_setup_lock);
3073 }
3074 }
3075 mutex_unlock(lock: &kvm->lock);
3076
3077 if (!vcore)
3078 return err;
3079
3080 spin_lock(lock: &vcore->lock);
3081 ++vcore->num_threads;
3082 spin_unlock(lock: &vcore->lock);
3083 vcpu->arch.vcore = vcore;
3084 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
3085 vcpu->arch.thread_cpu = -1;
3086 vcpu->arch.prev_cpu = -1;
3087
3088 vcpu->arch.cpu_type = KVM_CPU_3S_64;
3089 kvmppc_sanity_check(vcpu);
3090
3091 return 0;
3092}
3093
3094static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
3095 unsigned long flags)
3096{
3097 int err;
3098 int esmt = 0;
3099
3100 if (flags)
3101 return -EINVAL;
3102 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
3103 return -EINVAL;
3104 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3105 /*
3106 * On POWER8 (or POWER7), the threading mode is "strict",
3107 * so we pack smt_mode vcpus per vcore.
3108 */
3109 if (smt_mode > threads_per_subcore)
3110 return -EINVAL;
3111 } else {
3112 /*
3113 * On POWER9, the threading mode is "loose",
3114 * so each vcpu gets its own vcore.
3115 */
3116 esmt = smt_mode;
3117 smt_mode = 1;
3118 }
3119 mutex_lock(&kvm->lock);
3120 err = -EBUSY;
3121 if (!kvm->arch.online_vcores) {
3122 kvm->arch.smt_mode = smt_mode;
3123 kvm->arch.emul_smt_mode = esmt;
3124 err = 0;
3125 }
3126 mutex_unlock(lock: &kvm->lock);
3127
3128 return err;
3129}
3130
3131static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
3132{
3133 if (vpa->pinned_addr)
3134 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
3135 vpa->dirty);
3136}
3137
3138static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
3139{
3140 spin_lock(lock: &vcpu->arch.vpa_update_lock);
3141 unpin_vpa(kvm: vcpu->kvm, vpa: &vcpu->arch.dtl);
3142 unpin_vpa(kvm: vcpu->kvm, vpa: &vcpu->arch.slb_shadow);
3143 unpin_vpa(kvm: vcpu->kvm, vpa: &vcpu->arch.vpa);
3144 spin_unlock(lock: &vcpu->arch.vpa_update_lock);
3145 if (kvmhv_is_nestedv2())
3146 kvmhv_nestedv2_vcpu_free(vcpu, &vcpu->arch.nestedv2_io);
3147}
3148
3149static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
3150{
3151 /* Indicate we want to get back into the guest */
3152 return 1;
3153}
3154
3155static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
3156{
3157 unsigned long dec_nsec, now;
3158
3159 now = get_tb();
3160 if (now > kvmppc_dec_expires_host_tb(vcpu)) {
3161 /* decrementer has already gone negative */
3162 kvmppc_core_queue_dec(vcpu);
3163 kvmppc_core_prepare_to_enter(vcpu);
3164 return;
3165 }
3166 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3167 hrtimer_start(timer: &vcpu->arch.dec_timer, tim: dec_nsec, mode: HRTIMER_MODE_REL);
3168 vcpu->arch.timer_running = 1;
3169}
3170
3171extern int __kvmppc_vcore_entry(void);
3172
3173static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3174 struct kvm_vcpu *vcpu, u64 tb)
3175{
3176 u64 now;
3177
3178 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3179 return;
3180 spin_lock_irq(lock: &vcpu->arch.tbacct_lock);
3181 now = tb;
3182 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3183 vcpu->arch.stolen_logged;
3184 vcpu->arch.busy_preempt = now;
3185 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3186 spin_unlock_irq(lock: &vcpu->arch.tbacct_lock);
3187 --vc->n_runnable;
3188 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3189}
3190
3191static int kvmppc_grab_hwthread(int cpu)
3192{
3193 struct paca_struct *tpaca;
3194 long timeout = 10000;
3195
3196 tpaca = paca_ptrs[cpu];
3197
3198 /* Ensure the thread won't go into the kernel if it wakes */
3199 tpaca->kvm_hstate.kvm_vcpu = NULL;
3200 tpaca->kvm_hstate.kvm_vcore = NULL;
3201 tpaca->kvm_hstate.napping = 0;
3202 smp_wmb();
3203 tpaca->kvm_hstate.hwthread_req = 1;
3204
3205 /*
3206 * If the thread is already executing in the kernel (e.g. handling
3207 * a stray interrupt), wait for it to get back to nap mode.
3208 * The smp_mb() is to ensure that our setting of hwthread_req
3209 * is visible before we look at hwthread_state, so if this
3210 * races with the code at system_reset_pSeries and the thread
3211 * misses our setting of hwthread_req, we are sure to see its
3212 * setting of hwthread_state, and vice versa.
3213 */
3214 smp_mb();
3215 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3216 if (--timeout <= 0) {
3217 pr_err("KVM: couldn't grab cpu %d\n", cpu);
3218 return -EBUSY;
3219 }
3220 udelay(1);
3221 }
3222 return 0;
3223}
3224
3225static void kvmppc_release_hwthread(int cpu)
3226{
3227 struct paca_struct *tpaca;
3228
3229 tpaca = paca_ptrs[cpu];
3230 tpaca->kvm_hstate.hwthread_req = 0;
3231 tpaca->kvm_hstate.kvm_vcpu = NULL;
3232 tpaca->kvm_hstate.kvm_vcore = NULL;
3233 tpaca->kvm_hstate.kvm_split_mode = NULL;
3234}
3235
3236static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3237
3238static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3239{
3240 struct kvm_nested_guest *nested = vcpu->arch.nested;
3241 cpumask_t *need_tlb_flush;
3242 int i;
3243
3244 if (nested)
3245 need_tlb_flush = &nested->need_tlb_flush;
3246 else
3247 need_tlb_flush = &kvm->arch.need_tlb_flush;
3248
3249 cpu = cpu_first_tlb_thread_sibling(cpu);
3250 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3251 i += cpu_tlb_thread_sibling_step())
3252 cpumask_set_cpu(cpu: i, dstp: need_tlb_flush);
3253
3254 /*
3255 * Make sure setting of bit in need_tlb_flush precedes testing of
3256 * cpu_in_guest. The matching barrier on the other side is hwsync
3257 * when switching to guest MMU mode, which happens between
3258 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3259 * being tested.
3260 */
3261 smp_mb();
3262
3263 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3264 i += cpu_tlb_thread_sibling_step()) {
3265 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3266
3267 if (running == kvm)
3268 smp_call_function_single(cpuid: i, func: do_nothing, NULL, wait: 1);
3269 }
3270}
3271
3272static void do_migrate_away_vcpu(void *arg)
3273{
3274 struct kvm_vcpu *vcpu = arg;
3275 struct kvm *kvm = vcpu->kvm;
3276
3277 /*
3278 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3279 * ptesync sequence on the old CPU before migrating to a new one, in
3280 * case we interrupted the guest between a tlbie ; eieio ;
3281 * tlbsync; ptesync sequence.
3282 *
3283 * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3284 */
3285 if (kvm->arch.lpcr & LPCR_GTSE)
3286 asm volatile("eieio; tlbsync; ptesync");
3287 else
3288 asm volatile("ptesync");
3289}
3290
3291static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3292{
3293 struct kvm_nested_guest *nested = vcpu->arch.nested;
3294 struct kvm *kvm = vcpu->kvm;
3295 int prev_cpu;
3296
3297 if (!cpu_has_feature(CPU_FTR_HVMODE))
3298 return;
3299
3300 if (nested)
3301 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3302 else
3303 prev_cpu = vcpu->arch.prev_cpu;
3304
3305 /*
3306 * With radix, the guest can do TLB invalidations itself,
3307 * and it could choose to use the local form (tlbiel) if
3308 * it is invalidating a translation that has only ever been
3309 * used on one vcpu. However, that doesn't mean it has
3310 * only ever been used on one physical cpu, since vcpus
3311 * can move around between pcpus. To cope with this, when
3312 * a vcpu moves from one pcpu to another, we need to tell
3313 * any vcpus running on the same core as this vcpu previously
3314 * ran to flush the TLB.
3315 */
3316 if (prev_cpu != pcpu) {
3317 if (prev_cpu >= 0) {
3318 if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3319 cpu_first_tlb_thread_sibling(pcpu))
3320 radix_flush_cpu(kvm, cpu: prev_cpu, vcpu);
3321
3322 smp_call_function_single(cpuid: prev_cpu,
3323 func: do_migrate_away_vcpu, info: vcpu, wait: 1);
3324 }
3325 if (nested)
3326 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3327 else
3328 vcpu->arch.prev_cpu = pcpu;
3329 }
3330}
3331
3332static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3333{
3334 int cpu;
3335 struct paca_struct *tpaca;
3336
3337 cpu = vc->pcpu;
3338 if (vcpu) {
3339 if (vcpu->arch.timer_running) {
3340 hrtimer_try_to_cancel(timer: &vcpu->arch.dec_timer);
3341 vcpu->arch.timer_running = 0;
3342 }
3343 cpu += vcpu->arch.ptid;
3344 vcpu->cpu = vc->pcpu;
3345 vcpu->arch.thread_cpu = cpu;
3346 }
3347 tpaca = paca_ptrs[cpu];
3348 tpaca->kvm_hstate.kvm_vcpu = vcpu;
3349 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3350 tpaca->kvm_hstate.fake_suspend = 0;
3351 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3352 smp_wmb();
3353 tpaca->kvm_hstate.kvm_vcore = vc;
3354 if (cpu != smp_processor_id())
3355 kvmppc_ipi_thread(cpu);
3356}
3357
3358static void kvmppc_wait_for_nap(int n_threads)
3359{
3360 int cpu = smp_processor_id();
3361 int i, loops;
3362
3363 if (n_threads <= 1)
3364 return;
3365 for (loops = 0; loops < 1000000; ++loops) {
3366 /*
3367 * Check if all threads are finished.
3368 * We set the vcore pointer when starting a thread
3369 * and the thread clears it when finished, so we look
3370 * for any threads that still have a non-NULL vcore ptr.
3371 */
3372 for (i = 1; i < n_threads; ++i)
3373 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3374 break;
3375 if (i == n_threads) {
3376 HMT_medium();
3377 return;
3378 }
3379 HMT_low();
3380 }
3381 HMT_medium();
3382 for (i = 1; i < n_threads; ++i)
3383 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3384 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3385}
3386
3387/*
3388 * Check that we are on thread 0 and that any other threads in
3389 * this core are off-line. Then grab the threads so they can't
3390 * enter the kernel.
3391 */
3392static int on_primary_thread(void)
3393{
3394 int cpu = smp_processor_id();
3395 int thr;
3396
3397 /* Are we on a primary subcore? */
3398 if (cpu_thread_in_subcore(cpu))
3399 return 0;
3400
3401 thr = 0;
3402 while (++thr < threads_per_subcore)
3403 if (cpu_online(cpu: cpu + thr))
3404 return 0;
3405
3406 /* Grab all hw threads so they can't go into the kernel */
3407 for (thr = 1; thr < threads_per_subcore; ++thr) {
3408 if (kvmppc_grab_hwthread(cpu + thr)) {
3409 /* Couldn't grab one; let the others go */
3410 do {
3411 kvmppc_release_hwthread(cpu + thr);
3412 } while (--thr > 0);
3413 return 0;
3414 }
3415 }
3416 return 1;
3417}
3418
3419/*
3420 * A list of virtual cores for each physical CPU.
3421 * These are vcores that could run but their runner VCPU tasks are
3422 * (or may be) preempted.
3423 */
3424struct preempted_vcore_list {
3425 struct list_head list;
3426 spinlock_t lock;
3427};
3428
3429static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3430
3431static void init_vcore_lists(void)
3432{
3433 int cpu;
3434
3435 for_each_possible_cpu(cpu) {
3436 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3437 spin_lock_init(&lp->lock);
3438 INIT_LIST_HEAD(list: &lp->list);
3439 }
3440}
3441
3442static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3443{
3444 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3445
3446 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3447
3448 vc->vcore_state = VCORE_PREEMPT;
3449 vc->pcpu = smp_processor_id();
3450 if (vc->num_threads < threads_per_vcore(kvm: vc->kvm)) {
3451 spin_lock(lock: &lp->lock);
3452 list_add_tail(new: &vc->preempt_list, head: &lp->list);
3453 spin_unlock(lock: &lp->lock);
3454 }
3455
3456 /* Start accumulating stolen time */
3457 kvmppc_core_start_stolen(vc, tb: mftb());
3458}
3459
3460static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3461{
3462 struct preempted_vcore_list *lp;
3463
3464 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3465
3466 kvmppc_core_end_stolen(vc, tb: mftb());
3467 if (!list_empty(head: &vc->preempt_list)) {
3468 lp = &per_cpu(preempted_vcores, vc->pcpu);
3469 spin_lock(lock: &lp->lock);
3470 list_del_init(entry: &vc->preempt_list);
3471 spin_unlock(lock: &lp->lock);
3472 }
3473 vc->vcore_state = VCORE_INACTIVE;
3474}
3475
3476/*
3477 * This stores information about the virtual cores currently
3478 * assigned to a physical core.
3479 */
3480struct core_info {
3481 int n_subcores;
3482 int max_subcore_threads;
3483 int total_threads;
3484 int subcore_threads[MAX_SUBCORES];
3485 struct kvmppc_vcore *vc[MAX_SUBCORES];
3486};
3487
3488/*
3489 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3490 * respectively in 2-way micro-threading (split-core) mode on POWER8.
3491 */
3492static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3493
3494static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3495{
3496 memset(cip, 0, sizeof(*cip));
3497 cip->n_subcores = 1;
3498 cip->max_subcore_threads = vc->num_threads;
3499 cip->total_threads = vc->num_threads;
3500 cip->subcore_threads[0] = vc->num_threads;
3501 cip->vc[0] = vc;
3502}
3503
3504static bool subcore_config_ok(int n_subcores, int n_threads)
3505{
3506 /*
3507 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3508 * split-core mode, with one thread per subcore.
3509 */
3510 if (cpu_has_feature(CPU_FTR_ARCH_300))
3511 return n_subcores <= 4 && n_threads == 1;
3512
3513 /* On POWER8, can only dynamically split if unsplit to begin with */
3514 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3515 return false;
3516 if (n_subcores > MAX_SUBCORES)
3517 return false;
3518 if (n_subcores > 1) {
3519 if (!(dynamic_mt_modes & 2))
3520 n_subcores = 4;
3521 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3522 return false;
3523 }
3524
3525 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3526}
3527
3528static void init_vcore_to_run(struct kvmppc_vcore *vc)
3529{
3530 vc->entry_exit_map = 0;
3531 vc->in_guest = 0;
3532 vc->napping_threads = 0;
3533 vc->conferring_threads = 0;
3534 vc->tb_offset_applied = 0;
3535}
3536
3537static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3538{
3539 int n_threads = vc->num_threads;
3540 int sub;
3541
3542 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3543 return false;
3544
3545 /* In one_vm_per_core mode, require all vcores to be from the same vm */
3546 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3547 return false;
3548
3549 if (n_threads < cip->max_subcore_threads)
3550 n_threads = cip->max_subcore_threads;
3551 if (!subcore_config_ok(n_subcores: cip->n_subcores + 1, n_threads))
3552 return false;
3553 cip->max_subcore_threads = n_threads;
3554
3555 sub = cip->n_subcores;
3556 ++cip->n_subcores;
3557 cip->total_threads += vc->num_threads;
3558 cip->subcore_threads[sub] = vc->num_threads;
3559 cip->vc[sub] = vc;
3560 init_vcore_to_run(vc);
3561 list_del_init(entry: &vc->preempt_list);
3562
3563 return true;
3564}
3565
3566/*
3567 * Work out whether it is possible to piggyback the execution of
3568 * vcore *pvc onto the execution of the other vcores described in *cip.
3569 */
3570static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3571 int target_threads)
3572{
3573 if (cip->total_threads + pvc->num_threads > target_threads)
3574 return false;
3575
3576 return can_dynamic_split(vc: pvc, cip);
3577}
3578
3579static void prepare_threads(struct kvmppc_vcore *vc)
3580{
3581 int i;
3582 struct kvm_vcpu *vcpu;
3583
3584 for_each_runnable_thread(i, vcpu, vc) {
3585 if (signal_pending(p: vcpu->arch.run_task))
3586 vcpu->arch.ret = -EINTR;
3587 else if (vcpu->arch.vpa.update_pending ||
3588 vcpu->arch.slb_shadow.update_pending ||
3589 vcpu->arch.dtl.update_pending)
3590 vcpu->arch.ret = RESUME_GUEST;
3591 else
3592 continue;
3593 kvmppc_remove_runnable(vc, vcpu, tb: mftb());
3594 wake_up(&vcpu->arch.cpu_run);
3595 }
3596}
3597
3598static void collect_piggybacks(struct core_info *cip, int target_threads)
3599{
3600 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3601 struct kvmppc_vcore *pvc, *vcnext;
3602
3603 spin_lock(lock: &lp->lock);
3604 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3605 if (!spin_trylock(lock: &pvc->lock))
3606 continue;
3607 prepare_threads(vc: pvc);
3608 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3609 list_del_init(entry: &pvc->preempt_list);
3610 if (pvc->runner == NULL) {
3611 pvc->vcore_state = VCORE_INACTIVE;
3612 kvmppc_core_end_stolen(vc: pvc, tb: mftb());
3613 }
3614 spin_unlock(lock: &pvc->lock);
3615 continue;
3616 }
3617 if (!can_piggyback(pvc, cip, target_threads)) {
3618 spin_unlock(lock: &pvc->lock);
3619 continue;
3620 }
3621 kvmppc_core_end_stolen(vc: pvc, tb: mftb());
3622 pvc->vcore_state = VCORE_PIGGYBACK;
3623 if (cip->total_threads >= target_threads)
3624 break;
3625 }
3626 spin_unlock(lock: &lp->lock);
3627}
3628
3629static bool recheck_signals_and_mmu(struct core_info *cip)
3630{
3631 int sub, i;
3632 struct kvm_vcpu *vcpu;
3633 struct kvmppc_vcore *vc;
3634
3635 for (sub = 0; sub < cip->n_subcores; ++sub) {
3636 vc = cip->vc[sub];
3637 if (!vc->kvm->arch.mmu_ready)
3638 return true;
3639 for_each_runnable_thread(i, vcpu, vc)
3640 if (signal_pending(p: vcpu->arch.run_task))
3641 return true;
3642 }
3643 return false;
3644}
3645
3646static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3647{
3648 int still_running = 0, i;
3649 u64 now;
3650 long ret;
3651 struct kvm_vcpu *vcpu;
3652
3653 spin_lock(lock: &vc->lock);
3654 now = get_tb();
3655 for_each_runnable_thread(i, vcpu, vc) {
3656 /*
3657 * It's safe to unlock the vcore in the loop here, because
3658 * for_each_runnable_thread() is safe against removal of
3659 * the vcpu, and the vcore state is VCORE_EXITING here,
3660 * so any vcpus becoming runnable will have their arch.trap
3661 * set to zero and can't actually run in the guest.
3662 */
3663 spin_unlock(lock: &vc->lock);
3664 /* cancel pending dec exception if dec is positive */
3665 if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3666 kvmppc_core_pending_dec(vcpu))
3667 kvmppc_core_dequeue_dec(vcpu);
3668
3669 trace_kvm_guest_exit(vcpu);
3670
3671 ret = RESUME_GUEST;
3672 if (vcpu->arch.trap)
3673 ret = kvmppc_handle_exit_hv(vcpu,
3674 tsk: vcpu->arch.run_task);
3675
3676 vcpu->arch.ret = ret;
3677 vcpu->arch.trap = 0;
3678
3679 spin_lock(lock: &vc->lock);
3680 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3681 if (vcpu->arch.pending_exceptions)
3682 kvmppc_core_prepare_to_enter(vcpu);
3683 if (vcpu->arch.ceded)
3684 kvmppc_set_timer(vcpu);
3685 else
3686 ++still_running;
3687 } else {
3688 kvmppc_remove_runnable(vc, vcpu, tb: mftb());
3689 wake_up(&vcpu->arch.cpu_run);
3690 }
3691 }
3692 if (!is_master) {
3693 if (still_running > 0) {
3694 kvmppc_vcore_preempt(vc);
3695 } else if (vc->runner) {
3696 vc->vcore_state = VCORE_PREEMPT;
3697 kvmppc_core_start_stolen(vc, tb: mftb());
3698 } else {
3699 vc->vcore_state = VCORE_INACTIVE;
3700 }
3701 if (vc->n_runnable > 0 && vc->runner == NULL) {
3702 /* make sure there's a candidate runner awake */
3703 i = -1;
3704 vcpu = next_runnable_thread(vc, ip: &i);
3705 wake_up(&vcpu->arch.cpu_run);
3706 }
3707 }
3708 spin_unlock(lock: &vc->lock);
3709}
3710
3711/*
3712 * Clear core from the list of active host cores as we are about to
3713 * enter the guest. Only do this if it is the primary thread of the
3714 * core (not if a subcore) that is entering the guest.
3715 */
3716static inline int kvmppc_clear_host_core(unsigned int cpu)
3717{
3718 int core;
3719
3720 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3721 return 0;
3722 /*
3723 * Memory barrier can be omitted here as we will do a smp_wmb()
3724 * later in kvmppc_start_thread and we need ensure that state is
3725 * visible to other CPUs only after we enter guest.
3726 */
3727 core = cpu >> threads_shift;
3728 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3729 return 0;
3730}
3731
3732/*
3733 * Advertise this core as an active host core since we exited the guest
3734 * Only need to do this if it is the primary thread of the core that is
3735 * exiting.
3736 */
3737static inline int kvmppc_set_host_core(unsigned int cpu)
3738{
3739 int core;
3740
3741 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3742 return 0;
3743
3744 /*
3745 * Memory barrier can be omitted here because we do a spin_unlock
3746 * immediately after this which provides the memory barrier.
3747 */
3748 core = cpu >> threads_shift;
3749 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3750 return 0;
3751}
3752
3753static void set_irq_happened(int trap)
3754{
3755 switch (trap) {
3756 case BOOK3S_INTERRUPT_EXTERNAL:
3757 local_paca->irq_happened |= PACA_IRQ_EE;
3758 break;
3759 case BOOK3S_INTERRUPT_H_DOORBELL:
3760 local_paca->irq_happened |= PACA_IRQ_DBELL;
3761 break;
3762 case BOOK3S_INTERRUPT_HMI:
3763 local_paca->irq_happened |= PACA_IRQ_HMI;
3764 break;
3765 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3766 replay_system_reset();
3767 break;
3768 }
3769}
3770
3771/*
3772 * Run a set of guest threads on a physical core.
3773 * Called with vc->lock held.
3774 */
3775static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3776{
3777 struct kvm_vcpu *vcpu;
3778 int i;
3779 int srcu_idx;
3780 struct core_info core_info;
3781 struct kvmppc_vcore *pvc;
3782 struct kvm_split_mode split_info, *sip;
3783 int split, subcore_size, active;
3784 int sub;
3785 bool thr0_done;
3786 unsigned long cmd_bit, stat_bit;
3787 int pcpu, thr;
3788 int target_threads;
3789 int controlled_threads;
3790 int trap;
3791 bool is_power8;
3792
3793 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3794 return;
3795
3796 /*
3797 * Remove from the list any threads that have a signal pending
3798 * or need a VPA update done
3799 */
3800 prepare_threads(vc);
3801
3802 /* if the runner is no longer runnable, let the caller pick a new one */
3803 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3804 return;
3805
3806 /*
3807 * Initialize *vc.
3808 */
3809 init_vcore_to_run(vc);
3810 vc->preempt_tb = TB_NIL;
3811
3812 /*
3813 * Number of threads that we will be controlling: the same as
3814 * the number of threads per subcore, except on POWER9,
3815 * where it's 1 because the threads are (mostly) independent.
3816 */
3817 controlled_threads = threads_per_vcore(kvm: vc->kvm);
3818
3819 /*
3820 * Make sure we are running on primary threads, and that secondary
3821 * threads are offline. Also check if the number of threads in this
3822 * guest are greater than the current system threads per guest.
3823 */
3824 if ((controlled_threads > 1) &&
3825 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3826 for_each_runnable_thread(i, vcpu, vc) {
3827 vcpu->arch.ret = -EBUSY;
3828 kvmppc_remove_runnable(vc, vcpu, tb: mftb());
3829 wake_up(&vcpu->arch.cpu_run);
3830 }
3831 goto out;
3832 }
3833
3834 /*
3835 * See if we could run any other vcores on the physical core
3836 * along with this one.
3837 */
3838 init_core_info(cip: &core_info, vc);
3839 pcpu = smp_processor_id();
3840 target_threads = controlled_threads;
3841 if (target_smt_mode && target_smt_mode < target_threads)
3842 target_threads = target_smt_mode;
3843 if (vc->num_threads < target_threads)
3844 collect_piggybacks(cip: &core_info, target_threads);
3845
3846 /*
3847 * Hard-disable interrupts, and check resched flag and signals.
3848 * If we need to reschedule or deliver a signal, clean up
3849 * and return without going into the guest(s).
3850 * If the mmu_ready flag has been cleared, don't go into the
3851 * guest because that means a HPT resize operation is in progress.
3852 */
3853 local_irq_disable();
3854 hard_irq_disable();
3855 if (lazy_irq_pending() || need_resched() ||
3856 recheck_signals_and_mmu(cip: &core_info)) {
3857 local_irq_enable();
3858 vc->vcore_state = VCORE_INACTIVE;
3859 /* Unlock all except the primary vcore */
3860 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3861 pvc = core_info.vc[sub];
3862 /* Put back on to the preempted vcores list */
3863 kvmppc_vcore_preempt(vc: pvc);
3864 spin_unlock(lock: &pvc->lock);
3865 }
3866 for (i = 0; i < controlled_threads; ++i)
3867 kvmppc_release_hwthread(cpu: pcpu + i);
3868 return;
3869 }
3870
3871 kvmppc_clear_host_core(cpu: pcpu);
3872
3873 /* Decide on micro-threading (split-core) mode */
3874 subcore_size = threads_per_subcore;
3875 cmd_bit = stat_bit = 0;
3876 split = core_info.n_subcores;
3877 sip = NULL;
3878 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3879
3880 if (split > 1) {
3881 sip = &split_info;
3882 memset(&split_info, 0, sizeof(split_info));
3883 for (sub = 0; sub < core_info.n_subcores; ++sub)
3884 split_info.vc[sub] = core_info.vc[sub];
3885
3886 if (is_power8) {
3887 if (split == 2 && (dynamic_mt_modes & 2)) {
3888 cmd_bit = HID0_POWER8_1TO2LPAR;
3889 stat_bit = HID0_POWER8_2LPARMODE;
3890 } else {
3891 split = 4;
3892 cmd_bit = HID0_POWER8_1TO4LPAR;
3893 stat_bit = HID0_POWER8_4LPARMODE;
3894 }
3895 subcore_size = MAX_SMT_THREADS / split;
3896 split_info.rpr = mfspr(SPRN_RPR);
3897 split_info.pmmar = mfspr(SPRN_PMMAR);
3898 split_info.ldbar = mfspr(SPRN_LDBAR);
3899 split_info.subcore_size = subcore_size;
3900 } else {
3901 split_info.subcore_size = 1;
3902 }
3903
3904 /* order writes to split_info before kvm_split_mode pointer */
3905 smp_wmb();
3906 }
3907
3908 for (thr = 0; thr < controlled_threads; ++thr) {
3909 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3910
3911 paca->kvm_hstate.napping = 0;
3912 paca->kvm_hstate.kvm_split_mode = sip;
3913 }
3914
3915 /* Initiate micro-threading (split-core) on POWER8 if required */
3916 if (cmd_bit) {
3917 unsigned long hid0 = mfspr(SPRN_HID0);
3918
3919 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3920 mb();
3921 mtspr(SPRN_HID0, hid0);
3922 isync();
3923 for (;;) {
3924 hid0 = mfspr(SPRN_HID0);
3925 if (hid0 & stat_bit)
3926 break;
3927 cpu_relax();
3928 }
3929 }
3930
3931 /*
3932 * On POWER8, set RWMR register.
3933 * Since it only affects PURR and SPURR, it doesn't affect
3934 * the host, so we don't save/restore the host value.
3935 */
3936 if (is_power8) {
3937 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3938 int n_online = atomic_read(v: &vc->online_count);
3939
3940 /*
3941 * Use the 8-thread value if we're doing split-core
3942 * or if the vcore's online count looks bogus.
3943 */
3944 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3945 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3946 rwmr_val = p8_rwmr_values[n_online];
3947 mtspr(SPRN_RWMR, rwmr_val);
3948 }
3949
3950 /* Start all the threads */
3951 active = 0;
3952 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3953 thr = is_power8 ? subcore_thread_map[sub] : sub;
3954 thr0_done = false;
3955 active |= 1 << thr;
3956 pvc = core_info.vc[sub];
3957 pvc->pcpu = pcpu + thr;
3958 for_each_runnable_thread(i, vcpu, pvc) {
3959 /*
3960 * XXX: is kvmppc_start_thread called too late here?
3961 * It updates vcpu->cpu and vcpu->arch.thread_cpu
3962 * which are used by kvmppc_fast_vcpu_kick_hv(), but
3963 * kick is called after new exceptions become available
3964 * and exceptions are checked earlier than here, by
3965 * kvmppc_core_prepare_to_enter.
3966 */
3967 kvmppc_start_thread(vcpu, vc: pvc);
3968 kvmppc_update_vpa_dispatch(vcpu, vc: pvc);
3969 trace_kvm_guest_enter(vcpu);
3970 if (!vcpu->arch.ptid)
3971 thr0_done = true;
3972 active |= 1 << (thr + vcpu->arch.ptid);
3973 }
3974 /*
3975 * We need to start the first thread of each subcore
3976 * even if it doesn't have a vcpu.
3977 */
3978 if (!thr0_done)
3979 kvmppc_start_thread(NULL, vc: pvc);
3980 }
3981
3982 /*
3983 * Ensure that split_info.do_nap is set after setting
3984 * the vcore pointer in the PACA of the secondaries.
3985 */
3986 smp_mb();
3987
3988 /*
3989 * When doing micro-threading, poke the inactive threads as well.
3990 * This gets them to the nap instruction after kvm_do_nap,
3991 * which reduces the time taken to unsplit later.
3992 */
3993 if (cmd_bit) {
3994 split_info.do_nap = 1; /* ask secondaries to nap when done */
3995 for (thr = 1; thr < threads_per_subcore; ++thr)
3996 if (!(active & (1 << thr)))
3997 kvmppc_ipi_thread(pcpu + thr);
3998 }
3999
4000 vc->vcore_state = VCORE_RUNNING;
4001 preempt_disable();
4002
4003 trace_kvmppc_run_core(vc, where: 0);
4004
4005 for (sub = 0; sub < core_info.n_subcores; ++sub)
4006 spin_unlock(lock: &core_info.vc[sub]->lock);
4007
4008 guest_timing_enter_irqoff();
4009
4010 srcu_idx = srcu_read_lock(ssp: &vc->kvm->srcu);
4011
4012 guest_state_enter_irqoff();
4013 this_cpu_disable_ftrace();
4014
4015 trap = __kvmppc_vcore_entry();
4016
4017 this_cpu_enable_ftrace();
4018 guest_state_exit_irqoff();
4019
4020 srcu_read_unlock(ssp: &vc->kvm->srcu, idx: srcu_idx);
4021
4022 set_irq_happened(trap);
4023
4024 spin_lock(lock: &vc->lock);
4025 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
4026 vc->vcore_state = VCORE_EXITING;
4027
4028 /* wait for secondary threads to finish writing their state to memory */
4029 kvmppc_wait_for_nap(n_threads: controlled_threads);
4030
4031 /* Return to whole-core mode if we split the core earlier */
4032 if (cmd_bit) {
4033 unsigned long hid0 = mfspr(SPRN_HID0);
4034 unsigned long loops = 0;
4035
4036 hid0 &= ~HID0_POWER8_DYNLPARDIS;
4037 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
4038 mb();
4039 mtspr(SPRN_HID0, hid0);
4040 isync();
4041 for (;;) {
4042 hid0 = mfspr(SPRN_HID0);
4043 if (!(hid0 & stat_bit))
4044 break;
4045 cpu_relax();
4046 ++loops;
4047 }
4048 split_info.do_nap = 0;
4049 }
4050
4051 kvmppc_set_host_core(cpu: pcpu);
4052
4053 if (!vtime_accounting_enabled_this_cpu()) {
4054 local_irq_enable();
4055 /*
4056 * Service IRQs here before guest_timing_exit_irqoff() so any
4057 * ticks that occurred while running the guest are accounted to
4058 * the guest. If vtime accounting is enabled, accounting uses
4059 * TB rather than ticks, so it can be done without enabling
4060 * interrupts here, which has the problem that it accounts
4061 * interrupt processing overhead to the host.
4062 */
4063 local_irq_disable();
4064 }
4065 guest_timing_exit_irqoff();
4066
4067 local_irq_enable();
4068
4069 /* Let secondaries go back to the offline loop */
4070 for (i = 0; i < controlled_threads; ++i) {
4071 kvmppc_release_hwthread(cpu: pcpu + i);
4072 if (sip && sip->napped[i])
4073 kvmppc_ipi_thread(cpu: pcpu + i);
4074 }
4075
4076 spin_unlock(lock: &vc->lock);
4077
4078 /* make sure updates to secondary vcpu structs are visible now */
4079 smp_mb();
4080
4081 preempt_enable();
4082
4083 for (sub = 0; sub < core_info.n_subcores; ++sub) {
4084 pvc = core_info.vc[sub];
4085 post_guest_process(vc: pvc, is_master: pvc == vc);
4086 }
4087
4088 spin_lock(lock: &vc->lock);
4089
4090 out:
4091 vc->vcore_state = VCORE_INACTIVE;
4092 trace_kvmppc_run_core(vc, where: 1);
4093}
4094
4095static inline bool hcall_is_xics(unsigned long req)
4096{
4097 return req == H_EOI || req == H_CPPR || req == H_IPI ||
4098 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
4099}
4100
4101static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
4102{
4103 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4104 if (lp) {
4105 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4106 lp->yield_count = cpu_to_be32(yield_count);
4107 vcpu->arch.vpa.dirty = 1;
4108 }
4109}
4110
4111static int kvmhv_vcpu_entry_nestedv2(struct kvm_vcpu *vcpu, u64 time_limit,
4112 unsigned long lpcr, u64 *tb)
4113{
4114 struct kvmhv_nestedv2_io *io;
4115 unsigned long msr, i;
4116 int trap;
4117 long rc;
4118
4119 io = &vcpu->arch.nestedv2_io;
4120
4121 msr = mfmsr();
4122 kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4123 if (lazy_irq_pending())
4124 return 0;
4125
4126 rc = kvmhv_nestedv2_flush_vcpu(vcpu, time_limit);
4127 if (rc < 0)
4128 return -EINVAL;
4129
4130 kvmppc_gse_put_u64(io->vcpu_run_input, KVMPPC_GSID_LPCR, lpcr);
4131
4132 accumulate_time(vcpu, &vcpu->arch.in_guest);
4133 rc = plpar_guest_run_vcpu(0, vcpu->kvm->arch.lpid, vcpu->vcpu_id,
4134 &trap, &i);
4135
4136 if (rc != H_SUCCESS) {
4137 pr_err("KVM Guest Run VCPU hcall failed\n");
4138 if (rc == H_INVALID_ELEMENT_ID)
4139 pr_err("KVM: Guest Run VCPU invalid element id at %ld\n", i);
4140 else if (rc == H_INVALID_ELEMENT_SIZE)
4141 pr_err("KVM: Guest Run VCPU invalid element size at %ld\n", i);
4142 else if (rc == H_INVALID_ELEMENT_VALUE)
4143 pr_err("KVM: Guest Run VCPU invalid element value at %ld\n", i);
4144 return -EINVAL;
4145 }
4146 accumulate_time(vcpu, &vcpu->arch.guest_exit);
4147
4148 *tb = mftb();
4149 kvmppc_gsm_reset(io->vcpu_message);
4150 kvmppc_gsm_reset(io->vcore_message);
4151 kvmppc_gsbm_zero(&io->valids);
4152
4153 rc = kvmhv_nestedv2_parse_output(vcpu);
4154 if (rc < 0)
4155 return -EINVAL;
4156
4157 timer_rearm_host_dec(*tb);
4158
4159 return trap;
4160}
4161
4162/* call our hypervisor to load up HV regs and go */
4163static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
4164{
4165 unsigned long host_psscr;
4166 unsigned long msr;
4167 struct hv_guest_state hvregs;
4168 struct p9_host_os_sprs host_os_sprs;
4169 s64 dec;
4170 int trap;
4171
4172 msr = mfmsr();
4173
4174 save_p9_host_os_sprs(host_os_sprs: &host_os_sprs);
4175
4176 /*
4177 * We need to save and restore the guest visible part of the
4178 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
4179 * doesn't do this for us. Note only required if pseries since
4180 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
4181 */
4182 host_psscr = mfspr(SPRN_PSSCR_PR);
4183
4184 kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4185 if (lazy_irq_pending())
4186 return 0;
4187
4188 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
4189 msr = mfmsr(); /* TM restore can update msr */
4190
4191 if (vcpu->arch.psscr != host_psscr)
4192 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
4193
4194 kvmhv_save_hv_regs(vcpu, &hvregs);
4195 hvregs.lpcr = lpcr;
4196 hvregs.amor = ~0;
4197 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
4198 hvregs.version = HV_GUEST_STATE_VERSION;
4199 if (vcpu->arch.nested) {
4200 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
4201 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
4202 } else {
4203 hvregs.lpid = vcpu->kvm->arch.lpid;
4204 hvregs.vcpu_token = vcpu->vcpu_id;
4205 }
4206 hvregs.hdec_expiry = time_limit;
4207
4208 /*
4209 * When setting DEC, we must always deal with irq_work_raise
4210 * via NMI vs setting DEC. The problem occurs right as we
4211 * switch into guest mode if a NMI hits and sets pending work
4212 * and sets DEC, then that will apply to the guest and not
4213 * bring us back to the host.
4214 *
4215 * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4216 * for example) and set HDEC to 1? That wouldn't solve the
4217 * nested hv case which needs to abort the hcall or zero the
4218 * time limit.
4219 *
4220 * XXX: Another day's problem.
4221 */
4222 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4223
4224 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4225 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4226 switch_pmu_to_guest(vcpu, host_os_sprs: &host_os_sprs);
4227 accumulate_time(vcpu, &vcpu->arch.in_guest);
4228 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4229 __pa(&vcpu->arch.regs));
4230 accumulate_time(vcpu, &vcpu->arch.guest_exit);
4231 kvmhv_restore_hv_return_state(vcpu, &hvregs);
4232 switch_pmu_to_host(vcpu, host_os_sprs: &host_os_sprs);
4233 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4234 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4235 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4236 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4237
4238 store_vcpu_state(vcpu);
4239
4240 dec = mfspr(SPRN_DEC);
4241 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4242 dec = (s32) dec;
4243 *tb = mftb();
4244 vcpu->arch.dec_expires = dec + (*tb + kvmppc_get_tb_offset(vcpu));
4245
4246 timer_rearm_host_dec(*tb);
4247
4248 restore_p9_host_os_sprs(vcpu, host_os_sprs: &host_os_sprs);
4249 if (vcpu->arch.psscr != host_psscr)
4250 mtspr(SPRN_PSSCR_PR, host_psscr);
4251
4252 return trap;
4253}
4254
4255/*
4256 * Guest entry for POWER9 and later CPUs.
4257 */
4258static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4259 unsigned long lpcr, u64 *tb)
4260{
4261 struct kvm *kvm = vcpu->kvm;
4262 struct kvm_nested_guest *nested = vcpu->arch.nested;
4263 u64 next_timer;
4264 int trap;
4265
4266 next_timer = timer_get_next_tb();
4267 if (*tb >= next_timer)
4268 return BOOK3S_INTERRUPT_HV_DECREMENTER;
4269 if (next_timer < time_limit)
4270 time_limit = next_timer;
4271 else if (*tb >= time_limit) /* nested time limit */
4272 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4273
4274 vcpu->arch.ceded = 0;
4275
4276 vcpu_vpa_increment_dispatch(vcpu);
4277
4278 if (kvmhv_on_pseries()) {
4279 if (kvmhv_is_nestedv1())
4280 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4281 else
4282 trap = kvmhv_vcpu_entry_nestedv2(vcpu, time_limit, lpcr, tb);
4283
4284 /* H_CEDE has to be handled now, not later */
4285 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4286 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4287 kvmppc_cede(vcpu);
4288 kvmppc_set_gpr(vcpu, 3, 0);
4289 trap = 0;
4290 }
4291
4292 } else if (nested) {
4293 __this_cpu_write(cpu_in_guest, kvm);
4294 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4295 __this_cpu_write(cpu_in_guest, NULL);
4296
4297 } else {
4298 kvmppc_xive_push_vcpu(vcpu);
4299
4300 __this_cpu_write(cpu_in_guest, kvm);
4301 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4302 __this_cpu_write(cpu_in_guest, NULL);
4303
4304 if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4305 !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
4306 unsigned long req = kvmppc_get_gpr(vcpu, 3);
4307
4308 /*
4309 * XIVE rearm and XICS hcalls must be handled
4310 * before xive context is pulled (is this
4311 * true?)
4312 */
4313 if (req == H_CEDE) {
4314 /* H_CEDE has to be handled now */
4315 kvmppc_cede(vcpu);
4316 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4317 /*
4318 * Pending escalation so abort
4319 * the cede.
4320 */
4321 vcpu->arch.ceded = 0;
4322 }
4323 kvmppc_set_gpr(vcpu, 3, 0);
4324 trap = 0;
4325
4326 } else if (req == H_ENTER_NESTED) {
4327 /*
4328 * L2 should not run with the L1
4329 * context so rearm and pull it.
4330 */
4331 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4332 /*
4333 * Pending escalation so abort
4334 * H_ENTER_NESTED.
4335 */
4336 kvmppc_set_gpr(vcpu, 3, 0);
4337 trap = 0;
4338 }
4339
4340 } else if (hcall_is_xics(req)) {
4341 int ret;
4342
4343 ret = kvmppc_xive_xics_hcall(vcpu, req);
4344 if (ret != H_TOO_HARD) {
4345 kvmppc_set_gpr(vcpu, 3, ret);
4346 trap = 0;
4347 }
4348 }
4349 }
4350 kvmppc_xive_pull_vcpu(vcpu);
4351
4352 if (kvm_is_radix(kvm))
4353 vcpu->arch.slb_max = 0;
4354 }
4355
4356 vcpu_vpa_increment_dispatch(vcpu);
4357
4358 return trap;
4359}
4360
4361/*
4362 * Wait for some other vcpu thread to execute us, and
4363 * wake us up when we need to handle something in the host.
4364 */
4365static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4366 struct kvm_vcpu *vcpu, int wait_state)
4367{
4368 DEFINE_WAIT(wait);
4369
4370 prepare_to_wait(wq_head: &vcpu->arch.cpu_run, wq_entry: &wait, state: wait_state);
4371 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4372 spin_unlock(lock: &vc->lock);
4373 schedule();
4374 spin_lock(lock: &vc->lock);
4375 }
4376 finish_wait(wq_head: &vcpu->arch.cpu_run, wq_entry: &wait);
4377}
4378
4379static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4380{
4381 if (!halt_poll_ns_grow)
4382 return;
4383
4384 vc->halt_poll_ns *= halt_poll_ns_grow;
4385 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4386 vc->halt_poll_ns = halt_poll_ns_grow_start;
4387}
4388
4389static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4390{
4391 if (halt_poll_ns_shrink == 0)
4392 vc->halt_poll_ns = 0;
4393 else
4394 vc->halt_poll_ns /= halt_poll_ns_shrink;
4395}
4396
4397#ifdef CONFIG_KVM_XICS
4398static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4399{
4400 if (!xics_on_xive())
4401 return false;
4402 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4403 vcpu->arch.xive_saved_state.cppr;
4404}
4405#else
4406static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4407{
4408 return false;
4409}
4410#endif /* CONFIG_KVM_XICS */
4411
4412static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4413{
4414 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4415 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4416 return true;
4417
4418 return false;
4419}
4420
4421static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4422{
4423 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4424 return true;
4425 return false;
4426}
4427
4428/*
4429 * Check to see if any of the runnable vcpus on the vcore have pending
4430 * exceptions or are no longer ceded
4431 */
4432static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4433{
4434 struct kvm_vcpu *vcpu;
4435 int i;
4436
4437 for_each_runnable_thread(i, vcpu, vc) {
4438 if (kvmppc_vcpu_check_block(vcpu))
4439 return 1;
4440 }
4441
4442 return 0;
4443}
4444
4445/*
4446 * All the vcpus in this vcore are idle, so wait for a decrementer
4447 * or external interrupt to one of the vcpus. vc->lock is held.
4448 */
4449static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4450{
4451 ktime_t cur, start_poll, start_wait;
4452 int do_sleep = 1;
4453 u64 block_ns;
4454
4455 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4456
4457 /* Poll for pending exceptions and ceded state */
4458 cur = start_poll = ktime_get();
4459 if (vc->halt_poll_ns) {
4460 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4461 ++vc->runner->stat.generic.halt_attempted_poll;
4462
4463 vc->vcore_state = VCORE_POLLING;
4464 spin_unlock(lock: &vc->lock);
4465
4466 do {
4467 if (kvmppc_vcore_check_block(vc)) {
4468 do_sleep = 0;
4469 break;
4470 }
4471 cur = ktime_get();
4472 } while (kvm_vcpu_can_poll(cur, stop));
4473
4474 spin_lock(lock: &vc->lock);
4475 vc->vcore_state = VCORE_INACTIVE;
4476
4477 if (!do_sleep) {
4478 ++vc->runner->stat.generic.halt_successful_poll;
4479 goto out;
4480 }
4481 }
4482
4483 prepare_to_rcuwait(w: &vc->wait);
4484 set_current_state(TASK_INTERRUPTIBLE);
4485 if (kvmppc_vcore_check_block(vc)) {
4486 finish_rcuwait(w: &vc->wait);
4487 do_sleep = 0;
4488 /* If we polled, count this as a successful poll */
4489 if (vc->halt_poll_ns)
4490 ++vc->runner->stat.generic.halt_successful_poll;
4491 goto out;
4492 }
4493
4494 start_wait = ktime_get();
4495
4496 vc->vcore_state = VCORE_SLEEPING;
4497 trace_kvmppc_vcore_blocked(vcpu: vc->runner, where: 0);
4498 spin_unlock(lock: &vc->lock);
4499 schedule();
4500 finish_rcuwait(w: &vc->wait);
4501 spin_lock(lock: &vc->lock);
4502 vc->vcore_state = VCORE_INACTIVE;
4503 trace_kvmppc_vcore_blocked(vcpu: vc->runner, where: 1);
4504 ++vc->runner->stat.halt_successful_wait;
4505
4506 cur = ktime_get();
4507
4508out:
4509 block_ns = ktime_to_ns(kt: cur) - ktime_to_ns(kt: start_poll);
4510
4511 /* Attribute wait time */
4512 if (do_sleep) {
4513 vc->runner->stat.generic.halt_wait_ns +=
4514 ktime_to_ns(kt: cur) - ktime_to_ns(kt: start_wait);
4515 KVM_STATS_LOG_HIST_UPDATE(
4516 vc->runner->stat.generic.halt_wait_hist,
4517 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4518 /* Attribute failed poll time */
4519 if (vc->halt_poll_ns) {
4520 vc->runner->stat.generic.halt_poll_fail_ns +=
4521 ktime_to_ns(kt: start_wait) -
4522 ktime_to_ns(kt: start_poll);
4523 KVM_STATS_LOG_HIST_UPDATE(
4524 vc->runner->stat.generic.halt_poll_fail_hist,
4525 ktime_to_ns(start_wait) -
4526 ktime_to_ns(start_poll));
4527 }
4528 } else {
4529 /* Attribute successful poll time */
4530 if (vc->halt_poll_ns) {
4531 vc->runner->stat.generic.halt_poll_success_ns +=
4532 ktime_to_ns(kt: cur) -
4533 ktime_to_ns(kt: start_poll);
4534 KVM_STATS_LOG_HIST_UPDATE(
4535 vc->runner->stat.generic.halt_poll_success_hist,
4536 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4537 }
4538 }
4539
4540 /* Adjust poll time */
4541 if (halt_poll_ns) {
4542 if (block_ns <= vc->halt_poll_ns)
4543 ;
4544 /* We slept and blocked for longer than the max halt time */
4545 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4546 shrink_halt_poll_ns(vc);
4547 /* We slept and our poll time is too small */
4548 else if (vc->halt_poll_ns < halt_poll_ns &&
4549 block_ns < halt_poll_ns)
4550 grow_halt_poll_ns(vc);
4551 if (vc->halt_poll_ns > halt_poll_ns)
4552 vc->halt_poll_ns = halt_poll_ns;
4553 } else
4554 vc->halt_poll_ns = 0;
4555
4556 trace_kvmppc_vcore_wakeup(do_sleep, ns: block_ns);
4557}
4558
4559/*
4560 * This never fails for a radix guest, as none of the operations it does
4561 * for a radix guest can fail or have a way to report failure.
4562 */
4563static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4564{
4565 int r = 0;
4566 struct kvm *kvm = vcpu->kvm;
4567
4568 mutex_lock(&kvm->arch.mmu_setup_lock);
4569 if (!kvm->arch.mmu_ready) {
4570 if (!kvm_is_radix(kvm))
4571 r = kvmppc_hv_setup_htab_rma(vcpu);
4572 if (!r) {
4573 if (cpu_has_feature(CPU_FTR_ARCH_300))
4574 kvmppc_setup_partition_table(kvm);
4575 kvm->arch.mmu_ready = 1;
4576 }
4577 }
4578 mutex_unlock(lock: &kvm->arch.mmu_setup_lock);
4579 return r;
4580}
4581
4582static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4583{
4584 struct kvm_run *run = vcpu->run;
4585 int n_ceded, i, r;
4586 struct kvmppc_vcore *vc;
4587 struct kvm_vcpu *v;
4588
4589 trace_kvmppc_run_vcpu_enter(vcpu);
4590
4591 run->exit_reason = 0;
4592 vcpu->arch.ret = RESUME_GUEST;
4593 vcpu->arch.trap = 0;
4594 kvmppc_update_vpas(vcpu);
4595
4596 /*
4597 * Synchronize with other threads in this virtual core
4598 */
4599 vc = vcpu->arch.vcore;
4600 spin_lock(lock: &vc->lock);
4601 vcpu->arch.ceded = 0;
4602 vcpu->arch.run_task = current;
4603 vcpu->arch.stolen_logged = vcore_stolen_time(vc, now: mftb());
4604 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4605 vcpu->arch.busy_preempt = TB_NIL;
4606 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4607 ++vc->n_runnable;
4608
4609 /*
4610 * This happens the first time this is called for a vcpu.
4611 * If the vcore is already running, we may be able to start
4612 * this thread straight away and have it join in.
4613 */
4614 if (!signal_pending(current)) {
4615 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4616 vc->vcore_state == VCORE_RUNNING) &&
4617 !VCORE_IS_EXITING(vc)) {
4618 kvmppc_update_vpa_dispatch(vcpu, vc);
4619 kvmppc_start_thread(vcpu, vc);
4620 trace_kvm_guest_enter(vcpu);
4621 } else if (vc->vcore_state == VCORE_SLEEPING) {
4622 rcuwait_wake_up(w: &vc->wait);
4623 }
4624
4625 }
4626
4627 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4628 !signal_pending(current)) {
4629 /* See if the MMU is ready to go */
4630 if (!vcpu->kvm->arch.mmu_ready) {
4631 spin_unlock(lock: &vc->lock);
4632 r = kvmhv_setup_mmu(vcpu);
4633 spin_lock(lock: &vc->lock);
4634 if (r) {
4635 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4636 run->fail_entry.
4637 hardware_entry_failure_reason = 0;
4638 vcpu->arch.ret = r;
4639 break;
4640 }
4641 }
4642
4643 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4644 kvmppc_vcore_end_preempt(vc);
4645
4646 if (vc->vcore_state != VCORE_INACTIVE) {
4647 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4648 continue;
4649 }
4650 for_each_runnable_thread(i, v, vc) {
4651 kvmppc_core_prepare_to_enter(v);
4652 if (signal_pending(p: v->arch.run_task)) {
4653 kvmppc_remove_runnable(vc, vcpu: v, tb: mftb());
4654 v->stat.signal_exits++;
4655 v->run->exit_reason = KVM_EXIT_INTR;
4656 v->arch.ret = -EINTR;
4657 wake_up(&v->arch.cpu_run);
4658 }
4659 }
4660 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4661 break;
4662 n_ceded = 0;
4663 for_each_runnable_thread(i, v, vc) {
4664 if (!kvmppc_vcpu_woken(vcpu: v))
4665 n_ceded += v->arch.ceded;
4666 else
4667 v->arch.ceded = 0;
4668 }
4669 vc->runner = vcpu;
4670 if (n_ceded == vc->n_runnable) {
4671 kvmppc_vcore_blocked(vc);
4672 } else if (need_resched()) {
4673 kvmppc_vcore_preempt(vc);
4674 /* Let something else run */
4675 cond_resched_lock(&vc->lock);
4676 if (vc->vcore_state == VCORE_PREEMPT)
4677 kvmppc_vcore_end_preempt(vc);
4678 } else {
4679 kvmppc_run_core(vc);
4680 }
4681 vc->runner = NULL;
4682 }
4683
4684 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4685 (vc->vcore_state == VCORE_RUNNING ||
4686 vc->vcore_state == VCORE_EXITING ||
4687 vc->vcore_state == VCORE_PIGGYBACK))
4688 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4689
4690 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4691 kvmppc_vcore_end_preempt(vc);
4692
4693 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4694 kvmppc_remove_runnable(vc, vcpu, tb: mftb());
4695 vcpu->stat.signal_exits++;
4696 run->exit_reason = KVM_EXIT_INTR;
4697 vcpu->arch.ret = -EINTR;
4698 }
4699
4700 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4701 /* Wake up some vcpu to run the core */
4702 i = -1;
4703 v = next_runnable_thread(vc, ip: &i);
4704 wake_up(&v->arch.cpu_run);
4705 }
4706
4707 trace_kvmppc_run_vcpu_exit(vcpu);
4708 spin_unlock(lock: &vc->lock);
4709 return vcpu->arch.ret;
4710}
4711
4712int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4713 unsigned long lpcr)
4714{
4715 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4716 struct kvm_run *run = vcpu->run;
4717 int trap, r, pcpu;
4718 int srcu_idx;
4719 struct kvmppc_vcore *vc;
4720 struct kvm *kvm = vcpu->kvm;
4721 struct kvm_nested_guest *nested = vcpu->arch.nested;
4722 unsigned long flags;
4723 u64 tb;
4724
4725 trace_kvmppc_run_vcpu_enter(vcpu);
4726
4727 run->exit_reason = 0;
4728 vcpu->arch.ret = RESUME_GUEST;
4729 vcpu->arch.trap = 0;
4730
4731 vc = vcpu->arch.vcore;
4732 vcpu->arch.ceded = 0;
4733 vcpu->arch.run_task = current;
4734 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4735
4736 /* See if the MMU is ready to go */
4737 if (unlikely(!kvm->arch.mmu_ready)) {
4738 r = kvmhv_setup_mmu(vcpu);
4739 if (r) {
4740 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4741 run->fail_entry.hardware_entry_failure_reason = 0;
4742 vcpu->arch.ret = r;
4743 return r;
4744 }
4745 }
4746
4747 if (need_resched())
4748 cond_resched();
4749
4750 kvmppc_update_vpas(vcpu);
4751
4752 preempt_disable();
4753 pcpu = smp_processor_id();
4754 if (kvm_is_radix(kvm))
4755 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4756
4757 /* flags save not required, but irq_pmu has no disable/enable API */
4758 powerpc_local_irq_pmu_save(flags);
4759
4760 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4761
4762 if (signal_pending(current))
4763 goto sigpend;
4764 if (need_resched() || !kvm->arch.mmu_ready)
4765 goto out;
4766
4767 vcpu->cpu = pcpu;
4768 vcpu->arch.thread_cpu = pcpu;
4769 vc->pcpu = pcpu;
4770 local_paca->kvm_hstate.kvm_vcpu = vcpu;
4771 local_paca->kvm_hstate.ptid = 0;
4772 local_paca->kvm_hstate.fake_suspend = 0;
4773
4774 /*
4775 * Orders set cpu/thread_cpu vs testing for pending interrupts and
4776 * doorbells below. The other side is when these fields are set vs
4777 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4778 * kick a vCPU to notice the pending interrupt.
4779 */
4780 smp_mb();
4781
4782 if (!nested) {
4783 kvmppc_core_prepare_to_enter(vcpu);
4784 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4785 &vcpu->arch.pending_exceptions) ||
4786 xive_interrupt_pending(vcpu)) {
4787 /*
4788 * For nested HV, don't synthesize but always pass MER,
4789 * the L0 will be able to optimise that more
4790 * effectively than manipulating registers directly.
4791 */
4792 if (!kvmhv_on_pseries() && (__kvmppc_get_msr_hv(vcpu) & MSR_EE))
4793 kvmppc_inject_interrupt_hv(vcpu,
4794 BOOK3S_INTERRUPT_EXTERNAL, 0);
4795 else
4796 lpcr |= LPCR_MER;
4797 }
4798 } else if (vcpu->arch.pending_exceptions ||
4799 vcpu->arch.doorbell_request ||
4800 xive_interrupt_pending(vcpu)) {
4801 vcpu->arch.ret = RESUME_HOST;
4802 goto out;
4803 }
4804
4805 if (vcpu->arch.timer_running) {
4806 hrtimer_try_to_cancel(timer: &vcpu->arch.dec_timer);
4807 vcpu->arch.timer_running = 0;
4808 }
4809
4810 tb = mftb();
4811
4812 kvmppc_update_vpa_dispatch_p9(vcpu, vc, now: tb + kvmppc_get_tb_offset(vcpu));
4813
4814 trace_kvm_guest_enter(vcpu);
4815
4816 guest_timing_enter_irqoff();
4817
4818 srcu_idx = srcu_read_lock(ssp: &kvm->srcu);
4819
4820 guest_state_enter_irqoff();
4821 this_cpu_disable_ftrace();
4822
4823 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, tb: &tb);
4824 vcpu->arch.trap = trap;
4825
4826 this_cpu_enable_ftrace();
4827 guest_state_exit_irqoff();
4828
4829 srcu_read_unlock(ssp: &kvm->srcu, idx: srcu_idx);
4830
4831 set_irq_happened(trap);
4832
4833 vcpu->cpu = -1;
4834 vcpu->arch.thread_cpu = -1;
4835 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4836
4837 if (!vtime_accounting_enabled_this_cpu()) {
4838 powerpc_local_irq_pmu_restore(flags);
4839 /*
4840 * Service IRQs here before guest_timing_exit_irqoff() so any
4841 * ticks that occurred while running the guest are accounted to
4842 * the guest. If vtime accounting is enabled, accounting uses
4843 * TB rather than ticks, so it can be done without enabling
4844 * interrupts here, which has the problem that it accounts
4845 * interrupt processing overhead to the host.
4846 */
4847 powerpc_local_irq_pmu_save(flags);
4848 }
4849 guest_timing_exit_irqoff();
4850
4851 powerpc_local_irq_pmu_restore(flags);
4852
4853 preempt_enable();
4854
4855 /*
4856 * cancel pending decrementer exception if DEC is now positive, or if
4857 * entering a nested guest in which case the decrementer is now owned
4858 * by L2 and the L1 decrementer is provided in hdec_expires
4859 */
4860 if (!kvmhv_is_nestedv2() && kvmppc_core_pending_dec(vcpu) &&
4861 ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4862 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4863 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4864 kvmppc_core_dequeue_dec(vcpu);
4865
4866 trace_kvm_guest_exit(vcpu);
4867 r = RESUME_GUEST;
4868 if (trap) {
4869 if (!nested)
4870 r = kvmppc_handle_exit_hv(vcpu, current);
4871 else
4872 r = kvmppc_handle_nested_exit(vcpu);
4873 }
4874 vcpu->arch.ret = r;
4875
4876 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4877 kvmppc_set_timer(vcpu);
4878
4879 prepare_to_rcuwait(w: wait);
4880 for (;;) {
4881 set_current_state(TASK_INTERRUPTIBLE);
4882 if (signal_pending(current)) {
4883 vcpu->stat.signal_exits++;
4884 run->exit_reason = KVM_EXIT_INTR;
4885 vcpu->arch.ret = -EINTR;
4886 break;
4887 }
4888
4889 if (kvmppc_vcpu_check_block(vcpu))
4890 break;
4891
4892 trace_kvmppc_vcore_blocked(vcpu, where: 0);
4893 schedule();
4894 trace_kvmppc_vcore_blocked(vcpu, where: 1);
4895 }
4896 finish_rcuwait(w: wait);
4897 }
4898 vcpu->arch.ceded = 0;
4899
4900 done:
4901 trace_kvmppc_run_vcpu_exit(vcpu);
4902
4903 return vcpu->arch.ret;
4904
4905 sigpend:
4906 vcpu->stat.signal_exits++;
4907 run->exit_reason = KVM_EXIT_INTR;
4908 vcpu->arch.ret = -EINTR;
4909 out:
4910 vcpu->cpu = -1;
4911 vcpu->arch.thread_cpu = -1;
4912 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4913 powerpc_local_irq_pmu_restore(flags);
4914 preempt_enable();
4915 goto done;
4916}
4917
4918static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4919{
4920 struct kvm_run *run = vcpu->run;
4921 int r;
4922 int srcu_idx;
4923 struct kvm *kvm;
4924 unsigned long msr;
4925
4926 start_timing(vcpu, &vcpu->arch.vcpu_entry);
4927
4928 if (!vcpu->arch.sane) {
4929 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4930 return -EINVAL;
4931 }
4932
4933 /* No need to go into the guest when all we'll do is come back out */
4934 if (signal_pending(current)) {
4935 run->exit_reason = KVM_EXIT_INTR;
4936 return -EINTR;
4937 }
4938
4939#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4940 /*
4941 * Don't allow entry with a suspended transaction, because
4942 * the guest entry/exit code will lose it.
4943 */
4944 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4945 (current->thread.regs->msr & MSR_TM)) {
4946 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4947 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4948 run->fail_entry.hardware_entry_failure_reason = 0;
4949 return -EINVAL;
4950 }
4951 }
4952#endif
4953
4954 /*
4955 * Force online to 1 for the sake of old userspace which doesn't
4956 * set it.
4957 */
4958 if (!vcpu->arch.online) {
4959 atomic_inc(v: &vcpu->arch.vcore->online_count);
4960 vcpu->arch.online = 1;
4961 }
4962
4963 kvmppc_core_prepare_to_enter(vcpu);
4964
4965 kvm = vcpu->kvm;
4966 atomic_inc(v: &kvm->arch.vcpus_running);
4967 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4968 smp_mb();
4969
4970 msr = 0;
4971 if (IS_ENABLED(CONFIG_PPC_FPU))
4972 msr |= MSR_FP;
4973 if (cpu_has_feature(CPU_FTR_ALTIVEC))
4974 msr |= MSR_VEC;
4975 if (cpu_has_feature(CPU_FTR_VSX))
4976 msr |= MSR_VSX;
4977 if ((cpu_has_feature(CPU_FTR_TM) ||
4978 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4979 (kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM))
4980 msr |= MSR_TM;
4981 msr = msr_check_and_set(msr);
4982
4983 kvmppc_save_user_regs();
4984
4985 kvmppc_save_current_sprs();
4986
4987 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4988 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4989 vcpu->arch.pgdir = kvm->mm->pgd;
4990 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4991
4992 do {
4993 accumulate_time(vcpu, &vcpu->arch.guest_entry);
4994 if (cpu_has_feature(CPU_FTR_ARCH_300))
4995 r = kvmhv_run_single_vcpu(vcpu, time_limit: ~(u64)0,
4996 lpcr: vcpu->arch.vcore->lpcr);
4997 else
4998 r = kvmppc_run_vcpu(vcpu);
4999
5000 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
5001 accumulate_time(vcpu, &vcpu->arch.hcall);
5002
5003 if (!kvmhv_is_nestedv2() && WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
5004 /*
5005 * These should have been caught reflected
5006 * into the guest by now. Final sanity check:
5007 * don't allow userspace to execute hcalls in
5008 * the hypervisor.
5009 */
5010 r = RESUME_GUEST;
5011 continue;
5012 }
5013 trace_kvm_hcall_enter(vcpu);
5014 r = kvmppc_pseries_do_hcall(vcpu);
5015 trace_kvm_hcall_exit(vcpu, ret: r);
5016 kvmppc_core_prepare_to_enter(vcpu);
5017 } else if (r == RESUME_PAGE_FAULT) {
5018 accumulate_time(vcpu, &vcpu->arch.pg_fault);
5019 srcu_idx = srcu_read_lock(ssp: &kvm->srcu);
5020 r = kvmppc_book3s_hv_page_fault(vcpu,
5021 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
5022 srcu_read_unlock(ssp: &kvm->srcu, idx: srcu_idx);
5023 } else if (r == RESUME_PASSTHROUGH) {
5024 if (WARN_ON(xics_on_xive()))
5025 r = H_SUCCESS;
5026 else
5027 r = kvmppc_xics_rm_complete(vcpu, 0);
5028 }
5029 } while (is_kvmppc_resume_guest(r));
5030 accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
5031
5032 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
5033 atomic_dec(v: &kvm->arch.vcpus_running);
5034
5035 srr_regs_clobbered();
5036
5037 end_timing(vcpu);
5038
5039 return r;
5040}
5041
5042static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
5043 int shift, int sllp)
5044{
5045 (*sps)->page_shift = shift;
5046 (*sps)->slb_enc = sllp;
5047 (*sps)->enc[0].page_shift = shift;
5048 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
5049 /*
5050 * Add 16MB MPSS support (may get filtered out by userspace)
5051 */
5052 if (shift != 24) {
5053 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
5054 if (penc != -1) {
5055 (*sps)->enc[1].page_shift = 24;
5056 (*sps)->enc[1].pte_enc = penc;
5057 }
5058 }
5059 (*sps)++;
5060}
5061
5062static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
5063 struct kvm_ppc_smmu_info *info)
5064{
5065 struct kvm_ppc_one_seg_page_size *sps;
5066
5067 /*
5068 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
5069 * POWER7 doesn't support keys for instruction accesses,
5070 * POWER8 and POWER9 do.
5071 */
5072 info->data_keys = 32;
5073 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
5074
5075 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
5076 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
5077 info->slb_size = 32;
5078
5079 /* We only support these sizes for now, and no muti-size segments */
5080 sps = &info->sps[0];
5081 kvmppc_add_seg_page_size(sps: &sps, shift: 12, sllp: 0);
5082 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
5083 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
5084
5085 /* If running as a nested hypervisor, we don't support HPT guests */
5086 if (kvmhv_on_pseries())
5087 info->flags |= KVM_PPC_NO_HASH;
5088
5089 return 0;
5090}
5091
5092/*
5093 * Get (and clear) the dirty memory log for a memory slot.
5094 */
5095static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
5096 struct kvm_dirty_log *log)
5097{
5098 struct kvm_memslots *slots;
5099 struct kvm_memory_slot *memslot;
5100 int r;
5101 unsigned long n, i;
5102 unsigned long *buf, *p;
5103 struct kvm_vcpu *vcpu;
5104
5105 mutex_lock(&kvm->slots_lock);
5106
5107 r = -EINVAL;
5108 if (log->slot >= KVM_USER_MEM_SLOTS)
5109 goto out;
5110
5111 slots = kvm_memslots(kvm);
5112 memslot = id_to_memslot(slots, id: log->slot);
5113 r = -ENOENT;
5114 if (!memslot || !memslot->dirty_bitmap)
5115 goto out;
5116
5117 /*
5118 * Use second half of bitmap area because both HPT and radix
5119 * accumulate bits in the first half.
5120 */
5121 n = kvm_dirty_bitmap_bytes(memslot);
5122 buf = memslot->dirty_bitmap + n / sizeof(long);
5123 memset(buf, 0, n);
5124
5125 if (kvm_is_radix(kvm))
5126 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
5127 else
5128 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
5129 if (r)
5130 goto out;
5131
5132 /*
5133 * We accumulate dirty bits in the first half of the
5134 * memslot's dirty_bitmap area, for when pages are paged
5135 * out or modified by the host directly. Pick up these
5136 * bits and add them to the map.
5137 */
5138 p = memslot->dirty_bitmap;
5139 for (i = 0; i < n / sizeof(long); ++i)
5140 buf[i] |= xchg(&p[i], 0);
5141
5142 /* Harvest dirty bits from VPA and DTL updates */
5143 /* Note: we never modify the SLB shadow buffer areas */
5144 kvm_for_each_vcpu(i, vcpu, kvm) {
5145 spin_lock(lock: &vcpu->arch.vpa_update_lock);
5146 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
5147 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
5148 spin_unlock(lock: &vcpu->arch.vpa_update_lock);
5149 }
5150
5151 r = -EFAULT;
5152 if (copy_to_user(to: log->dirty_bitmap, from: buf, n))
5153 goto out;
5154
5155 r = 0;
5156out:
5157 mutex_unlock(lock: &kvm->slots_lock);
5158 return r;
5159}
5160
5161static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
5162{
5163 vfree(addr: slot->arch.rmap);
5164 slot->arch.rmap = NULL;
5165}
5166
5167static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
5168 const struct kvm_memory_slot *old,
5169 struct kvm_memory_slot *new,
5170 enum kvm_mr_change change)
5171{
5172 if (change == KVM_MR_CREATE) {
5173 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
5174
5175 if ((size >> PAGE_SHIFT) > totalram_pages())
5176 return -ENOMEM;
5177
5178 new->arch.rmap = vzalloc(size);
5179 if (!new->arch.rmap)
5180 return -ENOMEM;
5181 } else if (change != KVM_MR_DELETE) {
5182 new->arch.rmap = old->arch.rmap;
5183 }
5184
5185 return 0;
5186}
5187
5188static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
5189 struct kvm_memory_slot *old,
5190 const struct kvm_memory_slot *new,
5191 enum kvm_mr_change change)
5192{
5193 /*
5194 * If we are creating or modifying a memslot, it might make
5195 * some address that was previously cached as emulated
5196 * MMIO be no longer emulated MMIO, so invalidate
5197 * all the caches of emulated MMIO translations.
5198 */
5199 if (change != KVM_MR_DELETE)
5200 atomic64_inc(v: &kvm->arch.mmio_update);
5201
5202 /*
5203 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
5204 * have already called kvm_arch_flush_shadow_memslot() to
5205 * flush shadow mappings. For KVM_MR_CREATE we have no
5206 * previous mappings. So the only case to handle is
5207 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
5208 * has been changed.
5209 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
5210 * to get rid of any THP PTEs in the partition-scoped page tables
5211 * so we can track dirtiness at the page level; we flush when
5212 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
5213 * using THP PTEs.
5214 */
5215 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5216 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5217 kvmppc_radix_flush_memslot(kvm, old);
5218 /*
5219 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5220 */
5221 if (!kvm->arch.secure_guest)
5222 return;
5223
5224 switch (change) {
5225 case KVM_MR_CREATE:
5226 /*
5227 * @TODO kvmppc_uvmem_memslot_create() can fail and
5228 * return error. Fix this.
5229 */
5230 kvmppc_uvmem_memslot_create(kvm, new);
5231 break;
5232 case KVM_MR_DELETE:
5233 kvmppc_uvmem_memslot_delete(kvm, old);
5234 break;
5235 default:
5236 /* TODO: Handle KVM_MR_MOVE */
5237 break;
5238 }
5239}
5240
5241/*
5242 * Update LPCR values in kvm->arch and in vcores.
5243 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5244 * of kvm->arch.lpcr update).
5245 */
5246void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5247{
5248 long int i;
5249 u32 cores_done = 0;
5250
5251 if ((kvm->arch.lpcr & mask) == lpcr)
5252 return;
5253
5254 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5255
5256 for (i = 0; i < KVM_MAX_VCORES; ++i) {
5257 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5258 if (!vc)
5259 continue;
5260
5261 spin_lock(&vc->lock);
5262 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5263 verify_lpcr(kvm, vc->lpcr);
5264 spin_unlock(&vc->lock);
5265 if (++cores_done >= kvm->arch.online_vcores)
5266 break;
5267 }
5268
5269 if (kvmhv_is_nestedv2()) {
5270 struct kvm_vcpu *vcpu;
5271
5272 kvm_for_each_vcpu(i, vcpu, kvm) {
5273 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
5274 }
5275 }
5276}
5277
5278void kvmppc_setup_partition_table(struct kvm *kvm)
5279{
5280 unsigned long dw0, dw1;
5281
5282 if (!kvm_is_radix(kvm)) {
5283 /* PS field - page size for VRMA */
5284 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5285 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5286 /* HTABSIZE and HTABORG fields */
5287 dw0 |= kvm->arch.sdr1;
5288
5289 /* Second dword as set by userspace */
5290 dw1 = kvm->arch.process_table;
5291 } else {
5292 dw0 = PATB_HR | radix__get_tree_size() |
5293 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5294 dw1 = PATB_GR | kvm->arch.process_table;
5295 }
5296 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5297}
5298
5299/*
5300 * Set up HPT (hashed page table) and RMA (real-mode area).
5301 * Must be called with kvm->arch.mmu_setup_lock held.
5302 */
5303static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5304{
5305 int err = 0;
5306 struct kvm *kvm = vcpu->kvm;
5307 unsigned long hva;
5308 struct kvm_memory_slot *memslot;
5309 struct vm_area_struct *vma;
5310 unsigned long lpcr = 0, senc;
5311 unsigned long psize, porder;
5312 int srcu_idx;
5313
5314 /* Allocate hashed page table (if not done already) and reset it */
5315 if (!kvm->arch.hpt.virt) {
5316 int order = KVM_DEFAULT_HPT_ORDER;
5317 struct kvm_hpt_info info;
5318
5319 err = kvmppc_allocate_hpt(&info, order);
5320 /* If we get here, it means userspace didn't specify a
5321 * size explicitly. So, try successively smaller
5322 * sizes if the default failed. */
5323 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5324 err = kvmppc_allocate_hpt(&info, order);
5325
5326 if (err < 0) {
5327 pr_err("KVM: Couldn't alloc HPT\n");
5328 goto out;
5329 }
5330
5331 kvmppc_set_hpt(kvm, &info);
5332 }
5333
5334 /* Look up the memslot for guest physical address 0 */
5335 srcu_idx = srcu_read_lock(ssp: &kvm->srcu);
5336 memslot = gfn_to_memslot(kvm, gfn: 0);
5337
5338 /* We must have some memory at 0 by now */
5339 err = -EINVAL;
5340 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5341 goto out_srcu;
5342
5343 /* Look up the VMA for the start of this memory slot */
5344 hva = memslot->userspace_addr;
5345 mmap_read_lock(mm: kvm->mm);
5346 vma = vma_lookup(mm: kvm->mm, addr: hva);
5347 if (!vma || (vma->vm_flags & VM_IO))
5348 goto up_out;
5349
5350 psize = vma_kernel_pagesize(vma);
5351
5352 mmap_read_unlock(mm: kvm->mm);
5353
5354 /* We can handle 4k, 64k or 16M pages in the VRMA */
5355 if (psize >= 0x1000000)
5356 psize = 0x1000000;
5357 else if (psize >= 0x10000)
5358 psize = 0x10000;
5359 else
5360 psize = 0x1000;
5361 porder = __ilog2(psize);
5362
5363 senc = slb_pgsize_encoding(psize);
5364 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5365 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5366 /* Create HPTEs in the hash page table for the VRMA */
5367 kvmppc_map_vrma(vcpu, memslot, porder);
5368
5369 /* Update VRMASD field in the LPCR */
5370 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5371 /* the -4 is to account for senc values starting at 0x10 */
5372 lpcr = senc << (LPCR_VRMASD_SH - 4);
5373 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5374 }
5375
5376 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5377 smp_wmb();
5378 err = 0;
5379 out_srcu:
5380 srcu_read_unlock(ssp: &kvm->srcu, idx: srcu_idx);
5381 out:
5382 return err;
5383
5384 up_out:
5385 mmap_read_unlock(mm: kvm->mm);
5386 goto out_srcu;
5387}
5388
5389/*
5390 * Must be called with kvm->arch.mmu_setup_lock held and
5391 * mmu_ready = 0 and no vcpus running.
5392 */
5393int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5394{
5395 unsigned long lpcr, lpcr_mask;
5396
5397 if (nesting_enabled(kvm))
5398 kvmhv_release_all_nested(kvm);
5399 kvmppc_rmap_reset(kvm);
5400 kvm->arch.process_table = 0;
5401 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5402 spin_lock(lock: &kvm->mmu_lock);
5403 kvm->arch.radix = 0;
5404 spin_unlock(lock: &kvm->mmu_lock);
5405 kvmppc_free_radix(kvm);
5406
5407 lpcr = LPCR_VPM1;
5408 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5409 if (cpu_has_feature(CPU_FTR_ARCH_31))
5410 lpcr_mask |= LPCR_HAIL;
5411 kvmppc_update_lpcr(kvm, lpcr, mask: lpcr_mask);
5412
5413 return 0;
5414}
5415
5416/*
5417 * Must be called with kvm->arch.mmu_setup_lock held and
5418 * mmu_ready = 0 and no vcpus running.
5419 */
5420int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5421{
5422 unsigned long lpcr, lpcr_mask;
5423 int err;
5424
5425 err = kvmppc_init_vm_radix(kvm);
5426 if (err)
5427 return err;
5428 kvmppc_rmap_reset(kvm);
5429 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5430 spin_lock(lock: &kvm->mmu_lock);
5431 kvm->arch.radix = 1;
5432 spin_unlock(lock: &kvm->mmu_lock);
5433 kvmppc_free_hpt(&kvm->arch.hpt);
5434
5435 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5436 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5437 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5438 lpcr_mask |= LPCR_HAIL;
5439 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5440 (kvm->arch.host_lpcr & LPCR_HAIL))
5441 lpcr |= LPCR_HAIL;
5442 }
5443 kvmppc_update_lpcr(kvm, lpcr, mask: lpcr_mask);
5444
5445 return 0;
5446}
5447
5448#ifdef CONFIG_KVM_XICS
5449/*
5450 * Allocate a per-core structure for managing state about which cores are
5451 * running in the host versus the guest and for exchanging data between
5452 * real mode KVM and CPU running in the host.
5453 * This is only done for the first VM.
5454 * The allocated structure stays even if all VMs have stopped.
5455 * It is only freed when the kvm-hv module is unloaded.
5456 * It's OK for this routine to fail, we just don't support host
5457 * core operations like redirecting H_IPI wakeups.
5458 */
5459void kvmppc_alloc_host_rm_ops(void)
5460{
5461 struct kvmppc_host_rm_ops *ops;
5462 unsigned long l_ops;
5463 int cpu, core;
5464 int size;
5465
5466 if (cpu_has_feature(CPU_FTR_ARCH_300))
5467 return;
5468
5469 /* Not the first time here ? */
5470 if (kvmppc_host_rm_ops_hv != NULL)
5471 return;
5472
5473 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5474 if (!ops)
5475 return;
5476
5477 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5478 ops->rm_core = kzalloc(size, GFP_KERNEL);
5479
5480 if (!ops->rm_core) {
5481 kfree(ops);
5482 return;
5483 }
5484
5485 cpus_read_lock();
5486
5487 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5488 if (!cpu_online(cpu))
5489 continue;
5490
5491 core = cpu >> threads_shift;
5492 ops->rm_core[core].rm_state.in_host = 1;
5493 }
5494
5495 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5496
5497 /*
5498 * Make the contents of the kvmppc_host_rm_ops structure visible
5499 * to other CPUs before we assign it to the global variable.
5500 * Do an atomic assignment (no locks used here), but if someone
5501 * beats us to it, just free our copy and return.
5502 */
5503 smp_wmb();
5504 l_ops = (unsigned long) ops;
5505
5506 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5507 cpus_read_unlock();
5508 kfree(ops->rm_core);
5509 kfree(ops);
5510 return;
5511 }
5512
5513 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5514 "ppc/kvm_book3s:prepare",
5515 kvmppc_set_host_core,
5516 kvmppc_clear_host_core);
5517 cpus_read_unlock();
5518}
5519
5520void kvmppc_free_host_rm_ops(void)
5521{
5522 if (kvmppc_host_rm_ops_hv) {
5523 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5524 kfree(kvmppc_host_rm_ops_hv->rm_core);
5525 kfree(kvmppc_host_rm_ops_hv);
5526 kvmppc_host_rm_ops_hv = NULL;
5527 }
5528}
5529#endif
5530
5531static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5532{
5533 unsigned long lpcr, lpid;
5534 int ret;
5535
5536 mutex_init(&kvm->arch.uvmem_lock);
5537 INIT_LIST_HEAD(list: &kvm->arch.uvmem_pfns);
5538 mutex_init(&kvm->arch.mmu_setup_lock);
5539
5540 /* Allocate the guest's logical partition ID */
5541
5542 if (!kvmhv_is_nestedv2()) {
5543 lpid = kvmppc_alloc_lpid();
5544 if ((long)lpid < 0)
5545 return -ENOMEM;
5546 kvm->arch.lpid = lpid;
5547 }
5548
5549 kvmppc_alloc_host_rm_ops();
5550
5551 kvmhv_vm_nested_init(kvm);
5552
5553 if (kvmhv_is_nestedv2()) {
5554 long rc;
5555 unsigned long guest_id;
5556
5557 rc = plpar_guest_create(0, &guest_id);
5558
5559 if (rc != H_SUCCESS)
5560 pr_err("KVM: Create Guest hcall failed, rc=%ld\n", rc);
5561
5562 switch (rc) {
5563 case H_PARAMETER:
5564 case H_FUNCTION:
5565 case H_STATE:
5566 return -EINVAL;
5567 case H_NOT_ENOUGH_RESOURCES:
5568 case H_ABORTED:
5569 return -ENOMEM;
5570 case H_AUTHORITY:
5571 return -EPERM;
5572 case H_NOT_AVAILABLE:
5573 return -EBUSY;
5574 }
5575 kvm->arch.lpid = guest_id;
5576 }
5577
5578
5579 /*
5580 * Since we don't flush the TLB when tearing down a VM,
5581 * and this lpid might have previously been used,
5582 * make sure we flush on each core before running the new VM.
5583 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5584 * does this flush for us.
5585 */
5586 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5587 cpumask_setall(dstp: &kvm->arch.need_tlb_flush);
5588
5589 /* Start out with the default set of hcalls enabled */
5590 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5591 sizeof(kvm->arch.enabled_hcalls));
5592
5593 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5594 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5595
5596 /* Init LPCR for virtual RMA mode */
5597 if (cpu_has_feature(CPU_FTR_HVMODE)) {
5598 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5599 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5600 lpcr &= LPCR_PECE | LPCR_LPES;
5601 } else {
5602 /*
5603 * The L2 LPES mode will be set by the L0 according to whether
5604 * or not it needs to take external interrupts in HV mode.
5605 */
5606 lpcr = 0;
5607 }
5608 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5609 LPCR_VPM0 | LPCR_VPM1;
5610 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5611 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5612 /* On POWER8 turn on online bit to enable PURR/SPURR */
5613 if (cpu_has_feature(CPU_FTR_ARCH_207S))
5614 lpcr |= LPCR_ONL;
5615 /*
5616 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5617 * Set HVICE bit to enable hypervisor virtualization interrupts.
5618 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5619 * be unnecessary but better safe than sorry in case we re-enable
5620 * EE in HV mode with this LPCR still set)
5621 */
5622 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5623 lpcr &= ~LPCR_VPM0;
5624 lpcr |= LPCR_HVICE | LPCR_HEIC;
5625
5626 /*
5627 * If xive is enabled, we route 0x500 interrupts directly
5628 * to the guest.
5629 */
5630 if (xics_on_xive())
5631 lpcr |= LPCR_LPES;
5632 }
5633
5634 /*
5635 * If the host uses radix, the guest starts out as radix.
5636 */
5637 if (radix_enabled()) {
5638 kvm->arch.radix = 1;
5639 kvm->arch.mmu_ready = 1;
5640 lpcr &= ~LPCR_VPM1;
5641 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5642 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5643 cpu_has_feature(CPU_FTR_ARCH_31) &&
5644 (kvm->arch.host_lpcr & LPCR_HAIL))
5645 lpcr |= LPCR_HAIL;
5646 ret = kvmppc_init_vm_radix(kvm);
5647 if (ret) {
5648 if (kvmhv_is_nestedv2())
5649 plpar_guest_delete(0, kvm->arch.lpid);
5650 else
5651 kvmppc_free_lpid(kvm->arch.lpid);
5652 return ret;
5653 }
5654 kvmppc_setup_partition_table(kvm);
5655 }
5656
5657 verify_lpcr(kvm, lpcr);
5658 kvm->arch.lpcr = lpcr;
5659
5660 /* Initialization for future HPT resizes */
5661 kvm->arch.resize_hpt = NULL;
5662
5663 /*
5664 * Work out how many sets the TLB has, for the use of
5665 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5666 */
5667 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5668 /*
5669 * P10 will flush all the congruence class with a single tlbiel
5670 */
5671 kvm->arch.tlb_sets = 1;
5672 } else if (radix_enabled())
5673 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
5674 else if (cpu_has_feature(CPU_FTR_ARCH_300))
5675 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
5676 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5677 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
5678 else
5679 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
5680
5681 /*
5682 * Track that we now have a HV mode VM active. This blocks secondary
5683 * CPU threads from coming online.
5684 */
5685 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5686 kvm_hv_vm_activated();
5687
5688 /*
5689 * Initialize smt_mode depending on processor.
5690 * POWER8 and earlier have to use "strict" threading, where
5691 * all vCPUs in a vcore have to run on the same (sub)core,
5692 * whereas on POWER9 the threads can each run a different
5693 * guest.
5694 */
5695 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5696 kvm->arch.smt_mode = threads_per_subcore;
5697 else
5698 kvm->arch.smt_mode = 1;
5699 kvm->arch.emul_smt_mode = 1;
5700
5701 return 0;
5702}
5703
5704static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5705{
5706 kvmppc_mmu_debugfs_init(kvm);
5707 if (radix_enabled())
5708 kvmhv_radix_debugfs_init(kvm);
5709 return 0;
5710}
5711
5712static void kvmppc_free_vcores(struct kvm *kvm)
5713{
5714 long int i;
5715
5716 for (i = 0; i < KVM_MAX_VCORES; ++i)
5717 kfree(kvm->arch.vcores[i]);
5718 kvm->arch.online_vcores = 0;
5719}
5720
5721static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5722{
5723 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5724 kvm_hv_vm_deactivated();
5725
5726 kvmppc_free_vcores(kvm);
5727
5728
5729 if (kvm_is_radix(kvm))
5730 kvmppc_free_radix(kvm);
5731 else
5732 kvmppc_free_hpt(&kvm->arch.hpt);
5733
5734 /* Perform global invalidation and return lpid to the pool */
5735 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5736 if (nesting_enabled(kvm))
5737 kvmhv_release_all_nested(kvm);
5738 kvm->arch.process_table = 0;
5739 if (kvm->arch.secure_guest)
5740 uv_svm_terminate(kvm->arch.lpid);
5741 if (!kvmhv_is_nestedv2())
5742 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5743 }
5744
5745 if (kvmhv_is_nestedv2()) {
5746 kvmhv_flush_lpid(kvm->arch.lpid);
5747 plpar_guest_delete(0, kvm->arch.lpid);
5748 } else {
5749 kvmppc_free_lpid(kvm->arch.lpid);
5750 }
5751
5752 kvmppc_free_pimap(kvm);
5753}
5754
5755/* We don't need to emulate any privileged instructions or dcbz */
5756static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5757 unsigned int inst, int *advance)
5758{
5759 return EMULATE_FAIL;
5760}
5761
5762static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5763 ulong spr_val)
5764{
5765 return EMULATE_FAIL;
5766}
5767
5768static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5769 ulong *spr_val)
5770{
5771 return EMULATE_FAIL;
5772}
5773
5774static int kvmppc_core_check_processor_compat_hv(void)
5775{
5776 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5777 cpu_has_feature(CPU_FTR_ARCH_206))
5778 return 0;
5779
5780 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5781 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5782 return 0;
5783
5784 return -EIO;
5785}
5786
5787#ifdef CONFIG_KVM_XICS
5788
5789void kvmppc_free_pimap(struct kvm *kvm)
5790{
5791 kfree(kvm->arch.pimap);
5792}
5793
5794static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5795{
5796 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5797}
5798
5799static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5800{
5801 struct irq_desc *desc;
5802 struct kvmppc_irq_map *irq_map;
5803 struct kvmppc_passthru_irqmap *pimap;
5804 struct irq_chip *chip;
5805 int i, rc = 0;
5806 struct irq_data *host_data;
5807
5808 if (!kvm_irq_bypass)
5809 return 1;
5810
5811 desc = irq_to_desc(host_irq);
5812 if (!desc)
5813 return -EIO;
5814
5815 mutex_lock(&kvm->lock);
5816
5817 pimap = kvm->arch.pimap;
5818 if (pimap == NULL) {
5819 /* First call, allocate structure to hold IRQ map */
5820 pimap = kvmppc_alloc_pimap();
5821 if (pimap == NULL) {
5822 mutex_unlock(&kvm->lock);
5823 return -ENOMEM;
5824 }
5825 kvm->arch.pimap = pimap;
5826 }
5827
5828 /*
5829 * For now, we only support interrupts for which the EOI operation
5830 * is an OPAL call followed by a write to XIRR, since that's
5831 * what our real-mode EOI code does, or a XIVE interrupt
5832 */
5833 chip = irq_data_get_irq_chip(&desc->irq_data);
5834 if (!chip || !is_pnv_opal_msi(chip)) {
5835 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5836 host_irq, guest_gsi);
5837 mutex_unlock(&kvm->lock);
5838 return -ENOENT;
5839 }
5840
5841 /*
5842 * See if we already have an entry for this guest IRQ number.
5843 * If it's mapped to a hardware IRQ number, that's an error,
5844 * otherwise re-use this entry.
5845 */
5846 for (i = 0; i < pimap->n_mapped; i++) {
5847 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5848 if (pimap->mapped[i].r_hwirq) {
5849 mutex_unlock(&kvm->lock);
5850 return -EINVAL;
5851 }
5852 break;
5853 }
5854 }
5855
5856 if (i == KVMPPC_PIRQ_MAPPED) {
5857 mutex_unlock(&kvm->lock);
5858 return -EAGAIN; /* table is full */
5859 }
5860
5861 irq_map = &pimap->mapped[i];
5862
5863 irq_map->v_hwirq = guest_gsi;
5864 irq_map->desc = desc;
5865
5866 /*
5867 * Order the above two stores before the next to serialize with
5868 * the KVM real mode handler.
5869 */
5870 smp_wmb();
5871
5872 /*
5873 * The 'host_irq' number is mapped in the PCI-MSI domain but
5874 * the underlying calls, which will EOI the interrupt in real
5875 * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5876 */
5877 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5878 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5879
5880 if (i == pimap->n_mapped)
5881 pimap->n_mapped++;
5882
5883 if (xics_on_xive())
5884 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5885 else
5886 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5887 if (rc)
5888 irq_map->r_hwirq = 0;
5889
5890 mutex_unlock(&kvm->lock);
5891
5892 return 0;
5893}
5894
5895static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5896{
5897 struct irq_desc *desc;
5898 struct kvmppc_passthru_irqmap *pimap;
5899 int i, rc = 0;
5900
5901 if (!kvm_irq_bypass)
5902 return 0;
5903
5904 desc = irq_to_desc(host_irq);
5905 if (!desc)
5906 return -EIO;
5907
5908 mutex_lock(&kvm->lock);
5909 if (!kvm->arch.pimap)
5910 goto unlock;
5911
5912 pimap = kvm->arch.pimap;
5913
5914 for (i = 0; i < pimap->n_mapped; i++) {
5915 if (guest_gsi == pimap->mapped[i].v_hwirq)
5916 break;
5917 }
5918
5919 if (i == pimap->n_mapped) {
5920 mutex_unlock(&kvm->lock);
5921 return -ENODEV;
5922 }
5923
5924 if (xics_on_xive())
5925 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5926 else
5927 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5928
5929 /* invalidate the entry (what to do on error from the above ?) */
5930 pimap->mapped[i].r_hwirq = 0;
5931
5932 /*
5933 * We don't free this structure even when the count goes to
5934 * zero. The structure is freed when we destroy the VM.
5935 */
5936 unlock:
5937 mutex_unlock(&kvm->lock);
5938 return rc;
5939}
5940
5941static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5942 struct irq_bypass_producer *prod)
5943{
5944 int ret = 0;
5945 struct kvm_kernel_irqfd *irqfd =
5946 container_of(cons, struct kvm_kernel_irqfd, consumer);
5947
5948 irqfd->producer = prod;
5949
5950 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5951 if (ret)
5952 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5953 prod->irq, irqfd->gsi, ret);
5954
5955 return ret;
5956}
5957
5958static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5959 struct irq_bypass_producer *prod)
5960{
5961 int ret;
5962 struct kvm_kernel_irqfd *irqfd =
5963 container_of(cons, struct kvm_kernel_irqfd, consumer);
5964
5965 irqfd->producer = NULL;
5966
5967 /*
5968 * When producer of consumer is unregistered, we change back to
5969 * default external interrupt handling mode - KVM real mode
5970 * will switch back to host.
5971 */
5972 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5973 if (ret)
5974 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5975 prod->irq, irqfd->gsi, ret);
5976}
5977#endif
5978
5979static int kvm_arch_vm_ioctl_hv(struct file *filp,
5980 unsigned int ioctl, unsigned long arg)
5981{
5982 struct kvm *kvm __maybe_unused = filp->private_data;
5983 void __user *argp = (void __user *)arg;
5984 int r;
5985
5986 switch (ioctl) {
5987
5988 case KVM_PPC_ALLOCATE_HTAB: {
5989 u32 htab_order;
5990
5991 /* If we're a nested hypervisor, we currently only support radix */
5992 if (kvmhv_on_pseries()) {
5993 r = -EOPNOTSUPP;
5994 break;
5995 }
5996
5997 r = -EFAULT;
5998 if (get_user(htab_order, (u32 __user *)argp))
5999 break;
6000 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
6001 if (r)
6002 break;
6003 r = 0;
6004 break;
6005 }
6006
6007 case KVM_PPC_GET_HTAB_FD: {
6008 struct kvm_get_htab_fd ghf;
6009
6010 r = -EFAULT;
6011 if (copy_from_user(to: &ghf, from: argp, n: sizeof(ghf)))
6012 break;
6013 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
6014 break;
6015 }
6016
6017 case KVM_PPC_RESIZE_HPT_PREPARE: {
6018 struct kvm_ppc_resize_hpt rhpt;
6019
6020 r = -EFAULT;
6021 if (copy_from_user(to: &rhpt, from: argp, n: sizeof(rhpt)))
6022 break;
6023
6024 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
6025 break;
6026 }
6027
6028 case KVM_PPC_RESIZE_HPT_COMMIT: {
6029 struct kvm_ppc_resize_hpt rhpt;
6030
6031 r = -EFAULT;
6032 if (copy_from_user(to: &rhpt, from: argp, n: sizeof(rhpt)))
6033 break;
6034
6035 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
6036 break;
6037 }
6038
6039 default:
6040 r = -ENOTTY;
6041 }
6042
6043 return r;
6044}
6045
6046/*
6047 * List of hcall numbers to enable by default.
6048 * For compatibility with old userspace, we enable by default
6049 * all hcalls that were implemented before the hcall-enabling
6050 * facility was added. Note this list should not include H_RTAS.
6051 */
6052static unsigned int default_hcall_list[] = {
6053 H_REMOVE,
6054 H_ENTER,
6055 H_READ,
6056 H_PROTECT,
6057 H_BULK_REMOVE,
6058#ifdef CONFIG_SPAPR_TCE_IOMMU
6059 H_GET_TCE,
6060 H_PUT_TCE,
6061#endif
6062 H_SET_DABR,
6063 H_SET_XDABR,
6064 H_CEDE,
6065 H_PROD,
6066 H_CONFER,
6067 H_REGISTER_VPA,
6068#ifdef CONFIG_KVM_XICS
6069 H_EOI,
6070 H_CPPR,
6071 H_IPI,
6072 H_IPOLL,
6073 H_XIRR,
6074 H_XIRR_X,
6075#endif
6076 0
6077};
6078
6079static void init_default_hcalls(void)
6080{
6081 int i;
6082 unsigned int hcall;
6083
6084 for (i = 0; default_hcall_list[i]; ++i) {
6085 hcall = default_hcall_list[i];
6086 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
6087 __set_bit(hcall / 4, default_enabled_hcalls);
6088 }
6089}
6090
6091static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
6092{
6093 unsigned long lpcr;
6094 int radix;
6095 int err;
6096
6097 /* If not on a POWER9, reject it */
6098 if (!cpu_has_feature(CPU_FTR_ARCH_300))
6099 return -ENODEV;
6100
6101 /* If any unknown flags set, reject it */
6102 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
6103 return -EINVAL;
6104
6105 /* GR (guest radix) bit in process_table field must match */
6106 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
6107 if (!!(cfg->process_table & PATB_GR) != radix)
6108 return -EINVAL;
6109
6110 /* Process table size field must be reasonable, i.e. <= 24 */
6111 if ((cfg->process_table & PRTS_MASK) > 24)
6112 return -EINVAL;
6113
6114 /* We can change a guest to/from radix now, if the host is radix */
6115 if (radix && !radix_enabled())
6116 return -EINVAL;
6117
6118 /* If we're a nested hypervisor, we currently only support radix */
6119 if (kvmhv_on_pseries() && !radix)
6120 return -EINVAL;
6121
6122 mutex_lock(&kvm->arch.mmu_setup_lock);
6123 if (radix != kvm_is_radix(kvm)) {
6124 if (kvm->arch.mmu_ready) {
6125 kvm->arch.mmu_ready = 0;
6126 /* order mmu_ready vs. vcpus_running */
6127 smp_mb();
6128 if (atomic_read(v: &kvm->arch.vcpus_running)) {
6129 kvm->arch.mmu_ready = 1;
6130 err = -EBUSY;
6131 goto out_unlock;
6132 }
6133 }
6134 if (radix)
6135 err = kvmppc_switch_mmu_to_radix(kvm);
6136 else
6137 err = kvmppc_switch_mmu_to_hpt(kvm);
6138 if (err)
6139 goto out_unlock;
6140 }
6141
6142 kvm->arch.process_table = cfg->process_table;
6143 kvmppc_setup_partition_table(kvm);
6144
6145 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
6146 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
6147 err = 0;
6148
6149 out_unlock:
6150 mutex_unlock(lock: &kvm->arch.mmu_setup_lock);
6151 return err;
6152}
6153
6154static int kvmhv_enable_nested(struct kvm *kvm)
6155{
6156 if (!nested)
6157 return -EPERM;
6158 if (!cpu_has_feature(CPU_FTR_ARCH_300))
6159 return -ENODEV;
6160 if (!radix_enabled())
6161 return -ENODEV;
6162 if (kvmhv_is_nestedv2())
6163 return -ENODEV;
6164
6165 /* kvm == NULL means the caller is testing if the capability exists */
6166 if (kvm)
6167 kvm->arch.nested_enable = true;
6168 return 0;
6169}
6170
6171static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6172 int size)
6173{
6174 int rc = -EINVAL;
6175
6176 if (kvmhv_vcpu_is_radix(vcpu)) {
6177 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
6178
6179 if (rc > 0)
6180 rc = -EINVAL;
6181 }
6182
6183 /* For now quadrants are the only way to access nested guest memory */
6184 if (rc && vcpu->arch.nested)
6185 rc = -EAGAIN;
6186
6187 return rc;
6188}
6189
6190static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6191 int size)
6192{
6193 int rc = -EINVAL;
6194
6195 if (kvmhv_vcpu_is_radix(vcpu)) {
6196 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
6197
6198 if (rc > 0)
6199 rc = -EINVAL;
6200 }
6201
6202 /* For now quadrants are the only way to access nested guest memory */
6203 if (rc && vcpu->arch.nested)
6204 rc = -EAGAIN;
6205
6206 return rc;
6207}
6208
6209static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
6210{
6211 unpin_vpa(kvm, vpa);
6212 vpa->gpa = 0;
6213 vpa->pinned_addr = NULL;
6214 vpa->dirty = false;
6215 vpa->update_pending = 0;
6216}
6217
6218/*
6219 * Enable a guest to become a secure VM, or test whether
6220 * that could be enabled.
6221 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
6222 * tested (kvm == NULL) or enabled (kvm != NULL).
6223 */
6224static int kvmhv_enable_svm(struct kvm *kvm)
6225{
6226 if (!kvmppc_uvmem_available())
6227 return -EINVAL;
6228 if (kvm)
6229 kvm->arch.svm_enabled = 1;
6230 return 0;
6231}
6232
6233/*
6234 * IOCTL handler to turn off secure mode of guest
6235 *
6236 * - Release all device pages
6237 * - Issue ucall to terminate the guest on the UV side
6238 * - Unpin the VPA pages.
6239 * - Reinit the partition scoped page tables
6240 */
6241static int kvmhv_svm_off(struct kvm *kvm)
6242{
6243 struct kvm_vcpu *vcpu;
6244 int mmu_was_ready;
6245 int srcu_idx;
6246 int ret = 0;
6247 unsigned long i;
6248
6249 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
6250 return ret;
6251
6252 mutex_lock(&kvm->arch.mmu_setup_lock);
6253 mmu_was_ready = kvm->arch.mmu_ready;
6254 if (kvm->arch.mmu_ready) {
6255 kvm->arch.mmu_ready = 0;
6256 /* order mmu_ready vs. vcpus_running */
6257 smp_mb();
6258 if (atomic_read(v: &kvm->arch.vcpus_running)) {
6259 kvm->arch.mmu_ready = 1;
6260 ret = -EBUSY;
6261 goto out;
6262 }
6263 }
6264
6265 srcu_idx = srcu_read_lock(ssp: &kvm->srcu);
6266 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6267 struct kvm_memory_slot *memslot;
6268 struct kvm_memslots *slots = __kvm_memslots(kvm, as_id: i);
6269 int bkt;
6270
6271 if (!slots)
6272 continue;
6273
6274 kvm_for_each_memslot(memslot, bkt, slots) {
6275 kvmppc_uvmem_drop_pages(memslot, kvm, true);
6276 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6277 }
6278 }
6279 srcu_read_unlock(ssp: &kvm->srcu, idx: srcu_idx);
6280
6281 ret = uv_svm_terminate(kvm->arch.lpid);
6282 if (ret != U_SUCCESS) {
6283 ret = -EINVAL;
6284 goto out;
6285 }
6286
6287 /*
6288 * When secure guest is reset, all the guest pages are sent
6289 * to UV via UV_PAGE_IN before the non-boot vcpus get a
6290 * chance to run and unpin their VPA pages. Unpinning of all
6291 * VPA pages is done here explicitly so that VPA pages
6292 * can be migrated to the secure side.
6293 *
6294 * This is required to for the secure SMP guest to reboot
6295 * correctly.
6296 */
6297 kvm_for_each_vcpu(i, vcpu, kvm) {
6298 spin_lock(lock: &vcpu->arch.vpa_update_lock);
6299 unpin_vpa_reset(kvm, vpa: &vcpu->arch.dtl);
6300 unpin_vpa_reset(kvm, vpa: &vcpu->arch.slb_shadow);
6301 unpin_vpa_reset(kvm, vpa: &vcpu->arch.vpa);
6302 spin_unlock(lock: &vcpu->arch.vpa_update_lock);
6303 }
6304
6305 kvmppc_setup_partition_table(kvm);
6306 kvm->arch.secure_guest = 0;
6307 kvm->arch.mmu_ready = mmu_was_ready;
6308out:
6309 mutex_unlock(lock: &kvm->arch.mmu_setup_lock);
6310 return ret;
6311}
6312
6313static int kvmhv_enable_dawr1(struct kvm *kvm)
6314{
6315 if (!cpu_has_feature(CPU_FTR_DAWR1))
6316 return -ENODEV;
6317
6318 /* kvm == NULL means the caller is testing if the capability exists */
6319 if (kvm)
6320 kvm->arch.dawr1_enabled = true;
6321 return 0;
6322}
6323
6324static bool kvmppc_hash_v3_possible(void)
6325{
6326 if (!cpu_has_feature(CPU_FTR_ARCH_300))
6327 return false;
6328
6329 if (!cpu_has_feature(CPU_FTR_HVMODE))
6330 return false;
6331
6332 /*
6333 * POWER9 chips before version 2.02 can't have some threads in
6334 * HPT mode and some in radix mode on the same core.
6335 */
6336 if (radix_enabled()) {
6337 unsigned int pvr = mfspr(SPRN_PVR);
6338 if ((pvr >> 16) == PVR_POWER9 &&
6339 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6340 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6341 return false;
6342 }
6343
6344 return true;
6345}
6346
6347static struct kvmppc_ops kvm_ops_hv = {
6348 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6349 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6350 .get_one_reg = kvmppc_get_one_reg_hv,
6351 .set_one_reg = kvmppc_set_one_reg_hv,
6352 .vcpu_load = kvmppc_core_vcpu_load_hv,
6353 .vcpu_put = kvmppc_core_vcpu_put_hv,
6354 .inject_interrupt = kvmppc_inject_interrupt_hv,
6355 .set_msr = kvmppc_set_msr_hv,
6356 .vcpu_run = kvmppc_vcpu_run_hv,
6357 .vcpu_create = kvmppc_core_vcpu_create_hv,
6358 .vcpu_free = kvmppc_core_vcpu_free_hv,
6359 .check_requests = kvmppc_core_check_requests_hv,
6360 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
6361 .flush_memslot = kvmppc_core_flush_memslot_hv,
6362 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6363 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
6364 .unmap_gfn_range = kvm_unmap_gfn_range_hv,
6365 .age_gfn = kvm_age_gfn_hv,
6366 .test_age_gfn = kvm_test_age_gfn_hv,
6367 .set_spte_gfn = kvm_set_spte_gfn_hv,
6368 .free_memslot = kvmppc_core_free_memslot_hv,
6369 .init_vm = kvmppc_core_init_vm_hv,
6370 .destroy_vm = kvmppc_core_destroy_vm_hv,
6371 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6372 .emulate_op = kvmppc_core_emulate_op_hv,
6373 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6374 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6375 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6376 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
6377 .hcall_implemented = kvmppc_hcall_impl_hv,
6378#ifdef CONFIG_KVM_XICS
6379 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6380 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6381#endif
6382 .configure_mmu = kvmhv_configure_mmu,
6383 .get_rmmu_info = kvmhv_get_rmmu_info,
6384 .set_smt_mode = kvmhv_set_smt_mode,
6385 .enable_nested = kvmhv_enable_nested,
6386 .load_from_eaddr = kvmhv_load_from_eaddr,
6387 .store_to_eaddr = kvmhv_store_to_eaddr,
6388 .enable_svm = kvmhv_enable_svm,
6389 .svm_off = kvmhv_svm_off,
6390 .enable_dawr1 = kvmhv_enable_dawr1,
6391 .hash_v3_possible = kvmppc_hash_v3_possible,
6392 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6393 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6394};
6395
6396static int kvm_init_subcore_bitmap(void)
6397{
6398 int i, j;
6399 int nr_cores = cpu_nr_cores();
6400 struct sibling_subcore_state *sibling_subcore_state;
6401
6402 for (i = 0; i < nr_cores; i++) {
6403 int first_cpu = i * threads_per_core;
6404 int node = cpu_to_node(cpu: first_cpu);
6405
6406 /* Ignore if it is already allocated. */
6407 if (paca_ptrs[first_cpu]->sibling_subcore_state)
6408 continue;
6409
6410 sibling_subcore_state =
6411 kzalloc_node(sizeof(struct sibling_subcore_state),
6412 GFP_KERNEL, node);
6413 if (!sibling_subcore_state)
6414 return -ENOMEM;
6415
6416
6417 for (j = 0; j < threads_per_core; j++) {
6418 int cpu = first_cpu + j;
6419
6420 paca_ptrs[cpu]->sibling_subcore_state =
6421 sibling_subcore_state;
6422 }
6423 }
6424 return 0;
6425}
6426
6427static int kvmppc_radix_possible(void)
6428{
6429 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6430}
6431
6432static int kvmppc_book3s_init_hv(void)
6433{
6434 int r;
6435
6436 if (!tlbie_capable) {
6437 pr_err("KVM-HV: Host does not support TLBIE\n");
6438 return -ENODEV;
6439 }
6440
6441 /*
6442 * FIXME!! Do we need to check on all cpus ?
6443 */
6444 r = kvmppc_core_check_processor_compat_hv();
6445 if (r < 0)
6446 return -ENODEV;
6447
6448 r = kvmhv_nested_init();
6449 if (r)
6450 return r;
6451
6452 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6453 r = kvm_init_subcore_bitmap();
6454 if (r)
6455 goto err;
6456 }
6457
6458 /*
6459 * We need a way of accessing the XICS interrupt controller,
6460 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6461 * indirectly, via OPAL.
6462 */
6463#ifdef CONFIG_SMP
6464 if (!xics_on_xive() && !kvmhv_on_pseries() &&
6465 !local_paca->kvm_hstate.xics_phys) {
6466 struct device_node *np;
6467
6468 np = of_find_compatible_node(NULL, NULL, compat: "ibm,opal-intc");
6469 if (!np) {
6470 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6471 r = -ENODEV;
6472 goto err;
6473 }
6474 /* presence of intc confirmed - node can be dropped again */
6475 of_node_put(node: np);
6476 }
6477#endif
6478
6479 init_default_hcalls();
6480
6481 init_vcore_lists();
6482
6483 r = kvmppc_mmu_hv_init();
6484 if (r)
6485 goto err;
6486
6487 if (kvmppc_radix_possible()) {
6488 r = kvmppc_radix_init();
6489 if (r)
6490 goto err;
6491 }
6492
6493 r = kvmppc_uvmem_init();
6494 if (r < 0) {
6495 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6496 return r;
6497 }
6498
6499 kvm_ops_hv.owner = THIS_MODULE;
6500 kvmppc_hv_ops = &kvm_ops_hv;
6501
6502 return 0;
6503
6504err:
6505 kvmhv_nested_exit();
6506 kvmppc_radix_exit();
6507
6508 return r;
6509}
6510
6511static void kvmppc_book3s_exit_hv(void)
6512{
6513 kvmppc_uvmem_free();
6514 kvmppc_free_host_rm_ops();
6515 if (kvmppc_radix_possible())
6516 kvmppc_radix_exit();
6517 kvmppc_hv_ops = NULL;
6518 kvmhv_nested_exit();
6519}
6520
6521module_init(kvmppc_book3s_init_hv);
6522module_exit(kvmppc_book3s_exit_hv);
6523MODULE_LICENSE("GPL");
6524MODULE_ALIAS_MISCDEV(KVM_MINOR);
6525MODULE_ALIAS("devname:kvm");
6526

source code of linux/arch/powerpc/kvm/book3s_hv.c