1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4 * {mikejc|engebret}@us.ibm.com
5 *
6 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 *
8 * SMP scalability work:
9 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10 *
11 * Module name: htab.c
12 *
13 * Description:
14 * PowerPC Hashed Page Table functions
15 */
16
17#undef DEBUG
18#undef DEBUG_LOW
19
20#define pr_fmt(fmt) "hash-mmu: " fmt
21#include <linux/spinlock.h>
22#include <linux/errno.h>
23#include <linux/sched/mm.h>
24#include <linux/proc_fs.h>
25#include <linux/stat.h>
26#include <linux/sysctl.h>
27#include <linux/export.h>
28#include <linux/ctype.h>
29#include <linux/cache.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/memblock.h>
33#include <linux/context_tracking.h>
34#include <linux/libfdt.h>
35#include <linux/pkeys.h>
36#include <linux/hugetlb.h>
37#include <linux/cpu.h>
38#include <linux/pgtable.h>
39#include <linux/debugfs.h>
40#include <linux/random.h>
41#include <linux/elf-randomize.h>
42#include <linux/of_fdt.h>
43
44#include <asm/interrupt.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/mmu_context.h>
48#include <asm/page.h>
49#include <asm/types.h>
50#include <linux/uaccess.h>
51#include <asm/machdep.h>
52#include <asm/io.h>
53#include <asm/eeh.h>
54#include <asm/tlb.h>
55#include <asm/cacheflush.h>
56#include <asm/cputable.h>
57#include <asm/sections.h>
58#include <asm/copro.h>
59#include <asm/udbg.h>
60#include <asm/code-patching.h>
61#include <asm/fadump.h>
62#include <asm/firmware.h>
63#include <asm/tm.h>
64#include <asm/trace.h>
65#include <asm/ps3.h>
66#include <asm/pte-walk.h>
67#include <asm/asm-prototypes.h>
68#include <asm/ultravisor.h>
69
70#include <mm/mmu_decl.h>
71
72#include "internal.h"
73
74
75#ifdef DEBUG
76#define DBG(fmt...) udbg_printf(fmt)
77#else
78#define DBG(fmt...)
79#endif
80
81#ifdef DEBUG_LOW
82#define DBG_LOW(fmt...) udbg_printf(fmt)
83#else
84#define DBG_LOW(fmt...)
85#endif
86
87#define KB (1024)
88#define MB (1024*KB)
89#define GB (1024L*MB)
90
91/*
92 * Note: pte --> Linux PTE
93 * HPTE --> PowerPC Hashed Page Table Entry
94 *
95 * Execution context:
96 * htab_initialize is called with the MMU off (of course), but
97 * the kernel has been copied down to zero so it can directly
98 * reference global data. At this point it is very difficult
99 * to print debug info.
100 *
101 */
102
103static unsigned long _SDR1;
104
105u8 hpte_page_sizes[1 << LP_BITS];
106EXPORT_SYMBOL_GPL(hpte_page_sizes);
107
108struct hash_pte *htab_address;
109unsigned long htab_size_bytes;
110unsigned long htab_hash_mask;
111EXPORT_SYMBOL_GPL(htab_hash_mask);
112int mmu_linear_psize = MMU_PAGE_4K;
113EXPORT_SYMBOL_GPL(mmu_linear_psize);
114int mmu_virtual_psize = MMU_PAGE_4K;
115int mmu_vmalloc_psize = MMU_PAGE_4K;
116EXPORT_SYMBOL_GPL(mmu_vmalloc_psize);
117int mmu_io_psize = MMU_PAGE_4K;
118int mmu_kernel_ssize = MMU_SEGSIZE_256M;
119EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
120int mmu_highuser_ssize = MMU_SEGSIZE_256M;
121u16 mmu_slb_size = 64;
122EXPORT_SYMBOL_GPL(mmu_slb_size);
123#ifdef CONFIG_PPC_64K_PAGES
124int mmu_ci_restrictions;
125#endif
126static u8 *linear_map_hash_slots;
127static unsigned long linear_map_hash_count;
128struct mmu_hash_ops mmu_hash_ops;
129EXPORT_SYMBOL(mmu_hash_ops);
130
131/*
132 * These are definitions of page sizes arrays to be used when none
133 * is provided by the firmware.
134 */
135
136/*
137 * Fallback (4k pages only)
138 */
139static struct mmu_psize_def mmu_psize_defaults[] = {
140 [MMU_PAGE_4K] = {
141 .shift = 12,
142 .sllp = 0,
143 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
144 .avpnm = 0,
145 .tlbiel = 0,
146 },
147};
148
149/*
150 * POWER4, GPUL, POWER5
151 *
152 * Support for 16Mb large pages
153 */
154static struct mmu_psize_def mmu_psize_defaults_gp[] = {
155 [MMU_PAGE_4K] = {
156 .shift = 12,
157 .sllp = 0,
158 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
159 .avpnm = 0,
160 .tlbiel = 1,
161 },
162 [MMU_PAGE_16M] = {
163 .shift = 24,
164 .sllp = SLB_VSID_L,
165 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
166 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
167 .avpnm = 0x1UL,
168 .tlbiel = 0,
169 },
170};
171
172static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is)
173{
174 unsigned long rb;
175
176 rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
177
178 asm volatile("tlbiel %0" : : "r" (rb));
179}
180
181/*
182 * tlbiel instruction for hash, set invalidation
183 * i.e., r=1 and is=01 or is=10 or is=11
184 */
185static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is,
186 unsigned int pid,
187 unsigned int ric, unsigned int prs)
188{
189 unsigned long rb;
190 unsigned long rs;
191 unsigned int r = 0; /* hash format */
192
193 rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
194 rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
195
196 asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4)
197 : : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "i"(r)
198 : "memory");
199}
200
201
202static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is)
203{
204 unsigned int set;
205
206 asm volatile("ptesync": : :"memory");
207
208 for (set = 0; set < num_sets; set++)
209 tlbiel_hash_set_isa206(set, is);
210
211 ppc_after_tlbiel_barrier();
212}
213
214static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
215{
216 unsigned int set;
217
218 asm volatile("ptesync": : :"memory");
219
220 /*
221 * Flush the partition table cache if this is HV mode.
222 */
223 if (early_cpu_has_feature(CPU_FTR_HVMODE))
224 tlbiel_hash_set_isa300(set: 0, is, pid: 0, ric: 2, prs: 0);
225
226 /*
227 * Now invalidate the process table cache. UPRT=0 HPT modes (what
228 * current hardware implements) do not use the process table, but
229 * add the flushes anyway.
230 *
231 * From ISA v3.0B p. 1078:
232 * The following forms are invalid.
233 * * PRS=1, R=0, and RIC!=2 (The only process-scoped
234 * HPT caching is of the Process Table.)
235 */
236 tlbiel_hash_set_isa300(set: 0, is, pid: 0, ric: 2, prs: 1);
237
238 /*
239 * Then flush the sets of the TLB proper. Hash mode uses
240 * partition scoped TLB translations, which may be flushed
241 * in !HV mode.
242 */
243 for (set = 0; set < num_sets; set++)
244 tlbiel_hash_set_isa300(set, is, pid: 0, ric: 0, prs: 0);
245
246 ppc_after_tlbiel_barrier();
247
248 asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory");
249}
250
251void hash__tlbiel_all(unsigned int action)
252{
253 unsigned int is;
254
255 switch (action) {
256 case TLB_INVAL_SCOPE_GLOBAL:
257 is = 3;
258 break;
259 case TLB_INVAL_SCOPE_LPID:
260 is = 2;
261 break;
262 default:
263 BUG();
264 }
265
266 if (early_cpu_has_feature(CPU_FTR_ARCH_300))
267 tlbiel_all_isa300(num_sets: POWER9_TLB_SETS_HASH, is);
268 else if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
269 tlbiel_all_isa206(num_sets: POWER8_TLB_SETS, is);
270 else if (early_cpu_has_feature(CPU_FTR_ARCH_206))
271 tlbiel_all_isa206(num_sets: POWER7_TLB_SETS, is);
272 else
273 WARN(1, "%s called on pre-POWER7 CPU\n", __func__);
274}
275
276/*
277 * 'R' and 'C' update notes:
278 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
279 * create writeable HPTEs without C set, because the hcall H_PROTECT
280 * that we use in that case will not update C
281 * - The above is however not a problem, because we also don't do that
282 * fancy "no flush" variant of eviction and we use H_REMOVE which will
283 * do the right thing and thus we don't have the race I described earlier
284 *
285 * - Under bare metal, we do have the race, so we need R and C set
286 * - We make sure R is always set and never lost
287 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
288 */
289unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags)
290{
291 unsigned long rflags = 0;
292
293 /* _PAGE_EXEC -> NOEXEC */
294 if ((pteflags & _PAGE_EXEC) == 0)
295 rflags |= HPTE_R_N;
296 /*
297 * PPP bits:
298 * Linux uses slb key 0 for kernel and 1 for user.
299 * kernel RW areas are mapped with PPP=0b000
300 * User area is mapped with PPP=0b010 for read/write
301 * or PPP=0b011 for read-only (including writeable but clean pages).
302 */
303 if (pteflags & _PAGE_PRIVILEGED) {
304 /*
305 * Kernel read only mapped with ppp bits 0b110
306 */
307 if (!(pteflags & _PAGE_WRITE)) {
308 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
309 rflags |= (HPTE_R_PP0 | 0x2);
310 else
311 rflags |= 0x3;
312 }
313 VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
314 } else {
315 if (pteflags & _PAGE_RWX)
316 rflags |= 0x2;
317 /*
318 * We should never hit this in normal fault handling because
319 * a permission check (check_pte_access()) will bubble this
320 * to higher level linux handler even for PAGE_NONE.
321 */
322 VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
323 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
324 rflags |= 0x1;
325 }
326 /*
327 * We can't allow hardware to update hpte bits. Hence always
328 * set 'R' bit and set 'C' if it is a write fault
329 */
330 rflags |= HPTE_R_R;
331
332 if (pteflags & _PAGE_DIRTY)
333 rflags |= HPTE_R_C;
334 /*
335 * Add in WIG bits
336 */
337
338 if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
339 rflags |= HPTE_R_I;
340 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
341 rflags |= (HPTE_R_I | HPTE_R_G);
342 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
343 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
344 else
345 /*
346 * Add memory coherence if cache inhibited is not set
347 */
348 rflags |= HPTE_R_M;
349
350 rflags |= pte_to_hpte_pkey_bits(pteflags, flags);
351 return rflags;
352}
353
354int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
355 unsigned long pstart, unsigned long prot,
356 int psize, int ssize)
357{
358 unsigned long vaddr, paddr;
359 unsigned int step, shift;
360 int ret = 0;
361
362 shift = mmu_psize_defs[psize].shift;
363 step = 1 << shift;
364
365 prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY);
366
367 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
368 vstart, vend, pstart, prot, psize, ssize);
369
370 /* Carefully map only the possible range */
371 vaddr = ALIGN(vstart, step);
372 paddr = ALIGN(pstart, step);
373 vend = ALIGN_DOWN(vend, step);
374
375 for (; vaddr < vend; vaddr += step, paddr += step) {
376 unsigned long hash, hpteg;
377 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
378 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
379 unsigned long tprot = prot;
380 bool secondary_hash = false;
381
382 /*
383 * If we hit a bad address return error.
384 */
385 if (!vsid)
386 return -1;
387 /* Make kernel text executable */
388 if (overlaps_kernel_text(vaddr, vaddr + step))
389 tprot &= ~HPTE_R_N;
390
391 /*
392 * If relocatable, check if it overlaps interrupt vectors that
393 * are copied down to real 0. For relocatable kernel
394 * (e.g. kdump case) we copy interrupt vectors down to real
395 * address 0. Mark that region as executable. This is
396 * because on p8 system with relocation on exception feature
397 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
398 * in order to execute the interrupt handlers in virtual
399 * mode the vector region need to be marked as executable.
400 */
401 if ((PHYSICAL_START > MEMORY_START) &&
402 overlaps_interrupt_vector_text(vaddr, vaddr + step))
403 tprot &= ~HPTE_R_N;
404
405 hash = hpt_hash(vpn, shift, ssize);
406 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
407
408 BUG_ON(!mmu_hash_ops.hpte_insert);
409repeat:
410 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
411 HPTE_V_BOLTED, psize, psize,
412 ssize);
413 if (ret == -1) {
414 /*
415 * Try to keep bolted entries in primary.
416 * Remove non bolted entries and try insert again
417 */
418 ret = mmu_hash_ops.hpte_remove(hpteg);
419 if (ret != -1)
420 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
421 HPTE_V_BOLTED, psize, psize,
422 ssize);
423 if (ret == -1 && !secondary_hash) {
424 secondary_hash = true;
425 hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
426 goto repeat;
427 }
428 }
429
430 if (ret < 0)
431 break;
432
433 cond_resched();
434 if (debug_pagealloc_enabled_or_kfence() &&
435 (paddr >> PAGE_SHIFT) < linear_map_hash_count)
436 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
437 }
438 return ret < 0 ? ret : 0;
439}
440
441int htab_remove_mapping(unsigned long vstart, unsigned long vend,
442 int psize, int ssize)
443{
444 unsigned long vaddr, time_limit;
445 unsigned int step, shift;
446 int rc;
447 int ret = 0;
448
449 shift = mmu_psize_defs[psize].shift;
450 step = 1 << shift;
451
452 if (!mmu_hash_ops.hpte_removebolted)
453 return -ENODEV;
454
455 /* Unmap the full range specificied */
456 vaddr = ALIGN_DOWN(vstart, step);
457 time_limit = jiffies + HZ;
458
459 for (;vaddr < vend; vaddr += step) {
460 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
461
462 /*
463 * For large number of mappings introduce a cond_resched()
464 * to prevent softlockup warnings.
465 */
466 if (time_after(jiffies, time_limit)) {
467 cond_resched();
468 time_limit = jiffies + HZ;
469 }
470 if (rc == -ENOENT) {
471 ret = -ENOENT;
472 continue;
473 }
474 if (rc < 0)
475 return rc;
476 }
477
478 return ret;
479}
480
481static bool disable_1tb_segments __ro_after_init;
482
483static int __init parse_disable_1tb_segments(char *p)
484{
485 disable_1tb_segments = true;
486 return 0;
487}
488early_param("disable_1tb_segments", parse_disable_1tb_segments);
489
490bool stress_hpt_enabled __initdata;
491
492static int __init parse_stress_hpt(char *p)
493{
494 stress_hpt_enabled = true;
495 return 0;
496}
497early_param("stress_hpt", parse_stress_hpt);
498
499__ro_after_init DEFINE_STATIC_KEY_FALSE(stress_hpt_key);
500
501/*
502 * per-CPU array allocated if we enable stress_hpt.
503 */
504#define STRESS_MAX_GROUPS 16
505struct stress_hpt_struct {
506 unsigned long last_group[STRESS_MAX_GROUPS];
507};
508
509static inline int stress_nr_groups(void)
510{
511 /*
512 * LPAR H_REMOVE flushes TLB, so need some number > 1 of entries
513 * to allow practical forward progress. Bare metal returns 1, which
514 * seems to help uncover more bugs.
515 */
516 if (firmware_has_feature(FW_FEATURE_LPAR))
517 return STRESS_MAX_GROUPS;
518 else
519 return 1;
520}
521
522static struct stress_hpt_struct *stress_hpt_struct;
523
524static int __init htab_dt_scan_seg_sizes(unsigned long node,
525 const char *uname, int depth,
526 void *data)
527{
528 const char *type = of_get_flat_dt_prop(node, name: "device_type", NULL);
529 const __be32 *prop;
530 int size = 0;
531
532 /* We are scanning "cpu" nodes only */
533 if (type == NULL || strcmp(type, "cpu") != 0)
534 return 0;
535
536 prop = of_get_flat_dt_prop(node, name: "ibm,processor-segment-sizes", size: &size);
537 if (prop == NULL)
538 return 0;
539 for (; size >= 4; size -= 4, ++prop) {
540 if (be32_to_cpu(prop[0]) == 40) {
541 DBG("1T segment support detected\n");
542
543 if (disable_1tb_segments) {
544 DBG("1T segments disabled by command line\n");
545 break;
546 }
547
548 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
549 return 1;
550 }
551 }
552 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
553 return 0;
554}
555
556static int __init get_idx_from_shift(unsigned int shift)
557{
558 int idx = -1;
559
560 switch (shift) {
561 case 0xc:
562 idx = MMU_PAGE_4K;
563 break;
564 case 0x10:
565 idx = MMU_PAGE_64K;
566 break;
567 case 0x14:
568 idx = MMU_PAGE_1M;
569 break;
570 case 0x18:
571 idx = MMU_PAGE_16M;
572 break;
573 case 0x22:
574 idx = MMU_PAGE_16G;
575 break;
576 }
577 return idx;
578}
579
580static int __init htab_dt_scan_page_sizes(unsigned long node,
581 const char *uname, int depth,
582 void *data)
583{
584 const char *type = of_get_flat_dt_prop(node, name: "device_type", NULL);
585 const __be32 *prop;
586 int size = 0;
587
588 /* We are scanning "cpu" nodes only */
589 if (type == NULL || strcmp(type, "cpu") != 0)
590 return 0;
591
592 prop = of_get_flat_dt_prop(node, name: "ibm,segment-page-sizes", size: &size);
593 if (!prop)
594 return 0;
595
596 pr_info("Page sizes from device-tree:\n");
597 size /= 4;
598 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
599 while(size > 0) {
600 unsigned int base_shift = be32_to_cpu(prop[0]);
601 unsigned int slbenc = be32_to_cpu(prop[1]);
602 unsigned int lpnum = be32_to_cpu(prop[2]);
603 struct mmu_psize_def *def;
604 int idx, base_idx;
605
606 size -= 3; prop += 3;
607 base_idx = get_idx_from_shift(shift: base_shift);
608 if (base_idx < 0) {
609 /* skip the pte encoding also */
610 prop += lpnum * 2; size -= lpnum * 2;
611 continue;
612 }
613 def = &mmu_psize_defs[base_idx];
614 if (base_idx == MMU_PAGE_16M)
615 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
616
617 def->shift = base_shift;
618 if (base_shift <= 23)
619 def->avpnm = 0;
620 else
621 def->avpnm = (1 << (base_shift - 23)) - 1;
622 def->sllp = slbenc;
623 /*
624 * We don't know for sure what's up with tlbiel, so
625 * for now we only set it for 4K and 64K pages
626 */
627 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
628 def->tlbiel = 1;
629 else
630 def->tlbiel = 0;
631
632 while (size > 0 && lpnum) {
633 unsigned int shift = be32_to_cpu(prop[0]);
634 int penc = be32_to_cpu(prop[1]);
635
636 prop += 2; size -= 2;
637 lpnum--;
638
639 idx = get_idx_from_shift(shift);
640 if (idx < 0)
641 continue;
642
643 if (penc == -1)
644 pr_err("Invalid penc for base_shift=%d "
645 "shift=%d\n", base_shift, shift);
646
647 def->penc[idx] = penc;
648 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
649 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
650 base_shift, shift, def->sllp,
651 def->avpnm, def->tlbiel, def->penc[idx]);
652 }
653 }
654
655 return 1;
656}
657
658#ifdef CONFIG_HUGETLB_PAGE
659/*
660 * Scan for 16G memory blocks that have been set aside for huge pages
661 * and reserve those blocks for 16G huge pages.
662 */
663static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
664 const char *uname, int depth,
665 void *data) {
666 const char *type = of_get_flat_dt_prop(node, name: "device_type", NULL);
667 const __be64 *addr_prop;
668 const __be32 *page_count_prop;
669 unsigned int expected_pages;
670 long unsigned int phys_addr;
671 long unsigned int block_size;
672
673 /* We are scanning "memory" nodes only */
674 if (type == NULL || strcmp(type, "memory") != 0)
675 return 0;
676
677 /*
678 * This property is the log base 2 of the number of virtual pages that
679 * will represent this memory block.
680 */
681 page_count_prop = of_get_flat_dt_prop(node, name: "ibm,expected#pages", NULL);
682 if (page_count_prop == NULL)
683 return 0;
684 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
685 addr_prop = of_get_flat_dt_prop(node, name: "reg", NULL);
686 if (addr_prop == NULL)
687 return 0;
688 phys_addr = be64_to_cpu(addr_prop[0]);
689 block_size = be64_to_cpu(addr_prop[1]);
690 if (block_size != (16 * GB))
691 return 0;
692 printk(KERN_INFO "Huge page(16GB) memory: "
693 "addr = 0x%lX size = 0x%lX pages = %d\n",
694 phys_addr, block_size, expected_pages);
695 if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
696 memblock_reserve(base: phys_addr, size: block_size * expected_pages);
697 pseries_add_gpage(phys_addr, block_size, expected_pages);
698 }
699 return 0;
700}
701#endif /* CONFIG_HUGETLB_PAGE */
702
703static void __init mmu_psize_set_default_penc(void)
704{
705 int bpsize, apsize;
706 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
707 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
708 mmu_psize_defs[bpsize].penc[apsize] = -1;
709}
710
711#ifdef CONFIG_PPC_64K_PAGES
712
713static bool __init might_have_hea(void)
714{
715 /*
716 * The HEA ethernet adapter requires awareness of the
717 * GX bus. Without that awareness we can easily assume
718 * we will never see an HEA ethernet device.
719 */
720#ifdef CONFIG_IBMEBUS
721 return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
722 firmware_has_feature(FW_FEATURE_SPLPAR);
723#else
724 return false;
725#endif
726}
727
728#endif /* #ifdef CONFIG_PPC_64K_PAGES */
729
730static void __init htab_scan_page_sizes(void)
731{
732 int rc;
733
734 /* se the invalid penc to -1 */
735 mmu_psize_set_default_penc();
736
737 /* Default to 4K pages only */
738 memcpy(mmu_psize_defs, mmu_psize_defaults,
739 sizeof(mmu_psize_defaults));
740
741 /*
742 * Try to find the available page sizes in the device-tree
743 */
744 rc = of_scan_flat_dt(it: htab_dt_scan_page_sizes, NULL);
745 if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
746 /*
747 * Nothing in the device-tree, but the CPU supports 16M pages,
748 * so let's fallback on a known size list for 16M capable CPUs.
749 */
750 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
751 sizeof(mmu_psize_defaults_gp));
752 }
753
754#ifdef CONFIG_HUGETLB_PAGE
755 if (!hugetlb_disabled && !early_radix_enabled() ) {
756 /* Reserve 16G huge page memory sections for huge pages */
757 of_scan_flat_dt(it: htab_dt_scan_hugepage_blocks, NULL);
758 }
759#endif /* CONFIG_HUGETLB_PAGE */
760}
761
762/*
763 * Fill in the hpte_page_sizes[] array.
764 * We go through the mmu_psize_defs[] array looking for all the
765 * supported base/actual page size combinations. Each combination
766 * has a unique pagesize encoding (penc) value in the low bits of
767 * the LP field of the HPTE. For actual page sizes less than 1MB,
768 * some of the upper LP bits are used for RPN bits, meaning that
769 * we need to fill in several entries in hpte_page_sizes[].
770 *
771 * In diagrammatic form, with r = RPN bits and z = page size bits:
772 * PTE LP actual page size
773 * rrrr rrrz >=8KB
774 * rrrr rrzz >=16KB
775 * rrrr rzzz >=32KB
776 * rrrr zzzz >=64KB
777 * ...
778 *
779 * The zzzz bits are implementation-specific but are chosen so that
780 * no encoding for a larger page size uses the same value in its
781 * low-order N bits as the encoding for the 2^(12+N) byte page size
782 * (if it exists).
783 */
784static void __init init_hpte_page_sizes(void)
785{
786 long int ap, bp;
787 long int shift, penc;
788
789 for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
790 if (!mmu_psize_defs[bp].shift)
791 continue; /* not a supported page size */
792 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
793 penc = mmu_psize_defs[bp].penc[ap];
794 if (penc == -1 || !mmu_psize_defs[ap].shift)
795 continue;
796 shift = mmu_psize_defs[ap].shift - LP_SHIFT;
797 if (shift <= 0)
798 continue; /* should never happen */
799 /*
800 * For page sizes less than 1MB, this loop
801 * replicates the entry for all possible values
802 * of the rrrr bits.
803 */
804 while (penc < (1 << LP_BITS)) {
805 hpte_page_sizes[penc] = (ap << 4) | bp;
806 penc += 1 << shift;
807 }
808 }
809 }
810}
811
812static void __init htab_init_page_sizes(void)
813{
814 bool aligned = true;
815 init_hpte_page_sizes();
816
817 if (!debug_pagealloc_enabled_or_kfence()) {
818 /*
819 * Pick a size for the linear mapping. Currently, we only
820 * support 16M, 1M and 4K which is the default
821 */
822 if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
823 (unsigned long)_stext % 0x1000000) {
824 if (mmu_psize_defs[MMU_PAGE_16M].shift)
825 pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
826 aligned = false;
827 }
828
829 if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
830 mmu_linear_psize = MMU_PAGE_16M;
831 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
832 mmu_linear_psize = MMU_PAGE_1M;
833 }
834
835#ifdef CONFIG_PPC_64K_PAGES
836 /*
837 * Pick a size for the ordinary pages. Default is 4K, we support
838 * 64K for user mappings and vmalloc if supported by the processor.
839 * We only use 64k for ioremap if the processor
840 * (and firmware) support cache-inhibited large pages.
841 * If not, we use 4k and set mmu_ci_restrictions so that
842 * hash_page knows to switch processes that use cache-inhibited
843 * mappings to 4k pages.
844 */
845 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
846 mmu_virtual_psize = MMU_PAGE_64K;
847 mmu_vmalloc_psize = MMU_PAGE_64K;
848 if (mmu_linear_psize == MMU_PAGE_4K)
849 mmu_linear_psize = MMU_PAGE_64K;
850 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
851 /*
852 * When running on pSeries using 64k pages for ioremap
853 * would stop us accessing the HEA ethernet. So if we
854 * have the chance of ever seeing one, stay at 4k.
855 */
856 if (!might_have_hea())
857 mmu_io_psize = MMU_PAGE_64K;
858 } else
859 mmu_ci_restrictions = 1;
860 }
861#endif /* CONFIG_PPC_64K_PAGES */
862
863#ifdef CONFIG_SPARSEMEM_VMEMMAP
864 /*
865 * We try to use 16M pages for vmemmap if that is supported
866 * and we have at least 1G of RAM at boot
867 */
868 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
869 memblock_phys_mem_size() >= 0x40000000)
870 mmu_vmemmap_psize = MMU_PAGE_16M;
871 else
872 mmu_vmemmap_psize = mmu_virtual_psize;
873#endif /* CONFIG_SPARSEMEM_VMEMMAP */
874
875 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
876 "virtual = %d, io = %d"
877#ifdef CONFIG_SPARSEMEM_VMEMMAP
878 ", vmemmap = %d"
879#endif
880 "\n",
881 mmu_psize_defs[mmu_linear_psize].shift,
882 mmu_psize_defs[mmu_virtual_psize].shift,
883 mmu_psize_defs[mmu_io_psize].shift
884#ifdef CONFIG_SPARSEMEM_VMEMMAP
885 ,mmu_psize_defs[mmu_vmemmap_psize].shift
886#endif
887 );
888}
889
890static int __init htab_dt_scan_pftsize(unsigned long node,
891 const char *uname, int depth,
892 void *data)
893{
894 const char *type = of_get_flat_dt_prop(node, name: "device_type", NULL);
895 const __be32 *prop;
896
897 /* We are scanning "cpu" nodes only */
898 if (type == NULL || strcmp(type, "cpu") != 0)
899 return 0;
900
901 prop = of_get_flat_dt_prop(node, name: "ibm,pft-size", NULL);
902 if (prop != NULL) {
903 /* pft_size[0] is the NUMA CEC cookie */
904 ppc64_pft_size = be32_to_cpu(prop[1]);
905 return 1;
906 }
907 return 0;
908}
909
910unsigned htab_shift_for_mem_size(unsigned long mem_size)
911{
912 unsigned memshift = __ilog2(mem_size);
913 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
914 unsigned pteg_shift;
915
916 /* round mem_size up to next power of 2 */
917 if ((1UL << memshift) < mem_size)
918 memshift += 1;
919
920 /* aim for 2 pages / pteg */
921 pteg_shift = memshift - (pshift + 1);
922
923 /*
924 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
925 * size permitted by the architecture.
926 */
927 return max(pteg_shift + 7, 18U);
928}
929
930static unsigned long __init htab_get_table_size(void)
931{
932 /*
933 * If hash size isn't already provided by the platform, we try to
934 * retrieve it from the device-tree. If it's not there neither, we
935 * calculate it now based on the total RAM size
936 */
937 if (ppc64_pft_size == 0)
938 of_scan_flat_dt(it: htab_dt_scan_pftsize, NULL);
939 if (ppc64_pft_size)
940 return 1UL << ppc64_pft_size;
941
942 return 1UL << htab_shift_for_mem_size(mem_size: memblock_phys_mem_size());
943}
944
945#ifdef CONFIG_MEMORY_HOTPLUG
946static int resize_hpt_for_hotplug(unsigned long new_mem_size)
947{
948 unsigned target_hpt_shift;
949
950 if (!mmu_hash_ops.resize_hpt)
951 return 0;
952
953 target_hpt_shift = htab_shift_for_mem_size(mem_size: new_mem_size);
954
955 /*
956 * To avoid lots of HPT resizes if memory size is fluctuating
957 * across a boundary, we deliberately have some hysterisis
958 * here: we immediately increase the HPT size if the target
959 * shift exceeds the current shift, but we won't attempt to
960 * reduce unless the target shift is at least 2 below the
961 * current shift
962 */
963 if (target_hpt_shift > ppc64_pft_size ||
964 target_hpt_shift < ppc64_pft_size - 1)
965 return mmu_hash_ops.resize_hpt(target_hpt_shift);
966
967 return 0;
968}
969
970int hash__create_section_mapping(unsigned long start, unsigned long end,
971 int nid, pgprot_t prot)
972{
973 int rc;
974
975 if (end >= H_VMALLOC_START) {
976 pr_warn("Outside the supported range\n");
977 return -1;
978 }
979
980 resize_hpt_for_hotplug(new_mem_size: memblock_phys_mem_size());
981
982 rc = htab_bolt_mapping(vstart: start, vend: end, __pa(start),
983 pgprot_val(prot), psize: mmu_linear_psize,
984 ssize: mmu_kernel_ssize);
985
986 if (rc < 0) {
987 int rc2 = htab_remove_mapping(vstart: start, vend: end, psize: mmu_linear_psize,
988 ssize: mmu_kernel_ssize);
989 BUG_ON(rc2 && (rc2 != -ENOENT));
990 }
991 return rc;
992}
993
994int hash__remove_section_mapping(unsigned long start, unsigned long end)
995{
996 int rc = htab_remove_mapping(vstart: start, vend: end, psize: mmu_linear_psize,
997 ssize: mmu_kernel_ssize);
998
999 if (resize_hpt_for_hotplug(new_mem_size: memblock_phys_mem_size()) == -ENOSPC)
1000 pr_warn("Hash collision while resizing HPT\n");
1001
1002 return rc;
1003}
1004#endif /* CONFIG_MEMORY_HOTPLUG */
1005
1006static void __init hash_init_partition_table(phys_addr_t hash_table,
1007 unsigned long htab_size)
1008{
1009 mmu_partition_table_init();
1010
1011 /*
1012 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
1013 * For now, UPRT is 0 and we have no segment table.
1014 */
1015 htab_size = __ilog2(htab_size) - 18;
1016 mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
1017 pr_info("Partition table %p\n", partition_tb);
1018}
1019
1020void hpt_clear_stress(void);
1021static struct timer_list stress_hpt_timer;
1022static void stress_hpt_timer_fn(struct timer_list *timer)
1023{
1024 int next_cpu;
1025
1026 hpt_clear_stress();
1027 if (!firmware_has_feature(FW_FEATURE_LPAR))
1028 tlbiel_all();
1029
1030 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
1031 if (next_cpu >= nr_cpu_ids)
1032 next_cpu = cpumask_first(cpu_online_mask);
1033 stress_hpt_timer.expires = jiffies + msecs_to_jiffies(m: 10);
1034 add_timer_on(timer: &stress_hpt_timer, cpu: next_cpu);
1035}
1036
1037static void __init htab_initialize(void)
1038{
1039 unsigned long table;
1040 unsigned long pteg_count;
1041 unsigned long prot;
1042 phys_addr_t base = 0, size = 0, end;
1043 u64 i;
1044
1045 DBG(" -> htab_initialize()\n");
1046
1047 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
1048 mmu_kernel_ssize = MMU_SEGSIZE_1T;
1049 mmu_highuser_ssize = MMU_SEGSIZE_1T;
1050 printk(KERN_INFO "Using 1TB segments\n");
1051 }
1052
1053 if (stress_slb_enabled)
1054 static_branch_enable(&stress_slb_key);
1055
1056 if (stress_hpt_enabled) {
1057 unsigned long tmp;
1058 static_branch_enable(&stress_hpt_key);
1059 // Too early to use nr_cpu_ids, so use NR_CPUS
1060 tmp = memblock_phys_alloc_range(size: sizeof(struct stress_hpt_struct) * NR_CPUS,
1061 align: __alignof__(struct stress_hpt_struct),
1062 start: 0, MEMBLOCK_ALLOC_ANYWHERE);
1063 memset((void *)tmp, 0xff, sizeof(struct stress_hpt_struct) * NR_CPUS);
1064 stress_hpt_struct = __va(tmp);
1065
1066 timer_setup(&stress_hpt_timer, stress_hpt_timer_fn, 0);
1067 stress_hpt_timer.expires = jiffies + msecs_to_jiffies(m: 10);
1068 add_timer(timer: &stress_hpt_timer);
1069 }
1070
1071 /*
1072 * Calculate the required size of the htab. We want the number of
1073 * PTEGs to equal one half the number of real pages.
1074 */
1075 htab_size_bytes = htab_get_table_size();
1076 pteg_count = htab_size_bytes >> 7;
1077
1078 htab_hash_mask = pteg_count - 1;
1079
1080 if (firmware_has_feature(FW_FEATURE_LPAR) ||
1081 firmware_has_feature(FW_FEATURE_PS3_LV1)) {
1082 /* Using a hypervisor which owns the htab */
1083 htab_address = NULL;
1084 _SDR1 = 0;
1085#ifdef CONFIG_FA_DUMP
1086 /*
1087 * If firmware assisted dump is active firmware preserves
1088 * the contents of htab along with entire partition memory.
1089 * Clear the htab if firmware assisted dump is active so
1090 * that we dont end up using old mappings.
1091 */
1092 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
1093 mmu_hash_ops.hpte_clear_all();
1094#endif
1095 } else {
1096 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
1097
1098#ifdef CONFIG_PPC_CELL
1099 /*
1100 * Cell may require the hash table down low when using the
1101 * Axon IOMMU in order to fit the dynamic region over it, see
1102 * comments in cell/iommu.c
1103 */
1104 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
1105 limit = 0x80000000;
1106 pr_info("Hash table forced below 2G for Axon IOMMU\n");
1107 }
1108#endif /* CONFIG_PPC_CELL */
1109
1110 table = memblock_phys_alloc_range(size: htab_size_bytes,
1111 align: htab_size_bytes,
1112 start: 0, end: limit);
1113 if (!table)
1114 panic(fmt: "ERROR: Failed to allocate %pa bytes below %pa\n",
1115 &htab_size_bytes, &limit);
1116
1117 DBG("Hash table allocated at %lx, size: %lx\n", table,
1118 htab_size_bytes);
1119
1120 htab_address = __va(table);
1121
1122 /* htab absolute addr + encoded htabsize */
1123 _SDR1 = table + __ilog2(htab_size_bytes) - 18;
1124
1125 /* Initialize the HPT with no entries */
1126 memset((void *)table, 0, htab_size_bytes);
1127
1128 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1129 /* Set SDR1 */
1130 mtspr(SPRN_SDR1, _SDR1);
1131 else
1132 hash_init_partition_table(hash_table: table, htab_size: htab_size_bytes);
1133 }
1134
1135 prot = pgprot_val(PAGE_KERNEL);
1136
1137 if (debug_pagealloc_enabled_or_kfence()) {
1138 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
1139 linear_map_hash_slots = memblock_alloc_try_nid(
1140 linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
1141 ppc64_rma_size, NUMA_NO_NODE);
1142 if (!linear_map_hash_slots)
1143 panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
1144 __func__, linear_map_hash_count, &ppc64_rma_size);
1145 }
1146
1147 /* create bolted the linear mapping in the hash table */
1148 for_each_mem_range(i, &base, &end) {
1149 size = end - base;
1150 base = (unsigned long)__va(base);
1151
1152 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
1153 base, size, prot);
1154
1155 if ((base + size) >= H_VMALLOC_START) {
1156 pr_warn("Outside the supported range\n");
1157 continue;
1158 }
1159
1160 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
1161 prot, mmu_linear_psize, mmu_kernel_ssize));
1162 }
1163 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
1164
1165 /*
1166 * If we have a memory_limit and we've allocated TCEs then we need to
1167 * explicitly map the TCE area at the top of RAM. We also cope with the
1168 * case that the TCEs start below memory_limit.
1169 * tce_alloc_start/end are 16MB aligned so the mapping should work
1170 * for either 4K or 16MB pages.
1171 */
1172 if (tce_alloc_start) {
1173 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
1174 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
1175
1176 if (base + size >= tce_alloc_start)
1177 tce_alloc_start = base + size + 1;
1178
1179 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1180 __pa(tce_alloc_start), prot,
1181 mmu_linear_psize, mmu_kernel_ssize));
1182 }
1183
1184
1185 DBG(" <- htab_initialize()\n");
1186}
1187#undef KB
1188#undef MB
1189
1190void __init hash__early_init_devtree(void)
1191{
1192 /* Initialize segment sizes */
1193 of_scan_flat_dt(it: htab_dt_scan_seg_sizes, NULL);
1194
1195 /* Initialize page sizes */
1196 htab_scan_page_sizes();
1197}
1198
1199static struct hash_mm_context init_hash_mm_context;
1200void __init hash__early_init_mmu(void)
1201{
1202#ifndef CONFIG_PPC_64K_PAGES
1203 /*
1204 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1205 * do the following:
1206 * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1207 *
1208 * Where the slot number is between 0-15, and values of 8-15 indicate
1209 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1210 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1211 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1212 * with a BUILD_BUG_ON().
1213 */
1214 BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul << (H_PAGE_F_GIX_SHIFT + 3)));
1215#endif /* CONFIG_PPC_64K_PAGES */
1216
1217 htab_init_page_sizes();
1218
1219 /*
1220 * initialize page table size
1221 */
1222 __pte_frag_nr = H_PTE_FRAG_NR;
1223 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1224 __pmd_frag_nr = H_PMD_FRAG_NR;
1225 __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1226
1227 __pte_index_size = H_PTE_INDEX_SIZE;
1228 __pmd_index_size = H_PMD_INDEX_SIZE;
1229 __pud_index_size = H_PUD_INDEX_SIZE;
1230 __pgd_index_size = H_PGD_INDEX_SIZE;
1231 __pud_cache_index = H_PUD_CACHE_INDEX;
1232 __pte_table_size = H_PTE_TABLE_SIZE;
1233 __pmd_table_size = H_PMD_TABLE_SIZE;
1234 __pud_table_size = H_PUD_TABLE_SIZE;
1235 __pgd_table_size = H_PGD_TABLE_SIZE;
1236 /*
1237 * 4k use hugepd format, so for hash set then to
1238 * zero
1239 */
1240 __pmd_val_bits = HASH_PMD_VAL_BITS;
1241 __pud_val_bits = HASH_PUD_VAL_BITS;
1242 __pgd_val_bits = HASH_PGD_VAL_BITS;
1243
1244 __kernel_virt_start = H_KERN_VIRT_START;
1245 __vmalloc_start = H_VMALLOC_START;
1246 __vmalloc_end = H_VMALLOC_END;
1247 __kernel_io_start = H_KERN_IO_START;
1248 __kernel_io_end = H_KERN_IO_END;
1249 vmemmap = (struct page *)H_VMEMMAP_START;
1250 ioremap_bot = IOREMAP_BASE;
1251
1252#ifdef CONFIG_PCI
1253 pci_io_base = ISA_IO_BASE;
1254#endif
1255
1256 /* Select appropriate backend */
1257 if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1258 ps3_early_mm_init();
1259 else if (firmware_has_feature(FW_FEATURE_LPAR))
1260 hpte_init_pseries();
1261 else if (IS_ENABLED(CONFIG_PPC_HASH_MMU_NATIVE))
1262 hpte_init_native();
1263
1264 if (!mmu_hash_ops.hpte_insert)
1265 panic(fmt: "hash__early_init_mmu: No MMU hash ops defined!\n");
1266
1267 /*
1268 * Initialize the MMU Hash table and create the linear mapping
1269 * of memory. Has to be done before SLB initialization as this is
1270 * currently where the page size encoding is obtained.
1271 */
1272 htab_initialize();
1273
1274 init_mm.context.hash_context = &init_hash_mm_context;
1275 mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1276
1277 pr_info("Initializing hash mmu with SLB\n");
1278 /* Initialize SLB management */
1279 slb_initialize();
1280
1281 if (cpu_has_feature(CPU_FTR_ARCH_206)
1282 && cpu_has_feature(CPU_FTR_HVMODE))
1283 tlbiel_all();
1284}
1285
1286#ifdef CONFIG_SMP
1287void hash__early_init_mmu_secondary(void)
1288{
1289 /* Initialize hash table for that CPU */
1290 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1291
1292 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1293 mtspr(SPRN_SDR1, _SDR1);
1294 else
1295 set_ptcr_when_no_uv(__pa(partition_tb) |
1296 (PATB_SIZE_SHIFT - 12));
1297 }
1298 /* Initialize SLB */
1299 slb_initialize();
1300
1301 if (cpu_has_feature(CPU_FTR_ARCH_206)
1302 && cpu_has_feature(CPU_FTR_HVMODE))
1303 tlbiel_all();
1304
1305#ifdef CONFIG_PPC_MEM_KEYS
1306 if (mmu_has_feature(MMU_FTR_PKEY))
1307 mtspr(SPRN_UAMOR, default_uamor);
1308#endif
1309}
1310#endif /* CONFIG_SMP */
1311
1312/*
1313 * Called by asm hashtable.S for doing lazy icache flush
1314 */
1315unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1316{
1317 struct folio *folio;
1318
1319 if (!pfn_valid(pfn: pte_pfn(pte)))
1320 return pp;
1321
1322 folio = page_folio(pte_page(pte));
1323
1324 /* page is dirty */
1325 if (!test_bit(PG_dcache_clean, &folio->flags) &&
1326 !folio_test_reserved(folio)) {
1327 if (trap == INTERRUPT_INST_STORAGE) {
1328 flush_dcache_icache_folio(folio);
1329 set_bit(PG_dcache_clean, &folio->flags);
1330 } else
1331 pp |= HPTE_R_N;
1332 }
1333 return pp;
1334}
1335
1336static unsigned int get_paca_psize(unsigned long addr)
1337{
1338 unsigned char *psizes;
1339 unsigned long index, mask_index;
1340
1341 if (addr < SLICE_LOW_TOP) {
1342 psizes = get_paca()->mm_ctx_low_slices_psize;
1343 index = GET_LOW_SLICE_INDEX(addr);
1344 } else {
1345 psizes = get_paca()->mm_ctx_high_slices_psize;
1346 index = GET_HIGH_SLICE_INDEX(addr);
1347 }
1348 mask_index = index & 0x1;
1349 return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1350}
1351
1352
1353/*
1354 * Demote a segment to using 4k pages.
1355 * For now this makes the whole process use 4k pages.
1356 */
1357#ifdef CONFIG_PPC_64K_PAGES
1358void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1359{
1360 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1361 return;
1362 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1363 copro_flush_all_slbs(mm);
1364 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1365
1366 copy_mm_to_paca(mm);
1367 slb_flush_and_restore_bolted();
1368 }
1369}
1370#endif /* CONFIG_PPC_64K_PAGES */
1371
1372#ifdef CONFIG_PPC_SUBPAGE_PROT
1373/*
1374 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1375 * Userspace sets the subpage permissions using the subpage_prot system call.
1376 *
1377 * Result is 0: full permissions, _PAGE_RW: read-only,
1378 * _PAGE_RWX: no access.
1379 */
1380static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1381{
1382 struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1383 u32 spp = 0;
1384 u32 **sbpm, *sbpp;
1385
1386 if (!spt)
1387 return 0;
1388
1389 if (ea >= spt->maxaddr)
1390 return 0;
1391 if (ea < 0x100000000UL) {
1392 /* addresses below 4GB use spt->low_prot */
1393 sbpm = spt->low_prot;
1394 } else {
1395 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1396 if (!sbpm)
1397 return 0;
1398 }
1399 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1400 if (!sbpp)
1401 return 0;
1402 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1403
1404 /* extract 2-bit bitfield for this 4k subpage */
1405 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1406
1407 /*
1408 * 0 -> full permission
1409 * 1 -> Read only
1410 * 2 -> no access.
1411 * We return the flag that need to be cleared.
1412 */
1413 spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1414 return spp;
1415}
1416
1417#else /* CONFIG_PPC_SUBPAGE_PROT */
1418static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1419{
1420 return 0;
1421}
1422#endif
1423
1424void hash_failure_debug(unsigned long ea, unsigned long access,
1425 unsigned long vsid, unsigned long trap,
1426 int ssize, int psize, int lpsize, unsigned long pte)
1427{
1428 if (!printk_ratelimit())
1429 return;
1430 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1431 ea, access, current->comm);
1432 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1433 trap, vsid, ssize, psize, lpsize, pte);
1434}
1435
1436static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1437 int psize, bool user_region)
1438{
1439 if (user_region) {
1440 if (psize != get_paca_psize(addr: ea)) {
1441 copy_mm_to_paca(mm);
1442 slb_flush_and_restore_bolted();
1443 }
1444 } else if (get_paca()->vmalloc_sllp !=
1445 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1446 get_paca()->vmalloc_sllp =
1447 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1448 slb_vmalloc_update();
1449 }
1450}
1451
1452/*
1453 * Result code is:
1454 * 0 - handled
1455 * 1 - normal page fault
1456 * -1 - critical hash insertion error
1457 * -2 - access not permitted by subpage protection mechanism
1458 */
1459int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1460 unsigned long access, unsigned long trap,
1461 unsigned long flags)
1462{
1463 bool is_thp;
1464 pgd_t *pgdir;
1465 unsigned long vsid;
1466 pte_t *ptep;
1467 unsigned hugeshift;
1468 int rc, user_region = 0;
1469 int psize, ssize;
1470
1471 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1472 ea, access, trap);
1473 trace_hash_fault(ea, access, trap);
1474
1475 /* Get region & vsid */
1476 switch (get_region_id(ea)) {
1477 case USER_REGION_ID:
1478 user_region = 1;
1479 if (! mm) {
1480 DBG_LOW(" user region with no mm !\n");
1481 rc = 1;
1482 goto bail;
1483 }
1484 psize = get_slice_psize(mm, ea);
1485 ssize = user_segment_size(ea);
1486 vsid = get_user_vsid(&mm->context, ea, ssize);
1487 break;
1488 case VMALLOC_REGION_ID:
1489 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1490 psize = mmu_vmalloc_psize;
1491 ssize = mmu_kernel_ssize;
1492 flags |= HPTE_USE_KERNEL_KEY;
1493 break;
1494
1495 case IO_REGION_ID:
1496 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1497 psize = mmu_io_psize;
1498 ssize = mmu_kernel_ssize;
1499 flags |= HPTE_USE_KERNEL_KEY;
1500 break;
1501 default:
1502 /*
1503 * Not a valid range
1504 * Send the problem up to do_page_fault()
1505 */
1506 rc = 1;
1507 goto bail;
1508 }
1509 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1510
1511 /* Bad address. */
1512 if (!vsid) {
1513 DBG_LOW("Bad address!\n");
1514 rc = 1;
1515 goto bail;
1516 }
1517 /* Get pgdir */
1518 pgdir = mm->pgd;
1519 if (pgdir == NULL) {
1520 rc = 1;
1521 goto bail;
1522 }
1523
1524 /* Check CPU locality */
1525 if (user_region && mm_is_thread_local(mm))
1526 flags |= HPTE_LOCAL_UPDATE;
1527
1528#ifndef CONFIG_PPC_64K_PAGES
1529 /*
1530 * If we use 4K pages and our psize is not 4K, then we might
1531 * be hitting a special driver mapping, and need to align the
1532 * address before we fetch the PTE.
1533 *
1534 * It could also be a hugepage mapping, in which case this is
1535 * not necessary, but it's not harmful, either.
1536 */
1537 if (psize != MMU_PAGE_4K)
1538 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1539#endif /* CONFIG_PPC_64K_PAGES */
1540
1541 /* Get PTE and page size from page tables */
1542 ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1543 if (ptep == NULL || !pte_present(a: *ptep)) {
1544 DBG_LOW(" no PTE !\n");
1545 rc = 1;
1546 goto bail;
1547 }
1548
1549 /*
1550 * Add _PAGE_PRESENT to the required access perm. If there are parallel
1551 * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1552 *
1553 * We can safely use the return pte address in rest of the function
1554 * because we do set H_PAGE_BUSY which prevents further updates to pte
1555 * from generic code.
1556 */
1557 access |= _PAGE_PRESENT | _PAGE_PTE;
1558
1559 /*
1560 * Pre-check access permissions (will be re-checked atomically
1561 * in __hash_page_XX but this pre-check is a fast path
1562 */
1563 if (!check_pte_access(access, pte_val(pte: *ptep))) {
1564 DBG_LOW(" no access !\n");
1565 rc = 1;
1566 goto bail;
1567 }
1568
1569 if (hugeshift) {
1570 if (is_thp)
1571 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1572 trap, flags, ssize, psize);
1573#ifdef CONFIG_HUGETLB_PAGE
1574 else
1575 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1576 flags, ssize, hugeshift, psize);
1577#else
1578 else {
1579 /*
1580 * if we have hugeshift, and is not transhuge with
1581 * hugetlb disabled, something is really wrong.
1582 */
1583 rc = 1;
1584 WARN_ON(1);
1585 }
1586#endif
1587 if (current->mm == mm)
1588 check_paca_psize(ea, mm, psize, user_region);
1589
1590 goto bail;
1591 }
1592
1593#ifndef CONFIG_PPC_64K_PAGES
1594 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1595#else
1596 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1597 pte_val(*(ptep + PTRS_PER_PTE)));
1598#endif
1599 /* Do actual hashing */
1600#ifdef CONFIG_PPC_64K_PAGES
1601 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1602 if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1603 demote_segment_4k(mm, ea);
1604 psize = MMU_PAGE_4K;
1605 }
1606
1607 /*
1608 * If this PTE is non-cacheable and we have restrictions on
1609 * using non cacheable large pages, then we switch to 4k
1610 */
1611 if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1612 if (user_region) {
1613 demote_segment_4k(mm, ea);
1614 psize = MMU_PAGE_4K;
1615 } else if (ea < VMALLOC_END) {
1616 /*
1617 * some driver did a non-cacheable mapping
1618 * in vmalloc space, so switch vmalloc
1619 * to 4k pages
1620 */
1621 printk(KERN_ALERT "Reducing vmalloc segment "
1622 "to 4kB pages because of "
1623 "non-cacheable mapping\n");
1624 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1625 copro_flush_all_slbs(mm);
1626 }
1627 }
1628
1629#endif /* CONFIG_PPC_64K_PAGES */
1630
1631 if (current->mm == mm)
1632 check_paca_psize(ea, mm, psize, user_region);
1633
1634#ifdef CONFIG_PPC_64K_PAGES
1635 if (psize == MMU_PAGE_64K)
1636 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1637 flags, ssize);
1638 else
1639#endif /* CONFIG_PPC_64K_PAGES */
1640 {
1641 int spp = subpage_protection(mm, ea);
1642 if (access & spp)
1643 rc = -2;
1644 else
1645 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1646 flags, ssize, spp);
1647 }
1648
1649 /*
1650 * Dump some info in case of hash insertion failure, they should
1651 * never happen so it is really useful to know if/when they do
1652 */
1653 if (rc == -1)
1654 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1655 lpsize: psize, pte: pte_val(pte: *ptep));
1656#ifndef CONFIG_PPC_64K_PAGES
1657 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1658#else
1659 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1660 pte_val(*(ptep + PTRS_PER_PTE)));
1661#endif
1662 DBG_LOW(" -> rc=%d\n", rc);
1663
1664bail:
1665 return rc;
1666}
1667EXPORT_SYMBOL_GPL(hash_page_mm);
1668
1669int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1670 unsigned long dsisr)
1671{
1672 unsigned long flags = 0;
1673 struct mm_struct *mm = current->mm;
1674
1675 if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1676 (get_region_id(ea) == IO_REGION_ID))
1677 mm = &init_mm;
1678
1679 if (dsisr & DSISR_NOHPTE)
1680 flags |= HPTE_NOHPTE_UPDATE;
1681
1682 return hash_page_mm(mm, ea, access, trap, flags);
1683}
1684EXPORT_SYMBOL_GPL(hash_page);
1685
1686DEFINE_INTERRUPT_HANDLER(do_hash_fault)
1687{
1688 unsigned long ea = regs->dar;
1689 unsigned long dsisr = regs->dsisr;
1690 unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1691 unsigned long flags = 0;
1692 struct mm_struct *mm;
1693 unsigned int region_id;
1694 long err;
1695
1696 if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) {
1697 hash__do_page_fault(regs);
1698 return;
1699 }
1700
1701 region_id = get_region_id(ea);
1702 if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1703 mm = &init_mm;
1704 else
1705 mm = current->mm;
1706
1707 if (dsisr & DSISR_NOHPTE)
1708 flags |= HPTE_NOHPTE_UPDATE;
1709
1710 if (dsisr & DSISR_ISSTORE)
1711 access |= _PAGE_WRITE;
1712 /*
1713 * We set _PAGE_PRIVILEGED only when
1714 * kernel mode access kernel space.
1715 *
1716 * _PAGE_PRIVILEGED is NOT set
1717 * 1) when kernel mode access user space
1718 * 2) user space access kernel space.
1719 */
1720 access |= _PAGE_PRIVILEGED;
1721 if (user_mode(regs) || (region_id == USER_REGION_ID))
1722 access &= ~_PAGE_PRIVILEGED;
1723
1724 if (TRAP(regs) == INTERRUPT_INST_STORAGE)
1725 access |= _PAGE_EXEC;
1726
1727 err = hash_page_mm(mm, ea, access, TRAP(regs), flags);
1728 if (unlikely(err < 0)) {
1729 // failed to insert a hash PTE due to an hypervisor error
1730 if (user_mode(regs)) {
1731 if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2)
1732 _exception(SIGSEGV, regs, SEGV_ACCERR, ea);
1733 else
1734 _exception(SIGBUS, regs, BUS_ADRERR, ea);
1735 } else {
1736 bad_page_fault(regs, SIGBUS);
1737 }
1738 err = 0;
1739
1740 } else if (err) {
1741 hash__do_page_fault(regs);
1742 }
1743}
1744
1745static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1746{
1747 int psize = get_slice_psize(mm, ea);
1748
1749 /* We only prefault standard pages for now */
1750 if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1751 return false;
1752
1753 /*
1754 * Don't prefault if subpage protection is enabled for the EA.
1755 */
1756 if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1757 return false;
1758
1759 return true;
1760}
1761
1762static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
1763 bool is_exec, unsigned long trap)
1764{
1765 unsigned long vsid;
1766 pgd_t *pgdir;
1767 int rc, ssize, update_flags = 0;
1768 unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1769 unsigned long flags;
1770
1771 BUG_ON(get_region_id(ea) != USER_REGION_ID);
1772
1773 if (!should_hash_preload(mm, ea))
1774 return;
1775
1776 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1777 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1778
1779 /* Get Linux PTE if available */
1780 pgdir = mm->pgd;
1781 if (pgdir == NULL)
1782 return;
1783
1784 /* Get VSID */
1785 ssize = user_segment_size(ea);
1786 vsid = get_user_vsid(&mm->context, ea, ssize);
1787 if (!vsid)
1788 return;
1789
1790#ifdef CONFIG_PPC_64K_PAGES
1791 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1792 * a 64K kernel), then we don't preload, hash_page() will take
1793 * care of it once we actually try to access the page.
1794 * That way we don't have to duplicate all of the logic for segment
1795 * page size demotion here
1796 * Called with PTL held, hence can be sure the value won't change in
1797 * between.
1798 */
1799 if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1800 return;
1801#endif /* CONFIG_PPC_64K_PAGES */
1802
1803 /*
1804 * __hash_page_* must run with interrupts off, including PMI interrupts
1805 * off, as it sets the H_PAGE_BUSY bit.
1806 *
1807 * It's otherwise possible for perf interrupts to hit at any time and
1808 * may take a hash fault reading the user stack, which could take a
1809 * hash miss and deadlock on the same H_PAGE_BUSY bit.
1810 *
1811 * Interrupts must also be off for the duration of the
1812 * mm_is_thread_local test and update, to prevent preempt running the
1813 * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
1814 */
1815 powerpc_local_irq_pmu_save(flags);
1816
1817 /* Is that local to this CPU ? */
1818 if (mm_is_thread_local(mm))
1819 update_flags |= HPTE_LOCAL_UPDATE;
1820
1821 /* Hash it in */
1822#ifdef CONFIG_PPC_64K_PAGES
1823 if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1824 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1825 update_flags, ssize);
1826 else
1827#endif /* CONFIG_PPC_64K_PAGES */
1828 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1829 ssize, subpage_protection(mm, ea));
1830
1831 /* Dump some info in case of hash insertion failure, they should
1832 * never happen so it is really useful to know if/when they do
1833 */
1834 if (rc == -1)
1835 hash_failure_debug(ea, access, vsid, trap, ssize,
1836 psize: mm_ctx_user_psize(&mm->context),
1837 lpsize: mm_ctx_user_psize(&mm->context),
1838 pte: pte_val(pte: *ptep));
1839
1840 powerpc_local_irq_pmu_restore(flags);
1841}
1842
1843/*
1844 * This is called at the end of handling a user page fault, when the
1845 * fault has been handled by updating a PTE in the linux page tables.
1846 * We use it to preload an HPTE into the hash table corresponding to
1847 * the updated linux PTE.
1848 *
1849 * This must always be called with the pte lock held.
1850 */
1851void __update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1852 pte_t *ptep)
1853{
1854 /*
1855 * We don't need to worry about _PAGE_PRESENT here because we are
1856 * called with either mm->page_table_lock held or ptl lock held
1857 */
1858 unsigned long trap;
1859 bool is_exec;
1860
1861 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1862 if (!pte_young(pte: *ptep) || address >= TASK_SIZE)
1863 return;
1864
1865 /*
1866 * We try to figure out if we are coming from an instruction
1867 * access fault and pass that down to __hash_page so we avoid
1868 * double-faulting on execution of fresh text. We have to test
1869 * for regs NULL since init will get here first thing at boot.
1870 *
1871 * We also avoid filling the hash if not coming from a fault.
1872 */
1873
1874 trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1875 switch (trap) {
1876 case 0x300:
1877 is_exec = false;
1878 break;
1879 case 0x400:
1880 is_exec = true;
1881 break;
1882 default:
1883 return;
1884 }
1885
1886 hash_preload(mm: vma->vm_mm, ptep, ea: address, is_exec, trap);
1887}
1888
1889#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1890static inline void tm_flush_hash_page(int local)
1891{
1892 /*
1893 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1894 * page back to a block device w/PIO could pick up transactional data
1895 * (bad!) so we force an abort here. Before the sync the page will be
1896 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1897 * kernel uses a page from userspace without unmapping it first, it may
1898 * see the speculated version.
1899 */
1900 if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1901 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1902 tm_enable();
1903 tm_abort(TM_CAUSE_TLBI);
1904 }
1905}
1906#else
1907static inline void tm_flush_hash_page(int local)
1908{
1909}
1910#endif
1911
1912/*
1913 * Return the global hash slot, corresponding to the given PTE, which contains
1914 * the HPTE.
1915 */
1916unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1917 int ssize, real_pte_t rpte, unsigned int subpg_index)
1918{
1919 unsigned long hash, gslot, hidx;
1920
1921 hash = hpt_hash(vpn, shift, ssize);
1922 hidx = __rpte_to_hidx(rpte, subpg_index);
1923 if (hidx & _PTEIDX_SECONDARY)
1924 hash = ~hash;
1925 gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1926 gslot += hidx & _PTEIDX_GROUP_IX;
1927 return gslot;
1928}
1929
1930void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1931 unsigned long flags)
1932{
1933 unsigned long index, shift, gslot;
1934 int local = flags & HPTE_LOCAL_UPDATE;
1935
1936 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1937 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1938 gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1939 DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1940 /*
1941 * We use same base page size and actual psize, because we don't
1942 * use these functions for hugepage
1943 */
1944 mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1945 ssize, local);
1946 } pte_iterate_hashed_end();
1947
1948 tm_flush_hash_page(local);
1949}
1950
1951#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1952void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1953 pmd_t *pmdp, unsigned int psize, int ssize,
1954 unsigned long flags)
1955{
1956 int i, max_hpte_count, valid;
1957 unsigned long s_addr;
1958 unsigned char *hpte_slot_array;
1959 unsigned long hidx, shift, vpn, hash, slot;
1960 int local = flags & HPTE_LOCAL_UPDATE;
1961
1962 s_addr = addr & HPAGE_PMD_MASK;
1963 hpte_slot_array = get_hpte_slot_array(pmdp);
1964 /*
1965 * IF we try to do a HUGE PTE update after a withdraw is done.
1966 * we will find the below NULL. This happens when we do
1967 * split_huge_pmd
1968 */
1969 if (!hpte_slot_array)
1970 return;
1971
1972 if (mmu_hash_ops.hugepage_invalidate) {
1973 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1974 psize, ssize, local);
1975 goto tm_abort;
1976 }
1977 /*
1978 * No bluk hpte removal support, invalidate each entry
1979 */
1980 shift = mmu_psize_defs[psize].shift;
1981 max_hpte_count = HPAGE_PMD_SIZE >> shift;
1982 for (i = 0; i < max_hpte_count; i++) {
1983 /*
1984 * 8 bits per each hpte entries
1985 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1986 */
1987 valid = hpte_valid(hpte_slot_array, i);
1988 if (!valid)
1989 continue;
1990 hidx = hpte_hash_index(hpte_slot_array, i);
1991
1992 /* get the vpn */
1993 addr = s_addr + (i * (1ul << shift));
1994 vpn = hpt_vpn(addr, vsid, ssize);
1995 hash = hpt_hash(vpn, shift, ssize);
1996 if (hidx & _PTEIDX_SECONDARY)
1997 hash = ~hash;
1998
1999 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2000 slot += hidx & _PTEIDX_GROUP_IX;
2001 mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
2002 MMU_PAGE_16M, ssize, local);
2003 }
2004tm_abort:
2005 tm_flush_hash_page(local);
2006}
2007#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2008
2009void flush_hash_range(unsigned long number, int local)
2010{
2011 if (mmu_hash_ops.flush_hash_range)
2012 mmu_hash_ops.flush_hash_range(number, local);
2013 else {
2014 int i;
2015 struct ppc64_tlb_batch *batch =
2016 this_cpu_ptr(&ppc64_tlb_batch);
2017
2018 for (i = 0; i < number; i++)
2019 flush_hash_page(batch->vpn[i], batch->pte[i],
2020 batch->psize, batch->ssize, local);
2021 }
2022}
2023
2024long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
2025 unsigned long pa, unsigned long rflags,
2026 unsigned long vflags, int psize, int ssize)
2027{
2028 unsigned long hpte_group;
2029 long slot;
2030
2031repeat:
2032 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2033
2034 /* Insert into the hash table, primary slot */
2035 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
2036 psize, psize, ssize);
2037
2038 /* Primary is full, try the secondary */
2039 if (unlikely(slot == -1)) {
2040 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
2041 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
2042 vflags | HPTE_V_SECONDARY,
2043 psize, psize, ssize);
2044 if (slot == -1) {
2045 if (mftb() & 0x1)
2046 hpte_group = (hash & htab_hash_mask) *
2047 HPTES_PER_GROUP;
2048
2049 mmu_hash_ops.hpte_remove(hpte_group);
2050 goto repeat;
2051 }
2052 }
2053
2054 return slot;
2055}
2056
2057void hpt_clear_stress(void)
2058{
2059 int cpu = raw_smp_processor_id();
2060 int g;
2061
2062 for (g = 0; g < stress_nr_groups(); g++) {
2063 unsigned long last_group;
2064 last_group = stress_hpt_struct[cpu].last_group[g];
2065
2066 if (last_group != -1UL) {
2067 int i;
2068 for (i = 0; i < HPTES_PER_GROUP; i++) {
2069 if (mmu_hash_ops.hpte_remove(last_group) == -1)
2070 break;
2071 }
2072 stress_hpt_struct[cpu].last_group[g] = -1;
2073 }
2074 }
2075}
2076
2077void hpt_do_stress(unsigned long ea, unsigned long hpte_group)
2078{
2079 unsigned long last_group;
2080 int cpu = raw_smp_processor_id();
2081
2082 last_group = stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1];
2083 if (hpte_group == last_group)
2084 return;
2085
2086 if (last_group != -1UL) {
2087 int i;
2088 /*
2089 * Concurrent CPUs might be inserting into this group, so
2090 * give up after a number of iterations, to prevent a live
2091 * lock.
2092 */
2093 for (i = 0; i < HPTES_PER_GROUP; i++) {
2094 if (mmu_hash_ops.hpte_remove(last_group) == -1)
2095 break;
2096 }
2097 stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1] = -1;
2098 }
2099
2100 if (ea >= PAGE_OFFSET) {
2101 /*
2102 * We would really like to prefetch to get the TLB loaded, then
2103 * remove the PTE before returning from fault interrupt, to
2104 * increase the hash fault rate.
2105 *
2106 * Unfortunately QEMU TCG does not model the TLB in a way that
2107 * makes this possible, and systemsim (mambo) emulator does not
2108 * bring in TLBs with prefetches (although loads/stores do
2109 * work for non-CI PTEs).
2110 *
2111 * So remember this PTE and clear it on the next hash fault.
2112 */
2113 memmove(&stress_hpt_struct[cpu].last_group[1],
2114 &stress_hpt_struct[cpu].last_group[0],
2115 (stress_nr_groups() - 1) * sizeof(unsigned long));
2116 stress_hpt_struct[cpu].last_group[0] = hpte_group;
2117 }
2118}
2119
2120#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
2121static DEFINE_RAW_SPINLOCK(linear_map_hash_lock);
2122
2123static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
2124{
2125 unsigned long hash;
2126 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
2127 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
2128 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
2129 long ret;
2130
2131 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
2132
2133 /* Don't create HPTE entries for bad address */
2134 if (!vsid)
2135 return;
2136
2137 if (linear_map_hash_slots[lmi] & 0x80)
2138 return;
2139
2140 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
2141 HPTE_V_BOLTED,
2142 mmu_linear_psize, mmu_kernel_ssize);
2143
2144 BUG_ON (ret < 0);
2145 raw_spin_lock(&linear_map_hash_lock);
2146 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
2147 linear_map_hash_slots[lmi] = ret | 0x80;
2148 raw_spin_unlock(&linear_map_hash_lock);
2149}
2150
2151static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
2152{
2153 unsigned long hash, hidx, slot;
2154 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
2155 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
2156
2157 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
2158 raw_spin_lock(&linear_map_hash_lock);
2159 if (!(linear_map_hash_slots[lmi] & 0x80)) {
2160 raw_spin_unlock(&linear_map_hash_lock);
2161 return;
2162 }
2163 hidx = linear_map_hash_slots[lmi] & 0x7f;
2164 linear_map_hash_slots[lmi] = 0;
2165 raw_spin_unlock(&linear_map_hash_lock);
2166 if (hidx & _PTEIDX_SECONDARY)
2167 hash = ~hash;
2168 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2169 slot += hidx & _PTEIDX_GROUP_IX;
2170 mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
2171 mmu_linear_psize,
2172 mmu_kernel_ssize, 0);
2173}
2174
2175int hash__kernel_map_pages(struct page *page, int numpages, int enable)
2176{
2177 unsigned long flags, vaddr, lmi;
2178 int i;
2179
2180 local_irq_save(flags);
2181 for (i = 0; i < numpages; i++, page++) {
2182 vaddr = (unsigned long)page_address(page);
2183 lmi = __pa(vaddr) >> PAGE_SHIFT;
2184 if (lmi >= linear_map_hash_count)
2185 continue;
2186 if (enable)
2187 kernel_map_linear_page(vaddr, lmi);
2188 else
2189 kernel_unmap_linear_page(vaddr, lmi);
2190 }
2191 local_irq_restore(flags);
2192 return 0;
2193}
2194#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_KFENCE */
2195
2196void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
2197 phys_addr_t first_memblock_size)
2198{
2199 /*
2200 * We don't currently support the first MEMBLOCK not mapping 0
2201 * physical on those processors
2202 */
2203 BUG_ON(first_memblock_base != 0);
2204
2205 /*
2206 * On virtualized systems the first entry is our RMA region aka VRMA,
2207 * non-virtualized 64-bit hash MMU systems don't have a limitation
2208 * on real mode access.
2209 *
2210 * For guests on platforms before POWER9, we clamp the it limit to 1G
2211 * to avoid some funky things such as RTAS bugs etc...
2212 *
2213 * On POWER9 we limit to 1TB in case the host erroneously told us that
2214 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
2215 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
2216 * for virtual real mode addressing and so it doesn't make sense to
2217 * have an area larger than 1TB as it can't be addressed.
2218 */
2219 if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
2220 ppc64_rma_size = first_memblock_size;
2221 if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
2222 ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
2223 else
2224 ppc64_rma_size = min_t(u64, ppc64_rma_size,
2225 1UL << SID_SHIFT_1T);
2226
2227 /* Finally limit subsequent allocations */
2228 memblock_set_current_limit(ppc64_rma_size);
2229 } else {
2230 ppc64_rma_size = ULONG_MAX;
2231 }
2232}
2233
2234#ifdef CONFIG_DEBUG_FS
2235
2236static int hpt_order_get(void *data, u64 *val)
2237{
2238 *val = ppc64_pft_size;
2239 return 0;
2240}
2241
2242static int hpt_order_set(void *data, u64 val)
2243{
2244 int ret;
2245
2246 if (!mmu_hash_ops.resize_hpt)
2247 return -ENODEV;
2248
2249 cpus_read_lock();
2250 ret = mmu_hash_ops.resize_hpt(val);
2251 cpus_read_unlock();
2252
2253 return ret;
2254}
2255
2256DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2257
2258static int __init hash64_debugfs(void)
2259{
2260 debugfs_create_file(name: "hpt_order", mode: 0600, parent: arch_debugfs_dir, NULL,
2261 fops: &fops_hpt_order);
2262 return 0;
2263}
2264machine_device_initcall(pseries, hash64_debugfs);
2265#endif /* CONFIG_DEBUG_FS */
2266
2267void __init print_system_hash_info(void)
2268{
2269 pr_info("ppc64_pft_size = 0x%llx\n", ppc64_pft_size);
2270
2271 if (htab_hash_mask)
2272 pr_info("htab_hash_mask = 0x%lx\n", htab_hash_mask);
2273}
2274
2275unsigned long arch_randomize_brk(struct mm_struct *mm)
2276{
2277 /*
2278 * If we are using 1TB segments and we are allowed to randomise
2279 * the heap, we can put it above 1TB so it is backed by a 1TB
2280 * segment. Otherwise the heap will be in the bottom 1TB
2281 * which always uses 256MB segments and this may result in a
2282 * performance penalty.
2283 */
2284 if (is_32bit_task())
2285 return randomize_page(start: mm->brk, SZ_32M);
2286 else if (!radix_enabled() && mmu_highuser_ssize == MMU_SEGSIZE_1T)
2287 return randomize_page(max_t(unsigned long, mm->brk, SZ_1T), SZ_1G);
2288 else
2289 return randomize_page(start: mm->brk, SZ_1G);
2290}
2291

source code of linux/arch/powerpc/mm/book3s64/hash_utils.c