1 | // SPDX-License-Identifier: GPL-2.0 OR MIT |
2 | /* |
3 | * Copyright 2014-2022 Advanced Micro Devices, Inc. |
4 | * |
5 | * Permission is hereby granted, free of charge, to any person obtaining a |
6 | * copy of this software and associated documentation files (the "Software"), |
7 | * to deal in the Software without restriction, including without limitation |
8 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
9 | * and/or sell copies of the Software, and to permit persons to whom the |
10 | * Software is furnished to do so, subject to the following conditions: |
11 | * |
12 | * The above copyright notice and this permission notice shall be included in |
13 | * all copies or substantial portions of the Software. |
14 | * |
15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
18 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
19 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
20 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
21 | * OTHER DEALINGS IN THE SOFTWARE. |
22 | */ |
23 | |
24 | #include <linux/mutex.h> |
25 | #include <linux/log2.h> |
26 | #include <linux/sched.h> |
27 | #include <linux/sched/mm.h> |
28 | #include <linux/sched/task.h> |
29 | #include <linux/mmu_context.h> |
30 | #include <linux/slab.h> |
31 | #include <linux/amd-iommu.h> |
32 | #include <linux/notifier.h> |
33 | #include <linux/compat.h> |
34 | #include <linux/mman.h> |
35 | #include <linux/file.h> |
36 | #include <linux/pm_runtime.h> |
37 | #include "amdgpu_amdkfd.h" |
38 | #include "amdgpu.h" |
39 | |
40 | struct mm_struct; |
41 | |
42 | #include "kfd_priv.h" |
43 | #include "kfd_device_queue_manager.h" |
44 | #include "kfd_iommu.h" |
45 | #include "kfd_svm.h" |
46 | #include "kfd_smi_events.h" |
47 | |
48 | /* |
49 | * List of struct kfd_process (field kfd_process). |
50 | * Unique/indexed by mm_struct* |
51 | */ |
52 | DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); |
53 | static DEFINE_MUTEX(kfd_processes_mutex); |
54 | |
55 | DEFINE_SRCU(kfd_processes_srcu); |
56 | |
57 | /* For process termination handling */ |
58 | static struct workqueue_struct *kfd_process_wq; |
59 | |
60 | /* Ordered, single-threaded workqueue for restoring evicted |
61 | * processes. Restoring multiple processes concurrently under memory |
62 | * pressure can lead to processes blocking each other from validating |
63 | * their BOs and result in a live-lock situation where processes |
64 | * remain evicted indefinitely. |
65 | */ |
66 | static struct workqueue_struct *kfd_restore_wq; |
67 | |
68 | static struct kfd_process *find_process(const struct task_struct *thread, |
69 | bool ref); |
70 | static void kfd_process_ref_release(struct kref *ref); |
71 | static struct kfd_process *create_process(const struct task_struct *thread); |
72 | static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep); |
73 | |
74 | static void evict_process_worker(struct work_struct *work); |
75 | static void restore_process_worker(struct work_struct *work); |
76 | |
77 | static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); |
78 | |
79 | struct kfd_procfs_tree { |
80 | struct kobject *kobj; |
81 | }; |
82 | |
83 | static struct kfd_procfs_tree procfs; |
84 | |
85 | /* |
86 | * Structure for SDMA activity tracking |
87 | */ |
88 | struct kfd_sdma_activity_handler_workarea { |
89 | struct work_struct sdma_activity_work; |
90 | struct kfd_process_device *pdd; |
91 | uint64_t sdma_activity_counter; |
92 | }; |
93 | |
94 | struct temp_sdma_queue_list { |
95 | uint64_t __user *rptr; |
96 | uint64_t sdma_val; |
97 | unsigned int queue_id; |
98 | struct list_head list; |
99 | }; |
100 | |
101 | static void kfd_sdma_activity_worker(struct work_struct *work) |
102 | { |
103 | struct kfd_sdma_activity_handler_workarea *workarea; |
104 | struct kfd_process_device *pdd; |
105 | uint64_t val; |
106 | struct mm_struct *mm; |
107 | struct queue *q; |
108 | struct qcm_process_device *qpd; |
109 | struct device_queue_manager *dqm; |
110 | int ret = 0; |
111 | struct temp_sdma_queue_list sdma_q_list; |
112 | struct temp_sdma_queue_list *sdma_q, *next; |
113 | |
114 | workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, |
115 | sdma_activity_work); |
116 | |
117 | pdd = workarea->pdd; |
118 | if (!pdd) |
119 | return; |
120 | dqm = pdd->dev->dqm; |
121 | qpd = &pdd->qpd; |
122 | if (!dqm || !qpd) |
123 | return; |
124 | /* |
125 | * Total SDMA activity is current SDMA activity + past SDMA activity |
126 | * Past SDMA count is stored in pdd. |
127 | * To get the current activity counters for all active SDMA queues, |
128 | * we loop over all SDMA queues and get their counts from user-space. |
129 | * |
130 | * We cannot call get_user() with dqm_lock held as it can cause |
131 | * a circular lock dependency situation. To read the SDMA stats, |
132 | * we need to do the following: |
133 | * |
134 | * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, |
135 | * with dqm_lock/dqm_unlock(). |
136 | * 2. Call get_user() for each node in temporary list without dqm_lock. |
137 | * Save the SDMA count for each node and also add the count to the total |
138 | * SDMA count counter. |
139 | * Its possible, during this step, a few SDMA queue nodes got deleted |
140 | * from the qpd->queues_list. |
141 | * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. |
142 | * If any node got deleted, its SDMA count would be captured in the sdma |
143 | * past activity counter. So subtract the SDMA counter stored in step 2 |
144 | * for this node from the total SDMA count. |
145 | */ |
146 | INIT_LIST_HEAD(list: &sdma_q_list.list); |
147 | |
148 | /* |
149 | * Create the temp list of all SDMA queues |
150 | */ |
151 | dqm_lock(dqm); |
152 | |
153 | list_for_each_entry(q, &qpd->queues_list, list) { |
154 | if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && |
155 | (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) |
156 | continue; |
157 | |
158 | sdma_q = kzalloc(size: sizeof(struct temp_sdma_queue_list), GFP_KERNEL); |
159 | if (!sdma_q) { |
160 | dqm_unlock(dqm); |
161 | goto cleanup; |
162 | } |
163 | |
164 | INIT_LIST_HEAD(list: &sdma_q->list); |
165 | sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; |
166 | sdma_q->queue_id = q->properties.queue_id; |
167 | list_add_tail(new: &sdma_q->list, head: &sdma_q_list.list); |
168 | } |
169 | |
170 | /* |
171 | * If the temp list is empty, then no SDMA queues nodes were found in |
172 | * qpd->queues_list. Return the past activity count as the total sdma |
173 | * count |
174 | */ |
175 | if (list_empty(head: &sdma_q_list.list)) { |
176 | workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; |
177 | dqm_unlock(dqm); |
178 | return; |
179 | } |
180 | |
181 | dqm_unlock(dqm); |
182 | |
183 | /* |
184 | * Get the usage count for each SDMA queue in temp_list. |
185 | */ |
186 | mm = get_task_mm(task: pdd->process->lead_thread); |
187 | if (!mm) |
188 | goto cleanup; |
189 | |
190 | kthread_use_mm(mm); |
191 | |
192 | list_for_each_entry(sdma_q, &sdma_q_list.list, list) { |
193 | val = 0; |
194 | ret = read_sdma_queue_counter(q_rptr: sdma_q->rptr, val: &val); |
195 | if (ret) { |
196 | pr_debug("Failed to read SDMA queue active counter for queue id: %d" , |
197 | sdma_q->queue_id); |
198 | } else { |
199 | sdma_q->sdma_val = val; |
200 | workarea->sdma_activity_counter += val; |
201 | } |
202 | } |
203 | |
204 | kthread_unuse_mm(mm); |
205 | mmput(mm); |
206 | |
207 | /* |
208 | * Do a second iteration over qpd_queues_list to check if any SDMA |
209 | * nodes got deleted while fetching SDMA counter. |
210 | */ |
211 | dqm_lock(dqm); |
212 | |
213 | workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; |
214 | |
215 | list_for_each_entry(q, &qpd->queues_list, list) { |
216 | if (list_empty(head: &sdma_q_list.list)) |
217 | break; |
218 | |
219 | if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && |
220 | (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) |
221 | continue; |
222 | |
223 | list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { |
224 | if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && |
225 | (sdma_q->queue_id == q->properties.queue_id)) { |
226 | list_del(entry: &sdma_q->list); |
227 | kfree(objp: sdma_q); |
228 | break; |
229 | } |
230 | } |
231 | } |
232 | |
233 | dqm_unlock(dqm); |
234 | |
235 | /* |
236 | * If temp list is not empty, it implies some queues got deleted |
237 | * from qpd->queues_list during SDMA usage read. Subtract the SDMA |
238 | * count for each node from the total SDMA count. |
239 | */ |
240 | list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { |
241 | workarea->sdma_activity_counter -= sdma_q->sdma_val; |
242 | list_del(entry: &sdma_q->list); |
243 | kfree(objp: sdma_q); |
244 | } |
245 | |
246 | return; |
247 | |
248 | cleanup: |
249 | list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { |
250 | list_del(entry: &sdma_q->list); |
251 | kfree(objp: sdma_q); |
252 | } |
253 | } |
254 | |
255 | /** |
256 | * kfd_get_cu_occupancy - Collect number of waves in-flight on this device |
257 | * by current process. Translates acquired wave count into number of compute units |
258 | * that are occupied. |
259 | * |
260 | * @attr: Handle of attribute that allows reporting of wave count. The attribute |
261 | * handle encapsulates GPU device it is associated with, thereby allowing collection |
262 | * of waves in flight, etc |
263 | * @buffer: Handle of user provided buffer updated with wave count |
264 | * |
265 | * Return: Number of bytes written to user buffer or an error value |
266 | */ |
267 | static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) |
268 | { |
269 | int cu_cnt; |
270 | int wave_cnt; |
271 | int max_waves_per_cu; |
272 | struct kfd_dev *dev = NULL; |
273 | struct kfd_process *proc = NULL; |
274 | struct kfd_process_device *pdd = NULL; |
275 | |
276 | pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); |
277 | dev = pdd->dev; |
278 | if (dev->kfd2kgd->get_cu_occupancy == NULL) |
279 | return -EINVAL; |
280 | |
281 | cu_cnt = 0; |
282 | proc = pdd->process; |
283 | if (pdd->qpd.queue_count == 0) { |
284 | pr_debug("Gpu-Id: %d has no active queues for process %d\n" , |
285 | dev->id, proc->pasid); |
286 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%d\n" , cu_cnt); |
287 | } |
288 | |
289 | /* Collect wave count from device if it supports */ |
290 | wave_cnt = 0; |
291 | max_waves_per_cu = 0; |
292 | dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt, |
293 | &max_waves_per_cu); |
294 | |
295 | /* Translate wave count to number of compute units */ |
296 | cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; |
297 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%d\n" , cu_cnt); |
298 | } |
299 | |
300 | static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, |
301 | char *buffer) |
302 | { |
303 | if (strcmp(attr->name, "pasid" ) == 0) { |
304 | struct kfd_process *p = container_of(attr, struct kfd_process, |
305 | attr_pasid); |
306 | |
307 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%d\n" , p->pasid); |
308 | } else if (strncmp(attr->name, "vram_" , 5) == 0) { |
309 | struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, |
310 | attr_vram); |
311 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%llu\n" , READ_ONCE(pdd->vram_usage)); |
312 | } else if (strncmp(attr->name, "sdma_" , 5) == 0) { |
313 | struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, |
314 | attr_sdma); |
315 | struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; |
316 | |
317 | INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, |
318 | kfd_sdma_activity_worker); |
319 | |
320 | sdma_activity_work_handler.pdd = pdd; |
321 | sdma_activity_work_handler.sdma_activity_counter = 0; |
322 | |
323 | schedule_work(work: &sdma_activity_work_handler.sdma_activity_work); |
324 | |
325 | flush_work(work: &sdma_activity_work_handler.sdma_activity_work); |
326 | |
327 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%llu\n" , |
328 | (sdma_activity_work_handler.sdma_activity_counter)/ |
329 | SDMA_ACTIVITY_DIVISOR); |
330 | } else { |
331 | pr_err("Invalid attribute" ); |
332 | return -EINVAL; |
333 | } |
334 | |
335 | return 0; |
336 | } |
337 | |
338 | static void kfd_procfs_kobj_release(struct kobject *kobj) |
339 | { |
340 | kfree(objp: kobj); |
341 | } |
342 | |
343 | static const struct sysfs_ops kfd_procfs_ops = { |
344 | .show = kfd_procfs_show, |
345 | }; |
346 | |
347 | static const struct kobj_type procfs_type = { |
348 | .release = kfd_procfs_kobj_release, |
349 | .sysfs_ops = &kfd_procfs_ops, |
350 | }; |
351 | |
352 | void kfd_procfs_init(void) |
353 | { |
354 | int ret = 0; |
355 | |
356 | procfs.kobj = kfd_alloc_struct(procfs.kobj); |
357 | if (!procfs.kobj) |
358 | return; |
359 | |
360 | ret = kobject_init_and_add(kobj: procfs.kobj, ktype: &procfs_type, |
361 | parent: &kfd_device->kobj, fmt: "proc" ); |
362 | if (ret) { |
363 | pr_warn("Could not create procfs proc folder" ); |
364 | /* If we fail to create the procfs, clean up */ |
365 | kfd_procfs_shutdown(); |
366 | } |
367 | } |
368 | |
369 | void kfd_procfs_shutdown(void) |
370 | { |
371 | if (procfs.kobj) { |
372 | kobject_del(kobj: procfs.kobj); |
373 | kobject_put(kobj: procfs.kobj); |
374 | procfs.kobj = NULL; |
375 | } |
376 | } |
377 | |
378 | static ssize_t kfd_procfs_queue_show(struct kobject *kobj, |
379 | struct attribute *attr, char *buffer) |
380 | { |
381 | struct queue *q = container_of(kobj, struct queue, kobj); |
382 | |
383 | if (!strcmp(attr->name, "size" )) |
384 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%llu" , |
385 | q->properties.queue_size); |
386 | else if (!strcmp(attr->name, "type" )) |
387 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%d" , q->properties.type); |
388 | else if (!strcmp(attr->name, "gpuid" )) |
389 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%u" , q->device->id); |
390 | else |
391 | pr_err("Invalid attribute" ); |
392 | |
393 | return 0; |
394 | } |
395 | |
396 | static ssize_t kfd_procfs_stats_show(struct kobject *kobj, |
397 | struct attribute *attr, char *buffer) |
398 | { |
399 | if (strcmp(attr->name, "evicted_ms" ) == 0) { |
400 | struct kfd_process_device *pdd = container_of(attr, |
401 | struct kfd_process_device, |
402 | attr_evict); |
403 | uint64_t evict_jiffies; |
404 | |
405 | evict_jiffies = atomic64_read(&pdd->evict_duration_counter); |
406 | |
407 | return snprintf(buffer, |
408 | PAGE_SIZE, |
409 | "%llu\n" , |
410 | jiffies64_to_msecs(evict_jiffies)); |
411 | |
412 | /* Sysfs handle that gets CU occupancy is per device */ |
413 | } else if (strcmp(attr->name, "cu_occupancy" ) == 0) { |
414 | return kfd_get_cu_occupancy(attr, buffer); |
415 | } else { |
416 | pr_err("Invalid attribute" ); |
417 | } |
418 | |
419 | return 0; |
420 | } |
421 | |
422 | static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, |
423 | struct attribute *attr, char *buf) |
424 | { |
425 | struct kfd_process_device *pdd; |
426 | |
427 | if (!strcmp(attr->name, "faults" )) { |
428 | pdd = container_of(attr, struct kfd_process_device, |
429 | attr_faults); |
430 | return sysfs_emit(buf, fmt: "%llu\n" , READ_ONCE(pdd->faults)); |
431 | } |
432 | if (!strcmp(attr->name, "page_in" )) { |
433 | pdd = container_of(attr, struct kfd_process_device, |
434 | attr_page_in); |
435 | return sysfs_emit(buf, fmt: "%llu\n" , READ_ONCE(pdd->page_in)); |
436 | } |
437 | if (!strcmp(attr->name, "page_out" )) { |
438 | pdd = container_of(attr, struct kfd_process_device, |
439 | attr_page_out); |
440 | return sysfs_emit(buf, fmt: "%llu\n" , READ_ONCE(pdd->page_out)); |
441 | } |
442 | return 0; |
443 | } |
444 | |
445 | static struct attribute attr_queue_size = { |
446 | .name = "size" , |
447 | .mode = KFD_SYSFS_FILE_MODE |
448 | }; |
449 | |
450 | static struct attribute attr_queue_type = { |
451 | .name = "type" , |
452 | .mode = KFD_SYSFS_FILE_MODE |
453 | }; |
454 | |
455 | static struct attribute attr_queue_gpuid = { |
456 | .name = "gpuid" , |
457 | .mode = KFD_SYSFS_FILE_MODE |
458 | }; |
459 | |
460 | static struct attribute *procfs_queue_attrs[] = { |
461 | &attr_queue_size, |
462 | &attr_queue_type, |
463 | &attr_queue_gpuid, |
464 | NULL |
465 | }; |
466 | ATTRIBUTE_GROUPS(procfs_queue); |
467 | |
468 | static const struct sysfs_ops procfs_queue_ops = { |
469 | .show = kfd_procfs_queue_show, |
470 | }; |
471 | |
472 | static const struct kobj_type procfs_queue_type = { |
473 | .sysfs_ops = &procfs_queue_ops, |
474 | .default_groups = procfs_queue_groups, |
475 | }; |
476 | |
477 | static const struct sysfs_ops procfs_stats_ops = { |
478 | .show = kfd_procfs_stats_show, |
479 | }; |
480 | |
481 | static const struct kobj_type procfs_stats_type = { |
482 | .sysfs_ops = &procfs_stats_ops, |
483 | .release = kfd_procfs_kobj_release, |
484 | }; |
485 | |
486 | static const struct sysfs_ops sysfs_counters_ops = { |
487 | .show = kfd_sysfs_counters_show, |
488 | }; |
489 | |
490 | static const struct kobj_type sysfs_counters_type = { |
491 | .sysfs_ops = &sysfs_counters_ops, |
492 | .release = kfd_procfs_kobj_release, |
493 | }; |
494 | |
495 | int kfd_procfs_add_queue(struct queue *q) |
496 | { |
497 | struct kfd_process *proc; |
498 | int ret; |
499 | |
500 | if (!q || !q->process) |
501 | return -EINVAL; |
502 | proc = q->process; |
503 | |
504 | /* Create proc/<pid>/queues/<queue id> folder */ |
505 | if (!proc->kobj_queues) |
506 | return -EFAULT; |
507 | ret = kobject_init_and_add(kobj: &q->kobj, ktype: &procfs_queue_type, |
508 | parent: proc->kobj_queues, fmt: "%u" , q->properties.queue_id); |
509 | if (ret < 0) { |
510 | pr_warn("Creating proc/<pid>/queues/%u failed" , |
511 | q->properties.queue_id); |
512 | kobject_put(kobj: &q->kobj); |
513 | return ret; |
514 | } |
515 | |
516 | return 0; |
517 | } |
518 | |
519 | static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, |
520 | char *name) |
521 | { |
522 | int ret; |
523 | |
524 | if (!kobj || !attr || !name) |
525 | return; |
526 | |
527 | attr->name = name; |
528 | attr->mode = KFD_SYSFS_FILE_MODE; |
529 | sysfs_attr_init(attr); |
530 | |
531 | ret = sysfs_create_file(kobj, attr); |
532 | if (ret) |
533 | pr_warn("Create sysfs %s/%s failed %d" , kobj->name, name, ret); |
534 | } |
535 | |
536 | static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) |
537 | { |
538 | int ret; |
539 | int i; |
540 | char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; |
541 | |
542 | if (!p || !p->kobj) |
543 | return; |
544 | |
545 | /* |
546 | * Create sysfs files for each GPU: |
547 | * - proc/<pid>/stats_<gpuid>/ |
548 | * - proc/<pid>/stats_<gpuid>/evicted_ms |
549 | * - proc/<pid>/stats_<gpuid>/cu_occupancy |
550 | */ |
551 | for (i = 0; i < p->n_pdds; i++) { |
552 | struct kfd_process_device *pdd = p->pdds[i]; |
553 | |
554 | snprintf(buf: stats_dir_filename, MAX_SYSFS_FILENAME_LEN, |
555 | fmt: "stats_%u" , pdd->dev->id); |
556 | pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); |
557 | if (!pdd->kobj_stats) |
558 | return; |
559 | |
560 | ret = kobject_init_and_add(kobj: pdd->kobj_stats, |
561 | ktype: &procfs_stats_type, |
562 | parent: p->kobj, |
563 | fmt: stats_dir_filename); |
564 | |
565 | if (ret) { |
566 | pr_warn("Creating KFD proc/stats_%s folder failed" , |
567 | stats_dir_filename); |
568 | kobject_put(kobj: pdd->kobj_stats); |
569 | pdd->kobj_stats = NULL; |
570 | return; |
571 | } |
572 | |
573 | kfd_sysfs_create_file(kobj: pdd->kobj_stats, attr: &pdd->attr_evict, |
574 | name: "evicted_ms" ); |
575 | /* Add sysfs file to report compute unit occupancy */ |
576 | if (pdd->dev->kfd2kgd->get_cu_occupancy) |
577 | kfd_sysfs_create_file(kobj: pdd->kobj_stats, |
578 | attr: &pdd->attr_cu_occupancy, |
579 | name: "cu_occupancy" ); |
580 | } |
581 | } |
582 | |
583 | static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) |
584 | { |
585 | int ret = 0; |
586 | int i; |
587 | char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; |
588 | |
589 | if (!p || !p->kobj) |
590 | return; |
591 | |
592 | /* |
593 | * Create sysfs files for each GPU which supports SVM |
594 | * - proc/<pid>/counters_<gpuid>/ |
595 | * - proc/<pid>/counters_<gpuid>/faults |
596 | * - proc/<pid>/counters_<gpuid>/page_in |
597 | * - proc/<pid>/counters_<gpuid>/page_out |
598 | */ |
599 | for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { |
600 | struct kfd_process_device *pdd = p->pdds[i]; |
601 | struct kobject *kobj_counters; |
602 | |
603 | snprintf(buf: counters_dir_filename, MAX_SYSFS_FILENAME_LEN, |
604 | fmt: "counters_%u" , pdd->dev->id); |
605 | kobj_counters = kfd_alloc_struct(kobj_counters); |
606 | if (!kobj_counters) |
607 | return; |
608 | |
609 | ret = kobject_init_and_add(kobj: kobj_counters, ktype: &sysfs_counters_type, |
610 | parent: p->kobj, fmt: counters_dir_filename); |
611 | if (ret) { |
612 | pr_warn("Creating KFD proc/%s folder failed" , |
613 | counters_dir_filename); |
614 | kobject_put(kobj: kobj_counters); |
615 | return; |
616 | } |
617 | |
618 | pdd->kobj_counters = kobj_counters; |
619 | kfd_sysfs_create_file(kobj: kobj_counters, attr: &pdd->attr_faults, |
620 | name: "faults" ); |
621 | kfd_sysfs_create_file(kobj: kobj_counters, attr: &pdd->attr_page_in, |
622 | name: "page_in" ); |
623 | kfd_sysfs_create_file(kobj: kobj_counters, attr: &pdd->attr_page_out, |
624 | name: "page_out" ); |
625 | } |
626 | } |
627 | |
628 | static void kfd_procfs_add_sysfs_files(struct kfd_process *p) |
629 | { |
630 | int i; |
631 | |
632 | if (!p || !p->kobj) |
633 | return; |
634 | |
635 | /* |
636 | * Create sysfs files for each GPU: |
637 | * - proc/<pid>/vram_<gpuid> |
638 | * - proc/<pid>/sdma_<gpuid> |
639 | */ |
640 | for (i = 0; i < p->n_pdds; i++) { |
641 | struct kfd_process_device *pdd = p->pdds[i]; |
642 | |
643 | snprintf(buf: pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, fmt: "vram_%u" , |
644 | pdd->dev->id); |
645 | kfd_sysfs_create_file(kobj: p->kobj, attr: &pdd->attr_vram, |
646 | name: pdd->vram_filename); |
647 | |
648 | snprintf(buf: pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, fmt: "sdma_%u" , |
649 | pdd->dev->id); |
650 | kfd_sysfs_create_file(kobj: p->kobj, attr: &pdd->attr_sdma, |
651 | name: pdd->sdma_filename); |
652 | } |
653 | } |
654 | |
655 | void kfd_procfs_del_queue(struct queue *q) |
656 | { |
657 | if (!q) |
658 | return; |
659 | |
660 | kobject_del(kobj: &q->kobj); |
661 | kobject_put(kobj: &q->kobj); |
662 | } |
663 | |
664 | int kfd_process_create_wq(void) |
665 | { |
666 | if (!kfd_process_wq) |
667 | kfd_process_wq = alloc_workqueue(fmt: "kfd_process_wq" , flags: 0, max_active: 0); |
668 | if (!kfd_restore_wq) |
669 | kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq" , 0); |
670 | |
671 | if (!kfd_process_wq || !kfd_restore_wq) { |
672 | kfd_process_destroy_wq(); |
673 | return -ENOMEM; |
674 | } |
675 | |
676 | return 0; |
677 | } |
678 | |
679 | void kfd_process_destroy_wq(void) |
680 | { |
681 | if (kfd_process_wq) { |
682 | destroy_workqueue(wq: kfd_process_wq); |
683 | kfd_process_wq = NULL; |
684 | } |
685 | if (kfd_restore_wq) { |
686 | destroy_workqueue(wq: kfd_restore_wq); |
687 | kfd_restore_wq = NULL; |
688 | } |
689 | } |
690 | |
691 | static void kfd_process_free_gpuvm(struct kgd_mem *mem, |
692 | struct kfd_process_device *pdd, void **kptr) |
693 | { |
694 | struct kfd_dev *dev = pdd->dev; |
695 | |
696 | if (kptr && *kptr) { |
697 | amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); |
698 | *kptr = NULL; |
699 | } |
700 | |
701 | amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv); |
702 | amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv, |
703 | NULL); |
704 | } |
705 | |
706 | /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process |
707 | * This function should be only called right after the process |
708 | * is created and when kfd_processes_mutex is still being held |
709 | * to avoid concurrency. Because of that exclusiveness, we do |
710 | * not need to take p->mutex. |
711 | */ |
712 | static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, |
713 | uint64_t gpu_va, uint32_t size, |
714 | uint32_t flags, struct kgd_mem **mem, void **kptr) |
715 | { |
716 | struct kfd_dev *kdev = pdd->dev; |
717 | int err; |
718 | |
719 | err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size, |
720 | pdd->drm_priv, mem, NULL, |
721 | flags, false); |
722 | if (err) |
723 | goto err_alloc_mem; |
724 | |
725 | err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem, |
726 | pdd->drm_priv); |
727 | if (err) |
728 | goto err_map_mem; |
729 | |
730 | err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true); |
731 | if (err) { |
732 | pr_debug("Sync memory failed, wait interrupted by user signal\n" ); |
733 | goto sync_memory_failed; |
734 | } |
735 | |
736 | if (kptr) { |
737 | err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( |
738 | (struct kgd_mem *)*mem, kptr, NULL); |
739 | if (err) { |
740 | pr_debug("Map GTT BO to kernel failed\n" ); |
741 | goto sync_memory_failed; |
742 | } |
743 | } |
744 | |
745 | return err; |
746 | |
747 | sync_memory_failed: |
748 | amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv); |
749 | |
750 | err_map_mem: |
751 | amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv, |
752 | NULL); |
753 | err_alloc_mem: |
754 | *mem = NULL; |
755 | *kptr = NULL; |
756 | return err; |
757 | } |
758 | |
759 | /* kfd_process_device_reserve_ib_mem - Reserve memory inside the |
760 | * process for IB usage The memory reserved is for KFD to submit |
761 | * IB to AMDGPU from kernel. If the memory is reserved |
762 | * successfully, ib_kaddr will have the CPU/kernel |
763 | * address. Check ib_kaddr before accessing the memory. |
764 | */ |
765 | static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) |
766 | { |
767 | struct qcm_process_device *qpd = &pdd->qpd; |
768 | uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | |
769 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | |
770 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | |
771 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; |
772 | struct kgd_mem *mem; |
773 | void *kaddr; |
774 | int ret; |
775 | |
776 | if (qpd->ib_kaddr || !qpd->ib_base) |
777 | return 0; |
778 | |
779 | /* ib_base is only set for dGPU */ |
780 | ret = kfd_process_alloc_gpuvm(pdd, gpu_va: qpd->ib_base, PAGE_SIZE, flags, |
781 | mem: &mem, kptr: &kaddr); |
782 | if (ret) |
783 | return ret; |
784 | |
785 | qpd->ib_mem = mem; |
786 | qpd->ib_kaddr = kaddr; |
787 | |
788 | return 0; |
789 | } |
790 | |
791 | static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) |
792 | { |
793 | struct qcm_process_device *qpd = &pdd->qpd; |
794 | |
795 | if (!qpd->ib_kaddr || !qpd->ib_base) |
796 | return; |
797 | |
798 | kfd_process_free_gpuvm(mem: qpd->ib_mem, pdd, kptr: &qpd->ib_kaddr); |
799 | } |
800 | |
801 | struct kfd_process *kfd_create_process(struct file *filep) |
802 | { |
803 | struct kfd_process *process; |
804 | struct task_struct *thread = current; |
805 | int ret; |
806 | |
807 | if (!thread->mm) |
808 | return ERR_PTR(-EINVAL); |
809 | |
810 | /* Only the pthreads threading model is supported. */ |
811 | if (thread->group_leader->mm != thread->mm) |
812 | return ERR_PTR(-EINVAL); |
813 | |
814 | /* |
815 | * take kfd processes mutex before starting of process creation |
816 | * so there won't be a case where two threads of the same process |
817 | * create two kfd_process structures |
818 | */ |
819 | mutex_lock(lock: &kfd_processes_mutex); |
820 | |
821 | /* A prior open of /dev/kfd could have already created the process. */ |
822 | process = find_process(thread, ref: false); |
823 | if (process) { |
824 | pr_debug("Process already found\n" ); |
825 | } else { |
826 | process = create_process(thread); |
827 | if (IS_ERR(ptr: process)) |
828 | goto out; |
829 | |
830 | ret = kfd_process_init_cwsr_apu(p: process, filep); |
831 | if (ret) |
832 | goto out_destroy; |
833 | |
834 | if (!procfs.kobj) |
835 | goto out; |
836 | |
837 | process->kobj = kfd_alloc_struct(process->kobj); |
838 | if (!process->kobj) { |
839 | pr_warn("Creating procfs kobject failed" ); |
840 | goto out; |
841 | } |
842 | ret = kobject_init_and_add(kobj: process->kobj, ktype: &procfs_type, |
843 | parent: procfs.kobj, fmt: "%d" , |
844 | (int)process->lead_thread->pid); |
845 | if (ret) { |
846 | pr_warn("Creating procfs pid directory failed" ); |
847 | kobject_put(kobj: process->kobj); |
848 | goto out; |
849 | } |
850 | |
851 | kfd_sysfs_create_file(kobj: process->kobj, attr: &process->attr_pasid, |
852 | name: "pasid" ); |
853 | |
854 | process->kobj_queues = kobject_create_and_add(name: "queues" , |
855 | parent: process->kobj); |
856 | if (!process->kobj_queues) |
857 | pr_warn("Creating KFD proc/queues folder failed" ); |
858 | |
859 | kfd_procfs_add_sysfs_stats(p: process); |
860 | kfd_procfs_add_sysfs_files(p: process); |
861 | kfd_procfs_add_sysfs_counters(p: process); |
862 | } |
863 | out: |
864 | if (!IS_ERR(ptr: process)) |
865 | kref_get(kref: &process->ref); |
866 | mutex_unlock(lock: &kfd_processes_mutex); |
867 | |
868 | return process; |
869 | |
870 | out_destroy: |
871 | hash_del_rcu(node: &process->kfd_processes); |
872 | mutex_unlock(lock: &kfd_processes_mutex); |
873 | synchronize_srcu(ssp: &kfd_processes_srcu); |
874 | /* kfd_process_free_notifier will trigger the cleanup */ |
875 | mmu_notifier_put(&process->mmu_notifier); |
876 | return ERR_PTR(error: ret); |
877 | } |
878 | |
879 | struct kfd_process *kfd_get_process(const struct task_struct *thread) |
880 | { |
881 | struct kfd_process *process; |
882 | |
883 | if (!thread->mm) |
884 | return ERR_PTR(-EINVAL); |
885 | |
886 | /* Only the pthreads threading model is supported. */ |
887 | if (thread->group_leader->mm != thread->mm) |
888 | return ERR_PTR(-EINVAL); |
889 | |
890 | process = find_process(thread, ref: false); |
891 | if (!process) |
892 | return ERR_PTR(-EINVAL); |
893 | |
894 | return process; |
895 | } |
896 | |
897 | static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) |
898 | { |
899 | struct kfd_process *process; |
900 | |
901 | hash_for_each_possible_rcu(kfd_processes_table, process, |
902 | kfd_processes, (uintptr_t)mm) |
903 | if (process->mm == mm) |
904 | return process; |
905 | |
906 | return NULL; |
907 | } |
908 | |
909 | static struct kfd_process *find_process(const struct task_struct *thread, |
910 | bool ref) |
911 | { |
912 | struct kfd_process *p; |
913 | int idx; |
914 | |
915 | idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
916 | p = find_process_by_mm(mm: thread->mm); |
917 | if (p && ref) |
918 | kref_get(kref: &p->ref); |
919 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
920 | |
921 | return p; |
922 | } |
923 | |
924 | void kfd_unref_process(struct kfd_process *p) |
925 | { |
926 | kref_put(kref: &p->ref, release: kfd_process_ref_release); |
927 | } |
928 | |
929 | /* This increments the process->ref counter. */ |
930 | struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) |
931 | { |
932 | struct task_struct *task = NULL; |
933 | struct kfd_process *p = NULL; |
934 | |
935 | if (!pid) { |
936 | task = current; |
937 | get_task_struct(t: task); |
938 | } else { |
939 | task = get_pid_task(pid, PIDTYPE_PID); |
940 | } |
941 | |
942 | if (task) { |
943 | p = find_process(thread: task, ref: true); |
944 | put_task_struct(t: task); |
945 | } |
946 | |
947 | return p; |
948 | } |
949 | |
950 | static void kfd_process_device_free_bos(struct kfd_process_device *pdd) |
951 | { |
952 | struct kfd_process *p = pdd->process; |
953 | void *mem; |
954 | int id; |
955 | int i; |
956 | |
957 | /* |
958 | * Remove all handles from idr and release appropriate |
959 | * local memory object |
960 | */ |
961 | idr_for_each_entry(&pdd->alloc_idr, mem, id) { |
962 | |
963 | for (i = 0; i < p->n_pdds; i++) { |
964 | struct kfd_process_device *peer_pdd = p->pdds[i]; |
965 | |
966 | if (!peer_pdd->drm_priv) |
967 | continue; |
968 | amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( |
969 | peer_pdd->dev->adev, mem, peer_pdd->drm_priv); |
970 | } |
971 | |
972 | amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem, |
973 | pdd->drm_priv, NULL); |
974 | kfd_process_device_remove_obj_handle(pdd, handle: id); |
975 | } |
976 | } |
977 | |
978 | /* |
979 | * Just kunmap and unpin signal BO here. It will be freed in |
980 | * kfd_process_free_outstanding_kfd_bos() |
981 | */ |
982 | static void kfd_process_kunmap_signal_bo(struct kfd_process *p) |
983 | { |
984 | struct kfd_process_device *pdd; |
985 | struct kfd_dev *kdev; |
986 | void *mem; |
987 | |
988 | kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); |
989 | if (!kdev) |
990 | return; |
991 | |
992 | mutex_lock(lock: &p->mutex); |
993 | |
994 | pdd = kfd_get_process_device_data(dev: kdev, p); |
995 | if (!pdd) |
996 | goto out; |
997 | |
998 | mem = kfd_process_device_translate_handle( |
999 | p: pdd, GET_IDR_HANDLE(p->signal_handle)); |
1000 | if (!mem) |
1001 | goto out; |
1002 | |
1003 | amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); |
1004 | |
1005 | out: |
1006 | mutex_unlock(lock: &p->mutex); |
1007 | } |
1008 | |
1009 | static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) |
1010 | { |
1011 | int i; |
1012 | |
1013 | for (i = 0; i < p->n_pdds; i++) |
1014 | kfd_process_device_free_bos(pdd: p->pdds[i]); |
1015 | } |
1016 | |
1017 | static void kfd_process_destroy_pdds(struct kfd_process *p) |
1018 | { |
1019 | int i; |
1020 | |
1021 | for (i = 0; i < p->n_pdds; i++) { |
1022 | struct kfd_process_device *pdd = p->pdds[i]; |
1023 | |
1024 | pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n" , |
1025 | pdd->dev->id, p->pasid); |
1026 | |
1027 | kfd_process_device_destroy_cwsr_dgpu(pdd); |
1028 | kfd_process_device_destroy_ib_mem(pdd); |
1029 | |
1030 | if (pdd->drm_file) { |
1031 | amdgpu_amdkfd_gpuvm_release_process_vm( |
1032 | pdd->dev->adev, pdd->drm_priv); |
1033 | fput(pdd->drm_file); |
1034 | } |
1035 | |
1036 | if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) |
1037 | free_pages(addr: (unsigned long)pdd->qpd.cwsr_kaddr, |
1038 | order: get_order(KFD_CWSR_TBA_TMA_SIZE)); |
1039 | |
1040 | bitmap_free(bitmap: pdd->qpd.doorbell_bitmap); |
1041 | idr_destroy(&pdd->alloc_idr); |
1042 | |
1043 | kfd_free_process_doorbells(kfd: pdd->dev, doorbell_index: pdd->doorbell_index); |
1044 | |
1045 | if (pdd->dev->shared_resources.enable_mes) |
1046 | amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev, |
1047 | pdd->proc_ctx_bo); |
1048 | /* |
1049 | * before destroying pdd, make sure to report availability |
1050 | * for auto suspend |
1051 | */ |
1052 | if (pdd->runtime_inuse) { |
1053 | pm_runtime_mark_last_busy(dev: adev_to_drm(pdd->dev->adev)->dev); |
1054 | pm_runtime_put_autosuspend(dev: adev_to_drm(pdd->dev->adev)->dev); |
1055 | pdd->runtime_inuse = false; |
1056 | } |
1057 | |
1058 | kfree(objp: pdd); |
1059 | p->pdds[i] = NULL; |
1060 | } |
1061 | p->n_pdds = 0; |
1062 | } |
1063 | |
1064 | static void kfd_process_remove_sysfs(struct kfd_process *p) |
1065 | { |
1066 | struct kfd_process_device *pdd; |
1067 | int i; |
1068 | |
1069 | if (!p->kobj) |
1070 | return; |
1071 | |
1072 | sysfs_remove_file(kobj: p->kobj, attr: &p->attr_pasid); |
1073 | kobject_del(kobj: p->kobj_queues); |
1074 | kobject_put(kobj: p->kobj_queues); |
1075 | p->kobj_queues = NULL; |
1076 | |
1077 | for (i = 0; i < p->n_pdds; i++) { |
1078 | pdd = p->pdds[i]; |
1079 | |
1080 | sysfs_remove_file(kobj: p->kobj, attr: &pdd->attr_vram); |
1081 | sysfs_remove_file(kobj: p->kobj, attr: &pdd->attr_sdma); |
1082 | |
1083 | sysfs_remove_file(kobj: pdd->kobj_stats, attr: &pdd->attr_evict); |
1084 | if (pdd->dev->kfd2kgd->get_cu_occupancy) |
1085 | sysfs_remove_file(kobj: pdd->kobj_stats, |
1086 | attr: &pdd->attr_cu_occupancy); |
1087 | kobject_del(kobj: pdd->kobj_stats); |
1088 | kobject_put(kobj: pdd->kobj_stats); |
1089 | pdd->kobj_stats = NULL; |
1090 | } |
1091 | |
1092 | for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { |
1093 | pdd = p->pdds[i]; |
1094 | |
1095 | sysfs_remove_file(kobj: pdd->kobj_counters, attr: &pdd->attr_faults); |
1096 | sysfs_remove_file(kobj: pdd->kobj_counters, attr: &pdd->attr_page_in); |
1097 | sysfs_remove_file(kobj: pdd->kobj_counters, attr: &pdd->attr_page_out); |
1098 | kobject_del(kobj: pdd->kobj_counters); |
1099 | kobject_put(kobj: pdd->kobj_counters); |
1100 | pdd->kobj_counters = NULL; |
1101 | } |
1102 | |
1103 | kobject_del(kobj: p->kobj); |
1104 | kobject_put(kobj: p->kobj); |
1105 | p->kobj = NULL; |
1106 | } |
1107 | |
1108 | /* No process locking is needed in this function, because the process |
1109 | * is not findable any more. We must assume that no other thread is |
1110 | * using it any more, otherwise we couldn't safely free the process |
1111 | * structure in the end. |
1112 | */ |
1113 | static void kfd_process_wq_release(struct work_struct *work) |
1114 | { |
1115 | struct kfd_process *p = container_of(work, struct kfd_process, |
1116 | release_work); |
1117 | |
1118 | kfd_process_dequeue_from_all_devices(p); |
1119 | pqm_uninit(pqm: &p->pqm); |
1120 | |
1121 | /* Signal the eviction fence after user mode queues are |
1122 | * destroyed. This allows any BOs to be freed without |
1123 | * triggering pointless evictions or waiting for fences. |
1124 | */ |
1125 | dma_fence_signal(p->ef); |
1126 | |
1127 | kfd_process_remove_sysfs(p); |
1128 | kfd_iommu_unbind_process(p); |
1129 | |
1130 | kfd_process_kunmap_signal_bo(p); |
1131 | kfd_process_free_outstanding_kfd_bos(p); |
1132 | svm_range_list_fini(p); |
1133 | |
1134 | kfd_process_destroy_pdds(p); |
1135 | dma_fence_put(p->ef); |
1136 | |
1137 | kfd_event_free_process(p); |
1138 | |
1139 | kfd_pasid_free(pasid: p->pasid); |
1140 | mutex_destroy(lock: &p->mutex); |
1141 | |
1142 | put_task_struct(t: p->lead_thread); |
1143 | |
1144 | kfree(objp: p); |
1145 | } |
1146 | |
1147 | static void kfd_process_ref_release(struct kref *ref) |
1148 | { |
1149 | struct kfd_process *p = container_of(ref, struct kfd_process, ref); |
1150 | |
1151 | INIT_WORK(&p->release_work, kfd_process_wq_release); |
1152 | queue_work(wq: kfd_process_wq, work: &p->release_work); |
1153 | } |
1154 | |
1155 | static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) |
1156 | { |
1157 | int idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
1158 | struct kfd_process *p = find_process_by_mm(mm); |
1159 | |
1160 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
1161 | |
1162 | return p ? &p->mmu_notifier : ERR_PTR(-ESRCH); |
1163 | } |
1164 | |
1165 | static void kfd_process_free_notifier(struct mmu_notifier *mn) |
1166 | { |
1167 | kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); |
1168 | } |
1169 | |
1170 | static void kfd_process_notifier_release_internal(struct kfd_process *p) |
1171 | { |
1172 | cancel_delayed_work_sync(dwork: &p->eviction_work); |
1173 | cancel_delayed_work_sync(dwork: &p->restore_work); |
1174 | |
1175 | /* Indicate to other users that MM is no longer valid */ |
1176 | p->mm = NULL; |
1177 | |
1178 | mmu_notifier_put(&p->mmu_notifier); |
1179 | } |
1180 | |
1181 | static void kfd_process_notifier_release(struct mmu_notifier *mn, |
1182 | struct mm_struct *mm) |
1183 | { |
1184 | struct kfd_process *p; |
1185 | |
1186 | /* |
1187 | * The kfd_process structure can not be free because the |
1188 | * mmu_notifier srcu is read locked |
1189 | */ |
1190 | p = container_of(mn, struct kfd_process, mmu_notifier); |
1191 | if (WARN_ON(p->mm != mm)) |
1192 | return; |
1193 | |
1194 | mutex_lock(lock: &kfd_processes_mutex); |
1195 | /* |
1196 | * Do early return if table is empty. |
1197 | * |
1198 | * This could potentially happen if this function is called concurrently |
1199 | * by mmu_notifier and by kfd_cleanup_pocesses. |
1200 | * |
1201 | */ |
1202 | if (hash_empty(kfd_processes_table)) { |
1203 | mutex_unlock(lock: &kfd_processes_mutex); |
1204 | return; |
1205 | } |
1206 | hash_del_rcu(node: &p->kfd_processes); |
1207 | mutex_unlock(lock: &kfd_processes_mutex); |
1208 | synchronize_srcu(ssp: &kfd_processes_srcu); |
1209 | |
1210 | kfd_process_notifier_release_internal(p); |
1211 | } |
1212 | |
1213 | static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { |
1214 | .release = kfd_process_notifier_release, |
1215 | .alloc_notifier = kfd_process_alloc_notifier, |
1216 | .free_notifier = kfd_process_free_notifier, |
1217 | }; |
1218 | |
1219 | /* |
1220 | * This code handles the case when driver is being unloaded before all |
1221 | * mm_struct are released. We need to safely free the kfd_process and |
1222 | * avoid race conditions with mmu_notifier that might try to free them. |
1223 | * |
1224 | */ |
1225 | void kfd_cleanup_processes(void) |
1226 | { |
1227 | struct kfd_process *p; |
1228 | struct hlist_node *p_temp; |
1229 | unsigned int temp; |
1230 | HLIST_HEAD(cleanup_list); |
1231 | |
1232 | /* |
1233 | * Move all remaining kfd_process from the process table to a |
1234 | * temp list for processing. Once done, callback from mmu_notifier |
1235 | * release will not see the kfd_process in the table and do early return, |
1236 | * avoiding double free issues. |
1237 | */ |
1238 | mutex_lock(lock: &kfd_processes_mutex); |
1239 | hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { |
1240 | hash_del_rcu(node: &p->kfd_processes); |
1241 | synchronize_srcu(ssp: &kfd_processes_srcu); |
1242 | hlist_add_head(n: &p->kfd_processes, h: &cleanup_list); |
1243 | } |
1244 | mutex_unlock(lock: &kfd_processes_mutex); |
1245 | |
1246 | hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) |
1247 | kfd_process_notifier_release_internal(p); |
1248 | |
1249 | /* |
1250 | * Ensures that all outstanding free_notifier get called, triggering |
1251 | * the release of the kfd_process struct. |
1252 | */ |
1253 | mmu_notifier_synchronize(); |
1254 | } |
1255 | |
1256 | static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) |
1257 | { |
1258 | unsigned long offset; |
1259 | int i; |
1260 | |
1261 | for (i = 0; i < p->n_pdds; i++) { |
1262 | struct kfd_dev *dev = p->pdds[i]->dev; |
1263 | struct qcm_process_device *qpd = &p->pdds[i]->qpd; |
1264 | |
1265 | if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) |
1266 | continue; |
1267 | |
1268 | offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); |
1269 | qpd->tba_addr = (int64_t)vm_mmap(filep, 0, |
1270 | KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, |
1271 | MAP_SHARED, offset); |
1272 | |
1273 | if (IS_ERR_VALUE(qpd->tba_addr)) { |
1274 | int err = qpd->tba_addr; |
1275 | |
1276 | pr_err("Failure to set tba address. error %d.\n" , err); |
1277 | qpd->tba_addr = 0; |
1278 | qpd->cwsr_kaddr = NULL; |
1279 | return err; |
1280 | } |
1281 | |
1282 | memcpy(to: qpd->cwsr_kaddr, from: dev->cwsr_isa, len: dev->cwsr_isa_size); |
1283 | |
1284 | qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; |
1285 | pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n" , |
1286 | qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); |
1287 | } |
1288 | |
1289 | return 0; |
1290 | } |
1291 | |
1292 | static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) |
1293 | { |
1294 | struct kfd_dev *dev = pdd->dev; |
1295 | struct qcm_process_device *qpd = &pdd->qpd; |
1296 | uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
1297 | | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
1298 | | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; |
1299 | struct kgd_mem *mem; |
1300 | void *kaddr; |
1301 | int ret; |
1302 | |
1303 | if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) |
1304 | return 0; |
1305 | |
1306 | /* cwsr_base is only set for dGPU */ |
1307 | ret = kfd_process_alloc_gpuvm(pdd, gpu_va: qpd->cwsr_base, |
1308 | KFD_CWSR_TBA_TMA_SIZE, flags, mem: &mem, kptr: &kaddr); |
1309 | if (ret) |
1310 | return ret; |
1311 | |
1312 | qpd->cwsr_mem = mem; |
1313 | qpd->cwsr_kaddr = kaddr; |
1314 | qpd->tba_addr = qpd->cwsr_base; |
1315 | |
1316 | memcpy(to: qpd->cwsr_kaddr, from: dev->cwsr_isa, len: dev->cwsr_isa_size); |
1317 | |
1318 | qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; |
1319 | pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n" , |
1320 | qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); |
1321 | |
1322 | return 0; |
1323 | } |
1324 | |
1325 | static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) |
1326 | { |
1327 | struct kfd_dev *dev = pdd->dev; |
1328 | struct qcm_process_device *qpd = &pdd->qpd; |
1329 | |
1330 | if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) |
1331 | return; |
1332 | |
1333 | kfd_process_free_gpuvm(mem: qpd->cwsr_mem, pdd, kptr: &qpd->cwsr_kaddr); |
1334 | } |
1335 | |
1336 | void kfd_process_set_trap_handler(struct qcm_process_device *qpd, |
1337 | uint64_t tba_addr, |
1338 | uint64_t tma_addr) |
1339 | { |
1340 | if (qpd->cwsr_kaddr) { |
1341 | /* KFD trap handler is bound, record as second-level TBA/TMA |
1342 | * in first-level TMA. First-level trap will jump to second. |
1343 | */ |
1344 | uint64_t *tma = |
1345 | (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); |
1346 | tma[0] = tba_addr; |
1347 | tma[1] = tma_addr; |
1348 | } else { |
1349 | /* No trap handler bound, bind as first-level TBA/TMA. */ |
1350 | qpd->tba_addr = tba_addr; |
1351 | qpd->tma_addr = tma_addr; |
1352 | } |
1353 | } |
1354 | |
1355 | bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) |
1356 | { |
1357 | int i; |
1358 | |
1359 | /* On most GFXv9 GPUs, the retry mode in the SQ must match the |
1360 | * boot time retry setting. Mixing processes with different |
1361 | * XNACK/retry settings can hang the GPU. |
1362 | * |
1363 | * Different GPUs can have different noretry settings depending |
1364 | * on HW bugs or limitations. We need to find at least one |
1365 | * XNACK mode for this process that's compatible with all GPUs. |
1366 | * Fortunately GPUs with retry enabled (noretry=0) can run code |
1367 | * built for XNACK-off. On GFXv9 it may perform slower. |
1368 | * |
1369 | * Therefore applications built for XNACK-off can always be |
1370 | * supported and will be our fallback if any GPU does not |
1371 | * support retry. |
1372 | */ |
1373 | for (i = 0; i < p->n_pdds; i++) { |
1374 | struct kfd_dev *dev = p->pdds[i]->dev; |
1375 | |
1376 | /* Only consider GFXv9 and higher GPUs. Older GPUs don't |
1377 | * support the SVM APIs and don't need to be considered |
1378 | * for the XNACK mode selection. |
1379 | */ |
1380 | if (!KFD_IS_SOC15(dev)) |
1381 | continue; |
1382 | /* Aldebaran can always support XNACK because it can support |
1383 | * per-process XNACK mode selection. But let the dev->noretry |
1384 | * setting still influence the default XNACK mode. |
1385 | */ |
1386 | if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) |
1387 | continue; |
1388 | |
1389 | /* GFXv10 and later GPUs do not support shader preemption |
1390 | * during page faults. This can lead to poor QoS for queue |
1391 | * management and memory-manager-related preemptions or |
1392 | * even deadlocks. |
1393 | */ |
1394 | if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) |
1395 | return false; |
1396 | |
1397 | if (dev->noretry) |
1398 | return false; |
1399 | } |
1400 | |
1401 | return true; |
1402 | } |
1403 | |
1404 | /* |
1405 | * On return the kfd_process is fully operational and will be freed when the |
1406 | * mm is released |
1407 | */ |
1408 | static struct kfd_process *create_process(const struct task_struct *thread) |
1409 | { |
1410 | struct kfd_process *process; |
1411 | struct mmu_notifier *mn; |
1412 | int err = -ENOMEM; |
1413 | |
1414 | process = kzalloc(size: sizeof(*process), GFP_KERNEL); |
1415 | if (!process) |
1416 | goto err_alloc_process; |
1417 | |
1418 | kref_init(kref: &process->ref); |
1419 | mutex_init(&process->mutex); |
1420 | process->mm = thread->mm; |
1421 | process->lead_thread = thread->group_leader; |
1422 | process->n_pdds = 0; |
1423 | process->queues_paused = false; |
1424 | INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); |
1425 | INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); |
1426 | process->last_restore_timestamp = get_jiffies_64(); |
1427 | err = kfd_event_init_process(p: process); |
1428 | if (err) |
1429 | goto err_event_init; |
1430 | process->is_32bit_user_mode = in_compat_syscall(); |
1431 | |
1432 | process->pasid = kfd_pasid_alloc(); |
1433 | if (process->pasid == 0) { |
1434 | err = -ENOSPC; |
1435 | goto err_alloc_pasid; |
1436 | } |
1437 | |
1438 | err = pqm_init(pqm: &process->pqm, p: process); |
1439 | if (err != 0) |
1440 | goto err_process_pqm_init; |
1441 | |
1442 | /* init process apertures*/ |
1443 | err = kfd_init_apertures(process); |
1444 | if (err != 0) |
1445 | goto err_init_apertures; |
1446 | |
1447 | /* Check XNACK support after PDDs are created in kfd_init_apertures */ |
1448 | process->xnack_enabled = kfd_process_xnack_mode(p: process, supported: false); |
1449 | |
1450 | err = svm_range_list_init(p: process); |
1451 | if (err) |
1452 | goto err_init_svm_range_list; |
1453 | |
1454 | /* alloc_notifier needs to find the process in the hash table */ |
1455 | hash_add_rcu(kfd_processes_table, &process->kfd_processes, |
1456 | (uintptr_t)process->mm); |
1457 | |
1458 | /* Avoid free_notifier to start kfd_process_wq_release if |
1459 | * mmu_notifier_get failed because of pending signal. |
1460 | */ |
1461 | kref_get(kref: &process->ref); |
1462 | |
1463 | /* MMU notifier registration must be the last call that can fail |
1464 | * because after this point we cannot unwind the process creation. |
1465 | * After this point, mmu_notifier_put will trigger the cleanup by |
1466 | * dropping the last process reference in the free_notifier. |
1467 | */ |
1468 | mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm); |
1469 | if (IS_ERR(ptr: mn)) { |
1470 | err = PTR_ERR(ptr: mn); |
1471 | goto err_register_notifier; |
1472 | } |
1473 | BUG_ON(mn != &process->mmu_notifier); |
1474 | |
1475 | kfd_unref_process(p: process); |
1476 | get_task_struct(t: process->lead_thread); |
1477 | |
1478 | return process; |
1479 | |
1480 | err_register_notifier: |
1481 | hash_del_rcu(node: &process->kfd_processes); |
1482 | svm_range_list_fini(p: process); |
1483 | err_init_svm_range_list: |
1484 | kfd_process_free_outstanding_kfd_bos(p: process); |
1485 | kfd_process_destroy_pdds(p: process); |
1486 | err_init_apertures: |
1487 | pqm_uninit(pqm: &process->pqm); |
1488 | err_process_pqm_init: |
1489 | kfd_pasid_free(pasid: process->pasid); |
1490 | err_alloc_pasid: |
1491 | kfd_event_free_process(p: process); |
1492 | err_event_init: |
1493 | mutex_destroy(lock: &process->mutex); |
1494 | kfree(objp: process); |
1495 | err_alloc_process: |
1496 | return ERR_PTR(error: err); |
1497 | } |
1498 | |
1499 | static int init_doorbell_bitmap(struct qcm_process_device *qpd, |
1500 | struct kfd_dev *dev) |
1501 | { |
1502 | unsigned int i; |
1503 | int range_start = dev->shared_resources.non_cp_doorbells_start; |
1504 | int range_end = dev->shared_resources.non_cp_doorbells_end; |
1505 | |
1506 | if (!KFD_IS_SOC15(dev)) |
1507 | return 0; |
1508 | |
1509 | qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, |
1510 | GFP_KERNEL); |
1511 | if (!qpd->doorbell_bitmap) |
1512 | return -ENOMEM; |
1513 | |
1514 | /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */ |
1515 | pr_debug("reserved doorbell 0x%03x - 0x%03x\n" , range_start, range_end); |
1516 | pr_debug("reserved doorbell 0x%03x - 0x%03x\n" , |
1517 | range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, |
1518 | range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET); |
1519 | |
1520 | for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) { |
1521 | if (i >= range_start && i <= range_end) { |
1522 | __set_bit(i, qpd->doorbell_bitmap); |
1523 | __set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, |
1524 | qpd->doorbell_bitmap); |
1525 | } |
1526 | } |
1527 | |
1528 | return 0; |
1529 | } |
1530 | |
1531 | struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, |
1532 | struct kfd_process *p) |
1533 | { |
1534 | int i; |
1535 | |
1536 | for (i = 0; i < p->n_pdds; i++) |
1537 | if (p->pdds[i]->dev == dev) |
1538 | return p->pdds[i]; |
1539 | |
1540 | return NULL; |
1541 | } |
1542 | |
1543 | struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, |
1544 | struct kfd_process *p) |
1545 | { |
1546 | struct kfd_process_device *pdd = NULL; |
1547 | int retval = 0; |
1548 | |
1549 | if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) |
1550 | return NULL; |
1551 | pdd = kzalloc(size: sizeof(*pdd), GFP_KERNEL); |
1552 | if (!pdd) |
1553 | return NULL; |
1554 | |
1555 | if (init_doorbell_bitmap(qpd: &pdd->qpd, dev)) { |
1556 | pr_err("Failed to init doorbell for process\n" ); |
1557 | goto err_free_pdd; |
1558 | } |
1559 | |
1560 | pdd->dev = dev; |
1561 | INIT_LIST_HEAD(list: &pdd->qpd.queues_list); |
1562 | INIT_LIST_HEAD(list: &pdd->qpd.priv_queue_list); |
1563 | pdd->qpd.dqm = dev->dqm; |
1564 | pdd->qpd.pqm = &p->pqm; |
1565 | pdd->qpd.evicted = 0; |
1566 | pdd->qpd.mapped_gws_queue = false; |
1567 | pdd->process = p; |
1568 | pdd->bound = PDD_UNBOUND; |
1569 | pdd->already_dequeued = false; |
1570 | pdd->runtime_inuse = false; |
1571 | pdd->vram_usage = 0; |
1572 | pdd->sdma_past_activity_counter = 0; |
1573 | pdd->user_gpu_id = dev->id; |
1574 | atomic64_set(&pdd->evict_duration_counter, 0); |
1575 | |
1576 | if (dev->shared_resources.enable_mes) { |
1577 | retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, |
1578 | AMDGPU_MES_PROC_CTX_SIZE, |
1579 | &pdd->proc_ctx_bo, |
1580 | &pdd->proc_ctx_gpu_addr, |
1581 | &pdd->proc_ctx_cpu_ptr, |
1582 | false); |
1583 | if (retval) { |
1584 | pr_err("failed to allocate process context bo\n" ); |
1585 | goto err_free_pdd; |
1586 | } |
1587 | memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE); |
1588 | } |
1589 | |
1590 | p->pdds[p->n_pdds++] = pdd; |
1591 | |
1592 | /* Init idr used for memory handle translation */ |
1593 | idr_init(idr: &pdd->alloc_idr); |
1594 | |
1595 | return pdd; |
1596 | |
1597 | err_free_pdd: |
1598 | kfree(objp: pdd); |
1599 | return NULL; |
1600 | } |
1601 | |
1602 | /** |
1603 | * kfd_process_device_init_vm - Initialize a VM for a process-device |
1604 | * |
1605 | * @pdd: The process-device |
1606 | * @drm_file: Optional pointer to a DRM file descriptor |
1607 | * |
1608 | * If @drm_file is specified, it will be used to acquire the VM from |
1609 | * that file descriptor. If successful, the @pdd takes ownership of |
1610 | * the file descriptor. |
1611 | * |
1612 | * If @drm_file is NULL, a new VM is created. |
1613 | * |
1614 | * Returns 0 on success, -errno on failure. |
1615 | */ |
1616 | int kfd_process_device_init_vm(struct kfd_process_device *pdd, |
1617 | struct file *drm_file) |
1618 | { |
1619 | struct amdgpu_fpriv *drv_priv; |
1620 | struct amdgpu_vm *avm; |
1621 | struct kfd_process *p; |
1622 | struct kfd_dev *dev; |
1623 | int ret; |
1624 | |
1625 | if (!drm_file) |
1626 | return -EINVAL; |
1627 | |
1628 | if (pdd->drm_priv) |
1629 | return -EBUSY; |
1630 | |
1631 | ret = amdgpu_file_to_fpriv(drm_file, &drv_priv); |
1632 | if (ret) |
1633 | return ret; |
1634 | avm = &drv_priv->vm; |
1635 | |
1636 | p = pdd->process; |
1637 | dev = pdd->dev; |
1638 | |
1639 | ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm, |
1640 | &p->kgd_process_info, |
1641 | &p->ef); |
1642 | if (ret) { |
1643 | pr_err("Failed to create process VM object\n" ); |
1644 | return ret; |
1645 | } |
1646 | pdd->drm_priv = drm_file->private_data; |
1647 | atomic64_set(&pdd->tlb_seq, 0); |
1648 | |
1649 | ret = kfd_process_device_reserve_ib_mem(pdd); |
1650 | if (ret) |
1651 | goto err_reserve_ib_mem; |
1652 | ret = kfd_process_device_init_cwsr_dgpu(pdd); |
1653 | if (ret) |
1654 | goto err_init_cwsr; |
1655 | |
1656 | ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid); |
1657 | if (ret) |
1658 | goto err_set_pasid; |
1659 | |
1660 | pdd->drm_file = drm_file; |
1661 | |
1662 | return 0; |
1663 | |
1664 | err_set_pasid: |
1665 | kfd_process_device_destroy_cwsr_dgpu(pdd); |
1666 | err_init_cwsr: |
1667 | kfd_process_device_destroy_ib_mem(pdd); |
1668 | err_reserve_ib_mem: |
1669 | pdd->drm_priv = NULL; |
1670 | amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm); |
1671 | |
1672 | return ret; |
1673 | } |
1674 | |
1675 | /* |
1676 | * Direct the IOMMU to bind the process (specifically the pasid->mm) |
1677 | * to the device. |
1678 | * Unbinding occurs when the process dies or the device is removed. |
1679 | * |
1680 | * Assumes that the process lock is held. |
1681 | */ |
1682 | struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, |
1683 | struct kfd_process *p) |
1684 | { |
1685 | struct kfd_process_device *pdd; |
1686 | int err; |
1687 | |
1688 | pdd = kfd_get_process_device_data(dev, p); |
1689 | if (!pdd) { |
1690 | pr_err("Process device data doesn't exist\n" ); |
1691 | return ERR_PTR(-ENOMEM); |
1692 | } |
1693 | |
1694 | if (!pdd->drm_priv) |
1695 | return ERR_PTR(-ENODEV); |
1696 | |
1697 | /* |
1698 | * signal runtime-pm system to auto resume and prevent |
1699 | * further runtime suspend once device pdd is created until |
1700 | * pdd is destroyed. |
1701 | */ |
1702 | if (!pdd->runtime_inuse) { |
1703 | err = pm_runtime_get_sync(dev: adev_to_drm(dev->adev)->dev); |
1704 | if (err < 0) { |
1705 | pm_runtime_put_autosuspend(dev: adev_to_drm(dev->adev)->dev); |
1706 | return ERR_PTR(error: err); |
1707 | } |
1708 | } |
1709 | |
1710 | err = kfd_iommu_bind_process_to_device(pdd); |
1711 | if (err) |
1712 | goto out; |
1713 | |
1714 | /* |
1715 | * make sure that runtime_usage counter is incremented just once |
1716 | * per pdd |
1717 | */ |
1718 | pdd->runtime_inuse = true; |
1719 | |
1720 | return pdd; |
1721 | |
1722 | out: |
1723 | /* balance runpm reference count and exit with error */ |
1724 | if (!pdd->runtime_inuse) { |
1725 | pm_runtime_mark_last_busy(dev: adev_to_drm(dev->adev)->dev); |
1726 | pm_runtime_put_autosuspend(dev: adev_to_drm(dev->adev)->dev); |
1727 | } |
1728 | |
1729 | return ERR_PTR(error: err); |
1730 | } |
1731 | |
1732 | /* Create specific handle mapped to mem from process local memory idr |
1733 | * Assumes that the process lock is held. |
1734 | */ |
1735 | int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, |
1736 | void *mem) |
1737 | { |
1738 | return idr_alloc(&pdd->alloc_idr, ptr: mem, start: 0, end: 0, GFP_KERNEL); |
1739 | } |
1740 | |
1741 | /* Translate specific handle from process local memory idr |
1742 | * Assumes that the process lock is held. |
1743 | */ |
1744 | void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, |
1745 | int handle) |
1746 | { |
1747 | if (handle < 0) |
1748 | return NULL; |
1749 | |
1750 | return idr_find(&pdd->alloc_idr, id: handle); |
1751 | } |
1752 | |
1753 | /* Remove specific handle from process local memory idr |
1754 | * Assumes that the process lock is held. |
1755 | */ |
1756 | void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, |
1757 | int handle) |
1758 | { |
1759 | if (handle >= 0) |
1760 | idr_remove(&pdd->alloc_idr, id: handle); |
1761 | } |
1762 | |
1763 | /* This increments the process->ref counter. */ |
1764 | struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) |
1765 | { |
1766 | struct kfd_process *p, *ret_p = NULL; |
1767 | unsigned int temp; |
1768 | |
1769 | int idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
1770 | |
1771 | hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { |
1772 | if (p->pasid == pasid) { |
1773 | kref_get(kref: &p->ref); |
1774 | ret_p = p; |
1775 | break; |
1776 | } |
1777 | } |
1778 | |
1779 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
1780 | |
1781 | return ret_p; |
1782 | } |
1783 | |
1784 | /* This increments the process->ref counter. */ |
1785 | struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) |
1786 | { |
1787 | struct kfd_process *p; |
1788 | |
1789 | int idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
1790 | |
1791 | p = find_process_by_mm(mm); |
1792 | if (p) |
1793 | kref_get(kref: &p->ref); |
1794 | |
1795 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
1796 | |
1797 | return p; |
1798 | } |
1799 | |
1800 | /* kfd_process_evict_queues - Evict all user queues of a process |
1801 | * |
1802 | * Eviction is reference-counted per process-device. This means multiple |
1803 | * evictions from different sources can be nested safely. |
1804 | */ |
1805 | int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) |
1806 | { |
1807 | int r = 0; |
1808 | int i; |
1809 | unsigned int n_evicted = 0; |
1810 | |
1811 | for (i = 0; i < p->n_pdds; i++) { |
1812 | struct kfd_process_device *pdd = p->pdds[i]; |
1813 | |
1814 | kfd_smi_event_queue_eviction(dev: pdd->dev, pid: p->lead_thread->pid, |
1815 | trigger); |
1816 | |
1817 | r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, |
1818 | &pdd->qpd); |
1819 | /* evict return -EIO if HWS is hang or asic is resetting, in this case |
1820 | * we would like to set all the queues to be in evicted state to prevent |
1821 | * them been add back since they actually not be saved right now. |
1822 | */ |
1823 | if (r && r != -EIO) { |
1824 | pr_err("Failed to evict process queues\n" ); |
1825 | goto fail; |
1826 | } |
1827 | n_evicted++; |
1828 | } |
1829 | |
1830 | return r; |
1831 | |
1832 | fail: |
1833 | /* To keep state consistent, roll back partial eviction by |
1834 | * restoring queues |
1835 | */ |
1836 | for (i = 0; i < p->n_pdds; i++) { |
1837 | struct kfd_process_device *pdd = p->pdds[i]; |
1838 | |
1839 | if (n_evicted == 0) |
1840 | break; |
1841 | |
1842 | kfd_smi_event_queue_restore(dev: pdd->dev, pid: p->lead_thread->pid); |
1843 | |
1844 | if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, |
1845 | &pdd->qpd)) |
1846 | pr_err("Failed to restore queues\n" ); |
1847 | |
1848 | n_evicted--; |
1849 | } |
1850 | |
1851 | return r; |
1852 | } |
1853 | |
1854 | /* kfd_process_restore_queues - Restore all user queues of a process */ |
1855 | int kfd_process_restore_queues(struct kfd_process *p) |
1856 | { |
1857 | int r, ret = 0; |
1858 | int i; |
1859 | |
1860 | for (i = 0; i < p->n_pdds; i++) { |
1861 | struct kfd_process_device *pdd = p->pdds[i]; |
1862 | |
1863 | kfd_smi_event_queue_restore(dev: pdd->dev, pid: p->lead_thread->pid); |
1864 | |
1865 | r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, |
1866 | &pdd->qpd); |
1867 | if (r) { |
1868 | pr_err("Failed to restore process queues\n" ); |
1869 | if (!ret) |
1870 | ret = r; |
1871 | } |
1872 | } |
1873 | |
1874 | return ret; |
1875 | } |
1876 | |
1877 | int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) |
1878 | { |
1879 | int i; |
1880 | |
1881 | for (i = 0; i < p->n_pdds; i++) |
1882 | if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) |
1883 | return i; |
1884 | return -EINVAL; |
1885 | } |
1886 | |
1887 | int |
1888 | kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev, |
1889 | uint32_t *gpuid, uint32_t *gpuidx) |
1890 | { |
1891 | int i; |
1892 | |
1893 | for (i = 0; i < p->n_pdds; i++) |
1894 | if (p->pdds[i] && p->pdds[i]->dev->adev == adev) { |
1895 | *gpuid = p->pdds[i]->user_gpu_id; |
1896 | *gpuidx = i; |
1897 | return 0; |
1898 | } |
1899 | return -EINVAL; |
1900 | } |
1901 | |
1902 | static void evict_process_worker(struct work_struct *work) |
1903 | { |
1904 | int ret; |
1905 | struct kfd_process *p; |
1906 | struct delayed_work *dwork; |
1907 | |
1908 | dwork = to_delayed_work(work); |
1909 | |
1910 | /* Process termination destroys this worker thread. So during the |
1911 | * lifetime of this thread, kfd_process p will be valid |
1912 | */ |
1913 | p = container_of(dwork, struct kfd_process, eviction_work); |
1914 | WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, |
1915 | "Eviction fence mismatch\n" ); |
1916 | |
1917 | /* Narrow window of overlap between restore and evict work |
1918 | * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos |
1919 | * unreserves KFD BOs, it is possible to evicted again. But |
1920 | * restore has few more steps of finish. So lets wait for any |
1921 | * previous restore work to complete |
1922 | */ |
1923 | flush_delayed_work(dwork: &p->restore_work); |
1924 | |
1925 | pr_debug("Started evicting pasid 0x%x\n" , p->pasid); |
1926 | ret = kfd_process_evict_queues(p, trigger: KFD_QUEUE_EVICTION_TRIGGER_TTM); |
1927 | if (!ret) { |
1928 | dma_fence_signal(p->ef); |
1929 | dma_fence_put(p->ef); |
1930 | p->ef = NULL; |
1931 | queue_delayed_work(wq: kfd_restore_wq, dwork: &p->restore_work, |
1932 | delay: msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); |
1933 | |
1934 | pr_debug("Finished evicting pasid 0x%x\n" , p->pasid); |
1935 | } else |
1936 | pr_err("Failed to evict queues of pasid 0x%x\n" , p->pasid); |
1937 | } |
1938 | |
1939 | static void restore_process_worker(struct work_struct *work) |
1940 | { |
1941 | struct delayed_work *dwork; |
1942 | struct kfd_process *p; |
1943 | int ret = 0; |
1944 | |
1945 | dwork = to_delayed_work(work); |
1946 | |
1947 | /* Process termination destroys this worker thread. So during the |
1948 | * lifetime of this thread, kfd_process p will be valid |
1949 | */ |
1950 | p = container_of(dwork, struct kfd_process, restore_work); |
1951 | pr_debug("Started restoring pasid 0x%x\n" , p->pasid); |
1952 | |
1953 | /* Setting last_restore_timestamp before successful restoration. |
1954 | * Otherwise this would have to be set by KGD (restore_process_bos) |
1955 | * before KFD BOs are unreserved. If not, the process can be evicted |
1956 | * again before the timestamp is set. |
1957 | * If restore fails, the timestamp will be set again in the next |
1958 | * attempt. This would mean that the minimum GPU quanta would be |
1959 | * PROCESS_ACTIVE_TIME_MS - (time to execute the following two |
1960 | * functions) |
1961 | */ |
1962 | |
1963 | p->last_restore_timestamp = get_jiffies_64(); |
1964 | ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, |
1965 | &p->ef); |
1966 | if (ret) { |
1967 | pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n" , |
1968 | p->pasid, PROCESS_BACK_OFF_TIME_MS); |
1969 | ret = queue_delayed_work(wq: kfd_restore_wq, dwork: &p->restore_work, |
1970 | delay: msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); |
1971 | WARN(!ret, "reschedule restore work failed\n" ); |
1972 | return; |
1973 | } |
1974 | |
1975 | ret = kfd_process_restore_queues(p); |
1976 | if (!ret) |
1977 | pr_debug("Finished restoring pasid 0x%x\n" , p->pasid); |
1978 | else |
1979 | pr_err("Failed to restore queues of pasid 0x%x\n" , p->pasid); |
1980 | } |
1981 | |
1982 | void kfd_suspend_all_processes(void) |
1983 | { |
1984 | struct kfd_process *p; |
1985 | unsigned int temp; |
1986 | int idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
1987 | |
1988 | WARN(debug_evictions, "Evicting all processes" ); |
1989 | hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { |
1990 | cancel_delayed_work_sync(dwork: &p->eviction_work); |
1991 | cancel_delayed_work_sync(dwork: &p->restore_work); |
1992 | |
1993 | if (kfd_process_evict_queues(p, trigger: KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) |
1994 | pr_err("Failed to suspend process 0x%x\n" , p->pasid); |
1995 | dma_fence_signal(p->ef); |
1996 | dma_fence_put(p->ef); |
1997 | p->ef = NULL; |
1998 | } |
1999 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
2000 | } |
2001 | |
2002 | int kfd_resume_all_processes(void) |
2003 | { |
2004 | struct kfd_process *p; |
2005 | unsigned int temp; |
2006 | int ret = 0, idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
2007 | |
2008 | hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { |
2009 | if (!queue_delayed_work(wq: kfd_restore_wq, dwork: &p->restore_work, delay: 0)) { |
2010 | pr_err("Restore process %d failed during resume\n" , |
2011 | p->pasid); |
2012 | ret = -EFAULT; |
2013 | } |
2014 | } |
2015 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
2016 | return ret; |
2017 | } |
2018 | |
2019 | int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, |
2020 | struct vm_area_struct *vma) |
2021 | { |
2022 | struct kfd_process_device *pdd; |
2023 | struct qcm_process_device *qpd; |
2024 | |
2025 | if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { |
2026 | pr_err("Incorrect CWSR mapping size.\n" ); |
2027 | return -EINVAL; |
2028 | } |
2029 | |
2030 | pdd = kfd_get_process_device_data(dev, p: process); |
2031 | if (!pdd) |
2032 | return -EINVAL; |
2033 | qpd = &pdd->qpd; |
2034 | |
2035 | qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, |
2036 | order: get_order(KFD_CWSR_TBA_TMA_SIZE)); |
2037 | if (!qpd->cwsr_kaddr) { |
2038 | pr_err("Error allocating per process CWSR buffer.\n" ); |
2039 | return -ENOMEM; |
2040 | } |
2041 | |
2042 | vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND |
2043 | | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); |
2044 | /* Mapping pages to user process */ |
2045 | return remap_pfn_range(vma, vma->vm_start, |
2046 | PFN_DOWN(__pa(qpd->cwsr_kaddr)), |
2047 | KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); |
2048 | } |
2049 | |
2050 | void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type) |
2051 | { |
2052 | struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); |
2053 | uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); |
2054 | struct kfd_dev *dev = pdd->dev; |
2055 | |
2056 | /* |
2057 | * It can be that we race and lose here, but that is extremely unlikely |
2058 | * and the worst thing which could happen is that we flush the changes |
2059 | * into the TLB once more which is harmless. |
2060 | */ |
2061 | if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq) |
2062 | return; |
2063 | |
2064 | if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { |
2065 | /* Nothing to flush until a VMID is assigned, which |
2066 | * only happens when the first queue is created. |
2067 | */ |
2068 | if (pdd->qpd.vmid) |
2069 | amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev, |
2070 | pdd->qpd.vmid); |
2071 | } else { |
2072 | amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev, |
2073 | pdd->process->pasid, type); |
2074 | } |
2075 | } |
2076 | |
2077 | struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) |
2078 | { |
2079 | int i; |
2080 | |
2081 | if (gpu_id) { |
2082 | for (i = 0; i < p->n_pdds; i++) { |
2083 | struct kfd_process_device *pdd = p->pdds[i]; |
2084 | |
2085 | if (pdd->user_gpu_id == gpu_id) |
2086 | return pdd; |
2087 | } |
2088 | } |
2089 | return NULL; |
2090 | } |
2091 | |
2092 | int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) |
2093 | { |
2094 | int i; |
2095 | |
2096 | if (!actual_gpu_id) |
2097 | return 0; |
2098 | |
2099 | for (i = 0; i < p->n_pdds; i++) { |
2100 | struct kfd_process_device *pdd = p->pdds[i]; |
2101 | |
2102 | if (pdd->dev->id == actual_gpu_id) |
2103 | return pdd->user_gpu_id; |
2104 | } |
2105 | return -EINVAL; |
2106 | } |
2107 | |
2108 | #if defined(CONFIG_DEBUG_FS) |
2109 | |
2110 | int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) |
2111 | { |
2112 | struct kfd_process *p; |
2113 | unsigned int temp; |
2114 | int r = 0; |
2115 | |
2116 | int idx = srcu_read_lock(&kfd_processes_srcu); |
2117 | |
2118 | hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { |
2119 | seq_printf(m, "Process %d PASID 0x%x:\n" , |
2120 | p->lead_thread->tgid, p->pasid); |
2121 | |
2122 | mutex_lock(&p->mutex); |
2123 | r = pqm_debugfs_mqds(m, &p->pqm); |
2124 | mutex_unlock(&p->mutex); |
2125 | |
2126 | if (r) |
2127 | break; |
2128 | } |
2129 | |
2130 | srcu_read_unlock(&kfd_processes_srcu, idx); |
2131 | |
2132 | return r; |
2133 | } |
2134 | |
2135 | #endif |
2136 | |
2137 | |