1 | // SPDX-License-Identifier: GPL-2.0 OR MIT |
---|---|
2 | /* |
3 | * Copyright 2014-2022 Advanced Micro Devices, Inc. |
4 | * |
5 | * Permission is hereby granted, free of charge, to any person obtaining a |
6 | * copy of this software and associated documentation files (the "Software"), |
7 | * to deal in the Software without restriction, including without limitation |
8 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
9 | * and/or sell copies of the Software, and to permit persons to whom the |
10 | * Software is furnished to do so, subject to the following conditions: |
11 | * |
12 | * The above copyright notice and this permission notice shall be included in |
13 | * all copies or substantial portions of the Software. |
14 | * |
15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
18 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
19 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
20 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
21 | * OTHER DEALINGS IN THE SOFTWARE. |
22 | */ |
23 | |
24 | #include <linux/mutex.h> |
25 | #include <linux/log2.h> |
26 | #include <linux/sched.h> |
27 | #include <linux/sched/mm.h> |
28 | #include <linux/sched/task.h> |
29 | #include <linux/mmu_context.h> |
30 | #include <linux/slab.h> |
31 | #include <linux/notifier.h> |
32 | #include <linux/compat.h> |
33 | #include <linux/mman.h> |
34 | #include <linux/file.h> |
35 | #include <linux/pm_runtime.h> |
36 | #include "amdgpu_amdkfd.h" |
37 | #include "amdgpu.h" |
38 | |
39 | struct mm_struct; |
40 | |
41 | #include "kfd_priv.h" |
42 | #include "kfd_device_queue_manager.h" |
43 | #include "kfd_svm.h" |
44 | #include "kfd_smi_events.h" |
45 | #include "kfd_debug.h" |
46 | |
47 | /* |
48 | * List of struct kfd_process (field kfd_process). |
49 | * Unique/indexed by mm_struct* |
50 | */ |
51 | DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); |
52 | DEFINE_MUTEX(kfd_processes_mutex); |
53 | |
54 | DEFINE_SRCU(kfd_processes_srcu); |
55 | |
56 | /* For process termination handling */ |
57 | static struct workqueue_struct *kfd_process_wq; |
58 | |
59 | /* Ordered, single-threaded workqueue for restoring evicted |
60 | * processes. Restoring multiple processes concurrently under memory |
61 | * pressure can lead to processes blocking each other from validating |
62 | * their BOs and result in a live-lock situation where processes |
63 | * remain evicted indefinitely. |
64 | */ |
65 | static struct workqueue_struct *kfd_restore_wq; |
66 | |
67 | static struct kfd_process *find_process(const struct task_struct *thread, |
68 | bool ref); |
69 | static void kfd_process_ref_release(struct kref *ref); |
70 | static struct kfd_process *create_process(const struct task_struct *thread); |
71 | |
72 | static void evict_process_worker(struct work_struct *work); |
73 | static void restore_process_worker(struct work_struct *work); |
74 | |
75 | static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd); |
76 | |
77 | struct kfd_procfs_tree { |
78 | struct kobject *kobj; |
79 | }; |
80 | |
81 | static struct kfd_procfs_tree procfs; |
82 | |
83 | /* |
84 | * Structure for SDMA activity tracking |
85 | */ |
86 | struct kfd_sdma_activity_handler_workarea { |
87 | struct work_struct sdma_activity_work; |
88 | struct kfd_process_device *pdd; |
89 | uint64_t sdma_activity_counter; |
90 | }; |
91 | |
92 | struct temp_sdma_queue_list { |
93 | uint64_t __user *rptr; |
94 | uint64_t sdma_val; |
95 | unsigned int queue_id; |
96 | struct list_head list; |
97 | }; |
98 | |
99 | static void kfd_sdma_activity_worker(struct work_struct *work) |
100 | { |
101 | struct kfd_sdma_activity_handler_workarea *workarea; |
102 | struct kfd_process_device *pdd; |
103 | uint64_t val; |
104 | struct mm_struct *mm; |
105 | struct queue *q; |
106 | struct qcm_process_device *qpd; |
107 | struct device_queue_manager *dqm; |
108 | int ret = 0; |
109 | struct temp_sdma_queue_list sdma_q_list; |
110 | struct temp_sdma_queue_list *sdma_q, *next; |
111 | |
112 | workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, |
113 | sdma_activity_work); |
114 | |
115 | pdd = workarea->pdd; |
116 | if (!pdd) |
117 | return; |
118 | dqm = pdd->dev->dqm; |
119 | qpd = &pdd->qpd; |
120 | if (!dqm || !qpd) |
121 | return; |
122 | /* |
123 | * Total SDMA activity is current SDMA activity + past SDMA activity |
124 | * Past SDMA count is stored in pdd. |
125 | * To get the current activity counters for all active SDMA queues, |
126 | * we loop over all SDMA queues and get their counts from user-space. |
127 | * |
128 | * We cannot call get_user() with dqm_lock held as it can cause |
129 | * a circular lock dependency situation. To read the SDMA stats, |
130 | * we need to do the following: |
131 | * |
132 | * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, |
133 | * with dqm_lock/dqm_unlock(). |
134 | * 2. Call get_user() for each node in temporary list without dqm_lock. |
135 | * Save the SDMA count for each node and also add the count to the total |
136 | * SDMA count counter. |
137 | * Its possible, during this step, a few SDMA queue nodes got deleted |
138 | * from the qpd->queues_list. |
139 | * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. |
140 | * If any node got deleted, its SDMA count would be captured in the sdma |
141 | * past activity counter. So subtract the SDMA counter stored in step 2 |
142 | * for this node from the total SDMA count. |
143 | */ |
144 | INIT_LIST_HEAD(list: &sdma_q_list.list); |
145 | |
146 | /* |
147 | * Create the temp list of all SDMA queues |
148 | */ |
149 | dqm_lock(dqm); |
150 | |
151 | list_for_each_entry(q, &qpd->queues_list, list) { |
152 | if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && |
153 | (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) |
154 | continue; |
155 | |
156 | sdma_q = kzalloc(size: sizeof(struct temp_sdma_queue_list), GFP_KERNEL); |
157 | if (!sdma_q) { |
158 | dqm_unlock(dqm); |
159 | goto cleanup; |
160 | } |
161 | |
162 | INIT_LIST_HEAD(list: &sdma_q->list); |
163 | sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; |
164 | sdma_q->queue_id = q->properties.queue_id; |
165 | list_add_tail(new: &sdma_q->list, head: &sdma_q_list.list); |
166 | } |
167 | |
168 | /* |
169 | * If the temp list is empty, then no SDMA queues nodes were found in |
170 | * qpd->queues_list. Return the past activity count as the total sdma |
171 | * count |
172 | */ |
173 | if (list_empty(head: &sdma_q_list.list)) { |
174 | workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; |
175 | dqm_unlock(dqm); |
176 | return; |
177 | } |
178 | |
179 | dqm_unlock(dqm); |
180 | |
181 | /* |
182 | * Get the usage count for each SDMA queue in temp_list. |
183 | */ |
184 | mm = get_task_mm(task: pdd->process->lead_thread); |
185 | if (!mm) |
186 | goto cleanup; |
187 | |
188 | kthread_use_mm(mm); |
189 | |
190 | list_for_each_entry(sdma_q, &sdma_q_list.list, list) { |
191 | val = 0; |
192 | ret = read_sdma_queue_counter(q_rptr: sdma_q->rptr, val: &val); |
193 | if (ret) { |
194 | pr_debug("Failed to read SDMA queue active counter for queue id: %d", |
195 | sdma_q->queue_id); |
196 | } else { |
197 | sdma_q->sdma_val = val; |
198 | workarea->sdma_activity_counter += val; |
199 | } |
200 | } |
201 | |
202 | kthread_unuse_mm(mm); |
203 | mmput(mm); |
204 | |
205 | /* |
206 | * Do a second iteration over qpd_queues_list to check if any SDMA |
207 | * nodes got deleted while fetching SDMA counter. |
208 | */ |
209 | dqm_lock(dqm); |
210 | |
211 | workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; |
212 | |
213 | list_for_each_entry(q, &qpd->queues_list, list) { |
214 | if (list_empty(head: &sdma_q_list.list)) |
215 | break; |
216 | |
217 | if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && |
218 | (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) |
219 | continue; |
220 | |
221 | list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { |
222 | if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && |
223 | (sdma_q->queue_id == q->properties.queue_id)) { |
224 | list_del(entry: &sdma_q->list); |
225 | kfree(objp: sdma_q); |
226 | break; |
227 | } |
228 | } |
229 | } |
230 | |
231 | dqm_unlock(dqm); |
232 | |
233 | /* |
234 | * If temp list is not empty, it implies some queues got deleted |
235 | * from qpd->queues_list during SDMA usage read. Subtract the SDMA |
236 | * count for each node from the total SDMA count. |
237 | */ |
238 | list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { |
239 | workarea->sdma_activity_counter -= sdma_q->sdma_val; |
240 | list_del(entry: &sdma_q->list); |
241 | kfree(objp: sdma_q); |
242 | } |
243 | |
244 | return; |
245 | |
246 | cleanup: |
247 | list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { |
248 | list_del(entry: &sdma_q->list); |
249 | kfree(objp: sdma_q); |
250 | } |
251 | } |
252 | |
253 | /** |
254 | * kfd_get_cu_occupancy - Collect number of waves in-flight on this device |
255 | * by current process. Translates acquired wave count into number of compute units |
256 | * that are occupied. |
257 | * |
258 | * @attr: Handle of attribute that allows reporting of wave count. The attribute |
259 | * handle encapsulates GPU device it is associated with, thereby allowing collection |
260 | * of waves in flight, etc |
261 | * @buffer: Handle of user provided buffer updated with wave count |
262 | * |
263 | * Return: Number of bytes written to user buffer or an error value |
264 | */ |
265 | static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) |
266 | { |
267 | int cu_cnt; |
268 | int wave_cnt; |
269 | int max_waves_per_cu; |
270 | struct kfd_node *dev = NULL; |
271 | struct kfd_process *proc = NULL; |
272 | struct kfd_process_device *pdd = NULL; |
273 | |
274 | pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); |
275 | dev = pdd->dev; |
276 | if (dev->kfd2kgd->get_cu_occupancy == NULL) |
277 | return -EINVAL; |
278 | |
279 | cu_cnt = 0; |
280 | proc = pdd->process; |
281 | if (pdd->qpd.queue_count == 0) { |
282 | pr_debug("Gpu-Id: %d has no active queues for process %d\n", |
283 | dev->id, proc->pasid); |
284 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%d\n", cu_cnt); |
285 | } |
286 | |
287 | /* Collect wave count from device if it supports */ |
288 | wave_cnt = 0; |
289 | max_waves_per_cu = 0; |
290 | dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt, |
291 | &max_waves_per_cu, 0); |
292 | |
293 | /* Translate wave count to number of compute units */ |
294 | cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; |
295 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%d\n", cu_cnt); |
296 | } |
297 | |
298 | static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, |
299 | char *buffer) |
300 | { |
301 | if (strcmp(attr->name, "pasid") == 0) { |
302 | struct kfd_process *p = container_of(attr, struct kfd_process, |
303 | attr_pasid); |
304 | |
305 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%d\n", p->pasid); |
306 | } else if (strncmp(attr->name, "vram_", 5) == 0) { |
307 | struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, |
308 | attr_vram); |
309 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%llu\n", READ_ONCE(pdd->vram_usage)); |
310 | } else if (strncmp(attr->name, "sdma_", 5) == 0) { |
311 | struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, |
312 | attr_sdma); |
313 | struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; |
314 | |
315 | INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, |
316 | kfd_sdma_activity_worker); |
317 | |
318 | sdma_activity_work_handler.pdd = pdd; |
319 | sdma_activity_work_handler.sdma_activity_counter = 0; |
320 | |
321 | schedule_work(work: &sdma_activity_work_handler.sdma_activity_work); |
322 | |
323 | flush_work(work: &sdma_activity_work_handler.sdma_activity_work); |
324 | |
325 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%llu\n", |
326 | (sdma_activity_work_handler.sdma_activity_counter)/ |
327 | SDMA_ACTIVITY_DIVISOR); |
328 | } else { |
329 | pr_err("Invalid attribute"); |
330 | return -EINVAL; |
331 | } |
332 | |
333 | return 0; |
334 | } |
335 | |
336 | static void kfd_procfs_kobj_release(struct kobject *kobj) |
337 | { |
338 | kfree(objp: kobj); |
339 | } |
340 | |
341 | static const struct sysfs_ops kfd_procfs_ops = { |
342 | .show = kfd_procfs_show, |
343 | }; |
344 | |
345 | static const struct kobj_type procfs_type = { |
346 | .release = kfd_procfs_kobj_release, |
347 | .sysfs_ops = &kfd_procfs_ops, |
348 | }; |
349 | |
350 | void kfd_procfs_init(void) |
351 | { |
352 | int ret = 0; |
353 | |
354 | procfs.kobj = kfd_alloc_struct(procfs.kobj); |
355 | if (!procfs.kobj) |
356 | return; |
357 | |
358 | ret = kobject_init_and_add(kobj: procfs.kobj, ktype: &procfs_type, |
359 | parent: &kfd_device->kobj, fmt: "proc"); |
360 | if (ret) { |
361 | pr_warn("Could not create procfs proc folder"); |
362 | /* If we fail to create the procfs, clean up */ |
363 | kfd_procfs_shutdown(); |
364 | } |
365 | } |
366 | |
367 | void kfd_procfs_shutdown(void) |
368 | { |
369 | if (procfs.kobj) { |
370 | kobject_del(kobj: procfs.kobj); |
371 | kobject_put(kobj: procfs.kobj); |
372 | procfs.kobj = NULL; |
373 | } |
374 | } |
375 | |
376 | static ssize_t kfd_procfs_queue_show(struct kobject *kobj, |
377 | struct attribute *attr, char *buffer) |
378 | { |
379 | struct queue *q = container_of(kobj, struct queue, kobj); |
380 | |
381 | if (!strcmp(attr->name, "size")) |
382 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%llu", |
383 | q->properties.queue_size); |
384 | else if (!strcmp(attr->name, "type")) |
385 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%d", q->properties.type); |
386 | else if (!strcmp(attr->name, "gpuid")) |
387 | return snprintf(buf: buffer, PAGE_SIZE, fmt: "%u", q->device->id); |
388 | else |
389 | pr_err("Invalid attribute"); |
390 | |
391 | return 0; |
392 | } |
393 | |
394 | static ssize_t kfd_procfs_stats_show(struct kobject *kobj, |
395 | struct attribute *attr, char *buffer) |
396 | { |
397 | if (strcmp(attr->name, "evicted_ms") == 0) { |
398 | struct kfd_process_device *pdd = container_of(attr, |
399 | struct kfd_process_device, |
400 | attr_evict); |
401 | uint64_t evict_jiffies; |
402 | |
403 | evict_jiffies = atomic64_read(v: &pdd->evict_duration_counter); |
404 | |
405 | return snprintf(buf: buffer, |
406 | PAGE_SIZE, |
407 | fmt: "%llu\n", |
408 | jiffies64_to_msecs(j: evict_jiffies)); |
409 | |
410 | /* Sysfs handle that gets CU occupancy is per device */ |
411 | } else if (strcmp(attr->name, "cu_occupancy") == 0) { |
412 | return kfd_get_cu_occupancy(attr, buffer); |
413 | } else { |
414 | pr_err("Invalid attribute"); |
415 | } |
416 | |
417 | return 0; |
418 | } |
419 | |
420 | static ssize_t kfd_sysfs_counters_show(struct kobject *kobj, |
421 | struct attribute *attr, char *buf) |
422 | { |
423 | struct kfd_process_device *pdd; |
424 | |
425 | if (!strcmp(attr->name, "faults")) { |
426 | pdd = container_of(attr, struct kfd_process_device, |
427 | attr_faults); |
428 | return sysfs_emit(buf, fmt: "%llu\n", READ_ONCE(pdd->faults)); |
429 | } |
430 | if (!strcmp(attr->name, "page_in")) { |
431 | pdd = container_of(attr, struct kfd_process_device, |
432 | attr_page_in); |
433 | return sysfs_emit(buf, fmt: "%llu\n", READ_ONCE(pdd->page_in)); |
434 | } |
435 | if (!strcmp(attr->name, "page_out")) { |
436 | pdd = container_of(attr, struct kfd_process_device, |
437 | attr_page_out); |
438 | return sysfs_emit(buf, fmt: "%llu\n", READ_ONCE(pdd->page_out)); |
439 | } |
440 | return 0; |
441 | } |
442 | |
443 | static struct attribute attr_queue_size = { |
444 | .name = "size", |
445 | .mode = KFD_SYSFS_FILE_MODE |
446 | }; |
447 | |
448 | static struct attribute attr_queue_type = { |
449 | .name = "type", |
450 | .mode = KFD_SYSFS_FILE_MODE |
451 | }; |
452 | |
453 | static struct attribute attr_queue_gpuid = { |
454 | .name = "gpuid", |
455 | .mode = KFD_SYSFS_FILE_MODE |
456 | }; |
457 | |
458 | static struct attribute *procfs_queue_attrs[] = { |
459 | &attr_queue_size, |
460 | &attr_queue_type, |
461 | &attr_queue_gpuid, |
462 | NULL |
463 | }; |
464 | ATTRIBUTE_GROUPS(procfs_queue); |
465 | |
466 | static const struct sysfs_ops procfs_queue_ops = { |
467 | .show = kfd_procfs_queue_show, |
468 | }; |
469 | |
470 | static const struct kobj_type procfs_queue_type = { |
471 | .sysfs_ops = &procfs_queue_ops, |
472 | .default_groups = procfs_queue_groups, |
473 | }; |
474 | |
475 | static const struct sysfs_ops procfs_stats_ops = { |
476 | .show = kfd_procfs_stats_show, |
477 | }; |
478 | |
479 | static const struct kobj_type procfs_stats_type = { |
480 | .sysfs_ops = &procfs_stats_ops, |
481 | .release = kfd_procfs_kobj_release, |
482 | }; |
483 | |
484 | static const struct sysfs_ops sysfs_counters_ops = { |
485 | .show = kfd_sysfs_counters_show, |
486 | }; |
487 | |
488 | static const struct kobj_type sysfs_counters_type = { |
489 | .sysfs_ops = &sysfs_counters_ops, |
490 | .release = kfd_procfs_kobj_release, |
491 | }; |
492 | |
493 | int kfd_procfs_add_queue(struct queue *q) |
494 | { |
495 | struct kfd_process *proc; |
496 | int ret; |
497 | |
498 | if (!q || !q->process) |
499 | return -EINVAL; |
500 | proc = q->process; |
501 | |
502 | /* Create proc/<pid>/queues/<queue id> folder */ |
503 | if (!proc->kobj_queues) |
504 | return -EFAULT; |
505 | ret = kobject_init_and_add(kobj: &q->kobj, ktype: &procfs_queue_type, |
506 | parent: proc->kobj_queues, fmt: "%u", q->properties.queue_id); |
507 | if (ret < 0) { |
508 | pr_warn("Creating proc/<pid>/queues/%u failed", |
509 | q->properties.queue_id); |
510 | kobject_put(kobj: &q->kobj); |
511 | return ret; |
512 | } |
513 | |
514 | return 0; |
515 | } |
516 | |
517 | static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr, |
518 | char *name) |
519 | { |
520 | int ret; |
521 | |
522 | if (!kobj || !attr || !name) |
523 | return; |
524 | |
525 | attr->name = name; |
526 | attr->mode = KFD_SYSFS_FILE_MODE; |
527 | sysfs_attr_init(attr); |
528 | |
529 | ret = sysfs_create_file(kobj, attr); |
530 | if (ret) |
531 | pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret); |
532 | } |
533 | |
534 | static void kfd_procfs_add_sysfs_stats(struct kfd_process *p) |
535 | { |
536 | int ret; |
537 | int i; |
538 | char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; |
539 | |
540 | if (!p || !p->kobj) |
541 | return; |
542 | |
543 | /* |
544 | * Create sysfs files for each GPU: |
545 | * - proc/<pid>/stats_<gpuid>/ |
546 | * - proc/<pid>/stats_<gpuid>/evicted_ms |
547 | * - proc/<pid>/stats_<gpuid>/cu_occupancy |
548 | */ |
549 | for (i = 0; i < p->n_pdds; i++) { |
550 | struct kfd_process_device *pdd = p->pdds[i]; |
551 | |
552 | snprintf(buf: stats_dir_filename, MAX_SYSFS_FILENAME_LEN, |
553 | fmt: "stats_%u", pdd->dev->id); |
554 | pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats); |
555 | if (!pdd->kobj_stats) |
556 | return; |
557 | |
558 | ret = kobject_init_and_add(kobj: pdd->kobj_stats, |
559 | ktype: &procfs_stats_type, |
560 | parent: p->kobj, |
561 | fmt: stats_dir_filename); |
562 | |
563 | if (ret) { |
564 | pr_warn("Creating KFD proc/stats_%s folder failed", |
565 | stats_dir_filename); |
566 | kobject_put(kobj: pdd->kobj_stats); |
567 | pdd->kobj_stats = NULL; |
568 | return; |
569 | } |
570 | |
571 | kfd_sysfs_create_file(kobj: pdd->kobj_stats, attr: &pdd->attr_evict, |
572 | name: "evicted_ms"); |
573 | /* Add sysfs file to report compute unit occupancy */ |
574 | if (pdd->dev->kfd2kgd->get_cu_occupancy) |
575 | kfd_sysfs_create_file(kobj: pdd->kobj_stats, |
576 | attr: &pdd->attr_cu_occupancy, |
577 | name: "cu_occupancy"); |
578 | } |
579 | } |
580 | |
581 | static void kfd_procfs_add_sysfs_counters(struct kfd_process *p) |
582 | { |
583 | int ret = 0; |
584 | int i; |
585 | char counters_dir_filename[MAX_SYSFS_FILENAME_LEN]; |
586 | |
587 | if (!p || !p->kobj) |
588 | return; |
589 | |
590 | /* |
591 | * Create sysfs files for each GPU which supports SVM |
592 | * - proc/<pid>/counters_<gpuid>/ |
593 | * - proc/<pid>/counters_<gpuid>/faults |
594 | * - proc/<pid>/counters_<gpuid>/page_in |
595 | * - proc/<pid>/counters_<gpuid>/page_out |
596 | */ |
597 | for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { |
598 | struct kfd_process_device *pdd = p->pdds[i]; |
599 | struct kobject *kobj_counters; |
600 | |
601 | snprintf(buf: counters_dir_filename, MAX_SYSFS_FILENAME_LEN, |
602 | fmt: "counters_%u", pdd->dev->id); |
603 | kobj_counters = kfd_alloc_struct(kobj_counters); |
604 | if (!kobj_counters) |
605 | return; |
606 | |
607 | ret = kobject_init_and_add(kobj: kobj_counters, ktype: &sysfs_counters_type, |
608 | parent: p->kobj, fmt: counters_dir_filename); |
609 | if (ret) { |
610 | pr_warn("Creating KFD proc/%s folder failed", |
611 | counters_dir_filename); |
612 | kobject_put(kobj: kobj_counters); |
613 | return; |
614 | } |
615 | |
616 | pdd->kobj_counters = kobj_counters; |
617 | kfd_sysfs_create_file(kobj: kobj_counters, attr: &pdd->attr_faults, |
618 | name: "faults"); |
619 | kfd_sysfs_create_file(kobj: kobj_counters, attr: &pdd->attr_page_in, |
620 | name: "page_in"); |
621 | kfd_sysfs_create_file(kobj: kobj_counters, attr: &pdd->attr_page_out, |
622 | name: "page_out"); |
623 | } |
624 | } |
625 | |
626 | static void kfd_procfs_add_sysfs_files(struct kfd_process *p) |
627 | { |
628 | int i; |
629 | |
630 | if (!p || !p->kobj) |
631 | return; |
632 | |
633 | /* |
634 | * Create sysfs files for each GPU: |
635 | * - proc/<pid>/vram_<gpuid> |
636 | * - proc/<pid>/sdma_<gpuid> |
637 | */ |
638 | for (i = 0; i < p->n_pdds; i++) { |
639 | struct kfd_process_device *pdd = p->pdds[i]; |
640 | |
641 | snprintf(buf: pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, fmt: "vram_%u", |
642 | pdd->dev->id); |
643 | kfd_sysfs_create_file(kobj: p->kobj, attr: &pdd->attr_vram, |
644 | name: pdd->vram_filename); |
645 | |
646 | snprintf(buf: pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, fmt: "sdma_%u", |
647 | pdd->dev->id); |
648 | kfd_sysfs_create_file(kobj: p->kobj, attr: &pdd->attr_sdma, |
649 | name: pdd->sdma_filename); |
650 | } |
651 | } |
652 | |
653 | void kfd_procfs_del_queue(struct queue *q) |
654 | { |
655 | if (!q) |
656 | return; |
657 | |
658 | kobject_del(kobj: &q->kobj); |
659 | kobject_put(kobj: &q->kobj); |
660 | } |
661 | |
662 | int kfd_process_create_wq(void) |
663 | { |
664 | if (!kfd_process_wq) |
665 | kfd_process_wq = alloc_workqueue(fmt: "kfd_process_wq", flags: 0, max_active: 0); |
666 | if (!kfd_restore_wq) |
667 | kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", |
668 | WQ_FREEZABLE); |
669 | |
670 | if (!kfd_process_wq || !kfd_restore_wq) { |
671 | kfd_process_destroy_wq(); |
672 | return -ENOMEM; |
673 | } |
674 | |
675 | return 0; |
676 | } |
677 | |
678 | void kfd_process_destroy_wq(void) |
679 | { |
680 | if (kfd_process_wq) { |
681 | destroy_workqueue(wq: kfd_process_wq); |
682 | kfd_process_wq = NULL; |
683 | } |
684 | if (kfd_restore_wq) { |
685 | destroy_workqueue(wq: kfd_restore_wq); |
686 | kfd_restore_wq = NULL; |
687 | } |
688 | } |
689 | |
690 | static void kfd_process_free_gpuvm(struct kgd_mem *mem, |
691 | struct kfd_process_device *pdd, void **kptr) |
692 | { |
693 | struct kfd_node *dev = pdd->dev; |
694 | |
695 | if (kptr && *kptr) { |
696 | amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); |
697 | *kptr = NULL; |
698 | } |
699 | |
700 | amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(adev: dev->adev, mem, drm_priv: pdd->drm_priv); |
701 | amdgpu_amdkfd_gpuvm_free_memory_of_gpu(adev: dev->adev, mem, drm_priv: pdd->drm_priv, |
702 | NULL); |
703 | } |
704 | |
705 | /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process |
706 | * This function should be only called right after the process |
707 | * is created and when kfd_processes_mutex is still being held |
708 | * to avoid concurrency. Because of that exclusiveness, we do |
709 | * not need to take p->mutex. |
710 | */ |
711 | static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, |
712 | uint64_t gpu_va, uint32_t size, |
713 | uint32_t flags, struct kgd_mem **mem, void **kptr) |
714 | { |
715 | struct kfd_node *kdev = pdd->dev; |
716 | int err; |
717 | |
718 | err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(adev: kdev->adev, va: gpu_va, size, |
719 | drm_priv: pdd->drm_priv, mem, NULL, |
720 | flags, criu_resume: false); |
721 | if (err) |
722 | goto err_alloc_mem; |
723 | |
724 | err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(adev: kdev->adev, mem: *mem, |
725 | drm_priv: pdd->drm_priv); |
726 | if (err) |
727 | goto err_map_mem; |
728 | |
729 | err = amdgpu_amdkfd_gpuvm_sync_memory(adev: kdev->adev, mem: *mem, intr: true); |
730 | if (err) { |
731 | pr_debug("Sync memory failed, wait interrupted by user signal\n"); |
732 | goto sync_memory_failed; |
733 | } |
734 | |
735 | if (kptr) { |
736 | err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel( |
737 | mem: (struct kgd_mem *)*mem, kptr, NULL); |
738 | if (err) { |
739 | pr_debug("Map GTT BO to kernel failed\n"); |
740 | goto sync_memory_failed; |
741 | } |
742 | } |
743 | |
744 | return err; |
745 | |
746 | sync_memory_failed: |
747 | amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(adev: kdev->adev, mem: *mem, drm_priv: pdd->drm_priv); |
748 | |
749 | err_map_mem: |
750 | amdgpu_amdkfd_gpuvm_free_memory_of_gpu(adev: kdev->adev, mem: *mem, drm_priv: pdd->drm_priv, |
751 | NULL); |
752 | err_alloc_mem: |
753 | *mem = NULL; |
754 | *kptr = NULL; |
755 | return err; |
756 | } |
757 | |
758 | /* kfd_process_device_reserve_ib_mem - Reserve memory inside the |
759 | * process for IB usage The memory reserved is for KFD to submit |
760 | * IB to AMDGPU from kernel. If the memory is reserved |
761 | * successfully, ib_kaddr will have the CPU/kernel |
762 | * address. Check ib_kaddr before accessing the memory. |
763 | */ |
764 | static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) |
765 | { |
766 | struct qcm_process_device *qpd = &pdd->qpd; |
767 | uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | |
768 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | |
769 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | |
770 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; |
771 | struct kgd_mem *mem; |
772 | void *kaddr; |
773 | int ret; |
774 | |
775 | if (qpd->ib_kaddr || !qpd->ib_base) |
776 | return 0; |
777 | |
778 | /* ib_base is only set for dGPU */ |
779 | ret = kfd_process_alloc_gpuvm(pdd, gpu_va: qpd->ib_base, PAGE_SIZE, flags, |
780 | mem: &mem, kptr: &kaddr); |
781 | if (ret) |
782 | return ret; |
783 | |
784 | qpd->ib_mem = mem; |
785 | qpd->ib_kaddr = kaddr; |
786 | |
787 | return 0; |
788 | } |
789 | |
790 | static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd) |
791 | { |
792 | struct qcm_process_device *qpd = &pdd->qpd; |
793 | |
794 | if (!qpd->ib_kaddr || !qpd->ib_base) |
795 | return; |
796 | |
797 | kfd_process_free_gpuvm(mem: qpd->ib_mem, pdd, kptr: &qpd->ib_kaddr); |
798 | } |
799 | |
800 | struct kfd_process *kfd_create_process(struct task_struct *thread) |
801 | { |
802 | struct kfd_process *process; |
803 | int ret; |
804 | |
805 | if (!(thread->mm && mmget_not_zero(mm: thread->mm))) |
806 | return ERR_PTR(error: -EINVAL); |
807 | |
808 | /* Only the pthreads threading model is supported. */ |
809 | if (thread->group_leader->mm != thread->mm) { |
810 | mmput(thread->mm); |
811 | return ERR_PTR(error: -EINVAL); |
812 | } |
813 | |
814 | /* |
815 | * take kfd processes mutex before starting of process creation |
816 | * so there won't be a case where two threads of the same process |
817 | * create two kfd_process structures |
818 | */ |
819 | mutex_lock(&kfd_processes_mutex); |
820 | |
821 | if (kfd_is_locked()) { |
822 | pr_debug("KFD is locked! Cannot create process"); |
823 | process = ERR_PTR(error: -EINVAL); |
824 | goto out; |
825 | } |
826 | |
827 | /* A prior open of /dev/kfd could have already created the process. */ |
828 | process = find_process(thread, ref: false); |
829 | if (process) { |
830 | pr_debug("Process already found\n"); |
831 | } else { |
832 | process = create_process(thread); |
833 | if (IS_ERR(ptr: process)) |
834 | goto out; |
835 | |
836 | if (!procfs.kobj) |
837 | goto out; |
838 | |
839 | process->kobj = kfd_alloc_struct(process->kobj); |
840 | if (!process->kobj) { |
841 | pr_warn("Creating procfs kobject failed"); |
842 | goto out; |
843 | } |
844 | ret = kobject_init_and_add(kobj: process->kobj, ktype: &procfs_type, |
845 | parent: procfs.kobj, fmt: "%d", |
846 | (int)process->lead_thread->pid); |
847 | if (ret) { |
848 | pr_warn("Creating procfs pid directory failed"); |
849 | kobject_put(kobj: process->kobj); |
850 | goto out; |
851 | } |
852 | |
853 | kfd_sysfs_create_file(kobj: process->kobj, attr: &process->attr_pasid, |
854 | name: "pasid"); |
855 | |
856 | process->kobj_queues = kobject_create_and_add(name: "queues", |
857 | parent: process->kobj); |
858 | if (!process->kobj_queues) |
859 | pr_warn("Creating KFD proc/queues folder failed"); |
860 | |
861 | kfd_procfs_add_sysfs_stats(p: process); |
862 | kfd_procfs_add_sysfs_files(p: process); |
863 | kfd_procfs_add_sysfs_counters(p: process); |
864 | |
865 | init_waitqueue_head(&process->wait_irq_drain); |
866 | } |
867 | out: |
868 | if (!IS_ERR(ptr: process)) |
869 | kref_get(kref: &process->ref); |
870 | mutex_unlock(lock: &kfd_processes_mutex); |
871 | mmput(thread->mm); |
872 | |
873 | return process; |
874 | } |
875 | |
876 | struct kfd_process *kfd_get_process(const struct task_struct *thread) |
877 | { |
878 | struct kfd_process *process; |
879 | |
880 | if (!thread->mm) |
881 | return ERR_PTR(error: -EINVAL); |
882 | |
883 | /* Only the pthreads threading model is supported. */ |
884 | if (thread->group_leader->mm != thread->mm) |
885 | return ERR_PTR(error: -EINVAL); |
886 | |
887 | process = find_process(thread, ref: false); |
888 | if (!process) |
889 | return ERR_PTR(error: -EINVAL); |
890 | |
891 | return process; |
892 | } |
893 | |
894 | static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) |
895 | { |
896 | struct kfd_process *process; |
897 | |
898 | hash_for_each_possible_rcu(kfd_processes_table, process, |
899 | kfd_processes, (uintptr_t)mm) |
900 | if (process->mm == mm) |
901 | return process; |
902 | |
903 | return NULL; |
904 | } |
905 | |
906 | static struct kfd_process *find_process(const struct task_struct *thread, |
907 | bool ref) |
908 | { |
909 | struct kfd_process *p; |
910 | int idx; |
911 | |
912 | idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
913 | p = find_process_by_mm(mm: thread->mm); |
914 | if (p && ref) |
915 | kref_get(kref: &p->ref); |
916 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
917 | |
918 | return p; |
919 | } |
920 | |
921 | void kfd_unref_process(struct kfd_process *p) |
922 | { |
923 | kref_put(kref: &p->ref, release: kfd_process_ref_release); |
924 | } |
925 | |
926 | /* This increments the process->ref counter. */ |
927 | struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid) |
928 | { |
929 | struct task_struct *task = NULL; |
930 | struct kfd_process *p = NULL; |
931 | |
932 | if (!pid) { |
933 | task = current; |
934 | get_task_struct(t: task); |
935 | } else { |
936 | task = get_pid_task(pid, PIDTYPE_PID); |
937 | } |
938 | |
939 | if (task) { |
940 | p = find_process(thread: task, ref: true); |
941 | put_task_struct(t: task); |
942 | } |
943 | |
944 | return p; |
945 | } |
946 | |
947 | static void kfd_process_device_free_bos(struct kfd_process_device *pdd) |
948 | { |
949 | struct kfd_process *p = pdd->process; |
950 | void *mem; |
951 | int id; |
952 | int i; |
953 | |
954 | /* |
955 | * Remove all handles from idr and release appropriate |
956 | * local memory object |
957 | */ |
958 | idr_for_each_entry(&pdd->alloc_idr, mem, id) { |
959 | |
960 | for (i = 0; i < p->n_pdds; i++) { |
961 | struct kfd_process_device *peer_pdd = p->pdds[i]; |
962 | |
963 | if (!peer_pdd->drm_priv) |
964 | continue; |
965 | amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( |
966 | adev: peer_pdd->dev->adev, mem, drm_priv: peer_pdd->drm_priv); |
967 | } |
968 | |
969 | amdgpu_amdkfd_gpuvm_free_memory_of_gpu(adev: pdd->dev->adev, mem, |
970 | drm_priv: pdd->drm_priv, NULL); |
971 | kfd_process_device_remove_obj_handle(pdd, handle: id); |
972 | } |
973 | } |
974 | |
975 | /* |
976 | * Just kunmap and unpin signal BO here. It will be freed in |
977 | * kfd_process_free_outstanding_kfd_bos() |
978 | */ |
979 | static void kfd_process_kunmap_signal_bo(struct kfd_process *p) |
980 | { |
981 | struct kfd_process_device *pdd; |
982 | struct kfd_node *kdev; |
983 | void *mem; |
984 | |
985 | kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle)); |
986 | if (!kdev) |
987 | return; |
988 | |
989 | mutex_lock(&p->mutex); |
990 | |
991 | pdd = kfd_get_process_device_data(dev: kdev, p); |
992 | if (!pdd) |
993 | goto out; |
994 | |
995 | mem = kfd_process_device_translate_handle( |
996 | p: pdd, GET_IDR_HANDLE(p->signal_handle)); |
997 | if (!mem) |
998 | goto out; |
999 | |
1000 | amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); |
1001 | |
1002 | out: |
1003 | mutex_unlock(lock: &p->mutex); |
1004 | } |
1005 | |
1006 | static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) |
1007 | { |
1008 | int i; |
1009 | |
1010 | for (i = 0; i < p->n_pdds; i++) |
1011 | kfd_process_device_free_bos(pdd: p->pdds[i]); |
1012 | } |
1013 | |
1014 | static void kfd_process_destroy_pdds(struct kfd_process *p) |
1015 | { |
1016 | int i; |
1017 | |
1018 | for (i = 0; i < p->n_pdds; i++) { |
1019 | struct kfd_process_device *pdd = p->pdds[i]; |
1020 | |
1021 | pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", |
1022 | pdd->dev->id, p->pasid); |
1023 | |
1024 | kfd_process_device_destroy_cwsr_dgpu(pdd); |
1025 | kfd_process_device_destroy_ib_mem(pdd); |
1026 | |
1027 | if (pdd->drm_file) { |
1028 | amdgpu_amdkfd_gpuvm_release_process_vm( |
1029 | adev: pdd->dev->adev, drm_priv: pdd->drm_priv); |
1030 | fput(pdd->drm_file); |
1031 | } |
1032 | |
1033 | if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) |
1034 | free_pages(addr: (unsigned long)pdd->qpd.cwsr_kaddr, |
1035 | order: get_order(KFD_CWSR_TBA_TMA_SIZE)); |
1036 | |
1037 | idr_destroy(&pdd->alloc_idr); |
1038 | |
1039 | kfd_free_process_doorbells(kfd: pdd->dev->kfd, pdd); |
1040 | |
1041 | if (pdd->dev->kfd->shared_resources.enable_mes) |
1042 | amdgpu_amdkfd_free_gtt_mem(adev: pdd->dev->adev, |
1043 | mem_obj: pdd->proc_ctx_bo); |
1044 | /* |
1045 | * before destroying pdd, make sure to report availability |
1046 | * for auto suspend |
1047 | */ |
1048 | if (pdd->runtime_inuse) { |
1049 | pm_runtime_mark_last_busy(dev: adev_to_drm(adev: pdd->dev->adev)->dev); |
1050 | pm_runtime_put_autosuspend(dev: adev_to_drm(adev: pdd->dev->adev)->dev); |
1051 | pdd->runtime_inuse = false; |
1052 | } |
1053 | |
1054 | kfree(objp: pdd); |
1055 | p->pdds[i] = NULL; |
1056 | } |
1057 | p->n_pdds = 0; |
1058 | } |
1059 | |
1060 | static void kfd_process_remove_sysfs(struct kfd_process *p) |
1061 | { |
1062 | struct kfd_process_device *pdd; |
1063 | int i; |
1064 | |
1065 | if (!p->kobj) |
1066 | return; |
1067 | |
1068 | sysfs_remove_file(kobj: p->kobj, attr: &p->attr_pasid); |
1069 | kobject_del(kobj: p->kobj_queues); |
1070 | kobject_put(kobj: p->kobj_queues); |
1071 | p->kobj_queues = NULL; |
1072 | |
1073 | for (i = 0; i < p->n_pdds; i++) { |
1074 | pdd = p->pdds[i]; |
1075 | |
1076 | sysfs_remove_file(kobj: p->kobj, attr: &pdd->attr_vram); |
1077 | sysfs_remove_file(kobj: p->kobj, attr: &pdd->attr_sdma); |
1078 | |
1079 | sysfs_remove_file(kobj: pdd->kobj_stats, attr: &pdd->attr_evict); |
1080 | if (pdd->dev->kfd2kgd->get_cu_occupancy) |
1081 | sysfs_remove_file(kobj: pdd->kobj_stats, |
1082 | attr: &pdd->attr_cu_occupancy); |
1083 | kobject_del(kobj: pdd->kobj_stats); |
1084 | kobject_put(kobj: pdd->kobj_stats); |
1085 | pdd->kobj_stats = NULL; |
1086 | } |
1087 | |
1088 | for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) { |
1089 | pdd = p->pdds[i]; |
1090 | |
1091 | sysfs_remove_file(kobj: pdd->kobj_counters, attr: &pdd->attr_faults); |
1092 | sysfs_remove_file(kobj: pdd->kobj_counters, attr: &pdd->attr_page_in); |
1093 | sysfs_remove_file(kobj: pdd->kobj_counters, attr: &pdd->attr_page_out); |
1094 | kobject_del(kobj: pdd->kobj_counters); |
1095 | kobject_put(kobj: pdd->kobj_counters); |
1096 | pdd->kobj_counters = NULL; |
1097 | } |
1098 | |
1099 | kobject_del(kobj: p->kobj); |
1100 | kobject_put(kobj: p->kobj); |
1101 | p->kobj = NULL; |
1102 | } |
1103 | |
1104 | /* No process locking is needed in this function, because the process |
1105 | * is not findable any more. We must assume that no other thread is |
1106 | * using it any more, otherwise we couldn't safely free the process |
1107 | * structure in the end. |
1108 | */ |
1109 | static void kfd_process_wq_release(struct work_struct *work) |
1110 | { |
1111 | struct kfd_process *p = container_of(work, struct kfd_process, |
1112 | release_work); |
1113 | struct dma_fence *ef; |
1114 | |
1115 | kfd_process_dequeue_from_all_devices(p); |
1116 | pqm_uninit(pqm: &p->pqm); |
1117 | |
1118 | /* Signal the eviction fence after user mode queues are |
1119 | * destroyed. This allows any BOs to be freed without |
1120 | * triggering pointless evictions or waiting for fences. |
1121 | */ |
1122 | synchronize_rcu(); |
1123 | ef = rcu_access_pointer(p->ef); |
1124 | dma_fence_signal(fence: ef); |
1125 | |
1126 | kfd_process_remove_sysfs(p); |
1127 | |
1128 | kfd_process_kunmap_signal_bo(p); |
1129 | kfd_process_free_outstanding_kfd_bos(p); |
1130 | svm_range_list_fini(p); |
1131 | |
1132 | kfd_process_destroy_pdds(p); |
1133 | dma_fence_put(fence: ef); |
1134 | |
1135 | kfd_event_free_process(p); |
1136 | |
1137 | kfd_pasid_free(pasid: p->pasid); |
1138 | mutex_destroy(lock: &p->mutex); |
1139 | |
1140 | put_task_struct(t: p->lead_thread); |
1141 | |
1142 | kfree(objp: p); |
1143 | } |
1144 | |
1145 | static void kfd_process_ref_release(struct kref *ref) |
1146 | { |
1147 | struct kfd_process *p = container_of(ref, struct kfd_process, ref); |
1148 | |
1149 | INIT_WORK(&p->release_work, kfd_process_wq_release); |
1150 | queue_work(wq: kfd_process_wq, work: &p->release_work); |
1151 | } |
1152 | |
1153 | static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm) |
1154 | { |
1155 | int idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
1156 | struct kfd_process *p = find_process_by_mm(mm); |
1157 | |
1158 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
1159 | |
1160 | return p ? &p->mmu_notifier : ERR_PTR(error: -ESRCH); |
1161 | } |
1162 | |
1163 | static void kfd_process_free_notifier(struct mmu_notifier *mn) |
1164 | { |
1165 | kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); |
1166 | } |
1167 | |
1168 | static void kfd_process_notifier_release_internal(struct kfd_process *p) |
1169 | { |
1170 | int i; |
1171 | |
1172 | cancel_delayed_work_sync(dwork: &p->eviction_work); |
1173 | cancel_delayed_work_sync(dwork: &p->restore_work); |
1174 | |
1175 | for (i = 0; i < p->n_pdds; i++) { |
1176 | struct kfd_process_device *pdd = p->pdds[i]; |
1177 | |
1178 | /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */ |
1179 | if (!kfd_dbg_is_rlc_restore_supported(dev: pdd->dev) && p->runtime_info.ttmp_setup) |
1180 | amdgpu_gfx_off_ctrl(adev: pdd->dev->adev, enable: true); |
1181 | } |
1182 | |
1183 | /* Indicate to other users that MM is no longer valid */ |
1184 | p->mm = NULL; |
1185 | kfd_dbg_trap_disable(target: p); |
1186 | |
1187 | if (atomic_read(v: &p->debugged_process_count) > 0) { |
1188 | struct kfd_process *target; |
1189 | unsigned int temp; |
1190 | int idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
1191 | |
1192 | hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) { |
1193 | if (target->debugger_process && target->debugger_process == p) { |
1194 | mutex_lock_nested(lock: &target->mutex, subclass: 1); |
1195 | kfd_dbg_trap_disable(target); |
1196 | mutex_unlock(lock: &target->mutex); |
1197 | if (atomic_read(v: &p->debugged_process_count) == 0) |
1198 | break; |
1199 | } |
1200 | } |
1201 | |
1202 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
1203 | } |
1204 | |
1205 | mmu_notifier_put(subscription: &p->mmu_notifier); |
1206 | } |
1207 | |
1208 | static void kfd_process_notifier_release(struct mmu_notifier *mn, |
1209 | struct mm_struct *mm) |
1210 | { |
1211 | struct kfd_process *p; |
1212 | |
1213 | /* |
1214 | * The kfd_process structure can not be free because the |
1215 | * mmu_notifier srcu is read locked |
1216 | */ |
1217 | p = container_of(mn, struct kfd_process, mmu_notifier); |
1218 | if (WARN_ON(p->mm != mm)) |
1219 | return; |
1220 | |
1221 | mutex_lock(&kfd_processes_mutex); |
1222 | /* |
1223 | * Do early return if table is empty. |
1224 | * |
1225 | * This could potentially happen if this function is called concurrently |
1226 | * by mmu_notifier and by kfd_cleanup_pocesses. |
1227 | * |
1228 | */ |
1229 | if (hash_empty(kfd_processes_table)) { |
1230 | mutex_unlock(lock: &kfd_processes_mutex); |
1231 | return; |
1232 | } |
1233 | hash_del_rcu(node: &p->kfd_processes); |
1234 | mutex_unlock(lock: &kfd_processes_mutex); |
1235 | synchronize_srcu(ssp: &kfd_processes_srcu); |
1236 | |
1237 | kfd_process_notifier_release_internal(p); |
1238 | } |
1239 | |
1240 | static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { |
1241 | .release = kfd_process_notifier_release, |
1242 | .alloc_notifier = kfd_process_alloc_notifier, |
1243 | .free_notifier = kfd_process_free_notifier, |
1244 | }; |
1245 | |
1246 | /* |
1247 | * This code handles the case when driver is being unloaded before all |
1248 | * mm_struct are released. We need to safely free the kfd_process and |
1249 | * avoid race conditions with mmu_notifier that might try to free them. |
1250 | * |
1251 | */ |
1252 | void kfd_cleanup_processes(void) |
1253 | { |
1254 | struct kfd_process *p; |
1255 | struct hlist_node *p_temp; |
1256 | unsigned int temp; |
1257 | HLIST_HEAD(cleanup_list); |
1258 | |
1259 | /* |
1260 | * Move all remaining kfd_process from the process table to a |
1261 | * temp list for processing. Once done, callback from mmu_notifier |
1262 | * release will not see the kfd_process in the table and do early return, |
1263 | * avoiding double free issues. |
1264 | */ |
1265 | mutex_lock(&kfd_processes_mutex); |
1266 | hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) { |
1267 | hash_del_rcu(node: &p->kfd_processes); |
1268 | synchronize_srcu(ssp: &kfd_processes_srcu); |
1269 | hlist_add_head(n: &p->kfd_processes, h: &cleanup_list); |
1270 | } |
1271 | mutex_unlock(lock: &kfd_processes_mutex); |
1272 | |
1273 | hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes) |
1274 | kfd_process_notifier_release_internal(p); |
1275 | |
1276 | /* |
1277 | * Ensures that all outstanding free_notifier get called, triggering |
1278 | * the release of the kfd_process struct. |
1279 | */ |
1280 | mmu_notifier_synchronize(); |
1281 | } |
1282 | |
1283 | int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) |
1284 | { |
1285 | unsigned long offset; |
1286 | int i; |
1287 | |
1288 | if (p->has_cwsr) |
1289 | return 0; |
1290 | |
1291 | for (i = 0; i < p->n_pdds; i++) { |
1292 | struct kfd_node *dev = p->pdds[i]->dev; |
1293 | struct qcm_process_device *qpd = &p->pdds[i]->qpd; |
1294 | |
1295 | if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) |
1296 | continue; |
1297 | |
1298 | offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); |
1299 | qpd->tba_addr = (int64_t)vm_mmap(filep, 0, |
1300 | KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, |
1301 | MAP_SHARED, offset); |
1302 | |
1303 | if (IS_ERR_VALUE(qpd->tba_addr)) { |
1304 | int err = qpd->tba_addr; |
1305 | |
1306 | pr_err("Failure to set tba address. error %d.\n", err); |
1307 | qpd->tba_addr = 0; |
1308 | qpd->cwsr_kaddr = NULL; |
1309 | return err; |
1310 | } |
1311 | |
1312 | memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); |
1313 | |
1314 | kfd_process_set_trap_debug_flag(qpd, enabled: p->debug_trap_enabled); |
1315 | |
1316 | qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; |
1317 | pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", |
1318 | qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); |
1319 | } |
1320 | |
1321 | p->has_cwsr = true; |
1322 | |
1323 | return 0; |
1324 | } |
1325 | |
1326 | static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) |
1327 | { |
1328 | struct kfd_node *dev = pdd->dev; |
1329 | struct qcm_process_device *qpd = &pdd->qpd; |
1330 | uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
1331 | | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
1332 | | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; |
1333 | struct kgd_mem *mem; |
1334 | void *kaddr; |
1335 | int ret; |
1336 | |
1337 | if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) |
1338 | return 0; |
1339 | |
1340 | /* cwsr_base is only set for dGPU */ |
1341 | ret = kfd_process_alloc_gpuvm(pdd, gpu_va: qpd->cwsr_base, |
1342 | KFD_CWSR_TBA_TMA_SIZE, flags, mem: &mem, kptr: &kaddr); |
1343 | if (ret) |
1344 | return ret; |
1345 | |
1346 | qpd->cwsr_mem = mem; |
1347 | qpd->cwsr_kaddr = kaddr; |
1348 | qpd->tba_addr = qpd->cwsr_base; |
1349 | |
1350 | memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size); |
1351 | |
1352 | kfd_process_set_trap_debug_flag(qpd: &pdd->qpd, |
1353 | enabled: pdd->process->debug_trap_enabled); |
1354 | |
1355 | qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; |
1356 | pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", |
1357 | qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); |
1358 | |
1359 | return 0; |
1360 | } |
1361 | |
1362 | static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd) |
1363 | { |
1364 | struct kfd_node *dev = pdd->dev; |
1365 | struct qcm_process_device *qpd = &pdd->qpd; |
1366 | |
1367 | if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base) |
1368 | return; |
1369 | |
1370 | kfd_process_free_gpuvm(mem: qpd->cwsr_mem, pdd, kptr: &qpd->cwsr_kaddr); |
1371 | } |
1372 | |
1373 | void kfd_process_set_trap_handler(struct qcm_process_device *qpd, |
1374 | uint64_t tba_addr, |
1375 | uint64_t tma_addr) |
1376 | { |
1377 | if (qpd->cwsr_kaddr) { |
1378 | /* KFD trap handler is bound, record as second-level TBA/TMA |
1379 | * in first-level TMA. First-level trap will jump to second. |
1380 | */ |
1381 | uint64_t *tma = |
1382 | (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); |
1383 | tma[0] = tba_addr; |
1384 | tma[1] = tma_addr; |
1385 | } else { |
1386 | /* No trap handler bound, bind as first-level TBA/TMA. */ |
1387 | qpd->tba_addr = tba_addr; |
1388 | qpd->tma_addr = tma_addr; |
1389 | } |
1390 | } |
1391 | |
1392 | bool kfd_process_xnack_mode(struct kfd_process *p, bool supported) |
1393 | { |
1394 | int i; |
1395 | |
1396 | /* On most GFXv9 GPUs, the retry mode in the SQ must match the |
1397 | * boot time retry setting. Mixing processes with different |
1398 | * XNACK/retry settings can hang the GPU. |
1399 | * |
1400 | * Different GPUs can have different noretry settings depending |
1401 | * on HW bugs or limitations. We need to find at least one |
1402 | * XNACK mode for this process that's compatible with all GPUs. |
1403 | * Fortunately GPUs with retry enabled (noretry=0) can run code |
1404 | * built for XNACK-off. On GFXv9 it may perform slower. |
1405 | * |
1406 | * Therefore applications built for XNACK-off can always be |
1407 | * supported and will be our fallback if any GPU does not |
1408 | * support retry. |
1409 | */ |
1410 | for (i = 0; i < p->n_pdds; i++) { |
1411 | struct kfd_node *dev = p->pdds[i]->dev; |
1412 | |
1413 | /* Only consider GFXv9 and higher GPUs. Older GPUs don't |
1414 | * support the SVM APIs and don't need to be considered |
1415 | * for the XNACK mode selection. |
1416 | */ |
1417 | if (!KFD_IS_SOC15(dev)) |
1418 | continue; |
1419 | /* Aldebaran can always support XNACK because it can support |
1420 | * per-process XNACK mode selection. But let the dev->noretry |
1421 | * setting still influence the default XNACK mode. |
1422 | */ |
1423 | if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) { |
1424 | if (!amdgpu_sriov_xnack_support(adev: dev->kfd->adev)) { |
1425 | pr_debug("SRIOV platform xnack not supported\n"); |
1426 | return false; |
1427 | } |
1428 | continue; |
1429 | } |
1430 | |
1431 | /* GFXv10 and later GPUs do not support shader preemption |
1432 | * during page faults. This can lead to poor QoS for queue |
1433 | * management and memory-manager-related preemptions or |
1434 | * even deadlocks. |
1435 | */ |
1436 | if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) |
1437 | return false; |
1438 | |
1439 | if (dev->kfd->noretry) |
1440 | return false; |
1441 | } |
1442 | |
1443 | return true; |
1444 | } |
1445 | |
1446 | void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, |
1447 | bool enabled) |
1448 | { |
1449 | if (qpd->cwsr_kaddr) { |
1450 | uint64_t *tma = |
1451 | (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); |
1452 | tma[2] = enabled; |
1453 | } |
1454 | } |
1455 | |
1456 | /* |
1457 | * On return the kfd_process is fully operational and will be freed when the |
1458 | * mm is released |
1459 | */ |
1460 | static struct kfd_process *create_process(const struct task_struct *thread) |
1461 | { |
1462 | struct kfd_process *process; |
1463 | struct mmu_notifier *mn; |
1464 | int err = -ENOMEM; |
1465 | |
1466 | process = kzalloc(size: sizeof(*process), GFP_KERNEL); |
1467 | if (!process) |
1468 | goto err_alloc_process; |
1469 | |
1470 | kref_init(kref: &process->ref); |
1471 | mutex_init(&process->mutex); |
1472 | process->mm = thread->mm; |
1473 | process->lead_thread = thread->group_leader; |
1474 | process->n_pdds = 0; |
1475 | process->queues_paused = false; |
1476 | INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); |
1477 | INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); |
1478 | process->last_restore_timestamp = get_jiffies_64(); |
1479 | err = kfd_event_init_process(p: process); |
1480 | if (err) |
1481 | goto err_event_init; |
1482 | process->is_32bit_user_mode = in_compat_syscall(); |
1483 | process->debug_trap_enabled = false; |
1484 | process->debugger_process = NULL; |
1485 | process->exception_enable_mask = 0; |
1486 | atomic_set(v: &process->debugged_process_count, i: 0); |
1487 | sema_init(sem: &process->runtime_enable_sema, val: 0); |
1488 | |
1489 | process->pasid = kfd_pasid_alloc(); |
1490 | if (process->pasid == 0) { |
1491 | err = -ENOSPC; |
1492 | goto err_alloc_pasid; |
1493 | } |
1494 | |
1495 | err = pqm_init(pqm: &process->pqm, p: process); |
1496 | if (err != 0) |
1497 | goto err_process_pqm_init; |
1498 | |
1499 | /* init process apertures*/ |
1500 | err = kfd_init_apertures(process); |
1501 | if (err != 0) |
1502 | goto err_init_apertures; |
1503 | |
1504 | /* Check XNACK support after PDDs are created in kfd_init_apertures */ |
1505 | process->xnack_enabled = kfd_process_xnack_mode(p: process, supported: false); |
1506 | |
1507 | err = svm_range_list_init(p: process); |
1508 | if (err) |
1509 | goto err_init_svm_range_list; |
1510 | |
1511 | /* alloc_notifier needs to find the process in the hash table */ |
1512 | hash_add_rcu(kfd_processes_table, &process->kfd_processes, |
1513 | (uintptr_t)process->mm); |
1514 | |
1515 | /* Avoid free_notifier to start kfd_process_wq_release if |
1516 | * mmu_notifier_get failed because of pending signal. |
1517 | */ |
1518 | kref_get(kref: &process->ref); |
1519 | |
1520 | /* MMU notifier registration must be the last call that can fail |
1521 | * because after this point we cannot unwind the process creation. |
1522 | * After this point, mmu_notifier_put will trigger the cleanup by |
1523 | * dropping the last process reference in the free_notifier. |
1524 | */ |
1525 | mn = mmu_notifier_get(ops: &kfd_process_mmu_notifier_ops, mm: process->mm); |
1526 | if (IS_ERR(ptr: mn)) { |
1527 | err = PTR_ERR(ptr: mn); |
1528 | goto err_register_notifier; |
1529 | } |
1530 | BUG_ON(mn != &process->mmu_notifier); |
1531 | |
1532 | kfd_unref_process(p: process); |
1533 | get_task_struct(t: process->lead_thread); |
1534 | |
1535 | INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler); |
1536 | |
1537 | return process; |
1538 | |
1539 | err_register_notifier: |
1540 | hash_del_rcu(node: &process->kfd_processes); |
1541 | svm_range_list_fini(p: process); |
1542 | err_init_svm_range_list: |
1543 | kfd_process_free_outstanding_kfd_bos(p: process); |
1544 | kfd_process_destroy_pdds(p: process); |
1545 | err_init_apertures: |
1546 | pqm_uninit(pqm: &process->pqm); |
1547 | err_process_pqm_init: |
1548 | kfd_pasid_free(pasid: process->pasid); |
1549 | err_alloc_pasid: |
1550 | kfd_event_free_process(p: process); |
1551 | err_event_init: |
1552 | mutex_destroy(lock: &process->mutex); |
1553 | kfree(objp: process); |
1554 | err_alloc_process: |
1555 | return ERR_PTR(error: err); |
1556 | } |
1557 | |
1558 | struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, |
1559 | struct kfd_process *p) |
1560 | { |
1561 | int i; |
1562 | |
1563 | for (i = 0; i < p->n_pdds; i++) |
1564 | if (p->pdds[i]->dev == dev) |
1565 | return p->pdds[i]; |
1566 | |
1567 | return NULL; |
1568 | } |
1569 | |
1570 | struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, |
1571 | struct kfd_process *p) |
1572 | { |
1573 | struct kfd_process_device *pdd = NULL; |
1574 | int retval = 0; |
1575 | |
1576 | if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE)) |
1577 | return NULL; |
1578 | pdd = kzalloc(size: sizeof(*pdd), GFP_KERNEL); |
1579 | if (!pdd) |
1580 | return NULL; |
1581 | |
1582 | pdd->dev = dev; |
1583 | INIT_LIST_HEAD(list: &pdd->qpd.queues_list); |
1584 | INIT_LIST_HEAD(list: &pdd->qpd.priv_queue_list); |
1585 | pdd->qpd.dqm = dev->dqm; |
1586 | pdd->qpd.pqm = &p->pqm; |
1587 | pdd->qpd.evicted = 0; |
1588 | pdd->qpd.mapped_gws_queue = false; |
1589 | pdd->process = p; |
1590 | pdd->bound = PDD_UNBOUND; |
1591 | pdd->already_dequeued = false; |
1592 | pdd->runtime_inuse = false; |
1593 | pdd->vram_usage = 0; |
1594 | pdd->sdma_past_activity_counter = 0; |
1595 | pdd->user_gpu_id = dev->id; |
1596 | atomic64_set(v: &pdd->evict_duration_counter, i: 0); |
1597 | |
1598 | if (dev->kfd->shared_resources.enable_mes) { |
1599 | retval = amdgpu_amdkfd_alloc_gtt_mem(adev: dev->adev, |
1600 | AMDGPU_MES_PROC_CTX_SIZE, |
1601 | mem_obj: &pdd->proc_ctx_bo, |
1602 | gpu_addr: &pdd->proc_ctx_gpu_addr, |
1603 | cpu_ptr: &pdd->proc_ctx_cpu_ptr, |
1604 | mqd_gfx9: false); |
1605 | if (retval) { |
1606 | pr_err("failed to allocate process context bo\n"); |
1607 | goto err_free_pdd; |
1608 | } |
1609 | memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE); |
1610 | } |
1611 | |
1612 | p->pdds[p->n_pdds++] = pdd; |
1613 | if (kfd_dbg_is_per_vmid_supported(dev: pdd->dev)) |
1614 | pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap( |
1615 | pdd->dev->adev, |
1616 | false, |
1617 | 0); |
1618 | |
1619 | /* Init idr used for memory handle translation */ |
1620 | idr_init(idr: &pdd->alloc_idr); |
1621 | |
1622 | return pdd; |
1623 | |
1624 | err_free_pdd: |
1625 | kfree(objp: pdd); |
1626 | return NULL; |
1627 | } |
1628 | |
1629 | /** |
1630 | * kfd_process_device_init_vm - Initialize a VM for a process-device |
1631 | * |
1632 | * @pdd: The process-device |
1633 | * @drm_file: Optional pointer to a DRM file descriptor |
1634 | * |
1635 | * If @drm_file is specified, it will be used to acquire the VM from |
1636 | * that file descriptor. If successful, the @pdd takes ownership of |
1637 | * the file descriptor. |
1638 | * |
1639 | * If @drm_file is NULL, a new VM is created. |
1640 | * |
1641 | * Returns 0 on success, -errno on failure. |
1642 | */ |
1643 | int kfd_process_device_init_vm(struct kfd_process_device *pdd, |
1644 | struct file *drm_file) |
1645 | { |
1646 | struct amdgpu_fpriv *drv_priv; |
1647 | struct amdgpu_vm *avm; |
1648 | struct kfd_process *p; |
1649 | struct dma_fence *ef; |
1650 | struct kfd_node *dev; |
1651 | int ret; |
1652 | |
1653 | if (!drm_file) |
1654 | return -EINVAL; |
1655 | |
1656 | if (pdd->drm_priv) |
1657 | return -EBUSY; |
1658 | |
1659 | ret = amdgpu_file_to_fpriv(filp: drm_file, fpriv: &drv_priv); |
1660 | if (ret) |
1661 | return ret; |
1662 | avm = &drv_priv->vm; |
1663 | |
1664 | p = pdd->process; |
1665 | dev = pdd->dev; |
1666 | |
1667 | ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(adev: dev->adev, avm, |
1668 | process_info: &p->kgd_process_info, |
1669 | ef: &ef); |
1670 | if (ret) { |
1671 | pr_err("Failed to create process VM object\n"); |
1672 | return ret; |
1673 | } |
1674 | RCU_INIT_POINTER(p->ef, ef); |
1675 | pdd->drm_priv = drm_file->private_data; |
1676 | |
1677 | ret = kfd_process_device_reserve_ib_mem(pdd); |
1678 | if (ret) |
1679 | goto err_reserve_ib_mem; |
1680 | ret = kfd_process_device_init_cwsr_dgpu(pdd); |
1681 | if (ret) |
1682 | goto err_init_cwsr; |
1683 | |
1684 | ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(adev: dev->adev, avm, pasid: p->pasid); |
1685 | if (ret) |
1686 | goto err_set_pasid; |
1687 | |
1688 | pdd->drm_file = drm_file; |
1689 | |
1690 | return 0; |
1691 | |
1692 | err_set_pasid: |
1693 | kfd_process_device_destroy_cwsr_dgpu(pdd); |
1694 | err_init_cwsr: |
1695 | kfd_process_device_destroy_ib_mem(pdd); |
1696 | err_reserve_ib_mem: |
1697 | pdd->drm_priv = NULL; |
1698 | amdgpu_amdkfd_gpuvm_destroy_cb(adev: dev->adev, vm: avm); |
1699 | |
1700 | return ret; |
1701 | } |
1702 | |
1703 | /* |
1704 | * Direct the IOMMU to bind the process (specifically the pasid->mm) |
1705 | * to the device. |
1706 | * Unbinding occurs when the process dies or the device is removed. |
1707 | * |
1708 | * Assumes that the process lock is held. |
1709 | */ |
1710 | struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, |
1711 | struct kfd_process *p) |
1712 | { |
1713 | struct kfd_process_device *pdd; |
1714 | int err; |
1715 | |
1716 | pdd = kfd_get_process_device_data(dev, p); |
1717 | if (!pdd) { |
1718 | pr_err("Process device data doesn't exist\n"); |
1719 | return ERR_PTR(error: -ENOMEM); |
1720 | } |
1721 | |
1722 | if (!pdd->drm_priv) |
1723 | return ERR_PTR(error: -ENODEV); |
1724 | |
1725 | /* |
1726 | * signal runtime-pm system to auto resume and prevent |
1727 | * further runtime suspend once device pdd is created until |
1728 | * pdd is destroyed. |
1729 | */ |
1730 | if (!pdd->runtime_inuse) { |
1731 | err = pm_runtime_get_sync(dev: adev_to_drm(adev: dev->adev)->dev); |
1732 | if (err < 0) { |
1733 | pm_runtime_put_autosuspend(dev: adev_to_drm(adev: dev->adev)->dev); |
1734 | return ERR_PTR(error: err); |
1735 | } |
1736 | } |
1737 | |
1738 | /* |
1739 | * make sure that runtime_usage counter is incremented just once |
1740 | * per pdd |
1741 | */ |
1742 | pdd->runtime_inuse = true; |
1743 | |
1744 | return pdd; |
1745 | } |
1746 | |
1747 | /* Create specific handle mapped to mem from process local memory idr |
1748 | * Assumes that the process lock is held. |
1749 | */ |
1750 | int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, |
1751 | void *mem) |
1752 | { |
1753 | return idr_alloc(&pdd->alloc_idr, ptr: mem, start: 0, end: 0, GFP_KERNEL); |
1754 | } |
1755 | |
1756 | /* Translate specific handle from process local memory idr |
1757 | * Assumes that the process lock is held. |
1758 | */ |
1759 | void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, |
1760 | int handle) |
1761 | { |
1762 | if (handle < 0) |
1763 | return NULL; |
1764 | |
1765 | return idr_find(&pdd->alloc_idr, id: handle); |
1766 | } |
1767 | |
1768 | /* Remove specific handle from process local memory idr |
1769 | * Assumes that the process lock is held. |
1770 | */ |
1771 | void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, |
1772 | int handle) |
1773 | { |
1774 | if (handle >= 0) |
1775 | idr_remove(&pdd->alloc_idr, id: handle); |
1776 | } |
1777 | |
1778 | /* This increments the process->ref counter. */ |
1779 | struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) |
1780 | { |
1781 | struct kfd_process *p, *ret_p = NULL; |
1782 | unsigned int temp; |
1783 | |
1784 | int idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
1785 | |
1786 | hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { |
1787 | if (p->pasid == pasid) { |
1788 | kref_get(kref: &p->ref); |
1789 | ret_p = p; |
1790 | break; |
1791 | } |
1792 | } |
1793 | |
1794 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
1795 | |
1796 | return ret_p; |
1797 | } |
1798 | |
1799 | /* This increments the process->ref counter. */ |
1800 | struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) |
1801 | { |
1802 | struct kfd_process *p; |
1803 | |
1804 | int idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
1805 | |
1806 | p = find_process_by_mm(mm); |
1807 | if (p) |
1808 | kref_get(kref: &p->ref); |
1809 | |
1810 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
1811 | |
1812 | return p; |
1813 | } |
1814 | |
1815 | /* kfd_process_evict_queues - Evict all user queues of a process |
1816 | * |
1817 | * Eviction is reference-counted per process-device. This means multiple |
1818 | * evictions from different sources can be nested safely. |
1819 | */ |
1820 | int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger) |
1821 | { |
1822 | int r = 0; |
1823 | int i; |
1824 | unsigned int n_evicted = 0; |
1825 | |
1826 | for (i = 0; i < p->n_pdds; i++) { |
1827 | struct kfd_process_device *pdd = p->pdds[i]; |
1828 | |
1829 | kfd_smi_event_queue_eviction(node: pdd->dev, pid: p->lead_thread->pid, |
1830 | trigger); |
1831 | |
1832 | r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, |
1833 | &pdd->qpd); |
1834 | /* evict return -EIO if HWS is hang or asic is resetting, in this case |
1835 | * we would like to set all the queues to be in evicted state to prevent |
1836 | * them been add back since they actually not be saved right now. |
1837 | */ |
1838 | if (r && r != -EIO) { |
1839 | pr_err("Failed to evict process queues\n"); |
1840 | goto fail; |
1841 | } |
1842 | n_evicted++; |
1843 | } |
1844 | |
1845 | return r; |
1846 | |
1847 | fail: |
1848 | /* To keep state consistent, roll back partial eviction by |
1849 | * restoring queues |
1850 | */ |
1851 | for (i = 0; i < p->n_pdds; i++) { |
1852 | struct kfd_process_device *pdd = p->pdds[i]; |
1853 | |
1854 | if (n_evicted == 0) |
1855 | break; |
1856 | |
1857 | kfd_smi_event_queue_restore(node: pdd->dev, pid: p->lead_thread->pid); |
1858 | |
1859 | if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, |
1860 | &pdd->qpd)) |
1861 | pr_err("Failed to restore queues\n"); |
1862 | |
1863 | n_evicted--; |
1864 | } |
1865 | |
1866 | return r; |
1867 | } |
1868 | |
1869 | /* kfd_process_restore_queues - Restore all user queues of a process */ |
1870 | int kfd_process_restore_queues(struct kfd_process *p) |
1871 | { |
1872 | int r, ret = 0; |
1873 | int i; |
1874 | |
1875 | for (i = 0; i < p->n_pdds; i++) { |
1876 | struct kfd_process_device *pdd = p->pdds[i]; |
1877 | |
1878 | kfd_smi_event_queue_restore(node: pdd->dev, pid: p->lead_thread->pid); |
1879 | |
1880 | r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, |
1881 | &pdd->qpd); |
1882 | if (r) { |
1883 | pr_err("Failed to restore process queues\n"); |
1884 | if (!ret) |
1885 | ret = r; |
1886 | } |
1887 | } |
1888 | |
1889 | return ret; |
1890 | } |
1891 | |
1892 | int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id) |
1893 | { |
1894 | int i; |
1895 | |
1896 | for (i = 0; i < p->n_pdds; i++) |
1897 | if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id) |
1898 | return i; |
1899 | return -EINVAL; |
1900 | } |
1901 | |
1902 | int |
1903 | kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, |
1904 | uint32_t *gpuid, uint32_t *gpuidx) |
1905 | { |
1906 | int i; |
1907 | |
1908 | for (i = 0; i < p->n_pdds; i++) |
1909 | if (p->pdds[i] && p->pdds[i]->dev == node) { |
1910 | *gpuid = p->pdds[i]->user_gpu_id; |
1911 | *gpuidx = i; |
1912 | return 0; |
1913 | } |
1914 | return -EINVAL; |
1915 | } |
1916 | |
1917 | static int signal_eviction_fence(struct kfd_process *p) |
1918 | { |
1919 | struct dma_fence *ef; |
1920 | int ret; |
1921 | |
1922 | rcu_read_lock(); |
1923 | ef = dma_fence_get_rcu_safe(fencep: &p->ef); |
1924 | rcu_read_unlock(); |
1925 | |
1926 | ret = dma_fence_signal(fence: ef); |
1927 | dma_fence_put(fence: ef); |
1928 | |
1929 | return ret; |
1930 | } |
1931 | |
1932 | static void evict_process_worker(struct work_struct *work) |
1933 | { |
1934 | int ret; |
1935 | struct kfd_process *p; |
1936 | struct delayed_work *dwork; |
1937 | |
1938 | dwork = to_delayed_work(work); |
1939 | |
1940 | /* Process termination destroys this worker thread. So during the |
1941 | * lifetime of this thread, kfd_process p will be valid |
1942 | */ |
1943 | p = container_of(dwork, struct kfd_process, eviction_work); |
1944 | |
1945 | pr_debug("Started evicting pasid 0x%x\n", p->pasid); |
1946 | ret = kfd_process_evict_queues(p, trigger: KFD_QUEUE_EVICTION_TRIGGER_TTM); |
1947 | if (!ret) { |
1948 | /* If another thread already signaled the eviction fence, |
1949 | * they are responsible stopping the queues and scheduling |
1950 | * the restore work. |
1951 | */ |
1952 | if (!signal_eviction_fence(p)) |
1953 | queue_delayed_work(wq: kfd_restore_wq, dwork: &p->restore_work, |
1954 | delay: msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); |
1955 | else |
1956 | kfd_process_restore_queues(p); |
1957 | |
1958 | pr_debug("Finished evicting pasid 0x%x\n", p->pasid); |
1959 | } else |
1960 | pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); |
1961 | } |
1962 | |
1963 | static int restore_process_helper(struct kfd_process *p) |
1964 | { |
1965 | int ret = 0; |
1966 | |
1967 | /* VMs may not have been acquired yet during debugging. */ |
1968 | if (p->kgd_process_info) { |
1969 | ret = amdgpu_amdkfd_gpuvm_restore_process_bos( |
1970 | process_info: p->kgd_process_info, ef: &p->ef); |
1971 | if (ret) |
1972 | return ret; |
1973 | } |
1974 | |
1975 | ret = kfd_process_restore_queues(p); |
1976 | if (!ret) |
1977 | pr_debug("Finished restoring pasid 0x%x\n", p->pasid); |
1978 | else |
1979 | pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); |
1980 | |
1981 | return ret; |
1982 | } |
1983 | |
1984 | static void restore_process_worker(struct work_struct *work) |
1985 | { |
1986 | struct delayed_work *dwork; |
1987 | struct kfd_process *p; |
1988 | int ret = 0; |
1989 | |
1990 | dwork = to_delayed_work(work); |
1991 | |
1992 | /* Process termination destroys this worker thread. So during the |
1993 | * lifetime of this thread, kfd_process p will be valid |
1994 | */ |
1995 | p = container_of(dwork, struct kfd_process, restore_work); |
1996 | pr_debug("Started restoring pasid 0x%x\n", p->pasid); |
1997 | |
1998 | /* Setting last_restore_timestamp before successful restoration. |
1999 | * Otherwise this would have to be set by KGD (restore_process_bos) |
2000 | * before KFD BOs are unreserved. If not, the process can be evicted |
2001 | * again before the timestamp is set. |
2002 | * If restore fails, the timestamp will be set again in the next |
2003 | * attempt. This would mean that the minimum GPU quanta would be |
2004 | * PROCESS_ACTIVE_TIME_MS - (time to execute the following two |
2005 | * functions) |
2006 | */ |
2007 | |
2008 | p->last_restore_timestamp = get_jiffies_64(); |
2009 | |
2010 | ret = restore_process_helper(p); |
2011 | if (ret) { |
2012 | pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", |
2013 | p->pasid, PROCESS_BACK_OFF_TIME_MS); |
2014 | ret = queue_delayed_work(wq: kfd_restore_wq, dwork: &p->restore_work, |
2015 | delay: msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); |
2016 | WARN(!ret, "reschedule restore work failed\n"); |
2017 | } |
2018 | } |
2019 | |
2020 | void kfd_suspend_all_processes(void) |
2021 | { |
2022 | struct kfd_process *p; |
2023 | unsigned int temp; |
2024 | int idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
2025 | |
2026 | WARN(debug_evictions, "Evicting all processes"); |
2027 | hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { |
2028 | if (kfd_process_evict_queues(p, trigger: KFD_QUEUE_EVICTION_TRIGGER_SUSPEND)) |
2029 | pr_err("Failed to suspend process 0x%x\n", p->pasid); |
2030 | signal_eviction_fence(p); |
2031 | } |
2032 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
2033 | } |
2034 | |
2035 | int kfd_resume_all_processes(void) |
2036 | { |
2037 | struct kfd_process *p; |
2038 | unsigned int temp; |
2039 | int ret = 0, idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
2040 | |
2041 | hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { |
2042 | if (restore_process_helper(p)) { |
2043 | pr_err("Restore process %d failed during resume\n", |
2044 | p->pasid); |
2045 | ret = -EFAULT; |
2046 | } |
2047 | } |
2048 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
2049 | return ret; |
2050 | } |
2051 | |
2052 | int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, |
2053 | struct vm_area_struct *vma) |
2054 | { |
2055 | struct kfd_process_device *pdd; |
2056 | struct qcm_process_device *qpd; |
2057 | |
2058 | if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { |
2059 | pr_err("Incorrect CWSR mapping size.\n"); |
2060 | return -EINVAL; |
2061 | } |
2062 | |
2063 | pdd = kfd_get_process_device_data(dev, p: process); |
2064 | if (!pdd) |
2065 | return -EINVAL; |
2066 | qpd = &pdd->qpd; |
2067 | |
2068 | qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, |
2069 | order: get_order(KFD_CWSR_TBA_TMA_SIZE)); |
2070 | if (!qpd->cwsr_kaddr) { |
2071 | pr_err("Error allocating per process CWSR buffer.\n"); |
2072 | return -ENOMEM; |
2073 | } |
2074 | |
2075 | vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND |
2076 | | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); |
2077 | /* Mapping pages to user process */ |
2078 | return remap_pfn_range(vma, addr: vma->vm_start, |
2079 | PFN_DOWN(__pa(qpd->cwsr_kaddr)), |
2080 | KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); |
2081 | } |
2082 | |
2083 | /* assumes caller holds process lock. */ |
2084 | int kfd_process_drain_interrupts(struct kfd_process_device *pdd) |
2085 | { |
2086 | uint32_t irq_drain_fence[8]; |
2087 | uint8_t node_id = 0; |
2088 | int r = 0; |
2089 | |
2090 | if (!KFD_IS_SOC15(pdd->dev)) |
2091 | return 0; |
2092 | |
2093 | pdd->process->irq_drain_is_open = true; |
2094 | |
2095 | memset(irq_drain_fence, 0, sizeof(irq_drain_fence)); |
2096 | irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) | |
2097 | KFD_IRQ_FENCE_CLIENTID; |
2098 | irq_drain_fence[3] = pdd->process->pasid; |
2099 | |
2100 | /* |
2101 | * For GFX 9.4.3, send the NodeId also in IH cookie DW[3] |
2102 | */ |
2103 | if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) { |
2104 | node_id = ffs(pdd->dev->interrupt_bitmap) - 1; |
2105 | irq_drain_fence[3] |= node_id << 16; |
2106 | } |
2107 | |
2108 | /* ensure stale irqs scheduled KFD interrupts and send drain fence. */ |
2109 | if (amdgpu_amdkfd_send_close_event_drain_irq(adev: pdd->dev->adev, |
2110 | payload: irq_drain_fence)) { |
2111 | pdd->process->irq_drain_is_open = false; |
2112 | return 0; |
2113 | } |
2114 | |
2115 | r = wait_event_interruptible(pdd->process->wait_irq_drain, |
2116 | !READ_ONCE(pdd->process->irq_drain_is_open)); |
2117 | if (r) |
2118 | pdd->process->irq_drain_is_open = false; |
2119 | |
2120 | return r; |
2121 | } |
2122 | |
2123 | void kfd_process_close_interrupt_drain(unsigned int pasid) |
2124 | { |
2125 | struct kfd_process *p; |
2126 | |
2127 | p = kfd_lookup_process_by_pasid(pasid); |
2128 | |
2129 | if (!p) |
2130 | return; |
2131 | |
2132 | WRITE_ONCE(p->irq_drain_is_open, false); |
2133 | wake_up_all(&p->wait_irq_drain); |
2134 | kfd_unref_process(p); |
2135 | } |
2136 | |
2137 | struct send_exception_work_handler_workarea { |
2138 | struct work_struct work; |
2139 | struct kfd_process *p; |
2140 | unsigned int queue_id; |
2141 | uint64_t error_reason; |
2142 | }; |
2143 | |
2144 | static void send_exception_work_handler(struct work_struct *work) |
2145 | { |
2146 | struct send_exception_work_handler_workarea *workarea; |
2147 | struct kfd_process *p; |
2148 | struct queue *q; |
2149 | struct mm_struct *mm; |
2150 | struct kfd_context_save_area_header __user *csa_header; |
2151 | uint64_t __user *err_payload_ptr; |
2152 | uint64_t cur_err; |
2153 | uint32_t ev_id; |
2154 | |
2155 | workarea = container_of(work, |
2156 | struct send_exception_work_handler_workarea, |
2157 | work); |
2158 | p = workarea->p; |
2159 | |
2160 | mm = get_task_mm(task: p->lead_thread); |
2161 | |
2162 | if (!mm) |
2163 | return; |
2164 | |
2165 | kthread_use_mm(mm); |
2166 | |
2167 | q = pqm_get_user_queue(pqm: &p->pqm, qid: workarea->queue_id); |
2168 | |
2169 | if (!q) |
2170 | goto out; |
2171 | |
2172 | csa_header = (void __user *)q->properties.ctx_save_restore_area_address; |
2173 | |
2174 | get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr); |
2175 | get_user(cur_err, err_payload_ptr); |
2176 | cur_err |= workarea->error_reason; |
2177 | put_user(cur_err, err_payload_ptr); |
2178 | get_user(ev_id, &csa_header->err_event_id); |
2179 | |
2180 | kfd_set_event(p, event_id: ev_id); |
2181 | |
2182 | out: |
2183 | kthread_unuse_mm(mm); |
2184 | mmput(mm); |
2185 | } |
2186 | |
2187 | int kfd_send_exception_to_runtime(struct kfd_process *p, |
2188 | unsigned int queue_id, |
2189 | uint64_t error_reason) |
2190 | { |
2191 | struct send_exception_work_handler_workarea worker; |
2192 | |
2193 | INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler); |
2194 | |
2195 | worker.p = p; |
2196 | worker.queue_id = queue_id; |
2197 | worker.error_reason = error_reason; |
2198 | |
2199 | schedule_work(work: &worker.work); |
2200 | flush_work(work: &worker.work); |
2201 | destroy_work_on_stack(work: &worker.work); |
2202 | |
2203 | return 0; |
2204 | } |
2205 | |
2206 | struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id) |
2207 | { |
2208 | int i; |
2209 | |
2210 | if (gpu_id) { |
2211 | for (i = 0; i < p->n_pdds; i++) { |
2212 | struct kfd_process_device *pdd = p->pdds[i]; |
2213 | |
2214 | if (pdd->user_gpu_id == gpu_id) |
2215 | return pdd; |
2216 | } |
2217 | } |
2218 | return NULL; |
2219 | } |
2220 | |
2221 | int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id) |
2222 | { |
2223 | int i; |
2224 | |
2225 | if (!actual_gpu_id) |
2226 | return 0; |
2227 | |
2228 | for (i = 0; i < p->n_pdds; i++) { |
2229 | struct kfd_process_device *pdd = p->pdds[i]; |
2230 | |
2231 | if (pdd->dev->id == actual_gpu_id) |
2232 | return pdd->user_gpu_id; |
2233 | } |
2234 | return -EINVAL; |
2235 | } |
2236 | |
2237 | #if defined(CONFIG_DEBUG_FS) |
2238 | |
2239 | int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) |
2240 | { |
2241 | struct kfd_process *p; |
2242 | unsigned int temp; |
2243 | int r = 0; |
2244 | |
2245 | int idx = srcu_read_lock(ssp: &kfd_processes_srcu); |
2246 | |
2247 | hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { |
2248 | seq_printf(m, fmt: "Process %d PASID 0x%x:\n", |
2249 | p->lead_thread->tgid, p->pasid); |
2250 | |
2251 | mutex_lock(&p->mutex); |
2252 | r = pqm_debugfs_mqds(m, data: &p->pqm); |
2253 | mutex_unlock(lock: &p->mutex); |
2254 | |
2255 | if (r) |
2256 | break; |
2257 | } |
2258 | |
2259 | srcu_read_unlock(ssp: &kfd_processes_srcu, idx); |
2260 | |
2261 | return r; |
2262 | } |
2263 | |
2264 | #endif |
2265 |
Definitions
- kfd_processes_table
- kfd_processes_mutex
- kfd_processes_srcu
- kfd_process_wq
- kfd_restore_wq
- kfd_procfs_tree
- procfs
- kfd_sdma_activity_handler_workarea
- temp_sdma_queue_list
- kfd_sdma_activity_worker
- kfd_get_cu_occupancy
- kfd_procfs_show
- kfd_procfs_kobj_release
- kfd_procfs_ops
- procfs_type
- kfd_procfs_init
- kfd_procfs_shutdown
- kfd_procfs_queue_show
- kfd_procfs_stats_show
- kfd_sysfs_counters_show
- attr_queue_size
- attr_queue_type
- attr_queue_gpuid
- procfs_queue_attrs
- procfs_queue_ops
- procfs_queue_type
- procfs_stats_ops
- procfs_stats_type
- sysfs_counters_ops
- sysfs_counters_type
- kfd_procfs_add_queue
- kfd_sysfs_create_file
- kfd_procfs_add_sysfs_stats
- kfd_procfs_add_sysfs_counters
- kfd_procfs_add_sysfs_files
- kfd_procfs_del_queue
- kfd_process_create_wq
- kfd_process_destroy_wq
- kfd_process_free_gpuvm
- kfd_process_alloc_gpuvm
- kfd_process_device_reserve_ib_mem
- kfd_process_device_destroy_ib_mem
- kfd_create_process
- kfd_get_process
- find_process_by_mm
- find_process
- kfd_unref_process
- kfd_lookup_process_by_pid
- kfd_process_device_free_bos
- kfd_process_kunmap_signal_bo
- kfd_process_free_outstanding_kfd_bos
- kfd_process_destroy_pdds
- kfd_process_remove_sysfs
- kfd_process_wq_release
- kfd_process_ref_release
- kfd_process_alloc_notifier
- kfd_process_free_notifier
- kfd_process_notifier_release_internal
- kfd_process_notifier_release
- kfd_process_mmu_notifier_ops
- kfd_cleanup_processes
- kfd_process_init_cwsr_apu
- kfd_process_device_init_cwsr_dgpu
- kfd_process_device_destroy_cwsr_dgpu
- kfd_process_set_trap_handler
- kfd_process_xnack_mode
- kfd_process_set_trap_debug_flag
- create_process
- kfd_get_process_device_data
- kfd_create_process_device_data
- kfd_process_device_init_vm
- kfd_bind_process_to_device
- kfd_process_device_create_obj_handle
- kfd_process_device_translate_handle
- kfd_process_device_remove_obj_handle
- kfd_lookup_process_by_pasid
- kfd_lookup_process_by_mm
- kfd_process_evict_queues
- kfd_process_restore_queues
- kfd_process_gpuidx_from_gpuid
- kfd_process_gpuid_from_node
- signal_eviction_fence
- evict_process_worker
- restore_process_helper
- restore_process_worker
- kfd_suspend_all_processes
- kfd_resume_all_processes
- kfd_reserved_mem_mmap
- kfd_process_drain_interrupts
- kfd_process_close_interrupt_drain
- send_exception_work_handler_workarea
- send_exception_work_handler
- kfd_send_exception_to_runtime
- kfd_process_device_data_by_id
- kfd_process_get_user_gpu_id
Improve your Profiling and Debugging skills
Find out more