1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kvm_types.h>
12#include <linux/kvm_host.h>
13#include <linux/kernel.h>
14#include <linux/highmem.h>
15#include <linux/psp.h>
16#include <linux/psp-sev.h>
17#include <linux/pagemap.h>
18#include <linux/swap.h>
19#include <linux/misc_cgroup.h>
20#include <linux/processor.h>
21#include <linux/trace_events.h>
22
23#include <asm/pkru.h>
24#include <asm/trapnr.h>
25#include <asm/fpu/xcr.h>
26#include <asm/debugreg.h>
27
28#include "mmu.h"
29#include "x86.h"
30#include "svm.h"
31#include "svm_ops.h"
32#include "cpuid.h"
33#include "trace.h"
34
35#ifndef CONFIG_KVM_AMD_SEV
36/*
37 * When this config is not defined, SEV feature is not supported and APIs in
38 * this file are not used but this file still gets compiled into the KVM AMD
39 * module.
40 *
41 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
42 * misc_res_type {} defined in linux/misc_cgroup.h.
43 *
44 * Below macros allow compilation to succeed.
45 */
46#define MISC_CG_RES_SEV MISC_CG_RES_TYPES
47#define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
48#endif
49
50#ifdef CONFIG_KVM_AMD_SEV
51/* enable/disable SEV support */
52static bool sev_enabled = true;
53module_param_named(sev, sev_enabled, bool, 0444);
54
55/* enable/disable SEV-ES support */
56static bool sev_es_enabled = true;
57module_param_named(sev_es, sev_es_enabled, bool, 0444);
58
59/* enable/disable SEV-ES DebugSwap support */
60static bool sev_es_debug_swap_enabled = false;
61module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
62#else
63#define sev_enabled false
64#define sev_es_enabled false
65#define sev_es_debug_swap_enabled false
66#endif /* CONFIG_KVM_AMD_SEV */
67
68static u8 sev_enc_bit;
69static DECLARE_RWSEM(sev_deactivate_lock);
70static DEFINE_MUTEX(sev_bitmap_lock);
71unsigned int max_sev_asid;
72static unsigned int min_sev_asid;
73static unsigned long sev_me_mask;
74static unsigned int nr_asids;
75static unsigned long *sev_asid_bitmap;
76static unsigned long *sev_reclaim_asid_bitmap;
77
78struct enc_region {
79 struct list_head list;
80 unsigned long npages;
81 struct page **pages;
82 unsigned long uaddr;
83 unsigned long size;
84};
85
86/* Called with the sev_bitmap_lock held, or on shutdown */
87static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
88{
89 int ret, error = 0;
90 unsigned int asid;
91
92 /* Check if there are any ASIDs to reclaim before performing a flush */
93 asid = find_next_bit(addr: sev_reclaim_asid_bitmap, size: nr_asids, offset: min_asid);
94 if (asid > max_asid)
95 return -EBUSY;
96
97 /*
98 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
99 * so it must be guarded.
100 */
101 down_write(sem: &sev_deactivate_lock);
102
103 wbinvd_on_all_cpus();
104 ret = sev_guest_df_flush(error: &error);
105
106 up_write(sem: &sev_deactivate_lock);
107
108 if (ret)
109 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
110
111 return ret;
112}
113
114static inline bool is_mirroring_enc_context(struct kvm *kvm)
115{
116 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
117}
118
119/* Must be called with the sev_bitmap_lock held */
120static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
121{
122 if (sev_flush_asids(min_asid, max_asid))
123 return false;
124
125 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
126 bitmap_xor(dst: sev_asid_bitmap, src1: sev_asid_bitmap, src2: sev_reclaim_asid_bitmap,
127 nbits: nr_asids);
128 bitmap_zero(dst: sev_reclaim_asid_bitmap, nbits: nr_asids);
129
130 return true;
131}
132
133static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
134{
135 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
136 return misc_cg_try_charge(type, cg: sev->misc_cg, amount: 1);
137}
138
139static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
140{
141 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
142 misc_cg_uncharge(type, cg: sev->misc_cg, amount: 1);
143}
144
145static int sev_asid_new(struct kvm_sev_info *sev)
146{
147 /*
148 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
149 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
150 * Note: min ASID can end up larger than the max if basic SEV support is
151 * effectively disabled by disallowing use of ASIDs for SEV guests.
152 */
153 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
154 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
155 unsigned int asid;
156 bool retry = true;
157 int ret;
158
159 if (min_asid > max_asid)
160 return -ENOTTY;
161
162 WARN_ON(sev->misc_cg);
163 sev->misc_cg = get_current_misc_cg();
164 ret = sev_misc_cg_try_charge(sev);
165 if (ret) {
166 put_misc_cg(cg: sev->misc_cg);
167 sev->misc_cg = NULL;
168 return ret;
169 }
170
171 mutex_lock(&sev_bitmap_lock);
172
173again:
174 asid = find_next_zero_bit(addr: sev_asid_bitmap, size: max_asid + 1, offset: min_asid);
175 if (asid > max_asid) {
176 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
177 retry = false;
178 goto again;
179 }
180 mutex_unlock(lock: &sev_bitmap_lock);
181 ret = -EBUSY;
182 goto e_uncharge;
183 }
184
185 __set_bit(asid, sev_asid_bitmap);
186
187 mutex_unlock(lock: &sev_bitmap_lock);
188
189 sev->asid = asid;
190 return 0;
191e_uncharge:
192 sev_misc_cg_uncharge(sev);
193 put_misc_cg(cg: sev->misc_cg);
194 sev->misc_cg = NULL;
195 return ret;
196}
197
198static unsigned int sev_get_asid(struct kvm *kvm)
199{
200 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
201
202 return sev->asid;
203}
204
205static void sev_asid_free(struct kvm_sev_info *sev)
206{
207 struct svm_cpu_data *sd;
208 int cpu;
209
210 mutex_lock(&sev_bitmap_lock);
211
212 __set_bit(sev->asid, sev_reclaim_asid_bitmap);
213
214 for_each_possible_cpu(cpu) {
215 sd = per_cpu_ptr(&svm_data, cpu);
216 sd->sev_vmcbs[sev->asid] = NULL;
217 }
218
219 mutex_unlock(lock: &sev_bitmap_lock);
220
221 sev_misc_cg_uncharge(sev);
222 put_misc_cg(cg: sev->misc_cg);
223 sev->misc_cg = NULL;
224}
225
226static void sev_decommission(unsigned int handle)
227{
228 struct sev_data_decommission decommission;
229
230 if (!handle)
231 return;
232
233 decommission.handle = handle;
234 sev_guest_decommission(data: &decommission, NULL);
235}
236
237static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
238{
239 struct sev_data_deactivate deactivate;
240
241 if (!handle)
242 return;
243
244 deactivate.handle = handle;
245
246 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
247 down_read(sem: &sev_deactivate_lock);
248 sev_guest_deactivate(data: &deactivate, NULL);
249 up_read(sem: &sev_deactivate_lock);
250
251 sev_decommission(handle);
252}
253
254static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
255{
256 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
257 struct sev_platform_init_args init_args = {0};
258 int ret;
259
260 if (kvm->created_vcpus)
261 return -EINVAL;
262
263 if (unlikely(sev->active))
264 return -EINVAL;
265
266 sev->active = true;
267 sev->es_active = argp->id == KVM_SEV_ES_INIT;
268 ret = sev_asid_new(sev);
269 if (ret)
270 goto e_no_asid;
271
272 init_args.probe = false;
273 ret = sev_platform_init(args: &init_args);
274 if (ret)
275 goto e_free;
276
277 INIT_LIST_HEAD(list: &sev->regions_list);
278 INIT_LIST_HEAD(list: &sev->mirror_vms);
279
280 kvm_set_apicv_inhibit(kvm, reason: APICV_INHIBIT_REASON_SEV);
281
282 return 0;
283
284e_free:
285 argp->error = init_args.error;
286 sev_asid_free(sev);
287 sev->asid = 0;
288e_no_asid:
289 sev->es_active = false;
290 sev->active = false;
291 return ret;
292}
293
294static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
295{
296 unsigned int asid = sev_get_asid(kvm);
297 struct sev_data_activate activate;
298 int ret;
299
300 /* activate ASID on the given handle */
301 activate.handle = handle;
302 activate.asid = asid;
303 ret = sev_guest_activate(data: &activate, error);
304
305 return ret;
306}
307
308static int __sev_issue_cmd(int fd, int id, void *data, int *error)
309{
310 struct fd f;
311 int ret;
312
313 f = fdget(fd);
314 if (!f.file)
315 return -EBADF;
316
317 ret = sev_issue_cmd_external_user(filep: f.file, id, data, error);
318
319 fdput(fd: f);
320 return ret;
321}
322
323static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
324{
325 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
326
327 return __sev_issue_cmd(fd: sev->fd, id, data, error);
328}
329
330static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
331{
332 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
333 struct sev_data_launch_start start;
334 struct kvm_sev_launch_start params;
335 void *dh_blob, *session_blob;
336 int *error = &argp->error;
337 int ret;
338
339 if (!sev_guest(kvm))
340 return -ENOTTY;
341
342 if (copy_from_user(to: &params, from: (void __user *)(uintptr_t)argp->data, n: sizeof(params)))
343 return -EFAULT;
344
345 memset(&start, 0, sizeof(start));
346
347 dh_blob = NULL;
348 if (params.dh_uaddr) {
349 dh_blob = psp_copy_user_blob(uaddr: params.dh_uaddr, len: params.dh_len);
350 if (IS_ERR(ptr: dh_blob))
351 return PTR_ERR(ptr: dh_blob);
352
353 start.dh_cert_address = __sme_set(__pa(dh_blob));
354 start.dh_cert_len = params.dh_len;
355 }
356
357 session_blob = NULL;
358 if (params.session_uaddr) {
359 session_blob = psp_copy_user_blob(uaddr: params.session_uaddr, len: params.session_len);
360 if (IS_ERR(ptr: session_blob)) {
361 ret = PTR_ERR(ptr: session_blob);
362 goto e_free_dh;
363 }
364
365 start.session_address = __sme_set(__pa(session_blob));
366 start.session_len = params.session_len;
367 }
368
369 start.handle = params.handle;
370 start.policy = params.policy;
371
372 /* create memory encryption context */
373 ret = __sev_issue_cmd(fd: argp->sev_fd, id: SEV_CMD_LAUNCH_START, data: &start, error);
374 if (ret)
375 goto e_free_session;
376
377 /* Bind ASID to this guest */
378 ret = sev_bind_asid(kvm, handle: start.handle, error);
379 if (ret) {
380 sev_decommission(handle: start.handle);
381 goto e_free_session;
382 }
383
384 /* return handle to userspace */
385 params.handle = start.handle;
386 if (copy_to_user(to: (void __user *)(uintptr_t)argp->data, from: &params, n: sizeof(params))) {
387 sev_unbind_asid(kvm, handle: start.handle);
388 ret = -EFAULT;
389 goto e_free_session;
390 }
391
392 sev->handle = start.handle;
393 sev->fd = argp->sev_fd;
394
395e_free_session:
396 kfree(objp: session_blob);
397e_free_dh:
398 kfree(objp: dh_blob);
399 return ret;
400}
401
402static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
403 unsigned long ulen, unsigned long *n,
404 int write)
405{
406 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
407 unsigned long npages, size;
408 int npinned;
409 unsigned long locked, lock_limit;
410 struct page **pages;
411 unsigned long first, last;
412 int ret;
413
414 lockdep_assert_held(&kvm->lock);
415
416 if (ulen == 0 || uaddr + ulen < uaddr)
417 return ERR_PTR(error: -EINVAL);
418
419 /* Calculate number of pages. */
420 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
421 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
422 npages = (last - first + 1);
423
424 locked = sev->pages_locked + npages;
425 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
426 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
427 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
428 return ERR_PTR(error: -ENOMEM);
429 }
430
431 if (WARN_ON_ONCE(npages > INT_MAX))
432 return ERR_PTR(error: -EINVAL);
433
434 /* Avoid using vmalloc for smaller buffers. */
435 size = npages * sizeof(struct page *);
436 if (size > PAGE_SIZE)
437 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
438 else
439 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
440
441 if (!pages)
442 return ERR_PTR(error: -ENOMEM);
443
444 /* Pin the user virtual address. */
445 npinned = pin_user_pages_fast(start: uaddr, nr_pages: npages, gup_flags: write ? FOLL_WRITE : 0, pages);
446 if (npinned != npages) {
447 pr_err("SEV: Failure locking %lu pages.\n", npages);
448 ret = -ENOMEM;
449 goto err;
450 }
451
452 *n = npages;
453 sev->pages_locked = locked;
454
455 return pages;
456
457err:
458 if (npinned > 0)
459 unpin_user_pages(pages, npages: npinned);
460
461 kvfree(addr: pages);
462 return ERR_PTR(error: ret);
463}
464
465static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
466 unsigned long npages)
467{
468 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
469
470 unpin_user_pages(pages, npages);
471 kvfree(addr: pages);
472 sev->pages_locked -= npages;
473}
474
475static void sev_clflush_pages(struct page *pages[], unsigned long npages)
476{
477 uint8_t *page_virtual;
478 unsigned long i;
479
480 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
481 pages == NULL)
482 return;
483
484 for (i = 0; i < npages; i++) {
485 page_virtual = kmap_local_page(page: pages[i]);
486 clflush_cache_range(addr: page_virtual, PAGE_SIZE);
487 kunmap_local(page_virtual);
488 cond_resched();
489 }
490}
491
492static unsigned long get_num_contig_pages(unsigned long idx,
493 struct page **inpages, unsigned long npages)
494{
495 unsigned long paddr, next_paddr;
496 unsigned long i = idx + 1, pages = 1;
497
498 /* find the number of contiguous pages starting from idx */
499 paddr = __sme_page_pa(inpages[idx]);
500 while (i < npages) {
501 next_paddr = __sme_page_pa(inpages[i++]);
502 if ((paddr + PAGE_SIZE) == next_paddr) {
503 pages++;
504 paddr = next_paddr;
505 continue;
506 }
507 break;
508 }
509
510 return pages;
511}
512
513static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
514{
515 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
516 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
517 struct kvm_sev_launch_update_data params;
518 struct sev_data_launch_update_data data;
519 struct page **inpages;
520 int ret;
521
522 if (!sev_guest(kvm))
523 return -ENOTTY;
524
525 if (copy_from_user(to: &params, from: (void __user *)(uintptr_t)argp->data, n: sizeof(params)))
526 return -EFAULT;
527
528 vaddr = params.uaddr;
529 size = params.len;
530 vaddr_end = vaddr + size;
531
532 /* Lock the user memory. */
533 inpages = sev_pin_memory(kvm, uaddr: vaddr, ulen: size, n: &npages, write: 1);
534 if (IS_ERR(ptr: inpages))
535 return PTR_ERR(ptr: inpages);
536
537 /*
538 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
539 * place; the cache may contain the data that was written unencrypted.
540 */
541 sev_clflush_pages(pages: inpages, npages);
542
543 data.reserved = 0;
544 data.handle = sev->handle;
545
546 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
547 int offset, len;
548
549 /*
550 * If the user buffer is not page-aligned, calculate the offset
551 * within the page.
552 */
553 offset = vaddr & (PAGE_SIZE - 1);
554
555 /* Calculate the number of pages that can be encrypted in one go. */
556 pages = get_num_contig_pages(idx: i, inpages, npages);
557
558 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
559
560 data.len = len;
561 data.address = __sme_page_pa(inpages[i]) + offset;
562 ret = sev_issue_cmd(kvm, id: SEV_CMD_LAUNCH_UPDATE_DATA, data: &data, error: &argp->error);
563 if (ret)
564 goto e_unpin;
565
566 size -= len;
567 next_vaddr = vaddr + len;
568 }
569
570e_unpin:
571 /* content of memory is updated, mark pages dirty */
572 for (i = 0; i < npages; i++) {
573 set_page_dirty_lock(inpages[i]);
574 mark_page_accessed(inpages[i]);
575 }
576 /* unlock the user pages */
577 sev_unpin_memory(kvm, pages: inpages, npages);
578 return ret;
579}
580
581static int sev_es_sync_vmsa(struct vcpu_svm *svm)
582{
583 struct sev_es_save_area *save = svm->sev_es.vmsa;
584
585 /* Check some debug related fields before encrypting the VMSA */
586 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
587 return -EINVAL;
588
589 /*
590 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
591 * the traditional VMSA that is part of the VMCB. Copy the
592 * traditional VMSA as it has been built so far (in prep
593 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
594 */
595 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
596
597 /* Sync registgers */
598 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
599 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
600 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
601 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
602 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
603 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
604 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
605 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
606#ifdef CONFIG_X86_64
607 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
608 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
609 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
610 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
611 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
612 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
613 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
614 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
615#endif
616 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
617
618 /* Sync some non-GPR registers before encrypting */
619 save->xcr0 = svm->vcpu.arch.xcr0;
620 save->pkru = svm->vcpu.arch.pkru;
621 save->xss = svm->vcpu.arch.ia32_xss;
622 save->dr6 = svm->vcpu.arch.dr6;
623
624 if (sev_es_debug_swap_enabled) {
625 save->sev_features |= SVM_SEV_FEAT_DEBUG_SWAP;
626 pr_warn_once("Enabling DebugSwap with KVM_SEV_ES_INIT. "
627 "This will not work starting with Linux 6.10\n");
628 }
629
630 pr_debug("Virtual Machine Save Area (VMSA):\n");
631 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
632
633 return 0;
634}
635
636static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
637 int *error)
638{
639 struct sev_data_launch_update_vmsa vmsa;
640 struct vcpu_svm *svm = to_svm(vcpu);
641 int ret;
642
643 if (vcpu->guest_debug) {
644 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
645 return -EINVAL;
646 }
647
648 /* Perform some pre-encryption checks against the VMSA */
649 ret = sev_es_sync_vmsa(svm);
650 if (ret)
651 return ret;
652
653 /*
654 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
655 * the VMSA memory content (i.e it will write the same memory region
656 * with the guest's key), so invalidate it first.
657 */
658 clflush_cache_range(addr: svm->sev_es.vmsa, PAGE_SIZE);
659
660 vmsa.reserved = 0;
661 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
662 vmsa.address = __sme_pa(svm->sev_es.vmsa);
663 vmsa.len = PAGE_SIZE;
664 ret = sev_issue_cmd(kvm, id: SEV_CMD_LAUNCH_UPDATE_VMSA, data: &vmsa, error);
665 if (ret)
666 return ret;
667
668 vcpu->arch.guest_state_protected = true;
669 return 0;
670}
671
672static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
673{
674 struct kvm_vcpu *vcpu;
675 unsigned long i;
676 int ret;
677
678 if (!sev_es_guest(kvm))
679 return -ENOTTY;
680
681 kvm_for_each_vcpu(i, vcpu, kvm) {
682 ret = mutex_lock_killable(&vcpu->mutex);
683 if (ret)
684 return ret;
685
686 ret = __sev_launch_update_vmsa(kvm, vcpu, error: &argp->error);
687
688 mutex_unlock(lock: &vcpu->mutex);
689 if (ret)
690 return ret;
691 }
692
693 return 0;
694}
695
696static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
697{
698 void __user *measure = (void __user *)(uintptr_t)argp->data;
699 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
700 struct sev_data_launch_measure data;
701 struct kvm_sev_launch_measure params;
702 void __user *p = NULL;
703 void *blob = NULL;
704 int ret;
705
706 if (!sev_guest(kvm))
707 return -ENOTTY;
708
709 if (copy_from_user(to: &params, from: measure, n: sizeof(params)))
710 return -EFAULT;
711
712 memset(&data, 0, sizeof(data));
713
714 /* User wants to query the blob length */
715 if (!params.len)
716 goto cmd;
717
718 p = (void __user *)(uintptr_t)params.uaddr;
719 if (p) {
720 if (params.len > SEV_FW_BLOB_MAX_SIZE)
721 return -EINVAL;
722
723 blob = kzalloc(size: params.len, GFP_KERNEL_ACCOUNT);
724 if (!blob)
725 return -ENOMEM;
726
727 data.address = __psp_pa(blob);
728 data.len = params.len;
729 }
730
731cmd:
732 data.handle = sev->handle;
733 ret = sev_issue_cmd(kvm, id: SEV_CMD_LAUNCH_MEASURE, data: &data, error: &argp->error);
734
735 /*
736 * If we query the session length, FW responded with expected data.
737 */
738 if (!params.len)
739 goto done;
740
741 if (ret)
742 goto e_free_blob;
743
744 if (blob) {
745 if (copy_to_user(to: p, from: blob, n: params.len))
746 ret = -EFAULT;
747 }
748
749done:
750 params.len = data.len;
751 if (copy_to_user(to: measure, from: &params, n: sizeof(params)))
752 ret = -EFAULT;
753e_free_blob:
754 kfree(objp: blob);
755 return ret;
756}
757
758static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
759{
760 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
761 struct sev_data_launch_finish data;
762
763 if (!sev_guest(kvm))
764 return -ENOTTY;
765
766 data.handle = sev->handle;
767 return sev_issue_cmd(kvm, id: SEV_CMD_LAUNCH_FINISH, data: &data, error: &argp->error);
768}
769
770static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
771{
772 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
773 struct kvm_sev_guest_status params;
774 struct sev_data_guest_status data;
775 int ret;
776
777 if (!sev_guest(kvm))
778 return -ENOTTY;
779
780 memset(&data, 0, sizeof(data));
781
782 data.handle = sev->handle;
783 ret = sev_issue_cmd(kvm, id: SEV_CMD_GUEST_STATUS, data: &data, error: &argp->error);
784 if (ret)
785 return ret;
786
787 params.policy = data.policy;
788 params.state = data.state;
789 params.handle = data.handle;
790
791 if (copy_to_user(to: (void __user *)(uintptr_t)argp->data, from: &params, n: sizeof(params)))
792 ret = -EFAULT;
793
794 return ret;
795}
796
797static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
798 unsigned long dst, int size,
799 int *error, bool enc)
800{
801 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
802 struct sev_data_dbg data;
803
804 data.reserved = 0;
805 data.handle = sev->handle;
806 data.dst_addr = dst;
807 data.src_addr = src;
808 data.len = size;
809
810 return sev_issue_cmd(kvm,
811 id: enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
812 data: &data, error);
813}
814
815static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
816 unsigned long dst_paddr, int sz, int *err)
817{
818 int offset;
819
820 /*
821 * Its safe to read more than we are asked, caller should ensure that
822 * destination has enough space.
823 */
824 offset = src_paddr & 15;
825 src_paddr = round_down(src_paddr, 16);
826 sz = round_up(sz + offset, 16);
827
828 return __sev_issue_dbg_cmd(kvm, src: src_paddr, dst: dst_paddr, size: sz, error: err, enc: false);
829}
830
831static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
832 void __user *dst_uaddr,
833 unsigned long dst_paddr,
834 int size, int *err)
835{
836 struct page *tpage = NULL;
837 int ret, offset;
838
839 /* if inputs are not 16-byte then use intermediate buffer */
840 if (!IS_ALIGNED(dst_paddr, 16) ||
841 !IS_ALIGNED(paddr, 16) ||
842 !IS_ALIGNED(size, 16)) {
843 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
844 if (!tpage)
845 return -ENOMEM;
846
847 dst_paddr = __sme_page_pa(tpage);
848 }
849
850 ret = __sev_dbg_decrypt(kvm, src_paddr: paddr, dst_paddr, sz: size, err);
851 if (ret)
852 goto e_free;
853
854 if (tpage) {
855 offset = paddr & 15;
856 if (copy_to_user(to: dst_uaddr, page_address(tpage) + offset, n: size))
857 ret = -EFAULT;
858 }
859
860e_free:
861 if (tpage)
862 __free_page(tpage);
863
864 return ret;
865}
866
867static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
868 void __user *vaddr,
869 unsigned long dst_paddr,
870 void __user *dst_vaddr,
871 int size, int *error)
872{
873 struct page *src_tpage = NULL;
874 struct page *dst_tpage = NULL;
875 int ret, len = size;
876
877 /* If source buffer is not aligned then use an intermediate buffer */
878 if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
879 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
880 if (!src_tpage)
881 return -ENOMEM;
882
883 if (copy_from_user(page_address(src_tpage), from: vaddr, n: size)) {
884 __free_page(src_tpage);
885 return -EFAULT;
886 }
887
888 paddr = __sme_page_pa(src_tpage);
889 }
890
891 /*
892 * If destination buffer or length is not aligned then do read-modify-write:
893 * - decrypt destination in an intermediate buffer
894 * - copy the source buffer in an intermediate buffer
895 * - use the intermediate buffer as source buffer
896 */
897 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
898 int dst_offset;
899
900 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
901 if (!dst_tpage) {
902 ret = -ENOMEM;
903 goto e_free;
904 }
905
906 ret = __sev_dbg_decrypt(kvm, src_paddr: dst_paddr,
907 __sme_page_pa(dst_tpage), sz: size, err: error);
908 if (ret)
909 goto e_free;
910
911 /*
912 * If source is kernel buffer then use memcpy() otherwise
913 * copy_from_user().
914 */
915 dst_offset = dst_paddr & 15;
916
917 if (src_tpage)
918 memcpy(page_address(dst_tpage) + dst_offset,
919 page_address(src_tpage), size);
920 else {
921 if (copy_from_user(page_address(dst_tpage) + dst_offset,
922 from: vaddr, n: size)) {
923 ret = -EFAULT;
924 goto e_free;
925 }
926 }
927
928 paddr = __sme_page_pa(dst_tpage);
929 dst_paddr = round_down(dst_paddr, 16);
930 len = round_up(size, 16);
931 }
932
933 ret = __sev_issue_dbg_cmd(kvm, src: paddr, dst: dst_paddr, size: len, error, enc: true);
934
935e_free:
936 if (src_tpage)
937 __free_page(src_tpage);
938 if (dst_tpage)
939 __free_page(dst_tpage);
940 return ret;
941}
942
943static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
944{
945 unsigned long vaddr, vaddr_end, next_vaddr;
946 unsigned long dst_vaddr;
947 struct page **src_p, **dst_p;
948 struct kvm_sev_dbg debug;
949 unsigned long n;
950 unsigned int size;
951 int ret;
952
953 if (!sev_guest(kvm))
954 return -ENOTTY;
955
956 if (copy_from_user(to: &debug, from: (void __user *)(uintptr_t)argp->data, n: sizeof(debug)))
957 return -EFAULT;
958
959 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
960 return -EINVAL;
961 if (!debug.dst_uaddr)
962 return -EINVAL;
963
964 vaddr = debug.src_uaddr;
965 size = debug.len;
966 vaddr_end = vaddr + size;
967 dst_vaddr = debug.dst_uaddr;
968
969 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
970 int len, s_off, d_off;
971
972 /* lock userspace source and destination page */
973 src_p = sev_pin_memory(kvm, uaddr: vaddr & PAGE_MASK, PAGE_SIZE, n: &n, write: 0);
974 if (IS_ERR(ptr: src_p))
975 return PTR_ERR(ptr: src_p);
976
977 dst_p = sev_pin_memory(kvm, uaddr: dst_vaddr & PAGE_MASK, PAGE_SIZE, n: &n, write: 1);
978 if (IS_ERR(ptr: dst_p)) {
979 sev_unpin_memory(kvm, pages: src_p, npages: n);
980 return PTR_ERR(ptr: dst_p);
981 }
982
983 /*
984 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
985 * the pages; flush the destination too so that future accesses do not
986 * see stale data.
987 */
988 sev_clflush_pages(pages: src_p, npages: 1);
989 sev_clflush_pages(pages: dst_p, npages: 1);
990
991 /*
992 * Since user buffer may not be page aligned, calculate the
993 * offset within the page.
994 */
995 s_off = vaddr & ~PAGE_MASK;
996 d_off = dst_vaddr & ~PAGE_MASK;
997 len = min_t(size_t, (PAGE_SIZE - s_off), size);
998
999 if (dec)
1000 ret = __sev_dbg_decrypt_user(kvm,
1001 __sme_page_pa(src_p[0]) + s_off,
1002 dst_uaddr: (void __user *)dst_vaddr,
1003 __sme_page_pa(dst_p[0]) + d_off,
1004 size: len, err: &argp->error);
1005 else
1006 ret = __sev_dbg_encrypt_user(kvm,
1007 __sme_page_pa(src_p[0]) + s_off,
1008 vaddr: (void __user *)vaddr,
1009 __sme_page_pa(dst_p[0]) + d_off,
1010 dst_vaddr: (void __user *)dst_vaddr,
1011 size: len, error: &argp->error);
1012
1013 sev_unpin_memory(kvm, pages: src_p, npages: n);
1014 sev_unpin_memory(kvm, pages: dst_p, npages: n);
1015
1016 if (ret)
1017 goto err;
1018
1019 next_vaddr = vaddr + len;
1020 dst_vaddr = dst_vaddr + len;
1021 size -= len;
1022 }
1023err:
1024 return ret;
1025}
1026
1027static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1028{
1029 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1030 struct sev_data_launch_secret data;
1031 struct kvm_sev_launch_secret params;
1032 struct page **pages;
1033 void *blob, *hdr;
1034 unsigned long n, i;
1035 int ret, offset;
1036
1037 if (!sev_guest(kvm))
1038 return -ENOTTY;
1039
1040 if (copy_from_user(to: &params, from: (void __user *)(uintptr_t)argp->data, n: sizeof(params)))
1041 return -EFAULT;
1042
1043 pages = sev_pin_memory(kvm, uaddr: params.guest_uaddr, ulen: params.guest_len, n: &n, write: 1);
1044 if (IS_ERR(ptr: pages))
1045 return PTR_ERR(ptr: pages);
1046
1047 /*
1048 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1049 * place; the cache may contain the data that was written unencrypted.
1050 */
1051 sev_clflush_pages(pages, npages: n);
1052
1053 /*
1054 * The secret must be copied into contiguous memory region, lets verify
1055 * that userspace memory pages are contiguous before we issue command.
1056 */
1057 if (get_num_contig_pages(idx: 0, inpages: pages, npages: n) != n) {
1058 ret = -EINVAL;
1059 goto e_unpin_memory;
1060 }
1061
1062 memset(&data, 0, sizeof(data));
1063
1064 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1065 data.guest_address = __sme_page_pa(pages[0]) + offset;
1066 data.guest_len = params.guest_len;
1067
1068 blob = psp_copy_user_blob(uaddr: params.trans_uaddr, len: params.trans_len);
1069 if (IS_ERR(ptr: blob)) {
1070 ret = PTR_ERR(ptr: blob);
1071 goto e_unpin_memory;
1072 }
1073
1074 data.trans_address = __psp_pa(blob);
1075 data.trans_len = params.trans_len;
1076
1077 hdr = psp_copy_user_blob(uaddr: params.hdr_uaddr, len: params.hdr_len);
1078 if (IS_ERR(ptr: hdr)) {
1079 ret = PTR_ERR(ptr: hdr);
1080 goto e_free_blob;
1081 }
1082 data.hdr_address = __psp_pa(hdr);
1083 data.hdr_len = params.hdr_len;
1084
1085 data.handle = sev->handle;
1086 ret = sev_issue_cmd(kvm, id: SEV_CMD_LAUNCH_UPDATE_SECRET, data: &data, error: &argp->error);
1087
1088 kfree(objp: hdr);
1089
1090e_free_blob:
1091 kfree(objp: blob);
1092e_unpin_memory:
1093 /* content of memory is updated, mark pages dirty */
1094 for (i = 0; i < n; i++) {
1095 set_page_dirty_lock(pages[i]);
1096 mark_page_accessed(pages[i]);
1097 }
1098 sev_unpin_memory(kvm, pages, npages: n);
1099 return ret;
1100}
1101
1102static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1103{
1104 void __user *report = (void __user *)(uintptr_t)argp->data;
1105 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1106 struct sev_data_attestation_report data;
1107 struct kvm_sev_attestation_report params;
1108 void __user *p;
1109 void *blob = NULL;
1110 int ret;
1111
1112 if (!sev_guest(kvm))
1113 return -ENOTTY;
1114
1115 if (copy_from_user(to: &params, from: (void __user *)(uintptr_t)argp->data, n: sizeof(params)))
1116 return -EFAULT;
1117
1118 memset(&data, 0, sizeof(data));
1119
1120 /* User wants to query the blob length */
1121 if (!params.len)
1122 goto cmd;
1123
1124 p = (void __user *)(uintptr_t)params.uaddr;
1125 if (p) {
1126 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1127 return -EINVAL;
1128
1129 blob = kzalloc(size: params.len, GFP_KERNEL_ACCOUNT);
1130 if (!blob)
1131 return -ENOMEM;
1132
1133 data.address = __psp_pa(blob);
1134 data.len = params.len;
1135 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1136 }
1137cmd:
1138 data.handle = sev->handle;
1139 ret = sev_issue_cmd(kvm, id: SEV_CMD_ATTESTATION_REPORT, data: &data, error: &argp->error);
1140 /*
1141 * If we query the session length, FW responded with expected data.
1142 */
1143 if (!params.len)
1144 goto done;
1145
1146 if (ret)
1147 goto e_free_blob;
1148
1149 if (blob) {
1150 if (copy_to_user(to: p, from: blob, n: params.len))
1151 ret = -EFAULT;
1152 }
1153
1154done:
1155 params.len = data.len;
1156 if (copy_to_user(to: report, from: &params, n: sizeof(params)))
1157 ret = -EFAULT;
1158e_free_blob:
1159 kfree(objp: blob);
1160 return ret;
1161}
1162
1163/* Userspace wants to query session length. */
1164static int
1165__sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1166 struct kvm_sev_send_start *params)
1167{
1168 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1169 struct sev_data_send_start data;
1170 int ret;
1171
1172 memset(&data, 0, sizeof(data));
1173 data.handle = sev->handle;
1174 ret = sev_issue_cmd(kvm, id: SEV_CMD_SEND_START, data: &data, error: &argp->error);
1175
1176 params->session_len = data.session_len;
1177 if (copy_to_user(to: (void __user *)(uintptr_t)argp->data, from: params,
1178 n: sizeof(struct kvm_sev_send_start)))
1179 ret = -EFAULT;
1180
1181 return ret;
1182}
1183
1184static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1185{
1186 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1187 struct sev_data_send_start data;
1188 struct kvm_sev_send_start params;
1189 void *amd_certs, *session_data;
1190 void *pdh_cert, *plat_certs;
1191 int ret;
1192
1193 if (!sev_guest(kvm))
1194 return -ENOTTY;
1195
1196 if (copy_from_user(to: &params, from: (void __user *)(uintptr_t)argp->data,
1197 n: sizeof(struct kvm_sev_send_start)))
1198 return -EFAULT;
1199
1200 /* if session_len is zero, userspace wants to query the session length */
1201 if (!params.session_len)
1202 return __sev_send_start_query_session_length(kvm, argp,
1203 params: &params);
1204
1205 /* some sanity checks */
1206 if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1207 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1208 return -EINVAL;
1209
1210 /* allocate the memory to hold the session data blob */
1211 session_data = kzalloc(size: params.session_len, GFP_KERNEL_ACCOUNT);
1212 if (!session_data)
1213 return -ENOMEM;
1214
1215 /* copy the certificate blobs from userspace */
1216 pdh_cert = psp_copy_user_blob(uaddr: params.pdh_cert_uaddr,
1217 len: params.pdh_cert_len);
1218 if (IS_ERR(ptr: pdh_cert)) {
1219 ret = PTR_ERR(ptr: pdh_cert);
1220 goto e_free_session;
1221 }
1222
1223 plat_certs = psp_copy_user_blob(uaddr: params.plat_certs_uaddr,
1224 len: params.plat_certs_len);
1225 if (IS_ERR(ptr: plat_certs)) {
1226 ret = PTR_ERR(ptr: plat_certs);
1227 goto e_free_pdh;
1228 }
1229
1230 amd_certs = psp_copy_user_blob(uaddr: params.amd_certs_uaddr,
1231 len: params.amd_certs_len);
1232 if (IS_ERR(ptr: amd_certs)) {
1233 ret = PTR_ERR(ptr: amd_certs);
1234 goto e_free_plat_cert;
1235 }
1236
1237 /* populate the FW SEND_START field with system physical address */
1238 memset(&data, 0, sizeof(data));
1239 data.pdh_cert_address = __psp_pa(pdh_cert);
1240 data.pdh_cert_len = params.pdh_cert_len;
1241 data.plat_certs_address = __psp_pa(plat_certs);
1242 data.plat_certs_len = params.plat_certs_len;
1243 data.amd_certs_address = __psp_pa(amd_certs);
1244 data.amd_certs_len = params.amd_certs_len;
1245 data.session_address = __psp_pa(session_data);
1246 data.session_len = params.session_len;
1247 data.handle = sev->handle;
1248
1249 ret = sev_issue_cmd(kvm, id: SEV_CMD_SEND_START, data: &data, error: &argp->error);
1250
1251 if (!ret && copy_to_user(to: (void __user *)(uintptr_t)params.session_uaddr,
1252 from: session_data, n: params.session_len)) {
1253 ret = -EFAULT;
1254 goto e_free_amd_cert;
1255 }
1256
1257 params.policy = data.policy;
1258 params.session_len = data.session_len;
1259 if (copy_to_user(to: (void __user *)(uintptr_t)argp->data, from: &params,
1260 n: sizeof(struct kvm_sev_send_start)))
1261 ret = -EFAULT;
1262
1263e_free_amd_cert:
1264 kfree(objp: amd_certs);
1265e_free_plat_cert:
1266 kfree(objp: plat_certs);
1267e_free_pdh:
1268 kfree(objp: pdh_cert);
1269e_free_session:
1270 kfree(objp: session_data);
1271 return ret;
1272}
1273
1274/* Userspace wants to query either header or trans length. */
1275static int
1276__sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1277 struct kvm_sev_send_update_data *params)
1278{
1279 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1280 struct sev_data_send_update_data data;
1281 int ret;
1282
1283 memset(&data, 0, sizeof(data));
1284 data.handle = sev->handle;
1285 ret = sev_issue_cmd(kvm, id: SEV_CMD_SEND_UPDATE_DATA, data: &data, error: &argp->error);
1286
1287 params->hdr_len = data.hdr_len;
1288 params->trans_len = data.trans_len;
1289
1290 if (copy_to_user(to: (void __user *)(uintptr_t)argp->data, from: params,
1291 n: sizeof(struct kvm_sev_send_update_data)))
1292 ret = -EFAULT;
1293
1294 return ret;
1295}
1296
1297static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1298{
1299 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1300 struct sev_data_send_update_data data;
1301 struct kvm_sev_send_update_data params;
1302 void *hdr, *trans_data;
1303 struct page **guest_page;
1304 unsigned long n;
1305 int ret, offset;
1306
1307 if (!sev_guest(kvm))
1308 return -ENOTTY;
1309
1310 if (copy_from_user(to: &params, from: (void __user *)(uintptr_t)argp->data,
1311 n: sizeof(struct kvm_sev_send_update_data)))
1312 return -EFAULT;
1313
1314 /* userspace wants to query either header or trans length */
1315 if (!params.trans_len || !params.hdr_len)
1316 return __sev_send_update_data_query_lengths(kvm, argp, params: &params);
1317
1318 if (!params.trans_uaddr || !params.guest_uaddr ||
1319 !params.guest_len || !params.hdr_uaddr)
1320 return -EINVAL;
1321
1322 /* Check if we are crossing the page boundary */
1323 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1324 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1325 return -EINVAL;
1326
1327 /* Pin guest memory */
1328 guest_page = sev_pin_memory(kvm, uaddr: params.guest_uaddr & PAGE_MASK,
1329 PAGE_SIZE, n: &n, write: 0);
1330 if (IS_ERR(ptr: guest_page))
1331 return PTR_ERR(ptr: guest_page);
1332
1333 /* allocate memory for header and transport buffer */
1334 ret = -ENOMEM;
1335 hdr = kzalloc(size: params.hdr_len, GFP_KERNEL_ACCOUNT);
1336 if (!hdr)
1337 goto e_unpin;
1338
1339 trans_data = kzalloc(size: params.trans_len, GFP_KERNEL_ACCOUNT);
1340 if (!trans_data)
1341 goto e_free_hdr;
1342
1343 memset(&data, 0, sizeof(data));
1344 data.hdr_address = __psp_pa(hdr);
1345 data.hdr_len = params.hdr_len;
1346 data.trans_address = __psp_pa(trans_data);
1347 data.trans_len = params.trans_len;
1348
1349 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1350 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1351 data.guest_address |= sev_me_mask;
1352 data.guest_len = params.guest_len;
1353 data.handle = sev->handle;
1354
1355 ret = sev_issue_cmd(kvm, id: SEV_CMD_SEND_UPDATE_DATA, data: &data, error: &argp->error);
1356
1357 if (ret)
1358 goto e_free_trans_data;
1359
1360 /* copy transport buffer to user space */
1361 if (copy_to_user(to: (void __user *)(uintptr_t)params.trans_uaddr,
1362 from: trans_data, n: params.trans_len)) {
1363 ret = -EFAULT;
1364 goto e_free_trans_data;
1365 }
1366
1367 /* Copy packet header to userspace. */
1368 if (copy_to_user(to: (void __user *)(uintptr_t)params.hdr_uaddr, from: hdr,
1369 n: params.hdr_len))
1370 ret = -EFAULT;
1371
1372e_free_trans_data:
1373 kfree(objp: trans_data);
1374e_free_hdr:
1375 kfree(objp: hdr);
1376e_unpin:
1377 sev_unpin_memory(kvm, pages: guest_page, npages: n);
1378
1379 return ret;
1380}
1381
1382static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1383{
1384 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1385 struct sev_data_send_finish data;
1386
1387 if (!sev_guest(kvm))
1388 return -ENOTTY;
1389
1390 data.handle = sev->handle;
1391 return sev_issue_cmd(kvm, id: SEV_CMD_SEND_FINISH, data: &data, error: &argp->error);
1392}
1393
1394static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1395{
1396 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1397 struct sev_data_send_cancel data;
1398
1399 if (!sev_guest(kvm))
1400 return -ENOTTY;
1401
1402 data.handle = sev->handle;
1403 return sev_issue_cmd(kvm, id: SEV_CMD_SEND_CANCEL, data: &data, error: &argp->error);
1404}
1405
1406static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1407{
1408 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1409 struct sev_data_receive_start start;
1410 struct kvm_sev_receive_start params;
1411 int *error = &argp->error;
1412 void *session_data;
1413 void *pdh_data;
1414 int ret;
1415
1416 if (!sev_guest(kvm))
1417 return -ENOTTY;
1418
1419 /* Get parameter from the userspace */
1420 if (copy_from_user(to: &params, from: (void __user *)(uintptr_t)argp->data,
1421 n: sizeof(struct kvm_sev_receive_start)))
1422 return -EFAULT;
1423
1424 /* some sanity checks */
1425 if (!params.pdh_uaddr || !params.pdh_len ||
1426 !params.session_uaddr || !params.session_len)
1427 return -EINVAL;
1428
1429 pdh_data = psp_copy_user_blob(uaddr: params.pdh_uaddr, len: params.pdh_len);
1430 if (IS_ERR(ptr: pdh_data))
1431 return PTR_ERR(ptr: pdh_data);
1432
1433 session_data = psp_copy_user_blob(uaddr: params.session_uaddr,
1434 len: params.session_len);
1435 if (IS_ERR(ptr: session_data)) {
1436 ret = PTR_ERR(ptr: session_data);
1437 goto e_free_pdh;
1438 }
1439
1440 memset(&start, 0, sizeof(start));
1441 start.handle = params.handle;
1442 start.policy = params.policy;
1443 start.pdh_cert_address = __psp_pa(pdh_data);
1444 start.pdh_cert_len = params.pdh_len;
1445 start.session_address = __psp_pa(session_data);
1446 start.session_len = params.session_len;
1447
1448 /* create memory encryption context */
1449 ret = __sev_issue_cmd(fd: argp->sev_fd, id: SEV_CMD_RECEIVE_START, data: &start,
1450 error);
1451 if (ret)
1452 goto e_free_session;
1453
1454 /* Bind ASID to this guest */
1455 ret = sev_bind_asid(kvm, handle: start.handle, error);
1456 if (ret) {
1457 sev_decommission(handle: start.handle);
1458 goto e_free_session;
1459 }
1460
1461 params.handle = start.handle;
1462 if (copy_to_user(to: (void __user *)(uintptr_t)argp->data,
1463 from: &params, n: sizeof(struct kvm_sev_receive_start))) {
1464 ret = -EFAULT;
1465 sev_unbind_asid(kvm, handle: start.handle);
1466 goto e_free_session;
1467 }
1468
1469 sev->handle = start.handle;
1470 sev->fd = argp->sev_fd;
1471
1472e_free_session:
1473 kfree(objp: session_data);
1474e_free_pdh:
1475 kfree(objp: pdh_data);
1476
1477 return ret;
1478}
1479
1480static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1481{
1482 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1483 struct kvm_sev_receive_update_data params;
1484 struct sev_data_receive_update_data data;
1485 void *hdr = NULL, *trans = NULL;
1486 struct page **guest_page;
1487 unsigned long n;
1488 int ret, offset;
1489
1490 if (!sev_guest(kvm))
1491 return -EINVAL;
1492
1493 if (copy_from_user(to: &params, from: (void __user *)(uintptr_t)argp->data,
1494 n: sizeof(struct kvm_sev_receive_update_data)))
1495 return -EFAULT;
1496
1497 if (!params.hdr_uaddr || !params.hdr_len ||
1498 !params.guest_uaddr || !params.guest_len ||
1499 !params.trans_uaddr || !params.trans_len)
1500 return -EINVAL;
1501
1502 /* Check if we are crossing the page boundary */
1503 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1504 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1505 return -EINVAL;
1506
1507 hdr = psp_copy_user_blob(uaddr: params.hdr_uaddr, len: params.hdr_len);
1508 if (IS_ERR(ptr: hdr))
1509 return PTR_ERR(ptr: hdr);
1510
1511 trans = psp_copy_user_blob(uaddr: params.trans_uaddr, len: params.trans_len);
1512 if (IS_ERR(ptr: trans)) {
1513 ret = PTR_ERR(ptr: trans);
1514 goto e_free_hdr;
1515 }
1516
1517 memset(&data, 0, sizeof(data));
1518 data.hdr_address = __psp_pa(hdr);
1519 data.hdr_len = params.hdr_len;
1520 data.trans_address = __psp_pa(trans);
1521 data.trans_len = params.trans_len;
1522
1523 /* Pin guest memory */
1524 guest_page = sev_pin_memory(kvm, uaddr: params.guest_uaddr & PAGE_MASK,
1525 PAGE_SIZE, n: &n, write: 1);
1526 if (IS_ERR(ptr: guest_page)) {
1527 ret = PTR_ERR(ptr: guest_page);
1528 goto e_free_trans;
1529 }
1530
1531 /*
1532 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1533 * encrypts the written data with the guest's key, and the cache may
1534 * contain dirty, unencrypted data.
1535 */
1536 sev_clflush_pages(pages: guest_page, npages: n);
1537
1538 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1539 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1540 data.guest_address |= sev_me_mask;
1541 data.guest_len = params.guest_len;
1542 data.handle = sev->handle;
1543
1544 ret = sev_issue_cmd(kvm, id: SEV_CMD_RECEIVE_UPDATE_DATA, data: &data,
1545 error: &argp->error);
1546
1547 sev_unpin_memory(kvm, pages: guest_page, npages: n);
1548
1549e_free_trans:
1550 kfree(objp: trans);
1551e_free_hdr:
1552 kfree(objp: hdr);
1553
1554 return ret;
1555}
1556
1557static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1558{
1559 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1560 struct sev_data_receive_finish data;
1561
1562 if (!sev_guest(kvm))
1563 return -ENOTTY;
1564
1565 data.handle = sev->handle;
1566 return sev_issue_cmd(kvm, id: SEV_CMD_RECEIVE_FINISH, data: &data, error: &argp->error);
1567}
1568
1569static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1570{
1571 /*
1572 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1573 * active mirror VMs. Also allow the debugging and status commands.
1574 */
1575 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1576 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1577 cmd_id == KVM_SEV_DBG_ENCRYPT)
1578 return true;
1579
1580 return false;
1581}
1582
1583static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1584{
1585 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm: dst_kvm)->sev_info;
1586 struct kvm_sev_info *src_sev = &to_kvm_svm(kvm: src_kvm)->sev_info;
1587 int r = -EBUSY;
1588
1589 if (dst_kvm == src_kvm)
1590 return -EINVAL;
1591
1592 /*
1593 * Bail if these VMs are already involved in a migration to avoid
1594 * deadlock between two VMs trying to migrate to/from each other.
1595 */
1596 if (atomic_cmpxchg_acquire(v: &dst_sev->migration_in_progress, old: 0, new: 1))
1597 return -EBUSY;
1598
1599 if (atomic_cmpxchg_acquire(v: &src_sev->migration_in_progress, old: 0, new: 1))
1600 goto release_dst;
1601
1602 r = -EINTR;
1603 if (mutex_lock_killable(&dst_kvm->lock))
1604 goto release_src;
1605 if (mutex_lock_killable_nested(lock: &src_kvm->lock, SINGLE_DEPTH_NESTING))
1606 goto unlock_dst;
1607 return 0;
1608
1609unlock_dst:
1610 mutex_unlock(lock: &dst_kvm->lock);
1611release_src:
1612 atomic_set_release(v: &src_sev->migration_in_progress, i: 0);
1613release_dst:
1614 atomic_set_release(v: &dst_sev->migration_in_progress, i: 0);
1615 return r;
1616}
1617
1618static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1619{
1620 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm: dst_kvm)->sev_info;
1621 struct kvm_sev_info *src_sev = &to_kvm_svm(kvm: src_kvm)->sev_info;
1622
1623 mutex_unlock(lock: &dst_kvm->lock);
1624 mutex_unlock(lock: &src_kvm->lock);
1625 atomic_set_release(v: &dst_sev->migration_in_progress, i: 0);
1626 atomic_set_release(v: &src_sev->migration_in_progress, i: 0);
1627}
1628
1629/* vCPU mutex subclasses. */
1630enum sev_migration_role {
1631 SEV_MIGRATION_SOURCE = 0,
1632 SEV_MIGRATION_TARGET,
1633 SEV_NR_MIGRATION_ROLES,
1634};
1635
1636static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1637 enum sev_migration_role role)
1638{
1639 struct kvm_vcpu *vcpu;
1640 unsigned long i, j;
1641
1642 kvm_for_each_vcpu(i, vcpu, kvm) {
1643 if (mutex_lock_killable_nested(lock: &vcpu->mutex, subclass: role))
1644 goto out_unlock;
1645
1646#ifdef CONFIG_PROVE_LOCKING
1647 if (!i)
1648 /*
1649 * Reset the role to one that avoids colliding with
1650 * the role used for the first vcpu mutex.
1651 */
1652 role = SEV_NR_MIGRATION_ROLES;
1653 else
1654 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1655#endif
1656 }
1657
1658 return 0;
1659
1660out_unlock:
1661
1662 kvm_for_each_vcpu(j, vcpu, kvm) {
1663 if (i == j)
1664 break;
1665
1666#ifdef CONFIG_PROVE_LOCKING
1667 if (j)
1668 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1669#endif
1670
1671 mutex_unlock(lock: &vcpu->mutex);
1672 }
1673 return -EINTR;
1674}
1675
1676static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1677{
1678 struct kvm_vcpu *vcpu;
1679 unsigned long i;
1680 bool first = true;
1681
1682 kvm_for_each_vcpu(i, vcpu, kvm) {
1683 if (first)
1684 first = false;
1685 else
1686 mutex_acquire(&vcpu->mutex.dep_map,
1687 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1688
1689 mutex_unlock(lock: &vcpu->mutex);
1690 }
1691}
1692
1693static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1694{
1695 struct kvm_sev_info *dst = &to_kvm_svm(kvm: dst_kvm)->sev_info;
1696 struct kvm_sev_info *src = &to_kvm_svm(kvm: src_kvm)->sev_info;
1697 struct kvm_vcpu *dst_vcpu, *src_vcpu;
1698 struct vcpu_svm *dst_svm, *src_svm;
1699 struct kvm_sev_info *mirror;
1700 unsigned long i;
1701
1702 dst->active = true;
1703 dst->asid = src->asid;
1704 dst->handle = src->handle;
1705 dst->pages_locked = src->pages_locked;
1706 dst->enc_context_owner = src->enc_context_owner;
1707 dst->es_active = src->es_active;
1708
1709 src->asid = 0;
1710 src->active = false;
1711 src->handle = 0;
1712 src->pages_locked = 0;
1713 src->enc_context_owner = NULL;
1714 src->es_active = false;
1715
1716 list_cut_before(list: &dst->regions_list, head: &src->regions_list, entry: &src->regions_list);
1717
1718 /*
1719 * If this VM has mirrors, "transfer" each mirror's refcount of the
1720 * source to the destination (this KVM). The caller holds a reference
1721 * to the source, so there's no danger of use-after-free.
1722 */
1723 list_cut_before(list: &dst->mirror_vms, head: &src->mirror_vms, entry: &src->mirror_vms);
1724 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1725 kvm_get_kvm(kvm: dst_kvm);
1726 kvm_put_kvm(kvm: src_kvm);
1727 mirror->enc_context_owner = dst_kvm;
1728 }
1729
1730 /*
1731 * If this VM is a mirror, remove the old mirror from the owners list
1732 * and add the new mirror to the list.
1733 */
1734 if (is_mirroring_enc_context(kvm: dst_kvm)) {
1735 struct kvm_sev_info *owner_sev_info =
1736 &to_kvm_svm(kvm: dst->enc_context_owner)->sev_info;
1737
1738 list_del(entry: &src->mirror_entry);
1739 list_add_tail(new: &dst->mirror_entry, head: &owner_sev_info->mirror_vms);
1740 }
1741
1742 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1743 dst_svm = to_svm(vcpu: dst_vcpu);
1744
1745 sev_init_vmcb(svm: dst_svm);
1746
1747 if (!dst->es_active)
1748 continue;
1749
1750 /*
1751 * Note, the source is not required to have the same number of
1752 * vCPUs as the destination when migrating a vanilla SEV VM.
1753 */
1754 src_vcpu = kvm_get_vcpu(kvm: src_kvm, i);
1755 src_svm = to_svm(vcpu: src_vcpu);
1756
1757 /*
1758 * Transfer VMSA and GHCB state to the destination. Nullify and
1759 * clear source fields as appropriate, the state now belongs to
1760 * the destination.
1761 */
1762 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1763 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1764 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1765 dst_vcpu->arch.guest_state_protected = true;
1766
1767 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1768 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1769 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1770 src_vcpu->arch.guest_state_protected = false;
1771 }
1772}
1773
1774static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1775{
1776 struct kvm_vcpu *src_vcpu;
1777 unsigned long i;
1778
1779 if (!sev_es_guest(kvm: src))
1780 return 0;
1781
1782 if (atomic_read(v: &src->online_vcpus) != atomic_read(v: &dst->online_vcpus))
1783 return -EINVAL;
1784
1785 kvm_for_each_vcpu(i, src_vcpu, src) {
1786 if (!src_vcpu->arch.guest_state_protected)
1787 return -EINVAL;
1788 }
1789
1790 return 0;
1791}
1792
1793int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1794{
1795 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1796 struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1797 struct fd f = fdget(fd: source_fd);
1798 struct kvm *source_kvm;
1799 bool charged = false;
1800 int ret;
1801
1802 if (!f.file)
1803 return -EBADF;
1804
1805 if (!file_is_kvm(file: f.file)) {
1806 ret = -EBADF;
1807 goto out_fput;
1808 }
1809
1810 source_kvm = f.file->private_data;
1811 ret = sev_lock_two_vms(dst_kvm: kvm, src_kvm: source_kvm);
1812 if (ret)
1813 goto out_fput;
1814
1815 if (sev_guest(kvm) || !sev_guest(kvm: source_kvm)) {
1816 ret = -EINVAL;
1817 goto out_unlock;
1818 }
1819
1820 src_sev = &to_kvm_svm(kvm: source_kvm)->sev_info;
1821
1822 dst_sev->misc_cg = get_current_misc_cg();
1823 cg_cleanup_sev = dst_sev;
1824 if (dst_sev->misc_cg != src_sev->misc_cg) {
1825 ret = sev_misc_cg_try_charge(sev: dst_sev);
1826 if (ret)
1827 goto out_dst_cgroup;
1828 charged = true;
1829 }
1830
1831 ret = sev_lock_vcpus_for_migration(kvm, role: SEV_MIGRATION_SOURCE);
1832 if (ret)
1833 goto out_dst_cgroup;
1834 ret = sev_lock_vcpus_for_migration(kvm: source_kvm, role: SEV_MIGRATION_TARGET);
1835 if (ret)
1836 goto out_dst_vcpu;
1837
1838 ret = sev_check_source_vcpus(dst: kvm, src: source_kvm);
1839 if (ret)
1840 goto out_source_vcpu;
1841
1842 sev_migrate_from(dst_kvm: kvm, src_kvm: source_kvm);
1843 kvm_vm_dead(kvm: source_kvm);
1844 cg_cleanup_sev = src_sev;
1845 ret = 0;
1846
1847out_source_vcpu:
1848 sev_unlock_vcpus_for_migration(kvm: source_kvm);
1849out_dst_vcpu:
1850 sev_unlock_vcpus_for_migration(kvm);
1851out_dst_cgroup:
1852 /* Operates on the source on success, on the destination on failure. */
1853 if (charged)
1854 sev_misc_cg_uncharge(sev: cg_cleanup_sev);
1855 put_misc_cg(cg: cg_cleanup_sev->misc_cg);
1856 cg_cleanup_sev->misc_cg = NULL;
1857out_unlock:
1858 sev_unlock_two_vms(dst_kvm: kvm, src_kvm: source_kvm);
1859out_fput:
1860 fdput(fd: f);
1861 return ret;
1862}
1863
1864int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1865{
1866 struct kvm_sev_cmd sev_cmd;
1867 int r;
1868
1869 if (!sev_enabled)
1870 return -ENOTTY;
1871
1872 if (!argp)
1873 return 0;
1874
1875 if (copy_from_user(to: &sev_cmd, from: argp, n: sizeof(struct kvm_sev_cmd)))
1876 return -EFAULT;
1877
1878 mutex_lock(&kvm->lock);
1879
1880 /* Only the enc_context_owner handles some memory enc operations. */
1881 if (is_mirroring_enc_context(kvm) &&
1882 !is_cmd_allowed_from_mirror(cmd_id: sev_cmd.id)) {
1883 r = -EINVAL;
1884 goto out;
1885 }
1886
1887 switch (sev_cmd.id) {
1888 case KVM_SEV_ES_INIT:
1889 if (!sev_es_enabled) {
1890 r = -ENOTTY;
1891 goto out;
1892 }
1893 fallthrough;
1894 case KVM_SEV_INIT:
1895 r = sev_guest_init(kvm, argp: &sev_cmd);
1896 break;
1897 case KVM_SEV_LAUNCH_START:
1898 r = sev_launch_start(kvm, argp: &sev_cmd);
1899 break;
1900 case KVM_SEV_LAUNCH_UPDATE_DATA:
1901 r = sev_launch_update_data(kvm, argp: &sev_cmd);
1902 break;
1903 case KVM_SEV_LAUNCH_UPDATE_VMSA:
1904 r = sev_launch_update_vmsa(kvm, argp: &sev_cmd);
1905 break;
1906 case KVM_SEV_LAUNCH_MEASURE:
1907 r = sev_launch_measure(kvm, argp: &sev_cmd);
1908 break;
1909 case KVM_SEV_LAUNCH_FINISH:
1910 r = sev_launch_finish(kvm, argp: &sev_cmd);
1911 break;
1912 case KVM_SEV_GUEST_STATUS:
1913 r = sev_guest_status(kvm, argp: &sev_cmd);
1914 break;
1915 case KVM_SEV_DBG_DECRYPT:
1916 r = sev_dbg_crypt(kvm, argp: &sev_cmd, dec: true);
1917 break;
1918 case KVM_SEV_DBG_ENCRYPT:
1919 r = sev_dbg_crypt(kvm, argp: &sev_cmd, dec: false);
1920 break;
1921 case KVM_SEV_LAUNCH_SECRET:
1922 r = sev_launch_secret(kvm, argp: &sev_cmd);
1923 break;
1924 case KVM_SEV_GET_ATTESTATION_REPORT:
1925 r = sev_get_attestation_report(kvm, argp: &sev_cmd);
1926 break;
1927 case KVM_SEV_SEND_START:
1928 r = sev_send_start(kvm, argp: &sev_cmd);
1929 break;
1930 case KVM_SEV_SEND_UPDATE_DATA:
1931 r = sev_send_update_data(kvm, argp: &sev_cmd);
1932 break;
1933 case KVM_SEV_SEND_FINISH:
1934 r = sev_send_finish(kvm, argp: &sev_cmd);
1935 break;
1936 case KVM_SEV_SEND_CANCEL:
1937 r = sev_send_cancel(kvm, argp: &sev_cmd);
1938 break;
1939 case KVM_SEV_RECEIVE_START:
1940 r = sev_receive_start(kvm, argp: &sev_cmd);
1941 break;
1942 case KVM_SEV_RECEIVE_UPDATE_DATA:
1943 r = sev_receive_update_data(kvm, argp: &sev_cmd);
1944 break;
1945 case KVM_SEV_RECEIVE_FINISH:
1946 r = sev_receive_finish(kvm, argp: &sev_cmd);
1947 break;
1948 default:
1949 r = -EINVAL;
1950 goto out;
1951 }
1952
1953 if (copy_to_user(to: argp, from: &sev_cmd, n: sizeof(struct kvm_sev_cmd)))
1954 r = -EFAULT;
1955
1956out:
1957 mutex_unlock(lock: &kvm->lock);
1958 return r;
1959}
1960
1961int sev_mem_enc_register_region(struct kvm *kvm,
1962 struct kvm_enc_region *range)
1963{
1964 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1965 struct enc_region *region;
1966 int ret = 0;
1967
1968 if (!sev_guest(kvm))
1969 return -ENOTTY;
1970
1971 /* If kvm is mirroring encryption context it isn't responsible for it */
1972 if (is_mirroring_enc_context(kvm))
1973 return -EINVAL;
1974
1975 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1976 return -EINVAL;
1977
1978 region = kzalloc(size: sizeof(*region), GFP_KERNEL_ACCOUNT);
1979 if (!region)
1980 return -ENOMEM;
1981
1982 mutex_lock(&kvm->lock);
1983 region->pages = sev_pin_memory(kvm, uaddr: range->addr, ulen: range->size, n: &region->npages, write: 1);
1984 if (IS_ERR(ptr: region->pages)) {
1985 ret = PTR_ERR(ptr: region->pages);
1986 mutex_unlock(lock: &kvm->lock);
1987 goto e_free;
1988 }
1989
1990 /*
1991 * The guest may change the memory encryption attribute from C=0 -> C=1
1992 * or vice versa for this memory range. Lets make sure caches are
1993 * flushed to ensure that guest data gets written into memory with
1994 * correct C-bit. Note, this must be done before dropping kvm->lock,
1995 * as region and its array of pages can be freed by a different task
1996 * once kvm->lock is released.
1997 */
1998 sev_clflush_pages(pages: region->pages, npages: region->npages);
1999
2000 region->uaddr = range->addr;
2001 region->size = range->size;
2002
2003 list_add_tail(new: &region->list, head: &sev->regions_list);
2004 mutex_unlock(lock: &kvm->lock);
2005
2006 return ret;
2007
2008e_free:
2009 kfree(objp: region);
2010 return ret;
2011}
2012
2013static struct enc_region *
2014find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2015{
2016 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2017 struct list_head *head = &sev->regions_list;
2018 struct enc_region *i;
2019
2020 list_for_each_entry(i, head, list) {
2021 if (i->uaddr == range->addr &&
2022 i->size == range->size)
2023 return i;
2024 }
2025
2026 return NULL;
2027}
2028
2029static void __unregister_enc_region_locked(struct kvm *kvm,
2030 struct enc_region *region)
2031{
2032 sev_unpin_memory(kvm, pages: region->pages, npages: region->npages);
2033 list_del(entry: &region->list);
2034 kfree(objp: region);
2035}
2036
2037int sev_mem_enc_unregister_region(struct kvm *kvm,
2038 struct kvm_enc_region *range)
2039{
2040 struct enc_region *region;
2041 int ret;
2042
2043 /* If kvm is mirroring encryption context it isn't responsible for it */
2044 if (is_mirroring_enc_context(kvm))
2045 return -EINVAL;
2046
2047 mutex_lock(&kvm->lock);
2048
2049 if (!sev_guest(kvm)) {
2050 ret = -ENOTTY;
2051 goto failed;
2052 }
2053
2054 region = find_enc_region(kvm, range);
2055 if (!region) {
2056 ret = -EINVAL;
2057 goto failed;
2058 }
2059
2060 /*
2061 * Ensure that all guest tagged cache entries are flushed before
2062 * releasing the pages back to the system for use. CLFLUSH will
2063 * not do this, so issue a WBINVD.
2064 */
2065 wbinvd_on_all_cpus();
2066
2067 __unregister_enc_region_locked(kvm, region);
2068
2069 mutex_unlock(lock: &kvm->lock);
2070 return 0;
2071
2072failed:
2073 mutex_unlock(lock: &kvm->lock);
2074 return ret;
2075}
2076
2077int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2078{
2079 struct fd f = fdget(fd: source_fd);
2080 struct kvm *source_kvm;
2081 struct kvm_sev_info *source_sev, *mirror_sev;
2082 int ret;
2083
2084 if (!f.file)
2085 return -EBADF;
2086
2087 if (!file_is_kvm(file: f.file)) {
2088 ret = -EBADF;
2089 goto e_source_fput;
2090 }
2091
2092 source_kvm = f.file->private_data;
2093 ret = sev_lock_two_vms(dst_kvm: kvm, src_kvm: source_kvm);
2094 if (ret)
2095 goto e_source_fput;
2096
2097 /*
2098 * Mirrors of mirrors should work, but let's not get silly. Also
2099 * disallow out-of-band SEV/SEV-ES init if the target is already an
2100 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
2101 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2102 */
2103 if (sev_guest(kvm) || !sev_guest(kvm: source_kvm) ||
2104 is_mirroring_enc_context(kvm: source_kvm) || kvm->created_vcpus) {
2105 ret = -EINVAL;
2106 goto e_unlock;
2107 }
2108
2109 /*
2110 * The mirror kvm holds an enc_context_owner ref so its asid can't
2111 * disappear until we're done with it
2112 */
2113 source_sev = &to_kvm_svm(kvm: source_kvm)->sev_info;
2114 kvm_get_kvm(kvm: source_kvm);
2115 mirror_sev = &to_kvm_svm(kvm)->sev_info;
2116 list_add_tail(new: &mirror_sev->mirror_entry, head: &source_sev->mirror_vms);
2117
2118 /* Set enc_context_owner and copy its encryption context over */
2119 mirror_sev->enc_context_owner = source_kvm;
2120 mirror_sev->active = true;
2121 mirror_sev->asid = source_sev->asid;
2122 mirror_sev->fd = source_sev->fd;
2123 mirror_sev->es_active = source_sev->es_active;
2124 mirror_sev->handle = source_sev->handle;
2125 INIT_LIST_HEAD(list: &mirror_sev->regions_list);
2126 INIT_LIST_HEAD(list: &mirror_sev->mirror_vms);
2127 ret = 0;
2128
2129 /*
2130 * Do not copy ap_jump_table. Since the mirror does not share the same
2131 * KVM contexts as the original, and they may have different
2132 * memory-views.
2133 */
2134
2135e_unlock:
2136 sev_unlock_two_vms(dst_kvm: kvm, src_kvm: source_kvm);
2137e_source_fput:
2138 fdput(fd: f);
2139 return ret;
2140}
2141
2142void sev_vm_destroy(struct kvm *kvm)
2143{
2144 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2145 struct list_head *head = &sev->regions_list;
2146 struct list_head *pos, *q;
2147
2148 if (!sev_guest(kvm))
2149 return;
2150
2151 WARN_ON(!list_empty(&sev->mirror_vms));
2152
2153 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2154 if (is_mirroring_enc_context(kvm)) {
2155 struct kvm *owner_kvm = sev->enc_context_owner;
2156
2157 mutex_lock(&owner_kvm->lock);
2158 list_del(entry: &sev->mirror_entry);
2159 mutex_unlock(lock: &owner_kvm->lock);
2160 kvm_put_kvm(kvm: owner_kvm);
2161 return;
2162 }
2163
2164 /*
2165 * Ensure that all guest tagged cache entries are flushed before
2166 * releasing the pages back to the system for use. CLFLUSH will
2167 * not do this, so issue a WBINVD.
2168 */
2169 wbinvd_on_all_cpus();
2170
2171 /*
2172 * if userspace was terminated before unregistering the memory regions
2173 * then lets unpin all the registered memory.
2174 */
2175 if (!list_empty(head)) {
2176 list_for_each_safe(pos, q, head) {
2177 __unregister_enc_region_locked(kvm,
2178 list_entry(pos, struct enc_region, list));
2179 cond_resched();
2180 }
2181 }
2182
2183 sev_unbind_asid(kvm, handle: sev->handle);
2184 sev_asid_free(sev);
2185}
2186
2187void __init sev_set_cpu_caps(void)
2188{
2189 if (!sev_enabled)
2190 kvm_cpu_cap_clear(X86_FEATURE_SEV);
2191 if (!sev_es_enabled)
2192 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2193}
2194
2195void __init sev_hardware_setup(void)
2196{
2197#ifdef CONFIG_KVM_AMD_SEV
2198 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2199 bool sev_es_supported = false;
2200 bool sev_supported = false;
2201
2202 if (!sev_enabled || !npt_enabled || !nrips)
2203 goto out;
2204
2205 /*
2206 * SEV must obviously be supported in hardware. Sanity check that the
2207 * CPU supports decode assists, which is mandatory for SEV guests to
2208 * support instruction emulation. Ditto for flushing by ASID, as SEV
2209 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2210 * ASID to effect a TLB flush.
2211 */
2212 if (!boot_cpu_has(X86_FEATURE_SEV) ||
2213 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2214 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2215 goto out;
2216
2217 /* Retrieve SEV CPUID information */
2218 cpuid(op: 0x8000001f, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx);
2219
2220 /* Set encryption bit location for SEV-ES guests */
2221 sev_enc_bit = ebx & 0x3f;
2222
2223 /* Maximum number of encrypted guests supported simultaneously */
2224 max_sev_asid = ecx;
2225 if (!max_sev_asid)
2226 goto out;
2227
2228 /* Minimum ASID value that should be used for SEV guest */
2229 min_sev_asid = edx;
2230 sev_me_mask = 1UL << (ebx & 0x3f);
2231
2232 /*
2233 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2234 * even though it's never used, so that the bitmap is indexed by the
2235 * actual ASID.
2236 */
2237 nr_asids = max_sev_asid + 1;
2238 sev_asid_bitmap = bitmap_zalloc(nbits: nr_asids, GFP_KERNEL);
2239 if (!sev_asid_bitmap)
2240 goto out;
2241
2242 sev_reclaim_asid_bitmap = bitmap_zalloc(nbits: nr_asids, GFP_KERNEL);
2243 if (!sev_reclaim_asid_bitmap) {
2244 bitmap_free(bitmap: sev_asid_bitmap);
2245 sev_asid_bitmap = NULL;
2246 goto out;
2247 }
2248
2249 if (min_sev_asid <= max_sev_asid) {
2250 sev_asid_count = max_sev_asid - min_sev_asid + 1;
2251 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
2252 }
2253 sev_supported = true;
2254
2255 /* SEV-ES support requested? */
2256 if (!sev_es_enabled)
2257 goto out;
2258
2259 /*
2260 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2261 * instruction stream, i.e. can't emulate in response to a #NPF and
2262 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2263 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2264 */
2265 if (!enable_mmio_caching)
2266 goto out;
2267
2268 /* Does the CPU support SEV-ES? */
2269 if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2270 goto out;
2271
2272 /* Has the system been allocated ASIDs for SEV-ES? */
2273 if (min_sev_asid == 1)
2274 goto out;
2275
2276 sev_es_asid_count = min_sev_asid - 1;
2277 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
2278 sev_es_supported = true;
2279
2280out:
2281 if (boot_cpu_has(X86_FEATURE_SEV))
2282 pr_info("SEV %s (ASIDs %u - %u)\n",
2283 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
2284 "unusable" :
2285 "disabled",
2286 min_sev_asid, max_sev_asid);
2287 if (boot_cpu_has(X86_FEATURE_SEV_ES))
2288 pr_info("SEV-ES %s (ASIDs %u - %u)\n",
2289 sev_es_supported ? "enabled" : "disabled",
2290 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
2291
2292 sev_enabled = sev_supported;
2293 sev_es_enabled = sev_es_supported;
2294 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
2295 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
2296 sev_es_debug_swap_enabled = false;
2297#endif
2298}
2299
2300void sev_hardware_unsetup(void)
2301{
2302 if (!sev_enabled)
2303 return;
2304
2305 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2306 sev_flush_asids(min_asid: 1, max_asid: max_sev_asid);
2307
2308 bitmap_free(bitmap: sev_asid_bitmap);
2309 bitmap_free(bitmap: sev_reclaim_asid_bitmap);
2310
2311 misc_cg_set_capacity(type: MISC_CG_RES_SEV, capacity: 0);
2312 misc_cg_set_capacity(type: MISC_CG_RES_SEV_ES, capacity: 0);
2313}
2314
2315int sev_cpu_init(struct svm_cpu_data *sd)
2316{
2317 if (!sev_enabled)
2318 return 0;
2319
2320 sd->sev_vmcbs = kcalloc(n: nr_asids, size: sizeof(void *), GFP_KERNEL);
2321 if (!sd->sev_vmcbs)
2322 return -ENOMEM;
2323
2324 return 0;
2325}
2326
2327/*
2328 * Pages used by hardware to hold guest encrypted state must be flushed before
2329 * returning them to the system.
2330 */
2331static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2332{
2333 unsigned int asid = sev_get_asid(kvm: vcpu->kvm);
2334
2335 /*
2336 * Note! The address must be a kernel address, as regular page walk
2337 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2338 * address is non-deterministic and unsafe. This function deliberately
2339 * takes a pointer to deter passing in a user address.
2340 */
2341 unsigned long addr = (unsigned long)va;
2342
2343 /*
2344 * If CPU enforced cache coherency for encrypted mappings of the
2345 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2346 * flush is still needed in order to work properly with DMA devices.
2347 */
2348 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2349 clflush_cache_range(addr: va, PAGE_SIZE);
2350 return;
2351 }
2352
2353 /*
2354 * VM Page Flush takes a host virtual address and a guest ASID. Fall
2355 * back to WBINVD if this faults so as not to make any problems worse
2356 * by leaving stale encrypted data in the cache.
2357 */
2358 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2359 goto do_wbinvd;
2360
2361 return;
2362
2363do_wbinvd:
2364 wbinvd_on_all_cpus();
2365}
2366
2367void sev_guest_memory_reclaimed(struct kvm *kvm)
2368{
2369 if (!sev_guest(kvm))
2370 return;
2371
2372 wbinvd_on_all_cpus();
2373}
2374
2375void sev_free_vcpu(struct kvm_vcpu *vcpu)
2376{
2377 struct vcpu_svm *svm;
2378
2379 if (!sev_es_guest(kvm: vcpu->kvm))
2380 return;
2381
2382 svm = to_svm(vcpu);
2383
2384 if (vcpu->arch.guest_state_protected)
2385 sev_flush_encrypted_page(vcpu, va: svm->sev_es.vmsa);
2386
2387 __free_page(virt_to_page(svm->sev_es.vmsa));
2388
2389 if (svm->sev_es.ghcb_sa_free)
2390 kvfree(addr: svm->sev_es.ghcb_sa);
2391}
2392
2393static void dump_ghcb(struct vcpu_svm *svm)
2394{
2395 struct ghcb *ghcb = svm->sev_es.ghcb;
2396 unsigned int nbits;
2397
2398 /* Re-use the dump_invalid_vmcb module parameter */
2399 if (!dump_invalid_vmcb) {
2400 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2401 return;
2402 }
2403
2404 nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2405
2406 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2407 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2408 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2409 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2410 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2411 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2412 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2413 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2414 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2415 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2416}
2417
2418static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2419{
2420 struct kvm_vcpu *vcpu = &svm->vcpu;
2421 struct ghcb *ghcb = svm->sev_es.ghcb;
2422
2423 /*
2424 * The GHCB protocol so far allows for the following data
2425 * to be returned:
2426 * GPRs RAX, RBX, RCX, RDX
2427 *
2428 * Copy their values, even if they may not have been written during the
2429 * VM-Exit. It's the guest's responsibility to not consume random data.
2430 */
2431 ghcb_set_rax(ghcb, value: vcpu->arch.regs[VCPU_REGS_RAX]);
2432 ghcb_set_rbx(ghcb, value: vcpu->arch.regs[VCPU_REGS_RBX]);
2433 ghcb_set_rcx(ghcb, value: vcpu->arch.regs[VCPU_REGS_RCX]);
2434 ghcb_set_rdx(ghcb, value: vcpu->arch.regs[VCPU_REGS_RDX]);
2435}
2436
2437static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2438{
2439 struct vmcb_control_area *control = &svm->vmcb->control;
2440 struct kvm_vcpu *vcpu = &svm->vcpu;
2441 struct ghcb *ghcb = svm->sev_es.ghcb;
2442 u64 exit_code;
2443
2444 /*
2445 * The GHCB protocol so far allows for the following data
2446 * to be supplied:
2447 * GPRs RAX, RBX, RCX, RDX
2448 * XCR0
2449 * CPL
2450 *
2451 * VMMCALL allows the guest to provide extra registers. KVM also
2452 * expects RSI for hypercalls, so include that, too.
2453 *
2454 * Copy their values to the appropriate location if supplied.
2455 */
2456 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2457
2458 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
2459 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
2460
2461 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
2462 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
2463 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
2464 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
2465 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
2466
2467 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
2468
2469 if (kvm_ghcb_xcr0_is_valid(svm)) {
2470 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2471 kvm_update_cpuid_runtime(vcpu);
2472 }
2473
2474 /* Copy the GHCB exit information into the VMCB fields */
2475 exit_code = ghcb_get_sw_exit_code(ghcb);
2476 control->exit_code = lower_32_bits(exit_code);
2477 control->exit_code_hi = upper_32_bits(exit_code);
2478 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2479 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2480 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
2481
2482 /* Clear the valid entries fields */
2483 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2484}
2485
2486static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
2487{
2488 return (((u64)control->exit_code_hi) << 32) | control->exit_code;
2489}
2490
2491static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2492{
2493 struct vmcb_control_area *control = &svm->vmcb->control;
2494 struct kvm_vcpu *vcpu = &svm->vcpu;
2495 u64 exit_code;
2496 u64 reason;
2497
2498 /*
2499 * Retrieve the exit code now even though it may not be marked valid
2500 * as it could help with debugging.
2501 */
2502 exit_code = kvm_ghcb_get_sw_exit_code(control);
2503
2504 /* Only GHCB Usage code 0 is supported */
2505 if (svm->sev_es.ghcb->ghcb_usage) {
2506 reason = GHCB_ERR_INVALID_USAGE;
2507 goto vmgexit_err;
2508 }
2509
2510 reason = GHCB_ERR_MISSING_INPUT;
2511
2512 if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
2513 !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
2514 !kvm_ghcb_sw_exit_info_2_is_valid(svm))
2515 goto vmgexit_err;
2516
2517 switch (exit_code) {
2518 case SVM_EXIT_READ_DR7:
2519 break;
2520 case SVM_EXIT_WRITE_DR7:
2521 if (!kvm_ghcb_rax_is_valid(svm))
2522 goto vmgexit_err;
2523 break;
2524 case SVM_EXIT_RDTSC:
2525 break;
2526 case SVM_EXIT_RDPMC:
2527 if (!kvm_ghcb_rcx_is_valid(svm))
2528 goto vmgexit_err;
2529 break;
2530 case SVM_EXIT_CPUID:
2531 if (!kvm_ghcb_rax_is_valid(svm) ||
2532 !kvm_ghcb_rcx_is_valid(svm))
2533 goto vmgexit_err;
2534 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
2535 if (!kvm_ghcb_xcr0_is_valid(svm))
2536 goto vmgexit_err;
2537 break;
2538 case SVM_EXIT_INVD:
2539 break;
2540 case SVM_EXIT_IOIO:
2541 if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
2542 if (!kvm_ghcb_sw_scratch_is_valid(svm))
2543 goto vmgexit_err;
2544 } else {
2545 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
2546 if (!kvm_ghcb_rax_is_valid(svm))
2547 goto vmgexit_err;
2548 }
2549 break;
2550 case SVM_EXIT_MSR:
2551 if (!kvm_ghcb_rcx_is_valid(svm))
2552 goto vmgexit_err;
2553 if (control->exit_info_1) {
2554 if (!kvm_ghcb_rax_is_valid(svm) ||
2555 !kvm_ghcb_rdx_is_valid(svm))
2556 goto vmgexit_err;
2557 }
2558 break;
2559 case SVM_EXIT_VMMCALL:
2560 if (!kvm_ghcb_rax_is_valid(svm) ||
2561 !kvm_ghcb_cpl_is_valid(svm))
2562 goto vmgexit_err;
2563 break;
2564 case SVM_EXIT_RDTSCP:
2565 break;
2566 case SVM_EXIT_WBINVD:
2567 break;
2568 case SVM_EXIT_MONITOR:
2569 if (!kvm_ghcb_rax_is_valid(svm) ||
2570 !kvm_ghcb_rcx_is_valid(svm) ||
2571 !kvm_ghcb_rdx_is_valid(svm))
2572 goto vmgexit_err;
2573 break;
2574 case SVM_EXIT_MWAIT:
2575 if (!kvm_ghcb_rax_is_valid(svm) ||
2576 !kvm_ghcb_rcx_is_valid(svm))
2577 goto vmgexit_err;
2578 break;
2579 case SVM_VMGEXIT_MMIO_READ:
2580 case SVM_VMGEXIT_MMIO_WRITE:
2581 if (!kvm_ghcb_sw_scratch_is_valid(svm))
2582 goto vmgexit_err;
2583 break;
2584 case SVM_VMGEXIT_NMI_COMPLETE:
2585 case SVM_VMGEXIT_AP_HLT_LOOP:
2586 case SVM_VMGEXIT_AP_JUMP_TABLE:
2587 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2588 break;
2589 default:
2590 reason = GHCB_ERR_INVALID_EVENT;
2591 goto vmgexit_err;
2592 }
2593
2594 return 0;
2595
2596vmgexit_err:
2597 if (reason == GHCB_ERR_INVALID_USAGE) {
2598 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2599 svm->sev_es.ghcb->ghcb_usage);
2600 } else if (reason == GHCB_ERR_INVALID_EVENT) {
2601 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2602 exit_code);
2603 } else {
2604 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2605 exit_code);
2606 dump_ghcb(svm);
2607 }
2608
2609 ghcb_set_sw_exit_info_1(ghcb: svm->sev_es.ghcb, value: 2);
2610 ghcb_set_sw_exit_info_2(ghcb: svm->sev_es.ghcb, value: reason);
2611
2612 /* Resume the guest to "return" the error code. */
2613 return 1;
2614}
2615
2616void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2617{
2618 if (!svm->sev_es.ghcb)
2619 return;
2620
2621 if (svm->sev_es.ghcb_sa_free) {
2622 /*
2623 * The scratch area lives outside the GHCB, so there is a
2624 * buffer that, depending on the operation performed, may
2625 * need to be synced, then freed.
2626 */
2627 if (svm->sev_es.ghcb_sa_sync) {
2628 kvm_write_guest(kvm: svm->vcpu.kvm,
2629 gpa: svm->sev_es.sw_scratch,
2630 data: svm->sev_es.ghcb_sa,
2631 len: svm->sev_es.ghcb_sa_len);
2632 svm->sev_es.ghcb_sa_sync = false;
2633 }
2634
2635 kvfree(addr: svm->sev_es.ghcb_sa);
2636 svm->sev_es.ghcb_sa = NULL;
2637 svm->sev_es.ghcb_sa_free = false;
2638 }
2639
2640 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2641
2642 sev_es_sync_to_ghcb(svm);
2643
2644 kvm_vcpu_unmap(vcpu: &svm->vcpu, map: &svm->sev_es.ghcb_map, dirty: true);
2645 svm->sev_es.ghcb = NULL;
2646}
2647
2648void pre_sev_run(struct vcpu_svm *svm, int cpu)
2649{
2650 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2651 unsigned int asid = sev_get_asid(kvm: svm->vcpu.kvm);
2652
2653 /* Assign the asid allocated with this SEV guest */
2654 svm->asid = asid;
2655
2656 /*
2657 * Flush guest TLB:
2658 *
2659 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2660 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2661 */
2662 if (sd->sev_vmcbs[asid] == svm->vmcb &&
2663 svm->vcpu.arch.last_vmentry_cpu == cpu)
2664 return;
2665
2666 sd->sev_vmcbs[asid] = svm->vmcb;
2667 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2668 vmcb_mark_dirty(vmcb: svm->vmcb, bit: VMCB_ASID);
2669}
2670
2671#define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
2672static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2673{
2674 struct vmcb_control_area *control = &svm->vmcb->control;
2675 u64 ghcb_scratch_beg, ghcb_scratch_end;
2676 u64 scratch_gpa_beg, scratch_gpa_end;
2677 void *scratch_va;
2678
2679 scratch_gpa_beg = svm->sev_es.sw_scratch;
2680 if (!scratch_gpa_beg) {
2681 pr_err("vmgexit: scratch gpa not provided\n");
2682 goto e_scratch;
2683 }
2684
2685 scratch_gpa_end = scratch_gpa_beg + len;
2686 if (scratch_gpa_end < scratch_gpa_beg) {
2687 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2688 len, scratch_gpa_beg);
2689 goto e_scratch;
2690 }
2691
2692 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2693 /* Scratch area begins within GHCB */
2694 ghcb_scratch_beg = control->ghcb_gpa +
2695 offsetof(struct ghcb, shared_buffer);
2696 ghcb_scratch_end = control->ghcb_gpa +
2697 offsetof(struct ghcb, reserved_0xff0);
2698
2699 /*
2700 * If the scratch area begins within the GHCB, it must be
2701 * completely contained in the GHCB shared buffer area.
2702 */
2703 if (scratch_gpa_beg < ghcb_scratch_beg ||
2704 scratch_gpa_end > ghcb_scratch_end) {
2705 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2706 scratch_gpa_beg, scratch_gpa_end);
2707 goto e_scratch;
2708 }
2709
2710 scratch_va = (void *)svm->sev_es.ghcb;
2711 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2712 } else {
2713 /*
2714 * The guest memory must be read into a kernel buffer, so
2715 * limit the size
2716 */
2717 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2718 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2719 len, GHCB_SCRATCH_AREA_LIMIT);
2720 goto e_scratch;
2721 }
2722 scratch_va = kvzalloc(size: len, GFP_KERNEL_ACCOUNT);
2723 if (!scratch_va)
2724 return -ENOMEM;
2725
2726 if (kvm_read_guest(kvm: svm->vcpu.kvm, gpa: scratch_gpa_beg, data: scratch_va, len)) {
2727 /* Unable to copy scratch area from guest */
2728 pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2729
2730 kvfree(addr: scratch_va);
2731 return -EFAULT;
2732 }
2733
2734 /*
2735 * The scratch area is outside the GHCB. The operation will
2736 * dictate whether the buffer needs to be synced before running
2737 * the vCPU next time (i.e. a read was requested so the data
2738 * must be written back to the guest memory).
2739 */
2740 svm->sev_es.ghcb_sa_sync = sync;
2741 svm->sev_es.ghcb_sa_free = true;
2742 }
2743
2744 svm->sev_es.ghcb_sa = scratch_va;
2745 svm->sev_es.ghcb_sa_len = len;
2746
2747 return 0;
2748
2749e_scratch:
2750 ghcb_set_sw_exit_info_1(ghcb: svm->sev_es.ghcb, value: 2);
2751 ghcb_set_sw_exit_info_2(ghcb: svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2752
2753 return 1;
2754}
2755
2756static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2757 unsigned int pos)
2758{
2759 svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2760 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2761}
2762
2763static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2764{
2765 return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2766}
2767
2768static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2769{
2770 svm->vmcb->control.ghcb_gpa = value;
2771}
2772
2773static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2774{
2775 struct vmcb_control_area *control = &svm->vmcb->control;
2776 struct kvm_vcpu *vcpu = &svm->vcpu;
2777 u64 ghcb_info;
2778 int ret = 1;
2779
2780 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2781
2782 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2783 control->ghcb_gpa);
2784
2785 switch (ghcb_info) {
2786 case GHCB_MSR_SEV_INFO_REQ:
2787 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2788 GHCB_VERSION_MIN,
2789 sev_enc_bit));
2790 break;
2791 case GHCB_MSR_CPUID_REQ: {
2792 u64 cpuid_fn, cpuid_reg, cpuid_value;
2793
2794 cpuid_fn = get_ghcb_msr_bits(svm,
2795 GHCB_MSR_CPUID_FUNC_MASK,
2796 GHCB_MSR_CPUID_FUNC_POS);
2797
2798 /* Initialize the registers needed by the CPUID intercept */
2799 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2800 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2801
2802 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2803 if (!ret) {
2804 /* Error, keep GHCB MSR value as-is */
2805 break;
2806 }
2807
2808 cpuid_reg = get_ghcb_msr_bits(svm,
2809 GHCB_MSR_CPUID_REG_MASK,
2810 GHCB_MSR_CPUID_REG_POS);
2811 if (cpuid_reg == 0)
2812 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2813 else if (cpuid_reg == 1)
2814 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2815 else if (cpuid_reg == 2)
2816 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2817 else
2818 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2819
2820 set_ghcb_msr_bits(svm, value: cpuid_value,
2821 GHCB_MSR_CPUID_VALUE_MASK,
2822 GHCB_MSR_CPUID_VALUE_POS);
2823
2824 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2825 GHCB_MSR_INFO_MASK,
2826 GHCB_MSR_INFO_POS);
2827 break;
2828 }
2829 case GHCB_MSR_TERM_REQ: {
2830 u64 reason_set, reason_code;
2831
2832 reason_set = get_ghcb_msr_bits(svm,
2833 GHCB_MSR_TERM_REASON_SET_MASK,
2834 GHCB_MSR_TERM_REASON_SET_POS);
2835 reason_code = get_ghcb_msr_bits(svm,
2836 GHCB_MSR_TERM_REASON_MASK,
2837 GHCB_MSR_TERM_REASON_POS);
2838 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2839 reason_set, reason_code);
2840
2841 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2842 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2843 vcpu->run->system_event.ndata = 1;
2844 vcpu->run->system_event.data[0] = control->ghcb_gpa;
2845
2846 return 0;
2847 }
2848 default:
2849 /* Error, keep GHCB MSR value as-is */
2850 break;
2851 }
2852
2853 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2854 control->ghcb_gpa, ret);
2855
2856 return ret;
2857}
2858
2859int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2860{
2861 struct vcpu_svm *svm = to_svm(vcpu);
2862 struct vmcb_control_area *control = &svm->vmcb->control;
2863 u64 ghcb_gpa, exit_code;
2864 int ret;
2865
2866 /* Validate the GHCB */
2867 ghcb_gpa = control->ghcb_gpa;
2868 if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2869 return sev_handle_vmgexit_msr_protocol(svm);
2870
2871 if (!ghcb_gpa) {
2872 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2873
2874 /* Without a GHCB, just return right back to the guest */
2875 return 1;
2876 }
2877
2878 if (kvm_vcpu_map(vcpu, gpa: ghcb_gpa >> PAGE_SHIFT, map: &svm->sev_es.ghcb_map)) {
2879 /* Unable to map GHCB from guest */
2880 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2881 ghcb_gpa);
2882
2883 /* Without a GHCB, just return right back to the guest */
2884 return 1;
2885 }
2886
2887 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2888
2889 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
2890
2891 sev_es_sync_from_ghcb(svm);
2892 ret = sev_es_validate_vmgexit(svm);
2893 if (ret)
2894 return ret;
2895
2896 ghcb_set_sw_exit_info_1(ghcb: svm->sev_es.ghcb, value: 0);
2897 ghcb_set_sw_exit_info_2(ghcb: svm->sev_es.ghcb, value: 0);
2898
2899 exit_code = kvm_ghcb_get_sw_exit_code(control);
2900 switch (exit_code) {
2901 case SVM_VMGEXIT_MMIO_READ:
2902 ret = setup_vmgexit_scratch(svm, sync: true, len: control->exit_info_2);
2903 if (ret)
2904 break;
2905
2906 ret = kvm_sev_es_mmio_read(vcpu,
2907 control->exit_info_1,
2908 control->exit_info_2,
2909 svm->sev_es.ghcb_sa);
2910 break;
2911 case SVM_VMGEXIT_MMIO_WRITE:
2912 ret = setup_vmgexit_scratch(svm, sync: false, len: control->exit_info_2);
2913 if (ret)
2914 break;
2915
2916 ret = kvm_sev_es_mmio_write(vcpu,
2917 control->exit_info_1,
2918 control->exit_info_2,
2919 svm->sev_es.ghcb_sa);
2920 break;
2921 case SVM_VMGEXIT_NMI_COMPLETE:
2922 ++vcpu->stat.nmi_window_exits;
2923 svm->nmi_masked = false;
2924 kvm_make_request(KVM_REQ_EVENT, vcpu);
2925 ret = 1;
2926 break;
2927 case SVM_VMGEXIT_AP_HLT_LOOP:
2928 ret = kvm_emulate_ap_reset_hold(vcpu);
2929 break;
2930 case SVM_VMGEXIT_AP_JUMP_TABLE: {
2931 struct kvm_sev_info *sev = &to_kvm_svm(kvm: vcpu->kvm)->sev_info;
2932
2933 switch (control->exit_info_1) {
2934 case 0:
2935 /* Set AP jump table address */
2936 sev->ap_jump_table = control->exit_info_2;
2937 break;
2938 case 1:
2939 /* Get AP jump table address */
2940 ghcb_set_sw_exit_info_2(ghcb: svm->sev_es.ghcb, value: sev->ap_jump_table);
2941 break;
2942 default:
2943 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2944 control->exit_info_1);
2945 ghcb_set_sw_exit_info_1(ghcb: svm->sev_es.ghcb, value: 2);
2946 ghcb_set_sw_exit_info_2(ghcb: svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
2947 }
2948
2949 ret = 1;
2950 break;
2951 }
2952 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2953 vcpu_unimpl(vcpu,
2954 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2955 control->exit_info_1, control->exit_info_2);
2956 ret = -EINVAL;
2957 break;
2958 default:
2959 ret = svm_invoke_exit_handler(vcpu, exit_code);
2960 }
2961
2962 return ret;
2963}
2964
2965int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2966{
2967 int count;
2968 int bytes;
2969 int r;
2970
2971 if (svm->vmcb->control.exit_info_2 > INT_MAX)
2972 return -EINVAL;
2973
2974 count = svm->vmcb->control.exit_info_2;
2975 if (unlikely(check_mul_overflow(count, size, &bytes)))
2976 return -EINVAL;
2977
2978 r = setup_vmgexit_scratch(svm, sync: in, len: bytes);
2979 if (r)
2980 return r;
2981
2982 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2983 count, in);
2984}
2985
2986static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
2987{
2988 struct kvm_vcpu *vcpu = &svm->vcpu;
2989
2990 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
2991 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
2992 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
2993
2994 set_msr_interception(vcpu, msrpm: svm->msrpm, MSR_TSC_AUX, read: v_tsc_aux, write: v_tsc_aux);
2995 }
2996
2997 /*
2998 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
2999 * the host/guest supports its use.
3000 *
3001 * guest_can_use() checks a number of requirements on the host/guest to
3002 * ensure that MSR_IA32_XSS is available, but it might report true even
3003 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
3004 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
3005 * to further check that the guest CPUID actually supports
3006 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
3007 * guests will still get intercepted and caught in the normal
3008 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
3009 */
3010 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
3011 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3012 set_msr_interception(vcpu, msrpm: svm->msrpm, MSR_IA32_XSS, read: 1, write: 1);
3013 else
3014 set_msr_interception(vcpu, msrpm: svm->msrpm, MSR_IA32_XSS, read: 0, write: 0);
3015}
3016
3017void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
3018{
3019 struct kvm_vcpu *vcpu = &svm->vcpu;
3020 struct kvm_cpuid_entry2 *best;
3021
3022 /* For sev guests, the memory encryption bit is not reserved in CR3. */
3023 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
3024 if (best)
3025 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
3026
3027 if (sev_es_guest(kvm: svm->vcpu.kvm))
3028 sev_es_vcpu_after_set_cpuid(svm);
3029}
3030
3031static void sev_es_init_vmcb(struct vcpu_svm *svm)
3032{
3033 struct vmcb *vmcb = svm->vmcb01.ptr;
3034 struct kvm_vcpu *vcpu = &svm->vcpu;
3035
3036 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
3037 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
3038
3039 /*
3040 * An SEV-ES guest requires a VMSA area that is a separate from the
3041 * VMCB page. Do not include the encryption mask on the VMSA physical
3042 * address since hardware will access it using the guest key. Note,
3043 * the VMSA will be NULL if this vCPU is the destination for intrahost
3044 * migration, and will be copied later.
3045 */
3046 if (svm->sev_es.vmsa)
3047 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
3048
3049 /* Can't intercept CR register access, HV can't modify CR registers */
3050 svm_clr_intercept(svm, bit: INTERCEPT_CR0_READ);
3051 svm_clr_intercept(svm, bit: INTERCEPT_CR4_READ);
3052 svm_clr_intercept(svm, bit: INTERCEPT_CR8_READ);
3053 svm_clr_intercept(svm, bit: INTERCEPT_CR0_WRITE);
3054 svm_clr_intercept(svm, bit: INTERCEPT_CR4_WRITE);
3055 svm_clr_intercept(svm, bit: INTERCEPT_CR8_WRITE);
3056
3057 svm_clr_intercept(svm, bit: INTERCEPT_SELECTIVE_CR0);
3058
3059 /* Track EFER/CR register changes */
3060 svm_set_intercept(svm, bit: TRAP_EFER_WRITE);
3061 svm_set_intercept(svm, bit: TRAP_CR0_WRITE);
3062 svm_set_intercept(svm, bit: TRAP_CR4_WRITE);
3063 svm_set_intercept(svm, bit: TRAP_CR8_WRITE);
3064
3065 vmcb->control.intercepts[INTERCEPT_DR] = 0;
3066 if (!sev_es_debug_swap_enabled) {
3067 vmcb_set_intercept(control: &vmcb->control, bit: INTERCEPT_DR7_READ);
3068 vmcb_set_intercept(control: &vmcb->control, bit: INTERCEPT_DR7_WRITE);
3069 recalc_intercepts(svm);
3070 } else {
3071 /*
3072 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't
3073 * allow debugging SEV-ES guests, and enables DebugSwap iff
3074 * NO_NESTED_DATA_BP is supported, so there's no reason to
3075 * intercept #DB when DebugSwap is enabled. For simplicity
3076 * with respect to guest debug, intercept #DB for other VMs
3077 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
3078 * guest can't DoS the CPU with infinite #DB vectoring.
3079 */
3080 clr_exception_intercept(svm, DB_VECTOR);
3081 }
3082
3083 /* Can't intercept XSETBV, HV can't modify XCR0 directly */
3084 svm_clr_intercept(svm, bit: INTERCEPT_XSETBV);
3085
3086 /* Clear intercepts on selected MSRs */
3087 set_msr_interception(vcpu, msrpm: svm->msrpm, MSR_EFER, read: 1, write: 1);
3088 set_msr_interception(vcpu, msrpm: svm->msrpm, MSR_IA32_CR_PAT, read: 1, write: 1);
3089 set_msr_interception(vcpu, msrpm: svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, read: 1, write: 1);
3090 set_msr_interception(vcpu, msrpm: svm->msrpm, MSR_IA32_LASTBRANCHTOIP, read: 1, write: 1);
3091 set_msr_interception(vcpu, msrpm: svm->msrpm, MSR_IA32_LASTINTFROMIP, read: 1, write: 1);
3092 set_msr_interception(vcpu, msrpm: svm->msrpm, MSR_IA32_LASTINTTOIP, read: 1, write: 1);
3093}
3094
3095void sev_init_vmcb(struct vcpu_svm *svm)
3096{
3097 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
3098 clr_exception_intercept(svm, UD_VECTOR);
3099
3100 /*
3101 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
3102 * KVM can't decrypt guest memory to decode the faulting instruction.
3103 */
3104 clr_exception_intercept(svm, GP_VECTOR);
3105
3106 if (sev_es_guest(kvm: svm->vcpu.kvm))
3107 sev_es_init_vmcb(svm);
3108}
3109
3110void sev_es_vcpu_reset(struct vcpu_svm *svm)
3111{
3112 /*
3113 * Set the GHCB MSR value as per the GHCB specification when emulating
3114 * vCPU RESET for an SEV-ES guest.
3115 */
3116 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3117 GHCB_VERSION_MIN,
3118 sev_enc_bit));
3119}
3120
3121void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3122{
3123 /*
3124 * All host state for SEV-ES guests is categorized into three swap types
3125 * based on how it is handled by hardware during a world switch:
3126 *
3127 * A: VMRUN: Host state saved in host save area
3128 * VMEXIT: Host state loaded from host save area
3129 *
3130 * B: VMRUN: Host state _NOT_ saved in host save area
3131 * VMEXIT: Host state loaded from host save area
3132 *
3133 * C: VMRUN: Host state _NOT_ saved in host save area
3134 * VMEXIT: Host state initialized to default(reset) values
3135 *
3136 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
3137 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
3138 * by common SVM code).
3139 */
3140 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3141 hostsa->pkru = read_pkru();
3142 hostsa->xss = host_xss;
3143
3144 /*
3145 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
3146 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
3147 * saves and loads debug registers (Type-A).
3148 */
3149 if (sev_es_debug_swap_enabled) {
3150 hostsa->dr0 = native_get_debugreg(regno: 0);
3151 hostsa->dr1 = native_get_debugreg(regno: 1);
3152 hostsa->dr2 = native_get_debugreg(regno: 2);
3153 hostsa->dr3 = native_get_debugreg(regno: 3);
3154 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(dr: 0);
3155 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(dr: 1);
3156 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(dr: 2);
3157 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(dr: 3);
3158 }
3159}
3160
3161void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3162{
3163 struct vcpu_svm *svm = to_svm(vcpu);
3164
3165 /* First SIPI: Use the values as initially set by the VMM */
3166 if (!svm->sev_es.received_first_sipi) {
3167 svm->sev_es.received_first_sipi = true;
3168 return;
3169 }
3170
3171 /*
3172 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3173 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3174 * non-zero value.
3175 */
3176 if (!svm->sev_es.ghcb)
3177 return;
3178
3179 ghcb_set_sw_exit_info_2(ghcb: svm->sev_es.ghcb, value: 1);
3180}
3181
3182struct page *snp_safe_alloc_page(struct kvm_vcpu *vcpu)
3183{
3184 unsigned long pfn;
3185 struct page *p;
3186
3187 if (!cc_platform_has(attr: CC_ATTR_HOST_SEV_SNP))
3188 return alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3189
3190 /*
3191 * Allocate an SNP-safe page to workaround the SNP erratum where
3192 * the CPU will incorrectly signal an RMP violation #PF if a
3193 * hugepage (2MB or 1GB) collides with the RMP entry of a
3194 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
3195 *
3196 * Allocate one extra page, choose a page which is not
3197 * 2MB-aligned, and free the other.
3198 */
3199 p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, order: 1);
3200 if (!p)
3201 return NULL;
3202
3203 split_page(page: p, order: 1);
3204
3205 pfn = page_to_pfn(p);
3206 if (IS_ALIGNED(pfn, PTRS_PER_PMD))
3207 __free_page(p++);
3208 else
3209 __free_page(p + 1);
3210
3211 return p;
3212}
3213

source code of linux/arch/x86/kvm/svm/sev.c