1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4#include "e1000.h"
5#include <net/ip6_checksum.h>
6#include <linux/io.h>
7#include <linux/prefetch.h>
8#include <linux/bitops.h>
9#include <linux/if_vlan.h>
10
11char e1000_driver_name[] = "e1000";
12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14
15/* e1000_pci_tbl - PCI Device ID Table
16 *
17 * Last entry must be all 0s
18 *
19 * Macro expands to...
20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21 */
22static const struct pci_device_id e1000_pci_tbl[] = {
23 INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 /* required last entry */
61 {0,}
62};
63
64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65
66int e1000_up(struct e1000_adapter *adapter);
67void e1000_down(struct e1000_adapter *adapter);
68void e1000_reinit_locked(struct e1000_adapter *adapter);
69void e1000_reset(struct e1000_adapter *adapter);
70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 struct e1000_tx_ring *txdr);
76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 struct e1000_rx_ring *rxdr);
78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 struct e1000_tx_ring *tx_ring);
80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 struct e1000_rx_ring *rx_ring);
82void e1000_update_stats(struct e1000_adapter *adapter);
83
84static int e1000_init_module(void);
85static void e1000_exit_module(void);
86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87static void e1000_remove(struct pci_dev *pdev);
88static int e1000_alloc_queues(struct e1000_adapter *adapter);
89static int e1000_sw_init(struct e1000_adapter *adapter);
90int e1000_open(struct net_device *netdev);
91int e1000_close(struct net_device *netdev);
92static void e1000_configure_tx(struct e1000_adapter *adapter);
93static void e1000_configure_rx(struct e1000_adapter *adapter);
94static void e1000_setup_rctl(struct e1000_adapter *adapter);
95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *tx_ring);
99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rx_ring);
101static void e1000_set_rx_mode(struct net_device *netdev);
102static void e1000_update_phy_info_task(struct work_struct *work);
103static void e1000_watchdog(struct work_struct *work);
104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 struct net_device *netdev);
107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108static int e1000_set_mac(struct net_device *netdev, void *p);
109static irqreturn_t e1000_intr(int irq, void *data);
110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 struct e1000_tx_ring *tx_ring);
112static int e1000_clean(struct napi_struct *napi, int budget);
113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rx_ring,
115 int *work_done, int work_to_do);
116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 struct e1000_rx_ring *rx_ring,
118 int *work_done, int work_to_do);
119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 struct e1000_rx_ring *rx_ring,
121 int cleaned_count)
122{
123}
124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 struct e1000_rx_ring *rx_ring,
126 int cleaned_count);
127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring,
129 int cleaned_count);
130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 int cmd);
133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136static void e1000_reset_task(struct work_struct *work);
137static void e1000_smartspeed(struct e1000_adapter *adapter);
138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 struct sk_buff *skb);
140
141static bool e1000_vlan_used(struct e1000_adapter *adapter);
142static void e1000_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 bool filter_on);
146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 __be16 proto, u16 vid);
148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150static void e1000_restore_vlan(struct e1000_adapter *adapter);
151
152static int __maybe_unused e1000_suspend(struct device *dev);
153static int __maybe_unused e1000_resume(struct device *dev);
154static void e1000_shutdown(struct pci_dev *pdev);
155
156#ifdef CONFIG_NET_POLL_CONTROLLER
157/* for netdump / net console */
158static void e1000_netpoll (struct net_device *netdev);
159#endif
160
161#define COPYBREAK_DEFAULT 256
162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163module_param(copybreak, uint, 0644);
164MODULE_PARM_DESC(copybreak,
165 "Maximum size of packet that is copied to a new buffer on receive");
166
167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 pci_channel_state_t state);
169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170static void e1000_io_resume(struct pci_dev *pdev);
171
172static const struct pci_error_handlers e1000_err_handler = {
173 .error_detected = e1000_io_error_detected,
174 .slot_reset = e1000_io_slot_reset,
175 .resume = e1000_io_resume,
176};
177
178static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179
180static struct pci_driver e1000_driver = {
181 .name = e1000_driver_name,
182 .id_table = e1000_pci_tbl,
183 .probe = e1000_probe,
184 .remove = e1000_remove,
185 .driver = {
186 .pm = &e1000_pm_ops,
187 },
188 .shutdown = e1000_shutdown,
189 .err_handler = &e1000_err_handler
190};
191
192MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
193MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
194MODULE_LICENSE("GPL v2");
195
196#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
197static int debug = -1;
198module_param(debug, int, 0);
199MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
200
201/**
202 * e1000_get_hw_dev - helper function for getting netdev
203 * @hw: pointer to HW struct
204 *
205 * return device used by hardware layer to print debugging information
206 *
207 **/
208struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
209{
210 struct e1000_adapter *adapter = hw->back;
211 return adapter->netdev;
212}
213
214/**
215 * e1000_init_module - Driver Registration Routine
216 *
217 * e1000_init_module is the first routine called when the driver is
218 * loaded. All it does is register with the PCI subsystem.
219 **/
220static int __init e1000_init_module(void)
221{
222 int ret;
223 pr_info("%s\n", e1000_driver_string);
224
225 pr_info("%s\n", e1000_copyright);
226
227 ret = pci_register_driver(&e1000_driver);
228 if (copybreak != COPYBREAK_DEFAULT) {
229 if (copybreak == 0)
230 pr_info("copybreak disabled\n");
231 else
232 pr_info("copybreak enabled for "
233 "packets <= %u bytes\n", copybreak);
234 }
235 return ret;
236}
237
238module_init(e1000_init_module);
239
240/**
241 * e1000_exit_module - Driver Exit Cleanup Routine
242 *
243 * e1000_exit_module is called just before the driver is removed
244 * from memory.
245 **/
246static void __exit e1000_exit_module(void)
247{
248 pci_unregister_driver(dev: &e1000_driver);
249}
250
251module_exit(e1000_exit_module);
252
253static int e1000_request_irq(struct e1000_adapter *adapter)
254{
255 struct net_device *netdev = adapter->netdev;
256 irq_handler_t handler = e1000_intr;
257 int irq_flags = IRQF_SHARED;
258 int err;
259
260 err = request_irq(irq: adapter->pdev->irq, handler, flags: irq_flags, name: netdev->name,
261 dev: netdev);
262 if (err) {
263 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
264 }
265
266 return err;
267}
268
269static void e1000_free_irq(struct e1000_adapter *adapter)
270{
271 struct net_device *netdev = adapter->netdev;
272
273 free_irq(adapter->pdev->irq, netdev);
274}
275
276/**
277 * e1000_irq_disable - Mask off interrupt generation on the NIC
278 * @adapter: board private structure
279 **/
280static void e1000_irq_disable(struct e1000_adapter *adapter)
281{
282 struct e1000_hw *hw = &adapter->hw;
283
284 ew32(IMC, ~0);
285 E1000_WRITE_FLUSH();
286 synchronize_irq(irq: adapter->pdev->irq);
287}
288
289/**
290 * e1000_irq_enable - Enable default interrupt generation settings
291 * @adapter: board private structure
292 **/
293static void e1000_irq_enable(struct e1000_adapter *adapter)
294{
295 struct e1000_hw *hw = &adapter->hw;
296
297 ew32(IMS, IMS_ENABLE_MASK);
298 E1000_WRITE_FLUSH();
299}
300
301static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
302{
303 struct e1000_hw *hw = &adapter->hw;
304 struct net_device *netdev = adapter->netdev;
305 u16 vid = hw->mng_cookie.vlan_id;
306 u16 old_vid = adapter->mng_vlan_id;
307
308 if (!e1000_vlan_used(adapter))
309 return;
310
311 if (!test_bit(vid, adapter->active_vlans)) {
312 if (hw->mng_cookie.status &
313 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
314 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
315 adapter->mng_vlan_id = vid;
316 } else {
317 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
318 }
319 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
320 (vid != old_vid) &&
321 !test_bit(old_vid, adapter->active_vlans))
322 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
323 vid: old_vid);
324 } else {
325 adapter->mng_vlan_id = vid;
326 }
327}
328
329static void e1000_init_manageability(struct e1000_adapter *adapter)
330{
331 struct e1000_hw *hw = &adapter->hw;
332
333 if (adapter->en_mng_pt) {
334 u32 manc = er32(MANC);
335
336 /* disable hardware interception of ARP */
337 manc &= ~(E1000_MANC_ARP_EN);
338
339 ew32(MANC, manc);
340 }
341}
342
343static void e1000_release_manageability(struct e1000_adapter *adapter)
344{
345 struct e1000_hw *hw = &adapter->hw;
346
347 if (adapter->en_mng_pt) {
348 u32 manc = er32(MANC);
349
350 /* re-enable hardware interception of ARP */
351 manc |= E1000_MANC_ARP_EN;
352
353 ew32(MANC, manc);
354 }
355}
356
357/**
358 * e1000_configure - configure the hardware for RX and TX
359 * @adapter: private board structure
360 **/
361static void e1000_configure(struct e1000_adapter *adapter)
362{
363 struct net_device *netdev = adapter->netdev;
364 int i;
365
366 e1000_set_rx_mode(netdev);
367
368 e1000_restore_vlan(adapter);
369 e1000_init_manageability(adapter);
370
371 e1000_configure_tx(adapter);
372 e1000_setup_rctl(adapter);
373 e1000_configure_rx(adapter);
374 /* call E1000_DESC_UNUSED which always leaves
375 * at least 1 descriptor unused to make sure
376 * next_to_use != next_to_clean
377 */
378 for (i = 0; i < adapter->num_rx_queues; i++) {
379 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
380 adapter->alloc_rx_buf(adapter, ring,
381 E1000_DESC_UNUSED(ring));
382 }
383}
384
385int e1000_up(struct e1000_adapter *adapter)
386{
387 struct e1000_hw *hw = &adapter->hw;
388
389 /* hardware has been reset, we need to reload some things */
390 e1000_configure(adapter);
391
392 clear_bit(nr: __E1000_DOWN, addr: &adapter->flags);
393
394 napi_enable(n: &adapter->napi);
395
396 e1000_irq_enable(adapter);
397
398 netif_wake_queue(dev: adapter->netdev);
399
400 /* fire a link change interrupt to start the watchdog */
401 ew32(ICS, E1000_ICS_LSC);
402 return 0;
403}
404
405/**
406 * e1000_power_up_phy - restore link in case the phy was powered down
407 * @adapter: address of board private structure
408 *
409 * The phy may be powered down to save power and turn off link when the
410 * driver is unloaded and wake on lan is not enabled (among others)
411 * *** this routine MUST be followed by a call to e1000_reset ***
412 **/
413void e1000_power_up_phy(struct e1000_adapter *adapter)
414{
415 struct e1000_hw *hw = &adapter->hw;
416 u16 mii_reg = 0;
417
418 /* Just clear the power down bit to wake the phy back up */
419 if (hw->media_type == e1000_media_type_copper) {
420 /* according to the manual, the phy will retain its
421 * settings across a power-down/up cycle
422 */
423 e1000_read_phy_reg(hw, PHY_CTRL, phy_data: &mii_reg);
424 mii_reg &= ~MII_CR_POWER_DOWN;
425 e1000_write_phy_reg(hw, PHY_CTRL, data: mii_reg);
426 }
427}
428
429static void e1000_power_down_phy(struct e1000_adapter *adapter)
430{
431 struct e1000_hw *hw = &adapter->hw;
432
433 /* Power down the PHY so no link is implied when interface is down *
434 * The PHY cannot be powered down if any of the following is true *
435 * (a) WoL is enabled
436 * (b) AMT is active
437 * (c) SoL/IDER session is active
438 */
439 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
440 hw->media_type == e1000_media_type_copper) {
441 u16 mii_reg = 0;
442
443 switch (hw->mac_type) {
444 case e1000_82540:
445 case e1000_82545:
446 case e1000_82545_rev_3:
447 case e1000_82546:
448 case e1000_ce4100:
449 case e1000_82546_rev_3:
450 case e1000_82541:
451 case e1000_82541_rev_2:
452 case e1000_82547:
453 case e1000_82547_rev_2:
454 if (er32(MANC) & E1000_MANC_SMBUS_EN)
455 goto out;
456 break;
457 default:
458 goto out;
459 }
460 e1000_read_phy_reg(hw, PHY_CTRL, phy_data: &mii_reg);
461 mii_reg |= MII_CR_POWER_DOWN;
462 e1000_write_phy_reg(hw, PHY_CTRL, data: mii_reg);
463 msleep(msecs: 1);
464 }
465out:
466 return;
467}
468
469static void e1000_down_and_stop(struct e1000_adapter *adapter)
470{
471 set_bit(nr: __E1000_DOWN, addr: &adapter->flags);
472
473 cancel_delayed_work_sync(dwork: &adapter->watchdog_task);
474
475 /*
476 * Since the watchdog task can reschedule other tasks, we should cancel
477 * it first, otherwise we can run into the situation when a work is
478 * still running after the adapter has been turned down.
479 */
480
481 cancel_delayed_work_sync(dwork: &adapter->phy_info_task);
482 cancel_delayed_work_sync(dwork: &adapter->fifo_stall_task);
483
484 /* Only kill reset task if adapter is not resetting */
485 if (!test_bit(__E1000_RESETTING, &adapter->flags))
486 cancel_work_sync(work: &adapter->reset_task);
487}
488
489void e1000_down(struct e1000_adapter *adapter)
490{
491 struct e1000_hw *hw = &adapter->hw;
492 struct net_device *netdev = adapter->netdev;
493 u32 rctl, tctl;
494
495 /* disable receives in the hardware */
496 rctl = er32(RCTL);
497 ew32(RCTL, rctl & ~E1000_RCTL_EN);
498 /* flush and sleep below */
499
500 netif_tx_disable(dev: netdev);
501
502 /* disable transmits in the hardware */
503 tctl = er32(TCTL);
504 tctl &= ~E1000_TCTL_EN;
505 ew32(TCTL, tctl);
506 /* flush both disables and wait for them to finish */
507 E1000_WRITE_FLUSH();
508 msleep(msecs: 10);
509
510 /* Set the carrier off after transmits have been disabled in the
511 * hardware, to avoid race conditions with e1000_watchdog() (which
512 * may be running concurrently to us, checking for the carrier
513 * bit to decide whether it should enable transmits again). Such
514 * a race condition would result into transmission being disabled
515 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
516 */
517 netif_carrier_off(dev: netdev);
518
519 napi_disable(n: &adapter->napi);
520
521 e1000_irq_disable(adapter);
522
523 /* Setting DOWN must be after irq_disable to prevent
524 * a screaming interrupt. Setting DOWN also prevents
525 * tasks from rescheduling.
526 */
527 e1000_down_and_stop(adapter);
528
529 adapter->link_speed = 0;
530 adapter->link_duplex = 0;
531
532 e1000_reset(adapter);
533 e1000_clean_all_tx_rings(adapter);
534 e1000_clean_all_rx_rings(adapter);
535}
536
537void e1000_reinit_locked(struct e1000_adapter *adapter)
538{
539 while (test_and_set_bit(nr: __E1000_RESETTING, addr: &adapter->flags))
540 msleep(msecs: 1);
541
542 /* only run the task if not already down */
543 if (!test_bit(__E1000_DOWN, &adapter->flags)) {
544 e1000_down(adapter);
545 e1000_up(adapter);
546 }
547
548 clear_bit(nr: __E1000_RESETTING, addr: &adapter->flags);
549}
550
551void e1000_reset(struct e1000_adapter *adapter)
552{
553 struct e1000_hw *hw = &adapter->hw;
554 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
555 bool legacy_pba_adjust = false;
556 u16 hwm;
557
558 /* Repartition Pba for greater than 9k mtu
559 * To take effect CTRL.RST is required.
560 */
561
562 switch (hw->mac_type) {
563 case e1000_82542_rev2_0:
564 case e1000_82542_rev2_1:
565 case e1000_82543:
566 case e1000_82544:
567 case e1000_82540:
568 case e1000_82541:
569 case e1000_82541_rev_2:
570 legacy_pba_adjust = true;
571 pba = E1000_PBA_48K;
572 break;
573 case e1000_82545:
574 case e1000_82545_rev_3:
575 case e1000_82546:
576 case e1000_ce4100:
577 case e1000_82546_rev_3:
578 pba = E1000_PBA_48K;
579 break;
580 case e1000_82547:
581 case e1000_82547_rev_2:
582 legacy_pba_adjust = true;
583 pba = E1000_PBA_30K;
584 break;
585 case e1000_undefined:
586 case e1000_num_macs:
587 break;
588 }
589
590 if (legacy_pba_adjust) {
591 if (hw->max_frame_size > E1000_RXBUFFER_8192)
592 pba -= 8; /* allocate more FIFO for Tx */
593
594 if (hw->mac_type == e1000_82547) {
595 adapter->tx_fifo_head = 0;
596 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
597 adapter->tx_fifo_size =
598 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
599 atomic_set(v: &adapter->tx_fifo_stall, i: 0);
600 }
601 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
602 /* adjust PBA for jumbo frames */
603 ew32(PBA, pba);
604
605 /* To maintain wire speed transmits, the Tx FIFO should be
606 * large enough to accommodate two full transmit packets,
607 * rounded up to the next 1KB and expressed in KB. Likewise,
608 * the Rx FIFO should be large enough to accommodate at least
609 * one full receive packet and is similarly rounded up and
610 * expressed in KB.
611 */
612 pba = er32(PBA);
613 /* upper 16 bits has Tx packet buffer allocation size in KB */
614 tx_space = pba >> 16;
615 /* lower 16 bits has Rx packet buffer allocation size in KB */
616 pba &= 0xffff;
617 /* the Tx fifo also stores 16 bytes of information about the Tx
618 * but don't include ethernet FCS because hardware appends it
619 */
620 min_tx_space = (hw->max_frame_size +
621 sizeof(struct e1000_tx_desc) -
622 ETH_FCS_LEN) * 2;
623 min_tx_space = ALIGN(min_tx_space, 1024);
624 min_tx_space >>= 10;
625 /* software strips receive CRC, so leave room for it */
626 min_rx_space = hw->max_frame_size;
627 min_rx_space = ALIGN(min_rx_space, 1024);
628 min_rx_space >>= 10;
629
630 /* If current Tx allocation is less than the min Tx FIFO size,
631 * and the min Tx FIFO size is less than the current Rx FIFO
632 * allocation, take space away from current Rx allocation
633 */
634 if (tx_space < min_tx_space &&
635 ((min_tx_space - tx_space) < pba)) {
636 pba = pba - (min_tx_space - tx_space);
637
638 /* PCI/PCIx hardware has PBA alignment constraints */
639 switch (hw->mac_type) {
640 case e1000_82545 ... e1000_82546_rev_3:
641 pba &= ~(E1000_PBA_8K - 1);
642 break;
643 default:
644 break;
645 }
646
647 /* if short on Rx space, Rx wins and must trump Tx
648 * adjustment or use Early Receive if available
649 */
650 if (pba < min_rx_space)
651 pba = min_rx_space;
652 }
653 }
654
655 ew32(PBA, pba);
656
657 /* flow control settings:
658 * The high water mark must be low enough to fit one full frame
659 * (or the size used for early receive) above it in the Rx FIFO.
660 * Set it to the lower of:
661 * - 90% of the Rx FIFO size, and
662 * - the full Rx FIFO size minus the early receive size (for parts
663 * with ERT support assuming ERT set to E1000_ERT_2048), or
664 * - the full Rx FIFO size minus one full frame
665 */
666 hwm = min(((pba << 10) * 9 / 10),
667 ((pba << 10) - hw->max_frame_size));
668
669 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
670 hw->fc_low_water = hw->fc_high_water - 8;
671 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
672 hw->fc_send_xon = 1;
673 hw->fc = hw->original_fc;
674
675 /* Allow time for pending master requests to run */
676 e1000_reset_hw(hw);
677 if (hw->mac_type >= e1000_82544)
678 ew32(WUC, 0);
679
680 if (e1000_init_hw(hw))
681 e_dev_err("Hardware Error\n");
682 e1000_update_mng_vlan(adapter);
683
684 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
685 if (hw->mac_type >= e1000_82544 &&
686 hw->autoneg == 1 &&
687 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
688 u32 ctrl = er32(CTRL);
689 /* clear phy power management bit if we are in gig only mode,
690 * which if enabled will attempt negotiation to 100Mb, which
691 * can cause a loss of link at power off or driver unload
692 */
693 ctrl &= ~E1000_CTRL_SWDPIN3;
694 ew32(CTRL, ctrl);
695 }
696
697 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
698 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
699
700 e1000_reset_adaptive(hw);
701 e1000_phy_get_info(hw, phy_info: &adapter->phy_info);
702
703 e1000_release_manageability(adapter);
704}
705
706/* Dump the eeprom for users having checksum issues */
707static void e1000_dump_eeprom(struct e1000_adapter *adapter)
708{
709 struct net_device *netdev = adapter->netdev;
710 struct ethtool_eeprom eeprom;
711 const struct ethtool_ops *ops = netdev->ethtool_ops;
712 u8 *data;
713 int i;
714 u16 csum_old, csum_new = 0;
715
716 eeprom.len = ops->get_eeprom_len(netdev);
717 eeprom.offset = 0;
718
719 data = kmalloc(size: eeprom.len, GFP_KERNEL);
720 if (!data)
721 return;
722
723 ops->get_eeprom(netdev, &eeprom, data);
724
725 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
726 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
727 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
728 csum_new += data[i] + (data[i + 1] << 8);
729 csum_new = EEPROM_SUM - csum_new;
730
731 pr_err("/*********************/\n");
732 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
733 pr_err("Calculated : 0x%04x\n", csum_new);
734
735 pr_err("Offset Values\n");
736 pr_err("======== ======\n");
737 print_hex_dump(KERN_ERR, prefix_str: "", prefix_type: DUMP_PREFIX_OFFSET, rowsize: 16, groupsize: 1, buf: data, len: 128, ascii: 0);
738
739 pr_err("Include this output when contacting your support provider.\n");
740 pr_err("This is not a software error! Something bad happened to\n");
741 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
742 pr_err("result in further problems, possibly loss of data,\n");
743 pr_err("corruption or system hangs!\n");
744 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
745 pr_err("which is invalid and requires you to set the proper MAC\n");
746 pr_err("address manually before continuing to enable this network\n");
747 pr_err("device. Please inspect the EEPROM dump and report the\n");
748 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
749 pr_err("/*********************/\n");
750
751 kfree(objp: data);
752}
753
754/**
755 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
756 * @pdev: PCI device information struct
757 *
758 * Return true if an adapter needs ioport resources
759 **/
760static int e1000_is_need_ioport(struct pci_dev *pdev)
761{
762 switch (pdev->device) {
763 case E1000_DEV_ID_82540EM:
764 case E1000_DEV_ID_82540EM_LOM:
765 case E1000_DEV_ID_82540EP:
766 case E1000_DEV_ID_82540EP_LOM:
767 case E1000_DEV_ID_82540EP_LP:
768 case E1000_DEV_ID_82541EI:
769 case E1000_DEV_ID_82541EI_MOBILE:
770 case E1000_DEV_ID_82541ER:
771 case E1000_DEV_ID_82541ER_LOM:
772 case E1000_DEV_ID_82541GI:
773 case E1000_DEV_ID_82541GI_LF:
774 case E1000_DEV_ID_82541GI_MOBILE:
775 case E1000_DEV_ID_82544EI_COPPER:
776 case E1000_DEV_ID_82544EI_FIBER:
777 case E1000_DEV_ID_82544GC_COPPER:
778 case E1000_DEV_ID_82544GC_LOM:
779 case E1000_DEV_ID_82545EM_COPPER:
780 case E1000_DEV_ID_82545EM_FIBER:
781 case E1000_DEV_ID_82546EB_COPPER:
782 case E1000_DEV_ID_82546EB_FIBER:
783 case E1000_DEV_ID_82546EB_QUAD_COPPER:
784 return true;
785 default:
786 return false;
787 }
788}
789
790static netdev_features_t e1000_fix_features(struct net_device *netdev,
791 netdev_features_t features)
792{
793 /* Since there is no support for separate Rx/Tx vlan accel
794 * enable/disable make sure Tx flag is always in same state as Rx.
795 */
796 if (features & NETIF_F_HW_VLAN_CTAG_RX)
797 features |= NETIF_F_HW_VLAN_CTAG_TX;
798 else
799 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
800
801 return features;
802}
803
804static int e1000_set_features(struct net_device *netdev,
805 netdev_features_t features)
806{
807 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
808 netdev_features_t changed = features ^ netdev->features;
809
810 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
811 e1000_vlan_mode(netdev, features);
812
813 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
814 return 0;
815
816 netdev->features = features;
817 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
818
819 if (netif_running(dev: netdev))
820 e1000_reinit_locked(adapter);
821 else
822 e1000_reset(adapter);
823
824 return 1;
825}
826
827static const struct net_device_ops e1000_netdev_ops = {
828 .ndo_open = e1000_open,
829 .ndo_stop = e1000_close,
830 .ndo_start_xmit = e1000_xmit_frame,
831 .ndo_set_rx_mode = e1000_set_rx_mode,
832 .ndo_set_mac_address = e1000_set_mac,
833 .ndo_tx_timeout = e1000_tx_timeout,
834 .ndo_change_mtu = e1000_change_mtu,
835 .ndo_eth_ioctl = e1000_ioctl,
836 .ndo_validate_addr = eth_validate_addr,
837 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
838 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
839#ifdef CONFIG_NET_POLL_CONTROLLER
840 .ndo_poll_controller = e1000_netpoll,
841#endif
842 .ndo_fix_features = e1000_fix_features,
843 .ndo_set_features = e1000_set_features,
844};
845
846/**
847 * e1000_init_hw_struct - initialize members of hw struct
848 * @adapter: board private struct
849 * @hw: structure used by e1000_hw.c
850 *
851 * Factors out initialization of the e1000_hw struct to its own function
852 * that can be called very early at init (just after struct allocation).
853 * Fields are initialized based on PCI device information and
854 * OS network device settings (MTU size).
855 * Returns negative error codes if MAC type setup fails.
856 */
857static int e1000_init_hw_struct(struct e1000_adapter *adapter,
858 struct e1000_hw *hw)
859{
860 struct pci_dev *pdev = adapter->pdev;
861
862 /* PCI config space info */
863 hw->vendor_id = pdev->vendor;
864 hw->device_id = pdev->device;
865 hw->subsystem_vendor_id = pdev->subsystem_vendor;
866 hw->subsystem_id = pdev->subsystem_device;
867 hw->revision_id = pdev->revision;
868
869 pci_read_config_word(dev: pdev, PCI_COMMAND, val: &hw->pci_cmd_word);
870
871 hw->max_frame_size = adapter->netdev->mtu +
872 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
873 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
874
875 /* identify the MAC */
876 if (e1000_set_mac_type(hw)) {
877 e_err(probe, "Unknown MAC Type\n");
878 return -EIO;
879 }
880
881 switch (hw->mac_type) {
882 default:
883 break;
884 case e1000_82541:
885 case e1000_82547:
886 case e1000_82541_rev_2:
887 case e1000_82547_rev_2:
888 hw->phy_init_script = 1;
889 break;
890 }
891
892 e1000_set_media_type(hw);
893 e1000_get_bus_info(hw);
894
895 hw->wait_autoneg_complete = false;
896 hw->tbi_compatibility_en = true;
897 hw->adaptive_ifs = true;
898
899 /* Copper options */
900
901 if (hw->media_type == e1000_media_type_copper) {
902 hw->mdix = AUTO_ALL_MODES;
903 hw->disable_polarity_correction = false;
904 hw->master_slave = E1000_MASTER_SLAVE;
905 }
906
907 return 0;
908}
909
910/**
911 * e1000_probe - Device Initialization Routine
912 * @pdev: PCI device information struct
913 * @ent: entry in e1000_pci_tbl
914 *
915 * Returns 0 on success, negative on failure
916 *
917 * e1000_probe initializes an adapter identified by a pci_dev structure.
918 * The OS initialization, configuring of the adapter private structure,
919 * and a hardware reset occur.
920 **/
921static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
922{
923 struct net_device *netdev;
924 struct e1000_adapter *adapter = NULL;
925 struct e1000_hw *hw;
926
927 static int cards_found;
928 static int global_quad_port_a; /* global ksp3 port a indication */
929 int i, err, pci_using_dac;
930 u16 eeprom_data = 0;
931 u16 tmp = 0;
932 u16 eeprom_apme_mask = E1000_EEPROM_APME;
933 int bars, need_ioport;
934 bool disable_dev = false;
935
936 /* do not allocate ioport bars when not needed */
937 need_ioport = e1000_is_need_ioport(pdev);
938 if (need_ioport) {
939 bars = pci_select_bars(dev: pdev, IORESOURCE_MEM | IORESOURCE_IO);
940 err = pci_enable_device(dev: pdev);
941 } else {
942 bars = pci_select_bars(dev: pdev, IORESOURCE_MEM);
943 err = pci_enable_device_mem(dev: pdev);
944 }
945 if (err)
946 return err;
947
948 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
949 if (err)
950 goto err_pci_reg;
951
952 pci_set_master(dev: pdev);
953 err = pci_save_state(dev: pdev);
954 if (err)
955 goto err_alloc_etherdev;
956
957 err = -ENOMEM;
958 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
959 if (!netdev)
960 goto err_alloc_etherdev;
961
962 SET_NETDEV_DEV(netdev, &pdev->dev);
963
964 pci_set_drvdata(pdev, data: netdev);
965 adapter = netdev_priv(dev: netdev);
966 adapter->netdev = netdev;
967 adapter->pdev = pdev;
968 adapter->msg_enable = netif_msg_init(debug_value: debug, DEFAULT_MSG_ENABLE);
969 adapter->bars = bars;
970 adapter->need_ioport = need_ioport;
971
972 hw = &adapter->hw;
973 hw->back = adapter;
974
975 err = -EIO;
976 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
977 if (!hw->hw_addr)
978 goto err_ioremap;
979
980 if (adapter->need_ioport) {
981 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
982 if (pci_resource_len(pdev, i) == 0)
983 continue;
984 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
985 hw->io_base = pci_resource_start(pdev, i);
986 break;
987 }
988 }
989 }
990
991 /* make ready for any if (hw->...) below */
992 err = e1000_init_hw_struct(adapter, hw);
993 if (err)
994 goto err_sw_init;
995
996 /* there is a workaround being applied below that limits
997 * 64-bit DMA addresses to 64-bit hardware. There are some
998 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
999 */
1000 pci_using_dac = 0;
1001 if ((hw->bus_type == e1000_bus_type_pcix) &&
1002 !dma_set_mask_and_coherent(dev: &pdev->dev, DMA_BIT_MASK(64))) {
1003 pci_using_dac = 1;
1004 } else {
1005 err = dma_set_mask_and_coherent(dev: &pdev->dev, DMA_BIT_MASK(32));
1006 if (err) {
1007 pr_err("No usable DMA config, aborting\n");
1008 goto err_dma;
1009 }
1010 }
1011
1012 netdev->netdev_ops = &e1000_netdev_ops;
1013 e1000_set_ethtool_ops(netdev);
1014 netdev->watchdog_timeo = 5 * HZ;
1015 netif_napi_add(dev: netdev, napi: &adapter->napi, poll: e1000_clean);
1016
1017 strscpy(p: netdev->name, q: pci_name(pdev), size: sizeof(netdev->name));
1018
1019 adapter->bd_number = cards_found;
1020
1021 /* setup the private structure */
1022
1023 err = e1000_sw_init(adapter);
1024 if (err)
1025 goto err_sw_init;
1026
1027 err = -EIO;
1028 if (hw->mac_type == e1000_ce4100) {
1029 hw->ce4100_gbe_mdio_base_virt =
1030 ioremap(pci_resource_start(pdev, BAR_1),
1031 pci_resource_len(pdev, BAR_1));
1032
1033 if (!hw->ce4100_gbe_mdio_base_virt)
1034 goto err_mdio_ioremap;
1035 }
1036
1037 if (hw->mac_type >= e1000_82543) {
1038 netdev->hw_features = NETIF_F_SG |
1039 NETIF_F_HW_CSUM |
1040 NETIF_F_HW_VLAN_CTAG_RX;
1041 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1042 NETIF_F_HW_VLAN_CTAG_FILTER;
1043 }
1044
1045 if ((hw->mac_type >= e1000_82544) &&
1046 (hw->mac_type != e1000_82547))
1047 netdev->hw_features |= NETIF_F_TSO;
1048
1049 netdev->priv_flags |= IFF_SUPP_NOFCS;
1050
1051 netdev->features |= netdev->hw_features;
1052 netdev->hw_features |= (NETIF_F_RXCSUM |
1053 NETIF_F_RXALL |
1054 NETIF_F_RXFCS);
1055
1056 if (pci_using_dac) {
1057 netdev->features |= NETIF_F_HIGHDMA;
1058 netdev->vlan_features |= NETIF_F_HIGHDMA;
1059 }
1060
1061 netdev->vlan_features |= (NETIF_F_TSO |
1062 NETIF_F_HW_CSUM |
1063 NETIF_F_SG);
1064
1065 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1066 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1067 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1068 netdev->priv_flags |= IFF_UNICAST_FLT;
1069
1070 /* MTU range: 46 - 16110 */
1071 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1072 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1073
1074 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1075
1076 /* initialize eeprom parameters */
1077 if (e1000_init_eeprom_params(hw)) {
1078 e_err(probe, "EEPROM initialization failed\n");
1079 goto err_eeprom;
1080 }
1081
1082 /* before reading the EEPROM, reset the controller to
1083 * put the device in a known good starting state
1084 */
1085
1086 e1000_reset_hw(hw);
1087
1088 /* make sure the EEPROM is good */
1089 if (e1000_validate_eeprom_checksum(hw) < 0) {
1090 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1091 e1000_dump_eeprom(adapter);
1092 /* set MAC address to all zeroes to invalidate and temporary
1093 * disable this device for the user. This blocks regular
1094 * traffic while still permitting ethtool ioctls from reaching
1095 * the hardware as well as allowing the user to run the
1096 * interface after manually setting a hw addr using
1097 * `ip set address`
1098 */
1099 memset(hw->mac_addr, 0, netdev->addr_len);
1100 } else {
1101 /* copy the MAC address out of the EEPROM */
1102 if (e1000_read_mac_addr(hw))
1103 e_err(probe, "EEPROM Read Error\n");
1104 }
1105 /* don't block initialization here due to bad MAC address */
1106 eth_hw_addr_set(dev: netdev, addr: hw->mac_addr);
1107
1108 if (!is_valid_ether_addr(addr: netdev->dev_addr))
1109 e_err(probe, "Invalid MAC Address\n");
1110
1111
1112 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1113 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1114 e1000_82547_tx_fifo_stall_task);
1115 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1116 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1117
1118 e1000_check_options(adapter);
1119
1120 /* Initial Wake on LAN setting
1121 * If APM wake is enabled in the EEPROM,
1122 * enable the ACPI Magic Packet filter
1123 */
1124
1125 switch (hw->mac_type) {
1126 case e1000_82542_rev2_0:
1127 case e1000_82542_rev2_1:
1128 case e1000_82543:
1129 break;
1130 case e1000_82544:
1131 e1000_read_eeprom(hw,
1132 EEPROM_INIT_CONTROL2_REG, words: 1, data: &eeprom_data);
1133 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1134 break;
1135 case e1000_82546:
1136 case e1000_82546_rev_3:
1137 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1138 e1000_read_eeprom(hw,
1139 EEPROM_INIT_CONTROL3_PORT_B, words: 1, data: &eeprom_data);
1140 break;
1141 }
1142 fallthrough;
1143 default:
1144 e1000_read_eeprom(hw,
1145 EEPROM_INIT_CONTROL3_PORT_A, words: 1, data: &eeprom_data);
1146 break;
1147 }
1148 if (eeprom_data & eeprom_apme_mask)
1149 adapter->eeprom_wol |= E1000_WUFC_MAG;
1150
1151 /* now that we have the eeprom settings, apply the special cases
1152 * where the eeprom may be wrong or the board simply won't support
1153 * wake on lan on a particular port
1154 */
1155 switch (pdev->device) {
1156 case E1000_DEV_ID_82546GB_PCIE:
1157 adapter->eeprom_wol = 0;
1158 break;
1159 case E1000_DEV_ID_82546EB_FIBER:
1160 case E1000_DEV_ID_82546GB_FIBER:
1161 /* Wake events only supported on port A for dual fiber
1162 * regardless of eeprom setting
1163 */
1164 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1165 adapter->eeprom_wol = 0;
1166 break;
1167 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1168 /* if quad port adapter, disable WoL on all but port A */
1169 if (global_quad_port_a != 0)
1170 adapter->eeprom_wol = 0;
1171 else
1172 adapter->quad_port_a = true;
1173 /* Reset for multiple quad port adapters */
1174 if (++global_quad_port_a == 4)
1175 global_quad_port_a = 0;
1176 break;
1177 }
1178
1179 /* initialize the wol settings based on the eeprom settings */
1180 adapter->wol = adapter->eeprom_wol;
1181 device_set_wakeup_enable(dev: &adapter->pdev->dev, enable: adapter->wol);
1182
1183 /* Auto detect PHY address */
1184 if (hw->mac_type == e1000_ce4100) {
1185 for (i = 0; i < 32; i++) {
1186 hw->phy_addr = i;
1187 e1000_read_phy_reg(hw, PHY_ID2, phy_data: &tmp);
1188
1189 if (tmp != 0 && tmp != 0xFF)
1190 break;
1191 }
1192
1193 if (i >= 32)
1194 goto err_eeprom;
1195 }
1196
1197 /* reset the hardware with the new settings */
1198 e1000_reset(adapter);
1199
1200 strcpy(p: netdev->name, q: "eth%d");
1201 err = register_netdev(dev: netdev);
1202 if (err)
1203 goto err_register;
1204
1205 e1000_vlan_filter_on_off(adapter, filter_on: false);
1206
1207 /* print bus type/speed/width info */
1208 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1209 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1210 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1211 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1212 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1213 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1214 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1215 netdev->dev_addr);
1216
1217 /* carrier off reporting is important to ethtool even BEFORE open */
1218 netif_carrier_off(dev: netdev);
1219
1220 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1221
1222 cards_found++;
1223 return 0;
1224
1225err_register:
1226err_eeprom:
1227 e1000_phy_hw_reset(hw);
1228
1229 if (hw->flash_address)
1230 iounmap(addr: hw->flash_address);
1231 kfree(objp: adapter->tx_ring);
1232 kfree(objp: adapter->rx_ring);
1233err_dma:
1234err_sw_init:
1235err_mdio_ioremap:
1236 iounmap(addr: hw->ce4100_gbe_mdio_base_virt);
1237 iounmap(addr: hw->hw_addr);
1238err_ioremap:
1239 disable_dev = !test_and_set_bit(nr: __E1000_DISABLED, addr: &adapter->flags);
1240 free_netdev(dev: netdev);
1241err_alloc_etherdev:
1242 pci_release_selected_regions(pdev, bars);
1243err_pci_reg:
1244 if (!adapter || disable_dev)
1245 pci_disable_device(dev: pdev);
1246 return err;
1247}
1248
1249/**
1250 * e1000_remove - Device Removal Routine
1251 * @pdev: PCI device information struct
1252 *
1253 * e1000_remove is called by the PCI subsystem to alert the driver
1254 * that it should release a PCI device. That could be caused by a
1255 * Hot-Plug event, or because the driver is going to be removed from
1256 * memory.
1257 **/
1258static void e1000_remove(struct pci_dev *pdev)
1259{
1260 struct net_device *netdev = pci_get_drvdata(pdev);
1261 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
1262 struct e1000_hw *hw = &adapter->hw;
1263 bool disable_dev;
1264
1265 e1000_down_and_stop(adapter);
1266 e1000_release_manageability(adapter);
1267
1268 unregister_netdev(dev: netdev);
1269
1270 e1000_phy_hw_reset(hw);
1271
1272 kfree(objp: adapter->tx_ring);
1273 kfree(objp: adapter->rx_ring);
1274
1275 if (hw->mac_type == e1000_ce4100)
1276 iounmap(addr: hw->ce4100_gbe_mdio_base_virt);
1277 iounmap(addr: hw->hw_addr);
1278 if (hw->flash_address)
1279 iounmap(addr: hw->flash_address);
1280 pci_release_selected_regions(pdev, adapter->bars);
1281
1282 disable_dev = !test_and_set_bit(nr: __E1000_DISABLED, addr: &adapter->flags);
1283 free_netdev(dev: netdev);
1284
1285 if (disable_dev)
1286 pci_disable_device(dev: pdev);
1287}
1288
1289/**
1290 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1291 * @adapter: board private structure to initialize
1292 *
1293 * e1000_sw_init initializes the Adapter private data structure.
1294 * e1000_init_hw_struct MUST be called before this function
1295 **/
1296static int e1000_sw_init(struct e1000_adapter *adapter)
1297{
1298 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1299
1300 adapter->num_tx_queues = 1;
1301 adapter->num_rx_queues = 1;
1302
1303 if (e1000_alloc_queues(adapter)) {
1304 e_err(probe, "Unable to allocate memory for queues\n");
1305 return -ENOMEM;
1306 }
1307
1308 /* Explicitly disable IRQ since the NIC can be in any state. */
1309 e1000_irq_disable(adapter);
1310
1311 spin_lock_init(&adapter->stats_lock);
1312
1313 set_bit(nr: __E1000_DOWN, addr: &adapter->flags);
1314
1315 return 0;
1316}
1317
1318/**
1319 * e1000_alloc_queues - Allocate memory for all rings
1320 * @adapter: board private structure to initialize
1321 *
1322 * We allocate one ring per queue at run-time since we don't know the
1323 * number of queues at compile-time.
1324 **/
1325static int e1000_alloc_queues(struct e1000_adapter *adapter)
1326{
1327 adapter->tx_ring = kcalloc(n: adapter->num_tx_queues,
1328 size: sizeof(struct e1000_tx_ring), GFP_KERNEL);
1329 if (!adapter->tx_ring)
1330 return -ENOMEM;
1331
1332 adapter->rx_ring = kcalloc(n: adapter->num_rx_queues,
1333 size: sizeof(struct e1000_rx_ring), GFP_KERNEL);
1334 if (!adapter->rx_ring) {
1335 kfree(objp: adapter->tx_ring);
1336 return -ENOMEM;
1337 }
1338
1339 return E1000_SUCCESS;
1340}
1341
1342/**
1343 * e1000_open - Called when a network interface is made active
1344 * @netdev: network interface device structure
1345 *
1346 * Returns 0 on success, negative value on failure
1347 *
1348 * The open entry point is called when a network interface is made
1349 * active by the system (IFF_UP). At this point all resources needed
1350 * for transmit and receive operations are allocated, the interrupt
1351 * handler is registered with the OS, the watchdog task is started,
1352 * and the stack is notified that the interface is ready.
1353 **/
1354int e1000_open(struct net_device *netdev)
1355{
1356 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
1357 struct e1000_hw *hw = &adapter->hw;
1358 int err;
1359
1360 /* disallow open during test */
1361 if (test_bit(__E1000_TESTING, &adapter->flags))
1362 return -EBUSY;
1363
1364 netif_carrier_off(dev: netdev);
1365
1366 /* allocate transmit descriptors */
1367 err = e1000_setup_all_tx_resources(adapter);
1368 if (err)
1369 goto err_setup_tx;
1370
1371 /* allocate receive descriptors */
1372 err = e1000_setup_all_rx_resources(adapter);
1373 if (err)
1374 goto err_setup_rx;
1375
1376 e1000_power_up_phy(adapter);
1377
1378 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1379 if ((hw->mng_cookie.status &
1380 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1381 e1000_update_mng_vlan(adapter);
1382 }
1383
1384 /* before we allocate an interrupt, we must be ready to handle it.
1385 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1386 * as soon as we call pci_request_irq, so we have to setup our
1387 * clean_rx handler before we do so.
1388 */
1389 e1000_configure(adapter);
1390
1391 err = e1000_request_irq(adapter);
1392 if (err)
1393 goto err_req_irq;
1394
1395 /* From here on the code is the same as e1000_up() */
1396 clear_bit(nr: __E1000_DOWN, addr: &adapter->flags);
1397
1398 napi_enable(n: &adapter->napi);
1399
1400 e1000_irq_enable(adapter);
1401
1402 netif_start_queue(dev: netdev);
1403
1404 /* fire a link status change interrupt to start the watchdog */
1405 ew32(ICS, E1000_ICS_LSC);
1406
1407 return E1000_SUCCESS;
1408
1409err_req_irq:
1410 e1000_power_down_phy(adapter);
1411 e1000_free_all_rx_resources(adapter);
1412err_setup_rx:
1413 e1000_free_all_tx_resources(adapter);
1414err_setup_tx:
1415 e1000_reset(adapter);
1416
1417 return err;
1418}
1419
1420/**
1421 * e1000_close - Disables a network interface
1422 * @netdev: network interface device structure
1423 *
1424 * Returns 0, this is not allowed to fail
1425 *
1426 * The close entry point is called when an interface is de-activated
1427 * by the OS. The hardware is still under the drivers control, but
1428 * needs to be disabled. A global MAC reset is issued to stop the
1429 * hardware, and all transmit and receive resources are freed.
1430 **/
1431int e1000_close(struct net_device *netdev)
1432{
1433 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
1434 struct e1000_hw *hw = &adapter->hw;
1435 int count = E1000_CHECK_RESET_COUNT;
1436
1437 while (test_and_set_bit(nr: __E1000_RESETTING, addr: &adapter->flags) && count--)
1438 usleep_range(min: 10000, max: 20000);
1439
1440 WARN_ON(count < 0);
1441
1442 /* signal that we're down so that the reset task will no longer run */
1443 set_bit(nr: __E1000_DOWN, addr: &adapter->flags);
1444 clear_bit(nr: __E1000_RESETTING, addr: &adapter->flags);
1445
1446 e1000_down(adapter);
1447 e1000_power_down_phy(adapter);
1448 e1000_free_irq(adapter);
1449
1450 e1000_free_all_tx_resources(adapter);
1451 e1000_free_all_rx_resources(adapter);
1452
1453 /* kill manageability vlan ID if supported, but not if a vlan with
1454 * the same ID is registered on the host OS (let 8021q kill it)
1455 */
1456 if ((hw->mng_cookie.status &
1457 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1458 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1459 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1460 vid: adapter->mng_vlan_id);
1461 }
1462
1463 return 0;
1464}
1465
1466/**
1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468 * @adapter: address of board private structure
1469 * @start: address of beginning of memory
1470 * @len: length of memory
1471 **/
1472static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473 unsigned long len)
1474{
1475 struct e1000_hw *hw = &adapter->hw;
1476 unsigned long begin = (unsigned long)start;
1477 unsigned long end = begin + len;
1478
1479 /* First rev 82545 and 82546 need to not allow any memory
1480 * write location to cross 64k boundary due to errata 23
1481 */
1482 if (hw->mac_type == e1000_82545 ||
1483 hw->mac_type == e1000_ce4100 ||
1484 hw->mac_type == e1000_82546) {
1485 return ((begin ^ (end - 1)) >> 16) == 0;
1486 }
1487
1488 return true;
1489}
1490
1491/**
1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1493 * @adapter: board private structure
1494 * @txdr: tx descriptor ring (for a specific queue) to setup
1495 *
1496 * Return 0 on success, negative on failure
1497 **/
1498static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499 struct e1000_tx_ring *txdr)
1500{
1501 struct pci_dev *pdev = adapter->pdev;
1502 int size;
1503
1504 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1505 txdr->buffer_info = vzalloc(size);
1506 if (!txdr->buffer_info)
1507 return -ENOMEM;
1508
1509 /* round up to nearest 4K */
1510
1511 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1512 txdr->size = ALIGN(txdr->size, 4096);
1513
1514 txdr->desc = dma_alloc_coherent(dev: &pdev->dev, size: txdr->size, dma_handle: &txdr->dma,
1515 GFP_KERNEL);
1516 if (!txdr->desc) {
1517setup_tx_desc_die:
1518 vfree(addr: txdr->buffer_info);
1519 return -ENOMEM;
1520 }
1521
1522 /* Fix for errata 23, can't cross 64kB boundary */
1523 if (!e1000_check_64k_bound(adapter, start: txdr->desc, len: txdr->size)) {
1524 void *olddesc = txdr->desc;
1525 dma_addr_t olddma = txdr->dma;
1526 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1527 txdr->size, txdr->desc);
1528 /* Try again, without freeing the previous */
1529 txdr->desc = dma_alloc_coherent(dev: &pdev->dev, size: txdr->size,
1530 dma_handle: &txdr->dma, GFP_KERNEL);
1531 /* Failed allocation, critical failure */
1532 if (!txdr->desc) {
1533 dma_free_coherent(dev: &pdev->dev, size: txdr->size, cpu_addr: olddesc,
1534 dma_handle: olddma);
1535 goto setup_tx_desc_die;
1536 }
1537
1538 if (!e1000_check_64k_bound(adapter, start: txdr->desc, len: txdr->size)) {
1539 /* give up */
1540 dma_free_coherent(dev: &pdev->dev, size: txdr->size, cpu_addr: txdr->desc,
1541 dma_handle: txdr->dma);
1542 dma_free_coherent(dev: &pdev->dev, size: txdr->size, cpu_addr: olddesc,
1543 dma_handle: olddma);
1544 e_err(probe, "Unable to allocate aligned memory "
1545 "for the transmit descriptor ring\n");
1546 vfree(addr: txdr->buffer_info);
1547 return -ENOMEM;
1548 } else {
1549 /* Free old allocation, new allocation was successful */
1550 dma_free_coherent(dev: &pdev->dev, size: txdr->size, cpu_addr: olddesc,
1551 dma_handle: olddma);
1552 }
1553 }
1554 memset(txdr->desc, 0, txdr->size);
1555
1556 txdr->next_to_use = 0;
1557 txdr->next_to_clean = 0;
1558
1559 return 0;
1560}
1561
1562/**
1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1564 * (Descriptors) for all queues
1565 * @adapter: board private structure
1566 *
1567 * Return 0 on success, negative on failure
1568 **/
1569int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1570{
1571 int i, err = 0;
1572
1573 for (i = 0; i < adapter->num_tx_queues; i++) {
1574 err = e1000_setup_tx_resources(adapter, txdr: &adapter->tx_ring[i]);
1575 if (err) {
1576 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1577 for (i-- ; i >= 0; i--)
1578 e1000_free_tx_resources(adapter,
1579 tx_ring: &adapter->tx_ring[i]);
1580 break;
1581 }
1582 }
1583
1584 return err;
1585}
1586
1587/**
1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1589 * @adapter: board private structure
1590 *
1591 * Configure the Tx unit of the MAC after a reset.
1592 **/
1593static void e1000_configure_tx(struct e1000_adapter *adapter)
1594{
1595 u64 tdba;
1596 struct e1000_hw *hw = &adapter->hw;
1597 u32 tdlen, tctl, tipg;
1598 u32 ipgr1, ipgr2;
1599
1600 /* Setup the HW Tx Head and Tail descriptor pointers */
1601
1602 switch (adapter->num_tx_queues) {
1603 case 1:
1604 default:
1605 tdba = adapter->tx_ring[0].dma;
1606 tdlen = adapter->tx_ring[0].count *
1607 sizeof(struct e1000_tx_desc);
1608 ew32(TDLEN, tdlen);
1609 ew32(TDBAH, (tdba >> 32));
1610 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1611 ew32(TDT, 0);
1612 ew32(TDH, 0);
1613 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1614 E1000_TDH : E1000_82542_TDH);
1615 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1616 E1000_TDT : E1000_82542_TDT);
1617 break;
1618 }
1619
1620 /* Set the default values for the Tx Inter Packet Gap timer */
1621 if ((hw->media_type == e1000_media_type_fiber ||
1622 hw->media_type == e1000_media_type_internal_serdes))
1623 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1624 else
1625 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1626
1627 switch (hw->mac_type) {
1628 case e1000_82542_rev2_0:
1629 case e1000_82542_rev2_1:
1630 tipg = DEFAULT_82542_TIPG_IPGT;
1631 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1632 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1633 break;
1634 default:
1635 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1637 break;
1638 }
1639 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1640 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1641 ew32(TIPG, tipg);
1642
1643 /* Set the Tx Interrupt Delay register */
1644
1645 ew32(TIDV, adapter->tx_int_delay);
1646 if (hw->mac_type >= e1000_82540)
1647 ew32(TADV, adapter->tx_abs_int_delay);
1648
1649 /* Program the Transmit Control Register */
1650
1651 tctl = er32(TCTL);
1652 tctl &= ~E1000_TCTL_CT;
1653 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1654 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1655
1656 e1000_config_collision_dist(hw);
1657
1658 /* Setup Transmit Descriptor Settings for eop descriptor */
1659 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1660
1661 /* only set IDE if we are delaying interrupts using the timers */
1662 if (adapter->tx_int_delay)
1663 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1664
1665 if (hw->mac_type < e1000_82543)
1666 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1667 else
1668 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1669
1670 /* Cache if we're 82544 running in PCI-X because we'll
1671 * need this to apply a workaround later in the send path.
1672 */
1673 if (hw->mac_type == e1000_82544 &&
1674 hw->bus_type == e1000_bus_type_pcix)
1675 adapter->pcix_82544 = true;
1676
1677 ew32(TCTL, tctl);
1678
1679}
1680
1681/**
1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1683 * @adapter: board private structure
1684 * @rxdr: rx descriptor ring (for a specific queue) to setup
1685 *
1686 * Returns 0 on success, negative on failure
1687 **/
1688static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1689 struct e1000_rx_ring *rxdr)
1690{
1691 struct pci_dev *pdev = adapter->pdev;
1692 int size, desc_len;
1693
1694 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1695 rxdr->buffer_info = vzalloc(size);
1696 if (!rxdr->buffer_info)
1697 return -ENOMEM;
1698
1699 desc_len = sizeof(struct e1000_rx_desc);
1700
1701 /* Round up to nearest 4K */
1702
1703 rxdr->size = rxdr->count * desc_len;
1704 rxdr->size = ALIGN(rxdr->size, 4096);
1705
1706 rxdr->desc = dma_alloc_coherent(dev: &pdev->dev, size: rxdr->size, dma_handle: &rxdr->dma,
1707 GFP_KERNEL);
1708 if (!rxdr->desc) {
1709setup_rx_desc_die:
1710 vfree(addr: rxdr->buffer_info);
1711 return -ENOMEM;
1712 }
1713
1714 /* Fix for errata 23, can't cross 64kB boundary */
1715 if (!e1000_check_64k_bound(adapter, start: rxdr->desc, len: rxdr->size)) {
1716 void *olddesc = rxdr->desc;
1717 dma_addr_t olddma = rxdr->dma;
1718 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1719 rxdr->size, rxdr->desc);
1720 /* Try again, without freeing the previous */
1721 rxdr->desc = dma_alloc_coherent(dev: &pdev->dev, size: rxdr->size,
1722 dma_handle: &rxdr->dma, GFP_KERNEL);
1723 /* Failed allocation, critical failure */
1724 if (!rxdr->desc) {
1725 dma_free_coherent(dev: &pdev->dev, size: rxdr->size, cpu_addr: olddesc,
1726 dma_handle: olddma);
1727 goto setup_rx_desc_die;
1728 }
1729
1730 if (!e1000_check_64k_bound(adapter, start: rxdr->desc, len: rxdr->size)) {
1731 /* give up */
1732 dma_free_coherent(dev: &pdev->dev, size: rxdr->size, cpu_addr: rxdr->desc,
1733 dma_handle: rxdr->dma);
1734 dma_free_coherent(dev: &pdev->dev, size: rxdr->size, cpu_addr: olddesc,
1735 dma_handle: olddma);
1736 e_err(probe, "Unable to allocate aligned memory for "
1737 "the Rx descriptor ring\n");
1738 goto setup_rx_desc_die;
1739 } else {
1740 /* Free old allocation, new allocation was successful */
1741 dma_free_coherent(dev: &pdev->dev, size: rxdr->size, cpu_addr: olddesc,
1742 dma_handle: olddma);
1743 }
1744 }
1745 memset(rxdr->desc, 0, rxdr->size);
1746
1747 rxdr->next_to_clean = 0;
1748 rxdr->next_to_use = 0;
1749 rxdr->rx_skb_top = NULL;
1750
1751 return 0;
1752}
1753
1754/**
1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1756 * (Descriptors) for all queues
1757 * @adapter: board private structure
1758 *
1759 * Return 0 on success, negative on failure
1760 **/
1761int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1762{
1763 int i, err = 0;
1764
1765 for (i = 0; i < adapter->num_rx_queues; i++) {
1766 err = e1000_setup_rx_resources(adapter, rxdr: &adapter->rx_ring[i]);
1767 if (err) {
1768 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1769 for (i-- ; i >= 0; i--)
1770 e1000_free_rx_resources(adapter,
1771 rx_ring: &adapter->rx_ring[i]);
1772 break;
1773 }
1774 }
1775
1776 return err;
1777}
1778
1779/**
1780 * e1000_setup_rctl - configure the receive control registers
1781 * @adapter: Board private structure
1782 **/
1783static void e1000_setup_rctl(struct e1000_adapter *adapter)
1784{
1785 struct e1000_hw *hw = &adapter->hw;
1786 u32 rctl;
1787
1788 rctl = er32(RCTL);
1789
1790 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1791
1792 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1793 E1000_RCTL_RDMTS_HALF |
1794 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1795
1796 if (hw->tbi_compatibility_on == 1)
1797 rctl |= E1000_RCTL_SBP;
1798 else
1799 rctl &= ~E1000_RCTL_SBP;
1800
1801 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1802 rctl &= ~E1000_RCTL_LPE;
1803 else
1804 rctl |= E1000_RCTL_LPE;
1805
1806 /* Setup buffer sizes */
1807 rctl &= ~E1000_RCTL_SZ_4096;
1808 rctl |= E1000_RCTL_BSEX;
1809 switch (adapter->rx_buffer_len) {
1810 case E1000_RXBUFFER_2048:
1811 default:
1812 rctl |= E1000_RCTL_SZ_2048;
1813 rctl &= ~E1000_RCTL_BSEX;
1814 break;
1815 case E1000_RXBUFFER_4096:
1816 rctl |= E1000_RCTL_SZ_4096;
1817 break;
1818 case E1000_RXBUFFER_8192:
1819 rctl |= E1000_RCTL_SZ_8192;
1820 break;
1821 case E1000_RXBUFFER_16384:
1822 rctl |= E1000_RCTL_SZ_16384;
1823 break;
1824 }
1825
1826 /* This is useful for sniffing bad packets. */
1827 if (adapter->netdev->features & NETIF_F_RXALL) {
1828 /* UPE and MPE will be handled by normal PROMISC logic
1829 * in e1000e_set_rx_mode
1830 */
1831 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1832 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1833 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1834
1835 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1836 E1000_RCTL_DPF | /* Allow filtered pause */
1837 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1838 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1839 * and that breaks VLANs.
1840 */
1841 }
1842
1843 ew32(RCTL, rctl);
1844}
1845
1846/**
1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848 * @adapter: board private structure
1849 *
1850 * Configure the Rx unit of the MAC after a reset.
1851 **/
1852static void e1000_configure_rx(struct e1000_adapter *adapter)
1853{
1854 u64 rdba;
1855 struct e1000_hw *hw = &adapter->hw;
1856 u32 rdlen, rctl, rxcsum;
1857
1858 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1859 rdlen = adapter->rx_ring[0].count *
1860 sizeof(struct e1000_rx_desc);
1861 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1862 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1863 } else {
1864 rdlen = adapter->rx_ring[0].count *
1865 sizeof(struct e1000_rx_desc);
1866 adapter->clean_rx = e1000_clean_rx_irq;
1867 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1868 }
1869
1870 /* disable receives while setting up the descriptors */
1871 rctl = er32(RCTL);
1872 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873
1874 /* set the Receive Delay Timer Register */
1875 ew32(RDTR, adapter->rx_int_delay);
1876
1877 if (hw->mac_type >= e1000_82540) {
1878 ew32(RADV, adapter->rx_abs_int_delay);
1879 if (adapter->itr_setting != 0)
1880 ew32(ITR, 1000000000 / (adapter->itr * 256));
1881 }
1882
1883 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1884 * the Base and Length of the Rx Descriptor Ring
1885 */
1886 switch (adapter->num_rx_queues) {
1887 case 1:
1888 default:
1889 rdba = adapter->rx_ring[0].dma;
1890 ew32(RDLEN, rdlen);
1891 ew32(RDBAH, (rdba >> 32));
1892 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1893 ew32(RDT, 0);
1894 ew32(RDH, 0);
1895 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1896 E1000_RDH : E1000_82542_RDH);
1897 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1898 E1000_RDT : E1000_82542_RDT);
1899 break;
1900 }
1901
1902 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903 if (hw->mac_type >= e1000_82543) {
1904 rxcsum = er32(RXCSUM);
1905 if (adapter->rx_csum)
1906 rxcsum |= E1000_RXCSUM_TUOFL;
1907 else
1908 /* don't need to clear IPPCSE as it defaults to 0 */
1909 rxcsum &= ~E1000_RXCSUM_TUOFL;
1910 ew32(RXCSUM, rxcsum);
1911 }
1912
1913 /* Enable Receives */
1914 ew32(RCTL, rctl | E1000_RCTL_EN);
1915}
1916
1917/**
1918 * e1000_free_tx_resources - Free Tx Resources per Queue
1919 * @adapter: board private structure
1920 * @tx_ring: Tx descriptor ring for a specific queue
1921 *
1922 * Free all transmit software resources
1923 **/
1924static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1925 struct e1000_tx_ring *tx_ring)
1926{
1927 struct pci_dev *pdev = adapter->pdev;
1928
1929 e1000_clean_tx_ring(adapter, tx_ring);
1930
1931 vfree(addr: tx_ring->buffer_info);
1932 tx_ring->buffer_info = NULL;
1933
1934 dma_free_coherent(dev: &pdev->dev, size: tx_ring->size, cpu_addr: tx_ring->desc,
1935 dma_handle: tx_ring->dma);
1936
1937 tx_ring->desc = NULL;
1938}
1939
1940/**
1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1942 * @adapter: board private structure
1943 *
1944 * Free all transmit software resources
1945 **/
1946void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1947{
1948 int i;
1949
1950 for (i = 0; i < adapter->num_tx_queues; i++)
1951 e1000_free_tx_resources(adapter, tx_ring: &adapter->tx_ring[i]);
1952}
1953
1954static void
1955e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1956 struct e1000_tx_buffer *buffer_info,
1957 int budget)
1958{
1959 if (buffer_info->dma) {
1960 if (buffer_info->mapped_as_page)
1961 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1962 buffer_info->length, DMA_TO_DEVICE);
1963 else
1964 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1965 buffer_info->length,
1966 DMA_TO_DEVICE);
1967 buffer_info->dma = 0;
1968 }
1969 if (buffer_info->skb) {
1970 napi_consume_skb(skb: buffer_info->skb, budget);
1971 buffer_info->skb = NULL;
1972 }
1973 buffer_info->time_stamp = 0;
1974 /* buffer_info must be completely set up in the transmit path */
1975}
1976
1977/**
1978 * e1000_clean_tx_ring - Free Tx Buffers
1979 * @adapter: board private structure
1980 * @tx_ring: ring to be cleaned
1981 **/
1982static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1983 struct e1000_tx_ring *tx_ring)
1984{
1985 struct e1000_hw *hw = &adapter->hw;
1986 struct e1000_tx_buffer *buffer_info;
1987 unsigned long size;
1988 unsigned int i;
1989
1990 /* Free all the Tx ring sk_buffs */
1991
1992 for (i = 0; i < tx_ring->count; i++) {
1993 buffer_info = &tx_ring->buffer_info[i];
1994 e1000_unmap_and_free_tx_resource(adapter, buffer_info, budget: 0);
1995 }
1996
1997 netdev_reset_queue(dev_queue: adapter->netdev);
1998 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1999 memset(tx_ring->buffer_info, 0, size);
2000
2001 /* Zero out the descriptor ring */
2002
2003 memset(tx_ring->desc, 0, tx_ring->size);
2004
2005 tx_ring->next_to_use = 0;
2006 tx_ring->next_to_clean = 0;
2007 tx_ring->last_tx_tso = false;
2008
2009 writel(val: 0, addr: hw->hw_addr + tx_ring->tdh);
2010 writel(val: 0, addr: hw->hw_addr + tx_ring->tdt);
2011}
2012
2013/**
2014 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2015 * @adapter: board private structure
2016 **/
2017static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2018{
2019 int i;
2020
2021 for (i = 0; i < adapter->num_tx_queues; i++)
2022 e1000_clean_tx_ring(adapter, tx_ring: &adapter->tx_ring[i]);
2023}
2024
2025/**
2026 * e1000_free_rx_resources - Free Rx Resources
2027 * @adapter: board private structure
2028 * @rx_ring: ring to clean the resources from
2029 *
2030 * Free all receive software resources
2031 **/
2032static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2033 struct e1000_rx_ring *rx_ring)
2034{
2035 struct pci_dev *pdev = adapter->pdev;
2036
2037 e1000_clean_rx_ring(adapter, rx_ring);
2038
2039 vfree(addr: rx_ring->buffer_info);
2040 rx_ring->buffer_info = NULL;
2041
2042 dma_free_coherent(dev: &pdev->dev, size: rx_ring->size, cpu_addr: rx_ring->desc,
2043 dma_handle: rx_ring->dma);
2044
2045 rx_ring->desc = NULL;
2046}
2047
2048/**
2049 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2050 * @adapter: board private structure
2051 *
2052 * Free all receive software resources
2053 **/
2054void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2055{
2056 int i;
2057
2058 for (i = 0; i < adapter->num_rx_queues; i++)
2059 e1000_free_rx_resources(adapter, rx_ring: &adapter->rx_ring[i]);
2060}
2061
2062#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2063static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2064{
2065 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2066 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2067}
2068
2069static void *e1000_alloc_frag(const struct e1000_adapter *a)
2070{
2071 unsigned int len = e1000_frag_len(a);
2072 u8 *data = netdev_alloc_frag(fragsz: len);
2073
2074 if (likely(data))
2075 data += E1000_HEADROOM;
2076 return data;
2077}
2078
2079/**
2080 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2081 * @adapter: board private structure
2082 * @rx_ring: ring to free buffers from
2083 **/
2084static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2085 struct e1000_rx_ring *rx_ring)
2086{
2087 struct e1000_hw *hw = &adapter->hw;
2088 struct e1000_rx_buffer *buffer_info;
2089 struct pci_dev *pdev = adapter->pdev;
2090 unsigned long size;
2091 unsigned int i;
2092
2093 /* Free all the Rx netfrags */
2094 for (i = 0; i < rx_ring->count; i++) {
2095 buffer_info = &rx_ring->buffer_info[i];
2096 if (adapter->clean_rx == e1000_clean_rx_irq) {
2097 if (buffer_info->dma)
2098 dma_unmap_single(&pdev->dev, buffer_info->dma,
2099 adapter->rx_buffer_len,
2100 DMA_FROM_DEVICE);
2101 if (buffer_info->rxbuf.data) {
2102 skb_free_frag(addr: buffer_info->rxbuf.data);
2103 buffer_info->rxbuf.data = NULL;
2104 }
2105 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2106 if (buffer_info->dma)
2107 dma_unmap_page(&pdev->dev, buffer_info->dma,
2108 adapter->rx_buffer_len,
2109 DMA_FROM_DEVICE);
2110 if (buffer_info->rxbuf.page) {
2111 put_page(page: buffer_info->rxbuf.page);
2112 buffer_info->rxbuf.page = NULL;
2113 }
2114 }
2115
2116 buffer_info->dma = 0;
2117 }
2118
2119 /* there also may be some cached data from a chained receive */
2120 napi_free_frags(napi: &adapter->napi);
2121 rx_ring->rx_skb_top = NULL;
2122
2123 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2124 memset(rx_ring->buffer_info, 0, size);
2125
2126 /* Zero out the descriptor ring */
2127 memset(rx_ring->desc, 0, rx_ring->size);
2128
2129 rx_ring->next_to_clean = 0;
2130 rx_ring->next_to_use = 0;
2131
2132 writel(val: 0, addr: hw->hw_addr + rx_ring->rdh);
2133 writel(val: 0, addr: hw->hw_addr + rx_ring->rdt);
2134}
2135
2136/**
2137 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2138 * @adapter: board private structure
2139 **/
2140static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2141{
2142 int i;
2143
2144 for (i = 0; i < adapter->num_rx_queues; i++)
2145 e1000_clean_rx_ring(adapter, rx_ring: &adapter->rx_ring[i]);
2146}
2147
2148/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2149 * and memory write and invalidate disabled for certain operations
2150 */
2151static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2152{
2153 struct e1000_hw *hw = &adapter->hw;
2154 struct net_device *netdev = adapter->netdev;
2155 u32 rctl;
2156
2157 e1000_pci_clear_mwi(hw);
2158
2159 rctl = er32(RCTL);
2160 rctl |= E1000_RCTL_RST;
2161 ew32(RCTL, rctl);
2162 E1000_WRITE_FLUSH();
2163 mdelay(5);
2164
2165 if (netif_running(dev: netdev))
2166 e1000_clean_all_rx_rings(adapter);
2167}
2168
2169static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2170{
2171 struct e1000_hw *hw = &adapter->hw;
2172 struct net_device *netdev = adapter->netdev;
2173 u32 rctl;
2174
2175 rctl = er32(RCTL);
2176 rctl &= ~E1000_RCTL_RST;
2177 ew32(RCTL, rctl);
2178 E1000_WRITE_FLUSH();
2179 mdelay(5);
2180
2181 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2182 e1000_pci_set_mwi(hw);
2183
2184 if (netif_running(dev: netdev)) {
2185 /* No need to loop, because 82542 supports only 1 queue */
2186 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2187 e1000_configure_rx(adapter);
2188 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2189 }
2190}
2191
2192/**
2193 * e1000_set_mac - Change the Ethernet Address of the NIC
2194 * @netdev: network interface device structure
2195 * @p: pointer to an address structure
2196 *
2197 * Returns 0 on success, negative on failure
2198 **/
2199static int e1000_set_mac(struct net_device *netdev, void *p)
2200{
2201 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
2202 struct e1000_hw *hw = &adapter->hw;
2203 struct sockaddr *addr = p;
2204
2205 if (!is_valid_ether_addr(addr: addr->sa_data))
2206 return -EADDRNOTAVAIL;
2207
2208 /* 82542 2.0 needs to be in reset to write receive address registers */
2209
2210 if (hw->mac_type == e1000_82542_rev2_0)
2211 e1000_enter_82542_rst(adapter);
2212
2213 eth_hw_addr_set(dev: netdev, addr: addr->sa_data);
2214 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2215
2216 e1000_rar_set(hw, mc_addr: hw->mac_addr, rar_index: 0);
2217
2218 if (hw->mac_type == e1000_82542_rev2_0)
2219 e1000_leave_82542_rst(adapter);
2220
2221 return 0;
2222}
2223
2224/**
2225 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2226 * @netdev: network interface device structure
2227 *
2228 * The set_rx_mode entry point is called whenever the unicast or multicast
2229 * address lists or the network interface flags are updated. This routine is
2230 * responsible for configuring the hardware for proper unicast, multicast,
2231 * promiscuous mode, and all-multi behavior.
2232 **/
2233static void e1000_set_rx_mode(struct net_device *netdev)
2234{
2235 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
2236 struct e1000_hw *hw = &adapter->hw;
2237 struct netdev_hw_addr *ha;
2238 bool use_uc = false;
2239 u32 rctl;
2240 u32 hash_value;
2241 int i, rar_entries = E1000_RAR_ENTRIES;
2242 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2243 u32 *mcarray = kcalloc(n: mta_reg_count, size: sizeof(u32), GFP_ATOMIC);
2244
2245 if (!mcarray)
2246 return;
2247
2248 /* Check for Promiscuous and All Multicast modes */
2249
2250 rctl = er32(RCTL);
2251
2252 if (netdev->flags & IFF_PROMISC) {
2253 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2254 rctl &= ~E1000_RCTL_VFE;
2255 } else {
2256 if (netdev->flags & IFF_ALLMULTI)
2257 rctl |= E1000_RCTL_MPE;
2258 else
2259 rctl &= ~E1000_RCTL_MPE;
2260 /* Enable VLAN filter if there is a VLAN */
2261 if (e1000_vlan_used(adapter))
2262 rctl |= E1000_RCTL_VFE;
2263 }
2264
2265 if (netdev_uc_count(netdev) > rar_entries - 1) {
2266 rctl |= E1000_RCTL_UPE;
2267 } else if (!(netdev->flags & IFF_PROMISC)) {
2268 rctl &= ~E1000_RCTL_UPE;
2269 use_uc = true;
2270 }
2271
2272 ew32(RCTL, rctl);
2273
2274 /* 82542 2.0 needs to be in reset to write receive address registers */
2275
2276 if (hw->mac_type == e1000_82542_rev2_0)
2277 e1000_enter_82542_rst(adapter);
2278
2279 /* load the first 14 addresses into the exact filters 1-14. Unicast
2280 * addresses take precedence to avoid disabling unicast filtering
2281 * when possible.
2282 *
2283 * RAR 0 is used for the station MAC address
2284 * if there are not 14 addresses, go ahead and clear the filters
2285 */
2286 i = 1;
2287 if (use_uc)
2288 netdev_for_each_uc_addr(ha, netdev) {
2289 if (i == rar_entries)
2290 break;
2291 e1000_rar_set(hw, mc_addr: ha->addr, rar_index: i++);
2292 }
2293
2294 netdev_for_each_mc_addr(ha, netdev) {
2295 if (i == rar_entries) {
2296 /* load any remaining addresses into the hash table */
2297 u32 hash_reg, hash_bit, mta;
2298 hash_value = e1000_hash_mc_addr(hw, mc_addr: ha->addr);
2299 hash_reg = (hash_value >> 5) & 0x7F;
2300 hash_bit = hash_value & 0x1F;
2301 mta = (1 << hash_bit);
2302 mcarray[hash_reg] |= mta;
2303 } else {
2304 e1000_rar_set(hw, mc_addr: ha->addr, rar_index: i++);
2305 }
2306 }
2307
2308 for (; i < rar_entries; i++) {
2309 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2310 E1000_WRITE_FLUSH();
2311 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2312 E1000_WRITE_FLUSH();
2313 }
2314
2315 /* write the hash table completely, write from bottom to avoid
2316 * both stupid write combining chipsets, and flushing each write
2317 */
2318 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2319 /* If we are on an 82544 has an errata where writing odd
2320 * offsets overwrites the previous even offset, but writing
2321 * backwards over the range solves the issue by always
2322 * writing the odd offset first
2323 */
2324 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2325 }
2326 E1000_WRITE_FLUSH();
2327
2328 if (hw->mac_type == e1000_82542_rev2_0)
2329 e1000_leave_82542_rst(adapter);
2330
2331 kfree(objp: mcarray);
2332}
2333
2334/**
2335 * e1000_update_phy_info_task - get phy info
2336 * @work: work struct contained inside adapter struct
2337 *
2338 * Need to wait a few seconds after link up to get diagnostic information from
2339 * the phy
2340 */
2341static void e1000_update_phy_info_task(struct work_struct *work)
2342{
2343 struct e1000_adapter *adapter = container_of(work,
2344 struct e1000_adapter,
2345 phy_info_task.work);
2346
2347 e1000_phy_get_info(hw: &adapter->hw, phy_info: &adapter->phy_info);
2348}
2349
2350/**
2351 * e1000_82547_tx_fifo_stall_task - task to complete work
2352 * @work: work struct contained inside adapter struct
2353 **/
2354static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2355{
2356 struct e1000_adapter *adapter = container_of(work,
2357 struct e1000_adapter,
2358 fifo_stall_task.work);
2359 struct e1000_hw *hw = &adapter->hw;
2360 struct net_device *netdev = adapter->netdev;
2361 u32 tctl;
2362
2363 if (atomic_read(v: &adapter->tx_fifo_stall)) {
2364 if ((er32(TDT) == er32(TDH)) &&
2365 (er32(TDFT) == er32(TDFH)) &&
2366 (er32(TDFTS) == er32(TDFHS))) {
2367 tctl = er32(TCTL);
2368 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2369 ew32(TDFT, adapter->tx_head_addr);
2370 ew32(TDFH, adapter->tx_head_addr);
2371 ew32(TDFTS, adapter->tx_head_addr);
2372 ew32(TDFHS, adapter->tx_head_addr);
2373 ew32(TCTL, tctl);
2374 E1000_WRITE_FLUSH();
2375
2376 adapter->tx_fifo_head = 0;
2377 atomic_set(v: &adapter->tx_fifo_stall, i: 0);
2378 netif_wake_queue(dev: netdev);
2379 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2380 schedule_delayed_work(dwork: &adapter->fifo_stall_task, delay: 1);
2381 }
2382 }
2383}
2384
2385bool e1000_has_link(struct e1000_adapter *adapter)
2386{
2387 struct e1000_hw *hw = &adapter->hw;
2388 bool link_active = false;
2389
2390 /* get_link_status is set on LSC (link status) interrupt or rx
2391 * sequence error interrupt (except on intel ce4100).
2392 * get_link_status will stay false until the
2393 * e1000_check_for_link establishes link for copper adapters
2394 * ONLY
2395 */
2396 switch (hw->media_type) {
2397 case e1000_media_type_copper:
2398 if (hw->mac_type == e1000_ce4100)
2399 hw->get_link_status = 1;
2400 if (hw->get_link_status) {
2401 e1000_check_for_link(hw);
2402 link_active = !hw->get_link_status;
2403 } else {
2404 link_active = true;
2405 }
2406 break;
2407 case e1000_media_type_fiber:
2408 e1000_check_for_link(hw);
2409 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2410 break;
2411 case e1000_media_type_internal_serdes:
2412 e1000_check_for_link(hw);
2413 link_active = hw->serdes_has_link;
2414 break;
2415 default:
2416 break;
2417 }
2418
2419 return link_active;
2420}
2421
2422/**
2423 * e1000_watchdog - work function
2424 * @work: work struct contained inside adapter struct
2425 **/
2426static void e1000_watchdog(struct work_struct *work)
2427{
2428 struct e1000_adapter *adapter = container_of(work,
2429 struct e1000_adapter,
2430 watchdog_task.work);
2431 struct e1000_hw *hw = &adapter->hw;
2432 struct net_device *netdev = adapter->netdev;
2433 struct e1000_tx_ring *txdr = adapter->tx_ring;
2434 u32 link, tctl;
2435
2436 link = e1000_has_link(adapter);
2437 if ((netif_carrier_ok(dev: netdev)) && link)
2438 goto link_up;
2439
2440 if (link) {
2441 if (!netif_carrier_ok(dev: netdev)) {
2442 u32 ctrl;
2443 /* update snapshot of PHY registers on LSC */
2444 e1000_get_speed_and_duplex(hw,
2445 speed: &adapter->link_speed,
2446 duplex: &adapter->link_duplex);
2447
2448 ctrl = er32(CTRL);
2449 pr_info("%s NIC Link is Up %d Mbps %s, "
2450 "Flow Control: %s\n",
2451 netdev->name,
2452 adapter->link_speed,
2453 adapter->link_duplex == FULL_DUPLEX ?
2454 "Full Duplex" : "Half Duplex",
2455 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2456 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2457 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2458 E1000_CTRL_TFCE) ? "TX" : "None")));
2459
2460 /* adjust timeout factor according to speed/duplex */
2461 adapter->tx_timeout_factor = 1;
2462 switch (adapter->link_speed) {
2463 case SPEED_10:
2464 adapter->tx_timeout_factor = 16;
2465 break;
2466 case SPEED_100:
2467 /* maybe add some timeout factor ? */
2468 break;
2469 }
2470
2471 /* enable transmits in the hardware */
2472 tctl = er32(TCTL);
2473 tctl |= E1000_TCTL_EN;
2474 ew32(TCTL, tctl);
2475
2476 netif_carrier_on(dev: netdev);
2477 if (!test_bit(__E1000_DOWN, &adapter->flags))
2478 schedule_delayed_work(dwork: &adapter->phy_info_task,
2479 delay: 2 * HZ);
2480 adapter->smartspeed = 0;
2481 }
2482 } else {
2483 if (netif_carrier_ok(dev: netdev)) {
2484 adapter->link_speed = 0;
2485 adapter->link_duplex = 0;
2486 pr_info("%s NIC Link is Down\n",
2487 netdev->name);
2488 netif_carrier_off(dev: netdev);
2489
2490 if (!test_bit(__E1000_DOWN, &adapter->flags))
2491 schedule_delayed_work(dwork: &adapter->phy_info_task,
2492 delay: 2 * HZ);
2493 }
2494
2495 e1000_smartspeed(adapter);
2496 }
2497
2498link_up:
2499 e1000_update_stats(adapter);
2500
2501 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2502 adapter->tpt_old = adapter->stats.tpt;
2503 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2504 adapter->colc_old = adapter->stats.colc;
2505
2506 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2507 adapter->gorcl_old = adapter->stats.gorcl;
2508 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2509 adapter->gotcl_old = adapter->stats.gotcl;
2510
2511 e1000_update_adaptive(hw);
2512
2513 if (!netif_carrier_ok(dev: netdev)) {
2514 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2515 /* We've lost link, so the controller stops DMA,
2516 * but we've got queued Tx work that's never going
2517 * to get done, so reset controller to flush Tx.
2518 * (Do the reset outside of interrupt context).
2519 */
2520 adapter->tx_timeout_count++;
2521 schedule_work(work: &adapter->reset_task);
2522 /* exit immediately since reset is imminent */
2523 return;
2524 }
2525 }
2526
2527 /* Simple mode for Interrupt Throttle Rate (ITR) */
2528 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2529 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2530 * Total asymmetrical Tx or Rx gets ITR=8000;
2531 * everyone else is between 2000-8000.
2532 */
2533 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2534 u32 dif = (adapter->gotcl > adapter->gorcl ?
2535 adapter->gotcl - adapter->gorcl :
2536 adapter->gorcl - adapter->gotcl) / 10000;
2537 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2538
2539 ew32(ITR, 1000000000 / (itr * 256));
2540 }
2541
2542 /* Cause software interrupt to ensure rx ring is cleaned */
2543 ew32(ICS, E1000_ICS_RXDMT0);
2544
2545 /* Force detection of hung controller every watchdog period */
2546 adapter->detect_tx_hung = true;
2547
2548 /* Reschedule the task */
2549 if (!test_bit(__E1000_DOWN, &adapter->flags))
2550 schedule_delayed_work(dwork: &adapter->watchdog_task, delay: 2 * HZ);
2551}
2552
2553enum latency_range {
2554 lowest_latency = 0,
2555 low_latency = 1,
2556 bulk_latency = 2,
2557 latency_invalid = 255
2558};
2559
2560/**
2561 * e1000_update_itr - update the dynamic ITR value based on statistics
2562 * @adapter: pointer to adapter
2563 * @itr_setting: current adapter->itr
2564 * @packets: the number of packets during this measurement interval
2565 * @bytes: the number of bytes during this measurement interval
2566 *
2567 * Stores a new ITR value based on packets and byte
2568 * counts during the last interrupt. The advantage of per interrupt
2569 * computation is faster updates and more accurate ITR for the current
2570 * traffic pattern. Constants in this function were computed
2571 * based on theoretical maximum wire speed and thresholds were set based
2572 * on testing data as well as attempting to minimize response time
2573 * while increasing bulk throughput.
2574 * this functionality is controlled by the InterruptThrottleRate module
2575 * parameter (see e1000_param.c)
2576 **/
2577static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2578 u16 itr_setting, int packets, int bytes)
2579{
2580 unsigned int retval = itr_setting;
2581 struct e1000_hw *hw = &adapter->hw;
2582
2583 if (unlikely(hw->mac_type < e1000_82540))
2584 goto update_itr_done;
2585
2586 if (packets == 0)
2587 goto update_itr_done;
2588
2589 switch (itr_setting) {
2590 case lowest_latency:
2591 /* jumbo frames get bulk treatment*/
2592 if (bytes/packets > 8000)
2593 retval = bulk_latency;
2594 else if ((packets < 5) && (bytes > 512))
2595 retval = low_latency;
2596 break;
2597 case low_latency: /* 50 usec aka 20000 ints/s */
2598 if (bytes > 10000) {
2599 /* jumbo frames need bulk latency setting */
2600 if (bytes/packets > 8000)
2601 retval = bulk_latency;
2602 else if ((packets < 10) || ((bytes/packets) > 1200))
2603 retval = bulk_latency;
2604 else if ((packets > 35))
2605 retval = lowest_latency;
2606 } else if (bytes/packets > 2000)
2607 retval = bulk_latency;
2608 else if (packets <= 2 && bytes < 512)
2609 retval = lowest_latency;
2610 break;
2611 case bulk_latency: /* 250 usec aka 4000 ints/s */
2612 if (bytes > 25000) {
2613 if (packets > 35)
2614 retval = low_latency;
2615 } else if (bytes < 6000) {
2616 retval = low_latency;
2617 }
2618 break;
2619 }
2620
2621update_itr_done:
2622 return retval;
2623}
2624
2625static void e1000_set_itr(struct e1000_adapter *adapter)
2626{
2627 struct e1000_hw *hw = &adapter->hw;
2628 u16 current_itr;
2629 u32 new_itr = adapter->itr;
2630
2631 if (unlikely(hw->mac_type < e1000_82540))
2632 return;
2633
2634 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2635 if (unlikely(adapter->link_speed != SPEED_1000)) {
2636 new_itr = 4000;
2637 goto set_itr_now;
2638 }
2639
2640 adapter->tx_itr = e1000_update_itr(adapter, itr_setting: adapter->tx_itr,
2641 packets: adapter->total_tx_packets,
2642 bytes: adapter->total_tx_bytes);
2643 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2644 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2645 adapter->tx_itr = low_latency;
2646
2647 adapter->rx_itr = e1000_update_itr(adapter, itr_setting: adapter->rx_itr,
2648 packets: adapter->total_rx_packets,
2649 bytes: adapter->total_rx_bytes);
2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2652 adapter->rx_itr = low_latency;
2653
2654 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2655
2656 switch (current_itr) {
2657 /* counts and packets in update_itr are dependent on these numbers */
2658 case lowest_latency:
2659 new_itr = 70000;
2660 break;
2661 case low_latency:
2662 new_itr = 20000; /* aka hwitr = ~200 */
2663 break;
2664 case bulk_latency:
2665 new_itr = 4000;
2666 break;
2667 default:
2668 break;
2669 }
2670
2671set_itr_now:
2672 if (new_itr != adapter->itr) {
2673 /* this attempts to bias the interrupt rate towards Bulk
2674 * by adding intermediate steps when interrupt rate is
2675 * increasing
2676 */
2677 new_itr = new_itr > adapter->itr ?
2678 min(adapter->itr + (new_itr >> 2), new_itr) :
2679 new_itr;
2680 adapter->itr = new_itr;
2681 ew32(ITR, 1000000000 / (new_itr * 256));
2682 }
2683}
2684
2685#define E1000_TX_FLAGS_CSUM 0x00000001
2686#define E1000_TX_FLAGS_VLAN 0x00000002
2687#define E1000_TX_FLAGS_TSO 0x00000004
2688#define E1000_TX_FLAGS_IPV4 0x00000008
2689#define E1000_TX_FLAGS_NO_FCS 0x00000010
2690#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2691#define E1000_TX_FLAGS_VLAN_SHIFT 16
2692
2693static int e1000_tso(struct e1000_adapter *adapter,
2694 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2695 __be16 protocol)
2696{
2697 struct e1000_context_desc *context_desc;
2698 struct e1000_tx_buffer *buffer_info;
2699 unsigned int i;
2700 u32 cmd_length = 0;
2701 u16 ipcse = 0, tucse, mss;
2702 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2703
2704 if (skb_is_gso(skb)) {
2705 int err;
2706
2707 err = skb_cow_head(skb, headroom: 0);
2708 if (err < 0)
2709 return err;
2710
2711 hdr_len = skb_tcp_all_headers(skb);
2712 mss = skb_shinfo(skb)->gso_size;
2713 if (protocol == htons(ETH_P_IP)) {
2714 struct iphdr *iph = ip_hdr(skb);
2715 iph->tot_len = 0;
2716 iph->check = 0;
2717 tcp_hdr(skb)->check = ~csum_tcpudp_magic(saddr: iph->saddr,
2718 daddr: iph->daddr, len: 0,
2719 IPPROTO_TCP,
2720 sum: 0);
2721 cmd_length = E1000_TXD_CMD_IP;
2722 ipcse = skb_transport_offset(skb) - 1;
2723 } else if (skb_is_gso_v6(skb)) {
2724 tcp_v6_gso_csum_prep(skb);
2725 ipcse = 0;
2726 }
2727 ipcss = skb_network_offset(skb);
2728 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2729 tucss = skb_transport_offset(skb);
2730 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2731 tucse = 0;
2732
2733 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2734 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2735
2736 i = tx_ring->next_to_use;
2737 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2738 buffer_info = &tx_ring->buffer_info[i];
2739
2740 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2741 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2742 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2743 context_desc->upper_setup.tcp_fields.tucss = tucss;
2744 context_desc->upper_setup.tcp_fields.tucso = tucso;
2745 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2746 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2747 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2748 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2749
2750 buffer_info->time_stamp = jiffies;
2751 buffer_info->next_to_watch = i;
2752
2753 if (++i == tx_ring->count)
2754 i = 0;
2755
2756 tx_ring->next_to_use = i;
2757
2758 return true;
2759 }
2760 return false;
2761}
2762
2763static bool e1000_tx_csum(struct e1000_adapter *adapter,
2764 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2765 __be16 protocol)
2766{
2767 struct e1000_context_desc *context_desc;
2768 struct e1000_tx_buffer *buffer_info;
2769 unsigned int i;
2770 u8 css;
2771 u32 cmd_len = E1000_TXD_CMD_DEXT;
2772
2773 if (skb->ip_summed != CHECKSUM_PARTIAL)
2774 return false;
2775
2776 switch (protocol) {
2777 case cpu_to_be16(ETH_P_IP):
2778 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2779 cmd_len |= E1000_TXD_CMD_TCP;
2780 break;
2781 case cpu_to_be16(ETH_P_IPV6):
2782 /* XXX not handling all IPV6 headers */
2783 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2784 cmd_len |= E1000_TXD_CMD_TCP;
2785 break;
2786 default:
2787 if (unlikely(net_ratelimit()))
2788 e_warn(drv, "checksum_partial proto=%x!\n",
2789 skb->protocol);
2790 break;
2791 }
2792
2793 css = skb_checksum_start_offset(skb);
2794
2795 i = tx_ring->next_to_use;
2796 buffer_info = &tx_ring->buffer_info[i];
2797 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2798
2799 context_desc->lower_setup.ip_config = 0;
2800 context_desc->upper_setup.tcp_fields.tucss = css;
2801 context_desc->upper_setup.tcp_fields.tucso =
2802 css + skb->csum_offset;
2803 context_desc->upper_setup.tcp_fields.tucse = 0;
2804 context_desc->tcp_seg_setup.data = 0;
2805 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2806
2807 buffer_info->time_stamp = jiffies;
2808 buffer_info->next_to_watch = i;
2809
2810 if (unlikely(++i == tx_ring->count))
2811 i = 0;
2812
2813 tx_ring->next_to_use = i;
2814
2815 return true;
2816}
2817
2818#define E1000_MAX_TXD_PWR 12
2819#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2820
2821static int e1000_tx_map(struct e1000_adapter *adapter,
2822 struct e1000_tx_ring *tx_ring,
2823 struct sk_buff *skb, unsigned int first,
2824 unsigned int max_per_txd, unsigned int nr_frags,
2825 unsigned int mss)
2826{
2827 struct e1000_hw *hw = &adapter->hw;
2828 struct pci_dev *pdev = adapter->pdev;
2829 struct e1000_tx_buffer *buffer_info;
2830 unsigned int len = skb_headlen(skb);
2831 unsigned int offset = 0, size, count = 0, i;
2832 unsigned int f, bytecount, segs;
2833
2834 i = tx_ring->next_to_use;
2835
2836 while (len) {
2837 buffer_info = &tx_ring->buffer_info[i];
2838 size = min(len, max_per_txd);
2839 /* Workaround for Controller erratum --
2840 * descriptor for non-tso packet in a linear SKB that follows a
2841 * tso gets written back prematurely before the data is fully
2842 * DMA'd to the controller
2843 */
2844 if (!skb->data_len && tx_ring->last_tx_tso &&
2845 !skb_is_gso(skb)) {
2846 tx_ring->last_tx_tso = false;
2847 size -= 4;
2848 }
2849
2850 /* Workaround for premature desc write-backs
2851 * in TSO mode. Append 4-byte sentinel desc
2852 */
2853 if (unlikely(mss && !nr_frags && size == len && size > 8))
2854 size -= 4;
2855 /* work-around for errata 10 and it applies
2856 * to all controllers in PCI-X mode
2857 * The fix is to make sure that the first descriptor of a
2858 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2859 */
2860 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2861 (size > 2015) && count == 0))
2862 size = 2015;
2863
2864 /* Workaround for potential 82544 hang in PCI-X. Avoid
2865 * terminating buffers within evenly-aligned dwords.
2866 */
2867 if (unlikely(adapter->pcix_82544 &&
2868 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2869 size > 4))
2870 size -= 4;
2871
2872 buffer_info->length = size;
2873 /* set time_stamp *before* dma to help avoid a possible race */
2874 buffer_info->time_stamp = jiffies;
2875 buffer_info->mapped_as_page = false;
2876 buffer_info->dma = dma_map_single(&pdev->dev,
2877 skb->data + offset,
2878 size, DMA_TO_DEVICE);
2879 if (dma_mapping_error(dev: &pdev->dev, dma_addr: buffer_info->dma))
2880 goto dma_error;
2881 buffer_info->next_to_watch = i;
2882
2883 len -= size;
2884 offset += size;
2885 count++;
2886 if (len) {
2887 i++;
2888 if (unlikely(i == tx_ring->count))
2889 i = 0;
2890 }
2891 }
2892
2893 for (f = 0; f < nr_frags; f++) {
2894 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2895
2896 len = skb_frag_size(frag);
2897 offset = 0;
2898
2899 while (len) {
2900 unsigned long bufend;
2901 i++;
2902 if (unlikely(i == tx_ring->count))
2903 i = 0;
2904
2905 buffer_info = &tx_ring->buffer_info[i];
2906 size = min(len, max_per_txd);
2907 /* Workaround for premature desc write-backs
2908 * in TSO mode. Append 4-byte sentinel desc
2909 */
2910 if (unlikely(mss && f == (nr_frags-1) &&
2911 size == len && size > 8))
2912 size -= 4;
2913 /* Workaround for potential 82544 hang in PCI-X.
2914 * Avoid terminating buffers within evenly-aligned
2915 * dwords.
2916 */
2917 bufend = (unsigned long)
2918 page_to_phys(skb_frag_page(frag));
2919 bufend += offset + size - 1;
2920 if (unlikely(adapter->pcix_82544 &&
2921 !(bufend & 4) &&
2922 size > 4))
2923 size -= 4;
2924
2925 buffer_info->length = size;
2926 buffer_info->time_stamp = jiffies;
2927 buffer_info->mapped_as_page = true;
2928 buffer_info->dma = skb_frag_dma_map(dev: &pdev->dev, frag,
2929 offset, size, dir: DMA_TO_DEVICE);
2930 if (dma_mapping_error(dev: &pdev->dev, dma_addr: buffer_info->dma))
2931 goto dma_error;
2932 buffer_info->next_to_watch = i;
2933
2934 len -= size;
2935 offset += size;
2936 count++;
2937 }
2938 }
2939
2940 segs = skb_shinfo(skb)->gso_segs ?: 1;
2941 /* multiply data chunks by size of headers */
2942 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2943
2944 tx_ring->buffer_info[i].skb = skb;
2945 tx_ring->buffer_info[i].segs = segs;
2946 tx_ring->buffer_info[i].bytecount = bytecount;
2947 tx_ring->buffer_info[first].next_to_watch = i;
2948
2949 return count;
2950
2951dma_error:
2952 dev_err(&pdev->dev, "TX DMA map failed\n");
2953 buffer_info->dma = 0;
2954 if (count)
2955 count--;
2956
2957 while (count--) {
2958 if (i == 0)
2959 i += tx_ring->count;
2960 i--;
2961 buffer_info = &tx_ring->buffer_info[i];
2962 e1000_unmap_and_free_tx_resource(adapter, buffer_info, budget: 0);
2963 }
2964
2965 return 0;
2966}
2967
2968static void e1000_tx_queue(struct e1000_adapter *adapter,
2969 struct e1000_tx_ring *tx_ring, int tx_flags,
2970 int count)
2971{
2972 struct e1000_tx_desc *tx_desc = NULL;
2973 struct e1000_tx_buffer *buffer_info;
2974 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2975 unsigned int i;
2976
2977 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2978 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2979 E1000_TXD_CMD_TSE;
2980 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2981
2982 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2983 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2984 }
2985
2986 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2987 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2988 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2989 }
2990
2991 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2992 txd_lower |= E1000_TXD_CMD_VLE;
2993 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2994 }
2995
2996 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2997 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2998
2999 i = tx_ring->next_to_use;
3000
3001 while (count--) {
3002 buffer_info = &tx_ring->buffer_info[i];
3003 tx_desc = E1000_TX_DESC(*tx_ring, i);
3004 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3005 tx_desc->lower.data =
3006 cpu_to_le32(txd_lower | buffer_info->length);
3007 tx_desc->upper.data = cpu_to_le32(txd_upper);
3008 if (unlikely(++i == tx_ring->count))
3009 i = 0;
3010 }
3011
3012 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3013
3014 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3015 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3016 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3017
3018 /* Force memory writes to complete before letting h/w
3019 * know there are new descriptors to fetch. (Only
3020 * applicable for weak-ordered memory model archs,
3021 * such as IA-64).
3022 */
3023 dma_wmb();
3024
3025 tx_ring->next_to_use = i;
3026}
3027
3028/* 82547 workaround to avoid controller hang in half-duplex environment.
3029 * The workaround is to avoid queuing a large packet that would span
3030 * the internal Tx FIFO ring boundary by notifying the stack to resend
3031 * the packet at a later time. This gives the Tx FIFO an opportunity to
3032 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3033 * to the beginning of the Tx FIFO.
3034 */
3035
3036#define E1000_FIFO_HDR 0x10
3037#define E1000_82547_PAD_LEN 0x3E0
3038
3039static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3040 struct sk_buff *skb)
3041{
3042 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3043 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3044
3045 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3046
3047 if (adapter->link_duplex != HALF_DUPLEX)
3048 goto no_fifo_stall_required;
3049
3050 if (atomic_read(v: &adapter->tx_fifo_stall))
3051 return 1;
3052
3053 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3054 atomic_set(v: &adapter->tx_fifo_stall, i: 1);
3055 return 1;
3056 }
3057
3058no_fifo_stall_required:
3059 adapter->tx_fifo_head += skb_fifo_len;
3060 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3061 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3062 return 0;
3063}
3064
3065static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3066{
3067 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
3068 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3069
3070 netif_stop_queue(dev: netdev);
3071 /* Herbert's original patch had:
3072 * smp_mb__after_netif_stop_queue();
3073 * but since that doesn't exist yet, just open code it.
3074 */
3075 smp_mb();
3076
3077 /* We need to check again in a case another CPU has just
3078 * made room available.
3079 */
3080 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3081 return -EBUSY;
3082
3083 /* A reprieve! */
3084 netif_start_queue(dev: netdev);
3085 ++adapter->restart_queue;
3086 return 0;
3087}
3088
3089static int e1000_maybe_stop_tx(struct net_device *netdev,
3090 struct e1000_tx_ring *tx_ring, int size)
3091{
3092 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3093 return 0;
3094 return __e1000_maybe_stop_tx(netdev, size);
3095}
3096
3097#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3098static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3099 struct net_device *netdev)
3100{
3101 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
3102 struct e1000_hw *hw = &adapter->hw;
3103 struct e1000_tx_ring *tx_ring;
3104 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3105 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3106 unsigned int tx_flags = 0;
3107 unsigned int len = skb_headlen(skb);
3108 unsigned int nr_frags;
3109 unsigned int mss;
3110 int count = 0;
3111 int tso;
3112 unsigned int f;
3113 __be16 protocol = vlan_get_protocol(skb);
3114
3115 /* This goes back to the question of how to logically map a Tx queue
3116 * to a flow. Right now, performance is impacted slightly negatively
3117 * if using multiple Tx queues. If the stack breaks away from a
3118 * single qdisc implementation, we can look at this again.
3119 */
3120 tx_ring = adapter->tx_ring;
3121
3122 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3123 * packets may get corrupted during padding by HW.
3124 * To WA this issue, pad all small packets manually.
3125 */
3126 if (eth_skb_pad(skb))
3127 return NETDEV_TX_OK;
3128
3129 mss = skb_shinfo(skb)->gso_size;
3130 /* The controller does a simple calculation to
3131 * make sure there is enough room in the FIFO before
3132 * initiating the DMA for each buffer. The calc is:
3133 * 4 = ceil(buffer len/mss). To make sure we don't
3134 * overrun the FIFO, adjust the max buffer len if mss
3135 * drops.
3136 */
3137 if (mss) {
3138 u8 hdr_len;
3139 max_per_txd = min(mss << 2, max_per_txd);
3140 max_txd_pwr = fls(x: max_per_txd) - 1;
3141
3142 hdr_len = skb_tcp_all_headers(skb);
3143 if (skb->data_len && hdr_len == len) {
3144 switch (hw->mac_type) {
3145 case e1000_82544: {
3146 unsigned int pull_size;
3147
3148 /* Make sure we have room to chop off 4 bytes,
3149 * and that the end alignment will work out to
3150 * this hardware's requirements
3151 * NOTE: this is a TSO only workaround
3152 * if end byte alignment not correct move us
3153 * into the next dword
3154 */
3155 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3156 & 4)
3157 break;
3158 pull_size = min((unsigned int)4, skb->data_len);
3159 if (!__pskb_pull_tail(skb, delta: pull_size)) {
3160 e_err(drv, "__pskb_pull_tail "
3161 "failed.\n");
3162 dev_kfree_skb_any(skb);
3163 return NETDEV_TX_OK;
3164 }
3165 len = skb_headlen(skb);
3166 break;
3167 }
3168 default:
3169 /* do nothing */
3170 break;
3171 }
3172 }
3173 }
3174
3175 /* reserve a descriptor for the offload context */
3176 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3177 count++;
3178 count++;
3179
3180 /* Controller Erratum workaround */
3181 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3182 count++;
3183
3184 count += TXD_USE_COUNT(len, max_txd_pwr);
3185
3186 if (adapter->pcix_82544)
3187 count++;
3188
3189 /* work-around for errata 10 and it applies to all controllers
3190 * in PCI-X mode, so add one more descriptor to the count
3191 */
3192 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3193 (len > 2015)))
3194 count++;
3195
3196 nr_frags = skb_shinfo(skb)->nr_frags;
3197 for (f = 0; f < nr_frags; f++)
3198 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3199 max_txd_pwr);
3200 if (adapter->pcix_82544)
3201 count += nr_frags;
3202
3203 /* need: count + 2 desc gap to keep tail from touching
3204 * head, otherwise try next time
3205 */
3206 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3207 return NETDEV_TX_BUSY;
3208
3209 if (unlikely((hw->mac_type == e1000_82547) &&
3210 (e1000_82547_fifo_workaround(adapter, skb)))) {
3211 netif_stop_queue(dev: netdev);
3212 if (!test_bit(__E1000_DOWN, &adapter->flags))
3213 schedule_delayed_work(dwork: &adapter->fifo_stall_task, delay: 1);
3214 return NETDEV_TX_BUSY;
3215 }
3216
3217 if (skb_vlan_tag_present(skb)) {
3218 tx_flags |= E1000_TX_FLAGS_VLAN;
3219 tx_flags |= (skb_vlan_tag_get(skb) <<
3220 E1000_TX_FLAGS_VLAN_SHIFT);
3221 }
3222
3223 first = tx_ring->next_to_use;
3224
3225 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3226 if (tso < 0) {
3227 dev_kfree_skb_any(skb);
3228 return NETDEV_TX_OK;
3229 }
3230
3231 if (likely(tso)) {
3232 if (likely(hw->mac_type != e1000_82544))
3233 tx_ring->last_tx_tso = true;
3234 tx_flags |= E1000_TX_FLAGS_TSO;
3235 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3236 tx_flags |= E1000_TX_FLAGS_CSUM;
3237
3238 if (protocol == htons(ETH_P_IP))
3239 tx_flags |= E1000_TX_FLAGS_IPV4;
3240
3241 if (unlikely(skb->no_fcs))
3242 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3243
3244 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3245 nr_frags, mss);
3246
3247 if (count) {
3248 /* The descriptors needed is higher than other Intel drivers
3249 * due to a number of workarounds. The breakdown is below:
3250 * Data descriptors: MAX_SKB_FRAGS + 1
3251 * Context Descriptor: 1
3252 * Keep head from touching tail: 2
3253 * Workarounds: 3
3254 */
3255 int desc_needed = MAX_SKB_FRAGS + 7;
3256
3257 netdev_sent_queue(dev: netdev, bytes: skb->len);
3258 skb_tx_timestamp(skb);
3259
3260 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3261
3262 /* 82544 potentially requires twice as many data descriptors
3263 * in order to guarantee buffers don't end on evenly-aligned
3264 * dwords
3265 */
3266 if (adapter->pcix_82544)
3267 desc_needed += MAX_SKB_FRAGS + 1;
3268
3269 /* Make sure there is space in the ring for the next send. */
3270 e1000_maybe_stop_tx(netdev, tx_ring, size: desc_needed);
3271
3272 if (!netdev_xmit_more() ||
3273 netif_xmit_stopped(dev_queue: netdev_get_tx_queue(dev: netdev, index: 0))) {
3274 writel(val: tx_ring->next_to_use, addr: hw->hw_addr + tx_ring->tdt);
3275 }
3276 } else {
3277 dev_kfree_skb_any(skb);
3278 tx_ring->buffer_info[first].time_stamp = 0;
3279 tx_ring->next_to_use = first;
3280 }
3281
3282 return NETDEV_TX_OK;
3283}
3284
3285#define NUM_REGS 38 /* 1 based count */
3286static void e1000_regdump(struct e1000_adapter *adapter)
3287{
3288 struct e1000_hw *hw = &adapter->hw;
3289 u32 regs[NUM_REGS];
3290 u32 *regs_buff = regs;
3291 int i = 0;
3292
3293 static const char * const reg_name[] = {
3294 "CTRL", "STATUS",
3295 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3296 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3297 "TIDV", "TXDCTL", "TADV", "TARC0",
3298 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3299 "TXDCTL1", "TARC1",
3300 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3301 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3302 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3303 };
3304
3305 regs_buff[0] = er32(CTRL);
3306 regs_buff[1] = er32(STATUS);
3307
3308 regs_buff[2] = er32(RCTL);
3309 regs_buff[3] = er32(RDLEN);
3310 regs_buff[4] = er32(RDH);
3311 regs_buff[5] = er32(RDT);
3312 regs_buff[6] = er32(RDTR);
3313
3314 regs_buff[7] = er32(TCTL);
3315 regs_buff[8] = er32(TDBAL);
3316 regs_buff[9] = er32(TDBAH);
3317 regs_buff[10] = er32(TDLEN);
3318 regs_buff[11] = er32(TDH);
3319 regs_buff[12] = er32(TDT);
3320 regs_buff[13] = er32(TIDV);
3321 regs_buff[14] = er32(TXDCTL);
3322 regs_buff[15] = er32(TADV);
3323 regs_buff[16] = er32(TARC0);
3324
3325 regs_buff[17] = er32(TDBAL1);
3326 regs_buff[18] = er32(TDBAH1);
3327 regs_buff[19] = er32(TDLEN1);
3328 regs_buff[20] = er32(TDH1);
3329 regs_buff[21] = er32(TDT1);
3330 regs_buff[22] = er32(TXDCTL1);
3331 regs_buff[23] = er32(TARC1);
3332 regs_buff[24] = er32(CTRL_EXT);
3333 regs_buff[25] = er32(ERT);
3334 regs_buff[26] = er32(RDBAL0);
3335 regs_buff[27] = er32(RDBAH0);
3336 regs_buff[28] = er32(TDFH);
3337 regs_buff[29] = er32(TDFT);
3338 regs_buff[30] = er32(TDFHS);
3339 regs_buff[31] = er32(TDFTS);
3340 regs_buff[32] = er32(TDFPC);
3341 regs_buff[33] = er32(RDFH);
3342 regs_buff[34] = er32(RDFT);
3343 regs_buff[35] = er32(RDFHS);
3344 regs_buff[36] = er32(RDFTS);
3345 regs_buff[37] = er32(RDFPC);
3346
3347 pr_info("Register dump\n");
3348 for (i = 0; i < NUM_REGS; i++)
3349 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3350}
3351
3352/*
3353 * e1000_dump: Print registers, tx ring and rx ring
3354 */
3355static void e1000_dump(struct e1000_adapter *adapter)
3356{
3357 /* this code doesn't handle multiple rings */
3358 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3359 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3360 int i;
3361
3362 if (!netif_msg_hw(adapter))
3363 return;
3364
3365 /* Print Registers */
3366 e1000_regdump(adapter);
3367
3368 /* transmit dump */
3369 pr_info("TX Desc ring0 dump\n");
3370
3371 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372 *
3373 * Legacy Transmit Descriptor
3374 * +--------------------------------------------------------------+
3375 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3376 * +--------------------------------------------------------------+
3377 * 8 | Special | CSS | Status | CMD | CSO | Length |
3378 * +--------------------------------------------------------------+
3379 * 63 48 47 36 35 32 31 24 23 16 15 0
3380 *
3381 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382 * 63 48 47 40 39 32 31 16 15 8 7 0
3383 * +----------------------------------------------------------------+
3384 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3385 * +----------------------------------------------------------------+
3386 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3387 * +----------------------------------------------------------------+
3388 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3389 *
3390 * Extended Data Descriptor (DTYP=0x1)
3391 * +----------------------------------------------------------------+
3392 * 0 | Buffer Address [63:0] |
3393 * +----------------------------------------------------------------+
3394 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3395 * +----------------------------------------------------------------+
3396 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3397 */
3398 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3399 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3400
3401 if (!netif_msg_tx_done(adapter))
3402 goto rx_ring_summary;
3403
3404 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3407 struct my_u { __le64 a; __le64 b; };
3408 struct my_u *u = (struct my_u *)tx_desc;
3409 const char *type;
3410
3411 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412 type = "NTC/U";
3413 else if (i == tx_ring->next_to_use)
3414 type = "NTU";
3415 else if (i == tx_ring->next_to_clean)
3416 type = "NTC";
3417 else
3418 type = "";
3419
3420 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3421 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422 le64_to_cpu(u->a), le64_to_cpu(u->b),
3423 (u64)buffer_info->dma, buffer_info->length,
3424 buffer_info->next_to_watch,
3425 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3426 }
3427
3428rx_ring_summary:
3429 /* receive dump */
3430 pr_info("\nRX Desc ring dump\n");
3431
3432 /* Legacy Receive Descriptor Format
3433 *
3434 * +-----------------------------------------------------+
3435 * | Buffer Address [63:0] |
3436 * +-----------------------------------------------------+
3437 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3438 * +-----------------------------------------------------+
3439 * 63 48 47 40 39 32 31 16 15 0
3440 */
3441 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3442
3443 if (!netif_msg_rx_status(adapter))
3444 goto exit;
3445
3446 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3447 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3448 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3449 struct my_u { __le64 a; __le64 b; };
3450 struct my_u *u = (struct my_u *)rx_desc;
3451 const char *type;
3452
3453 if (i == rx_ring->next_to_use)
3454 type = "NTU";
3455 else if (i == rx_ring->next_to_clean)
3456 type = "NTC";
3457 else
3458 type = "";
3459
3460 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3461 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3462 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3463 } /* for */
3464
3465 /* dump the descriptor caches */
3466 /* rx */
3467 pr_info("Rx descriptor cache in 64bit format\n");
3468 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3469 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3470 i,
3471 readl(adapter->hw.hw_addr + i+4),
3472 readl(adapter->hw.hw_addr + i),
3473 readl(adapter->hw.hw_addr + i+12),
3474 readl(adapter->hw.hw_addr + i+8));
3475 }
3476 /* tx */
3477 pr_info("Tx descriptor cache in 64bit format\n");
3478 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3479 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3480 i,
3481 readl(adapter->hw.hw_addr + i+4),
3482 readl(adapter->hw.hw_addr + i),
3483 readl(adapter->hw.hw_addr + i+12),
3484 readl(adapter->hw.hw_addr + i+8));
3485 }
3486exit:
3487 return;
3488}
3489
3490/**
3491 * e1000_tx_timeout - Respond to a Tx Hang
3492 * @netdev: network interface device structure
3493 * @txqueue: number of the Tx queue that hung (unused)
3494 **/
3495static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3496{
3497 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
3498
3499 /* Do the reset outside of interrupt context */
3500 adapter->tx_timeout_count++;
3501 schedule_work(work: &adapter->reset_task);
3502}
3503
3504static void e1000_reset_task(struct work_struct *work)
3505{
3506 struct e1000_adapter *adapter =
3507 container_of(work, struct e1000_adapter, reset_task);
3508
3509 e_err(drv, "Reset adapter\n");
3510 e1000_reinit_locked(adapter);
3511}
3512
3513/**
3514 * e1000_change_mtu - Change the Maximum Transfer Unit
3515 * @netdev: network interface device structure
3516 * @new_mtu: new value for maximum frame size
3517 *
3518 * Returns 0 on success, negative on failure
3519 **/
3520static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3521{
3522 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
3523 struct e1000_hw *hw = &adapter->hw;
3524 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3525
3526 /* Adapter-specific max frame size limits. */
3527 switch (hw->mac_type) {
3528 case e1000_undefined ... e1000_82542_rev2_1:
3529 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3530 e_err(probe, "Jumbo Frames not supported.\n");
3531 return -EINVAL;
3532 }
3533 break;
3534 default:
3535 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3536 break;
3537 }
3538
3539 while (test_and_set_bit(nr: __E1000_RESETTING, addr: &adapter->flags))
3540 msleep(msecs: 1);
3541 /* e1000_down has a dependency on max_frame_size */
3542 hw->max_frame_size = max_frame;
3543 if (netif_running(dev: netdev)) {
3544 /* prevent buffers from being reallocated */
3545 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3546 e1000_down(adapter);
3547 }
3548
3549 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3550 * means we reserve 2 more, this pushes us to allocate from the next
3551 * larger slab size.
3552 * i.e. RXBUFFER_2048 --> size-4096 slab
3553 * however with the new *_jumbo_rx* routines, jumbo receives will use
3554 * fragmented skbs
3555 */
3556
3557 if (max_frame <= E1000_RXBUFFER_2048)
3558 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3559 else
3560#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3561 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3562#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3563 adapter->rx_buffer_len = PAGE_SIZE;
3564#endif
3565
3566 /* adjust allocation if LPE protects us, and we aren't using SBP */
3567 if (!hw->tbi_compatibility_on &&
3568 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3569 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3570 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3571
3572 netdev_dbg(netdev, "changing MTU from %d to %d\n",
3573 netdev->mtu, new_mtu);
3574 netdev->mtu = new_mtu;
3575
3576 if (netif_running(dev: netdev))
3577 e1000_up(adapter);
3578 else
3579 e1000_reset(adapter);
3580
3581 clear_bit(nr: __E1000_RESETTING, addr: &adapter->flags);
3582
3583 return 0;
3584}
3585
3586/**
3587 * e1000_update_stats - Update the board statistics counters
3588 * @adapter: board private structure
3589 **/
3590void e1000_update_stats(struct e1000_adapter *adapter)
3591{
3592 struct net_device *netdev = adapter->netdev;
3593 struct e1000_hw *hw = &adapter->hw;
3594 struct pci_dev *pdev = adapter->pdev;
3595 unsigned long flags;
3596 u16 phy_tmp;
3597
3598#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3599
3600 /* Prevent stats update while adapter is being reset, or if the pci
3601 * connection is down.
3602 */
3603 if (adapter->link_speed == 0)
3604 return;
3605 if (pci_channel_offline(pdev))
3606 return;
3607
3608 spin_lock_irqsave(&adapter->stats_lock, flags);
3609
3610 /* these counters are modified from e1000_tbi_adjust_stats,
3611 * called from the interrupt context, so they must only
3612 * be written while holding adapter->stats_lock
3613 */
3614
3615 adapter->stats.crcerrs += er32(CRCERRS);
3616 adapter->stats.gprc += er32(GPRC);
3617 adapter->stats.gorcl += er32(GORCL);
3618 adapter->stats.gorch += er32(GORCH);
3619 adapter->stats.bprc += er32(BPRC);
3620 adapter->stats.mprc += er32(MPRC);
3621 adapter->stats.roc += er32(ROC);
3622
3623 adapter->stats.prc64 += er32(PRC64);
3624 adapter->stats.prc127 += er32(PRC127);
3625 adapter->stats.prc255 += er32(PRC255);
3626 adapter->stats.prc511 += er32(PRC511);
3627 adapter->stats.prc1023 += er32(PRC1023);
3628 adapter->stats.prc1522 += er32(PRC1522);
3629
3630 adapter->stats.symerrs += er32(SYMERRS);
3631 adapter->stats.mpc += er32(MPC);
3632 adapter->stats.scc += er32(SCC);
3633 adapter->stats.ecol += er32(ECOL);
3634 adapter->stats.mcc += er32(MCC);
3635 adapter->stats.latecol += er32(LATECOL);
3636 adapter->stats.dc += er32(DC);
3637 adapter->stats.sec += er32(SEC);
3638 adapter->stats.rlec += er32(RLEC);
3639 adapter->stats.xonrxc += er32(XONRXC);
3640 adapter->stats.xontxc += er32(XONTXC);
3641 adapter->stats.xoffrxc += er32(XOFFRXC);
3642 adapter->stats.xofftxc += er32(XOFFTXC);
3643 adapter->stats.fcruc += er32(FCRUC);
3644 adapter->stats.gptc += er32(GPTC);
3645 adapter->stats.gotcl += er32(GOTCL);
3646 adapter->stats.gotch += er32(GOTCH);
3647 adapter->stats.rnbc += er32(RNBC);
3648 adapter->stats.ruc += er32(RUC);
3649 adapter->stats.rfc += er32(RFC);
3650 adapter->stats.rjc += er32(RJC);
3651 adapter->stats.torl += er32(TORL);
3652 adapter->stats.torh += er32(TORH);
3653 adapter->stats.totl += er32(TOTL);
3654 adapter->stats.toth += er32(TOTH);
3655 adapter->stats.tpr += er32(TPR);
3656
3657 adapter->stats.ptc64 += er32(PTC64);
3658 adapter->stats.ptc127 += er32(PTC127);
3659 adapter->stats.ptc255 += er32(PTC255);
3660 adapter->stats.ptc511 += er32(PTC511);
3661 adapter->stats.ptc1023 += er32(PTC1023);
3662 adapter->stats.ptc1522 += er32(PTC1522);
3663
3664 adapter->stats.mptc += er32(MPTC);
3665 adapter->stats.bptc += er32(BPTC);
3666
3667 /* used for adaptive IFS */
3668
3669 hw->tx_packet_delta = er32(TPT);
3670 adapter->stats.tpt += hw->tx_packet_delta;
3671 hw->collision_delta = er32(COLC);
3672 adapter->stats.colc += hw->collision_delta;
3673
3674 if (hw->mac_type >= e1000_82543) {
3675 adapter->stats.algnerrc += er32(ALGNERRC);
3676 adapter->stats.rxerrc += er32(RXERRC);
3677 adapter->stats.tncrs += er32(TNCRS);
3678 adapter->stats.cexterr += er32(CEXTERR);
3679 adapter->stats.tsctc += er32(TSCTC);
3680 adapter->stats.tsctfc += er32(TSCTFC);
3681 }
3682
3683 /* Fill out the OS statistics structure */
3684 netdev->stats.multicast = adapter->stats.mprc;
3685 netdev->stats.collisions = adapter->stats.colc;
3686
3687 /* Rx Errors */
3688
3689 /* RLEC on some newer hardware can be incorrect so build
3690 * our own version based on RUC and ROC
3691 */
3692 netdev->stats.rx_errors = adapter->stats.rxerrc +
3693 adapter->stats.crcerrs + adapter->stats.algnerrc +
3694 adapter->stats.ruc + adapter->stats.roc +
3695 adapter->stats.cexterr;
3696 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3697 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3698 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3699 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3700 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3701
3702 /* Tx Errors */
3703 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3704 netdev->stats.tx_errors = adapter->stats.txerrc;
3705 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3706 netdev->stats.tx_window_errors = adapter->stats.latecol;
3707 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3708 if (hw->bad_tx_carr_stats_fd &&
3709 adapter->link_duplex == FULL_DUPLEX) {
3710 netdev->stats.tx_carrier_errors = 0;
3711 adapter->stats.tncrs = 0;
3712 }
3713
3714 /* Tx Dropped needs to be maintained elsewhere */
3715
3716 /* Phy Stats */
3717 if (hw->media_type == e1000_media_type_copper) {
3718 if ((adapter->link_speed == SPEED_1000) &&
3719 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, phy_data: &phy_tmp))) {
3720 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3721 adapter->phy_stats.idle_errors += phy_tmp;
3722 }
3723
3724 if ((hw->mac_type <= e1000_82546) &&
3725 (hw->phy_type == e1000_phy_m88) &&
3726 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, phy_data: &phy_tmp))
3727 adapter->phy_stats.receive_errors += phy_tmp;
3728 }
3729
3730 /* Management Stats */
3731 if (hw->has_smbus) {
3732 adapter->stats.mgptc += er32(MGTPTC);
3733 adapter->stats.mgprc += er32(MGTPRC);
3734 adapter->stats.mgpdc += er32(MGTPDC);
3735 }
3736
3737 spin_unlock_irqrestore(lock: &adapter->stats_lock, flags);
3738}
3739
3740/**
3741 * e1000_intr - Interrupt Handler
3742 * @irq: interrupt number
3743 * @data: pointer to a network interface device structure
3744 **/
3745static irqreturn_t e1000_intr(int irq, void *data)
3746{
3747 struct net_device *netdev = data;
3748 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
3749 struct e1000_hw *hw = &adapter->hw;
3750 u32 icr = er32(ICR);
3751
3752 if (unlikely((!icr)))
3753 return IRQ_NONE; /* Not our interrupt */
3754
3755 /* we might have caused the interrupt, but the above
3756 * read cleared it, and just in case the driver is
3757 * down there is nothing to do so return handled
3758 */
3759 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3760 return IRQ_HANDLED;
3761
3762 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3763 hw->get_link_status = 1;
3764 /* guard against interrupt when we're going down */
3765 if (!test_bit(__E1000_DOWN, &adapter->flags))
3766 schedule_delayed_work(dwork: &adapter->watchdog_task, delay: 1);
3767 }
3768
3769 /* disable interrupts, without the synchronize_irq bit */
3770 ew32(IMC, ~0);
3771 E1000_WRITE_FLUSH();
3772
3773 if (likely(napi_schedule_prep(&adapter->napi))) {
3774 adapter->total_tx_bytes = 0;
3775 adapter->total_tx_packets = 0;
3776 adapter->total_rx_bytes = 0;
3777 adapter->total_rx_packets = 0;
3778 __napi_schedule(n: &adapter->napi);
3779 } else {
3780 /* this really should not happen! if it does it is basically a
3781 * bug, but not a hard error, so enable ints and continue
3782 */
3783 if (!test_bit(__E1000_DOWN, &adapter->flags))
3784 e1000_irq_enable(adapter);
3785 }
3786
3787 return IRQ_HANDLED;
3788}
3789
3790/**
3791 * e1000_clean - NAPI Rx polling callback
3792 * @napi: napi struct containing references to driver info
3793 * @budget: budget given to driver for receive packets
3794 **/
3795static int e1000_clean(struct napi_struct *napi, int budget)
3796{
3797 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3798 napi);
3799 int tx_clean_complete = 0, work_done = 0;
3800
3801 tx_clean_complete = e1000_clean_tx_irq(adapter, tx_ring: &adapter->tx_ring[0]);
3802
3803 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3804
3805 if (!tx_clean_complete || work_done == budget)
3806 return budget;
3807
3808 /* Exit the polling mode, but don't re-enable interrupts if stack might
3809 * poll us due to busy-polling
3810 */
3811 if (likely(napi_complete_done(napi, work_done))) {
3812 if (likely(adapter->itr_setting & 3))
3813 e1000_set_itr(adapter);
3814 if (!test_bit(__E1000_DOWN, &adapter->flags))
3815 e1000_irq_enable(adapter);
3816 }
3817
3818 return work_done;
3819}
3820
3821/**
3822 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3823 * @adapter: board private structure
3824 * @tx_ring: ring to clean
3825 **/
3826static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3827 struct e1000_tx_ring *tx_ring)
3828{
3829 struct e1000_hw *hw = &adapter->hw;
3830 struct net_device *netdev = adapter->netdev;
3831 struct e1000_tx_desc *tx_desc, *eop_desc;
3832 struct e1000_tx_buffer *buffer_info;
3833 unsigned int i, eop;
3834 unsigned int count = 0;
3835 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3836 unsigned int bytes_compl = 0, pkts_compl = 0;
3837
3838 i = tx_ring->next_to_clean;
3839 eop = tx_ring->buffer_info[i].next_to_watch;
3840 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3841
3842 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3843 (count < tx_ring->count)) {
3844 bool cleaned = false;
3845 dma_rmb(); /* read buffer_info after eop_desc */
3846 for ( ; !cleaned; count++) {
3847 tx_desc = E1000_TX_DESC(*tx_ring, i);
3848 buffer_info = &tx_ring->buffer_info[i];
3849 cleaned = (i == eop);
3850
3851 if (cleaned) {
3852 total_tx_packets += buffer_info->segs;
3853 total_tx_bytes += buffer_info->bytecount;
3854 if (buffer_info->skb) {
3855 bytes_compl += buffer_info->skb->len;
3856 pkts_compl++;
3857 }
3858
3859 }
3860 e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3861 budget: 64);
3862 tx_desc->upper.data = 0;
3863
3864 if (unlikely(++i == tx_ring->count))
3865 i = 0;
3866 }
3867
3868 eop = tx_ring->buffer_info[i].next_to_watch;
3869 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870 }
3871
3872 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3873 * which will reuse the cleaned buffers.
3874 */
3875 smp_store_release(&tx_ring->next_to_clean, i);
3876
3877 netdev_completed_queue(dev: netdev, pkts: pkts_compl, bytes: bytes_compl);
3878
3879#define TX_WAKE_THRESHOLD 32
3880 if (unlikely(count && netif_carrier_ok(netdev) &&
3881 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3882 /* Make sure that anybody stopping the queue after this
3883 * sees the new next_to_clean.
3884 */
3885 smp_mb();
3886
3887 if (netif_queue_stopped(dev: netdev) &&
3888 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3889 netif_wake_queue(dev: netdev);
3890 ++adapter->restart_queue;
3891 }
3892 }
3893
3894 if (adapter->detect_tx_hung) {
3895 /* Detect a transmit hang in hardware, this serializes the
3896 * check with the clearing of time_stamp and movement of i
3897 */
3898 adapter->detect_tx_hung = false;
3899 if (tx_ring->buffer_info[eop].time_stamp &&
3900 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3901 (adapter->tx_timeout_factor * HZ)) &&
3902 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3903
3904 /* detected Tx unit hang */
3905 e_err(drv, "Detected Tx Unit Hang\n"
3906 " Tx Queue <%lu>\n"
3907 " TDH <%x>\n"
3908 " TDT <%x>\n"
3909 " next_to_use <%x>\n"
3910 " next_to_clean <%x>\n"
3911 "buffer_info[next_to_clean]\n"
3912 " time_stamp <%lx>\n"
3913 " next_to_watch <%x>\n"
3914 " jiffies <%lx>\n"
3915 " next_to_watch.status <%x>\n",
3916 (unsigned long)(tx_ring - adapter->tx_ring),
3917 readl(hw->hw_addr + tx_ring->tdh),
3918 readl(hw->hw_addr + tx_ring->tdt),
3919 tx_ring->next_to_use,
3920 tx_ring->next_to_clean,
3921 tx_ring->buffer_info[eop].time_stamp,
3922 eop,
3923 jiffies,
3924 eop_desc->upper.fields.status);
3925 e1000_dump(adapter);
3926 netif_stop_queue(dev: netdev);
3927 }
3928 }
3929 adapter->total_tx_bytes += total_tx_bytes;
3930 adapter->total_tx_packets += total_tx_packets;
3931 netdev->stats.tx_bytes += total_tx_bytes;
3932 netdev->stats.tx_packets += total_tx_packets;
3933 return count < tx_ring->count;
3934}
3935
3936/**
3937 * e1000_rx_checksum - Receive Checksum Offload for 82543
3938 * @adapter: board private structure
3939 * @status_err: receive descriptor status and error fields
3940 * @csum: receive descriptor csum field
3941 * @skb: socket buffer with received data
3942 **/
3943static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3944 u32 csum, struct sk_buff *skb)
3945{
3946 struct e1000_hw *hw = &adapter->hw;
3947 u16 status = (u16)status_err;
3948 u8 errors = (u8)(status_err >> 24);
3949
3950 skb_checksum_none_assert(skb);
3951
3952 /* 82543 or newer only */
3953 if (unlikely(hw->mac_type < e1000_82543))
3954 return;
3955 /* Ignore Checksum bit is set */
3956 if (unlikely(status & E1000_RXD_STAT_IXSM))
3957 return;
3958 /* TCP/UDP checksum error bit is set */
3959 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3960 /* let the stack verify checksum errors */
3961 adapter->hw_csum_err++;
3962 return;
3963 }
3964 /* TCP/UDP Checksum has not been calculated */
3965 if (!(status & E1000_RXD_STAT_TCPCS))
3966 return;
3967
3968 /* It must be a TCP or UDP packet with a valid checksum */
3969 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3970 /* TCP checksum is good */
3971 skb->ip_summed = CHECKSUM_UNNECESSARY;
3972 }
3973 adapter->hw_csum_good++;
3974}
3975
3976/**
3977 * e1000_consume_page - helper function for jumbo Rx path
3978 * @bi: software descriptor shadow data
3979 * @skb: skb being modified
3980 * @length: length of data being added
3981 **/
3982static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3983 u16 length)
3984{
3985 bi->rxbuf.page = NULL;
3986 skb->len += length;
3987 skb->data_len += length;
3988 skb->truesize += PAGE_SIZE;
3989}
3990
3991/**
3992 * e1000_receive_skb - helper function to handle rx indications
3993 * @adapter: board private structure
3994 * @status: descriptor status field as written by hardware
3995 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3996 * @skb: pointer to sk_buff to be indicated to stack
3997 */
3998static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3999 __le16 vlan, struct sk_buff *skb)
4000{
4001 skb->protocol = eth_type_trans(skb, dev: adapter->netdev);
4002
4003 if (status & E1000_RXD_STAT_VP) {
4004 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4005
4006 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci: vid);
4007 }
4008 napi_gro_receive(napi: &adapter->napi, skb);
4009}
4010
4011/**
4012 * e1000_tbi_adjust_stats
4013 * @hw: Struct containing variables accessed by shared code
4014 * @stats: point to stats struct
4015 * @frame_len: The length of the frame in question
4016 * @mac_addr: The Ethernet destination address of the frame in question
4017 *
4018 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4019 */
4020static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4021 struct e1000_hw_stats *stats,
4022 u32 frame_len, const u8 *mac_addr)
4023{
4024 u64 carry_bit;
4025
4026 /* First adjust the frame length. */
4027 frame_len--;
4028 /* We need to adjust the statistics counters, since the hardware
4029 * counters overcount this packet as a CRC error and undercount
4030 * the packet as a good packet
4031 */
4032 /* This packet should not be counted as a CRC error. */
4033 stats->crcerrs--;
4034 /* This packet does count as a Good Packet Received. */
4035 stats->gprc++;
4036
4037 /* Adjust the Good Octets received counters */
4038 carry_bit = 0x80000000 & stats->gorcl;
4039 stats->gorcl += frame_len;
4040 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4041 * Received Count) was one before the addition,
4042 * AND it is zero after, then we lost the carry out,
4043 * need to add one to Gorch (Good Octets Received Count High).
4044 * This could be simplified if all environments supported
4045 * 64-bit integers.
4046 */
4047 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4048 stats->gorch++;
4049 /* Is this a broadcast or multicast? Check broadcast first,
4050 * since the test for a multicast frame will test positive on
4051 * a broadcast frame.
4052 */
4053 if (is_broadcast_ether_addr(addr: mac_addr))
4054 stats->bprc++;
4055 else if (is_multicast_ether_addr(addr: mac_addr))
4056 stats->mprc++;
4057
4058 if (frame_len == hw->max_frame_size) {
4059 /* In this case, the hardware has overcounted the number of
4060 * oversize frames.
4061 */
4062 if (stats->roc > 0)
4063 stats->roc--;
4064 }
4065
4066 /* Adjust the bin counters when the extra byte put the frame in the
4067 * wrong bin. Remember that the frame_len was adjusted above.
4068 */
4069 if (frame_len == 64) {
4070 stats->prc64++;
4071 stats->prc127--;
4072 } else if (frame_len == 127) {
4073 stats->prc127++;
4074 stats->prc255--;
4075 } else if (frame_len == 255) {
4076 stats->prc255++;
4077 stats->prc511--;
4078 } else if (frame_len == 511) {
4079 stats->prc511++;
4080 stats->prc1023--;
4081 } else if (frame_len == 1023) {
4082 stats->prc1023++;
4083 stats->prc1522--;
4084 } else if (frame_len == 1522) {
4085 stats->prc1522++;
4086 }
4087}
4088
4089static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4090 u8 status, u8 errors,
4091 u32 length, const u8 *data)
4092{
4093 struct e1000_hw *hw = &adapter->hw;
4094 u8 last_byte = *(data + length - 1);
4095
4096 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4097 unsigned long irq_flags;
4098
4099 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4100 e1000_tbi_adjust_stats(hw, stats: &adapter->stats, frame_len: length, mac_addr: data);
4101 spin_unlock_irqrestore(lock: &adapter->stats_lock, flags: irq_flags);
4102
4103 return true;
4104 }
4105
4106 return false;
4107}
4108
4109static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4110 unsigned int bufsz)
4111{
4112 struct sk_buff *skb = napi_alloc_skb(napi: &adapter->napi, length: bufsz);
4113
4114 if (unlikely(!skb))
4115 adapter->alloc_rx_buff_failed++;
4116 return skb;
4117}
4118
4119/**
4120 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4121 * @adapter: board private structure
4122 * @rx_ring: ring to clean
4123 * @work_done: amount of napi work completed this call
4124 * @work_to_do: max amount of work allowed for this call to do
4125 *
4126 * the return value indicates whether actual cleaning was done, there
4127 * is no guarantee that everything was cleaned
4128 */
4129static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4130 struct e1000_rx_ring *rx_ring,
4131 int *work_done, int work_to_do)
4132{
4133 struct net_device *netdev = adapter->netdev;
4134 struct pci_dev *pdev = adapter->pdev;
4135 struct e1000_rx_desc *rx_desc, *next_rxd;
4136 struct e1000_rx_buffer *buffer_info, *next_buffer;
4137 u32 length;
4138 unsigned int i;
4139 int cleaned_count = 0;
4140 bool cleaned = false;
4141 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4142
4143 i = rx_ring->next_to_clean;
4144 rx_desc = E1000_RX_DESC(*rx_ring, i);
4145 buffer_info = &rx_ring->buffer_info[i];
4146
4147 while (rx_desc->status & E1000_RXD_STAT_DD) {
4148 struct sk_buff *skb;
4149 u8 status;
4150
4151 if (*work_done >= work_to_do)
4152 break;
4153 (*work_done)++;
4154 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4155
4156 status = rx_desc->status;
4157
4158 if (++i == rx_ring->count)
4159 i = 0;
4160
4161 next_rxd = E1000_RX_DESC(*rx_ring, i);
4162 prefetch(next_rxd);
4163
4164 next_buffer = &rx_ring->buffer_info[i];
4165
4166 cleaned = true;
4167 cleaned_count++;
4168 dma_unmap_page(&pdev->dev, buffer_info->dma,
4169 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4170 buffer_info->dma = 0;
4171
4172 length = le16_to_cpu(rx_desc->length);
4173
4174 /* errors is only valid for DD + EOP descriptors */
4175 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4176 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4177 u8 *mapped = page_address(buffer_info->rxbuf.page);
4178
4179 if (e1000_tbi_should_accept(adapter, status,
4180 errors: rx_desc->errors,
4181 length, data: mapped)) {
4182 length--;
4183 } else if (netdev->features & NETIF_F_RXALL) {
4184 goto process_skb;
4185 } else {
4186 /* an error means any chain goes out the window
4187 * too
4188 */
4189 dev_kfree_skb(rx_ring->rx_skb_top);
4190 rx_ring->rx_skb_top = NULL;
4191 goto next_desc;
4192 }
4193 }
4194
4195#define rxtop rx_ring->rx_skb_top
4196process_skb:
4197 if (!(status & E1000_RXD_STAT_EOP)) {
4198 /* this descriptor is only the beginning (or middle) */
4199 if (!rxtop) {
4200 /* this is the beginning of a chain */
4201 rxtop = napi_get_frags(napi: &adapter->napi);
4202 if (!rxtop)
4203 break;
4204
4205 skb_fill_page_desc(rxtop, i: 0,
4206 page: buffer_info->rxbuf.page,
4207 off: 0, size: length);
4208 } else {
4209 /* this is the middle of a chain */
4210 skb_fill_page_desc(rxtop,
4211 skb_shinfo(rxtop)->nr_frags,
4212 page: buffer_info->rxbuf.page, off: 0, size: length);
4213 }
4214 e1000_consume_page(bi: buffer_info, rxtop, length);
4215 goto next_desc;
4216 } else {
4217 if (rxtop) {
4218 /* end of the chain */
4219 skb_fill_page_desc(rxtop,
4220 skb_shinfo(rxtop)->nr_frags,
4221 page: buffer_info->rxbuf.page, off: 0, size: length);
4222 skb = rxtop;
4223 rxtop = NULL;
4224 e1000_consume_page(bi: buffer_info, skb, length);
4225 } else {
4226 struct page *p;
4227 /* no chain, got EOP, this buf is the packet
4228 * copybreak to save the put_page/alloc_page
4229 */
4230 p = buffer_info->rxbuf.page;
4231 if (length <= copybreak) {
4232 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4233 length -= 4;
4234 skb = e1000_alloc_rx_skb(adapter,
4235 bufsz: length);
4236 if (!skb)
4237 break;
4238
4239 memcpy(skb_tail_pointer(skb),
4240 page_address(p), length);
4241
4242 /* re-use the page, so don't erase
4243 * buffer_info->rxbuf.page
4244 */
4245 skb_put(skb, len: length);
4246 e1000_rx_checksum(adapter,
4247 status_err: status | rx_desc->errors << 24,
4248 le16_to_cpu(rx_desc->csum), skb);
4249
4250 total_rx_bytes += skb->len;
4251 total_rx_packets++;
4252
4253 e1000_receive_skb(adapter, status,
4254 vlan: rx_desc->special, skb);
4255 goto next_desc;
4256 } else {
4257 skb = napi_get_frags(napi: &adapter->napi);
4258 if (!skb) {
4259 adapter->alloc_rx_buff_failed++;
4260 break;
4261 }
4262 skb_fill_page_desc(skb, i: 0, page: p, off: 0,
4263 size: length);
4264 e1000_consume_page(bi: buffer_info, skb,
4265 length);
4266 }
4267 }
4268 }
4269
4270 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4271 e1000_rx_checksum(adapter,
4272 status_err: (u32)(status) |
4273 ((u32)(rx_desc->errors) << 24),
4274 le16_to_cpu(rx_desc->csum), skb);
4275
4276 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4277 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4278 pskb_trim(skb, len: skb->len - 4);
4279 total_rx_packets++;
4280
4281 if (status & E1000_RXD_STAT_VP) {
4282 __le16 vlan = rx_desc->special;
4283 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4284
4285 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci: vid);
4286 }
4287
4288 napi_gro_frags(napi: &adapter->napi);
4289
4290next_desc:
4291 rx_desc->status = 0;
4292
4293 /* return some buffers to hardware, one at a time is too slow */
4294 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4295 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4296 cleaned_count = 0;
4297 }
4298
4299 /* use prefetched values */
4300 rx_desc = next_rxd;
4301 buffer_info = next_buffer;
4302 }
4303 rx_ring->next_to_clean = i;
4304
4305 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4306 if (cleaned_count)
4307 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4308
4309 adapter->total_rx_packets += total_rx_packets;
4310 adapter->total_rx_bytes += total_rx_bytes;
4311 netdev->stats.rx_bytes += total_rx_bytes;
4312 netdev->stats.rx_packets += total_rx_packets;
4313 return cleaned;
4314}
4315
4316/* this should improve performance for small packets with large amounts
4317 * of reassembly being done in the stack
4318 */
4319static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4320 struct e1000_rx_buffer *buffer_info,
4321 u32 length, const void *data)
4322{
4323 struct sk_buff *skb;
4324
4325 if (length > copybreak)
4326 return NULL;
4327
4328 skb = e1000_alloc_rx_skb(adapter, bufsz: length);
4329 if (!skb)
4330 return NULL;
4331
4332 dma_sync_single_for_cpu(dev: &adapter->pdev->dev, addr: buffer_info->dma,
4333 size: length, dir: DMA_FROM_DEVICE);
4334
4335 skb_put_data(skb, data, len: length);
4336
4337 return skb;
4338}
4339
4340/**
4341 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4342 * @adapter: board private structure
4343 * @rx_ring: ring to clean
4344 * @work_done: amount of napi work completed this call
4345 * @work_to_do: max amount of work allowed for this call to do
4346 */
4347static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4348 struct e1000_rx_ring *rx_ring,
4349 int *work_done, int work_to_do)
4350{
4351 struct net_device *netdev = adapter->netdev;
4352 struct pci_dev *pdev = adapter->pdev;
4353 struct e1000_rx_desc *rx_desc, *next_rxd;
4354 struct e1000_rx_buffer *buffer_info, *next_buffer;
4355 u32 length;
4356 unsigned int i;
4357 int cleaned_count = 0;
4358 bool cleaned = false;
4359 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4360
4361 i = rx_ring->next_to_clean;
4362 rx_desc = E1000_RX_DESC(*rx_ring, i);
4363 buffer_info = &rx_ring->buffer_info[i];
4364
4365 while (rx_desc->status & E1000_RXD_STAT_DD) {
4366 struct sk_buff *skb;
4367 u8 *data;
4368 u8 status;
4369
4370 if (*work_done >= work_to_do)
4371 break;
4372 (*work_done)++;
4373 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4374
4375 status = rx_desc->status;
4376 length = le16_to_cpu(rx_desc->length);
4377
4378 data = buffer_info->rxbuf.data;
4379 prefetch(data);
4380 skb = e1000_copybreak(adapter, buffer_info, length, data);
4381 if (!skb) {
4382 unsigned int frag_len = e1000_frag_len(a: adapter);
4383
4384 skb = napi_build_skb(data: data - E1000_HEADROOM, frag_size: frag_len);
4385 if (!skb) {
4386 adapter->alloc_rx_buff_failed++;
4387 break;
4388 }
4389
4390 skb_reserve(skb, E1000_HEADROOM);
4391 dma_unmap_single(&pdev->dev, buffer_info->dma,
4392 adapter->rx_buffer_len,
4393 DMA_FROM_DEVICE);
4394 buffer_info->dma = 0;
4395 buffer_info->rxbuf.data = NULL;
4396 }
4397
4398 if (++i == rx_ring->count)
4399 i = 0;
4400
4401 next_rxd = E1000_RX_DESC(*rx_ring, i);
4402 prefetch(next_rxd);
4403
4404 next_buffer = &rx_ring->buffer_info[i];
4405
4406 cleaned = true;
4407 cleaned_count++;
4408
4409 /* !EOP means multiple descriptors were used to store a single
4410 * packet, if thats the case we need to toss it. In fact, we
4411 * to toss every packet with the EOP bit clear and the next
4412 * frame that _does_ have the EOP bit set, as it is by
4413 * definition only a frame fragment
4414 */
4415 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4416 adapter->discarding = true;
4417
4418 if (adapter->discarding) {
4419 /* All receives must fit into a single buffer */
4420 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4421 dev_kfree_skb(skb);
4422 if (status & E1000_RXD_STAT_EOP)
4423 adapter->discarding = false;
4424 goto next_desc;
4425 }
4426
4427 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4428 if (e1000_tbi_should_accept(adapter, status,
4429 errors: rx_desc->errors,
4430 length, data)) {
4431 length--;
4432 } else if (netdev->features & NETIF_F_RXALL) {
4433 goto process_skb;
4434 } else {
4435 dev_kfree_skb(skb);
4436 goto next_desc;
4437 }
4438 }
4439
4440process_skb:
4441 total_rx_bytes += (length - 4); /* don't count FCS */
4442 total_rx_packets++;
4443
4444 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4445 /* adjust length to remove Ethernet CRC, this must be
4446 * done after the TBI_ACCEPT workaround above
4447 */
4448 length -= 4;
4449
4450 if (buffer_info->rxbuf.data == NULL)
4451 skb_put(skb, len: length);
4452 else /* copybreak skb */
4453 skb_trim(skb, len: length);
4454
4455 /* Receive Checksum Offload */
4456 e1000_rx_checksum(adapter,
4457 status_err: (u32)(status) |
4458 ((u32)(rx_desc->errors) << 24),
4459 le16_to_cpu(rx_desc->csum), skb);
4460
4461 e1000_receive_skb(adapter, status, vlan: rx_desc->special, skb);
4462
4463next_desc:
4464 rx_desc->status = 0;
4465
4466 /* return some buffers to hardware, one at a time is too slow */
4467 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4468 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4469 cleaned_count = 0;
4470 }
4471
4472 /* use prefetched values */
4473 rx_desc = next_rxd;
4474 buffer_info = next_buffer;
4475 }
4476 rx_ring->next_to_clean = i;
4477
4478 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4479 if (cleaned_count)
4480 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4481
4482 adapter->total_rx_packets += total_rx_packets;
4483 adapter->total_rx_bytes += total_rx_bytes;
4484 netdev->stats.rx_bytes += total_rx_bytes;
4485 netdev->stats.rx_packets += total_rx_packets;
4486 return cleaned;
4487}
4488
4489/**
4490 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4491 * @adapter: address of board private structure
4492 * @rx_ring: pointer to receive ring structure
4493 * @cleaned_count: number of buffers to allocate this pass
4494 **/
4495static void
4496e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4497 struct e1000_rx_ring *rx_ring, int cleaned_count)
4498{
4499 struct pci_dev *pdev = adapter->pdev;
4500 struct e1000_rx_desc *rx_desc;
4501 struct e1000_rx_buffer *buffer_info;
4502 unsigned int i;
4503
4504 i = rx_ring->next_to_use;
4505 buffer_info = &rx_ring->buffer_info[i];
4506
4507 while (cleaned_count--) {
4508 /* allocate a new page if necessary */
4509 if (!buffer_info->rxbuf.page) {
4510 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4511 if (unlikely(!buffer_info->rxbuf.page)) {
4512 adapter->alloc_rx_buff_failed++;
4513 break;
4514 }
4515 }
4516
4517 if (!buffer_info->dma) {
4518 buffer_info->dma = dma_map_page(&pdev->dev,
4519 buffer_info->rxbuf.page, 0,
4520 adapter->rx_buffer_len,
4521 DMA_FROM_DEVICE);
4522 if (dma_mapping_error(dev: &pdev->dev, dma_addr: buffer_info->dma)) {
4523 put_page(page: buffer_info->rxbuf.page);
4524 buffer_info->rxbuf.page = NULL;
4525 buffer_info->dma = 0;
4526 adapter->alloc_rx_buff_failed++;
4527 break;
4528 }
4529 }
4530
4531 rx_desc = E1000_RX_DESC(*rx_ring, i);
4532 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4533
4534 if (unlikely(++i == rx_ring->count))
4535 i = 0;
4536 buffer_info = &rx_ring->buffer_info[i];
4537 }
4538
4539 if (likely(rx_ring->next_to_use != i)) {
4540 rx_ring->next_to_use = i;
4541 if (unlikely(i-- == 0))
4542 i = (rx_ring->count - 1);
4543
4544 /* Force memory writes to complete before letting h/w
4545 * know there are new descriptors to fetch. (Only
4546 * applicable for weak-ordered memory model archs,
4547 * such as IA-64).
4548 */
4549 dma_wmb();
4550 writel(val: i, addr: adapter->hw.hw_addr + rx_ring->rdt);
4551 }
4552}
4553
4554/**
4555 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4556 * @adapter: address of board private structure
4557 * @rx_ring: pointer to ring struct
4558 * @cleaned_count: number of new Rx buffers to try to allocate
4559 **/
4560static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4561 struct e1000_rx_ring *rx_ring,
4562 int cleaned_count)
4563{
4564 struct e1000_hw *hw = &adapter->hw;
4565 struct pci_dev *pdev = adapter->pdev;
4566 struct e1000_rx_desc *rx_desc;
4567 struct e1000_rx_buffer *buffer_info;
4568 unsigned int i;
4569 unsigned int bufsz = adapter->rx_buffer_len;
4570
4571 i = rx_ring->next_to_use;
4572 buffer_info = &rx_ring->buffer_info[i];
4573
4574 while (cleaned_count--) {
4575 void *data;
4576
4577 if (buffer_info->rxbuf.data)
4578 goto skip;
4579
4580 data = e1000_alloc_frag(a: adapter);
4581 if (!data) {
4582 /* Better luck next round */
4583 adapter->alloc_rx_buff_failed++;
4584 break;
4585 }
4586
4587 /* Fix for errata 23, can't cross 64kB boundary */
4588 if (!e1000_check_64k_bound(adapter, start: data, len: bufsz)) {
4589 void *olddata = data;
4590 e_err(rx_err, "skb align check failed: %u bytes at "
4591 "%p\n", bufsz, data);
4592 /* Try again, without freeing the previous */
4593 data = e1000_alloc_frag(a: adapter);
4594 /* Failed allocation, critical failure */
4595 if (!data) {
4596 skb_free_frag(addr: olddata);
4597 adapter->alloc_rx_buff_failed++;
4598 break;
4599 }
4600
4601 if (!e1000_check_64k_bound(adapter, start: data, len: bufsz)) {
4602 /* give up */
4603 skb_free_frag(addr: data);
4604 skb_free_frag(addr: olddata);
4605 adapter->alloc_rx_buff_failed++;
4606 break;
4607 }
4608
4609 /* Use new allocation */
4610 skb_free_frag(addr: olddata);
4611 }
4612 buffer_info->dma = dma_map_single(&pdev->dev,
4613 data,
4614 adapter->rx_buffer_len,
4615 DMA_FROM_DEVICE);
4616 if (dma_mapping_error(dev: &pdev->dev, dma_addr: buffer_info->dma)) {
4617 skb_free_frag(addr: data);
4618 buffer_info->dma = 0;
4619 adapter->alloc_rx_buff_failed++;
4620 break;
4621 }
4622
4623 /* XXX if it was allocated cleanly it will never map to a
4624 * boundary crossing
4625 */
4626
4627 /* Fix for errata 23, can't cross 64kB boundary */
4628 if (!e1000_check_64k_bound(adapter,
4629 start: (void *)(unsigned long)buffer_info->dma,
4630 len: adapter->rx_buffer_len)) {
4631 e_err(rx_err, "dma align check failed: %u bytes at "
4632 "%p\n", adapter->rx_buffer_len,
4633 (void *)(unsigned long)buffer_info->dma);
4634
4635 dma_unmap_single(&pdev->dev, buffer_info->dma,
4636 adapter->rx_buffer_len,
4637 DMA_FROM_DEVICE);
4638
4639 skb_free_frag(addr: data);
4640 buffer_info->rxbuf.data = NULL;
4641 buffer_info->dma = 0;
4642
4643 adapter->alloc_rx_buff_failed++;
4644 break;
4645 }
4646 buffer_info->rxbuf.data = data;
4647 skip:
4648 rx_desc = E1000_RX_DESC(*rx_ring, i);
4649 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4650
4651 if (unlikely(++i == rx_ring->count))
4652 i = 0;
4653 buffer_info = &rx_ring->buffer_info[i];
4654 }
4655
4656 if (likely(rx_ring->next_to_use != i)) {
4657 rx_ring->next_to_use = i;
4658 if (unlikely(i-- == 0))
4659 i = (rx_ring->count - 1);
4660
4661 /* Force memory writes to complete before letting h/w
4662 * know there are new descriptors to fetch. (Only
4663 * applicable for weak-ordered memory model archs,
4664 * such as IA-64).
4665 */
4666 dma_wmb();
4667 writel(val: i, addr: hw->hw_addr + rx_ring->rdt);
4668 }
4669}
4670
4671/**
4672 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4673 * @adapter: address of board private structure
4674 **/
4675static void e1000_smartspeed(struct e1000_adapter *adapter)
4676{
4677 struct e1000_hw *hw = &adapter->hw;
4678 u16 phy_status;
4679 u16 phy_ctrl;
4680
4681 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4682 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4683 return;
4684
4685 if (adapter->smartspeed == 0) {
4686 /* If Master/Slave config fault is asserted twice,
4687 * we assume back-to-back
4688 */
4689 e1000_read_phy_reg(hw, PHY_1000T_STATUS, phy_data: &phy_status);
4690 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4691 return;
4692 e1000_read_phy_reg(hw, PHY_1000T_STATUS, phy_data: &phy_status);
4693 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4694 return;
4695 e1000_read_phy_reg(hw, PHY_1000T_CTRL, phy_data: &phy_ctrl);
4696 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4697 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4698 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4699 data: phy_ctrl);
4700 adapter->smartspeed++;
4701 if (!e1000_phy_setup_autoneg(hw) &&
4702 !e1000_read_phy_reg(hw, PHY_CTRL,
4703 phy_data: &phy_ctrl)) {
4704 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4705 MII_CR_RESTART_AUTO_NEG);
4706 e1000_write_phy_reg(hw, PHY_CTRL,
4707 data: phy_ctrl);
4708 }
4709 }
4710 return;
4711 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4712 /* If still no link, perhaps using 2/3 pair cable */
4713 e1000_read_phy_reg(hw, PHY_1000T_CTRL, phy_data: &phy_ctrl);
4714 phy_ctrl |= CR_1000T_MS_ENABLE;
4715 e1000_write_phy_reg(hw, PHY_1000T_CTRL, data: phy_ctrl);
4716 if (!e1000_phy_setup_autoneg(hw) &&
4717 !e1000_read_phy_reg(hw, PHY_CTRL, phy_data: &phy_ctrl)) {
4718 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4719 MII_CR_RESTART_AUTO_NEG);
4720 e1000_write_phy_reg(hw, PHY_CTRL, data: phy_ctrl);
4721 }
4722 }
4723 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4724 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4725 adapter->smartspeed = 0;
4726}
4727
4728/**
4729 * e1000_ioctl - handle ioctl calls
4730 * @netdev: pointer to our netdev
4731 * @ifr: pointer to interface request structure
4732 * @cmd: ioctl data
4733 **/
4734static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4735{
4736 switch (cmd) {
4737 case SIOCGMIIPHY:
4738 case SIOCGMIIREG:
4739 case SIOCSMIIREG:
4740 return e1000_mii_ioctl(netdev, ifr, cmd);
4741 default:
4742 return -EOPNOTSUPP;
4743 }
4744}
4745
4746/**
4747 * e1000_mii_ioctl -
4748 * @netdev: pointer to our netdev
4749 * @ifr: pointer to interface request structure
4750 * @cmd: ioctl data
4751 **/
4752static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4753 int cmd)
4754{
4755 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
4756 struct e1000_hw *hw = &adapter->hw;
4757 struct mii_ioctl_data *data = if_mii(rq: ifr);
4758 int retval;
4759 u16 mii_reg;
4760 unsigned long flags;
4761
4762 if (hw->media_type != e1000_media_type_copper)
4763 return -EOPNOTSUPP;
4764
4765 switch (cmd) {
4766 case SIOCGMIIPHY:
4767 data->phy_id = hw->phy_addr;
4768 break;
4769 case SIOCGMIIREG:
4770 spin_lock_irqsave(&adapter->stats_lock, flags);
4771 if (e1000_read_phy_reg(hw, reg_addr: data->reg_num & 0x1F,
4772 phy_data: &data->val_out)) {
4773 spin_unlock_irqrestore(lock: &adapter->stats_lock, flags);
4774 return -EIO;
4775 }
4776 spin_unlock_irqrestore(lock: &adapter->stats_lock, flags);
4777 break;
4778 case SIOCSMIIREG:
4779 if (data->reg_num & ~(0x1F))
4780 return -EFAULT;
4781 mii_reg = data->val_in;
4782 spin_lock_irqsave(&adapter->stats_lock, flags);
4783 if (e1000_write_phy_reg(hw, reg_addr: data->reg_num,
4784 data: mii_reg)) {
4785 spin_unlock_irqrestore(lock: &adapter->stats_lock, flags);
4786 return -EIO;
4787 }
4788 spin_unlock_irqrestore(lock: &adapter->stats_lock, flags);
4789 if (hw->media_type == e1000_media_type_copper) {
4790 switch (data->reg_num) {
4791 case PHY_CTRL:
4792 if (mii_reg & MII_CR_POWER_DOWN)
4793 break;
4794 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4795 hw->autoneg = 1;
4796 hw->autoneg_advertised = 0x2F;
4797 } else {
4798 u32 speed;
4799 if (mii_reg & 0x40)
4800 speed = SPEED_1000;
4801 else if (mii_reg & 0x2000)
4802 speed = SPEED_100;
4803 else
4804 speed = SPEED_10;
4805 retval = e1000_set_spd_dplx(
4806 adapter, spd: speed,
4807 dplx: ((mii_reg & 0x100)
4808 ? DUPLEX_FULL :
4809 DUPLEX_HALF));
4810 if (retval)
4811 return retval;
4812 }
4813 if (netif_running(dev: adapter->netdev))
4814 e1000_reinit_locked(adapter);
4815 else
4816 e1000_reset(adapter);
4817 break;
4818 case M88E1000_PHY_SPEC_CTRL:
4819 case M88E1000_EXT_PHY_SPEC_CTRL:
4820 if (e1000_phy_reset(hw))
4821 return -EIO;
4822 break;
4823 }
4824 } else {
4825 switch (data->reg_num) {
4826 case PHY_CTRL:
4827 if (mii_reg & MII_CR_POWER_DOWN)
4828 break;
4829 if (netif_running(dev: adapter->netdev))
4830 e1000_reinit_locked(adapter);
4831 else
4832 e1000_reset(adapter);
4833 break;
4834 }
4835 }
4836 break;
4837 default:
4838 return -EOPNOTSUPP;
4839 }
4840 return E1000_SUCCESS;
4841}
4842
4843void e1000_pci_set_mwi(struct e1000_hw *hw)
4844{
4845 struct e1000_adapter *adapter = hw->back;
4846 int ret_val = pci_set_mwi(dev: adapter->pdev);
4847
4848 if (ret_val)
4849 e_err(probe, "Error in setting MWI\n");
4850}
4851
4852void e1000_pci_clear_mwi(struct e1000_hw *hw)
4853{
4854 struct e1000_adapter *adapter = hw->back;
4855
4856 pci_clear_mwi(dev: adapter->pdev);
4857}
4858
4859int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4860{
4861 struct e1000_adapter *adapter = hw->back;
4862 return pcix_get_mmrbc(dev: adapter->pdev);
4863}
4864
4865void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4866{
4867 struct e1000_adapter *adapter = hw->back;
4868 pcix_set_mmrbc(dev: adapter->pdev, mmrbc);
4869}
4870
4871void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4872{
4873 outl(value, port);
4874}
4875
4876static bool e1000_vlan_used(struct e1000_adapter *adapter)
4877{
4878 u16 vid;
4879
4880 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4881 return true;
4882 return false;
4883}
4884
4885static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4886 netdev_features_t features)
4887{
4888 struct e1000_hw *hw = &adapter->hw;
4889 u32 ctrl;
4890
4891 ctrl = er32(CTRL);
4892 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4893 /* enable VLAN tag insert/strip */
4894 ctrl |= E1000_CTRL_VME;
4895 } else {
4896 /* disable VLAN tag insert/strip */
4897 ctrl &= ~E1000_CTRL_VME;
4898 }
4899 ew32(CTRL, ctrl);
4900}
4901static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4902 bool filter_on)
4903{
4904 struct e1000_hw *hw = &adapter->hw;
4905 u32 rctl;
4906
4907 if (!test_bit(__E1000_DOWN, &adapter->flags))
4908 e1000_irq_disable(adapter);
4909
4910 __e1000_vlan_mode(adapter, features: adapter->netdev->features);
4911 if (filter_on) {
4912 /* enable VLAN receive filtering */
4913 rctl = er32(RCTL);
4914 rctl &= ~E1000_RCTL_CFIEN;
4915 if (!(adapter->netdev->flags & IFF_PROMISC))
4916 rctl |= E1000_RCTL_VFE;
4917 ew32(RCTL, rctl);
4918 e1000_update_mng_vlan(adapter);
4919 } else {
4920 /* disable VLAN receive filtering */
4921 rctl = er32(RCTL);
4922 rctl &= ~E1000_RCTL_VFE;
4923 ew32(RCTL, rctl);
4924 }
4925
4926 if (!test_bit(__E1000_DOWN, &adapter->flags))
4927 e1000_irq_enable(adapter);
4928}
4929
4930static void e1000_vlan_mode(struct net_device *netdev,
4931 netdev_features_t features)
4932{
4933 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
4934
4935 if (!test_bit(__E1000_DOWN, &adapter->flags))
4936 e1000_irq_disable(adapter);
4937
4938 __e1000_vlan_mode(adapter, features);
4939
4940 if (!test_bit(__E1000_DOWN, &adapter->flags))
4941 e1000_irq_enable(adapter);
4942}
4943
4944static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4945 __be16 proto, u16 vid)
4946{
4947 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
4948 struct e1000_hw *hw = &adapter->hw;
4949 u32 vfta, index;
4950
4951 if ((hw->mng_cookie.status &
4952 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4953 (vid == adapter->mng_vlan_id))
4954 return 0;
4955
4956 if (!e1000_vlan_used(adapter))
4957 e1000_vlan_filter_on_off(adapter, filter_on: true);
4958
4959 /* add VID to filter table */
4960 index = (vid >> 5) & 0x7F;
4961 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4962 vfta |= (1 << (vid & 0x1F));
4963 e1000_write_vfta(hw, offset: index, value: vfta);
4964
4965 set_bit(nr: vid, addr: adapter->active_vlans);
4966
4967 return 0;
4968}
4969
4970static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4971 __be16 proto, u16 vid)
4972{
4973 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
4974 struct e1000_hw *hw = &adapter->hw;
4975 u32 vfta, index;
4976
4977 if (!test_bit(__E1000_DOWN, &adapter->flags))
4978 e1000_irq_disable(adapter);
4979 if (!test_bit(__E1000_DOWN, &adapter->flags))
4980 e1000_irq_enable(adapter);
4981
4982 /* remove VID from filter table */
4983 index = (vid >> 5) & 0x7F;
4984 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4985 vfta &= ~(1 << (vid & 0x1F));
4986 e1000_write_vfta(hw, offset: index, value: vfta);
4987
4988 clear_bit(nr: vid, addr: adapter->active_vlans);
4989
4990 if (!e1000_vlan_used(adapter))
4991 e1000_vlan_filter_on_off(adapter, filter_on: false);
4992
4993 return 0;
4994}
4995
4996static void e1000_restore_vlan(struct e1000_adapter *adapter)
4997{
4998 u16 vid;
4999
5000 if (!e1000_vlan_used(adapter))
5001 return;
5002
5003 e1000_vlan_filter_on_off(adapter, filter_on: true);
5004 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5005 e1000_vlan_rx_add_vid(netdev: adapter->netdev, htons(ETH_P_8021Q), vid);
5006}
5007
5008int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5009{
5010 struct e1000_hw *hw = &adapter->hw;
5011
5012 hw->autoneg = 0;
5013
5014 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5015 * for the switch() below to work
5016 */
5017 if ((spd & 1) || (dplx & ~1))
5018 goto err_inval;
5019
5020 /* Fiber NICs only allow 1000 gbps Full duplex */
5021 if ((hw->media_type == e1000_media_type_fiber) &&
5022 spd != SPEED_1000 &&
5023 dplx != DUPLEX_FULL)
5024 goto err_inval;
5025
5026 switch (spd + dplx) {
5027 case SPEED_10 + DUPLEX_HALF:
5028 hw->forced_speed_duplex = e1000_10_half;
5029 break;
5030 case SPEED_10 + DUPLEX_FULL:
5031 hw->forced_speed_duplex = e1000_10_full;
5032 break;
5033 case SPEED_100 + DUPLEX_HALF:
5034 hw->forced_speed_duplex = e1000_100_half;
5035 break;
5036 case SPEED_100 + DUPLEX_FULL:
5037 hw->forced_speed_duplex = e1000_100_full;
5038 break;
5039 case SPEED_1000 + DUPLEX_FULL:
5040 hw->autoneg = 1;
5041 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5042 break;
5043 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5044 default:
5045 goto err_inval;
5046 }
5047
5048 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5049 hw->mdix = AUTO_ALL_MODES;
5050
5051 return 0;
5052
5053err_inval:
5054 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5055 return -EINVAL;
5056}
5057
5058static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5059{
5060 struct net_device *netdev = pci_get_drvdata(pdev);
5061 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
5062 struct e1000_hw *hw = &adapter->hw;
5063 u32 ctrl, ctrl_ext, rctl, status;
5064 u32 wufc = adapter->wol;
5065
5066 netif_device_detach(dev: netdev);
5067
5068 if (netif_running(dev: netdev)) {
5069 int count = E1000_CHECK_RESET_COUNT;
5070
5071 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5072 usleep_range(min: 10000, max: 20000);
5073
5074 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5075 e1000_down(adapter);
5076 }
5077
5078 status = er32(STATUS);
5079 if (status & E1000_STATUS_LU)
5080 wufc &= ~E1000_WUFC_LNKC;
5081
5082 if (wufc) {
5083 e1000_setup_rctl(adapter);
5084 e1000_set_rx_mode(netdev);
5085
5086 rctl = er32(RCTL);
5087
5088 /* turn on all-multi mode if wake on multicast is enabled */
5089 if (wufc & E1000_WUFC_MC)
5090 rctl |= E1000_RCTL_MPE;
5091
5092 /* enable receives in the hardware */
5093 ew32(RCTL, rctl | E1000_RCTL_EN);
5094
5095 if (hw->mac_type >= e1000_82540) {
5096 ctrl = er32(CTRL);
5097 /* advertise wake from D3Cold */
5098 #define E1000_CTRL_ADVD3WUC 0x00100000
5099 /* phy power management enable */
5100 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5101 ctrl |= E1000_CTRL_ADVD3WUC |
5102 E1000_CTRL_EN_PHY_PWR_MGMT;
5103 ew32(CTRL, ctrl);
5104 }
5105
5106 if (hw->media_type == e1000_media_type_fiber ||
5107 hw->media_type == e1000_media_type_internal_serdes) {
5108 /* keep the laser running in D3 */
5109 ctrl_ext = er32(CTRL_EXT);
5110 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5111 ew32(CTRL_EXT, ctrl_ext);
5112 }
5113
5114 ew32(WUC, E1000_WUC_PME_EN);
5115 ew32(WUFC, wufc);
5116 } else {
5117 ew32(WUC, 0);
5118 ew32(WUFC, 0);
5119 }
5120
5121 e1000_release_manageability(adapter);
5122
5123 *enable_wake = !!wufc;
5124
5125 /* make sure adapter isn't asleep if manageability is enabled */
5126 if (adapter->en_mng_pt)
5127 *enable_wake = true;
5128
5129 if (netif_running(dev: netdev))
5130 e1000_free_irq(adapter);
5131
5132 if (!test_and_set_bit(nr: __E1000_DISABLED, addr: &adapter->flags))
5133 pci_disable_device(dev: pdev);
5134
5135 return 0;
5136}
5137
5138static int __maybe_unused e1000_suspend(struct device *dev)
5139{
5140 int retval;
5141 struct pci_dev *pdev = to_pci_dev(dev);
5142 bool wake;
5143
5144 retval = __e1000_shutdown(pdev, enable_wake: &wake);
5145 device_set_wakeup_enable(dev, enable: wake);
5146
5147 return retval;
5148}
5149
5150static int __maybe_unused e1000_resume(struct device *dev)
5151{
5152 struct pci_dev *pdev = to_pci_dev(dev);
5153 struct net_device *netdev = pci_get_drvdata(pdev);
5154 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
5155 struct e1000_hw *hw = &adapter->hw;
5156 u32 err;
5157
5158 if (adapter->need_ioport)
5159 err = pci_enable_device(dev: pdev);
5160 else
5161 err = pci_enable_device_mem(dev: pdev);
5162 if (err) {
5163 pr_err("Cannot enable PCI device from suspend\n");
5164 return err;
5165 }
5166
5167 /* flush memory to make sure state is correct */
5168 smp_mb__before_atomic();
5169 clear_bit(nr: __E1000_DISABLED, addr: &adapter->flags);
5170 pci_set_master(dev: pdev);
5171
5172 pci_enable_wake(dev: pdev, PCI_D3hot, enable: 0);
5173 pci_enable_wake(dev: pdev, PCI_D3cold, enable: 0);
5174
5175 if (netif_running(dev: netdev)) {
5176 err = e1000_request_irq(adapter);
5177 if (err)
5178 return err;
5179 }
5180
5181 e1000_power_up_phy(adapter);
5182 e1000_reset(adapter);
5183 ew32(WUS, ~0);
5184
5185 e1000_init_manageability(adapter);
5186
5187 if (netif_running(dev: netdev))
5188 e1000_up(adapter);
5189
5190 netif_device_attach(dev: netdev);
5191
5192 return 0;
5193}
5194
5195static void e1000_shutdown(struct pci_dev *pdev)
5196{
5197 bool wake;
5198
5199 __e1000_shutdown(pdev, enable_wake: &wake);
5200
5201 if (system_state == SYSTEM_POWER_OFF) {
5202 pci_wake_from_d3(dev: pdev, enable: wake);
5203 pci_set_power_state(dev: pdev, PCI_D3hot);
5204 }
5205}
5206
5207#ifdef CONFIG_NET_POLL_CONTROLLER
5208/* Polling 'interrupt' - used by things like netconsole to send skbs
5209 * without having to re-enable interrupts. It's not called while
5210 * the interrupt routine is executing.
5211 */
5212static void e1000_netpoll(struct net_device *netdev)
5213{
5214 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
5215
5216 if (disable_hardirq(irq: adapter->pdev->irq))
5217 e1000_intr(irq: adapter->pdev->irq, data: netdev);
5218 enable_irq(irq: adapter->pdev->irq);
5219}
5220#endif
5221
5222/**
5223 * e1000_io_error_detected - called when PCI error is detected
5224 * @pdev: Pointer to PCI device
5225 * @state: The current pci connection state
5226 *
5227 * This function is called after a PCI bus error affecting
5228 * this device has been detected.
5229 */
5230static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5231 pci_channel_state_t state)
5232{
5233 struct net_device *netdev = pci_get_drvdata(pdev);
5234 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
5235
5236 netif_device_detach(dev: netdev);
5237
5238 if (state == pci_channel_io_perm_failure)
5239 return PCI_ERS_RESULT_DISCONNECT;
5240
5241 if (netif_running(dev: netdev))
5242 e1000_down(adapter);
5243
5244 if (!test_and_set_bit(nr: __E1000_DISABLED, addr: &adapter->flags))
5245 pci_disable_device(dev: pdev);
5246
5247 /* Request a slot reset. */
5248 return PCI_ERS_RESULT_NEED_RESET;
5249}
5250
5251/**
5252 * e1000_io_slot_reset - called after the pci bus has been reset.
5253 * @pdev: Pointer to PCI device
5254 *
5255 * Restart the card from scratch, as if from a cold-boot. Implementation
5256 * resembles the first-half of the e1000_resume routine.
5257 */
5258static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5259{
5260 struct net_device *netdev = pci_get_drvdata(pdev);
5261 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
5262 struct e1000_hw *hw = &adapter->hw;
5263 int err;
5264
5265 if (adapter->need_ioport)
5266 err = pci_enable_device(dev: pdev);
5267 else
5268 err = pci_enable_device_mem(dev: pdev);
5269 if (err) {
5270 pr_err("Cannot re-enable PCI device after reset.\n");
5271 return PCI_ERS_RESULT_DISCONNECT;
5272 }
5273
5274 /* flush memory to make sure state is correct */
5275 smp_mb__before_atomic();
5276 clear_bit(nr: __E1000_DISABLED, addr: &adapter->flags);
5277 pci_set_master(dev: pdev);
5278
5279 pci_enable_wake(dev: pdev, PCI_D3hot, enable: 0);
5280 pci_enable_wake(dev: pdev, PCI_D3cold, enable: 0);
5281
5282 e1000_reset(adapter);
5283 ew32(WUS, ~0);
5284
5285 return PCI_ERS_RESULT_RECOVERED;
5286}
5287
5288/**
5289 * e1000_io_resume - called when traffic can start flowing again.
5290 * @pdev: Pointer to PCI device
5291 *
5292 * This callback is called when the error recovery driver tells us that
5293 * its OK to resume normal operation. Implementation resembles the
5294 * second-half of the e1000_resume routine.
5295 */
5296static void e1000_io_resume(struct pci_dev *pdev)
5297{
5298 struct net_device *netdev = pci_get_drvdata(pdev);
5299 struct e1000_adapter *adapter = netdev_priv(dev: netdev);
5300
5301 e1000_init_manageability(adapter);
5302
5303 if (netif_running(dev: netdev)) {
5304 if (e1000_up(adapter)) {
5305 pr_info("can't bring device back up after reset\n");
5306 return;
5307 }
5308 }
5309
5310 netif_device_attach(dev: netdev);
5311}
5312
5313/* e1000_main.c */
5314

source code of linux/drivers/net/ethernet/intel/e1000/e1000_main.c