1 | // SPDX-License-Identifier: GPL-2.0 |
2 | /* |
3 | * K3 SA2UL crypto accelerator driver |
4 | * |
5 | * Copyright (C) 2018-2020 Texas Instruments Incorporated - http://www.ti.com |
6 | * |
7 | * Authors: Keerthy |
8 | * Vitaly Andrianov |
9 | * Tero Kristo |
10 | */ |
11 | #include <linux/bitfield.h> |
12 | #include <linux/clk.h> |
13 | #include <linux/dma-mapping.h> |
14 | #include <linux/dmaengine.h> |
15 | #include <linux/dmapool.h> |
16 | #include <linux/kernel.h> |
17 | #include <linux/module.h> |
18 | #include <linux/of.h> |
19 | #include <linux/of_platform.h> |
20 | #include <linux/platform_device.h> |
21 | #include <linux/pm_runtime.h> |
22 | |
23 | #include <crypto/aes.h> |
24 | #include <crypto/authenc.h> |
25 | #include <crypto/des.h> |
26 | #include <crypto/internal/aead.h> |
27 | #include <crypto/internal/hash.h> |
28 | #include <crypto/internal/skcipher.h> |
29 | #include <crypto/scatterwalk.h> |
30 | #include <crypto/sha1.h> |
31 | #include <crypto/sha2.h> |
32 | |
33 | #include "sa2ul.h" |
34 | |
35 | /* Byte offset for key in encryption security context */ |
36 | #define SC_ENC_KEY_OFFSET (1 + 27 + 4) |
37 | /* Byte offset for Aux-1 in encryption security context */ |
38 | #define SC_ENC_AUX1_OFFSET (1 + 27 + 4 + 32) |
39 | |
40 | #define SA_CMDL_UPD_ENC 0x0001 |
41 | #define SA_CMDL_UPD_AUTH 0x0002 |
42 | #define SA_CMDL_UPD_ENC_IV 0x0004 |
43 | #define SA_CMDL_UPD_AUTH_IV 0x0008 |
44 | #define SA_CMDL_UPD_AUX_KEY 0x0010 |
45 | |
46 | #define SA_AUTH_SUBKEY_LEN 16 |
47 | #define SA_CMDL_PAYLOAD_LENGTH_MASK 0xFFFF |
48 | #define SA_CMDL_SOP_BYPASS_LEN_MASK 0xFF000000 |
49 | |
50 | #define MODE_CONTROL_BYTES 27 |
51 | #define SA_HASH_PROCESSING 0 |
52 | #define SA_CRYPTO_PROCESSING 0 |
53 | #define SA_UPLOAD_HASH_TO_TLR BIT(6) |
54 | |
55 | #define SA_SW0_FLAGS_MASK 0xF0000 |
56 | #define SA_SW0_CMDL_INFO_MASK 0x1F00000 |
57 | #define SA_SW0_CMDL_PRESENT BIT(4) |
58 | #define SA_SW0_ENG_ID_MASK 0x3E000000 |
59 | #define SA_SW0_DEST_INFO_PRESENT BIT(30) |
60 | #define SA_SW2_EGRESS_LENGTH 0xFF000000 |
61 | #define SA_BASIC_HASH 0x10 |
62 | |
63 | #define SHA256_DIGEST_WORDS 8 |
64 | /* Make 32-bit word from 4 bytes */ |
65 | #define SA_MK_U32(b0, b1, b2, b3) (((b0) << 24) | ((b1) << 16) | \ |
66 | ((b2) << 8) | (b3)) |
67 | |
68 | /* size of SCCTL structure in bytes */ |
69 | #define SA_SCCTL_SZ 16 |
70 | |
71 | /* Max Authentication tag size */ |
72 | #define SA_MAX_AUTH_TAG_SZ 64 |
73 | |
74 | enum sa_algo_id { |
75 | SA_ALG_CBC_AES = 0, |
76 | SA_ALG_EBC_AES, |
77 | SA_ALG_CBC_DES3, |
78 | SA_ALG_ECB_DES3, |
79 | SA_ALG_SHA1, |
80 | SA_ALG_SHA256, |
81 | SA_ALG_SHA512, |
82 | SA_ALG_AUTHENC_SHA1_AES, |
83 | SA_ALG_AUTHENC_SHA256_AES, |
84 | }; |
85 | |
86 | struct sa_match_data { |
87 | u8 priv; |
88 | u8 priv_id; |
89 | u32 supported_algos; |
90 | }; |
91 | |
92 | static struct device *sa_k3_dev; |
93 | |
94 | /** |
95 | * struct sa_cmdl_cfg - Command label configuration descriptor |
96 | * @aalg: authentication algorithm ID |
97 | * @enc_eng_id: Encryption Engine ID supported by the SA hardware |
98 | * @auth_eng_id: Authentication Engine ID |
99 | * @iv_size: Initialization Vector size |
100 | * @akey: Authentication key |
101 | * @akey_len: Authentication key length |
102 | * @enc: True, if this is an encode request |
103 | */ |
104 | struct sa_cmdl_cfg { |
105 | int aalg; |
106 | u8 enc_eng_id; |
107 | u8 auth_eng_id; |
108 | u8 iv_size; |
109 | const u8 *akey; |
110 | u16 akey_len; |
111 | bool enc; |
112 | }; |
113 | |
114 | /** |
115 | * struct algo_data - Crypto algorithm specific data |
116 | * @enc_eng: Encryption engine info structure |
117 | * @auth_eng: Authentication engine info structure |
118 | * @auth_ctrl: Authentication control word |
119 | * @hash_size: Size of digest |
120 | * @iv_idx: iv index in psdata |
121 | * @iv_out_size: iv out size |
122 | * @ealg_id: Encryption Algorithm ID |
123 | * @aalg_id: Authentication algorithm ID |
124 | * @mci_enc: Mode Control Instruction for Encryption algorithm |
125 | * @mci_dec: Mode Control Instruction for Decryption |
126 | * @inv_key: Whether the encryption algorithm demands key inversion |
127 | * @ctx: Pointer to the algorithm context |
128 | * @keyed_mac: Whether the authentication algorithm has key |
129 | * @prep_iopad: Function pointer to generate intermediate ipad/opad |
130 | */ |
131 | struct algo_data { |
132 | struct sa_eng_info enc_eng; |
133 | struct sa_eng_info auth_eng; |
134 | u8 auth_ctrl; |
135 | u8 hash_size; |
136 | u8 iv_idx; |
137 | u8 iv_out_size; |
138 | u8 ealg_id; |
139 | u8 aalg_id; |
140 | u8 *mci_enc; |
141 | u8 *mci_dec; |
142 | bool inv_key; |
143 | struct sa_tfm_ctx *ctx; |
144 | bool keyed_mac; |
145 | void (*prep_iopad)(struct algo_data *algo, const u8 *key, |
146 | u16 key_sz, __be32 *ipad, __be32 *opad); |
147 | }; |
148 | |
149 | /** |
150 | * struct sa_alg_tmpl: A generic template encompassing crypto/aead algorithms |
151 | * @type: Type of the crypto algorithm. |
152 | * @alg: Union of crypto algorithm definitions. |
153 | * @registered: Flag indicating if the crypto algorithm is already registered |
154 | */ |
155 | struct sa_alg_tmpl { |
156 | u32 type; /* CRYPTO_ALG_TYPE from <linux/crypto.h> */ |
157 | union { |
158 | struct skcipher_alg skcipher; |
159 | struct ahash_alg ahash; |
160 | struct aead_alg aead; |
161 | } alg; |
162 | bool registered; |
163 | }; |
164 | |
165 | /** |
166 | * struct sa_mapped_sg: scatterlist information for tx and rx |
167 | * @mapped: Set to true if the @sgt is mapped |
168 | * @dir: mapping direction used for @sgt |
169 | * @split_sg: Set if the sg is split and needs to be freed up |
170 | * @static_sg: Static scatterlist entry for overriding data |
171 | * @sgt: scatterlist table for DMA API use |
172 | */ |
173 | struct sa_mapped_sg { |
174 | bool mapped; |
175 | enum dma_data_direction dir; |
176 | struct scatterlist static_sg; |
177 | struct scatterlist *split_sg; |
178 | struct sg_table sgt; |
179 | }; |
180 | /** |
181 | * struct sa_rx_data: RX Packet miscellaneous data place holder |
182 | * @req: crypto request data pointer |
183 | * @ddev: pointer to the DMA device |
184 | * @tx_in: dma_async_tx_descriptor pointer for rx channel |
185 | * @mapped_sg: Information on tx (0) and rx (1) scatterlist DMA mapping |
186 | * @enc: Flag indicating either encryption or decryption |
187 | * @enc_iv_size: Initialisation vector size |
188 | * @iv_idx: Initialisation vector index |
189 | */ |
190 | struct sa_rx_data { |
191 | void *req; |
192 | struct device *ddev; |
193 | struct dma_async_tx_descriptor *tx_in; |
194 | struct sa_mapped_sg mapped_sg[2]; |
195 | u8 enc; |
196 | u8 enc_iv_size; |
197 | u8 iv_idx; |
198 | }; |
199 | |
200 | /** |
201 | * struct sa_req: SA request definition |
202 | * @dev: device for the request |
203 | * @size: total data to the xmitted via DMA |
204 | * @enc_offset: offset of cipher data |
205 | * @enc_size: data to be passed to cipher engine |
206 | * @enc_iv: cipher IV |
207 | * @auth_offset: offset of the authentication data |
208 | * @auth_size: size of the authentication data |
209 | * @auth_iv: authentication IV |
210 | * @type: algorithm type for the request |
211 | * @cmdl: command label pointer |
212 | * @base: pointer to the base request |
213 | * @ctx: pointer to the algorithm context data |
214 | * @enc: true if this is an encode request |
215 | * @src: source data |
216 | * @dst: destination data |
217 | * @callback: DMA callback for the request |
218 | * @mdata_size: metadata size passed to DMA |
219 | */ |
220 | struct sa_req { |
221 | struct device *dev; |
222 | u16 size; |
223 | u8 enc_offset; |
224 | u16 enc_size; |
225 | u8 *enc_iv; |
226 | u8 auth_offset; |
227 | u16 auth_size; |
228 | u8 *auth_iv; |
229 | u32 type; |
230 | u32 *cmdl; |
231 | struct crypto_async_request *base; |
232 | struct sa_tfm_ctx *ctx; |
233 | bool enc; |
234 | struct scatterlist *src; |
235 | struct scatterlist *dst; |
236 | dma_async_tx_callback callback; |
237 | u16 mdata_size; |
238 | }; |
239 | |
240 | /* |
241 | * Mode Control Instructions for various Key lengths 128, 192, 256 |
242 | * For CBC (Cipher Block Chaining) mode for encryption |
243 | */ |
244 | static u8 mci_cbc_enc_array[3][MODE_CONTROL_BYTES] = { |
245 | { 0x61, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00, |
246 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
247 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
248 | { 0x61, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00, |
249 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
250 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
251 | { 0x61, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00, |
252 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
253 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
254 | }; |
255 | |
256 | /* |
257 | * Mode Control Instructions for various Key lengths 128, 192, 256 |
258 | * For CBC (Cipher Block Chaining) mode for decryption |
259 | */ |
260 | static u8 mci_cbc_dec_array[3][MODE_CONTROL_BYTES] = { |
261 | { 0x71, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, |
262 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
263 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
264 | { 0x71, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, |
265 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
266 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
267 | { 0x71, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, |
268 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
269 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
270 | }; |
271 | |
272 | /* |
273 | * Mode Control Instructions for various Key lengths 128, 192, 256 |
274 | * For CBC (Cipher Block Chaining) mode for encryption |
275 | */ |
276 | static u8 mci_cbc_enc_no_iv_array[3][MODE_CONTROL_BYTES] = { |
277 | { 0x21, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00, |
278 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
279 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
280 | { 0x21, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00, |
281 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
282 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
283 | { 0x21, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00, |
284 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
285 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
286 | }; |
287 | |
288 | /* |
289 | * Mode Control Instructions for various Key lengths 128, 192, 256 |
290 | * For CBC (Cipher Block Chaining) mode for decryption |
291 | */ |
292 | static u8 mci_cbc_dec_no_iv_array[3][MODE_CONTROL_BYTES] = { |
293 | { 0x31, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, |
294 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
295 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
296 | { 0x31, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, |
297 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
298 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
299 | { 0x31, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, |
300 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
301 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
302 | }; |
303 | |
304 | /* |
305 | * Mode Control Instructions for various Key lengths 128, 192, 256 |
306 | * For ECB (Electronic Code Book) mode for encryption |
307 | */ |
308 | static u8 mci_ecb_enc_array[3][27] = { |
309 | { 0x21, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, |
310 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
311 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
312 | { 0x21, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, |
313 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
314 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
315 | { 0x21, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, |
316 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
317 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
318 | }; |
319 | |
320 | /* |
321 | * Mode Control Instructions for various Key lengths 128, 192, 256 |
322 | * For ECB (Electronic Code Book) mode for decryption |
323 | */ |
324 | static u8 mci_ecb_dec_array[3][27] = { |
325 | { 0x31, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, |
326 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
327 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
328 | { 0x31, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, |
329 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
330 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
331 | { 0x31, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, |
332 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
333 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
334 | }; |
335 | |
336 | /* |
337 | * Mode Control Instructions for DES algorithm |
338 | * For CBC (Cipher Block Chaining) mode and ECB mode |
339 | * encryption and for decryption respectively |
340 | */ |
341 | static u8 mci_cbc_3des_enc_array[MODE_CONTROL_BYTES] = { |
342 | 0x60, 0x00, 0x00, 0x18, 0x88, 0x52, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00, |
343 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
344 | 0x00, 0x00, 0x00, |
345 | }; |
346 | |
347 | static u8 mci_cbc_3des_dec_array[MODE_CONTROL_BYTES] = { |
348 | 0x70, 0x00, 0x00, 0x85, 0x0a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00, |
349 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
350 | 0x00, 0x00, 0x00, |
351 | }; |
352 | |
353 | static u8 mci_ecb_3des_enc_array[MODE_CONTROL_BYTES] = { |
354 | 0x20, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, |
355 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
356 | 0x00, 0x00, 0x00, |
357 | }; |
358 | |
359 | static u8 mci_ecb_3des_dec_array[MODE_CONTROL_BYTES] = { |
360 | 0x30, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, |
361 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
362 | 0x00, 0x00, 0x00, |
363 | }; |
364 | |
365 | /* |
366 | * Perform 16 byte or 128 bit swizzling |
367 | * The SA2UL Expects the security context to |
368 | * be in little Endian and the bus width is 128 bits or 16 bytes |
369 | * Hence swap 16 bytes at a time from higher to lower address |
370 | */ |
371 | static void sa_swiz_128(u8 *in, u16 len) |
372 | { |
373 | u8 data[16]; |
374 | int i, j; |
375 | |
376 | for (i = 0; i < len; i += 16) { |
377 | memcpy(data, &in[i], 16); |
378 | for (j = 0; j < 16; j++) |
379 | in[i + j] = data[15 - j]; |
380 | } |
381 | } |
382 | |
383 | /* Prepare the ipad and opad from key as per SHA algorithm step 1*/ |
384 | static void prepare_kipad(u8 *k_ipad, const u8 *key, u16 key_sz) |
385 | { |
386 | int i; |
387 | |
388 | for (i = 0; i < key_sz; i++) |
389 | k_ipad[i] = key[i] ^ 0x36; |
390 | |
391 | /* Instead of XOR with 0 */ |
392 | for (; i < SHA1_BLOCK_SIZE; i++) |
393 | k_ipad[i] = 0x36; |
394 | } |
395 | |
396 | static void prepare_kopad(u8 *k_opad, const u8 *key, u16 key_sz) |
397 | { |
398 | int i; |
399 | |
400 | for (i = 0; i < key_sz; i++) |
401 | k_opad[i] = key[i] ^ 0x5c; |
402 | |
403 | /* Instead of XOR with 0 */ |
404 | for (; i < SHA1_BLOCK_SIZE; i++) |
405 | k_opad[i] = 0x5c; |
406 | } |
407 | |
408 | static void sa_export_shash(void *state, struct shash_desc *hash, |
409 | int digest_size, __be32 *out) |
410 | { |
411 | struct sha1_state *sha1; |
412 | struct sha256_state *sha256; |
413 | u32 *result; |
414 | |
415 | switch (digest_size) { |
416 | case SHA1_DIGEST_SIZE: |
417 | sha1 = state; |
418 | result = sha1->state; |
419 | break; |
420 | case SHA256_DIGEST_SIZE: |
421 | sha256 = state; |
422 | result = sha256->state; |
423 | break; |
424 | default: |
425 | dev_err(sa_k3_dev, "%s: bad digest_size=%d\n" , __func__, |
426 | digest_size); |
427 | return; |
428 | } |
429 | |
430 | crypto_shash_export(desc: hash, out: state); |
431 | |
432 | cpu_to_be32_array(dst: out, src: result, len: digest_size / 4); |
433 | } |
434 | |
435 | static void sa_prepare_iopads(struct algo_data *data, const u8 *key, |
436 | u16 key_sz, __be32 *ipad, __be32 *opad) |
437 | { |
438 | SHASH_DESC_ON_STACK(shash, data->ctx->shash); |
439 | int block_size = crypto_shash_blocksize(tfm: data->ctx->shash); |
440 | int digest_size = crypto_shash_digestsize(tfm: data->ctx->shash); |
441 | union { |
442 | struct sha1_state sha1; |
443 | struct sha256_state sha256; |
444 | u8 k_pad[SHA1_BLOCK_SIZE]; |
445 | } sha; |
446 | |
447 | shash->tfm = data->ctx->shash; |
448 | |
449 | prepare_kipad(k_ipad: sha.k_pad, key, key_sz); |
450 | |
451 | crypto_shash_init(desc: shash); |
452 | crypto_shash_update(desc: shash, data: sha.k_pad, len: block_size); |
453 | sa_export_shash(state: &sha, hash: shash, digest_size, out: ipad); |
454 | |
455 | prepare_kopad(k_opad: sha.k_pad, key, key_sz); |
456 | |
457 | crypto_shash_init(desc: shash); |
458 | crypto_shash_update(desc: shash, data: sha.k_pad, len: block_size); |
459 | |
460 | sa_export_shash(state: &sha, hash: shash, digest_size, out: opad); |
461 | |
462 | memzero_explicit(s: &sha, count: sizeof(sha)); |
463 | } |
464 | |
465 | /* Derive the inverse key used in AES-CBC decryption operation */ |
466 | static inline int sa_aes_inv_key(u8 *inv_key, const u8 *key, u16 key_sz) |
467 | { |
468 | struct crypto_aes_ctx ctx; |
469 | int key_pos; |
470 | |
471 | if (aes_expandkey(ctx: &ctx, in_key: key, key_len: key_sz)) { |
472 | dev_err(sa_k3_dev, "%s: bad key len(%d)\n" , __func__, key_sz); |
473 | return -EINVAL; |
474 | } |
475 | |
476 | /* work around to get the right inverse for AES_KEYSIZE_192 size keys */ |
477 | if (key_sz == AES_KEYSIZE_192) { |
478 | ctx.key_enc[52] = ctx.key_enc[51] ^ ctx.key_enc[46]; |
479 | ctx.key_enc[53] = ctx.key_enc[52] ^ ctx.key_enc[47]; |
480 | } |
481 | |
482 | /* Based crypto_aes_expand_key logic */ |
483 | switch (key_sz) { |
484 | case AES_KEYSIZE_128: |
485 | case AES_KEYSIZE_192: |
486 | key_pos = key_sz + 24; |
487 | break; |
488 | |
489 | case AES_KEYSIZE_256: |
490 | key_pos = key_sz + 24 - 4; |
491 | break; |
492 | |
493 | default: |
494 | dev_err(sa_k3_dev, "%s: bad key len(%d)\n" , __func__, key_sz); |
495 | return -EINVAL; |
496 | } |
497 | |
498 | memcpy(inv_key, &ctx.key_enc[key_pos], key_sz); |
499 | return 0; |
500 | } |
501 | |
502 | /* Set Security context for the encryption engine */ |
503 | static int sa_set_sc_enc(struct algo_data *ad, const u8 *key, u16 key_sz, |
504 | u8 enc, u8 *sc_buf) |
505 | { |
506 | const u8 *mci = NULL; |
507 | |
508 | /* Set Encryption mode selector to crypto processing */ |
509 | sc_buf[0] = SA_CRYPTO_PROCESSING; |
510 | |
511 | if (enc) |
512 | mci = ad->mci_enc; |
513 | else |
514 | mci = ad->mci_dec; |
515 | /* Set the mode control instructions in security context */ |
516 | if (mci) |
517 | memcpy(&sc_buf[1], mci, MODE_CONTROL_BYTES); |
518 | |
519 | /* For AES-CBC decryption get the inverse key */ |
520 | if (ad->inv_key && !enc) { |
521 | if (sa_aes_inv_key(inv_key: &sc_buf[SC_ENC_KEY_OFFSET], key, key_sz)) |
522 | return -EINVAL; |
523 | /* For all other cases: key is used */ |
524 | } else { |
525 | memcpy(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz); |
526 | } |
527 | |
528 | return 0; |
529 | } |
530 | |
531 | /* Set Security context for the authentication engine */ |
532 | static void sa_set_sc_auth(struct algo_data *ad, const u8 *key, u16 key_sz, |
533 | u8 *sc_buf) |
534 | { |
535 | __be32 *ipad = (void *)(sc_buf + 32); |
536 | __be32 *opad = (void *)(sc_buf + 64); |
537 | |
538 | /* Set Authentication mode selector to hash processing */ |
539 | sc_buf[0] = SA_HASH_PROCESSING; |
540 | /* Auth SW ctrl word: bit[6]=1 (upload computed hash to TLR section) */ |
541 | sc_buf[1] = SA_UPLOAD_HASH_TO_TLR; |
542 | sc_buf[1] |= ad->auth_ctrl; |
543 | |
544 | /* Copy the keys or ipad/opad */ |
545 | if (ad->keyed_mac) |
546 | ad->prep_iopad(ad, key, key_sz, ipad, opad); |
547 | else { |
548 | /* basic hash */ |
549 | sc_buf[1] |= SA_BASIC_HASH; |
550 | } |
551 | } |
552 | |
553 | static inline void sa_copy_iv(__be32 *out, const u8 *iv, bool size16) |
554 | { |
555 | int j; |
556 | |
557 | for (j = 0; j < ((size16) ? 4 : 2); j++) { |
558 | *out = cpu_to_be32(*((u32 *)iv)); |
559 | iv += 4; |
560 | out++; |
561 | } |
562 | } |
563 | |
564 | /* Format general command label */ |
565 | static int sa_format_cmdl_gen(struct sa_cmdl_cfg *cfg, u8 *cmdl, |
566 | struct sa_cmdl_upd_info *upd_info) |
567 | { |
568 | u8 enc_offset = 0, auth_offset = 0, total = 0; |
569 | u8 enc_next_eng = SA_ENG_ID_OUTPORT2; |
570 | u8 auth_next_eng = SA_ENG_ID_OUTPORT2; |
571 | u32 *word_ptr = (u32 *)cmdl; |
572 | int i; |
573 | |
574 | /* Clear the command label */ |
575 | memzero_explicit(s: cmdl, count: (SA_MAX_CMDL_WORDS * sizeof(u32))); |
576 | |
577 | /* Iniialize the command update structure */ |
578 | memzero_explicit(s: upd_info, count: sizeof(*upd_info)); |
579 | |
580 | if (cfg->enc_eng_id && cfg->auth_eng_id) { |
581 | if (cfg->enc) { |
582 | auth_offset = SA_CMDL_HEADER_SIZE_BYTES; |
583 | enc_next_eng = cfg->auth_eng_id; |
584 | |
585 | if (cfg->iv_size) |
586 | auth_offset += cfg->iv_size; |
587 | } else { |
588 | enc_offset = SA_CMDL_HEADER_SIZE_BYTES; |
589 | auth_next_eng = cfg->enc_eng_id; |
590 | } |
591 | } |
592 | |
593 | if (cfg->enc_eng_id) { |
594 | upd_info->flags |= SA_CMDL_UPD_ENC; |
595 | upd_info->enc_size.index = enc_offset >> 2; |
596 | upd_info->enc_offset.index = upd_info->enc_size.index + 1; |
597 | /* Encryption command label */ |
598 | cmdl[enc_offset + SA_CMDL_OFFSET_NESC] = enc_next_eng; |
599 | |
600 | /* Encryption modes requiring IV */ |
601 | if (cfg->iv_size) { |
602 | upd_info->flags |= SA_CMDL_UPD_ENC_IV; |
603 | upd_info->enc_iv.index = |
604 | (enc_offset + SA_CMDL_HEADER_SIZE_BYTES) >> 2; |
605 | upd_info->enc_iv.size = cfg->iv_size; |
606 | |
607 | cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] = |
608 | SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size; |
609 | |
610 | cmdl[enc_offset + SA_CMDL_OFFSET_OPTION_CTRL1] = |
611 | (SA_CTX_ENC_AUX2_OFFSET | (cfg->iv_size >> 3)); |
612 | total += SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size; |
613 | } else { |
614 | cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] = |
615 | SA_CMDL_HEADER_SIZE_BYTES; |
616 | total += SA_CMDL_HEADER_SIZE_BYTES; |
617 | } |
618 | } |
619 | |
620 | if (cfg->auth_eng_id) { |
621 | upd_info->flags |= SA_CMDL_UPD_AUTH; |
622 | upd_info->auth_size.index = auth_offset >> 2; |
623 | upd_info->auth_offset.index = upd_info->auth_size.index + 1; |
624 | cmdl[auth_offset + SA_CMDL_OFFSET_NESC] = auth_next_eng; |
625 | cmdl[auth_offset + SA_CMDL_OFFSET_LABEL_LEN] = |
626 | SA_CMDL_HEADER_SIZE_BYTES; |
627 | total += SA_CMDL_HEADER_SIZE_BYTES; |
628 | } |
629 | |
630 | total = roundup(total, 8); |
631 | |
632 | for (i = 0; i < total / 4; i++) |
633 | word_ptr[i] = swab32(word_ptr[i]); |
634 | |
635 | return total; |
636 | } |
637 | |
638 | /* Update Command label */ |
639 | static inline void sa_update_cmdl(struct sa_req *req, u32 *cmdl, |
640 | struct sa_cmdl_upd_info *upd_info) |
641 | { |
642 | int i = 0, j; |
643 | |
644 | if (likely(upd_info->flags & SA_CMDL_UPD_ENC)) { |
645 | cmdl[upd_info->enc_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK; |
646 | cmdl[upd_info->enc_size.index] |= req->enc_size; |
647 | cmdl[upd_info->enc_offset.index] &= |
648 | ~SA_CMDL_SOP_BYPASS_LEN_MASK; |
649 | cmdl[upd_info->enc_offset.index] |= |
650 | FIELD_PREP(SA_CMDL_SOP_BYPASS_LEN_MASK, |
651 | req->enc_offset); |
652 | |
653 | if (likely(upd_info->flags & SA_CMDL_UPD_ENC_IV)) { |
654 | __be32 *data = (__be32 *)&cmdl[upd_info->enc_iv.index]; |
655 | u32 *enc_iv = (u32 *)req->enc_iv; |
656 | |
657 | for (j = 0; i < upd_info->enc_iv.size; i += 4, j++) { |
658 | data[j] = cpu_to_be32(*enc_iv); |
659 | enc_iv++; |
660 | } |
661 | } |
662 | } |
663 | |
664 | if (likely(upd_info->flags & SA_CMDL_UPD_AUTH)) { |
665 | cmdl[upd_info->auth_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK; |
666 | cmdl[upd_info->auth_size.index] |= req->auth_size; |
667 | cmdl[upd_info->auth_offset.index] &= |
668 | ~SA_CMDL_SOP_BYPASS_LEN_MASK; |
669 | cmdl[upd_info->auth_offset.index] |= |
670 | FIELD_PREP(SA_CMDL_SOP_BYPASS_LEN_MASK, |
671 | req->auth_offset); |
672 | if (upd_info->flags & SA_CMDL_UPD_AUTH_IV) { |
673 | sa_copy_iv(out: (void *)&cmdl[upd_info->auth_iv.index], |
674 | iv: req->auth_iv, |
675 | size16: (upd_info->auth_iv.size > 8)); |
676 | } |
677 | if (upd_info->flags & SA_CMDL_UPD_AUX_KEY) { |
678 | int offset = (req->auth_size & 0xF) ? 4 : 0; |
679 | |
680 | memcpy(&cmdl[upd_info->aux_key_info.index], |
681 | &upd_info->aux_key[offset], 16); |
682 | } |
683 | } |
684 | } |
685 | |
686 | /* Format SWINFO words to be sent to SA */ |
687 | static |
688 | void sa_set_swinfo(u8 eng_id, u16 sc_id, dma_addr_t sc_phys, |
689 | u8 cmdl_present, u8 cmdl_offset, u8 flags, |
690 | u8 hash_size, u32 *swinfo) |
691 | { |
692 | swinfo[0] = sc_id; |
693 | swinfo[0] |= FIELD_PREP(SA_SW0_FLAGS_MASK, flags); |
694 | if (likely(cmdl_present)) |
695 | swinfo[0] |= FIELD_PREP(SA_SW0_CMDL_INFO_MASK, |
696 | cmdl_offset | SA_SW0_CMDL_PRESENT); |
697 | swinfo[0] |= FIELD_PREP(SA_SW0_ENG_ID_MASK, eng_id); |
698 | |
699 | swinfo[0] |= SA_SW0_DEST_INFO_PRESENT; |
700 | swinfo[1] = (u32)(sc_phys & 0xFFFFFFFFULL); |
701 | swinfo[2] = (u32)((sc_phys & 0xFFFFFFFF00000000ULL) >> 32); |
702 | swinfo[2] |= FIELD_PREP(SA_SW2_EGRESS_LENGTH, hash_size); |
703 | } |
704 | |
705 | /* Dump the security context */ |
706 | static void sa_dump_sc(u8 *buf, dma_addr_t dma_addr) |
707 | { |
708 | #ifdef DEBUG |
709 | dev_info(sa_k3_dev, "Security context dump:: 0x%pad\n" , &dma_addr); |
710 | print_hex_dump(KERN_CONT, "" , DUMP_PREFIX_OFFSET, |
711 | 16, 1, buf, SA_CTX_MAX_SZ, false); |
712 | #endif |
713 | } |
714 | |
715 | static |
716 | int sa_init_sc(struct sa_ctx_info *ctx, const struct sa_match_data *match_data, |
717 | const u8 *enc_key, u16 enc_key_sz, |
718 | const u8 *auth_key, u16 auth_key_sz, |
719 | struct algo_data *ad, u8 enc, u32 *swinfo) |
720 | { |
721 | int enc_sc_offset = 0; |
722 | int auth_sc_offset = 0; |
723 | u8 *sc_buf = ctx->sc; |
724 | u16 sc_id = ctx->sc_id; |
725 | u8 first_engine = 0; |
726 | |
727 | memzero_explicit(s: sc_buf, SA_CTX_MAX_SZ); |
728 | |
729 | if (ad->auth_eng.eng_id) { |
730 | if (enc) |
731 | first_engine = ad->enc_eng.eng_id; |
732 | else |
733 | first_engine = ad->auth_eng.eng_id; |
734 | |
735 | enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ; |
736 | auth_sc_offset = enc_sc_offset + ad->enc_eng.sc_size; |
737 | sc_buf[1] = SA_SCCTL_FE_AUTH_ENC; |
738 | if (!ad->hash_size) |
739 | return -EINVAL; |
740 | ad->hash_size = roundup(ad->hash_size, 8); |
741 | |
742 | } else if (ad->enc_eng.eng_id && !ad->auth_eng.eng_id) { |
743 | enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ; |
744 | first_engine = ad->enc_eng.eng_id; |
745 | sc_buf[1] = SA_SCCTL_FE_ENC; |
746 | ad->hash_size = ad->iv_out_size; |
747 | } |
748 | |
749 | /* SCCTL Owner info: 0=host, 1=CP_ACE */ |
750 | sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0; |
751 | memcpy(&sc_buf[2], &sc_id, 2); |
752 | sc_buf[4] = 0x0; |
753 | sc_buf[5] = match_data->priv_id; |
754 | sc_buf[6] = match_data->priv; |
755 | sc_buf[7] = 0x0; |
756 | |
757 | /* Prepare context for encryption engine */ |
758 | if (ad->enc_eng.sc_size) { |
759 | if (sa_set_sc_enc(ad, key: enc_key, key_sz: enc_key_sz, enc, |
760 | sc_buf: &sc_buf[enc_sc_offset])) |
761 | return -EINVAL; |
762 | } |
763 | |
764 | /* Prepare context for authentication engine */ |
765 | if (ad->auth_eng.sc_size) |
766 | sa_set_sc_auth(ad, key: auth_key, key_sz: auth_key_sz, |
767 | sc_buf: &sc_buf[auth_sc_offset]); |
768 | |
769 | /* Set the ownership of context to CP_ACE */ |
770 | sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0x80; |
771 | |
772 | /* swizzle the security context */ |
773 | sa_swiz_128(in: sc_buf, SA_CTX_MAX_SZ); |
774 | |
775 | sa_set_swinfo(eng_id: first_engine, sc_id: ctx->sc_id, sc_phys: ctx->sc_phys, cmdl_present: 1, cmdl_offset: 0, |
776 | SA_SW_INFO_FLAG_EVICT, hash_size: ad->hash_size, swinfo); |
777 | |
778 | sa_dump_sc(buf: sc_buf, dma_addr: ctx->sc_phys); |
779 | |
780 | return 0; |
781 | } |
782 | |
783 | /* Free the per direction context memory */ |
784 | static void sa_free_ctx_info(struct sa_ctx_info *ctx, |
785 | struct sa_crypto_data *data) |
786 | { |
787 | unsigned long bn; |
788 | |
789 | bn = ctx->sc_id - data->sc_id_start; |
790 | spin_lock(lock: &data->scid_lock); |
791 | __clear_bit(bn, data->ctx_bm); |
792 | data->sc_id--; |
793 | spin_unlock(lock: &data->scid_lock); |
794 | |
795 | if (ctx->sc) { |
796 | dma_pool_free(pool: data->sc_pool, vaddr: ctx->sc, addr: ctx->sc_phys); |
797 | ctx->sc = NULL; |
798 | } |
799 | } |
800 | |
801 | static int sa_init_ctx_info(struct sa_ctx_info *ctx, |
802 | struct sa_crypto_data *data) |
803 | { |
804 | unsigned long bn; |
805 | int err; |
806 | |
807 | spin_lock(lock: &data->scid_lock); |
808 | bn = find_first_zero_bit(addr: data->ctx_bm, SA_MAX_NUM_CTX); |
809 | __set_bit(bn, data->ctx_bm); |
810 | data->sc_id++; |
811 | spin_unlock(lock: &data->scid_lock); |
812 | |
813 | ctx->sc_id = (u16)(data->sc_id_start + bn); |
814 | |
815 | ctx->sc = dma_pool_alloc(pool: data->sc_pool, GFP_KERNEL, handle: &ctx->sc_phys); |
816 | if (!ctx->sc) { |
817 | dev_err(&data->pdev->dev, "Failed to allocate SC memory\n" ); |
818 | err = -ENOMEM; |
819 | goto scid_rollback; |
820 | } |
821 | |
822 | return 0; |
823 | |
824 | scid_rollback: |
825 | spin_lock(lock: &data->scid_lock); |
826 | __clear_bit(bn, data->ctx_bm); |
827 | data->sc_id--; |
828 | spin_unlock(lock: &data->scid_lock); |
829 | |
830 | return err; |
831 | } |
832 | |
833 | static void sa_cipher_cra_exit(struct crypto_skcipher *tfm) |
834 | { |
835 | struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); |
836 | struct sa_crypto_data *data = dev_get_drvdata(dev: sa_k3_dev); |
837 | |
838 | dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n" , |
839 | __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, |
840 | ctx->dec.sc_id, &ctx->dec.sc_phys); |
841 | |
842 | sa_free_ctx_info(ctx: &ctx->enc, data); |
843 | sa_free_ctx_info(ctx: &ctx->dec, data); |
844 | |
845 | crypto_free_skcipher(tfm: ctx->fallback.skcipher); |
846 | } |
847 | |
848 | static int sa_cipher_cra_init(struct crypto_skcipher *tfm) |
849 | { |
850 | struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); |
851 | struct sa_crypto_data *data = dev_get_drvdata(dev: sa_k3_dev); |
852 | const char *name = crypto_tfm_alg_name(tfm: &tfm->base); |
853 | struct crypto_skcipher *child; |
854 | int ret; |
855 | |
856 | memzero_explicit(s: ctx, count: sizeof(*ctx)); |
857 | ctx->dev_data = data; |
858 | |
859 | ret = sa_init_ctx_info(ctx: &ctx->enc, data); |
860 | if (ret) |
861 | return ret; |
862 | ret = sa_init_ctx_info(ctx: &ctx->dec, data); |
863 | if (ret) { |
864 | sa_free_ctx_info(ctx: &ctx->enc, data); |
865 | return ret; |
866 | } |
867 | |
868 | child = crypto_alloc_skcipher(alg_name: name, type: 0, CRYPTO_ALG_NEED_FALLBACK); |
869 | |
870 | if (IS_ERR(ptr: child)) { |
871 | dev_err(sa_k3_dev, "Error allocating fallback algo %s\n" , name); |
872 | return PTR_ERR(ptr: child); |
873 | } |
874 | |
875 | ctx->fallback.skcipher = child; |
876 | crypto_skcipher_set_reqsize(skcipher: tfm, reqsize: crypto_skcipher_reqsize(tfm: child) + |
877 | sizeof(struct skcipher_request)); |
878 | |
879 | dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n" , |
880 | __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, |
881 | ctx->dec.sc_id, &ctx->dec.sc_phys); |
882 | return 0; |
883 | } |
884 | |
885 | static int sa_cipher_setkey(struct crypto_skcipher *tfm, const u8 *key, |
886 | unsigned int keylen, struct algo_data *ad) |
887 | { |
888 | struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); |
889 | struct crypto_skcipher *child = ctx->fallback.skcipher; |
890 | int cmdl_len; |
891 | struct sa_cmdl_cfg cfg; |
892 | int ret; |
893 | |
894 | if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && |
895 | keylen != AES_KEYSIZE_256) |
896 | return -EINVAL; |
897 | |
898 | ad->enc_eng.eng_id = SA_ENG_ID_EM1; |
899 | ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ; |
900 | |
901 | memzero_explicit(s: &cfg, count: sizeof(cfg)); |
902 | cfg.enc_eng_id = ad->enc_eng.eng_id; |
903 | cfg.iv_size = crypto_skcipher_ivsize(tfm); |
904 | |
905 | crypto_skcipher_clear_flags(tfm: child, CRYPTO_TFM_REQ_MASK); |
906 | crypto_skcipher_set_flags(tfm: child, flags: tfm->base.crt_flags & |
907 | CRYPTO_TFM_REQ_MASK); |
908 | ret = crypto_skcipher_setkey(tfm: child, key, keylen); |
909 | if (ret) |
910 | return ret; |
911 | |
912 | /* Setup Encryption Security Context & Command label template */ |
913 | if (sa_init_sc(ctx: &ctx->enc, match_data: ctx->dev_data->match_data, enc_key: key, enc_key_sz: keylen, NULL, auth_key_sz: 0, |
914 | ad, enc: 1, swinfo: &ctx->enc.epib[1])) |
915 | goto badkey; |
916 | |
917 | cmdl_len = sa_format_cmdl_gen(cfg: &cfg, |
918 | cmdl: (u8 *)ctx->enc.cmdl, |
919 | upd_info: &ctx->enc.cmdl_upd_info); |
920 | if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) |
921 | goto badkey; |
922 | |
923 | ctx->enc.cmdl_size = cmdl_len; |
924 | |
925 | /* Setup Decryption Security Context & Command label template */ |
926 | if (sa_init_sc(ctx: &ctx->dec, match_data: ctx->dev_data->match_data, enc_key: key, enc_key_sz: keylen, NULL, auth_key_sz: 0, |
927 | ad, enc: 0, swinfo: &ctx->dec.epib[1])) |
928 | goto badkey; |
929 | |
930 | cfg.enc_eng_id = ad->enc_eng.eng_id; |
931 | cmdl_len = sa_format_cmdl_gen(cfg: &cfg, cmdl: (u8 *)ctx->dec.cmdl, |
932 | upd_info: &ctx->dec.cmdl_upd_info); |
933 | |
934 | if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) |
935 | goto badkey; |
936 | |
937 | ctx->dec.cmdl_size = cmdl_len; |
938 | ctx->iv_idx = ad->iv_idx; |
939 | |
940 | return 0; |
941 | |
942 | badkey: |
943 | dev_err(sa_k3_dev, "%s: badkey\n" , __func__); |
944 | return -EINVAL; |
945 | } |
946 | |
947 | static int sa_aes_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key, |
948 | unsigned int keylen) |
949 | { |
950 | struct algo_data ad = { 0 }; |
951 | /* Convert the key size (16/24/32) to the key size index (0/1/2) */ |
952 | int key_idx = (keylen >> 3) - 2; |
953 | |
954 | if (key_idx >= 3) |
955 | return -EINVAL; |
956 | |
957 | ad.mci_enc = mci_cbc_enc_array[key_idx]; |
958 | ad.mci_dec = mci_cbc_dec_array[key_idx]; |
959 | ad.inv_key = true; |
960 | ad.ealg_id = SA_EALG_ID_AES_CBC; |
961 | ad.iv_idx = 4; |
962 | ad.iv_out_size = 16; |
963 | |
964 | return sa_cipher_setkey(tfm, key, keylen, ad: &ad); |
965 | } |
966 | |
967 | static int sa_aes_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key, |
968 | unsigned int keylen) |
969 | { |
970 | struct algo_data ad = { 0 }; |
971 | /* Convert the key size (16/24/32) to the key size index (0/1/2) */ |
972 | int key_idx = (keylen >> 3) - 2; |
973 | |
974 | if (key_idx >= 3) |
975 | return -EINVAL; |
976 | |
977 | ad.mci_enc = mci_ecb_enc_array[key_idx]; |
978 | ad.mci_dec = mci_ecb_dec_array[key_idx]; |
979 | ad.inv_key = true; |
980 | ad.ealg_id = SA_EALG_ID_AES_ECB; |
981 | |
982 | return sa_cipher_setkey(tfm, key, keylen, ad: &ad); |
983 | } |
984 | |
985 | static int sa_3des_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key, |
986 | unsigned int keylen) |
987 | { |
988 | struct algo_data ad = { 0 }; |
989 | |
990 | ad.mci_enc = mci_cbc_3des_enc_array; |
991 | ad.mci_dec = mci_cbc_3des_dec_array; |
992 | ad.ealg_id = SA_EALG_ID_3DES_CBC; |
993 | ad.iv_idx = 6; |
994 | ad.iv_out_size = 8; |
995 | |
996 | return sa_cipher_setkey(tfm, key, keylen, ad: &ad); |
997 | } |
998 | |
999 | static int sa_3des_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key, |
1000 | unsigned int keylen) |
1001 | { |
1002 | struct algo_data ad = { 0 }; |
1003 | |
1004 | ad.mci_enc = mci_ecb_3des_enc_array; |
1005 | ad.mci_dec = mci_ecb_3des_dec_array; |
1006 | |
1007 | return sa_cipher_setkey(tfm, key, keylen, ad: &ad); |
1008 | } |
1009 | |
1010 | static void sa_sync_from_device(struct sa_rx_data *rxd) |
1011 | { |
1012 | struct sg_table *sgt; |
1013 | |
1014 | if (rxd->mapped_sg[0].dir == DMA_BIDIRECTIONAL) |
1015 | sgt = &rxd->mapped_sg[0].sgt; |
1016 | else |
1017 | sgt = &rxd->mapped_sg[1].sgt; |
1018 | |
1019 | dma_sync_sgtable_for_cpu(dev: rxd->ddev, sgt, dir: DMA_FROM_DEVICE); |
1020 | } |
1021 | |
1022 | static void sa_free_sa_rx_data(struct sa_rx_data *rxd) |
1023 | { |
1024 | int i; |
1025 | |
1026 | for (i = 0; i < ARRAY_SIZE(rxd->mapped_sg); i++) { |
1027 | struct sa_mapped_sg *mapped_sg = &rxd->mapped_sg[i]; |
1028 | |
1029 | if (mapped_sg->mapped) { |
1030 | dma_unmap_sgtable(dev: rxd->ddev, sgt: &mapped_sg->sgt, |
1031 | dir: mapped_sg->dir, attrs: 0); |
1032 | kfree(objp: mapped_sg->split_sg); |
1033 | } |
1034 | } |
1035 | |
1036 | kfree(objp: rxd); |
1037 | } |
1038 | |
1039 | static void sa_aes_dma_in_callback(void *data) |
1040 | { |
1041 | struct sa_rx_data *rxd = data; |
1042 | struct skcipher_request *req; |
1043 | u32 *result; |
1044 | __be32 *mdptr; |
1045 | size_t ml, pl; |
1046 | int i; |
1047 | |
1048 | sa_sync_from_device(rxd); |
1049 | req = container_of(rxd->req, struct skcipher_request, base); |
1050 | |
1051 | if (req->iv) { |
1052 | mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(desc: rxd->tx_in, payload_len: &pl, |
1053 | max_len: &ml); |
1054 | result = (u32 *)req->iv; |
1055 | |
1056 | for (i = 0; i < (rxd->enc_iv_size / 4); i++) |
1057 | result[i] = be32_to_cpu(mdptr[i + rxd->iv_idx]); |
1058 | } |
1059 | |
1060 | sa_free_sa_rx_data(rxd); |
1061 | |
1062 | skcipher_request_complete(req, err: 0); |
1063 | } |
1064 | |
1065 | static void |
1066 | sa_prepare_tx_desc(u32 *mdptr, u32 pslen, u32 *psdata, u32 epiblen, u32 *epib) |
1067 | { |
1068 | u32 *out, *in; |
1069 | int i; |
1070 | |
1071 | for (out = mdptr, in = epib, i = 0; i < epiblen / sizeof(u32); i++) |
1072 | *out++ = *in++; |
1073 | |
1074 | mdptr[4] = (0xFFFF << 16); |
1075 | for (out = &mdptr[5], in = psdata, i = 0; |
1076 | i < pslen / sizeof(u32); i++) |
1077 | *out++ = *in++; |
1078 | } |
1079 | |
1080 | static int sa_run(struct sa_req *req) |
1081 | { |
1082 | struct sa_rx_data *rxd; |
1083 | gfp_t gfp_flags; |
1084 | u32 cmdl[SA_MAX_CMDL_WORDS]; |
1085 | struct sa_crypto_data *pdata = dev_get_drvdata(dev: sa_k3_dev); |
1086 | struct device *ddev; |
1087 | struct dma_chan *dma_rx; |
1088 | int sg_nents, src_nents, dst_nents; |
1089 | struct scatterlist *src, *dst; |
1090 | size_t pl, ml, split_size; |
1091 | struct sa_ctx_info *sa_ctx = req->enc ? &req->ctx->enc : &req->ctx->dec; |
1092 | int ret; |
1093 | struct dma_async_tx_descriptor *tx_out; |
1094 | u32 *mdptr; |
1095 | bool diff_dst; |
1096 | enum dma_data_direction dir_src; |
1097 | struct sa_mapped_sg *mapped_sg; |
1098 | |
1099 | gfp_flags = req->base->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? |
1100 | GFP_KERNEL : GFP_ATOMIC; |
1101 | |
1102 | rxd = kzalloc(size: sizeof(*rxd), flags: gfp_flags); |
1103 | if (!rxd) |
1104 | return -ENOMEM; |
1105 | |
1106 | if (req->src != req->dst) { |
1107 | diff_dst = true; |
1108 | dir_src = DMA_TO_DEVICE; |
1109 | } else { |
1110 | diff_dst = false; |
1111 | dir_src = DMA_BIDIRECTIONAL; |
1112 | } |
1113 | |
1114 | /* |
1115 | * SA2UL has an interesting feature where the receive DMA channel |
1116 | * is selected based on the data passed to the engine. Within the |
1117 | * transition range, there is also a space where it is impossible |
1118 | * to determine where the data will end up, and this should be |
1119 | * avoided. This will be handled by the SW fallback mechanism by |
1120 | * the individual algorithm implementations. |
1121 | */ |
1122 | if (req->size >= 256) |
1123 | dma_rx = pdata->dma_rx2; |
1124 | else |
1125 | dma_rx = pdata->dma_rx1; |
1126 | |
1127 | ddev = dmaengine_get_dma_device(chan: pdata->dma_tx); |
1128 | rxd->ddev = ddev; |
1129 | |
1130 | memcpy(cmdl, sa_ctx->cmdl, sa_ctx->cmdl_size); |
1131 | |
1132 | sa_update_cmdl(req, cmdl, upd_info: &sa_ctx->cmdl_upd_info); |
1133 | |
1134 | if (req->type != CRYPTO_ALG_TYPE_AHASH) { |
1135 | if (req->enc) |
1136 | req->type |= |
1137 | (SA_REQ_SUBTYPE_ENC << SA_REQ_SUBTYPE_SHIFT); |
1138 | else |
1139 | req->type |= |
1140 | (SA_REQ_SUBTYPE_DEC << SA_REQ_SUBTYPE_SHIFT); |
1141 | } |
1142 | |
1143 | cmdl[sa_ctx->cmdl_size / sizeof(u32)] = req->type; |
1144 | |
1145 | /* |
1146 | * Map the packets, first we check if the data fits into a single |
1147 | * sg entry and use that if possible. If it does not fit, we check |
1148 | * if we need to do sg_split to align the scatterlist data on the |
1149 | * actual data size being processed by the crypto engine. |
1150 | */ |
1151 | src = req->src; |
1152 | sg_nents = sg_nents_for_len(sg: src, len: req->size); |
1153 | |
1154 | split_size = req->size; |
1155 | |
1156 | mapped_sg = &rxd->mapped_sg[0]; |
1157 | if (sg_nents == 1 && split_size <= req->src->length) { |
1158 | src = &mapped_sg->static_sg; |
1159 | src_nents = 1; |
1160 | sg_init_table(src, 1); |
1161 | sg_set_page(sg: src, page: sg_page(sg: req->src), len: split_size, |
1162 | offset: req->src->offset); |
1163 | |
1164 | mapped_sg->sgt.sgl = src; |
1165 | mapped_sg->sgt.orig_nents = src_nents; |
1166 | ret = dma_map_sgtable(dev: ddev, sgt: &mapped_sg->sgt, dir: dir_src, attrs: 0); |
1167 | if (ret) { |
1168 | kfree(objp: rxd); |
1169 | return ret; |
1170 | } |
1171 | |
1172 | mapped_sg->dir = dir_src; |
1173 | mapped_sg->mapped = true; |
1174 | } else { |
1175 | mapped_sg->sgt.sgl = req->src; |
1176 | mapped_sg->sgt.orig_nents = sg_nents; |
1177 | ret = dma_map_sgtable(dev: ddev, sgt: &mapped_sg->sgt, dir: dir_src, attrs: 0); |
1178 | if (ret) { |
1179 | kfree(objp: rxd); |
1180 | return ret; |
1181 | } |
1182 | |
1183 | mapped_sg->dir = dir_src; |
1184 | mapped_sg->mapped = true; |
1185 | |
1186 | ret = sg_split(in: mapped_sg->sgt.sgl, in_mapped_nents: mapped_sg->sgt.nents, skip: 0, nb_splits: 1, |
1187 | split_sizes: &split_size, out: &src, out_mapped_nents: &src_nents, gfp_mask: gfp_flags); |
1188 | if (ret) { |
1189 | src_nents = mapped_sg->sgt.nents; |
1190 | src = mapped_sg->sgt.sgl; |
1191 | } else { |
1192 | mapped_sg->split_sg = src; |
1193 | } |
1194 | } |
1195 | |
1196 | dma_sync_sgtable_for_device(dev: ddev, sgt: &mapped_sg->sgt, dir: DMA_TO_DEVICE); |
1197 | |
1198 | if (!diff_dst) { |
1199 | dst_nents = src_nents; |
1200 | dst = src; |
1201 | } else { |
1202 | dst_nents = sg_nents_for_len(sg: req->dst, len: req->size); |
1203 | mapped_sg = &rxd->mapped_sg[1]; |
1204 | |
1205 | if (dst_nents == 1 && split_size <= req->dst->length) { |
1206 | dst = &mapped_sg->static_sg; |
1207 | dst_nents = 1; |
1208 | sg_init_table(dst, 1); |
1209 | sg_set_page(sg: dst, page: sg_page(sg: req->dst), len: split_size, |
1210 | offset: req->dst->offset); |
1211 | |
1212 | mapped_sg->sgt.sgl = dst; |
1213 | mapped_sg->sgt.orig_nents = dst_nents; |
1214 | ret = dma_map_sgtable(dev: ddev, sgt: &mapped_sg->sgt, |
1215 | dir: DMA_FROM_DEVICE, attrs: 0); |
1216 | if (ret) |
1217 | goto err_cleanup; |
1218 | |
1219 | mapped_sg->dir = DMA_FROM_DEVICE; |
1220 | mapped_sg->mapped = true; |
1221 | } else { |
1222 | mapped_sg->sgt.sgl = req->dst; |
1223 | mapped_sg->sgt.orig_nents = dst_nents; |
1224 | ret = dma_map_sgtable(dev: ddev, sgt: &mapped_sg->sgt, |
1225 | dir: DMA_FROM_DEVICE, attrs: 0); |
1226 | if (ret) |
1227 | goto err_cleanup; |
1228 | |
1229 | mapped_sg->dir = DMA_FROM_DEVICE; |
1230 | mapped_sg->mapped = true; |
1231 | |
1232 | ret = sg_split(in: mapped_sg->sgt.sgl, in_mapped_nents: mapped_sg->sgt.nents, |
1233 | skip: 0, nb_splits: 1, split_sizes: &split_size, out: &dst, out_mapped_nents: &dst_nents, |
1234 | gfp_mask: gfp_flags); |
1235 | if (ret) { |
1236 | dst_nents = mapped_sg->sgt.nents; |
1237 | dst = mapped_sg->sgt.sgl; |
1238 | } else { |
1239 | mapped_sg->split_sg = dst; |
1240 | } |
1241 | } |
1242 | } |
1243 | |
1244 | rxd->tx_in = dmaengine_prep_slave_sg(chan: dma_rx, sgl: dst, sg_len: dst_nents, |
1245 | dir: DMA_DEV_TO_MEM, |
1246 | flags: DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
1247 | if (!rxd->tx_in) { |
1248 | dev_err(pdata->dev, "IN prep_slave_sg() failed\n" ); |
1249 | ret = -EINVAL; |
1250 | goto err_cleanup; |
1251 | } |
1252 | |
1253 | rxd->req = (void *)req->base; |
1254 | rxd->enc = req->enc; |
1255 | rxd->iv_idx = req->ctx->iv_idx; |
1256 | rxd->enc_iv_size = sa_ctx->cmdl_upd_info.enc_iv.size; |
1257 | rxd->tx_in->callback = req->callback; |
1258 | rxd->tx_in->callback_param = rxd; |
1259 | |
1260 | tx_out = dmaengine_prep_slave_sg(chan: pdata->dma_tx, sgl: src, |
1261 | sg_len: src_nents, dir: DMA_MEM_TO_DEV, |
1262 | flags: DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
1263 | |
1264 | if (!tx_out) { |
1265 | dev_err(pdata->dev, "OUT prep_slave_sg() failed\n" ); |
1266 | ret = -EINVAL; |
1267 | goto err_cleanup; |
1268 | } |
1269 | |
1270 | /* |
1271 | * Prepare metadata for DMA engine. This essentially describes the |
1272 | * crypto algorithm to be used, data sizes, different keys etc. |
1273 | */ |
1274 | mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(desc: tx_out, payload_len: &pl, max_len: &ml); |
1275 | |
1276 | sa_prepare_tx_desc(mdptr, pslen: (sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * |
1277 | sizeof(u32))), psdata: cmdl, epiblen: sizeof(sa_ctx->epib), |
1278 | epib: sa_ctx->epib); |
1279 | |
1280 | ml = sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * sizeof(u32)); |
1281 | dmaengine_desc_set_metadata_len(desc: tx_out, payload_len: req->mdata_size); |
1282 | |
1283 | dmaengine_submit(desc: tx_out); |
1284 | dmaengine_submit(desc: rxd->tx_in); |
1285 | |
1286 | dma_async_issue_pending(chan: dma_rx); |
1287 | dma_async_issue_pending(chan: pdata->dma_tx); |
1288 | |
1289 | return -EINPROGRESS; |
1290 | |
1291 | err_cleanup: |
1292 | sa_free_sa_rx_data(rxd); |
1293 | |
1294 | return ret; |
1295 | } |
1296 | |
1297 | static int sa_cipher_run(struct skcipher_request *req, u8 *iv, int enc) |
1298 | { |
1299 | struct sa_tfm_ctx *ctx = |
1300 | crypto_skcipher_ctx(tfm: crypto_skcipher_reqtfm(req)); |
1301 | struct crypto_alg *alg = req->base.tfm->__crt_alg; |
1302 | struct sa_req sa_req = { 0 }; |
1303 | |
1304 | if (!req->cryptlen) |
1305 | return 0; |
1306 | |
1307 | if (req->cryptlen % alg->cra_blocksize) |
1308 | return -EINVAL; |
1309 | |
1310 | /* Use SW fallback if the data size is not supported */ |
1311 | if (req->cryptlen > SA_MAX_DATA_SZ || |
1312 | (req->cryptlen >= SA_UNSAFE_DATA_SZ_MIN && |
1313 | req->cryptlen <= SA_UNSAFE_DATA_SZ_MAX)) { |
1314 | struct skcipher_request *subreq = skcipher_request_ctx(req); |
1315 | |
1316 | skcipher_request_set_tfm(req: subreq, tfm: ctx->fallback.skcipher); |
1317 | skcipher_request_set_callback(req: subreq, flags: req->base.flags, |
1318 | compl: req->base.complete, |
1319 | data: req->base.data); |
1320 | skcipher_request_set_crypt(req: subreq, src: req->src, dst: req->dst, |
1321 | cryptlen: req->cryptlen, iv: req->iv); |
1322 | if (enc) |
1323 | return crypto_skcipher_encrypt(req: subreq); |
1324 | else |
1325 | return crypto_skcipher_decrypt(req: subreq); |
1326 | } |
1327 | |
1328 | sa_req.size = req->cryptlen; |
1329 | sa_req.enc_size = req->cryptlen; |
1330 | sa_req.src = req->src; |
1331 | sa_req.dst = req->dst; |
1332 | sa_req.enc_iv = iv; |
1333 | sa_req.type = CRYPTO_ALG_TYPE_SKCIPHER; |
1334 | sa_req.enc = enc; |
1335 | sa_req.callback = sa_aes_dma_in_callback; |
1336 | sa_req.mdata_size = 44; |
1337 | sa_req.base = &req->base; |
1338 | sa_req.ctx = ctx; |
1339 | |
1340 | return sa_run(req: &sa_req); |
1341 | } |
1342 | |
1343 | static int sa_encrypt(struct skcipher_request *req) |
1344 | { |
1345 | return sa_cipher_run(req, iv: req->iv, enc: 1); |
1346 | } |
1347 | |
1348 | static int sa_decrypt(struct skcipher_request *req) |
1349 | { |
1350 | return sa_cipher_run(req, iv: req->iv, enc: 0); |
1351 | } |
1352 | |
1353 | static void sa_sha_dma_in_callback(void *data) |
1354 | { |
1355 | struct sa_rx_data *rxd = data; |
1356 | struct ahash_request *req; |
1357 | struct crypto_ahash *tfm; |
1358 | unsigned int authsize; |
1359 | int i; |
1360 | size_t ml, pl; |
1361 | u32 *result; |
1362 | __be32 *mdptr; |
1363 | |
1364 | sa_sync_from_device(rxd); |
1365 | req = container_of(rxd->req, struct ahash_request, base); |
1366 | tfm = crypto_ahash_reqtfm(req); |
1367 | authsize = crypto_ahash_digestsize(tfm); |
1368 | |
1369 | mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(desc: rxd->tx_in, payload_len: &pl, max_len: &ml); |
1370 | result = (u32 *)req->result; |
1371 | |
1372 | for (i = 0; i < (authsize / 4); i++) |
1373 | result[i] = be32_to_cpu(mdptr[i + 4]); |
1374 | |
1375 | sa_free_sa_rx_data(rxd); |
1376 | |
1377 | ahash_request_complete(req, err: 0); |
1378 | } |
1379 | |
1380 | static int zero_message_process(struct ahash_request *req) |
1381 | { |
1382 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
1383 | int sa_digest_size = crypto_ahash_digestsize(tfm); |
1384 | |
1385 | switch (sa_digest_size) { |
1386 | case SHA1_DIGEST_SIZE: |
1387 | memcpy(req->result, sha1_zero_message_hash, sa_digest_size); |
1388 | break; |
1389 | case SHA256_DIGEST_SIZE: |
1390 | memcpy(req->result, sha256_zero_message_hash, sa_digest_size); |
1391 | break; |
1392 | case SHA512_DIGEST_SIZE: |
1393 | memcpy(req->result, sha512_zero_message_hash, sa_digest_size); |
1394 | break; |
1395 | default: |
1396 | return -EINVAL; |
1397 | } |
1398 | |
1399 | return 0; |
1400 | } |
1401 | |
1402 | static int sa_sha_run(struct ahash_request *req) |
1403 | { |
1404 | struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm: crypto_ahash_reqtfm(req)); |
1405 | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
1406 | struct sa_req sa_req = { 0 }; |
1407 | size_t auth_len; |
1408 | |
1409 | auth_len = req->nbytes; |
1410 | |
1411 | if (!auth_len) |
1412 | return zero_message_process(req); |
1413 | |
1414 | if (auth_len > SA_MAX_DATA_SZ || |
1415 | (auth_len >= SA_UNSAFE_DATA_SZ_MIN && |
1416 | auth_len <= SA_UNSAFE_DATA_SZ_MAX)) { |
1417 | struct ahash_request *subreq = &rctx->fallback_req; |
1418 | int ret = 0; |
1419 | |
1420 | ahash_request_set_tfm(req: subreq, tfm: ctx->fallback.ahash); |
1421 | subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
1422 | |
1423 | crypto_ahash_init(req: subreq); |
1424 | |
1425 | subreq->nbytes = auth_len; |
1426 | subreq->src = req->src; |
1427 | subreq->result = req->result; |
1428 | |
1429 | ret |= crypto_ahash_update(req: subreq); |
1430 | |
1431 | subreq->nbytes = 0; |
1432 | |
1433 | ret |= crypto_ahash_final(req: subreq); |
1434 | |
1435 | return ret; |
1436 | } |
1437 | |
1438 | sa_req.size = auth_len; |
1439 | sa_req.auth_size = auth_len; |
1440 | sa_req.src = req->src; |
1441 | sa_req.dst = req->src; |
1442 | sa_req.enc = true; |
1443 | sa_req.type = CRYPTO_ALG_TYPE_AHASH; |
1444 | sa_req.callback = sa_sha_dma_in_callback; |
1445 | sa_req.mdata_size = 28; |
1446 | sa_req.ctx = ctx; |
1447 | sa_req.base = &req->base; |
1448 | |
1449 | return sa_run(req: &sa_req); |
1450 | } |
1451 | |
1452 | static int sa_sha_setup(struct sa_tfm_ctx *ctx, struct algo_data *ad) |
1453 | { |
1454 | int bs = crypto_shash_blocksize(tfm: ctx->shash); |
1455 | int cmdl_len; |
1456 | struct sa_cmdl_cfg cfg; |
1457 | |
1458 | ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ; |
1459 | ad->auth_eng.eng_id = SA_ENG_ID_AM1; |
1460 | ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ; |
1461 | |
1462 | memset(ctx->authkey, 0, bs); |
1463 | memset(&cfg, 0, sizeof(cfg)); |
1464 | cfg.aalg = ad->aalg_id; |
1465 | cfg.enc_eng_id = ad->enc_eng.eng_id; |
1466 | cfg.auth_eng_id = ad->auth_eng.eng_id; |
1467 | cfg.iv_size = 0; |
1468 | cfg.akey = NULL; |
1469 | cfg.akey_len = 0; |
1470 | |
1471 | ctx->dev_data = dev_get_drvdata(dev: sa_k3_dev); |
1472 | /* Setup Encryption Security Context & Command label template */ |
1473 | if (sa_init_sc(ctx: &ctx->enc, match_data: ctx->dev_data->match_data, NULL, enc_key_sz: 0, NULL, auth_key_sz: 0, |
1474 | ad, enc: 0, swinfo: &ctx->enc.epib[1])) |
1475 | goto badkey; |
1476 | |
1477 | cmdl_len = sa_format_cmdl_gen(cfg: &cfg, |
1478 | cmdl: (u8 *)ctx->enc.cmdl, |
1479 | upd_info: &ctx->enc.cmdl_upd_info); |
1480 | if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) |
1481 | goto badkey; |
1482 | |
1483 | ctx->enc.cmdl_size = cmdl_len; |
1484 | |
1485 | return 0; |
1486 | |
1487 | badkey: |
1488 | dev_err(sa_k3_dev, "%s: badkey\n" , __func__); |
1489 | return -EINVAL; |
1490 | } |
1491 | |
1492 | static int sa_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base) |
1493 | { |
1494 | struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); |
1495 | struct sa_crypto_data *data = dev_get_drvdata(dev: sa_k3_dev); |
1496 | int ret; |
1497 | |
1498 | memset(ctx, 0, sizeof(*ctx)); |
1499 | ctx->dev_data = data; |
1500 | ret = sa_init_ctx_info(ctx: &ctx->enc, data); |
1501 | if (ret) |
1502 | return ret; |
1503 | |
1504 | if (alg_base) { |
1505 | ctx->shash = crypto_alloc_shash(alg_name: alg_base, type: 0, |
1506 | CRYPTO_ALG_NEED_FALLBACK); |
1507 | if (IS_ERR(ptr: ctx->shash)) { |
1508 | dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n" , |
1509 | alg_base); |
1510 | return PTR_ERR(ptr: ctx->shash); |
1511 | } |
1512 | /* for fallback */ |
1513 | ctx->fallback.ahash = |
1514 | crypto_alloc_ahash(alg_name: alg_base, type: 0, |
1515 | CRYPTO_ALG_NEED_FALLBACK); |
1516 | if (IS_ERR(ptr: ctx->fallback.ahash)) { |
1517 | dev_err(ctx->dev_data->dev, |
1518 | "Could not load fallback driver\n" ); |
1519 | return PTR_ERR(ptr: ctx->fallback.ahash); |
1520 | } |
1521 | } |
1522 | |
1523 | dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n" , |
1524 | __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, |
1525 | ctx->dec.sc_id, &ctx->dec.sc_phys); |
1526 | |
1527 | crypto_ahash_set_reqsize(tfm: __crypto_ahash_cast(tfm), |
1528 | reqsize: sizeof(struct sa_sha_req_ctx) + |
1529 | crypto_ahash_reqsize(tfm: ctx->fallback.ahash)); |
1530 | |
1531 | return 0; |
1532 | } |
1533 | |
1534 | static int sa_sha_digest(struct ahash_request *req) |
1535 | { |
1536 | return sa_sha_run(req); |
1537 | } |
1538 | |
1539 | static int sa_sha_init(struct ahash_request *req) |
1540 | { |
1541 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
1542 | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
1543 | struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); |
1544 | |
1545 | dev_dbg(sa_k3_dev, "init: digest size: %u, rctx=%p\n" , |
1546 | crypto_ahash_digestsize(tfm), rctx); |
1547 | |
1548 | ahash_request_set_tfm(req: &rctx->fallback_req, tfm: ctx->fallback.ahash); |
1549 | rctx->fallback_req.base.flags = |
1550 | req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
1551 | |
1552 | return crypto_ahash_init(req: &rctx->fallback_req); |
1553 | } |
1554 | |
1555 | static int sa_sha_update(struct ahash_request *req) |
1556 | { |
1557 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
1558 | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
1559 | struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); |
1560 | |
1561 | ahash_request_set_tfm(req: &rctx->fallback_req, tfm: ctx->fallback.ahash); |
1562 | rctx->fallback_req.base.flags = |
1563 | req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
1564 | rctx->fallback_req.nbytes = req->nbytes; |
1565 | rctx->fallback_req.src = req->src; |
1566 | |
1567 | return crypto_ahash_update(req: &rctx->fallback_req); |
1568 | } |
1569 | |
1570 | static int sa_sha_final(struct ahash_request *req) |
1571 | { |
1572 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
1573 | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
1574 | struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); |
1575 | |
1576 | ahash_request_set_tfm(req: &rctx->fallback_req, tfm: ctx->fallback.ahash); |
1577 | rctx->fallback_req.base.flags = |
1578 | req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
1579 | rctx->fallback_req.result = req->result; |
1580 | |
1581 | return crypto_ahash_final(req: &rctx->fallback_req); |
1582 | } |
1583 | |
1584 | static int sa_sha_finup(struct ahash_request *req) |
1585 | { |
1586 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
1587 | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
1588 | struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); |
1589 | |
1590 | ahash_request_set_tfm(req: &rctx->fallback_req, tfm: ctx->fallback.ahash); |
1591 | rctx->fallback_req.base.flags = |
1592 | req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
1593 | |
1594 | rctx->fallback_req.nbytes = req->nbytes; |
1595 | rctx->fallback_req.src = req->src; |
1596 | rctx->fallback_req.result = req->result; |
1597 | |
1598 | return crypto_ahash_finup(req: &rctx->fallback_req); |
1599 | } |
1600 | |
1601 | static int sa_sha_import(struct ahash_request *req, const void *in) |
1602 | { |
1603 | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
1604 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
1605 | struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); |
1606 | |
1607 | ahash_request_set_tfm(req: &rctx->fallback_req, tfm: ctx->fallback.ahash); |
1608 | rctx->fallback_req.base.flags = req->base.flags & |
1609 | CRYPTO_TFM_REQ_MAY_SLEEP; |
1610 | |
1611 | return crypto_ahash_import(req: &rctx->fallback_req, in); |
1612 | } |
1613 | |
1614 | static int sa_sha_export(struct ahash_request *req, void *out) |
1615 | { |
1616 | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
1617 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
1618 | struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); |
1619 | struct ahash_request *subreq = &rctx->fallback_req; |
1620 | |
1621 | ahash_request_set_tfm(req: subreq, tfm: ctx->fallback.ahash); |
1622 | subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
1623 | |
1624 | return crypto_ahash_export(req: subreq, out); |
1625 | } |
1626 | |
1627 | static int sa_sha1_cra_init(struct crypto_tfm *tfm) |
1628 | { |
1629 | struct algo_data ad = { 0 }; |
1630 | struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); |
1631 | |
1632 | sa_sha_cra_init_alg(tfm, alg_base: "sha1" ); |
1633 | |
1634 | ad.aalg_id = SA_AALG_ID_SHA1; |
1635 | ad.hash_size = SHA1_DIGEST_SIZE; |
1636 | ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1; |
1637 | |
1638 | sa_sha_setup(ctx, ad: &ad); |
1639 | |
1640 | return 0; |
1641 | } |
1642 | |
1643 | static int sa_sha256_cra_init(struct crypto_tfm *tfm) |
1644 | { |
1645 | struct algo_data ad = { 0 }; |
1646 | struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); |
1647 | |
1648 | sa_sha_cra_init_alg(tfm, alg_base: "sha256" ); |
1649 | |
1650 | ad.aalg_id = SA_AALG_ID_SHA2_256; |
1651 | ad.hash_size = SHA256_DIGEST_SIZE; |
1652 | ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256; |
1653 | |
1654 | sa_sha_setup(ctx, ad: &ad); |
1655 | |
1656 | return 0; |
1657 | } |
1658 | |
1659 | static int sa_sha512_cra_init(struct crypto_tfm *tfm) |
1660 | { |
1661 | struct algo_data ad = { 0 }; |
1662 | struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); |
1663 | |
1664 | sa_sha_cra_init_alg(tfm, alg_base: "sha512" ); |
1665 | |
1666 | ad.aalg_id = SA_AALG_ID_SHA2_512; |
1667 | ad.hash_size = SHA512_DIGEST_SIZE; |
1668 | ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA512; |
1669 | |
1670 | sa_sha_setup(ctx, ad: &ad); |
1671 | |
1672 | return 0; |
1673 | } |
1674 | |
1675 | static void sa_sha_cra_exit(struct crypto_tfm *tfm) |
1676 | { |
1677 | struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); |
1678 | struct sa_crypto_data *data = dev_get_drvdata(dev: sa_k3_dev); |
1679 | |
1680 | dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n" , |
1681 | __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, |
1682 | ctx->dec.sc_id, &ctx->dec.sc_phys); |
1683 | |
1684 | if (crypto_tfm_alg_type(tfm) == CRYPTO_ALG_TYPE_AHASH) |
1685 | sa_free_ctx_info(ctx: &ctx->enc, data); |
1686 | |
1687 | crypto_free_shash(tfm: ctx->shash); |
1688 | crypto_free_ahash(tfm: ctx->fallback.ahash); |
1689 | } |
1690 | |
1691 | static void sa_aead_dma_in_callback(void *data) |
1692 | { |
1693 | struct sa_rx_data *rxd = data; |
1694 | struct aead_request *req; |
1695 | struct crypto_aead *tfm; |
1696 | unsigned int start; |
1697 | unsigned int authsize; |
1698 | u8 auth_tag[SA_MAX_AUTH_TAG_SZ]; |
1699 | size_t pl, ml; |
1700 | int i; |
1701 | int err = 0; |
1702 | u32 *mdptr; |
1703 | |
1704 | sa_sync_from_device(rxd); |
1705 | req = container_of(rxd->req, struct aead_request, base); |
1706 | tfm = crypto_aead_reqtfm(req); |
1707 | start = req->assoclen + req->cryptlen; |
1708 | authsize = crypto_aead_authsize(tfm); |
1709 | |
1710 | mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(desc: rxd->tx_in, payload_len: &pl, max_len: &ml); |
1711 | for (i = 0; i < (authsize / 4); i++) |
1712 | mdptr[i + 4] = swab32(mdptr[i + 4]); |
1713 | |
1714 | if (rxd->enc) { |
1715 | scatterwalk_map_and_copy(buf: &mdptr[4], sg: req->dst, start, nbytes: authsize, |
1716 | out: 1); |
1717 | } else { |
1718 | start -= authsize; |
1719 | scatterwalk_map_and_copy(buf: auth_tag, sg: req->src, start, nbytes: authsize, |
1720 | out: 0); |
1721 | |
1722 | err = memcmp(p: &mdptr[4], q: auth_tag, size: authsize) ? -EBADMSG : 0; |
1723 | } |
1724 | |
1725 | sa_free_sa_rx_data(rxd); |
1726 | |
1727 | aead_request_complete(req, err); |
1728 | } |
1729 | |
1730 | static int sa_cra_init_aead(struct crypto_aead *tfm, const char *hash, |
1731 | const char *fallback) |
1732 | { |
1733 | struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm); |
1734 | struct sa_crypto_data *data = dev_get_drvdata(dev: sa_k3_dev); |
1735 | int ret; |
1736 | |
1737 | memzero_explicit(s: ctx, count: sizeof(*ctx)); |
1738 | ctx->dev_data = data; |
1739 | |
1740 | ctx->shash = crypto_alloc_shash(alg_name: hash, type: 0, CRYPTO_ALG_NEED_FALLBACK); |
1741 | if (IS_ERR(ptr: ctx->shash)) { |
1742 | dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n" , hash); |
1743 | return PTR_ERR(ptr: ctx->shash); |
1744 | } |
1745 | |
1746 | ctx->fallback.aead = crypto_alloc_aead(alg_name: fallback, type: 0, |
1747 | CRYPTO_ALG_NEED_FALLBACK); |
1748 | |
1749 | if (IS_ERR(ptr: ctx->fallback.aead)) { |
1750 | dev_err(sa_k3_dev, "fallback driver %s couldn't be loaded\n" , |
1751 | fallback); |
1752 | return PTR_ERR(ptr: ctx->fallback.aead); |
1753 | } |
1754 | |
1755 | crypto_aead_set_reqsize(aead: tfm, reqsize: sizeof(struct aead_request) + |
1756 | crypto_aead_reqsize(tfm: ctx->fallback.aead)); |
1757 | |
1758 | ret = sa_init_ctx_info(ctx: &ctx->enc, data); |
1759 | if (ret) |
1760 | return ret; |
1761 | |
1762 | ret = sa_init_ctx_info(ctx: &ctx->dec, data); |
1763 | if (ret) { |
1764 | sa_free_ctx_info(ctx: &ctx->enc, data); |
1765 | return ret; |
1766 | } |
1767 | |
1768 | dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n" , |
1769 | __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, |
1770 | ctx->dec.sc_id, &ctx->dec.sc_phys); |
1771 | |
1772 | return ret; |
1773 | } |
1774 | |
1775 | static int sa_cra_init_aead_sha1(struct crypto_aead *tfm) |
1776 | { |
1777 | return sa_cra_init_aead(tfm, hash: "sha1" , |
1778 | fallback: "authenc(hmac(sha1-ce),cbc(aes-ce))" ); |
1779 | } |
1780 | |
1781 | static int sa_cra_init_aead_sha256(struct crypto_aead *tfm) |
1782 | { |
1783 | return sa_cra_init_aead(tfm, hash: "sha256" , |
1784 | fallback: "authenc(hmac(sha256-ce),cbc(aes-ce))" ); |
1785 | } |
1786 | |
1787 | static void sa_exit_tfm_aead(struct crypto_aead *tfm) |
1788 | { |
1789 | struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm); |
1790 | struct sa_crypto_data *data = dev_get_drvdata(dev: sa_k3_dev); |
1791 | |
1792 | crypto_free_shash(tfm: ctx->shash); |
1793 | crypto_free_aead(tfm: ctx->fallback.aead); |
1794 | |
1795 | sa_free_ctx_info(ctx: &ctx->enc, data); |
1796 | sa_free_ctx_info(ctx: &ctx->dec, data); |
1797 | } |
1798 | |
1799 | /* AEAD algorithm configuration interface function */ |
1800 | static int sa_aead_setkey(struct crypto_aead *authenc, |
1801 | const u8 *key, unsigned int keylen, |
1802 | struct algo_data *ad) |
1803 | { |
1804 | struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm: authenc); |
1805 | struct crypto_authenc_keys keys; |
1806 | int cmdl_len; |
1807 | struct sa_cmdl_cfg cfg; |
1808 | int key_idx; |
1809 | |
1810 | if (crypto_authenc_extractkeys(keys: &keys, key, keylen) != 0) |
1811 | return -EINVAL; |
1812 | |
1813 | /* Convert the key size (16/24/32) to the key size index (0/1/2) */ |
1814 | key_idx = (keys.enckeylen >> 3) - 2; |
1815 | if (key_idx >= 3) |
1816 | return -EINVAL; |
1817 | |
1818 | ad->ctx = ctx; |
1819 | ad->enc_eng.eng_id = SA_ENG_ID_EM1; |
1820 | ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ; |
1821 | ad->auth_eng.eng_id = SA_ENG_ID_AM1; |
1822 | ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ; |
1823 | ad->mci_enc = mci_cbc_enc_no_iv_array[key_idx]; |
1824 | ad->mci_dec = mci_cbc_dec_no_iv_array[key_idx]; |
1825 | ad->inv_key = true; |
1826 | ad->keyed_mac = true; |
1827 | ad->ealg_id = SA_EALG_ID_AES_CBC; |
1828 | ad->prep_iopad = sa_prepare_iopads; |
1829 | |
1830 | memset(&cfg, 0, sizeof(cfg)); |
1831 | cfg.enc = true; |
1832 | cfg.aalg = ad->aalg_id; |
1833 | cfg.enc_eng_id = ad->enc_eng.eng_id; |
1834 | cfg.auth_eng_id = ad->auth_eng.eng_id; |
1835 | cfg.iv_size = crypto_aead_ivsize(tfm: authenc); |
1836 | cfg.akey = keys.authkey; |
1837 | cfg.akey_len = keys.authkeylen; |
1838 | |
1839 | /* Setup Encryption Security Context & Command label template */ |
1840 | if (sa_init_sc(ctx: &ctx->enc, match_data: ctx->dev_data->match_data, enc_key: keys.enckey, |
1841 | enc_key_sz: keys.enckeylen, auth_key: keys.authkey, auth_key_sz: keys.authkeylen, |
1842 | ad, enc: 1, swinfo: &ctx->enc.epib[1])) |
1843 | return -EINVAL; |
1844 | |
1845 | cmdl_len = sa_format_cmdl_gen(cfg: &cfg, |
1846 | cmdl: (u8 *)ctx->enc.cmdl, |
1847 | upd_info: &ctx->enc.cmdl_upd_info); |
1848 | if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) |
1849 | return -EINVAL; |
1850 | |
1851 | ctx->enc.cmdl_size = cmdl_len; |
1852 | |
1853 | /* Setup Decryption Security Context & Command label template */ |
1854 | if (sa_init_sc(ctx: &ctx->dec, match_data: ctx->dev_data->match_data, enc_key: keys.enckey, |
1855 | enc_key_sz: keys.enckeylen, auth_key: keys.authkey, auth_key_sz: keys.authkeylen, |
1856 | ad, enc: 0, swinfo: &ctx->dec.epib[1])) |
1857 | return -EINVAL; |
1858 | |
1859 | cfg.enc = false; |
1860 | cmdl_len = sa_format_cmdl_gen(cfg: &cfg, cmdl: (u8 *)ctx->dec.cmdl, |
1861 | upd_info: &ctx->dec.cmdl_upd_info); |
1862 | |
1863 | if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) |
1864 | return -EINVAL; |
1865 | |
1866 | ctx->dec.cmdl_size = cmdl_len; |
1867 | |
1868 | crypto_aead_clear_flags(tfm: ctx->fallback.aead, CRYPTO_TFM_REQ_MASK); |
1869 | crypto_aead_set_flags(tfm: ctx->fallback.aead, |
1870 | flags: crypto_aead_get_flags(tfm: authenc) & |
1871 | CRYPTO_TFM_REQ_MASK); |
1872 | |
1873 | return crypto_aead_setkey(tfm: ctx->fallback.aead, key, keylen); |
1874 | } |
1875 | |
1876 | static int sa_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) |
1877 | { |
1878 | struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm: crypto_aead_tfm(tfm)); |
1879 | |
1880 | return crypto_aead_setauthsize(tfm: ctx->fallback.aead, authsize); |
1881 | } |
1882 | |
1883 | static int sa_aead_cbc_sha1_setkey(struct crypto_aead *authenc, |
1884 | const u8 *key, unsigned int keylen) |
1885 | { |
1886 | struct algo_data ad = { 0 }; |
1887 | |
1888 | ad.ealg_id = SA_EALG_ID_AES_CBC; |
1889 | ad.aalg_id = SA_AALG_ID_HMAC_SHA1; |
1890 | ad.hash_size = SHA1_DIGEST_SIZE; |
1891 | ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1; |
1892 | |
1893 | return sa_aead_setkey(authenc, key, keylen, ad: &ad); |
1894 | } |
1895 | |
1896 | static int sa_aead_cbc_sha256_setkey(struct crypto_aead *authenc, |
1897 | const u8 *key, unsigned int keylen) |
1898 | { |
1899 | struct algo_data ad = { 0 }; |
1900 | |
1901 | ad.ealg_id = SA_EALG_ID_AES_CBC; |
1902 | ad.aalg_id = SA_AALG_ID_HMAC_SHA2_256; |
1903 | ad.hash_size = SHA256_DIGEST_SIZE; |
1904 | ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256; |
1905 | |
1906 | return sa_aead_setkey(authenc, key, keylen, ad: &ad); |
1907 | } |
1908 | |
1909 | static int sa_aead_run(struct aead_request *req, u8 *iv, int enc) |
1910 | { |
1911 | struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
1912 | struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm); |
1913 | struct sa_req sa_req = { 0 }; |
1914 | size_t auth_size, enc_size; |
1915 | |
1916 | enc_size = req->cryptlen; |
1917 | auth_size = req->assoclen + req->cryptlen; |
1918 | |
1919 | if (!enc) { |
1920 | enc_size -= crypto_aead_authsize(tfm); |
1921 | auth_size -= crypto_aead_authsize(tfm); |
1922 | } |
1923 | |
1924 | if (auth_size > SA_MAX_DATA_SZ || |
1925 | (auth_size >= SA_UNSAFE_DATA_SZ_MIN && |
1926 | auth_size <= SA_UNSAFE_DATA_SZ_MAX)) { |
1927 | struct aead_request *subreq = aead_request_ctx(req); |
1928 | int ret; |
1929 | |
1930 | aead_request_set_tfm(req: subreq, tfm: ctx->fallback.aead); |
1931 | aead_request_set_callback(req: subreq, flags: req->base.flags, |
1932 | compl: req->base.complete, data: req->base.data); |
1933 | aead_request_set_crypt(req: subreq, src: req->src, dst: req->dst, |
1934 | cryptlen: req->cryptlen, iv: req->iv); |
1935 | aead_request_set_ad(req: subreq, assoclen: req->assoclen); |
1936 | |
1937 | ret = enc ? crypto_aead_encrypt(req: subreq) : |
1938 | crypto_aead_decrypt(req: subreq); |
1939 | return ret; |
1940 | } |
1941 | |
1942 | sa_req.enc_offset = req->assoclen; |
1943 | sa_req.enc_size = enc_size; |
1944 | sa_req.auth_size = auth_size; |
1945 | sa_req.size = auth_size; |
1946 | sa_req.enc_iv = iv; |
1947 | sa_req.type = CRYPTO_ALG_TYPE_AEAD; |
1948 | sa_req.enc = enc; |
1949 | sa_req.callback = sa_aead_dma_in_callback; |
1950 | sa_req.mdata_size = 52; |
1951 | sa_req.base = &req->base; |
1952 | sa_req.ctx = ctx; |
1953 | sa_req.src = req->src; |
1954 | sa_req.dst = req->dst; |
1955 | |
1956 | return sa_run(req: &sa_req); |
1957 | } |
1958 | |
1959 | /* AEAD algorithm encrypt interface function */ |
1960 | static int sa_aead_encrypt(struct aead_request *req) |
1961 | { |
1962 | return sa_aead_run(req, iv: req->iv, enc: 1); |
1963 | } |
1964 | |
1965 | /* AEAD algorithm decrypt interface function */ |
1966 | static int sa_aead_decrypt(struct aead_request *req) |
1967 | { |
1968 | return sa_aead_run(req, iv: req->iv, enc: 0); |
1969 | } |
1970 | |
1971 | static struct sa_alg_tmpl sa_algs[] = { |
1972 | [SA_ALG_CBC_AES] = { |
1973 | .type = CRYPTO_ALG_TYPE_SKCIPHER, |
1974 | .alg.skcipher = { |
1975 | .base.cra_name = "cbc(aes)" , |
1976 | .base.cra_driver_name = "cbc-aes-sa2ul" , |
1977 | .base.cra_priority = 30000, |
1978 | .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | |
1979 | CRYPTO_ALG_KERN_DRIVER_ONLY | |
1980 | CRYPTO_ALG_ASYNC | |
1981 | CRYPTO_ALG_NEED_FALLBACK, |
1982 | .base.cra_blocksize = AES_BLOCK_SIZE, |
1983 | .base.cra_ctxsize = sizeof(struct sa_tfm_ctx), |
1984 | .base.cra_module = THIS_MODULE, |
1985 | .init = sa_cipher_cra_init, |
1986 | .exit = sa_cipher_cra_exit, |
1987 | .min_keysize = AES_MIN_KEY_SIZE, |
1988 | .max_keysize = AES_MAX_KEY_SIZE, |
1989 | .ivsize = AES_BLOCK_SIZE, |
1990 | .setkey = sa_aes_cbc_setkey, |
1991 | .encrypt = sa_encrypt, |
1992 | .decrypt = sa_decrypt, |
1993 | } |
1994 | }, |
1995 | [SA_ALG_EBC_AES] = { |
1996 | .type = CRYPTO_ALG_TYPE_SKCIPHER, |
1997 | .alg.skcipher = { |
1998 | .base.cra_name = "ecb(aes)" , |
1999 | .base.cra_driver_name = "ecb-aes-sa2ul" , |
2000 | .base.cra_priority = 30000, |
2001 | .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | |
2002 | CRYPTO_ALG_KERN_DRIVER_ONLY | |
2003 | CRYPTO_ALG_ASYNC | |
2004 | CRYPTO_ALG_NEED_FALLBACK, |
2005 | .base.cra_blocksize = AES_BLOCK_SIZE, |
2006 | .base.cra_ctxsize = sizeof(struct sa_tfm_ctx), |
2007 | .base.cra_module = THIS_MODULE, |
2008 | .init = sa_cipher_cra_init, |
2009 | .exit = sa_cipher_cra_exit, |
2010 | .min_keysize = AES_MIN_KEY_SIZE, |
2011 | .max_keysize = AES_MAX_KEY_SIZE, |
2012 | .setkey = sa_aes_ecb_setkey, |
2013 | .encrypt = sa_encrypt, |
2014 | .decrypt = sa_decrypt, |
2015 | } |
2016 | }, |
2017 | [SA_ALG_CBC_DES3] = { |
2018 | .type = CRYPTO_ALG_TYPE_SKCIPHER, |
2019 | .alg.skcipher = { |
2020 | .base.cra_name = "cbc(des3_ede)" , |
2021 | .base.cra_driver_name = "cbc-des3-sa2ul" , |
2022 | .base.cra_priority = 30000, |
2023 | .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | |
2024 | CRYPTO_ALG_KERN_DRIVER_ONLY | |
2025 | CRYPTO_ALG_ASYNC | |
2026 | CRYPTO_ALG_NEED_FALLBACK, |
2027 | .base.cra_blocksize = DES_BLOCK_SIZE, |
2028 | .base.cra_ctxsize = sizeof(struct sa_tfm_ctx), |
2029 | .base.cra_module = THIS_MODULE, |
2030 | .init = sa_cipher_cra_init, |
2031 | .exit = sa_cipher_cra_exit, |
2032 | .min_keysize = 3 * DES_KEY_SIZE, |
2033 | .max_keysize = 3 * DES_KEY_SIZE, |
2034 | .ivsize = DES_BLOCK_SIZE, |
2035 | .setkey = sa_3des_cbc_setkey, |
2036 | .encrypt = sa_encrypt, |
2037 | .decrypt = sa_decrypt, |
2038 | } |
2039 | }, |
2040 | [SA_ALG_ECB_DES3] = { |
2041 | .type = CRYPTO_ALG_TYPE_SKCIPHER, |
2042 | .alg.skcipher = { |
2043 | .base.cra_name = "ecb(des3_ede)" , |
2044 | .base.cra_driver_name = "ecb-des3-sa2ul" , |
2045 | .base.cra_priority = 30000, |
2046 | .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | |
2047 | CRYPTO_ALG_KERN_DRIVER_ONLY | |
2048 | CRYPTO_ALG_ASYNC | |
2049 | CRYPTO_ALG_NEED_FALLBACK, |
2050 | .base.cra_blocksize = DES_BLOCK_SIZE, |
2051 | .base.cra_ctxsize = sizeof(struct sa_tfm_ctx), |
2052 | .base.cra_module = THIS_MODULE, |
2053 | .init = sa_cipher_cra_init, |
2054 | .exit = sa_cipher_cra_exit, |
2055 | .min_keysize = 3 * DES_KEY_SIZE, |
2056 | .max_keysize = 3 * DES_KEY_SIZE, |
2057 | .setkey = sa_3des_ecb_setkey, |
2058 | .encrypt = sa_encrypt, |
2059 | .decrypt = sa_decrypt, |
2060 | } |
2061 | }, |
2062 | [SA_ALG_SHA1] = { |
2063 | .type = CRYPTO_ALG_TYPE_AHASH, |
2064 | .alg.ahash = { |
2065 | .halg.base = { |
2066 | .cra_name = "sha1" , |
2067 | .cra_driver_name = "sha1-sa2ul" , |
2068 | .cra_priority = 400, |
2069 | .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
2070 | CRYPTO_ALG_ASYNC | |
2071 | CRYPTO_ALG_KERN_DRIVER_ONLY | |
2072 | CRYPTO_ALG_NEED_FALLBACK, |
2073 | .cra_blocksize = SHA1_BLOCK_SIZE, |
2074 | .cra_ctxsize = sizeof(struct sa_tfm_ctx), |
2075 | .cra_module = THIS_MODULE, |
2076 | .cra_init = sa_sha1_cra_init, |
2077 | .cra_exit = sa_sha_cra_exit, |
2078 | }, |
2079 | .halg.digestsize = SHA1_DIGEST_SIZE, |
2080 | .halg.statesize = sizeof(struct sa_sha_req_ctx) + |
2081 | sizeof(struct sha1_state), |
2082 | .init = sa_sha_init, |
2083 | .update = sa_sha_update, |
2084 | .final = sa_sha_final, |
2085 | .finup = sa_sha_finup, |
2086 | .digest = sa_sha_digest, |
2087 | .export = sa_sha_export, |
2088 | .import = sa_sha_import, |
2089 | }, |
2090 | }, |
2091 | [SA_ALG_SHA256] = { |
2092 | .type = CRYPTO_ALG_TYPE_AHASH, |
2093 | .alg.ahash = { |
2094 | .halg.base = { |
2095 | .cra_name = "sha256" , |
2096 | .cra_driver_name = "sha256-sa2ul" , |
2097 | .cra_priority = 400, |
2098 | .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
2099 | CRYPTO_ALG_ASYNC | |
2100 | CRYPTO_ALG_KERN_DRIVER_ONLY | |
2101 | CRYPTO_ALG_NEED_FALLBACK, |
2102 | .cra_blocksize = SHA256_BLOCK_SIZE, |
2103 | .cra_ctxsize = sizeof(struct sa_tfm_ctx), |
2104 | .cra_module = THIS_MODULE, |
2105 | .cra_init = sa_sha256_cra_init, |
2106 | .cra_exit = sa_sha_cra_exit, |
2107 | }, |
2108 | .halg.digestsize = SHA256_DIGEST_SIZE, |
2109 | .halg.statesize = sizeof(struct sa_sha_req_ctx) + |
2110 | sizeof(struct sha256_state), |
2111 | .init = sa_sha_init, |
2112 | .update = sa_sha_update, |
2113 | .final = sa_sha_final, |
2114 | .finup = sa_sha_finup, |
2115 | .digest = sa_sha_digest, |
2116 | .export = sa_sha_export, |
2117 | .import = sa_sha_import, |
2118 | }, |
2119 | }, |
2120 | [SA_ALG_SHA512] = { |
2121 | .type = CRYPTO_ALG_TYPE_AHASH, |
2122 | .alg.ahash = { |
2123 | .halg.base = { |
2124 | .cra_name = "sha512" , |
2125 | .cra_driver_name = "sha512-sa2ul" , |
2126 | .cra_priority = 400, |
2127 | .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
2128 | CRYPTO_ALG_ASYNC | |
2129 | CRYPTO_ALG_KERN_DRIVER_ONLY | |
2130 | CRYPTO_ALG_NEED_FALLBACK, |
2131 | .cra_blocksize = SHA512_BLOCK_SIZE, |
2132 | .cra_ctxsize = sizeof(struct sa_tfm_ctx), |
2133 | .cra_module = THIS_MODULE, |
2134 | .cra_init = sa_sha512_cra_init, |
2135 | .cra_exit = sa_sha_cra_exit, |
2136 | }, |
2137 | .halg.digestsize = SHA512_DIGEST_SIZE, |
2138 | .halg.statesize = sizeof(struct sa_sha_req_ctx) + |
2139 | sizeof(struct sha512_state), |
2140 | .init = sa_sha_init, |
2141 | .update = sa_sha_update, |
2142 | .final = sa_sha_final, |
2143 | .finup = sa_sha_finup, |
2144 | .digest = sa_sha_digest, |
2145 | .export = sa_sha_export, |
2146 | .import = sa_sha_import, |
2147 | }, |
2148 | }, |
2149 | [SA_ALG_AUTHENC_SHA1_AES] = { |
2150 | .type = CRYPTO_ALG_TYPE_AEAD, |
2151 | .alg.aead = { |
2152 | .base = { |
2153 | .cra_name = "authenc(hmac(sha1),cbc(aes))" , |
2154 | .cra_driver_name = |
2155 | "authenc(hmac(sha1),cbc(aes))-sa2ul" , |
2156 | .cra_blocksize = AES_BLOCK_SIZE, |
2157 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | |
2158 | CRYPTO_ALG_KERN_DRIVER_ONLY | |
2159 | CRYPTO_ALG_ASYNC | |
2160 | CRYPTO_ALG_NEED_FALLBACK, |
2161 | .cra_ctxsize = sizeof(struct sa_tfm_ctx), |
2162 | .cra_module = THIS_MODULE, |
2163 | .cra_priority = 3000, |
2164 | }, |
2165 | .ivsize = AES_BLOCK_SIZE, |
2166 | .maxauthsize = SHA1_DIGEST_SIZE, |
2167 | |
2168 | .init = sa_cra_init_aead_sha1, |
2169 | .exit = sa_exit_tfm_aead, |
2170 | .setkey = sa_aead_cbc_sha1_setkey, |
2171 | .setauthsize = sa_aead_setauthsize, |
2172 | .encrypt = sa_aead_encrypt, |
2173 | .decrypt = sa_aead_decrypt, |
2174 | }, |
2175 | }, |
2176 | [SA_ALG_AUTHENC_SHA256_AES] = { |
2177 | .type = CRYPTO_ALG_TYPE_AEAD, |
2178 | .alg.aead = { |
2179 | .base = { |
2180 | .cra_name = "authenc(hmac(sha256),cbc(aes))" , |
2181 | .cra_driver_name = |
2182 | "authenc(hmac(sha256),cbc(aes))-sa2ul" , |
2183 | .cra_blocksize = AES_BLOCK_SIZE, |
2184 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | |
2185 | CRYPTO_ALG_KERN_DRIVER_ONLY | |
2186 | CRYPTO_ALG_ASYNC | |
2187 | CRYPTO_ALG_NEED_FALLBACK, |
2188 | .cra_ctxsize = sizeof(struct sa_tfm_ctx), |
2189 | .cra_module = THIS_MODULE, |
2190 | .cra_alignmask = 0, |
2191 | .cra_priority = 3000, |
2192 | }, |
2193 | .ivsize = AES_BLOCK_SIZE, |
2194 | .maxauthsize = SHA256_DIGEST_SIZE, |
2195 | |
2196 | .init = sa_cra_init_aead_sha256, |
2197 | .exit = sa_exit_tfm_aead, |
2198 | .setkey = sa_aead_cbc_sha256_setkey, |
2199 | .setauthsize = sa_aead_setauthsize, |
2200 | .encrypt = sa_aead_encrypt, |
2201 | .decrypt = sa_aead_decrypt, |
2202 | }, |
2203 | }, |
2204 | }; |
2205 | |
2206 | /* Register the algorithms in crypto framework */ |
2207 | static void sa_register_algos(struct sa_crypto_data *dev_data) |
2208 | { |
2209 | const struct sa_match_data *match_data = dev_data->match_data; |
2210 | struct device *dev = dev_data->dev; |
2211 | char *alg_name; |
2212 | u32 type; |
2213 | int i, err; |
2214 | |
2215 | for (i = 0; i < ARRAY_SIZE(sa_algs); i++) { |
2216 | /* Skip unsupported algos */ |
2217 | if (!(match_data->supported_algos & BIT(i))) |
2218 | continue; |
2219 | |
2220 | type = sa_algs[i].type; |
2221 | if (type == CRYPTO_ALG_TYPE_SKCIPHER) { |
2222 | alg_name = sa_algs[i].alg.skcipher.base.cra_name; |
2223 | err = crypto_register_skcipher(alg: &sa_algs[i].alg.skcipher); |
2224 | } else if (type == CRYPTO_ALG_TYPE_AHASH) { |
2225 | alg_name = sa_algs[i].alg.ahash.halg.base.cra_name; |
2226 | err = crypto_register_ahash(alg: &sa_algs[i].alg.ahash); |
2227 | } else if (type == CRYPTO_ALG_TYPE_AEAD) { |
2228 | alg_name = sa_algs[i].alg.aead.base.cra_name; |
2229 | err = crypto_register_aead(alg: &sa_algs[i].alg.aead); |
2230 | } else { |
2231 | dev_err(dev, |
2232 | "un-supported crypto algorithm (%d)" , |
2233 | sa_algs[i].type); |
2234 | continue; |
2235 | } |
2236 | |
2237 | if (err) |
2238 | dev_err(dev, "Failed to register '%s'\n" , alg_name); |
2239 | else |
2240 | sa_algs[i].registered = true; |
2241 | } |
2242 | } |
2243 | |
2244 | /* Unregister the algorithms in crypto framework */ |
2245 | static void sa_unregister_algos(const struct device *dev) |
2246 | { |
2247 | u32 type; |
2248 | int i; |
2249 | |
2250 | for (i = 0; i < ARRAY_SIZE(sa_algs); i++) { |
2251 | type = sa_algs[i].type; |
2252 | if (!sa_algs[i].registered) |
2253 | continue; |
2254 | if (type == CRYPTO_ALG_TYPE_SKCIPHER) |
2255 | crypto_unregister_skcipher(alg: &sa_algs[i].alg.skcipher); |
2256 | else if (type == CRYPTO_ALG_TYPE_AHASH) |
2257 | crypto_unregister_ahash(alg: &sa_algs[i].alg.ahash); |
2258 | else if (type == CRYPTO_ALG_TYPE_AEAD) |
2259 | crypto_unregister_aead(alg: &sa_algs[i].alg.aead); |
2260 | |
2261 | sa_algs[i].registered = false; |
2262 | } |
2263 | } |
2264 | |
2265 | static int sa_init_mem(struct sa_crypto_data *dev_data) |
2266 | { |
2267 | struct device *dev = &dev_data->pdev->dev; |
2268 | /* Setup dma pool for security context buffers */ |
2269 | dev_data->sc_pool = dma_pool_create(name: "keystone-sc" , dev, |
2270 | SA_CTX_MAX_SZ, align: 64, allocation: 0); |
2271 | if (!dev_data->sc_pool) { |
2272 | dev_err(dev, "Failed to create dma pool" ); |
2273 | return -ENOMEM; |
2274 | } |
2275 | |
2276 | return 0; |
2277 | } |
2278 | |
2279 | static int sa_dma_init(struct sa_crypto_data *dd) |
2280 | { |
2281 | int ret; |
2282 | struct dma_slave_config cfg; |
2283 | |
2284 | dd->dma_rx1 = NULL; |
2285 | dd->dma_tx = NULL; |
2286 | dd->dma_rx2 = NULL; |
2287 | |
2288 | ret = dma_coerce_mask_and_coherent(dev: dd->dev, DMA_BIT_MASK(48)); |
2289 | if (ret) |
2290 | return ret; |
2291 | |
2292 | dd->dma_rx1 = dma_request_chan(dev: dd->dev, name: "rx1" ); |
2293 | if (IS_ERR(ptr: dd->dma_rx1)) |
2294 | return dev_err_probe(dev: dd->dev, err: PTR_ERR(ptr: dd->dma_rx1), |
2295 | fmt: "Unable to request rx1 DMA channel\n" ); |
2296 | |
2297 | dd->dma_rx2 = dma_request_chan(dev: dd->dev, name: "rx2" ); |
2298 | if (IS_ERR(ptr: dd->dma_rx2)) { |
2299 | ret = dev_err_probe(dev: dd->dev, err: PTR_ERR(ptr: dd->dma_rx2), |
2300 | fmt: "Unable to request rx2 DMA channel\n" ); |
2301 | goto err_dma_rx2; |
2302 | } |
2303 | |
2304 | dd->dma_tx = dma_request_chan(dev: dd->dev, name: "tx" ); |
2305 | if (IS_ERR(ptr: dd->dma_tx)) { |
2306 | ret = dev_err_probe(dev: dd->dev, err: PTR_ERR(ptr: dd->dma_tx), |
2307 | fmt: "Unable to request tx DMA channel\n" ); |
2308 | goto err_dma_tx; |
2309 | } |
2310 | |
2311 | memzero_explicit(s: &cfg, count: sizeof(cfg)); |
2312 | |
2313 | cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
2314 | cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
2315 | cfg.src_maxburst = 4; |
2316 | cfg.dst_maxburst = 4; |
2317 | |
2318 | ret = dmaengine_slave_config(chan: dd->dma_rx1, config: &cfg); |
2319 | if (ret) { |
2320 | dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n" , |
2321 | ret); |
2322 | goto err_dma_config; |
2323 | } |
2324 | |
2325 | ret = dmaengine_slave_config(chan: dd->dma_rx2, config: &cfg); |
2326 | if (ret) { |
2327 | dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n" , |
2328 | ret); |
2329 | goto err_dma_config; |
2330 | } |
2331 | |
2332 | ret = dmaengine_slave_config(chan: dd->dma_tx, config: &cfg); |
2333 | if (ret) { |
2334 | dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n" , |
2335 | ret); |
2336 | goto err_dma_config; |
2337 | } |
2338 | |
2339 | return 0; |
2340 | |
2341 | err_dma_config: |
2342 | dma_release_channel(chan: dd->dma_tx); |
2343 | err_dma_tx: |
2344 | dma_release_channel(chan: dd->dma_rx2); |
2345 | err_dma_rx2: |
2346 | dma_release_channel(chan: dd->dma_rx1); |
2347 | |
2348 | return ret; |
2349 | } |
2350 | |
2351 | static int sa_link_child(struct device *dev, void *data) |
2352 | { |
2353 | struct device *parent = data; |
2354 | |
2355 | device_link_add(consumer: dev, supplier: parent, DL_FLAG_AUTOPROBE_CONSUMER); |
2356 | |
2357 | return 0; |
2358 | } |
2359 | |
2360 | static struct sa_match_data am654_match_data = { |
2361 | .priv = 1, |
2362 | .priv_id = 1, |
2363 | .supported_algos = BIT(SA_ALG_CBC_AES) | |
2364 | BIT(SA_ALG_EBC_AES) | |
2365 | BIT(SA_ALG_CBC_DES3) | |
2366 | BIT(SA_ALG_ECB_DES3) | |
2367 | BIT(SA_ALG_SHA1) | |
2368 | BIT(SA_ALG_SHA256) | |
2369 | BIT(SA_ALG_SHA512) | |
2370 | BIT(SA_ALG_AUTHENC_SHA1_AES) | |
2371 | BIT(SA_ALG_AUTHENC_SHA256_AES), |
2372 | }; |
2373 | |
2374 | static struct sa_match_data am64_match_data = { |
2375 | .priv = 0, |
2376 | .priv_id = 0, |
2377 | .supported_algos = BIT(SA_ALG_CBC_AES) | |
2378 | BIT(SA_ALG_EBC_AES) | |
2379 | BIT(SA_ALG_SHA256) | |
2380 | BIT(SA_ALG_SHA512) | |
2381 | BIT(SA_ALG_AUTHENC_SHA256_AES), |
2382 | }; |
2383 | |
2384 | static const struct of_device_id of_match[] = { |
2385 | { .compatible = "ti,j721e-sa2ul" , .data = &am654_match_data, }, |
2386 | { .compatible = "ti,am654-sa2ul" , .data = &am654_match_data, }, |
2387 | { .compatible = "ti,am64-sa2ul" , .data = &am64_match_data, }, |
2388 | { .compatible = "ti,am62-sa3ul" , .data = &am64_match_data, }, |
2389 | {}, |
2390 | }; |
2391 | MODULE_DEVICE_TABLE(of, of_match); |
2392 | |
2393 | static int sa_ul_probe(struct platform_device *pdev) |
2394 | { |
2395 | struct device *dev = &pdev->dev; |
2396 | struct device_node *node = dev->of_node; |
2397 | static void __iomem *saul_base; |
2398 | struct sa_crypto_data *dev_data; |
2399 | u32 status, val; |
2400 | int ret; |
2401 | |
2402 | dev_data = devm_kzalloc(dev, size: sizeof(*dev_data), GFP_KERNEL); |
2403 | if (!dev_data) |
2404 | return -ENOMEM; |
2405 | |
2406 | dev_data->match_data = of_device_get_match_data(dev); |
2407 | if (!dev_data->match_data) |
2408 | return -ENODEV; |
2409 | |
2410 | saul_base = devm_platform_ioremap_resource(pdev, index: 0); |
2411 | if (IS_ERR(ptr: saul_base)) |
2412 | return PTR_ERR(ptr: saul_base); |
2413 | |
2414 | sa_k3_dev = dev; |
2415 | dev_data->dev = dev; |
2416 | dev_data->pdev = pdev; |
2417 | dev_data->base = saul_base; |
2418 | platform_set_drvdata(pdev, data: dev_data); |
2419 | dev_set_drvdata(dev: sa_k3_dev, data: dev_data); |
2420 | |
2421 | pm_runtime_enable(dev); |
2422 | ret = pm_runtime_resume_and_get(dev); |
2423 | if (ret < 0) { |
2424 | dev_err(dev, "%s: failed to get sync: %d\n" , __func__, ret); |
2425 | pm_runtime_disable(dev); |
2426 | return ret; |
2427 | } |
2428 | |
2429 | sa_init_mem(dev_data); |
2430 | ret = sa_dma_init(dd: dev_data); |
2431 | if (ret) |
2432 | goto destroy_dma_pool; |
2433 | |
2434 | spin_lock_init(&dev_data->scid_lock); |
2435 | |
2436 | val = SA_EEC_ENCSS_EN | SA_EEC_AUTHSS_EN | SA_EEC_CTXCACH_EN | |
2437 | SA_EEC_CPPI_PORT_IN_EN | SA_EEC_CPPI_PORT_OUT_EN | |
2438 | SA_EEC_TRNG_EN; |
2439 | status = readl_relaxed(saul_base + SA_ENGINE_STATUS); |
2440 | /* Only enable engines if all are not already enabled */ |
2441 | if (val & ~status) |
2442 | writel_relaxed(val, saul_base + SA_ENGINE_ENABLE_CONTROL); |
2443 | |
2444 | sa_register_algos(dev_data); |
2445 | |
2446 | ret = of_platform_populate(root: node, NULL, NULL, parent: dev); |
2447 | if (ret) |
2448 | goto release_dma; |
2449 | |
2450 | device_for_each_child(dev, data: dev, fn: sa_link_child); |
2451 | |
2452 | return 0; |
2453 | |
2454 | release_dma: |
2455 | sa_unregister_algos(dev); |
2456 | |
2457 | dma_release_channel(chan: dev_data->dma_rx2); |
2458 | dma_release_channel(chan: dev_data->dma_rx1); |
2459 | dma_release_channel(chan: dev_data->dma_tx); |
2460 | |
2461 | destroy_dma_pool: |
2462 | dma_pool_destroy(pool: dev_data->sc_pool); |
2463 | |
2464 | pm_runtime_put_sync(dev); |
2465 | pm_runtime_disable(dev); |
2466 | |
2467 | return ret; |
2468 | } |
2469 | |
2470 | static void sa_ul_remove(struct platform_device *pdev) |
2471 | { |
2472 | struct sa_crypto_data *dev_data = platform_get_drvdata(pdev); |
2473 | |
2474 | of_platform_depopulate(parent: &pdev->dev); |
2475 | |
2476 | sa_unregister_algos(dev: &pdev->dev); |
2477 | |
2478 | dma_release_channel(chan: dev_data->dma_rx2); |
2479 | dma_release_channel(chan: dev_data->dma_rx1); |
2480 | dma_release_channel(chan: dev_data->dma_tx); |
2481 | |
2482 | dma_pool_destroy(pool: dev_data->sc_pool); |
2483 | |
2484 | platform_set_drvdata(pdev, NULL); |
2485 | |
2486 | pm_runtime_put_sync(dev: &pdev->dev); |
2487 | pm_runtime_disable(dev: &pdev->dev); |
2488 | } |
2489 | |
2490 | static struct platform_driver sa_ul_driver = { |
2491 | .probe = sa_ul_probe, |
2492 | .remove_new = sa_ul_remove, |
2493 | .driver = { |
2494 | .name = "saul-crypto" , |
2495 | .of_match_table = of_match, |
2496 | }, |
2497 | }; |
2498 | module_platform_driver(sa_ul_driver); |
2499 | MODULE_LICENSE("GPL v2" ); |
2500 | |