1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018-2023, Intel Corporation. */
3
4#include "ice_common.h"
5#include "ice_sched.h"
6#include "ice_adminq_cmd.h"
7#include "ice_flow.h"
8#include "ice_ptp_hw.h"
9
10#define ICE_PF_RESET_WAIT_COUNT 300
11#define ICE_MAX_NETLIST_SIZE 10
12
13static const char * const ice_link_mode_str_low[] = {
14 [0] = "100BASE_TX",
15 [1] = "100M_SGMII",
16 [2] = "1000BASE_T",
17 [3] = "1000BASE_SX",
18 [4] = "1000BASE_LX",
19 [5] = "1000BASE_KX",
20 [6] = "1G_SGMII",
21 [7] = "2500BASE_T",
22 [8] = "2500BASE_X",
23 [9] = "2500BASE_KX",
24 [10] = "5GBASE_T",
25 [11] = "5GBASE_KR",
26 [12] = "10GBASE_T",
27 [13] = "10G_SFI_DA",
28 [14] = "10GBASE_SR",
29 [15] = "10GBASE_LR",
30 [16] = "10GBASE_KR_CR1",
31 [17] = "10G_SFI_AOC_ACC",
32 [18] = "10G_SFI_C2C",
33 [19] = "25GBASE_T",
34 [20] = "25GBASE_CR",
35 [21] = "25GBASE_CR_S",
36 [22] = "25GBASE_CR1",
37 [23] = "25GBASE_SR",
38 [24] = "25GBASE_LR",
39 [25] = "25GBASE_KR",
40 [26] = "25GBASE_KR_S",
41 [27] = "25GBASE_KR1",
42 [28] = "25G_AUI_AOC_ACC",
43 [29] = "25G_AUI_C2C",
44 [30] = "40GBASE_CR4",
45 [31] = "40GBASE_SR4",
46 [32] = "40GBASE_LR4",
47 [33] = "40GBASE_KR4",
48 [34] = "40G_XLAUI_AOC_ACC",
49 [35] = "40G_XLAUI",
50 [36] = "50GBASE_CR2",
51 [37] = "50GBASE_SR2",
52 [38] = "50GBASE_LR2",
53 [39] = "50GBASE_KR2",
54 [40] = "50G_LAUI2_AOC_ACC",
55 [41] = "50G_LAUI2",
56 [42] = "50G_AUI2_AOC_ACC",
57 [43] = "50G_AUI2",
58 [44] = "50GBASE_CP",
59 [45] = "50GBASE_SR",
60 [46] = "50GBASE_FR",
61 [47] = "50GBASE_LR",
62 [48] = "50GBASE_KR_PAM4",
63 [49] = "50G_AUI1_AOC_ACC",
64 [50] = "50G_AUI1",
65 [51] = "100GBASE_CR4",
66 [52] = "100GBASE_SR4",
67 [53] = "100GBASE_LR4",
68 [54] = "100GBASE_KR4",
69 [55] = "100G_CAUI4_AOC_ACC",
70 [56] = "100G_CAUI4",
71 [57] = "100G_AUI4_AOC_ACC",
72 [58] = "100G_AUI4",
73 [59] = "100GBASE_CR_PAM4",
74 [60] = "100GBASE_KR_PAM4",
75 [61] = "100GBASE_CP2",
76 [62] = "100GBASE_SR2",
77 [63] = "100GBASE_DR",
78};
79
80static const char * const ice_link_mode_str_high[] = {
81 [0] = "100GBASE_KR2_PAM4",
82 [1] = "100G_CAUI2_AOC_ACC",
83 [2] = "100G_CAUI2",
84 [3] = "100G_AUI2_AOC_ACC",
85 [4] = "100G_AUI2",
86};
87
88/**
89 * ice_dump_phy_type - helper function to dump phy_type
90 * @hw: pointer to the HW structure
91 * @low: 64 bit value for phy_type_low
92 * @high: 64 bit value for phy_type_high
93 * @prefix: prefix string to differentiate multiple dumps
94 */
95static void
96ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
97{
98 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
99
100 for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
101 if (low & BIT_ULL(i))
102 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
103 prefix, i, ice_link_mode_str_low[i]);
104 }
105
106 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
107
108 for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
109 if (high & BIT_ULL(i))
110 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
111 prefix, i, ice_link_mode_str_high[i]);
112 }
113}
114
115/**
116 * ice_set_mac_type - Sets MAC type
117 * @hw: pointer to the HW structure
118 *
119 * This function sets the MAC type of the adapter based on the
120 * vendor ID and device ID stored in the HW structure.
121 */
122static int ice_set_mac_type(struct ice_hw *hw)
123{
124 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
125 return -ENODEV;
126
127 switch (hw->device_id) {
128 case ICE_DEV_ID_E810C_BACKPLANE:
129 case ICE_DEV_ID_E810C_QSFP:
130 case ICE_DEV_ID_E810C_SFP:
131 case ICE_DEV_ID_E810_XXV_BACKPLANE:
132 case ICE_DEV_ID_E810_XXV_QSFP:
133 case ICE_DEV_ID_E810_XXV_SFP:
134 hw->mac_type = ICE_MAC_E810;
135 break;
136 case ICE_DEV_ID_E823C_10G_BASE_T:
137 case ICE_DEV_ID_E823C_BACKPLANE:
138 case ICE_DEV_ID_E823C_QSFP:
139 case ICE_DEV_ID_E823C_SFP:
140 case ICE_DEV_ID_E823C_SGMII:
141 case ICE_DEV_ID_E822C_10G_BASE_T:
142 case ICE_DEV_ID_E822C_BACKPLANE:
143 case ICE_DEV_ID_E822C_QSFP:
144 case ICE_DEV_ID_E822C_SFP:
145 case ICE_DEV_ID_E822C_SGMII:
146 case ICE_DEV_ID_E822L_10G_BASE_T:
147 case ICE_DEV_ID_E822L_BACKPLANE:
148 case ICE_DEV_ID_E822L_SFP:
149 case ICE_DEV_ID_E822L_SGMII:
150 case ICE_DEV_ID_E823L_10G_BASE_T:
151 case ICE_DEV_ID_E823L_1GBE:
152 case ICE_DEV_ID_E823L_BACKPLANE:
153 case ICE_DEV_ID_E823L_QSFP:
154 case ICE_DEV_ID_E823L_SFP:
155 hw->mac_type = ICE_MAC_GENERIC;
156 break;
157 case ICE_DEV_ID_E830_BACKPLANE:
158 case ICE_DEV_ID_E830_QSFP56:
159 case ICE_DEV_ID_E830_SFP:
160 case ICE_DEV_ID_E830_SFP_DD:
161 hw->mac_type = ICE_MAC_E830;
162 break;
163 default:
164 hw->mac_type = ICE_MAC_UNKNOWN;
165 break;
166 }
167
168 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
169 return 0;
170}
171
172/**
173 * ice_is_e810
174 * @hw: pointer to the hardware structure
175 *
176 * returns true if the device is E810 based, false if not.
177 */
178bool ice_is_e810(struct ice_hw *hw)
179{
180 return hw->mac_type == ICE_MAC_E810;
181}
182
183/**
184 * ice_is_e810t
185 * @hw: pointer to the hardware structure
186 *
187 * returns true if the device is E810T based, false if not.
188 */
189bool ice_is_e810t(struct ice_hw *hw)
190{
191 switch (hw->device_id) {
192 case ICE_DEV_ID_E810C_SFP:
193 switch (hw->subsystem_device_id) {
194 case ICE_SUBDEV_ID_E810T:
195 case ICE_SUBDEV_ID_E810T2:
196 case ICE_SUBDEV_ID_E810T3:
197 case ICE_SUBDEV_ID_E810T4:
198 case ICE_SUBDEV_ID_E810T6:
199 case ICE_SUBDEV_ID_E810T7:
200 return true;
201 }
202 break;
203 case ICE_DEV_ID_E810C_QSFP:
204 switch (hw->subsystem_device_id) {
205 case ICE_SUBDEV_ID_E810T2:
206 case ICE_SUBDEV_ID_E810T3:
207 case ICE_SUBDEV_ID_E810T5:
208 return true;
209 }
210 break;
211 default:
212 break;
213 }
214
215 return false;
216}
217
218/**
219 * ice_is_e823
220 * @hw: pointer to the hardware structure
221 *
222 * returns true if the device is E823-L or E823-C based, false if not.
223 */
224bool ice_is_e823(struct ice_hw *hw)
225{
226 switch (hw->device_id) {
227 case ICE_DEV_ID_E823L_BACKPLANE:
228 case ICE_DEV_ID_E823L_SFP:
229 case ICE_DEV_ID_E823L_10G_BASE_T:
230 case ICE_DEV_ID_E823L_1GBE:
231 case ICE_DEV_ID_E823L_QSFP:
232 case ICE_DEV_ID_E823C_BACKPLANE:
233 case ICE_DEV_ID_E823C_QSFP:
234 case ICE_DEV_ID_E823C_SFP:
235 case ICE_DEV_ID_E823C_10G_BASE_T:
236 case ICE_DEV_ID_E823C_SGMII:
237 return true;
238 default:
239 return false;
240 }
241}
242
243/**
244 * ice_clear_pf_cfg - Clear PF configuration
245 * @hw: pointer to the hardware structure
246 *
247 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
248 * configuration, flow director filters, etc.).
249 */
250int ice_clear_pf_cfg(struct ice_hw *hw)
251{
252 struct ice_aq_desc desc;
253
254 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_clear_pf_cfg);
255
256 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
257}
258
259/**
260 * ice_aq_manage_mac_read - manage MAC address read command
261 * @hw: pointer to the HW struct
262 * @buf: a virtual buffer to hold the manage MAC read response
263 * @buf_size: Size of the virtual buffer
264 * @cd: pointer to command details structure or NULL
265 *
266 * This function is used to return per PF station MAC address (0x0107).
267 * NOTE: Upon successful completion of this command, MAC address information
268 * is returned in user specified buffer. Please interpret user specified
269 * buffer as "manage_mac_read" response.
270 * Response such as various MAC addresses are stored in HW struct (port.mac)
271 * ice_discover_dev_caps is expected to be called before this function is
272 * called.
273 */
274static int
275ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
276 struct ice_sq_cd *cd)
277{
278 struct ice_aqc_manage_mac_read_resp *resp;
279 struct ice_aqc_manage_mac_read *cmd;
280 struct ice_aq_desc desc;
281 int status;
282 u16 flags;
283 u8 i;
284
285 cmd = &desc.params.mac_read;
286
287 if (buf_size < sizeof(*resp))
288 return -EINVAL;
289
290 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_manage_mac_read);
291
292 status = ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
293 if (status)
294 return status;
295
296 resp = buf;
297 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
298
299 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
300 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
301 return -EIO;
302 }
303
304 /* A single port can report up to two (LAN and WoL) addresses */
305 for (i = 0; i < cmd->num_addr; i++)
306 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
307 ether_addr_copy(dst: hw->port_info->mac.lan_addr,
308 src: resp[i].mac_addr);
309 ether_addr_copy(dst: hw->port_info->mac.perm_addr,
310 src: resp[i].mac_addr);
311 break;
312 }
313
314 return 0;
315}
316
317/**
318 * ice_aq_get_phy_caps - returns PHY capabilities
319 * @pi: port information structure
320 * @qual_mods: report qualified modules
321 * @report_mode: report mode capabilities
322 * @pcaps: structure for PHY capabilities to be filled
323 * @cd: pointer to command details structure or NULL
324 *
325 * Returns the various PHY capabilities supported on the Port (0x0600)
326 */
327int
328ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
329 struct ice_aqc_get_phy_caps_data *pcaps,
330 struct ice_sq_cd *cd)
331{
332 struct ice_aqc_get_phy_caps *cmd;
333 u16 pcaps_size = sizeof(*pcaps);
334 struct ice_aq_desc desc;
335 const char *prefix;
336 struct ice_hw *hw;
337 int status;
338
339 cmd = &desc.params.get_phy;
340
341 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
342 return -EINVAL;
343 hw = pi->hw;
344
345 if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
346 !ice_fw_supports_report_dflt_cfg(hw))
347 return -EINVAL;
348
349 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_phy_caps);
350
351 if (qual_mods)
352 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
353
354 cmd->param0 |= cpu_to_le16(report_mode);
355 status = ice_aq_send_cmd(hw, desc: &desc, buf: pcaps, buf_size: pcaps_size, cd);
356
357 ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
358
359 switch (report_mode) {
360 case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
361 prefix = "phy_caps_media";
362 break;
363 case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
364 prefix = "phy_caps_no_media";
365 break;
366 case ICE_AQC_REPORT_ACTIVE_CFG:
367 prefix = "phy_caps_active";
368 break;
369 case ICE_AQC_REPORT_DFLT_CFG:
370 prefix = "phy_caps_default";
371 break;
372 default:
373 prefix = "phy_caps_invalid";
374 }
375
376 ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
377 le64_to_cpu(pcaps->phy_type_high), prefix);
378
379 ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
380 prefix, report_mode);
381 ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
382 ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
383 pcaps->low_power_ctrl_an);
384 ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
385 pcaps->eee_cap);
386 ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
387 pcaps->eeer_value);
388 ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
389 pcaps->link_fec_options);
390 ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
391 prefix, pcaps->module_compliance_enforcement);
392 ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
393 prefix, pcaps->extended_compliance_code);
394 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
395 pcaps->module_type[0]);
396 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
397 pcaps->module_type[1]);
398 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
399 pcaps->module_type[2]);
400
401 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
402 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
403 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
404 memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
405 sizeof(pi->phy.link_info.module_type));
406 }
407
408 return status;
409}
410
411/**
412 * ice_aq_get_link_topo_handle - get link topology node return status
413 * @pi: port information structure
414 * @node_type: requested node type
415 * @cd: pointer to command details structure or NULL
416 *
417 * Get link topology node return status for specified node type (0x06E0)
418 *
419 * Node type cage can be used to determine if cage is present. If AQC
420 * returns error (ENOENT), then no cage present. If no cage present, then
421 * connection type is backplane or BASE-T.
422 */
423static int
424ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
425 struct ice_sq_cd *cd)
426{
427 struct ice_aqc_get_link_topo *cmd;
428 struct ice_aq_desc desc;
429
430 cmd = &desc.params.get_link_topo;
431
432 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_link_topo);
433
434 cmd->addr.topo_params.node_type_ctx =
435 (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
436 ICE_AQC_LINK_TOPO_NODE_CTX_S);
437
438 /* set node type */
439 cmd->addr.topo_params.node_type_ctx |=
440 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
441
442 return ice_aq_send_cmd(hw: pi->hw, desc: &desc, NULL, buf_size: 0, cd);
443}
444
445/**
446 * ice_aq_get_netlist_node
447 * @hw: pointer to the hw struct
448 * @cmd: get_link_topo AQ structure
449 * @node_part_number: output node part number if node found
450 * @node_handle: output node handle parameter if node found
451 *
452 * Get netlist node handle.
453 */
454int
455ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
456 u8 *node_part_number, u16 *node_handle)
457{
458 struct ice_aq_desc desc;
459
460 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_link_topo);
461 desc.params.get_link_topo = *cmd;
462
463 if (ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL))
464 return -EINTR;
465
466 if (node_handle)
467 *node_handle =
468 le16_to_cpu(desc.params.get_link_topo.addr.handle);
469 if (node_part_number)
470 *node_part_number = desc.params.get_link_topo.node_part_num;
471
472 return 0;
473}
474
475/**
476 * ice_find_netlist_node
477 * @hw: pointer to the hw struct
478 * @node_type_ctx: type of netlist node to look for
479 * @node_part_number: node part number to look for
480 * @node_handle: output parameter if node found - optional
481 *
482 * Scan the netlist for a node handle of the given node type and part number.
483 *
484 * If node_handle is non-NULL it will be modified on function exit. It is only
485 * valid if the function returns zero, and should be ignored on any non-zero
486 * return value.
487 *
488 * Returns: 0 if the node is found, -ENOENT if no handle was found, and
489 * a negative error code on failure to access the AQ.
490 */
491static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx,
492 u8 node_part_number, u16 *node_handle)
493{
494 u8 idx;
495
496 for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
497 struct ice_aqc_get_link_topo cmd = {};
498 u8 rec_node_part_number;
499 int status;
500
501 cmd.addr.topo_params.node_type_ctx =
502 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M,
503 node_type_ctx);
504 cmd.addr.topo_params.index = idx;
505
506 status = ice_aq_get_netlist_node(hw, cmd: &cmd,
507 node_part_number: &rec_node_part_number,
508 node_handle);
509 if (status)
510 return status;
511
512 if (rec_node_part_number == node_part_number)
513 return 0;
514 }
515
516 return -ENOENT;
517}
518
519/**
520 * ice_is_media_cage_present
521 * @pi: port information structure
522 *
523 * Returns true if media cage is present, else false. If no cage, then
524 * media type is backplane or BASE-T.
525 */
526static bool ice_is_media_cage_present(struct ice_port_info *pi)
527{
528 /* Node type cage can be used to determine if cage is present. If AQC
529 * returns error (ENOENT), then no cage present. If no cage present then
530 * connection type is backplane or BASE-T.
531 */
532 return !ice_aq_get_link_topo_handle(pi,
533 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
534 NULL);
535}
536
537/**
538 * ice_get_media_type - Gets media type
539 * @pi: port information structure
540 */
541static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
542{
543 struct ice_link_status *hw_link_info;
544
545 if (!pi)
546 return ICE_MEDIA_UNKNOWN;
547
548 hw_link_info = &pi->phy.link_info;
549 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
550 /* If more than one media type is selected, report unknown */
551 return ICE_MEDIA_UNKNOWN;
552
553 if (hw_link_info->phy_type_low) {
554 /* 1G SGMII is a special case where some DA cable PHYs
555 * may show this as an option when it really shouldn't
556 * be since SGMII is meant to be between a MAC and a PHY
557 * in a backplane. Try to detect this case and handle it
558 */
559 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
560 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
561 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
562 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
563 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
564 return ICE_MEDIA_DA;
565
566 switch (hw_link_info->phy_type_low) {
567 case ICE_PHY_TYPE_LOW_1000BASE_SX:
568 case ICE_PHY_TYPE_LOW_1000BASE_LX:
569 case ICE_PHY_TYPE_LOW_10GBASE_SR:
570 case ICE_PHY_TYPE_LOW_10GBASE_LR:
571 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
572 case ICE_PHY_TYPE_LOW_25GBASE_SR:
573 case ICE_PHY_TYPE_LOW_25GBASE_LR:
574 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
575 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
576 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
577 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
578 case ICE_PHY_TYPE_LOW_50GBASE_SR:
579 case ICE_PHY_TYPE_LOW_50GBASE_FR:
580 case ICE_PHY_TYPE_LOW_50GBASE_LR:
581 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
582 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
583 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
584 case ICE_PHY_TYPE_LOW_100GBASE_DR:
585 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
586 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
587 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
588 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
589 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
590 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
591 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
592 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
593 return ICE_MEDIA_FIBER;
594 case ICE_PHY_TYPE_LOW_100BASE_TX:
595 case ICE_PHY_TYPE_LOW_1000BASE_T:
596 case ICE_PHY_TYPE_LOW_2500BASE_T:
597 case ICE_PHY_TYPE_LOW_5GBASE_T:
598 case ICE_PHY_TYPE_LOW_10GBASE_T:
599 case ICE_PHY_TYPE_LOW_25GBASE_T:
600 return ICE_MEDIA_BASET;
601 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
602 case ICE_PHY_TYPE_LOW_25GBASE_CR:
603 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
604 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
605 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
606 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
607 case ICE_PHY_TYPE_LOW_50GBASE_CP:
608 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
609 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
610 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
611 return ICE_MEDIA_DA;
612 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
613 case ICE_PHY_TYPE_LOW_40G_XLAUI:
614 case ICE_PHY_TYPE_LOW_50G_LAUI2:
615 case ICE_PHY_TYPE_LOW_50G_AUI2:
616 case ICE_PHY_TYPE_LOW_50G_AUI1:
617 case ICE_PHY_TYPE_LOW_100G_AUI4:
618 case ICE_PHY_TYPE_LOW_100G_CAUI4:
619 if (ice_is_media_cage_present(pi))
620 return ICE_MEDIA_DA;
621 fallthrough;
622 case ICE_PHY_TYPE_LOW_1000BASE_KX:
623 case ICE_PHY_TYPE_LOW_2500BASE_KX:
624 case ICE_PHY_TYPE_LOW_2500BASE_X:
625 case ICE_PHY_TYPE_LOW_5GBASE_KR:
626 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
627 case ICE_PHY_TYPE_LOW_25GBASE_KR:
628 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
629 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
630 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
631 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
632 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
633 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
634 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
635 return ICE_MEDIA_BACKPLANE;
636 }
637 } else {
638 switch (hw_link_info->phy_type_high) {
639 case ICE_PHY_TYPE_HIGH_100G_AUI2:
640 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
641 if (ice_is_media_cage_present(pi))
642 return ICE_MEDIA_DA;
643 fallthrough;
644 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
645 return ICE_MEDIA_BACKPLANE;
646 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
647 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
648 return ICE_MEDIA_FIBER;
649 }
650 }
651 return ICE_MEDIA_UNKNOWN;
652}
653
654/**
655 * ice_get_link_status_datalen
656 * @hw: pointer to the HW struct
657 *
658 * Returns datalength for the Get Link Status AQ command, which is bigger for
659 * newer adapter families handled by ice driver.
660 */
661static u16 ice_get_link_status_datalen(struct ice_hw *hw)
662{
663 switch (hw->mac_type) {
664 case ICE_MAC_E830:
665 return ICE_AQC_LS_DATA_SIZE_V2;
666 case ICE_MAC_E810:
667 default:
668 return ICE_AQC_LS_DATA_SIZE_V1;
669 }
670}
671
672/**
673 * ice_aq_get_link_info
674 * @pi: port information structure
675 * @ena_lse: enable/disable LinkStatusEvent reporting
676 * @link: pointer to link status structure - optional
677 * @cd: pointer to command details structure or NULL
678 *
679 * Get Link Status (0x607). Returns the link status of the adapter.
680 */
681int
682ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
683 struct ice_link_status *link, struct ice_sq_cd *cd)
684{
685 struct ice_aqc_get_link_status_data link_data = { 0 };
686 struct ice_aqc_get_link_status *resp;
687 struct ice_link_status *li_old, *li;
688 enum ice_media_type *hw_media_type;
689 struct ice_fc_info *hw_fc_info;
690 bool tx_pause, rx_pause;
691 struct ice_aq_desc desc;
692 struct ice_hw *hw;
693 u16 cmd_flags;
694 int status;
695
696 if (!pi)
697 return -EINVAL;
698 hw = pi->hw;
699 li_old = &pi->phy.link_info_old;
700 hw_media_type = &pi->phy.media_type;
701 li = &pi->phy.link_info;
702 hw_fc_info = &pi->fc;
703
704 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_link_status);
705 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
706 resp = &desc.params.get_link_status;
707 resp->cmd_flags = cpu_to_le16(cmd_flags);
708 resp->lport_num = pi->lport;
709
710 status = ice_aq_send_cmd(hw, desc: &desc, buf: &link_data,
711 buf_size: ice_get_link_status_datalen(hw), cd);
712 if (status)
713 return status;
714
715 /* save off old link status information */
716 *li_old = *li;
717
718 /* update current link status information */
719 li->link_speed = le16_to_cpu(link_data.link_speed);
720 li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
721 li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
722 *hw_media_type = ice_get_media_type(pi);
723 li->link_info = link_data.link_info;
724 li->link_cfg_err = link_data.link_cfg_err;
725 li->an_info = link_data.an_info;
726 li->ext_info = link_data.ext_info;
727 li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
728 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
729 li->topo_media_conflict = link_data.topo_media_conflict;
730 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
731 ICE_AQ_CFG_PACING_TYPE_M);
732
733 /* update fc info */
734 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
735 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
736 if (tx_pause && rx_pause)
737 hw_fc_info->current_mode = ICE_FC_FULL;
738 else if (tx_pause)
739 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
740 else if (rx_pause)
741 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
742 else
743 hw_fc_info->current_mode = ICE_FC_NONE;
744
745 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
746
747 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
748 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
749 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
750 (unsigned long long)li->phy_type_low);
751 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
752 (unsigned long long)li->phy_type_high);
753 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
754 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
755 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
756 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
757 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
758 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
759 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
760 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
761 li->max_frame_size);
762 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
763
764 /* save link status information */
765 if (link)
766 *link = *li;
767
768 /* flag cleared so calling functions don't call AQ again */
769 pi->phy.get_link_info = false;
770
771 return 0;
772}
773
774/**
775 * ice_fill_tx_timer_and_fc_thresh
776 * @hw: pointer to the HW struct
777 * @cmd: pointer to MAC cfg structure
778 *
779 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
780 * descriptor
781 */
782static void
783ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
784 struct ice_aqc_set_mac_cfg *cmd)
785{
786 u32 val, fc_thres_m;
787
788 /* We read back the transmit timer and FC threshold value of
789 * LFC. Thus, we will use index =
790 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
791 *
792 * Also, because we are operating on transmit timer and FC
793 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
794 */
795#define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
796#define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
797
798 if (hw->mac_type == ICE_MAC_E830) {
799 /* Retrieve the transmit timer */
800 val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
801 cmd->tx_tmr_value =
802 le16_encode_bits(v: val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
803
804 /* Retrieve the fc threshold */
805 val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
806 fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
807 } else {
808 /* Retrieve the transmit timer */
809 val = rd32(hw,
810 E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
811 cmd->tx_tmr_value =
812 le16_encode_bits(v: val,
813 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
814
815 /* Retrieve the fc threshold */
816 val = rd32(hw,
817 E800_REFRESH_TMR(E800_IDX_OF_LFC));
818 fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
819 }
820 cmd->fc_refresh_threshold = le16_encode_bits(v: val, field: fc_thres_m);
821}
822
823/**
824 * ice_aq_set_mac_cfg
825 * @hw: pointer to the HW struct
826 * @max_frame_size: Maximum Frame Size to be supported
827 * @cd: pointer to command details structure or NULL
828 *
829 * Set MAC configuration (0x0603)
830 */
831int
832ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
833{
834 struct ice_aqc_set_mac_cfg *cmd;
835 struct ice_aq_desc desc;
836
837 cmd = &desc.params.set_mac_cfg;
838
839 if (max_frame_size == 0)
840 return -EINVAL;
841
842 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_mac_cfg);
843
844 cmd->max_frame_size = cpu_to_le16(max_frame_size);
845
846 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
847
848 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
849}
850
851/**
852 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
853 * @hw: pointer to the HW struct
854 */
855static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
856{
857 struct ice_switch_info *sw;
858 int status;
859
860 hw->switch_info = devm_kzalloc(dev: ice_hw_to_dev(hw),
861 size: sizeof(*hw->switch_info), GFP_KERNEL);
862 sw = hw->switch_info;
863
864 if (!sw)
865 return -ENOMEM;
866
867 INIT_LIST_HEAD(list: &sw->vsi_list_map_head);
868 sw->prof_res_bm_init = 0;
869
870 status = ice_init_def_sw_recp(hw);
871 if (status) {
872 devm_kfree(dev: ice_hw_to_dev(hw), p: hw->switch_info);
873 return status;
874 }
875 return 0;
876}
877
878/**
879 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
880 * @hw: pointer to the HW struct
881 */
882static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
883{
884 struct ice_switch_info *sw = hw->switch_info;
885 struct ice_vsi_list_map_info *v_pos_map;
886 struct ice_vsi_list_map_info *v_tmp_map;
887 struct ice_sw_recipe *recps;
888 u8 i;
889
890 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
891 list_entry) {
892 list_del(entry: &v_pos_map->list_entry);
893 devm_kfree(dev: ice_hw_to_dev(hw), p: v_pos_map);
894 }
895 recps = sw->recp_list;
896 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
897 struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
898
899 recps[i].root_rid = i;
900 list_for_each_entry_safe(rg_entry, tmprg_entry,
901 &recps[i].rg_list, l_entry) {
902 list_del(entry: &rg_entry->l_entry);
903 devm_kfree(dev: ice_hw_to_dev(hw), p: rg_entry);
904 }
905
906 if (recps[i].adv_rule) {
907 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
908 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
909
910 mutex_destroy(lock: &recps[i].filt_rule_lock);
911 list_for_each_entry_safe(lst_itr, tmp_entry,
912 &recps[i].filt_rules,
913 list_entry) {
914 list_del(entry: &lst_itr->list_entry);
915 devm_kfree(dev: ice_hw_to_dev(hw), p: lst_itr->lkups);
916 devm_kfree(dev: ice_hw_to_dev(hw), p: lst_itr);
917 }
918 } else {
919 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
920
921 mutex_destroy(lock: &recps[i].filt_rule_lock);
922 list_for_each_entry_safe(lst_itr, tmp_entry,
923 &recps[i].filt_rules,
924 list_entry) {
925 list_del(entry: &lst_itr->list_entry);
926 devm_kfree(dev: ice_hw_to_dev(hw), p: lst_itr);
927 }
928 }
929 devm_kfree(dev: ice_hw_to_dev(hw), p: recps[i].root_buf);
930 }
931 ice_rm_all_sw_replay_rule_info(hw);
932 devm_kfree(dev: ice_hw_to_dev(hw), p: sw->recp_list);
933 devm_kfree(dev: ice_hw_to_dev(hw), p: sw);
934}
935
936/**
937 * ice_get_fw_log_cfg - get FW logging configuration
938 * @hw: pointer to the HW struct
939 */
940static int ice_get_fw_log_cfg(struct ice_hw *hw)
941{
942 struct ice_aq_desc desc;
943 __le16 *config;
944 int status;
945 u16 size;
946
947 size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
948 config = kzalloc(size, GFP_KERNEL);
949 if (!config)
950 return -ENOMEM;
951
952 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_fw_logging_info);
953
954 status = ice_aq_send_cmd(hw, desc: &desc, buf: config, buf_size: size, NULL);
955 if (!status) {
956 u16 i;
957
958 /* Save FW logging information into the HW structure */
959 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
960 u16 v, m, flgs;
961
962 v = le16_to_cpu(config[i]);
963 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
964 flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
965
966 if (m < ICE_AQC_FW_LOG_ID_MAX)
967 hw->fw_log.evnts[m].cur = flgs;
968 }
969 }
970
971 kfree(objp: config);
972
973 return status;
974}
975
976/**
977 * ice_cfg_fw_log - configure FW logging
978 * @hw: pointer to the HW struct
979 * @enable: enable certain FW logging events if true, disable all if false
980 *
981 * This function enables/disables the FW logging via Rx CQ events and a UART
982 * port based on predetermined configurations. FW logging via the Rx CQ can be
983 * enabled/disabled for individual PF's. However, FW logging via the UART can
984 * only be enabled/disabled for all PFs on the same device.
985 *
986 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
987 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
988 * before initializing the device.
989 *
990 * When re/configuring FW logging, callers need to update the "cfg" elements of
991 * the hw->fw_log.evnts array with the desired logging event configurations for
992 * modules of interest. When disabling FW logging completely, the callers can
993 * just pass false in the "enable" parameter. On completion, the function will
994 * update the "cur" element of the hw->fw_log.evnts array with the resulting
995 * logging event configurations of the modules that are being re/configured. FW
996 * logging modules that are not part of a reconfiguration operation retain their
997 * previous states.
998 *
999 * Before resetting the device, it is recommended that the driver disables FW
1000 * logging before shutting down the control queue. When disabling FW logging
1001 * ("enable" = false), the latest configurations of FW logging events stored in
1002 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
1003 * a device reset.
1004 *
1005 * When enabling FW logging to emit log messages via the Rx CQ during the
1006 * device's initialization phase, a mechanism alternative to interrupt handlers
1007 * needs to be used to extract FW log messages from the Rx CQ periodically and
1008 * to prevent the Rx CQ from being full and stalling other types of control
1009 * messages from FW to SW. Interrupts are typically disabled during the device's
1010 * initialization phase.
1011 */
1012static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
1013{
1014 struct ice_aqc_fw_logging *cmd;
1015 u16 i, chgs = 0, len = 0;
1016 struct ice_aq_desc desc;
1017 __le16 *data = NULL;
1018 u8 actv_evnts = 0;
1019 void *buf = NULL;
1020 int status = 0;
1021
1022 if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
1023 return 0;
1024
1025 /* Disable FW logging only when the control queue is still responsive */
1026 if (!enable &&
1027 (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, cq: &hw->adminq)))
1028 return 0;
1029
1030 /* Get current FW log settings */
1031 status = ice_get_fw_log_cfg(hw);
1032 if (status)
1033 return status;
1034
1035 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_fw_logging);
1036 cmd = &desc.params.fw_logging;
1037
1038 /* Indicate which controls are valid */
1039 if (hw->fw_log.cq_en)
1040 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
1041
1042 if (hw->fw_log.uart_en)
1043 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
1044
1045 if (enable) {
1046 /* Fill in an array of entries with FW logging modules and
1047 * logging events being reconfigured.
1048 */
1049 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
1050 u16 val;
1051
1052 /* Keep track of enabled event types */
1053 actv_evnts |= hw->fw_log.evnts[i].cfg;
1054
1055 if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
1056 continue;
1057
1058 if (!data) {
1059 data = devm_kcalloc(dev: ice_hw_to_dev(hw),
1060 n: ICE_AQC_FW_LOG_ID_MAX,
1061 size: sizeof(*data),
1062 GFP_KERNEL);
1063 if (!data)
1064 return -ENOMEM;
1065 }
1066
1067 val = i << ICE_AQC_FW_LOG_ID_S;
1068 val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
1069 data[chgs++] = cpu_to_le16(val);
1070 }
1071
1072 /* Only enable FW logging if at least one module is specified.
1073 * If FW logging is currently enabled but all modules are not
1074 * enabled to emit log messages, disable FW logging altogether.
1075 */
1076 if (actv_evnts) {
1077 /* Leave if there is effectively no change */
1078 if (!chgs)
1079 goto out;
1080
1081 if (hw->fw_log.cq_en)
1082 cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
1083
1084 if (hw->fw_log.uart_en)
1085 cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
1086
1087 buf = data;
1088 len = sizeof(*data) * chgs;
1089 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1090 }
1091 }
1092
1093 status = ice_aq_send_cmd(hw, desc: &desc, buf, buf_size: len, NULL);
1094 if (!status) {
1095 /* Update the current configuration to reflect events enabled.
1096 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
1097 * logging mode is enabled for the device. They do not reflect
1098 * actual modules being enabled to emit log messages. So, their
1099 * values remain unchanged even when all modules are disabled.
1100 */
1101 u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
1102
1103 hw->fw_log.actv_evnts = actv_evnts;
1104 for (i = 0; i < cnt; i++) {
1105 u16 v, m;
1106
1107 if (!enable) {
1108 /* When disabling all FW logging events as part
1109 * of device's de-initialization, the original
1110 * configurations are retained, and can be used
1111 * to reconfigure FW logging later if the device
1112 * is re-initialized.
1113 */
1114 hw->fw_log.evnts[i].cur = 0;
1115 continue;
1116 }
1117
1118 v = le16_to_cpu(data[i]);
1119 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
1120 hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
1121 }
1122 }
1123
1124out:
1125 devm_kfree(dev: ice_hw_to_dev(hw), p: data);
1126
1127 return status;
1128}
1129
1130/**
1131 * ice_output_fw_log
1132 * @hw: pointer to the HW struct
1133 * @desc: pointer to the AQ message descriptor
1134 * @buf: pointer to the buffer accompanying the AQ message
1135 *
1136 * Formats a FW Log message and outputs it via the standard driver logs.
1137 */
1138void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
1139{
1140 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
1141 ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
1142 le16_to_cpu(desc->datalen));
1143 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
1144}
1145
1146/**
1147 * ice_get_itr_intrl_gran
1148 * @hw: pointer to the HW struct
1149 *
1150 * Determines the ITR/INTRL granularities based on the maximum aggregate
1151 * bandwidth according to the device's configuration during power-on.
1152 */
1153static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1154{
1155 u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
1156 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
1157 GL_PWR_MODE_CTL_CAR_MAX_BW_S;
1158
1159 switch (max_agg_bw) {
1160 case ICE_MAX_AGG_BW_200G:
1161 case ICE_MAX_AGG_BW_100G:
1162 case ICE_MAX_AGG_BW_50G:
1163 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1164 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1165 break;
1166 case ICE_MAX_AGG_BW_25G:
1167 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1168 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1169 break;
1170 }
1171}
1172
1173/**
1174 * ice_init_hw - main hardware initialization routine
1175 * @hw: pointer to the hardware structure
1176 */
1177int ice_init_hw(struct ice_hw *hw)
1178{
1179 struct ice_aqc_get_phy_caps_data *pcaps;
1180 u16 mac_buf_len;
1181 void *mac_buf;
1182 int status;
1183
1184 /* Set MAC type based on DeviceID */
1185 status = ice_set_mac_type(hw);
1186 if (status)
1187 return status;
1188
1189 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
1190 PF_FUNC_RID_FUNC_NUM_M) >>
1191 PF_FUNC_RID_FUNC_NUM_S;
1192
1193 status = ice_reset(hw, req: ICE_RESET_PFR);
1194 if (status)
1195 return status;
1196
1197 ice_get_itr_intrl_gran(hw);
1198
1199 status = ice_create_all_ctrlq(hw);
1200 if (status)
1201 goto err_unroll_cqinit;
1202
1203 /* Enable FW logging. Not fatal if this fails. */
1204 status = ice_cfg_fw_log(hw, enable: true);
1205 if (status)
1206 ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
1207
1208 status = ice_clear_pf_cfg(hw);
1209 if (status)
1210 goto err_unroll_cqinit;
1211
1212 /* Set bit to enable Flow Director filters */
1213 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1214 INIT_LIST_HEAD(list: &hw->fdir_list_head);
1215
1216 ice_clear_pxe_mode(hw);
1217
1218 status = ice_init_nvm(hw);
1219 if (status)
1220 goto err_unroll_cqinit;
1221
1222 status = ice_get_caps(hw);
1223 if (status)
1224 goto err_unroll_cqinit;
1225
1226 if (!hw->port_info)
1227 hw->port_info = devm_kzalloc(dev: ice_hw_to_dev(hw),
1228 size: sizeof(*hw->port_info),
1229 GFP_KERNEL);
1230 if (!hw->port_info) {
1231 status = -ENOMEM;
1232 goto err_unroll_cqinit;
1233 }
1234
1235 /* set the back pointer to HW */
1236 hw->port_info->hw = hw;
1237
1238 /* Initialize port_info struct with switch configuration data */
1239 status = ice_get_initial_sw_cfg(hw);
1240 if (status)
1241 goto err_unroll_alloc;
1242
1243 hw->evb_veb = true;
1244
1245 /* init xarray for identifying scheduling nodes uniquely */
1246 xa_init_flags(xa: &hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1247
1248 /* Query the allocated resources for Tx scheduler */
1249 status = ice_sched_query_res_alloc(hw);
1250 if (status) {
1251 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1252 goto err_unroll_alloc;
1253 }
1254 ice_sched_get_psm_clk_freq(hw);
1255
1256 /* Initialize port_info struct with scheduler data */
1257 status = ice_sched_init_port(pi: hw->port_info);
1258 if (status)
1259 goto err_unroll_sched;
1260
1261 pcaps = devm_kzalloc(dev: ice_hw_to_dev(hw), size: sizeof(*pcaps), GFP_KERNEL);
1262 if (!pcaps) {
1263 status = -ENOMEM;
1264 goto err_unroll_sched;
1265 }
1266
1267 /* Initialize port_info struct with PHY capabilities */
1268 status = ice_aq_get_phy_caps(pi: hw->port_info, qual_mods: false,
1269 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1270 NULL);
1271 devm_kfree(dev: ice_hw_to_dev(hw), p: pcaps);
1272 if (status)
1273 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1274 status);
1275
1276 /* Initialize port_info struct with link information */
1277 status = ice_aq_get_link_info(pi: hw->port_info, ena_lse: false, NULL, NULL);
1278 if (status)
1279 goto err_unroll_sched;
1280
1281 /* need a valid SW entry point to build a Tx tree */
1282 if (!hw->sw_entry_point_layer) {
1283 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1284 status = -EIO;
1285 goto err_unroll_sched;
1286 }
1287 INIT_LIST_HEAD(list: &hw->agg_list);
1288 /* Initialize max burst size */
1289 if (!hw->max_burst_size)
1290 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1291
1292 status = ice_init_fltr_mgmt_struct(hw);
1293 if (status)
1294 goto err_unroll_sched;
1295
1296 /* Get MAC information */
1297 /* A single port can report up to two (LAN and WoL) addresses */
1298 mac_buf = devm_kcalloc(dev: ice_hw_to_dev(hw), n: 2,
1299 size: sizeof(struct ice_aqc_manage_mac_read_resp),
1300 GFP_KERNEL);
1301 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1302
1303 if (!mac_buf) {
1304 status = -ENOMEM;
1305 goto err_unroll_fltr_mgmt_struct;
1306 }
1307
1308 status = ice_aq_manage_mac_read(hw, buf: mac_buf, buf_size: mac_buf_len, NULL);
1309 devm_kfree(dev: ice_hw_to_dev(hw), p: mac_buf);
1310
1311 if (status)
1312 goto err_unroll_fltr_mgmt_struct;
1313 /* enable jumbo frame support at MAC level */
1314 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1315 if (status)
1316 goto err_unroll_fltr_mgmt_struct;
1317 /* Obtain counter base index which would be used by flow director */
1318 status = ice_alloc_fd_res_cntr(hw, cntr_id: &hw->fd_ctr_base);
1319 if (status)
1320 goto err_unroll_fltr_mgmt_struct;
1321 status = ice_init_hw_tbls(hw);
1322 if (status)
1323 goto err_unroll_fltr_mgmt_struct;
1324 mutex_init(&hw->tnl_lock);
1325 return 0;
1326
1327err_unroll_fltr_mgmt_struct:
1328 ice_cleanup_fltr_mgmt_struct(hw);
1329err_unroll_sched:
1330 ice_sched_cleanup_all(hw);
1331err_unroll_alloc:
1332 devm_kfree(dev: ice_hw_to_dev(hw), p: hw->port_info);
1333err_unroll_cqinit:
1334 ice_destroy_all_ctrlq(hw);
1335 return status;
1336}
1337
1338/**
1339 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1340 * @hw: pointer to the hardware structure
1341 *
1342 * This should be called only during nominal operation, not as a result of
1343 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1344 * applicable initializations if it fails for any reason.
1345 */
1346void ice_deinit_hw(struct ice_hw *hw)
1347{
1348 ice_free_fd_res_cntr(hw, cntr_id: hw->fd_ctr_base);
1349 ice_cleanup_fltr_mgmt_struct(hw);
1350
1351 ice_sched_cleanup_all(hw);
1352 ice_sched_clear_agg(hw);
1353 ice_free_seg(hw);
1354 ice_free_hw_tbls(hw);
1355 mutex_destroy(lock: &hw->tnl_lock);
1356
1357 /* Attempt to disable FW logging before shutting down control queues */
1358 ice_cfg_fw_log(hw, enable: false);
1359 ice_destroy_all_ctrlq(hw);
1360
1361 /* Clear VSI contexts if not already cleared */
1362 ice_clear_all_vsi_ctx(hw);
1363}
1364
1365/**
1366 * ice_check_reset - Check to see if a global reset is complete
1367 * @hw: pointer to the hardware structure
1368 */
1369int ice_check_reset(struct ice_hw *hw)
1370{
1371 u32 cnt, reg = 0, grst_timeout, uld_mask;
1372
1373 /* Poll for Device Active state in case a recent CORER, GLOBR,
1374 * or EMPR has occurred. The grst delay value is in 100ms units.
1375 * Add 1sec for outstanding AQ commands that can take a long time.
1376 */
1377 grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1378 GLGEN_RSTCTL_GRSTDEL_S) + 10;
1379
1380 for (cnt = 0; cnt < grst_timeout; cnt++) {
1381 mdelay(100);
1382 reg = rd32(hw, GLGEN_RSTAT);
1383 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1384 break;
1385 }
1386
1387 if (cnt == grst_timeout) {
1388 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1389 return -EIO;
1390 }
1391
1392#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1393 GLNVM_ULD_PCIER_DONE_1_M |\
1394 GLNVM_ULD_CORER_DONE_M |\
1395 GLNVM_ULD_GLOBR_DONE_M |\
1396 GLNVM_ULD_POR_DONE_M |\
1397 GLNVM_ULD_POR_DONE_1_M |\
1398 GLNVM_ULD_PCIER_DONE_2_M)
1399
1400 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1401 GLNVM_ULD_PE_DONE_M : 0);
1402
1403 /* Device is Active; check Global Reset processes are done */
1404 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1405 reg = rd32(hw, GLNVM_ULD) & uld_mask;
1406 if (reg == uld_mask) {
1407 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1408 break;
1409 }
1410 mdelay(10);
1411 }
1412
1413 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1414 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1415 reg);
1416 return -EIO;
1417 }
1418
1419 return 0;
1420}
1421
1422/**
1423 * ice_pf_reset - Reset the PF
1424 * @hw: pointer to the hardware structure
1425 *
1426 * If a global reset has been triggered, this function checks
1427 * for its completion and then issues the PF reset
1428 */
1429static int ice_pf_reset(struct ice_hw *hw)
1430{
1431 u32 cnt, reg;
1432
1433 /* If at function entry a global reset was already in progress, i.e.
1434 * state is not 'device active' or any of the reset done bits are not
1435 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1436 * global reset is done.
1437 */
1438 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1439 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1440 /* poll on global reset currently in progress until done */
1441 if (ice_check_reset(hw))
1442 return -EIO;
1443
1444 return 0;
1445 }
1446
1447 /* Reset the PF */
1448 reg = rd32(hw, PFGEN_CTRL);
1449
1450 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1451
1452 /* Wait for the PFR to complete. The wait time is the global config lock
1453 * timeout plus the PFR timeout which will account for a possible reset
1454 * that is occurring during a download package operation.
1455 */
1456 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1457 ICE_PF_RESET_WAIT_COUNT; cnt++) {
1458 reg = rd32(hw, PFGEN_CTRL);
1459 if (!(reg & PFGEN_CTRL_PFSWR_M))
1460 break;
1461
1462 mdelay(1);
1463 }
1464
1465 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1466 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1467 return -EIO;
1468 }
1469
1470 return 0;
1471}
1472
1473/**
1474 * ice_reset - Perform different types of reset
1475 * @hw: pointer to the hardware structure
1476 * @req: reset request
1477 *
1478 * This function triggers a reset as specified by the req parameter.
1479 *
1480 * Note:
1481 * If anything other than a PF reset is triggered, PXE mode is restored.
1482 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1483 * interface has been restored in the rebuild flow.
1484 */
1485int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1486{
1487 u32 val = 0;
1488
1489 switch (req) {
1490 case ICE_RESET_PFR:
1491 return ice_pf_reset(hw);
1492 case ICE_RESET_CORER:
1493 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1494 val = GLGEN_RTRIG_CORER_M;
1495 break;
1496 case ICE_RESET_GLOBR:
1497 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1498 val = GLGEN_RTRIG_GLOBR_M;
1499 break;
1500 default:
1501 return -EINVAL;
1502 }
1503
1504 val |= rd32(hw, GLGEN_RTRIG);
1505 wr32(hw, GLGEN_RTRIG, val);
1506 ice_flush(hw);
1507
1508 /* wait for the FW to be ready */
1509 return ice_check_reset(hw);
1510}
1511
1512/**
1513 * ice_copy_rxq_ctx_to_hw
1514 * @hw: pointer to the hardware structure
1515 * @ice_rxq_ctx: pointer to the rxq context
1516 * @rxq_index: the index of the Rx queue
1517 *
1518 * Copies rxq context from dense structure to HW register space
1519 */
1520static int
1521ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1522{
1523 u8 i;
1524
1525 if (!ice_rxq_ctx)
1526 return -EINVAL;
1527
1528 if (rxq_index > QRX_CTRL_MAX_INDEX)
1529 return -EINVAL;
1530
1531 /* Copy each dword separately to HW */
1532 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1533 wr32(hw, QRX_CONTEXT(i, rxq_index),
1534 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1535
1536 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1537 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1538 }
1539
1540 return 0;
1541}
1542
1543/* LAN Rx Queue Context */
1544static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1545 /* Field Width LSB */
1546 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1547 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1548 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1549 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1550 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1551 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1552 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1553 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1554 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1555 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1556 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1557 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1558 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1559 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1560 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1561 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1562 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1563 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1564 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1565 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1566 { 0 }
1567};
1568
1569/**
1570 * ice_write_rxq_ctx
1571 * @hw: pointer to the hardware structure
1572 * @rlan_ctx: pointer to the rxq context
1573 * @rxq_index: the index of the Rx queue
1574 *
1575 * Converts rxq context from sparse to dense structure and then writes
1576 * it to HW register space and enables the hardware to prefetch descriptors
1577 * instead of only fetching them on demand
1578 */
1579int
1580ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1581 u32 rxq_index)
1582{
1583 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1584
1585 if (!rlan_ctx)
1586 return -EINVAL;
1587
1588 rlan_ctx->prefena = 1;
1589
1590 ice_set_ctx(hw, src_ctx: (u8 *)rlan_ctx, dest_ctx: ctx_buf, ce_info: ice_rlan_ctx_info);
1591 return ice_copy_rxq_ctx_to_hw(hw, ice_rxq_ctx: ctx_buf, rxq_index);
1592}
1593
1594/* LAN Tx Queue Context */
1595const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1596 /* Field Width LSB */
1597 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1598 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1599 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1600 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1601 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1602 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1603 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1604 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1605 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1606 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1607 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1608 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1609 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1610 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1611 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1612 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1613 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1614 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1615 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1616 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1617 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1618 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1619 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1620 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1621 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1622 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1623 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1624 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
1625 { 0 }
1626};
1627
1628/* Sideband Queue command wrappers */
1629
1630/**
1631 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1632 * @hw: pointer to the HW struct
1633 * @desc: descriptor describing the command
1634 * @buf: buffer to use for indirect commands (NULL for direct commands)
1635 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1636 * @cd: pointer to command details structure
1637 */
1638static int
1639ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1640 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1641{
1642 return ice_sq_send_cmd(hw, cq: ice_get_sbq(hw),
1643 desc: (struct ice_aq_desc *)desc, buf, buf_size, cd);
1644}
1645
1646/**
1647 * ice_sbq_rw_reg - Fill Sideband Queue command
1648 * @hw: pointer to the HW struct
1649 * @in: message info to be filled in descriptor
1650 */
1651int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1652{
1653 struct ice_sbq_cmd_desc desc = {0};
1654 struct ice_sbq_msg_req msg = {0};
1655 u16 msg_len;
1656 int status;
1657
1658 msg_len = sizeof(msg);
1659
1660 msg.dest_dev = in->dest_dev;
1661 msg.opcode = in->opcode;
1662 msg.flags = ICE_SBQ_MSG_FLAGS;
1663 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1664 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1665 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1666
1667 if (in->opcode)
1668 msg.data = cpu_to_le32(in->data);
1669 else
1670 /* data read comes back in completion, so shorten the struct by
1671 * sizeof(msg.data)
1672 */
1673 msg_len -= sizeof(msg.data);
1674
1675 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1676 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1677 desc.param0.cmd_len = cpu_to_le16(msg_len);
1678 status = ice_sbq_send_cmd(hw, desc: &desc, buf: &msg, buf_size: msg_len, NULL);
1679 if (!status && !in->opcode)
1680 in->data = le32_to_cpu
1681 (((struct ice_sbq_msg_cmpl *)&msg)->data);
1682 return status;
1683}
1684
1685/* FW Admin Queue command wrappers */
1686
1687/* Software lock/mutex that is meant to be held while the Global Config Lock
1688 * in firmware is acquired by the software to prevent most (but not all) types
1689 * of AQ commands from being sent to FW
1690 */
1691DEFINE_MUTEX(ice_global_cfg_lock_sw);
1692
1693/**
1694 * ice_should_retry_sq_send_cmd
1695 * @opcode: AQ opcode
1696 *
1697 * Decide if we should retry the send command routine for the ATQ, depending
1698 * on the opcode.
1699 */
1700static bool ice_should_retry_sq_send_cmd(u16 opcode)
1701{
1702 switch (opcode) {
1703 case ice_aqc_opc_get_link_topo:
1704 case ice_aqc_opc_lldp_stop:
1705 case ice_aqc_opc_lldp_start:
1706 case ice_aqc_opc_lldp_filter_ctrl:
1707 return true;
1708 }
1709
1710 return false;
1711}
1712
1713/**
1714 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1715 * @hw: pointer to the HW struct
1716 * @cq: pointer to the specific Control queue
1717 * @desc: prefilled descriptor describing the command
1718 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1719 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1720 * @cd: pointer to command details structure
1721 *
1722 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1723 * Queue if the EBUSY AQ error is returned.
1724 */
1725static int
1726ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1727 struct ice_aq_desc *desc, void *buf, u16 buf_size,
1728 struct ice_sq_cd *cd)
1729{
1730 struct ice_aq_desc desc_cpy;
1731 bool is_cmd_for_retry;
1732 u8 idx = 0;
1733 u16 opcode;
1734 int status;
1735
1736 opcode = le16_to_cpu(desc->opcode);
1737 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1738 memset(&desc_cpy, 0, sizeof(desc_cpy));
1739
1740 if (is_cmd_for_retry) {
1741 /* All retryable cmds are direct, without buf. */
1742 WARN_ON(buf);
1743
1744 memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1745 }
1746
1747 do {
1748 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1749
1750 if (!is_cmd_for_retry || !status ||
1751 hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1752 break;
1753
1754 memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1755
1756 msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1757
1758 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1759
1760 return status;
1761}
1762
1763/**
1764 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1765 * @hw: pointer to the HW struct
1766 * @desc: descriptor describing the command
1767 * @buf: buffer to use for indirect commands (NULL for direct commands)
1768 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1769 * @cd: pointer to command details structure
1770 *
1771 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1772 */
1773int
1774ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1775 u16 buf_size, struct ice_sq_cd *cd)
1776{
1777 struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1778 bool lock_acquired = false;
1779 int status;
1780
1781 /* When a package download is in process (i.e. when the firmware's
1782 * Global Configuration Lock resource is held), only the Download
1783 * Package, Get Version, Get Package Info List, Upload Section,
1784 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1785 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1786 * Recipes to Profile Association, and Release Resource (with resource
1787 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1788 * must block until the package download completes and the Global Config
1789 * Lock is released. See also ice_acquire_global_cfg_lock().
1790 */
1791 switch (le16_to_cpu(desc->opcode)) {
1792 case ice_aqc_opc_download_pkg:
1793 case ice_aqc_opc_get_pkg_info_list:
1794 case ice_aqc_opc_get_ver:
1795 case ice_aqc_opc_upload_section:
1796 case ice_aqc_opc_update_pkg:
1797 case ice_aqc_opc_set_port_params:
1798 case ice_aqc_opc_get_vlan_mode_parameters:
1799 case ice_aqc_opc_set_vlan_mode_parameters:
1800 case ice_aqc_opc_add_recipe:
1801 case ice_aqc_opc_recipe_to_profile:
1802 case ice_aqc_opc_get_recipe:
1803 case ice_aqc_opc_get_recipe_to_profile:
1804 break;
1805 case ice_aqc_opc_release_res:
1806 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1807 break;
1808 fallthrough;
1809 default:
1810 mutex_lock(&ice_global_cfg_lock_sw);
1811 lock_acquired = true;
1812 break;
1813 }
1814
1815 status = ice_sq_send_cmd_retry(hw, cq: &hw->adminq, desc, buf, buf_size, cd);
1816 if (lock_acquired)
1817 mutex_unlock(lock: &ice_global_cfg_lock_sw);
1818
1819 return status;
1820}
1821
1822/**
1823 * ice_aq_get_fw_ver
1824 * @hw: pointer to the HW struct
1825 * @cd: pointer to command details structure or NULL
1826 *
1827 * Get the firmware version (0x0001) from the admin queue commands
1828 */
1829int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1830{
1831 struct ice_aqc_get_ver *resp;
1832 struct ice_aq_desc desc;
1833 int status;
1834
1835 resp = &desc.params.get_ver;
1836
1837 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_ver);
1838
1839 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
1840
1841 if (!status) {
1842 hw->fw_branch = resp->fw_branch;
1843 hw->fw_maj_ver = resp->fw_major;
1844 hw->fw_min_ver = resp->fw_minor;
1845 hw->fw_patch = resp->fw_patch;
1846 hw->fw_build = le32_to_cpu(resp->fw_build);
1847 hw->api_branch = resp->api_branch;
1848 hw->api_maj_ver = resp->api_major;
1849 hw->api_min_ver = resp->api_minor;
1850 hw->api_patch = resp->api_patch;
1851 }
1852
1853 return status;
1854}
1855
1856/**
1857 * ice_aq_send_driver_ver
1858 * @hw: pointer to the HW struct
1859 * @dv: driver's major, minor version
1860 * @cd: pointer to command details structure or NULL
1861 *
1862 * Send the driver version (0x0002) to the firmware
1863 */
1864int
1865ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1866 struct ice_sq_cd *cd)
1867{
1868 struct ice_aqc_driver_ver *cmd;
1869 struct ice_aq_desc desc;
1870 u16 len;
1871
1872 cmd = &desc.params.driver_ver;
1873
1874 if (!dv)
1875 return -EINVAL;
1876
1877 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_driver_ver);
1878
1879 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1880 cmd->major_ver = dv->major_ver;
1881 cmd->minor_ver = dv->minor_ver;
1882 cmd->build_ver = dv->build_ver;
1883 cmd->subbuild_ver = dv->subbuild_ver;
1884
1885 len = 0;
1886 while (len < sizeof(dv->driver_string) &&
1887 isascii(dv->driver_string[len]) && dv->driver_string[len])
1888 len++;
1889
1890 return ice_aq_send_cmd(hw, desc: &desc, buf: dv->driver_string, buf_size: len, cd);
1891}
1892
1893/**
1894 * ice_aq_q_shutdown
1895 * @hw: pointer to the HW struct
1896 * @unloading: is the driver unloading itself
1897 *
1898 * Tell the Firmware that we're shutting down the AdminQ and whether
1899 * or not the driver is unloading as well (0x0003).
1900 */
1901int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1902{
1903 struct ice_aqc_q_shutdown *cmd;
1904 struct ice_aq_desc desc;
1905
1906 cmd = &desc.params.q_shutdown;
1907
1908 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_q_shutdown);
1909
1910 if (unloading)
1911 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1912
1913 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
1914}
1915
1916/**
1917 * ice_aq_req_res
1918 * @hw: pointer to the HW struct
1919 * @res: resource ID
1920 * @access: access type
1921 * @sdp_number: resource number
1922 * @timeout: the maximum time in ms that the driver may hold the resource
1923 * @cd: pointer to command details structure or NULL
1924 *
1925 * Requests common resource using the admin queue commands (0x0008).
1926 * When attempting to acquire the Global Config Lock, the driver can
1927 * learn of three states:
1928 * 1) 0 - acquired lock, and can perform download package
1929 * 2) -EIO - did not get lock, driver should fail to load
1930 * 3) -EALREADY - did not get lock, but another driver has
1931 * successfully downloaded the package; the driver does
1932 * not have to download the package and can continue
1933 * loading
1934 *
1935 * Note that if the caller is in an acquire lock, perform action, release lock
1936 * phase of operation, it is possible that the FW may detect a timeout and issue
1937 * a CORER. In this case, the driver will receive a CORER interrupt and will
1938 * have to determine its cause. The calling thread that is handling this flow
1939 * will likely get an error propagated back to it indicating the Download
1940 * Package, Update Package or the Release Resource AQ commands timed out.
1941 */
1942static int
1943ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1944 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1945 struct ice_sq_cd *cd)
1946{
1947 struct ice_aqc_req_res *cmd_resp;
1948 struct ice_aq_desc desc;
1949 int status;
1950
1951 cmd_resp = &desc.params.res_owner;
1952
1953 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_req_res);
1954
1955 cmd_resp->res_id = cpu_to_le16(res);
1956 cmd_resp->access_type = cpu_to_le16(access);
1957 cmd_resp->res_number = cpu_to_le32(sdp_number);
1958 cmd_resp->timeout = cpu_to_le32(*timeout);
1959 *timeout = 0;
1960
1961 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
1962
1963 /* The completion specifies the maximum time in ms that the driver
1964 * may hold the resource in the Timeout field.
1965 */
1966
1967 /* Global config lock response utilizes an additional status field.
1968 *
1969 * If the Global config lock resource is held by some other driver, the
1970 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1971 * and the timeout field indicates the maximum time the current owner
1972 * of the resource has to free it.
1973 */
1974 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1975 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1976 *timeout = le32_to_cpu(cmd_resp->timeout);
1977 return 0;
1978 } else if (le16_to_cpu(cmd_resp->status) ==
1979 ICE_AQ_RES_GLBL_IN_PROG) {
1980 *timeout = le32_to_cpu(cmd_resp->timeout);
1981 return -EIO;
1982 } else if (le16_to_cpu(cmd_resp->status) ==
1983 ICE_AQ_RES_GLBL_DONE) {
1984 return -EALREADY;
1985 }
1986
1987 /* invalid FW response, force a timeout immediately */
1988 *timeout = 0;
1989 return -EIO;
1990 }
1991
1992 /* If the resource is held by some other driver, the command completes
1993 * with a busy return value and the timeout field indicates the maximum
1994 * time the current owner of the resource has to free it.
1995 */
1996 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1997 *timeout = le32_to_cpu(cmd_resp->timeout);
1998
1999 return status;
2000}
2001
2002/**
2003 * ice_aq_release_res
2004 * @hw: pointer to the HW struct
2005 * @res: resource ID
2006 * @sdp_number: resource number
2007 * @cd: pointer to command details structure or NULL
2008 *
2009 * release common resource using the admin queue commands (0x0009)
2010 */
2011static int
2012ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
2013 struct ice_sq_cd *cd)
2014{
2015 struct ice_aqc_req_res *cmd;
2016 struct ice_aq_desc desc;
2017
2018 cmd = &desc.params.res_owner;
2019
2020 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_release_res);
2021
2022 cmd->res_id = cpu_to_le16(res);
2023 cmd->res_number = cpu_to_le32(sdp_number);
2024
2025 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
2026}
2027
2028/**
2029 * ice_acquire_res
2030 * @hw: pointer to the HW structure
2031 * @res: resource ID
2032 * @access: access type (read or write)
2033 * @timeout: timeout in milliseconds
2034 *
2035 * This function will attempt to acquire the ownership of a resource.
2036 */
2037int
2038ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2039 enum ice_aq_res_access_type access, u32 timeout)
2040{
2041#define ICE_RES_POLLING_DELAY_MS 10
2042 u32 delay = ICE_RES_POLLING_DELAY_MS;
2043 u32 time_left = timeout;
2044 int status;
2045
2046 status = ice_aq_req_res(hw, res, access, sdp_number: 0, timeout: &time_left, NULL);
2047
2048 /* A return code of -EALREADY means that another driver has
2049 * previously acquired the resource and performed any necessary updates;
2050 * in this case the caller does not obtain the resource and has no
2051 * further work to do.
2052 */
2053 if (status == -EALREADY)
2054 goto ice_acquire_res_exit;
2055
2056 if (status)
2057 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2058
2059 /* If necessary, poll until the current lock owner timeouts */
2060 timeout = time_left;
2061 while (status && timeout && time_left) {
2062 mdelay(delay);
2063 timeout = (timeout > delay) ? timeout - delay : 0;
2064 status = ice_aq_req_res(hw, res, access, sdp_number: 0, timeout: &time_left, NULL);
2065
2066 if (status == -EALREADY)
2067 /* lock free, but no work to do */
2068 break;
2069
2070 if (!status)
2071 /* lock acquired */
2072 break;
2073 }
2074 if (status && status != -EALREADY)
2075 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2076
2077ice_acquire_res_exit:
2078 if (status == -EALREADY) {
2079 if (access == ICE_RES_WRITE)
2080 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2081 else
2082 ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
2083 }
2084 return status;
2085}
2086
2087/**
2088 * ice_release_res
2089 * @hw: pointer to the HW structure
2090 * @res: resource ID
2091 *
2092 * This function will release a resource using the proper Admin Command.
2093 */
2094void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2095{
2096 unsigned long timeout;
2097 int status;
2098
2099 /* there are some rare cases when trying to release the resource
2100 * results in an admin queue timeout, so handle them correctly
2101 */
2102 timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
2103 do {
2104 status = ice_aq_release_res(hw, res, sdp_number: 0, NULL);
2105 if (status != -EIO)
2106 break;
2107 usleep_range(min: 1000, max: 2000);
2108 } while (time_before(jiffies, timeout));
2109}
2110
2111/**
2112 * ice_aq_alloc_free_res - command to allocate/free resources
2113 * @hw: pointer to the HW struct
2114 * @buf: Indirect buffer to hold data parameters and response
2115 * @buf_size: size of buffer for indirect commands
2116 * @opc: pass in the command opcode
2117 *
2118 * Helper function to allocate/free resources using the admin queue commands
2119 */
2120int ice_aq_alloc_free_res(struct ice_hw *hw,
2121 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2122 enum ice_adminq_opc opc)
2123{
2124 struct ice_aqc_alloc_free_res_cmd *cmd;
2125 struct ice_aq_desc desc;
2126
2127 cmd = &desc.params.sw_res_ctrl;
2128
2129 if (!buf || buf_size < flex_array_size(buf, elem, 1))
2130 return -EINVAL;
2131
2132 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: opc);
2133
2134 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2135
2136 cmd->num_entries = cpu_to_le16(1);
2137
2138 return ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, NULL);
2139}
2140
2141/**
2142 * ice_alloc_hw_res - allocate resource
2143 * @hw: pointer to the HW struct
2144 * @type: type of resource
2145 * @num: number of resources to allocate
2146 * @btm: allocate from bottom
2147 * @res: pointer to array that will receive the resources
2148 */
2149int
2150ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2151{
2152 struct ice_aqc_alloc_free_res_elem *buf;
2153 u16 buf_len;
2154 int status;
2155
2156 buf_len = struct_size(buf, elem, num);
2157 buf = kzalloc(size: buf_len, GFP_KERNEL);
2158 if (!buf)
2159 return -ENOMEM;
2160
2161 /* Prepare buffer to allocate resource. */
2162 buf->num_elems = cpu_to_le16(num);
2163 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2164 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2165 if (btm)
2166 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2167
2168 status = ice_aq_alloc_free_res(hw, buf, buf_size: buf_len, opc: ice_aqc_opc_alloc_res);
2169 if (status)
2170 goto ice_alloc_res_exit;
2171
2172 memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2173
2174ice_alloc_res_exit:
2175 kfree(objp: buf);
2176 return status;
2177}
2178
2179/**
2180 * ice_free_hw_res - free allocated HW resource
2181 * @hw: pointer to the HW struct
2182 * @type: type of resource to free
2183 * @num: number of resources
2184 * @res: pointer to array that contains the resources to free
2185 */
2186int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2187{
2188 struct ice_aqc_alloc_free_res_elem *buf;
2189 u16 buf_len;
2190 int status;
2191
2192 buf_len = struct_size(buf, elem, num);
2193 buf = kzalloc(size: buf_len, GFP_KERNEL);
2194 if (!buf)
2195 return -ENOMEM;
2196
2197 /* Prepare buffer to free resource. */
2198 buf->num_elems = cpu_to_le16(num);
2199 buf->res_type = cpu_to_le16(type);
2200 memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2201
2202 status = ice_aq_alloc_free_res(hw, buf, buf_size: buf_len, opc: ice_aqc_opc_free_res);
2203 if (status)
2204 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2205
2206 kfree(objp: buf);
2207 return status;
2208}
2209
2210/**
2211 * ice_get_num_per_func - determine number of resources per PF
2212 * @hw: pointer to the HW structure
2213 * @max: value to be evenly split between each PF
2214 *
2215 * Determine the number of valid functions by going through the bitmap returned
2216 * from parsing capabilities and use this to calculate the number of resources
2217 * per PF based on the max value passed in.
2218 */
2219static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2220{
2221 u8 funcs;
2222
2223#define ICE_CAPS_VALID_FUNCS_M 0xFF
2224 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2225 ICE_CAPS_VALID_FUNCS_M);
2226
2227 if (!funcs)
2228 return 0;
2229
2230 return max / funcs;
2231}
2232
2233/**
2234 * ice_parse_common_caps - parse common device/function capabilities
2235 * @hw: pointer to the HW struct
2236 * @caps: pointer to common capabilities structure
2237 * @elem: the capability element to parse
2238 * @prefix: message prefix for tracing capabilities
2239 *
2240 * Given a capability element, extract relevant details into the common
2241 * capability structure.
2242 *
2243 * Returns: true if the capability matches one of the common capability ids,
2244 * false otherwise.
2245 */
2246static bool
2247ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2248 struct ice_aqc_list_caps_elem *elem, const char *prefix)
2249{
2250 u32 logical_id = le32_to_cpu(elem->logical_id);
2251 u32 phys_id = le32_to_cpu(elem->phys_id);
2252 u32 number = le32_to_cpu(elem->number);
2253 u16 cap = le16_to_cpu(elem->cap);
2254 bool found = true;
2255
2256 switch (cap) {
2257 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2258 caps->valid_functions = number;
2259 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2260 caps->valid_functions);
2261 break;
2262 case ICE_AQC_CAPS_SRIOV:
2263 caps->sr_iov_1_1 = (number == 1);
2264 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2265 caps->sr_iov_1_1);
2266 break;
2267 case ICE_AQC_CAPS_DCB:
2268 caps->dcb = (number == 1);
2269 caps->active_tc_bitmap = logical_id;
2270 caps->maxtc = phys_id;
2271 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2272 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2273 caps->active_tc_bitmap);
2274 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2275 break;
2276 case ICE_AQC_CAPS_RSS:
2277 caps->rss_table_size = number;
2278 caps->rss_table_entry_width = logical_id;
2279 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2280 caps->rss_table_size);
2281 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2282 caps->rss_table_entry_width);
2283 break;
2284 case ICE_AQC_CAPS_RXQS:
2285 caps->num_rxq = number;
2286 caps->rxq_first_id = phys_id;
2287 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2288 caps->num_rxq);
2289 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2290 caps->rxq_first_id);
2291 break;
2292 case ICE_AQC_CAPS_TXQS:
2293 caps->num_txq = number;
2294 caps->txq_first_id = phys_id;
2295 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2296 caps->num_txq);
2297 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2298 caps->txq_first_id);
2299 break;
2300 case ICE_AQC_CAPS_MSIX:
2301 caps->num_msix_vectors = number;
2302 caps->msix_vector_first_id = phys_id;
2303 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2304 caps->num_msix_vectors);
2305 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2306 caps->msix_vector_first_id);
2307 break;
2308 case ICE_AQC_CAPS_PENDING_NVM_VER:
2309 caps->nvm_update_pending_nvm = true;
2310 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2311 break;
2312 case ICE_AQC_CAPS_PENDING_OROM_VER:
2313 caps->nvm_update_pending_orom = true;
2314 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2315 break;
2316 case ICE_AQC_CAPS_PENDING_NET_VER:
2317 caps->nvm_update_pending_netlist = true;
2318 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2319 break;
2320 case ICE_AQC_CAPS_NVM_MGMT:
2321 caps->nvm_unified_update =
2322 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2323 true : false;
2324 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2325 caps->nvm_unified_update);
2326 break;
2327 case ICE_AQC_CAPS_RDMA:
2328 caps->rdma = (number == 1);
2329 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2330 break;
2331 case ICE_AQC_CAPS_MAX_MTU:
2332 caps->max_mtu = number;
2333 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2334 prefix, caps->max_mtu);
2335 break;
2336 case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2337 caps->pcie_reset_avoidance = (number > 0);
2338 ice_debug(hw, ICE_DBG_INIT,
2339 "%s: pcie_reset_avoidance = %d\n", prefix,
2340 caps->pcie_reset_avoidance);
2341 break;
2342 case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2343 caps->reset_restrict_support = (number == 1);
2344 ice_debug(hw, ICE_DBG_INIT,
2345 "%s: reset_restrict_support = %d\n", prefix,
2346 caps->reset_restrict_support);
2347 break;
2348 case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2349 caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2350 ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2351 prefix, caps->roce_lag);
2352 caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2353 ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2354 prefix, caps->sriov_lag);
2355 break;
2356 default:
2357 /* Not one of the recognized common capabilities */
2358 found = false;
2359 }
2360
2361 return found;
2362}
2363
2364/**
2365 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2366 * @hw: pointer to the HW structure
2367 * @caps: pointer to capabilities structure to fix
2368 *
2369 * Re-calculate the capabilities that are dependent on the number of physical
2370 * ports; i.e. some features are not supported or function differently on
2371 * devices with more than 4 ports.
2372 */
2373static void
2374ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2375{
2376 /* This assumes device capabilities are always scanned before function
2377 * capabilities during the initialization flow.
2378 */
2379 if (hw->dev_caps.num_funcs > 4) {
2380 /* Max 4 TCs per port */
2381 caps->maxtc = 4;
2382 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2383 caps->maxtc);
2384 if (caps->rdma) {
2385 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2386 caps->rdma = 0;
2387 }
2388
2389 /* print message only when processing device capabilities
2390 * during initialization.
2391 */
2392 if (caps == &hw->dev_caps.common_cap)
2393 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2394 }
2395}
2396
2397/**
2398 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2399 * @hw: pointer to the HW struct
2400 * @func_p: pointer to function capabilities structure
2401 * @cap: pointer to the capability element to parse
2402 *
2403 * Extract function capabilities for ICE_AQC_CAPS_VF.
2404 */
2405static void
2406ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2407 struct ice_aqc_list_caps_elem *cap)
2408{
2409 u32 logical_id = le32_to_cpu(cap->logical_id);
2410 u32 number = le32_to_cpu(cap->number);
2411
2412 func_p->num_allocd_vfs = number;
2413 func_p->vf_base_id = logical_id;
2414 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2415 func_p->num_allocd_vfs);
2416 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2417 func_p->vf_base_id);
2418}
2419
2420/**
2421 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2422 * @hw: pointer to the HW struct
2423 * @func_p: pointer to function capabilities structure
2424 * @cap: pointer to the capability element to parse
2425 *
2426 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2427 */
2428static void
2429ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2430 struct ice_aqc_list_caps_elem *cap)
2431{
2432 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2433 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2434 le32_to_cpu(cap->number));
2435 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2436 func_p->guar_num_vsi);
2437}
2438
2439/**
2440 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2441 * @hw: pointer to the HW struct
2442 * @func_p: pointer to function capabilities structure
2443 * @cap: pointer to the capability element to parse
2444 *
2445 * Extract function capabilities for ICE_AQC_CAPS_1588.
2446 */
2447static void
2448ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2449 struct ice_aqc_list_caps_elem *cap)
2450{
2451 struct ice_ts_func_info *info = &func_p->ts_func_info;
2452 u32 number = le32_to_cpu(cap->number);
2453
2454 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2455 func_p->common_cap.ieee_1588 = info->ena;
2456
2457 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2458 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2459 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2460 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2461
2462 info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2463 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2464
2465 if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2466 info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2467 } else {
2468 /* Unknown clock frequency, so assume a (probably incorrect)
2469 * default to avoid out-of-bounds look ups of frequency
2470 * related information.
2471 */
2472 ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2473 info->clk_freq);
2474 info->time_ref = ICE_TIME_REF_FREQ_25_000;
2475 }
2476
2477 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2478 func_p->common_cap.ieee_1588);
2479 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2480 info->src_tmr_owned);
2481 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2482 info->tmr_ena);
2483 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2484 info->tmr_index_owned);
2485 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2486 info->tmr_index_assoc);
2487 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2488 info->clk_freq);
2489 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2490 info->clk_src);
2491}
2492
2493/**
2494 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2495 * @hw: pointer to the HW struct
2496 * @func_p: pointer to function capabilities structure
2497 *
2498 * Extract function capabilities for ICE_AQC_CAPS_FD.
2499 */
2500static void
2501ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2502{
2503 u32 reg_val, gsize, bsize;
2504
2505 reg_val = rd32(hw, GLQF_FD_SIZE);
2506 switch (hw->mac_type) {
2507 case ICE_MAC_E830:
2508 gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2509 bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2510 break;
2511 case ICE_MAC_E810:
2512 default:
2513 gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2514 bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2515 }
2516 func_p->fd_fltr_guar = ice_get_num_per_func(hw, max: gsize);
2517 func_p->fd_fltr_best_effort = bsize;
2518
2519 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2520 func_p->fd_fltr_guar);
2521 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2522 func_p->fd_fltr_best_effort);
2523}
2524
2525/**
2526 * ice_parse_func_caps - Parse function capabilities
2527 * @hw: pointer to the HW struct
2528 * @func_p: pointer to function capabilities structure
2529 * @buf: buffer containing the function capability records
2530 * @cap_count: the number of capabilities
2531 *
2532 * Helper function to parse function (0x000A) capabilities list. For
2533 * capabilities shared between device and function, this relies on
2534 * ice_parse_common_caps.
2535 *
2536 * Loop through the list of provided capabilities and extract the relevant
2537 * data into the function capabilities structured.
2538 */
2539static void
2540ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2541 void *buf, u32 cap_count)
2542{
2543 struct ice_aqc_list_caps_elem *cap_resp;
2544 u32 i;
2545
2546 cap_resp = buf;
2547
2548 memset(func_p, 0, sizeof(*func_p));
2549
2550 for (i = 0; i < cap_count; i++) {
2551 u16 cap = le16_to_cpu(cap_resp[i].cap);
2552 bool found;
2553
2554 found = ice_parse_common_caps(hw, caps: &func_p->common_cap,
2555 elem: &cap_resp[i], prefix: "func caps");
2556
2557 switch (cap) {
2558 case ICE_AQC_CAPS_VF:
2559 ice_parse_vf_func_caps(hw, func_p, cap: &cap_resp[i]);
2560 break;
2561 case ICE_AQC_CAPS_VSI:
2562 ice_parse_vsi_func_caps(hw, func_p, cap: &cap_resp[i]);
2563 break;
2564 case ICE_AQC_CAPS_1588:
2565 ice_parse_1588_func_caps(hw, func_p, cap: &cap_resp[i]);
2566 break;
2567 case ICE_AQC_CAPS_FD:
2568 ice_parse_fdir_func_caps(hw, func_p);
2569 break;
2570 default:
2571 /* Don't list common capabilities as unknown */
2572 if (!found)
2573 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2574 i, cap);
2575 break;
2576 }
2577 }
2578
2579 ice_recalc_port_limited_caps(hw, caps: &func_p->common_cap);
2580}
2581
2582/**
2583 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2584 * @hw: pointer to the HW struct
2585 * @dev_p: pointer to device capabilities structure
2586 * @cap: capability element to parse
2587 *
2588 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2589 */
2590static void
2591ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2592 struct ice_aqc_list_caps_elem *cap)
2593{
2594 u32 number = le32_to_cpu(cap->number);
2595
2596 dev_p->num_funcs = hweight32(number);
2597 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2598 dev_p->num_funcs);
2599}
2600
2601/**
2602 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2603 * @hw: pointer to the HW struct
2604 * @dev_p: pointer to device capabilities structure
2605 * @cap: capability element to parse
2606 *
2607 * Parse ICE_AQC_CAPS_VF for device capabilities.
2608 */
2609static void
2610ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2611 struct ice_aqc_list_caps_elem *cap)
2612{
2613 u32 number = le32_to_cpu(cap->number);
2614
2615 dev_p->num_vfs_exposed = number;
2616 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2617 dev_p->num_vfs_exposed);
2618}
2619
2620/**
2621 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2622 * @hw: pointer to the HW struct
2623 * @dev_p: pointer to device capabilities structure
2624 * @cap: capability element to parse
2625 *
2626 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2627 */
2628static void
2629ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2630 struct ice_aqc_list_caps_elem *cap)
2631{
2632 u32 number = le32_to_cpu(cap->number);
2633
2634 dev_p->num_vsi_allocd_to_host = number;
2635 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2636 dev_p->num_vsi_allocd_to_host);
2637}
2638
2639/**
2640 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2641 * @hw: pointer to the HW struct
2642 * @dev_p: pointer to device capabilities structure
2643 * @cap: capability element to parse
2644 *
2645 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2646 */
2647static void
2648ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2649 struct ice_aqc_list_caps_elem *cap)
2650{
2651 struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2652 u32 logical_id = le32_to_cpu(cap->logical_id);
2653 u32 phys_id = le32_to_cpu(cap->phys_id);
2654 u32 number = le32_to_cpu(cap->number);
2655
2656 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2657 dev_p->common_cap.ieee_1588 = info->ena;
2658
2659 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2660 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2661 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2662
2663 info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2664 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2665 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2666
2667 info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2668
2669 info->ena_ports = logical_id;
2670 info->tmr_own_map = phys_id;
2671
2672 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2673 dev_p->common_cap.ieee_1588);
2674 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2675 info->tmr0_owner);
2676 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2677 info->tmr0_owned);
2678 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2679 info->tmr0_ena);
2680 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2681 info->tmr1_owner);
2682 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2683 info->tmr1_owned);
2684 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2685 info->tmr1_ena);
2686 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2687 info->ts_ll_read);
2688 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2689 info->ena_ports);
2690 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2691 info->tmr_own_map);
2692}
2693
2694/**
2695 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2696 * @hw: pointer to the HW struct
2697 * @dev_p: pointer to device capabilities structure
2698 * @cap: capability element to parse
2699 *
2700 * Parse ICE_AQC_CAPS_FD for device capabilities.
2701 */
2702static void
2703ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2704 struct ice_aqc_list_caps_elem *cap)
2705{
2706 u32 number = le32_to_cpu(cap->number);
2707
2708 dev_p->num_flow_director_fltr = number;
2709 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2710 dev_p->num_flow_director_fltr);
2711}
2712
2713/**
2714 * ice_parse_dev_caps - Parse device capabilities
2715 * @hw: pointer to the HW struct
2716 * @dev_p: pointer to device capabilities structure
2717 * @buf: buffer containing the device capability records
2718 * @cap_count: the number of capabilities
2719 *
2720 * Helper device to parse device (0x000B) capabilities list. For
2721 * capabilities shared between device and function, this relies on
2722 * ice_parse_common_caps.
2723 *
2724 * Loop through the list of provided capabilities and extract the relevant
2725 * data into the device capabilities structured.
2726 */
2727static void
2728ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2729 void *buf, u32 cap_count)
2730{
2731 struct ice_aqc_list_caps_elem *cap_resp;
2732 u32 i;
2733
2734 cap_resp = buf;
2735
2736 memset(dev_p, 0, sizeof(*dev_p));
2737
2738 for (i = 0; i < cap_count; i++) {
2739 u16 cap = le16_to_cpu(cap_resp[i].cap);
2740 bool found;
2741
2742 found = ice_parse_common_caps(hw, caps: &dev_p->common_cap,
2743 elem: &cap_resp[i], prefix: "dev caps");
2744
2745 switch (cap) {
2746 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2747 ice_parse_valid_functions_cap(hw, dev_p, cap: &cap_resp[i]);
2748 break;
2749 case ICE_AQC_CAPS_VF:
2750 ice_parse_vf_dev_caps(hw, dev_p, cap: &cap_resp[i]);
2751 break;
2752 case ICE_AQC_CAPS_VSI:
2753 ice_parse_vsi_dev_caps(hw, dev_p, cap: &cap_resp[i]);
2754 break;
2755 case ICE_AQC_CAPS_1588:
2756 ice_parse_1588_dev_caps(hw, dev_p, cap: &cap_resp[i]);
2757 break;
2758 case ICE_AQC_CAPS_FD:
2759 ice_parse_fdir_dev_caps(hw, dev_p, cap: &cap_resp[i]);
2760 break;
2761 default:
2762 /* Don't list common capabilities as unknown */
2763 if (!found)
2764 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2765 i, cap);
2766 break;
2767 }
2768 }
2769
2770 ice_recalc_port_limited_caps(hw, caps: &dev_p->common_cap);
2771}
2772
2773/**
2774 * ice_is_pf_c827 - check if pf contains c827 phy
2775 * @hw: pointer to the hw struct
2776 */
2777bool ice_is_pf_c827(struct ice_hw *hw)
2778{
2779 struct ice_aqc_get_link_topo cmd = {};
2780 u8 node_part_number;
2781 u16 node_handle;
2782 int status;
2783
2784 if (hw->mac_type != ICE_MAC_E810)
2785 return false;
2786
2787 if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2788 return true;
2789
2790 cmd.addr.topo_params.node_type_ctx =
2791 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2792 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2793 cmd.addr.topo_params.index = 0;
2794
2795 status = ice_aq_get_netlist_node(hw, cmd: &cmd, node_part_number: &node_part_number,
2796 node_handle: &node_handle);
2797
2798 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2799 return false;
2800
2801 if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2802 return true;
2803
2804 return false;
2805}
2806
2807/**
2808 * ice_is_phy_rclk_in_netlist
2809 * @hw: pointer to the hw struct
2810 *
2811 * Check if the PHY Recovered Clock device is present in the netlist
2812 */
2813bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2814{
2815 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2816 ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2817 ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2818 ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2819 return false;
2820
2821 return true;
2822}
2823
2824/**
2825 * ice_is_clock_mux_in_netlist
2826 * @hw: pointer to the hw struct
2827 *
2828 * Check if the Clock Multiplexer device is present in the netlist
2829 */
2830bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2831{
2832 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2833 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2834 NULL))
2835 return false;
2836
2837 return true;
2838}
2839
2840/**
2841 * ice_is_cgu_in_netlist - check for CGU presence
2842 * @hw: pointer to the hw struct
2843 *
2844 * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2845 * Save the CGU part number in the hw structure for later use.
2846 * Return:
2847 * * true - cgu is present
2848 * * false - cgu is not present
2849 */
2850bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2851{
2852 if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2853 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2854 NULL)) {
2855 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2856 return true;
2857 } else if (!ice_find_netlist_node(hw,
2858 ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2859 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2860 NULL)) {
2861 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2862 return true;
2863 }
2864
2865 return false;
2866}
2867
2868/**
2869 * ice_is_gps_in_netlist
2870 * @hw: pointer to the hw struct
2871 *
2872 * Check if the GPS generic device is present in the netlist
2873 */
2874bool ice_is_gps_in_netlist(struct ice_hw *hw)
2875{
2876 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2877 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2878 return false;
2879
2880 return true;
2881}
2882
2883/**
2884 * ice_aq_list_caps - query function/device capabilities
2885 * @hw: pointer to the HW struct
2886 * @buf: a buffer to hold the capabilities
2887 * @buf_size: size of the buffer
2888 * @cap_count: if not NULL, set to the number of capabilities reported
2889 * @opc: capabilities type to discover, device or function
2890 * @cd: pointer to command details structure or NULL
2891 *
2892 * Get the function (0x000A) or device (0x000B) capabilities description from
2893 * firmware and store it in the buffer.
2894 *
2895 * If the cap_count pointer is not NULL, then it is set to the number of
2896 * capabilities firmware will report. Note that if the buffer size is too
2897 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2898 * cap_count will still be updated in this case. It is recommended that the
2899 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2900 * firmware could return) to avoid this.
2901 */
2902int
2903ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2904 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2905{
2906 struct ice_aqc_list_caps *cmd;
2907 struct ice_aq_desc desc;
2908 int status;
2909
2910 cmd = &desc.params.get_cap;
2911
2912 if (opc != ice_aqc_opc_list_func_caps &&
2913 opc != ice_aqc_opc_list_dev_caps)
2914 return -EINVAL;
2915
2916 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: opc);
2917 status = ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
2918
2919 if (cap_count)
2920 *cap_count = le32_to_cpu(cmd->count);
2921
2922 return status;
2923}
2924
2925/**
2926 * ice_discover_dev_caps - Read and extract device capabilities
2927 * @hw: pointer to the hardware structure
2928 * @dev_caps: pointer to device capabilities structure
2929 *
2930 * Read the device capabilities and extract them into the dev_caps structure
2931 * for later use.
2932 */
2933int
2934ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2935{
2936 u32 cap_count = 0;
2937 void *cbuf;
2938 int status;
2939
2940 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2941 if (!cbuf)
2942 return -ENOMEM;
2943
2944 /* Although the driver doesn't know the number of capabilities the
2945 * device will return, we can simply send a 4KB buffer, the maximum
2946 * possible size that firmware can return.
2947 */
2948 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2949
2950 status = ice_aq_list_caps(hw, buf: cbuf, ICE_AQ_MAX_BUF_LEN, cap_count: &cap_count,
2951 opc: ice_aqc_opc_list_dev_caps, NULL);
2952 if (!status)
2953 ice_parse_dev_caps(hw, dev_p: dev_caps, buf: cbuf, cap_count);
2954 kfree(objp: cbuf);
2955
2956 return status;
2957}
2958
2959/**
2960 * ice_discover_func_caps - Read and extract function capabilities
2961 * @hw: pointer to the hardware structure
2962 * @func_caps: pointer to function capabilities structure
2963 *
2964 * Read the function capabilities and extract them into the func_caps structure
2965 * for later use.
2966 */
2967static int
2968ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2969{
2970 u32 cap_count = 0;
2971 void *cbuf;
2972 int status;
2973
2974 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2975 if (!cbuf)
2976 return -ENOMEM;
2977
2978 /* Although the driver doesn't know the number of capabilities the
2979 * device will return, we can simply send a 4KB buffer, the maximum
2980 * possible size that firmware can return.
2981 */
2982 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2983
2984 status = ice_aq_list_caps(hw, buf: cbuf, ICE_AQ_MAX_BUF_LEN, cap_count: &cap_count,
2985 opc: ice_aqc_opc_list_func_caps, NULL);
2986 if (!status)
2987 ice_parse_func_caps(hw, func_p: func_caps, buf: cbuf, cap_count);
2988 kfree(objp: cbuf);
2989
2990 return status;
2991}
2992
2993/**
2994 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2995 * @hw: pointer to the hardware structure
2996 */
2997void ice_set_safe_mode_caps(struct ice_hw *hw)
2998{
2999 struct ice_hw_func_caps *func_caps = &hw->func_caps;
3000 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
3001 struct ice_hw_common_caps cached_caps;
3002 u32 num_funcs;
3003
3004 /* cache some func_caps values that should be restored after memset */
3005 cached_caps = func_caps->common_cap;
3006
3007 /* unset func capabilities */
3008 memset(func_caps, 0, sizeof(*func_caps));
3009
3010#define ICE_RESTORE_FUNC_CAP(name) \
3011 func_caps->common_cap.name = cached_caps.name
3012
3013 /* restore cached values */
3014 ICE_RESTORE_FUNC_CAP(valid_functions);
3015 ICE_RESTORE_FUNC_CAP(txq_first_id);
3016 ICE_RESTORE_FUNC_CAP(rxq_first_id);
3017 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
3018 ICE_RESTORE_FUNC_CAP(max_mtu);
3019 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
3020 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
3021 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
3022 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
3023
3024 /* one Tx and one Rx queue in safe mode */
3025 func_caps->common_cap.num_rxq = 1;
3026 func_caps->common_cap.num_txq = 1;
3027
3028 /* two MSIX vectors, one for traffic and one for misc causes */
3029 func_caps->common_cap.num_msix_vectors = 2;
3030 func_caps->guar_num_vsi = 1;
3031
3032 /* cache some dev_caps values that should be restored after memset */
3033 cached_caps = dev_caps->common_cap;
3034 num_funcs = dev_caps->num_funcs;
3035
3036 /* unset dev capabilities */
3037 memset(dev_caps, 0, sizeof(*dev_caps));
3038
3039#define ICE_RESTORE_DEV_CAP(name) \
3040 dev_caps->common_cap.name = cached_caps.name
3041
3042 /* restore cached values */
3043 ICE_RESTORE_DEV_CAP(valid_functions);
3044 ICE_RESTORE_DEV_CAP(txq_first_id);
3045 ICE_RESTORE_DEV_CAP(rxq_first_id);
3046 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
3047 ICE_RESTORE_DEV_CAP(max_mtu);
3048 ICE_RESTORE_DEV_CAP(nvm_unified_update);
3049 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
3050 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
3051 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
3052 dev_caps->num_funcs = num_funcs;
3053
3054 /* one Tx and one Rx queue per function in safe mode */
3055 dev_caps->common_cap.num_rxq = num_funcs;
3056 dev_caps->common_cap.num_txq = num_funcs;
3057
3058 /* two MSIX vectors per function */
3059 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3060}
3061
3062/**
3063 * ice_get_caps - get info about the HW
3064 * @hw: pointer to the hardware structure
3065 */
3066int ice_get_caps(struct ice_hw *hw)
3067{
3068 int status;
3069
3070 status = ice_discover_dev_caps(hw, dev_caps: &hw->dev_caps);
3071 if (status)
3072 return status;
3073
3074 return ice_discover_func_caps(hw, func_caps: &hw->func_caps);
3075}
3076
3077/**
3078 * ice_aq_manage_mac_write - manage MAC address write command
3079 * @hw: pointer to the HW struct
3080 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3081 * @flags: flags to control write behavior
3082 * @cd: pointer to command details structure or NULL
3083 *
3084 * This function is used to write MAC address to the NVM (0x0108).
3085 */
3086int
3087ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3088 struct ice_sq_cd *cd)
3089{
3090 struct ice_aqc_manage_mac_write *cmd;
3091 struct ice_aq_desc desc;
3092
3093 cmd = &desc.params.mac_write;
3094 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_manage_mac_write);
3095
3096 cmd->flags = flags;
3097 ether_addr_copy(dst: cmd->mac_addr, src: mac_addr);
3098
3099 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
3100}
3101
3102/**
3103 * ice_aq_clear_pxe_mode
3104 * @hw: pointer to the HW struct
3105 *
3106 * Tell the firmware that the driver is taking over from PXE (0x0110).
3107 */
3108static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3109{
3110 struct ice_aq_desc desc;
3111
3112 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_clear_pxe_mode);
3113 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3114
3115 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
3116}
3117
3118/**
3119 * ice_clear_pxe_mode - clear pxe operations mode
3120 * @hw: pointer to the HW struct
3121 *
3122 * Make sure all PXE mode settings are cleared, including things
3123 * like descriptor fetch/write-back mode.
3124 */
3125void ice_clear_pxe_mode(struct ice_hw *hw)
3126{
3127 if (ice_check_sq_alive(hw, cq: &hw->adminq))
3128 ice_aq_clear_pxe_mode(hw);
3129}
3130
3131/**
3132 * ice_aq_set_port_params - set physical port parameters.
3133 * @pi: pointer to the port info struct
3134 * @double_vlan: if set double VLAN is enabled
3135 * @cd: pointer to command details structure or NULL
3136 *
3137 * Set Physical port parameters (0x0203)
3138 */
3139int
3140ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3141 struct ice_sq_cd *cd)
3142
3143{
3144 struct ice_aqc_set_port_params *cmd;
3145 struct ice_hw *hw = pi->hw;
3146 struct ice_aq_desc desc;
3147 u16 cmd_flags = 0;
3148
3149 cmd = &desc.params.set_port_params;
3150
3151 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_port_params);
3152 if (double_vlan)
3153 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3154 cmd->cmd_flags = cpu_to_le16(cmd_flags);
3155
3156 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
3157}
3158
3159/**
3160 * ice_is_100m_speed_supported
3161 * @hw: pointer to the HW struct
3162 *
3163 * returns true if 100M speeds are supported by the device,
3164 * false otherwise.
3165 */
3166bool ice_is_100m_speed_supported(struct ice_hw *hw)
3167{
3168 switch (hw->device_id) {
3169 case ICE_DEV_ID_E822C_SGMII:
3170 case ICE_DEV_ID_E822L_SGMII:
3171 case ICE_DEV_ID_E823L_1GBE:
3172 case ICE_DEV_ID_E823C_SGMII:
3173 return true;
3174 default:
3175 return false;
3176 }
3177}
3178
3179/**
3180 * ice_get_link_speed_based_on_phy_type - returns link speed
3181 * @phy_type_low: lower part of phy_type
3182 * @phy_type_high: higher part of phy_type
3183 *
3184 * This helper function will convert an entry in PHY type structure
3185 * [phy_type_low, phy_type_high] to its corresponding link speed.
3186 * Note: In the structure of [phy_type_low, phy_type_high], there should
3187 * be one bit set, as this function will convert one PHY type to its
3188 * speed.
3189 * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3190 * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3191 */
3192static u16
3193ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3194{
3195 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3196 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3197
3198 switch (phy_type_low) {
3199 case ICE_PHY_TYPE_LOW_100BASE_TX:
3200 case ICE_PHY_TYPE_LOW_100M_SGMII:
3201 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3202 break;
3203 case ICE_PHY_TYPE_LOW_1000BASE_T:
3204 case ICE_PHY_TYPE_LOW_1000BASE_SX:
3205 case ICE_PHY_TYPE_LOW_1000BASE_LX:
3206 case ICE_PHY_TYPE_LOW_1000BASE_KX:
3207 case ICE_PHY_TYPE_LOW_1G_SGMII:
3208 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3209 break;
3210 case ICE_PHY_TYPE_LOW_2500BASE_T:
3211 case ICE_PHY_TYPE_LOW_2500BASE_X:
3212 case ICE_PHY_TYPE_LOW_2500BASE_KX:
3213 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3214 break;
3215 case ICE_PHY_TYPE_LOW_5GBASE_T:
3216 case ICE_PHY_TYPE_LOW_5GBASE_KR:
3217 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3218 break;
3219 case ICE_PHY_TYPE_LOW_10GBASE_T:
3220 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3221 case ICE_PHY_TYPE_LOW_10GBASE_SR:
3222 case ICE_PHY_TYPE_LOW_10GBASE_LR:
3223 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3224 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3225 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3226 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3227 break;
3228 case ICE_PHY_TYPE_LOW_25GBASE_T:
3229 case ICE_PHY_TYPE_LOW_25GBASE_CR:
3230 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3231 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3232 case ICE_PHY_TYPE_LOW_25GBASE_SR:
3233 case ICE_PHY_TYPE_LOW_25GBASE_LR:
3234 case ICE_PHY_TYPE_LOW_25GBASE_KR:
3235 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3236 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3237 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3238 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3239 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3240 break;
3241 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3242 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3243 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3244 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3245 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3246 case ICE_PHY_TYPE_LOW_40G_XLAUI:
3247 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3248 break;
3249 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3250 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3251 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3252 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3253 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3254 case ICE_PHY_TYPE_LOW_50G_LAUI2:
3255 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3256 case ICE_PHY_TYPE_LOW_50G_AUI2:
3257 case ICE_PHY_TYPE_LOW_50GBASE_CP:
3258 case ICE_PHY_TYPE_LOW_50GBASE_SR:
3259 case ICE_PHY_TYPE_LOW_50GBASE_FR:
3260 case ICE_PHY_TYPE_LOW_50GBASE_LR:
3261 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3262 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3263 case ICE_PHY_TYPE_LOW_50G_AUI1:
3264 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3265 break;
3266 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3267 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3268 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3269 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3270 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3271 case ICE_PHY_TYPE_LOW_100G_CAUI4:
3272 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3273 case ICE_PHY_TYPE_LOW_100G_AUI4:
3274 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3275 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3276 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3277 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3278 case ICE_PHY_TYPE_LOW_100GBASE_DR:
3279 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3280 break;
3281 default:
3282 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3283 break;
3284 }
3285
3286 switch (phy_type_high) {
3287 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3288 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3289 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3290 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3291 case ICE_PHY_TYPE_HIGH_100G_AUI2:
3292 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3293 break;
3294 default:
3295 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3296 break;
3297 }
3298
3299 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3300 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3301 return ICE_AQ_LINK_SPEED_UNKNOWN;
3302 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3303 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3304 return ICE_AQ_LINK_SPEED_UNKNOWN;
3305 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3306 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3307 return speed_phy_type_low;
3308 else
3309 return speed_phy_type_high;
3310}
3311
3312/**
3313 * ice_update_phy_type
3314 * @phy_type_low: pointer to the lower part of phy_type
3315 * @phy_type_high: pointer to the higher part of phy_type
3316 * @link_speeds_bitmap: targeted link speeds bitmap
3317 *
3318 * Note: For the link_speeds_bitmap structure, you can check it at
3319 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3320 * link_speeds_bitmap include multiple speeds.
3321 *
3322 * Each entry in this [phy_type_low, phy_type_high] structure will
3323 * present a certain link speed. This helper function will turn on bits
3324 * in [phy_type_low, phy_type_high] structure based on the value of
3325 * link_speeds_bitmap input parameter.
3326 */
3327void
3328ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3329 u16 link_speeds_bitmap)
3330{
3331 u64 pt_high;
3332 u64 pt_low;
3333 int index;
3334 u16 speed;
3335
3336 /* We first check with low part of phy_type */
3337 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3338 pt_low = BIT_ULL(index);
3339 speed = ice_get_link_speed_based_on_phy_type(phy_type_low: pt_low, phy_type_high: 0);
3340
3341 if (link_speeds_bitmap & speed)
3342 *phy_type_low |= BIT_ULL(index);
3343 }
3344
3345 /* We then check with high part of phy_type */
3346 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3347 pt_high = BIT_ULL(index);
3348 speed = ice_get_link_speed_based_on_phy_type(phy_type_low: 0, phy_type_high: pt_high);
3349
3350 if (link_speeds_bitmap & speed)
3351 *phy_type_high |= BIT_ULL(index);
3352 }
3353}
3354
3355/**
3356 * ice_aq_set_phy_cfg
3357 * @hw: pointer to the HW struct
3358 * @pi: port info structure of the interested logical port
3359 * @cfg: structure with PHY configuration data to be set
3360 * @cd: pointer to command details structure or NULL
3361 *
3362 * Set the various PHY configuration parameters supported on the Port.
3363 * One or more of the Set PHY config parameters may be ignored in an MFP
3364 * mode as the PF may not have the privilege to set some of the PHY Config
3365 * parameters. This status will be indicated by the command response (0x0601).
3366 */
3367int
3368ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3369 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3370{
3371 struct ice_aq_desc desc;
3372 int status;
3373
3374 if (!cfg)
3375 return -EINVAL;
3376
3377 /* Ensure that only valid bits of cfg->caps can be turned on. */
3378 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3379 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3380 cfg->caps);
3381
3382 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3383 }
3384
3385 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_phy_cfg);
3386 desc.params.set_phy.lport_num = pi->lport;
3387 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3388
3389 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3390 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
3391 (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3392 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
3393 (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3394 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
3395 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
3396 cfg->low_power_ctrl_an);
3397 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
3398 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
3399 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
3400 cfg->link_fec_opt);
3401
3402 status = ice_aq_send_cmd(hw, desc: &desc, buf: cfg, buf_size: sizeof(*cfg), cd);
3403 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3404 status = 0;
3405
3406 if (!status)
3407 pi->phy.curr_user_phy_cfg = *cfg;
3408
3409 return status;
3410}
3411
3412/**
3413 * ice_update_link_info - update status of the HW network link
3414 * @pi: port info structure of the interested logical port
3415 */
3416int ice_update_link_info(struct ice_port_info *pi)
3417{
3418 struct ice_link_status *li;
3419 int status;
3420
3421 if (!pi)
3422 return -EINVAL;
3423
3424 li = &pi->phy.link_info;
3425
3426 status = ice_aq_get_link_info(pi, ena_lse: true, NULL, NULL);
3427 if (status)
3428 return status;
3429
3430 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3431 struct ice_aqc_get_phy_caps_data *pcaps;
3432 struct ice_hw *hw;
3433
3434 hw = pi->hw;
3435 pcaps = devm_kzalloc(dev: ice_hw_to_dev(hw), size: sizeof(*pcaps),
3436 GFP_KERNEL);
3437 if (!pcaps)
3438 return -ENOMEM;
3439
3440 status = ice_aq_get_phy_caps(pi, qual_mods: false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3441 pcaps, NULL);
3442
3443 devm_kfree(dev: ice_hw_to_dev(hw), p: pcaps);
3444 }
3445
3446 return status;
3447}
3448
3449/**
3450 * ice_cache_phy_user_req
3451 * @pi: port information structure
3452 * @cache_data: PHY logging data
3453 * @cache_mode: PHY logging mode
3454 *
3455 * Log the user request on (FC, FEC, SPEED) for later use.
3456 */
3457static void
3458ice_cache_phy_user_req(struct ice_port_info *pi,
3459 struct ice_phy_cache_mode_data cache_data,
3460 enum ice_phy_cache_mode cache_mode)
3461{
3462 if (!pi)
3463 return;
3464
3465 switch (cache_mode) {
3466 case ICE_FC_MODE:
3467 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3468 break;
3469 case ICE_SPEED_MODE:
3470 pi->phy.curr_user_speed_req =
3471 cache_data.data.curr_user_speed_req;
3472 break;
3473 case ICE_FEC_MODE:
3474 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3475 break;
3476 default:
3477 break;
3478 }
3479}
3480
3481/**
3482 * ice_caps_to_fc_mode
3483 * @caps: PHY capabilities
3484 *
3485 * Convert PHY FC capabilities to ice FC mode
3486 */
3487enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3488{
3489 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3490 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3491 return ICE_FC_FULL;
3492
3493 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3494 return ICE_FC_TX_PAUSE;
3495
3496 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3497 return ICE_FC_RX_PAUSE;
3498
3499 return ICE_FC_NONE;
3500}
3501
3502/**
3503 * ice_caps_to_fec_mode
3504 * @caps: PHY capabilities
3505 * @fec_options: Link FEC options
3506 *
3507 * Convert PHY FEC capabilities to ice FEC mode
3508 */
3509enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3510{
3511 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3512 return ICE_FEC_AUTO;
3513
3514 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3515 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3516 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3517 ICE_AQC_PHY_FEC_25G_KR_REQ))
3518 return ICE_FEC_BASER;
3519
3520 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3521 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3522 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3523 return ICE_FEC_RS;
3524
3525 return ICE_FEC_NONE;
3526}
3527
3528/**
3529 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3530 * @pi: port information structure
3531 * @cfg: PHY configuration data to set FC mode
3532 * @req_mode: FC mode to configure
3533 */
3534int
3535ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3536 enum ice_fc_mode req_mode)
3537{
3538 struct ice_phy_cache_mode_data cache_data;
3539 u8 pause_mask = 0x0;
3540
3541 if (!pi || !cfg)
3542 return -EINVAL;
3543
3544 switch (req_mode) {
3545 case ICE_FC_FULL:
3546 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3547 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3548 break;
3549 case ICE_FC_RX_PAUSE:
3550 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3551 break;
3552 case ICE_FC_TX_PAUSE:
3553 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3554 break;
3555 default:
3556 break;
3557 }
3558
3559 /* clear the old pause settings */
3560 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3561 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3562
3563 /* set the new capabilities */
3564 cfg->caps |= pause_mask;
3565
3566 /* Cache user FC request */
3567 cache_data.data.curr_user_fc_req = req_mode;
3568 ice_cache_phy_user_req(pi, cache_data, cache_mode: ICE_FC_MODE);
3569
3570 return 0;
3571}
3572
3573/**
3574 * ice_set_fc
3575 * @pi: port information structure
3576 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3577 * @ena_auto_link_update: enable automatic link update
3578 *
3579 * Set the requested flow control mode.
3580 */
3581int
3582ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3583{
3584 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3585 struct ice_aqc_get_phy_caps_data *pcaps;
3586 struct ice_hw *hw;
3587 int status;
3588
3589 if (!pi || !aq_failures)
3590 return -EINVAL;
3591
3592 *aq_failures = 0;
3593 hw = pi->hw;
3594
3595 pcaps = devm_kzalloc(dev: ice_hw_to_dev(hw), size: sizeof(*pcaps), GFP_KERNEL);
3596 if (!pcaps)
3597 return -ENOMEM;
3598
3599 /* Get the current PHY config */
3600 status = ice_aq_get_phy_caps(pi, qual_mods: false, ICE_AQC_REPORT_ACTIVE_CFG,
3601 pcaps, NULL);
3602 if (status) {
3603 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3604 goto out;
3605 }
3606
3607 ice_copy_phy_caps_to_cfg(pi, caps: pcaps, cfg: &cfg);
3608
3609 /* Configure the set PHY data */
3610 status = ice_cfg_phy_fc(pi, cfg: &cfg, req_mode: pi->fc.req_mode);
3611 if (status)
3612 goto out;
3613
3614 /* If the capabilities have changed, then set the new config */
3615 if (cfg.caps != pcaps->caps) {
3616 int retry_count, retry_max = 10;
3617
3618 /* Auto restart link so settings take effect */
3619 if (ena_auto_link_update)
3620 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3621
3622 status = ice_aq_set_phy_cfg(hw, pi, cfg: &cfg, NULL);
3623 if (status) {
3624 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3625 goto out;
3626 }
3627
3628 /* Update the link info
3629 * It sometimes takes a really long time for link to
3630 * come back from the atomic reset. Thus, we wait a
3631 * little bit.
3632 */
3633 for (retry_count = 0; retry_count < retry_max; retry_count++) {
3634 status = ice_update_link_info(pi);
3635
3636 if (!status)
3637 break;
3638
3639 mdelay(100);
3640 }
3641
3642 if (status)
3643 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3644 }
3645
3646out:
3647 devm_kfree(dev: ice_hw_to_dev(hw), p: pcaps);
3648 return status;
3649}
3650
3651/**
3652 * ice_phy_caps_equals_cfg
3653 * @phy_caps: PHY capabilities
3654 * @phy_cfg: PHY configuration
3655 *
3656 * Helper function to determine if PHY capabilities matches PHY
3657 * configuration
3658 */
3659bool
3660ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3661 struct ice_aqc_set_phy_cfg_data *phy_cfg)
3662{
3663 u8 caps_mask, cfg_mask;
3664
3665 if (!phy_caps || !phy_cfg)
3666 return false;
3667
3668 /* These bits are not common between capabilities and configuration.
3669 * Do not use them to determine equality.
3670 */
3671 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3672 ICE_AQC_GET_PHY_EN_MOD_QUAL);
3673 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3674
3675 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3676 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3677 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3678 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3679 phy_caps->eee_cap != phy_cfg->eee_cap ||
3680 phy_caps->eeer_value != phy_cfg->eeer_value ||
3681 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3682 return false;
3683
3684 return true;
3685}
3686
3687/**
3688 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3689 * @pi: port information structure
3690 * @caps: PHY ability structure to copy date from
3691 * @cfg: PHY configuration structure to copy data to
3692 *
3693 * Helper function to copy AQC PHY get ability data to PHY set configuration
3694 * data structure
3695 */
3696void
3697ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3698 struct ice_aqc_get_phy_caps_data *caps,
3699 struct ice_aqc_set_phy_cfg_data *cfg)
3700{
3701 if (!pi || !caps || !cfg)
3702 return;
3703
3704 memset(cfg, 0, sizeof(*cfg));
3705 cfg->phy_type_low = caps->phy_type_low;
3706 cfg->phy_type_high = caps->phy_type_high;
3707 cfg->caps = caps->caps;
3708 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3709 cfg->eee_cap = caps->eee_cap;
3710 cfg->eeer_value = caps->eeer_value;
3711 cfg->link_fec_opt = caps->link_fec_options;
3712 cfg->module_compliance_enforcement =
3713 caps->module_compliance_enforcement;
3714}
3715
3716/**
3717 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3718 * @pi: port information structure
3719 * @cfg: PHY configuration data to set FEC mode
3720 * @fec: FEC mode to configure
3721 */
3722int
3723ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3724 enum ice_fec_mode fec)
3725{
3726 struct ice_aqc_get_phy_caps_data *pcaps;
3727 struct ice_hw *hw;
3728 int status;
3729
3730 if (!pi || !cfg)
3731 return -EINVAL;
3732
3733 hw = pi->hw;
3734
3735 pcaps = kzalloc(size: sizeof(*pcaps), GFP_KERNEL);
3736 if (!pcaps)
3737 return -ENOMEM;
3738
3739 status = ice_aq_get_phy_caps(pi, qual_mods: false,
3740 report_mode: (ice_fw_supports_report_dflt_cfg(hw) ?
3741 ICE_AQC_REPORT_DFLT_CFG :
3742 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3743 if (status)
3744 goto out;
3745
3746 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3747 cfg->link_fec_opt = pcaps->link_fec_options;
3748
3749 switch (fec) {
3750 case ICE_FEC_BASER:
3751 /* Clear RS bits, and AND BASE-R ability
3752 * bits and OR request bits.
3753 */
3754 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3755 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3756 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3757 ICE_AQC_PHY_FEC_25G_KR_REQ;
3758 break;
3759 case ICE_FEC_RS:
3760 /* Clear BASE-R bits, and AND RS ability
3761 * bits and OR request bits.
3762 */
3763 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3764 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3765 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3766 break;
3767 case ICE_FEC_NONE:
3768 /* Clear all FEC option bits. */
3769 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3770 break;
3771 case ICE_FEC_AUTO:
3772 /* AND auto FEC bit, and all caps bits. */
3773 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3774 cfg->link_fec_opt |= pcaps->link_fec_options;
3775 break;
3776 default:
3777 status = -EINVAL;
3778 break;
3779 }
3780
3781 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3782 !ice_fw_supports_report_dflt_cfg(hw)) {
3783 struct ice_link_default_override_tlv tlv = { 0 };
3784
3785 status = ice_get_link_default_override(ldo: &tlv, pi);
3786 if (status)
3787 goto out;
3788
3789 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3790 (tlv.options & ICE_LINK_OVERRIDE_EN))
3791 cfg->link_fec_opt = tlv.fec_options;
3792 }
3793
3794out:
3795 kfree(objp: pcaps);
3796
3797 return status;
3798}
3799
3800/**
3801 * ice_get_link_status - get status of the HW network link
3802 * @pi: port information structure
3803 * @link_up: pointer to bool (true/false = linkup/linkdown)
3804 *
3805 * Variable link_up is true if link is up, false if link is down.
3806 * The variable link_up is invalid if status is non zero. As a
3807 * result of this call, link status reporting becomes enabled
3808 */
3809int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3810{
3811 struct ice_phy_info *phy_info;
3812 int status = 0;
3813
3814 if (!pi || !link_up)
3815 return -EINVAL;
3816
3817 phy_info = &pi->phy;
3818
3819 if (phy_info->get_link_info) {
3820 status = ice_update_link_info(pi);
3821
3822 if (status)
3823 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3824 status);
3825 }
3826
3827 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3828
3829 return status;
3830}
3831
3832/**
3833 * ice_aq_set_link_restart_an
3834 * @pi: pointer to the port information structure
3835 * @ena_link: if true: enable link, if false: disable link
3836 * @cd: pointer to command details structure or NULL
3837 *
3838 * Sets up the link and restarts the Auto-Negotiation over the link.
3839 */
3840int
3841ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3842 struct ice_sq_cd *cd)
3843{
3844 struct ice_aqc_restart_an *cmd;
3845 struct ice_aq_desc desc;
3846
3847 cmd = &desc.params.restart_an;
3848
3849 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_restart_an);
3850
3851 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3852 cmd->lport_num = pi->lport;
3853 if (ena_link)
3854 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3855 else
3856 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3857
3858 return ice_aq_send_cmd(hw: pi->hw, desc: &desc, NULL, buf_size: 0, cd);
3859}
3860
3861/**
3862 * ice_aq_set_event_mask
3863 * @hw: pointer to the HW struct
3864 * @port_num: port number of the physical function
3865 * @mask: event mask to be set
3866 * @cd: pointer to command details structure or NULL
3867 *
3868 * Set event mask (0x0613)
3869 */
3870int
3871ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3872 struct ice_sq_cd *cd)
3873{
3874 struct ice_aqc_set_event_mask *cmd;
3875 struct ice_aq_desc desc;
3876
3877 cmd = &desc.params.set_event_mask;
3878
3879 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_event_mask);
3880
3881 cmd->lport_num = port_num;
3882
3883 cmd->event_mask = cpu_to_le16(mask);
3884 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
3885}
3886
3887/**
3888 * ice_aq_set_mac_loopback
3889 * @hw: pointer to the HW struct
3890 * @ena_lpbk: Enable or Disable loopback
3891 * @cd: pointer to command details structure or NULL
3892 *
3893 * Enable/disable loopback on a given port
3894 */
3895int
3896ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3897{
3898 struct ice_aqc_set_mac_lb *cmd;
3899 struct ice_aq_desc desc;
3900
3901 cmd = &desc.params.set_mac_lb;
3902
3903 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_mac_lb);
3904 if (ena_lpbk)
3905 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3906
3907 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
3908}
3909
3910/**
3911 * ice_aq_set_port_id_led
3912 * @pi: pointer to the port information
3913 * @is_orig_mode: is this LED set to original mode (by the net-list)
3914 * @cd: pointer to command details structure or NULL
3915 *
3916 * Set LED value for the given port (0x06e9)
3917 */
3918int
3919ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3920 struct ice_sq_cd *cd)
3921{
3922 struct ice_aqc_set_port_id_led *cmd;
3923 struct ice_hw *hw = pi->hw;
3924 struct ice_aq_desc desc;
3925
3926 cmd = &desc.params.set_port_id_led;
3927
3928 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_port_id_led);
3929
3930 if (is_orig_mode)
3931 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3932 else
3933 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3934
3935 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
3936}
3937
3938/**
3939 * ice_aq_get_port_options
3940 * @hw: pointer to the HW struct
3941 * @options: buffer for the resultant port options
3942 * @option_count: input - size of the buffer in port options structures,
3943 * output - number of returned port options
3944 * @lport: logical port to call the command with (optional)
3945 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3946 * when PF owns more than 1 port it must be true
3947 * @active_option_idx: index of active port option in returned buffer
3948 * @active_option_valid: active option in returned buffer is valid
3949 * @pending_option_idx: index of pending port option in returned buffer
3950 * @pending_option_valid: pending option in returned buffer is valid
3951 *
3952 * Calls Get Port Options AQC (0x06ea) and verifies result.
3953 */
3954int
3955ice_aq_get_port_options(struct ice_hw *hw,
3956 struct ice_aqc_get_port_options_elem *options,
3957 u8 *option_count, u8 lport, bool lport_valid,
3958 u8 *active_option_idx, bool *active_option_valid,
3959 u8 *pending_option_idx, bool *pending_option_valid)
3960{
3961 struct ice_aqc_get_port_options *cmd;
3962 struct ice_aq_desc desc;
3963 int status;
3964 u8 i;
3965
3966 /* options buffer shall be able to hold max returned options */
3967 if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3968 return -EINVAL;
3969
3970 cmd = &desc.params.get_port_options;
3971 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_port_options);
3972
3973 if (lport_valid)
3974 cmd->lport_num = lport;
3975 cmd->lport_num_valid = lport_valid;
3976
3977 status = ice_aq_send_cmd(hw, desc: &desc, buf: options,
3978 buf_size: *option_count * sizeof(*options), NULL);
3979 if (status)
3980 return status;
3981
3982 /* verify direct FW response & set output parameters */
3983 *option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3984 cmd->port_options_count);
3985 ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3986 *active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3987 cmd->port_options);
3988 if (*active_option_valid) {
3989 *active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3990 cmd->port_options);
3991 if (*active_option_idx > (*option_count - 1))
3992 return -EIO;
3993 ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3994 *active_option_idx);
3995 }
3996
3997 *pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3998 cmd->pending_port_option_status);
3999 if (*pending_option_valid) {
4000 *pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4001 cmd->pending_port_option_status);
4002 if (*pending_option_idx > (*option_count - 1))
4003 return -EIO;
4004 ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4005 *pending_option_idx);
4006 }
4007
4008 /* mask output options fields */
4009 for (i = 0; i < *option_count; i++) {
4010 options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4011 options[i].pmd);
4012 options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4013 options[i].max_lane_speed);
4014 ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4015 options[i].pmd, options[i].max_lane_speed);
4016 }
4017
4018 return 0;
4019}
4020
4021/**
4022 * ice_aq_set_port_option
4023 * @hw: pointer to the HW struct
4024 * @lport: logical port to call the command with
4025 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4026 * when PF owns more than 1 port it must be true
4027 * @new_option: new port option to be written
4028 *
4029 * Calls Set Port Options AQC (0x06eb).
4030 */
4031int
4032ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4033 u8 new_option)
4034{
4035 struct ice_aqc_set_port_option *cmd;
4036 struct ice_aq_desc desc;
4037
4038 if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4039 return -EINVAL;
4040
4041 cmd = &desc.params.set_port_option;
4042 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_port_option);
4043
4044 if (lport_valid)
4045 cmd->lport_num = lport;
4046
4047 cmd->lport_num_valid = lport_valid;
4048 cmd->selected_port_option = new_option;
4049
4050 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
4051}
4052
4053/**
4054 * ice_aq_sff_eeprom
4055 * @hw: pointer to the HW struct
4056 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4057 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4058 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4059 * @page: QSFP page
4060 * @set_page: set or ignore the page
4061 * @data: pointer to data buffer to be read/written to the I2C device.
4062 * @length: 1-16 for read, 1 for write.
4063 * @write: 0 read, 1 for write.
4064 * @cd: pointer to command details structure or NULL
4065 *
4066 * Read/Write SFF EEPROM (0x06EE)
4067 */
4068int
4069ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4070 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4071 bool write, struct ice_sq_cd *cd)
4072{
4073 struct ice_aqc_sff_eeprom *cmd;
4074 struct ice_aq_desc desc;
4075 int status;
4076
4077 if (!data || (mem_addr & 0xff00))
4078 return -EINVAL;
4079
4080 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_sff_eeprom);
4081 cmd = &desc.params.read_write_sff_param;
4082 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
4083 cmd->lport_num = (u8)(lport & 0xff);
4084 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4085 cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
4086 ICE_AQC_SFF_I2CBUS_7BIT_M) |
4087 ((set_page <<
4088 ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
4089 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
4090 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4091 cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
4092 if (write)
4093 cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
4094
4095 status = ice_aq_send_cmd(hw, desc: &desc, buf: data, buf_size: length, cd);
4096 return status;
4097}
4098
4099static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4100{
4101 switch (type) {
4102 case ICE_LUT_VSI:
4103 return ICE_LUT_VSI_SIZE;
4104 case ICE_LUT_GLOBAL:
4105 return ICE_LUT_GLOBAL_SIZE;
4106 case ICE_LUT_PF:
4107 return ICE_LUT_PF_SIZE;
4108 }
4109 WARN_ONCE(1, "incorrect type passed");
4110 return ICE_LUT_VSI_SIZE;
4111}
4112
4113static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4114{
4115 switch (size) {
4116 case ICE_LUT_VSI_SIZE:
4117 return ICE_AQC_LUT_SIZE_SMALL;
4118 case ICE_LUT_GLOBAL_SIZE:
4119 return ICE_AQC_LUT_SIZE_512;
4120 case ICE_LUT_PF_SIZE:
4121 return ICE_AQC_LUT_SIZE_2K;
4122 }
4123 WARN_ONCE(1, "incorrect size passed");
4124 return 0;
4125}
4126
4127/**
4128 * __ice_aq_get_set_rss_lut
4129 * @hw: pointer to the hardware structure
4130 * @params: RSS LUT parameters
4131 * @set: set true to set the table, false to get the table
4132 *
4133 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4134 */
4135static int
4136__ice_aq_get_set_rss_lut(struct ice_hw *hw,
4137 struct ice_aq_get_set_rss_lut_params *params, bool set)
4138{
4139 u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4140 enum ice_lut_type lut_type = params->lut_type;
4141 struct ice_aqc_get_set_rss_lut *desc_params;
4142 enum ice_aqc_lut_flags flags;
4143 enum ice_lut_size lut_size;
4144 struct ice_aq_desc desc;
4145 u8 *lut = params->lut;
4146
4147
4148 if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4149 return -EINVAL;
4150
4151 lut_size = ice_lut_type_to_size(type: lut_type);
4152 if (lut_size > params->lut_size)
4153 return -EINVAL;
4154 else if (set && lut_size != params->lut_size)
4155 return -EINVAL;
4156
4157 opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4158 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode);
4159 if (set)
4160 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4161
4162 desc_params = &desc.params.get_set_rss_lut;
4163 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4164 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4165
4166 if (lut_type == ICE_LUT_GLOBAL)
4167 glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4168 params->global_lut_id);
4169
4170 flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(size: lut_size);
4171 desc_params->flags = cpu_to_le16(flags);
4172
4173 return ice_aq_send_cmd(hw, desc: &desc, buf: lut, buf_size: lut_size, NULL);
4174}
4175
4176/**
4177 * ice_aq_get_rss_lut
4178 * @hw: pointer to the hardware structure
4179 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4180 *
4181 * get the RSS lookup table, PF or VSI type
4182 */
4183int
4184ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4185{
4186 return __ice_aq_get_set_rss_lut(hw, params: get_params, set: false);
4187}
4188
4189/**
4190 * ice_aq_set_rss_lut
4191 * @hw: pointer to the hardware structure
4192 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4193 *
4194 * set the RSS lookup table, PF or VSI type
4195 */
4196int
4197ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4198{
4199 return __ice_aq_get_set_rss_lut(hw, params: set_params, set: true);
4200}
4201
4202/**
4203 * __ice_aq_get_set_rss_key
4204 * @hw: pointer to the HW struct
4205 * @vsi_id: VSI FW index
4206 * @key: pointer to key info struct
4207 * @set: set true to set the key, false to get the key
4208 *
4209 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4210 */
4211static int
4212__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4213 struct ice_aqc_get_set_rss_keys *key, bool set)
4214{
4215 struct ice_aqc_get_set_rss_key *desc_params;
4216 u16 key_size = sizeof(*key);
4217 struct ice_aq_desc desc;
4218
4219 if (set) {
4220 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_rss_key);
4221 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4222 } else {
4223 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_rss_key);
4224 }
4225
4226 desc_params = &desc.params.get_set_rss_key;
4227 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4228
4229 return ice_aq_send_cmd(hw, desc: &desc, buf: key, buf_size: key_size, NULL);
4230}
4231
4232/**
4233 * ice_aq_get_rss_key
4234 * @hw: pointer to the HW struct
4235 * @vsi_handle: software VSI handle
4236 * @key: pointer to key info struct
4237 *
4238 * get the RSS key per VSI
4239 */
4240int
4241ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4242 struct ice_aqc_get_set_rss_keys *key)
4243{
4244 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4245 return -EINVAL;
4246
4247 return __ice_aq_get_set_rss_key(hw, vsi_id: ice_get_hw_vsi_num(hw, vsi_handle),
4248 key, set: false);
4249}
4250
4251/**
4252 * ice_aq_set_rss_key
4253 * @hw: pointer to the HW struct
4254 * @vsi_handle: software VSI handle
4255 * @keys: pointer to key info struct
4256 *
4257 * set the RSS key per VSI
4258 */
4259int
4260ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4261 struct ice_aqc_get_set_rss_keys *keys)
4262{
4263 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4264 return -EINVAL;
4265
4266 return __ice_aq_get_set_rss_key(hw, vsi_id: ice_get_hw_vsi_num(hw, vsi_handle),
4267 key: keys, set: true);
4268}
4269
4270/**
4271 * ice_aq_add_lan_txq
4272 * @hw: pointer to the hardware structure
4273 * @num_qgrps: Number of added queue groups
4274 * @qg_list: list of queue groups to be added
4275 * @buf_size: size of buffer for indirect command
4276 * @cd: pointer to command details structure or NULL
4277 *
4278 * Add Tx LAN queue (0x0C30)
4279 *
4280 * NOTE:
4281 * Prior to calling add Tx LAN queue:
4282 * Initialize the following as part of the Tx queue context:
4283 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4284 * Cache profile and Packet shaper profile.
4285 *
4286 * After add Tx LAN queue AQ command is completed:
4287 * Interrupts should be associated with specific queues,
4288 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4289 * flow.
4290 */
4291static int
4292ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4293 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4294 struct ice_sq_cd *cd)
4295{
4296 struct ice_aqc_add_tx_qgrp *list;
4297 struct ice_aqc_add_txqs *cmd;
4298 struct ice_aq_desc desc;
4299 u16 i, sum_size = 0;
4300
4301 cmd = &desc.params.add_txqs;
4302
4303 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_add_txqs);
4304
4305 if (!qg_list)
4306 return -EINVAL;
4307
4308 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4309 return -EINVAL;
4310
4311 for (i = 0, list = qg_list; i < num_qgrps; i++) {
4312 sum_size += struct_size(list, txqs, list->num_txqs);
4313 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4314 list->num_txqs);
4315 }
4316
4317 if (buf_size != sum_size)
4318 return -EINVAL;
4319
4320 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4321
4322 cmd->num_qgrps = num_qgrps;
4323
4324 return ice_aq_send_cmd(hw, desc: &desc, buf: qg_list, buf_size, cd);
4325}
4326
4327/**
4328 * ice_aq_dis_lan_txq
4329 * @hw: pointer to the hardware structure
4330 * @num_qgrps: number of groups in the list
4331 * @qg_list: the list of groups to disable
4332 * @buf_size: the total size of the qg_list buffer in bytes
4333 * @rst_src: if called due to reset, specifies the reset source
4334 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4335 * @cd: pointer to command details structure or NULL
4336 *
4337 * Disable LAN Tx queue (0x0C31)
4338 */
4339static int
4340ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4341 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4342 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4343 struct ice_sq_cd *cd)
4344{
4345 struct ice_aqc_dis_txq_item *item;
4346 struct ice_aqc_dis_txqs *cmd;
4347 struct ice_aq_desc desc;
4348 u16 i, sz = 0;
4349 int status;
4350
4351 cmd = &desc.params.dis_txqs;
4352 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_dis_txqs);
4353
4354 /* qg_list can be NULL only in VM/VF reset flow */
4355 if (!qg_list && !rst_src)
4356 return -EINVAL;
4357
4358 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4359 return -EINVAL;
4360
4361 cmd->num_entries = num_qgrps;
4362
4363 cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4364 ICE_AQC_Q_DIS_TIMEOUT_M);
4365
4366 switch (rst_src) {
4367 case ICE_VM_RESET:
4368 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4369 cmd->vmvf_and_timeout |=
4370 cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4371 break;
4372 case ICE_VF_RESET:
4373 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4374 /* In this case, FW expects vmvf_num to be absolute VF ID */
4375 cmd->vmvf_and_timeout |=
4376 cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
4377 ICE_AQC_Q_DIS_VMVF_NUM_M);
4378 break;
4379 case ICE_NO_RESET:
4380 default:
4381 break;
4382 }
4383
4384 /* flush pipe on time out */
4385 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4386 /* If no queue group info, we are in a reset flow. Issue the AQ */
4387 if (!qg_list)
4388 goto do_aq;
4389
4390 /* set RD bit to indicate that command buffer is provided by the driver
4391 * and it needs to be read by the firmware
4392 */
4393 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4394
4395 for (i = 0, item = qg_list; i < num_qgrps; i++) {
4396 u16 item_size = struct_size(item, q_id, item->num_qs);
4397
4398 /* If the num of queues is even, add 2 bytes of padding */
4399 if ((item->num_qs % 2) == 0)
4400 item_size += 2;
4401
4402 sz += item_size;
4403
4404 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4405 }
4406
4407 if (buf_size != sz)
4408 return -EINVAL;
4409
4410do_aq:
4411 status = ice_aq_send_cmd(hw, desc: &desc, buf: qg_list, buf_size, cd);
4412 if (status) {
4413 if (!qg_list)
4414 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4415 vmvf_num, hw->adminq.sq_last_status);
4416 else
4417 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4418 le16_to_cpu(qg_list[0].q_id[0]),
4419 hw->adminq.sq_last_status);
4420 }
4421 return status;
4422}
4423
4424/**
4425 * ice_aq_cfg_lan_txq
4426 * @hw: pointer to the hardware structure
4427 * @buf: buffer for command
4428 * @buf_size: size of buffer in bytes
4429 * @num_qs: number of queues being configured
4430 * @oldport: origination lport
4431 * @newport: destination lport
4432 * @cd: pointer to command details structure or NULL
4433 *
4434 * Move/Configure LAN Tx queue (0x0C32)
4435 *
4436 * There is a better AQ command to use for moving nodes, so only coding
4437 * this one for configuring the node.
4438 */
4439int
4440ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4441 u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4442 struct ice_sq_cd *cd)
4443{
4444 struct ice_aqc_cfg_txqs *cmd;
4445 struct ice_aq_desc desc;
4446 int status;
4447
4448 cmd = &desc.params.cfg_txqs;
4449 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_cfg_txqs);
4450 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4451
4452 if (!buf)
4453 return -EINVAL;
4454
4455 cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4456 cmd->num_qs = num_qs;
4457 cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4458 cmd->port_num_chng |= (newport << ICE_AQC_Q_CFG_DST_PRT_S) &
4459 ICE_AQC_Q_CFG_DST_PRT_M;
4460 cmd->time_out = (5 << ICE_AQC_Q_CFG_TIMEOUT_S) &
4461 ICE_AQC_Q_CFG_TIMEOUT_M;
4462 cmd->blocked_cgds = 0;
4463
4464 status = ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
4465 if (status)
4466 ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4467 hw->adminq.sq_last_status);
4468 return status;
4469}
4470
4471/**
4472 * ice_aq_add_rdma_qsets
4473 * @hw: pointer to the hardware structure
4474 * @num_qset_grps: Number of RDMA Qset groups
4475 * @qset_list: list of Qset groups to be added
4476 * @buf_size: size of buffer for indirect command
4477 * @cd: pointer to command details structure or NULL
4478 *
4479 * Add Tx RDMA Qsets (0x0C33)
4480 */
4481static int
4482ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4483 struct ice_aqc_add_rdma_qset_data *qset_list,
4484 u16 buf_size, struct ice_sq_cd *cd)
4485{
4486 struct ice_aqc_add_rdma_qset_data *list;
4487 struct ice_aqc_add_rdma_qset *cmd;
4488 struct ice_aq_desc desc;
4489 u16 i, sum_size = 0;
4490
4491 cmd = &desc.params.add_rdma_qset;
4492
4493 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_add_rdma_qset);
4494
4495 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4496 return -EINVAL;
4497
4498 for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4499 u16 num_qsets = le16_to_cpu(list->num_qsets);
4500
4501 sum_size += struct_size(list, rdma_qsets, num_qsets);
4502 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4503 num_qsets);
4504 }
4505
4506 if (buf_size != sum_size)
4507 return -EINVAL;
4508
4509 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4510
4511 cmd->num_qset_grps = num_qset_grps;
4512
4513 return ice_aq_send_cmd(hw, desc: &desc, buf: qset_list, buf_size, cd);
4514}
4515
4516/* End of FW Admin Queue command wrappers */
4517
4518/**
4519 * ice_write_byte - write a byte to a packed context structure
4520 * @src_ctx: the context structure to read from
4521 * @dest_ctx: the context to be written to
4522 * @ce_info: a description of the struct to be filled
4523 */
4524static void
4525ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4526{
4527 u8 src_byte, dest_byte, mask;
4528 u8 *from, *dest;
4529 u16 shift_width;
4530
4531 /* copy from the next struct field */
4532 from = src_ctx + ce_info->offset;
4533
4534 /* prepare the bits and mask */
4535 shift_width = ce_info->lsb % 8;
4536 mask = (u8)(BIT(ce_info->width) - 1);
4537
4538 src_byte = *from;
4539 src_byte &= mask;
4540
4541 /* shift to correct alignment */
4542 mask <<= shift_width;
4543 src_byte <<= shift_width;
4544
4545 /* get the current bits from the target bit string */
4546 dest = dest_ctx + (ce_info->lsb / 8);
4547
4548 memcpy(&dest_byte, dest, sizeof(dest_byte));
4549
4550 dest_byte &= ~mask; /* get the bits not changing */
4551 dest_byte |= src_byte; /* add in the new bits */
4552
4553 /* put it all back */
4554 memcpy(dest, &dest_byte, sizeof(dest_byte));
4555}
4556
4557/**
4558 * ice_write_word - write a word to a packed context structure
4559 * @src_ctx: the context structure to read from
4560 * @dest_ctx: the context to be written to
4561 * @ce_info: a description of the struct to be filled
4562 */
4563static void
4564ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4565{
4566 u16 src_word, mask;
4567 __le16 dest_word;
4568 u8 *from, *dest;
4569 u16 shift_width;
4570
4571 /* copy from the next struct field */
4572 from = src_ctx + ce_info->offset;
4573
4574 /* prepare the bits and mask */
4575 shift_width = ce_info->lsb % 8;
4576 mask = BIT(ce_info->width) - 1;
4577
4578 /* don't swizzle the bits until after the mask because the mask bits
4579 * will be in a different bit position on big endian machines
4580 */
4581 src_word = *(u16 *)from;
4582 src_word &= mask;
4583
4584 /* shift to correct alignment */
4585 mask <<= shift_width;
4586 src_word <<= shift_width;
4587
4588 /* get the current bits from the target bit string */
4589 dest = dest_ctx + (ce_info->lsb / 8);
4590
4591 memcpy(&dest_word, dest, sizeof(dest_word));
4592
4593 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
4594 dest_word |= cpu_to_le16(src_word); /* add in the new bits */
4595
4596 /* put it all back */
4597 memcpy(dest, &dest_word, sizeof(dest_word));
4598}
4599
4600/**
4601 * ice_write_dword - write a dword to a packed context structure
4602 * @src_ctx: the context structure to read from
4603 * @dest_ctx: the context to be written to
4604 * @ce_info: a description of the struct to be filled
4605 */
4606static void
4607ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4608{
4609 u32 src_dword, mask;
4610 __le32 dest_dword;
4611 u8 *from, *dest;
4612 u16 shift_width;
4613
4614 /* copy from the next struct field */
4615 from = src_ctx + ce_info->offset;
4616
4617 /* prepare the bits and mask */
4618 shift_width = ce_info->lsb % 8;
4619
4620 /* if the field width is exactly 32 on an x86 machine, then the shift
4621 * operation will not work because the SHL instructions count is masked
4622 * to 5 bits so the shift will do nothing
4623 */
4624 if (ce_info->width < 32)
4625 mask = BIT(ce_info->width) - 1;
4626 else
4627 mask = (u32)~0;
4628
4629 /* don't swizzle the bits until after the mask because the mask bits
4630 * will be in a different bit position on big endian machines
4631 */
4632 src_dword = *(u32 *)from;
4633 src_dword &= mask;
4634
4635 /* shift to correct alignment */
4636 mask <<= shift_width;
4637 src_dword <<= shift_width;
4638
4639 /* get the current bits from the target bit string */
4640 dest = dest_ctx + (ce_info->lsb / 8);
4641
4642 memcpy(&dest_dword, dest, sizeof(dest_dword));
4643
4644 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
4645 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
4646
4647 /* put it all back */
4648 memcpy(dest, &dest_dword, sizeof(dest_dword));
4649}
4650
4651/**
4652 * ice_write_qword - write a qword to a packed context structure
4653 * @src_ctx: the context structure to read from
4654 * @dest_ctx: the context to be written to
4655 * @ce_info: a description of the struct to be filled
4656 */
4657static void
4658ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4659{
4660 u64 src_qword, mask;
4661 __le64 dest_qword;
4662 u8 *from, *dest;
4663 u16 shift_width;
4664
4665 /* copy from the next struct field */
4666 from = src_ctx + ce_info->offset;
4667
4668 /* prepare the bits and mask */
4669 shift_width = ce_info->lsb % 8;
4670
4671 /* if the field width is exactly 64 on an x86 machine, then the shift
4672 * operation will not work because the SHL instructions count is masked
4673 * to 6 bits so the shift will do nothing
4674 */
4675 if (ce_info->width < 64)
4676 mask = BIT_ULL(ce_info->width) - 1;
4677 else
4678 mask = (u64)~0;
4679
4680 /* don't swizzle the bits until after the mask because the mask bits
4681 * will be in a different bit position on big endian machines
4682 */
4683 src_qword = *(u64 *)from;
4684 src_qword &= mask;
4685
4686 /* shift to correct alignment */
4687 mask <<= shift_width;
4688 src_qword <<= shift_width;
4689
4690 /* get the current bits from the target bit string */
4691 dest = dest_ctx + (ce_info->lsb / 8);
4692
4693 memcpy(&dest_qword, dest, sizeof(dest_qword));
4694
4695 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
4696 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
4697
4698 /* put it all back */
4699 memcpy(dest, &dest_qword, sizeof(dest_qword));
4700}
4701
4702/**
4703 * ice_set_ctx - set context bits in packed structure
4704 * @hw: pointer to the hardware structure
4705 * @src_ctx: pointer to a generic non-packed context structure
4706 * @dest_ctx: pointer to memory for the packed structure
4707 * @ce_info: a description of the structure to be transformed
4708 */
4709int
4710ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4711 const struct ice_ctx_ele *ce_info)
4712{
4713 int f;
4714
4715 for (f = 0; ce_info[f].width; f++) {
4716 /* We have to deal with each element of the FW response
4717 * using the correct size so that we are correct regardless
4718 * of the endianness of the machine.
4719 */
4720 if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4721 ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4722 f, ce_info[f].width, ce_info[f].size_of);
4723 continue;
4724 }
4725 switch (ce_info[f].size_of) {
4726 case sizeof(u8):
4727 ice_write_byte(src_ctx, dest_ctx, ce_info: &ce_info[f]);
4728 break;
4729 case sizeof(u16):
4730 ice_write_word(src_ctx, dest_ctx, ce_info: &ce_info[f]);
4731 break;
4732 case sizeof(u32):
4733 ice_write_dword(src_ctx, dest_ctx, ce_info: &ce_info[f]);
4734 break;
4735 case sizeof(u64):
4736 ice_write_qword(src_ctx, dest_ctx, ce_info: &ce_info[f]);
4737 break;
4738 default:
4739 return -EINVAL;
4740 }
4741 }
4742
4743 return 0;
4744}
4745
4746/**
4747 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4748 * @hw: pointer to the HW struct
4749 * @vsi_handle: software VSI handle
4750 * @tc: TC number
4751 * @q_handle: software queue handle
4752 */
4753struct ice_q_ctx *
4754ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4755{
4756 struct ice_vsi_ctx *vsi;
4757 struct ice_q_ctx *q_ctx;
4758
4759 vsi = ice_get_vsi_ctx(hw, vsi_handle);
4760 if (!vsi)
4761 return NULL;
4762 if (q_handle >= vsi->num_lan_q_entries[tc])
4763 return NULL;
4764 if (!vsi->lan_q_ctx[tc])
4765 return NULL;
4766 q_ctx = vsi->lan_q_ctx[tc];
4767 return &q_ctx[q_handle];
4768}
4769
4770/**
4771 * ice_ena_vsi_txq
4772 * @pi: port information structure
4773 * @vsi_handle: software VSI handle
4774 * @tc: TC number
4775 * @q_handle: software queue handle
4776 * @num_qgrps: Number of added queue groups
4777 * @buf: list of queue groups to be added
4778 * @buf_size: size of buffer for indirect command
4779 * @cd: pointer to command details structure or NULL
4780 *
4781 * This function adds one LAN queue
4782 */
4783int
4784ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4785 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4786 struct ice_sq_cd *cd)
4787{
4788 struct ice_aqc_txsched_elem_data node = { 0 };
4789 struct ice_sched_node *parent;
4790 struct ice_q_ctx *q_ctx;
4791 struct ice_hw *hw;
4792 int status;
4793
4794 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4795 return -EIO;
4796
4797 if (num_qgrps > 1 || buf->num_txqs > 1)
4798 return -ENOSPC;
4799
4800 hw = pi->hw;
4801
4802 if (!ice_is_vsi_valid(hw, vsi_handle))
4803 return -EINVAL;
4804
4805 mutex_lock(&pi->sched_lock);
4806
4807 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4808 if (!q_ctx) {
4809 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4810 q_handle);
4811 status = -EINVAL;
4812 goto ena_txq_exit;
4813 }
4814
4815 /* find a parent node */
4816 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4817 ICE_SCHED_NODE_OWNER_LAN);
4818 if (!parent) {
4819 status = -EINVAL;
4820 goto ena_txq_exit;
4821 }
4822
4823 buf->parent_teid = parent->info.node_teid;
4824 node.parent_teid = parent->info.node_teid;
4825 /* Mark that the values in the "generic" section as valid. The default
4826 * value in the "generic" section is zero. This means that :
4827 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4828 * - 0 priority among siblings, indicated by Bit 1-3.
4829 * - WFQ, indicated by Bit 4.
4830 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4831 * Bit 5-6.
4832 * - Bit 7 is reserved.
4833 * Without setting the generic section as valid in valid_sections, the
4834 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4835 */
4836 buf->txqs[0].info.valid_sections =
4837 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4838 ICE_AQC_ELEM_VALID_EIR;
4839 buf->txqs[0].info.generic = 0;
4840 buf->txqs[0].info.cir_bw.bw_profile_idx =
4841 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4842 buf->txqs[0].info.cir_bw.bw_alloc =
4843 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4844 buf->txqs[0].info.eir_bw.bw_profile_idx =
4845 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4846 buf->txqs[0].info.eir_bw.bw_alloc =
4847 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4848
4849 /* add the LAN queue */
4850 status = ice_aq_add_lan_txq(hw, num_qgrps, qg_list: buf, buf_size, cd);
4851 if (status) {
4852 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4853 le16_to_cpu(buf->txqs[0].txq_id),
4854 hw->adminq.sq_last_status);
4855 goto ena_txq_exit;
4856 }
4857
4858 node.node_teid = buf->txqs[0].q_teid;
4859 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4860 q_ctx->q_handle = q_handle;
4861 q_ctx->q_teid = le32_to_cpu(node.node_teid);
4862
4863 /* add a leaf node into scheduler tree queue layer */
4864 status = ice_sched_add_node(pi, layer: hw->num_tx_sched_layers - 1, info: &node, NULL);
4865 if (!status)
4866 status = ice_sched_replay_q_bw(pi, q_ctx);
4867
4868ena_txq_exit:
4869 mutex_unlock(lock: &pi->sched_lock);
4870 return status;
4871}
4872
4873/**
4874 * ice_dis_vsi_txq
4875 * @pi: port information structure
4876 * @vsi_handle: software VSI handle
4877 * @tc: TC number
4878 * @num_queues: number of queues
4879 * @q_handles: pointer to software queue handle array
4880 * @q_ids: pointer to the q_id array
4881 * @q_teids: pointer to queue node teids
4882 * @rst_src: if called due to reset, specifies the reset source
4883 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4884 * @cd: pointer to command details structure or NULL
4885 *
4886 * This function removes queues and their corresponding nodes in SW DB
4887 */
4888int
4889ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4890 u16 *q_handles, u16 *q_ids, u32 *q_teids,
4891 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4892 struct ice_sq_cd *cd)
4893{
4894 DEFINE_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4895 u16 i, buf_size = __struct_size(qg_list);
4896 struct ice_q_ctx *q_ctx;
4897 int status = -ENOENT;
4898 struct ice_hw *hw;
4899
4900 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4901 return -EIO;
4902
4903 hw = pi->hw;
4904
4905 if (!num_queues) {
4906 /* if queue is disabled already yet the disable queue command
4907 * has to be sent to complete the VF reset, then call
4908 * ice_aq_dis_lan_txq without any queue information
4909 */
4910 if (rst_src)
4911 return ice_aq_dis_lan_txq(hw, num_qgrps: 0, NULL, buf_size: 0, rst_src,
4912 vmvf_num, NULL);
4913 return -EIO;
4914 }
4915
4916 mutex_lock(&pi->sched_lock);
4917
4918 for (i = 0; i < num_queues; i++) {
4919 struct ice_sched_node *node;
4920
4921 node = ice_sched_find_node_by_teid(start_node: pi->root, teid: q_teids[i]);
4922 if (!node)
4923 continue;
4924 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle: q_handles[i]);
4925 if (!q_ctx) {
4926 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4927 q_handles[i]);
4928 continue;
4929 }
4930 if (q_ctx->q_handle != q_handles[i]) {
4931 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4932 q_ctx->q_handle, q_handles[i]);
4933 continue;
4934 }
4935 qg_list->parent_teid = node->info.parent_teid;
4936 qg_list->num_qs = 1;
4937 qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4938 status = ice_aq_dis_lan_txq(hw, num_qgrps: 1, qg_list, buf_size, rst_src,
4939 vmvf_num, cd);
4940
4941 if (status)
4942 break;
4943 ice_free_sched_node(pi, node);
4944 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4945 q_ctx->q_teid = ICE_INVAL_TEID;
4946 }
4947 mutex_unlock(lock: &pi->sched_lock);
4948 return status;
4949}
4950
4951/**
4952 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4953 * @pi: port information structure
4954 * @vsi_handle: software VSI handle
4955 * @tc_bitmap: TC bitmap
4956 * @maxqs: max queues array per TC
4957 * @owner: LAN or RDMA
4958 *
4959 * This function adds/updates the VSI queues per TC.
4960 */
4961static int
4962ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4963 u16 *maxqs, u8 owner)
4964{
4965 int status = 0;
4966 u8 i;
4967
4968 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4969 return -EIO;
4970
4971 if (!ice_is_vsi_valid(hw: pi->hw, vsi_handle))
4972 return -EINVAL;
4973
4974 mutex_lock(&pi->sched_lock);
4975
4976 ice_for_each_traffic_class(i) {
4977 /* configuration is possible only if TC node is present */
4978 if (!ice_sched_get_tc_node(pi, tc: i))
4979 continue;
4980
4981 status = ice_sched_cfg_vsi(pi, vsi_handle, tc: i, maxqs: maxqs[i], owner,
4982 enable: ice_is_tc_ena(bitmap: tc_bitmap, tc: i));
4983 if (status)
4984 break;
4985 }
4986
4987 mutex_unlock(lock: &pi->sched_lock);
4988 return status;
4989}
4990
4991/**
4992 * ice_cfg_vsi_lan - configure VSI LAN queues
4993 * @pi: port information structure
4994 * @vsi_handle: software VSI handle
4995 * @tc_bitmap: TC bitmap
4996 * @max_lanqs: max LAN queues array per TC
4997 *
4998 * This function adds/updates the VSI LAN queues per TC.
4999 */
5000int
5001ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5002 u16 *max_lanqs)
5003{
5004 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, maxqs: max_lanqs,
5005 ICE_SCHED_NODE_OWNER_LAN);
5006}
5007
5008/**
5009 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5010 * @pi: port information structure
5011 * @vsi_handle: software VSI handle
5012 * @tc_bitmap: TC bitmap
5013 * @max_rdmaqs: max RDMA queues array per TC
5014 *
5015 * This function adds/updates the VSI RDMA queues per TC.
5016 */
5017int
5018ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5019 u16 *max_rdmaqs)
5020{
5021 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, maxqs: max_rdmaqs,
5022 ICE_SCHED_NODE_OWNER_RDMA);
5023}
5024
5025/**
5026 * ice_ena_vsi_rdma_qset
5027 * @pi: port information structure
5028 * @vsi_handle: software VSI handle
5029 * @tc: TC number
5030 * @rdma_qset: pointer to RDMA Qset
5031 * @num_qsets: number of RDMA Qsets
5032 * @qset_teid: pointer to Qset node TEIDs
5033 *
5034 * This function adds RDMA Qset
5035 */
5036int
5037ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5038 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5039{
5040 struct ice_aqc_txsched_elem_data node = { 0 };
5041 struct ice_aqc_add_rdma_qset_data *buf;
5042 struct ice_sched_node *parent;
5043 struct ice_hw *hw;
5044 u16 i, buf_size;
5045 int ret;
5046
5047 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5048 return -EIO;
5049 hw = pi->hw;
5050
5051 if (!ice_is_vsi_valid(hw, vsi_handle))
5052 return -EINVAL;
5053
5054 buf_size = struct_size(buf, rdma_qsets, num_qsets);
5055 buf = kzalloc(size: buf_size, GFP_KERNEL);
5056 if (!buf)
5057 return -ENOMEM;
5058 mutex_lock(&pi->sched_lock);
5059
5060 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5061 ICE_SCHED_NODE_OWNER_RDMA);
5062 if (!parent) {
5063 ret = -EINVAL;
5064 goto rdma_error_exit;
5065 }
5066 buf->parent_teid = parent->info.node_teid;
5067 node.parent_teid = parent->info.node_teid;
5068
5069 buf->num_qsets = cpu_to_le16(num_qsets);
5070 for (i = 0; i < num_qsets; i++) {
5071 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5072 buf->rdma_qsets[i].info.valid_sections =
5073 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5074 ICE_AQC_ELEM_VALID_EIR;
5075 buf->rdma_qsets[i].info.generic = 0;
5076 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5077 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5078 buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5079 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5080 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5081 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5082 buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5083 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5084 }
5085 ret = ice_aq_add_rdma_qsets(hw, num_qset_grps: 1, qset_list: buf, buf_size, NULL);
5086 if (ret) {
5087 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5088 goto rdma_error_exit;
5089 }
5090 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5091 for (i = 0; i < num_qsets; i++) {
5092 node.node_teid = buf->rdma_qsets[i].qset_teid;
5093 ret = ice_sched_add_node(pi, layer: hw->num_tx_sched_layers - 1,
5094 info: &node, NULL);
5095 if (ret)
5096 break;
5097 qset_teid[i] = le32_to_cpu(node.node_teid);
5098 }
5099rdma_error_exit:
5100 mutex_unlock(lock: &pi->sched_lock);
5101 kfree(objp: buf);
5102 return ret;
5103}
5104
5105/**
5106 * ice_dis_vsi_rdma_qset - free RDMA resources
5107 * @pi: port_info struct
5108 * @count: number of RDMA Qsets to free
5109 * @qset_teid: TEID of Qset node
5110 * @q_id: list of queue IDs being disabled
5111 */
5112int
5113ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5114 u16 *q_id)
5115{
5116 DEFINE_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5117 u16 qg_size = __struct_size(qg_list);
5118 struct ice_hw *hw;
5119 int status = 0;
5120 int i;
5121
5122 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5123 return -EIO;
5124
5125 hw = pi->hw;
5126
5127 mutex_lock(&pi->sched_lock);
5128
5129 for (i = 0; i < count; i++) {
5130 struct ice_sched_node *node;
5131
5132 node = ice_sched_find_node_by_teid(start_node: pi->root, teid: qset_teid[i]);
5133 if (!node)
5134 continue;
5135
5136 qg_list->parent_teid = node->info.parent_teid;
5137 qg_list->num_qs = 1;
5138 qg_list->q_id[0] =
5139 cpu_to_le16(q_id[i] |
5140 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5141
5142 status = ice_aq_dis_lan_txq(hw, num_qgrps: 1, qg_list, buf_size: qg_size,
5143 rst_src: ICE_NO_RESET, vmvf_num: 0, NULL);
5144 if (status)
5145 break;
5146
5147 ice_free_sched_node(pi, node);
5148 }
5149
5150 mutex_unlock(lock: &pi->sched_lock);
5151 return status;
5152}
5153
5154/**
5155 * ice_aq_get_cgu_abilities - get cgu abilities
5156 * @hw: pointer to the HW struct
5157 * @abilities: CGU abilities
5158 *
5159 * Get CGU abilities (0x0C61)
5160 * Return: 0 on success or negative value on failure.
5161 */
5162int
5163ice_aq_get_cgu_abilities(struct ice_hw *hw,
5164 struct ice_aqc_get_cgu_abilities *abilities)
5165{
5166 struct ice_aq_desc desc;
5167
5168 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_abilities);
5169 return ice_aq_send_cmd(hw, desc: &desc, buf: abilities, buf_size: sizeof(*abilities), NULL);
5170}
5171
5172/**
5173 * ice_aq_set_input_pin_cfg - set input pin config
5174 * @hw: pointer to the HW struct
5175 * @input_idx: Input index
5176 * @flags1: Input flags
5177 * @flags2: Input flags
5178 * @freq: Frequency in Hz
5179 * @phase_delay: Delay in ps
5180 *
5181 * Set CGU input config (0x0C62)
5182 * Return: 0 on success or negative value on failure.
5183 */
5184int
5185ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5186 u32 freq, s32 phase_delay)
5187{
5188 struct ice_aqc_set_cgu_input_config *cmd;
5189 struct ice_aq_desc desc;
5190
5191 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_cgu_input_config);
5192 cmd = &desc.params.set_cgu_input_config;
5193 cmd->input_idx = input_idx;
5194 cmd->flags1 = flags1;
5195 cmd->flags2 = flags2;
5196 cmd->freq = cpu_to_le32(freq);
5197 cmd->phase_delay = cpu_to_le32(phase_delay);
5198
5199 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5200}
5201
5202/**
5203 * ice_aq_get_input_pin_cfg - get input pin config
5204 * @hw: pointer to the HW struct
5205 * @input_idx: Input index
5206 * @status: Pin status
5207 * @type: Pin type
5208 * @flags1: Input flags
5209 * @flags2: Input flags
5210 * @freq: Frequency in Hz
5211 * @phase_delay: Delay in ps
5212 *
5213 * Get CGU input config (0x0C63)
5214 * Return: 0 on success or negative value on failure.
5215 */
5216int
5217ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5218 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5219{
5220 struct ice_aqc_get_cgu_input_config *cmd;
5221 struct ice_aq_desc desc;
5222 int ret;
5223
5224 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_input_config);
5225 cmd = &desc.params.get_cgu_input_config;
5226 cmd->input_idx = input_idx;
5227
5228 ret = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5229 if (!ret) {
5230 if (status)
5231 *status = cmd->status;
5232 if (type)
5233 *type = cmd->type;
5234 if (flags1)
5235 *flags1 = cmd->flags1;
5236 if (flags2)
5237 *flags2 = cmd->flags2;
5238 if (freq)
5239 *freq = le32_to_cpu(cmd->freq);
5240 if (phase_delay)
5241 *phase_delay = le32_to_cpu(cmd->phase_delay);
5242 }
5243
5244 return ret;
5245}
5246
5247/**
5248 * ice_aq_set_output_pin_cfg - set output pin config
5249 * @hw: pointer to the HW struct
5250 * @output_idx: Output index
5251 * @flags: Output flags
5252 * @src_sel: Index of DPLL block
5253 * @freq: Output frequency
5254 * @phase_delay: Output phase compensation
5255 *
5256 * Set CGU output config (0x0C64)
5257 * Return: 0 on success or negative value on failure.
5258 */
5259int
5260ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5261 u8 src_sel, u32 freq, s32 phase_delay)
5262{
5263 struct ice_aqc_set_cgu_output_config *cmd;
5264 struct ice_aq_desc desc;
5265
5266 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_cgu_output_config);
5267 cmd = &desc.params.set_cgu_output_config;
5268 cmd->output_idx = output_idx;
5269 cmd->flags = flags;
5270 cmd->src_sel = src_sel;
5271 cmd->freq = cpu_to_le32(freq);
5272 cmd->phase_delay = cpu_to_le32(phase_delay);
5273
5274 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5275}
5276
5277/**
5278 * ice_aq_get_output_pin_cfg - get output pin config
5279 * @hw: pointer to the HW struct
5280 * @output_idx: Output index
5281 * @flags: Output flags
5282 * @src_sel: Internal DPLL source
5283 * @freq: Output frequency
5284 * @src_freq: Source frequency
5285 *
5286 * Get CGU output config (0x0C65)
5287 * Return: 0 on success or negative value on failure.
5288 */
5289int
5290ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5291 u8 *src_sel, u32 *freq, u32 *src_freq)
5292{
5293 struct ice_aqc_get_cgu_output_config *cmd;
5294 struct ice_aq_desc desc;
5295 int ret;
5296
5297 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_output_config);
5298 cmd = &desc.params.get_cgu_output_config;
5299 cmd->output_idx = output_idx;
5300
5301 ret = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5302 if (!ret) {
5303 if (flags)
5304 *flags = cmd->flags;
5305 if (src_sel)
5306 *src_sel = cmd->src_sel;
5307 if (freq)
5308 *freq = le32_to_cpu(cmd->freq);
5309 if (src_freq)
5310 *src_freq = le32_to_cpu(cmd->src_freq);
5311 }
5312
5313 return ret;
5314}
5315
5316/**
5317 * ice_aq_get_cgu_dpll_status - get dpll status
5318 * @hw: pointer to the HW struct
5319 * @dpll_num: DPLL index
5320 * @ref_state: Reference clock state
5321 * @config: current DPLL config
5322 * @dpll_state: current DPLL state
5323 * @phase_offset: Phase offset in ns
5324 * @eec_mode: EEC_mode
5325 *
5326 * Get CGU DPLL status (0x0C66)
5327 * Return: 0 on success or negative value on failure.
5328 */
5329int
5330ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5331 u8 *dpll_state, u8 *config, s64 *phase_offset,
5332 u8 *eec_mode)
5333{
5334 struct ice_aqc_get_cgu_dpll_status *cmd;
5335 const s64 nsec_per_psec = 1000LL;
5336 struct ice_aq_desc desc;
5337 int status;
5338
5339 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_dpll_status);
5340 cmd = &desc.params.get_cgu_dpll_status;
5341 cmd->dpll_num = dpll_num;
5342
5343 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5344 if (!status) {
5345 *ref_state = cmd->ref_state;
5346 *dpll_state = cmd->dpll_state;
5347 *config = cmd->config;
5348 *phase_offset = le32_to_cpu(cmd->phase_offset_h);
5349 *phase_offset <<= 32;
5350 *phase_offset += le32_to_cpu(cmd->phase_offset_l);
5351 *phase_offset = div64_s64(dividend: sign_extend64(value: *phase_offset, index: 47),
5352 divisor: nsec_per_psec);
5353 *eec_mode = cmd->eec_mode;
5354 }
5355
5356 return status;
5357}
5358
5359/**
5360 * ice_aq_set_cgu_dpll_config - set dpll config
5361 * @hw: pointer to the HW struct
5362 * @dpll_num: DPLL index
5363 * @ref_state: Reference clock state
5364 * @config: DPLL config
5365 * @eec_mode: EEC mode
5366 *
5367 * Set CGU DPLL config (0x0C67)
5368 * Return: 0 on success or negative value on failure.
5369 */
5370int
5371ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5372 u8 config, u8 eec_mode)
5373{
5374 struct ice_aqc_set_cgu_dpll_config *cmd;
5375 struct ice_aq_desc desc;
5376
5377 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_cgu_dpll_config);
5378 cmd = &desc.params.set_cgu_dpll_config;
5379 cmd->dpll_num = dpll_num;
5380 cmd->ref_state = ref_state;
5381 cmd->config = config;
5382 cmd->eec_mode = eec_mode;
5383
5384 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5385}
5386
5387/**
5388 * ice_aq_set_cgu_ref_prio - set input reference priority
5389 * @hw: pointer to the HW struct
5390 * @dpll_num: DPLL index
5391 * @ref_idx: Reference pin index
5392 * @ref_priority: Reference input priority
5393 *
5394 * Set CGU reference priority (0x0C68)
5395 * Return: 0 on success or negative value on failure.
5396 */
5397int
5398ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5399 u8 ref_priority)
5400{
5401 struct ice_aqc_set_cgu_ref_prio *cmd;
5402 struct ice_aq_desc desc;
5403
5404 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_cgu_ref_prio);
5405 cmd = &desc.params.set_cgu_ref_prio;
5406 cmd->dpll_num = dpll_num;
5407 cmd->ref_idx = ref_idx;
5408 cmd->ref_priority = ref_priority;
5409
5410 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5411}
5412
5413/**
5414 * ice_aq_get_cgu_ref_prio - get input reference priority
5415 * @hw: pointer to the HW struct
5416 * @dpll_num: DPLL index
5417 * @ref_idx: Reference pin index
5418 * @ref_prio: Reference input priority
5419 *
5420 * Get CGU reference priority (0x0C69)
5421 * Return: 0 on success or negative value on failure.
5422 */
5423int
5424ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5425 u8 *ref_prio)
5426{
5427 struct ice_aqc_get_cgu_ref_prio *cmd;
5428 struct ice_aq_desc desc;
5429 int status;
5430
5431 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_ref_prio);
5432 cmd = &desc.params.get_cgu_ref_prio;
5433 cmd->dpll_num = dpll_num;
5434 cmd->ref_idx = ref_idx;
5435
5436 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5437 if (!status)
5438 *ref_prio = cmd->ref_priority;
5439
5440 return status;
5441}
5442
5443/**
5444 * ice_aq_get_cgu_info - get cgu info
5445 * @hw: pointer to the HW struct
5446 * @cgu_id: CGU ID
5447 * @cgu_cfg_ver: CGU config version
5448 * @cgu_fw_ver: CGU firmware version
5449 *
5450 * Get CGU info (0x0C6A)
5451 * Return: 0 on success or negative value on failure.
5452 */
5453int
5454ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5455 u32 *cgu_fw_ver)
5456{
5457 struct ice_aqc_get_cgu_info *cmd;
5458 struct ice_aq_desc desc;
5459 int status;
5460
5461 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_info);
5462 cmd = &desc.params.get_cgu_info;
5463
5464 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5465 if (!status) {
5466 *cgu_id = le32_to_cpu(cmd->cgu_id);
5467 *cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5468 *cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5469 }
5470
5471 return status;
5472}
5473
5474/**
5475 * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5476 * @hw: pointer to the HW struct
5477 * @phy_output: PHY reference clock output pin
5478 * @enable: GPIO state to be applied
5479 * @freq: PHY output frequency
5480 *
5481 * Set phy recovered clock as reference (0x0630)
5482 * Return: 0 on success or negative value on failure.
5483 */
5484int
5485ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5486 u32 *freq)
5487{
5488 struct ice_aqc_set_phy_rec_clk_out *cmd;
5489 struct ice_aq_desc desc;
5490 int status;
5491
5492 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_phy_rec_clk_out);
5493 cmd = &desc.params.set_phy_rec_clk_out;
5494 cmd->phy_output = phy_output;
5495 cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5496 cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5497 cmd->freq = cpu_to_le32(*freq);
5498
5499 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5500 if (!status)
5501 *freq = le32_to_cpu(cmd->freq);
5502
5503 return status;
5504}
5505
5506/**
5507 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5508 * @hw: pointer to the HW struct
5509 * @phy_output: PHY reference clock output pin
5510 * @port_num: Port number
5511 * @flags: PHY flags
5512 * @node_handle: PHY output frequency
5513 *
5514 * Get PHY recovered clock output info (0x0631)
5515 * Return: 0 on success or negative value on failure.
5516 */
5517int
5518ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5519 u8 *flags, u16 *node_handle)
5520{
5521 struct ice_aqc_get_phy_rec_clk_out *cmd;
5522 struct ice_aq_desc desc;
5523 int status;
5524
5525 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_phy_rec_clk_out);
5526 cmd = &desc.params.get_phy_rec_clk_out;
5527 cmd->phy_output = *phy_output;
5528
5529 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5530 if (!status) {
5531 *phy_output = cmd->phy_output;
5532 if (port_num)
5533 *port_num = cmd->port_num;
5534 if (flags)
5535 *flags = cmd->flags;
5536 if (node_handle)
5537 *node_handle = le16_to_cpu(cmd->node_handle);
5538 }
5539
5540 return status;
5541}
5542
5543/**
5544 * ice_replay_pre_init - replay pre initialization
5545 * @hw: pointer to the HW struct
5546 *
5547 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5548 */
5549static int ice_replay_pre_init(struct ice_hw *hw)
5550{
5551 struct ice_switch_info *sw = hw->switch_info;
5552 u8 i;
5553
5554 /* Delete old entries from replay filter list head if there is any */
5555 ice_rm_all_sw_replay_rule_info(hw);
5556 /* In start of replay, move entries into replay_rules list, it
5557 * will allow adding rules entries back to filt_rules list,
5558 * which is operational list.
5559 */
5560 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5561 list_replace_init(old: &sw->recp_list[i].filt_rules,
5562 new: &sw->recp_list[i].filt_replay_rules);
5563 ice_sched_replay_agg_vsi_preinit(hw);
5564
5565 return 0;
5566}
5567
5568/**
5569 * ice_replay_vsi - replay VSI configuration
5570 * @hw: pointer to the HW struct
5571 * @vsi_handle: driver VSI handle
5572 *
5573 * Restore all VSI configuration after reset. It is required to call this
5574 * function with main VSI first.
5575 */
5576int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5577{
5578 int status;
5579
5580 if (!ice_is_vsi_valid(hw, vsi_handle))
5581 return -EINVAL;
5582
5583 /* Replay pre-initialization if there is any */
5584 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5585 status = ice_replay_pre_init(hw);
5586 if (status)
5587 return status;
5588 }
5589 /* Replay per VSI all RSS configurations */
5590 status = ice_replay_rss_cfg(hw, vsi_handle);
5591 if (status)
5592 return status;
5593 /* Replay per VSI all filters */
5594 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5595 if (!status)
5596 status = ice_replay_vsi_agg(hw, vsi_handle);
5597 return status;
5598}
5599
5600/**
5601 * ice_replay_post - post replay configuration cleanup
5602 * @hw: pointer to the HW struct
5603 *
5604 * Post replay cleanup.
5605 */
5606void ice_replay_post(struct ice_hw *hw)
5607{
5608 /* Delete old entries from replay filter list head */
5609 ice_rm_all_sw_replay_rule_info(hw);
5610 ice_sched_replay_agg(hw);
5611}
5612
5613/**
5614 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5615 * @hw: ptr to the hardware info
5616 * @reg: offset of 64 bit HW register to read from
5617 * @prev_stat_loaded: bool to specify if previous stats are loaded
5618 * @prev_stat: ptr to previous loaded stat value
5619 * @cur_stat: ptr to current stat value
5620 */
5621void
5622ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5623 u64 *prev_stat, u64 *cur_stat)
5624{
5625 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5626
5627 /* device stats are not reset at PFR, they likely will not be zeroed
5628 * when the driver starts. Thus, save the value from the first read
5629 * without adding to the statistic value so that we report stats which
5630 * count up from zero.
5631 */
5632 if (!prev_stat_loaded) {
5633 *prev_stat = new_data;
5634 return;
5635 }
5636
5637 /* Calculate the difference between the new and old values, and then
5638 * add it to the software stat value.
5639 */
5640 if (new_data >= *prev_stat)
5641 *cur_stat += new_data - *prev_stat;
5642 else
5643 /* to manage the potential roll-over */
5644 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5645
5646 /* Update the previously stored value to prepare for next read */
5647 *prev_stat = new_data;
5648}
5649
5650/**
5651 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5652 * @hw: ptr to the hardware info
5653 * @reg: offset of HW register to read from
5654 * @prev_stat_loaded: bool to specify if previous stats are loaded
5655 * @prev_stat: ptr to previous loaded stat value
5656 * @cur_stat: ptr to current stat value
5657 */
5658void
5659ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5660 u64 *prev_stat, u64 *cur_stat)
5661{
5662 u32 new_data;
5663
5664 new_data = rd32(hw, reg);
5665
5666 /* device stats are not reset at PFR, they likely will not be zeroed
5667 * when the driver starts. Thus, save the value from the first read
5668 * without adding to the statistic value so that we report stats which
5669 * count up from zero.
5670 */
5671 if (!prev_stat_loaded) {
5672 *prev_stat = new_data;
5673 return;
5674 }
5675
5676 /* Calculate the difference between the new and old values, and then
5677 * add it to the software stat value.
5678 */
5679 if (new_data >= *prev_stat)
5680 *cur_stat += new_data - *prev_stat;
5681 else
5682 /* to manage the potential roll-over */
5683 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5684
5685 /* Update the previously stored value to prepare for next read */
5686 *prev_stat = new_data;
5687}
5688
5689/**
5690 * ice_sched_query_elem - query element information from HW
5691 * @hw: pointer to the HW struct
5692 * @node_teid: node TEID to be queried
5693 * @buf: buffer to element information
5694 *
5695 * This function queries HW element information
5696 */
5697int
5698ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5699 struct ice_aqc_txsched_elem_data *buf)
5700{
5701 u16 buf_size, num_elem_ret = 0;
5702 int status;
5703
5704 buf_size = sizeof(*buf);
5705 memset(buf, 0, buf_size);
5706 buf->node_teid = cpu_to_le32(node_teid);
5707 status = ice_aq_query_sched_elems(hw, elems_req: 1, buf, buf_size, elems_ret: &num_elem_ret,
5708 NULL);
5709 if (status || num_elem_ret != 1)
5710 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5711 return status;
5712}
5713
5714/**
5715 * ice_aq_read_i2c
5716 * @hw: pointer to the hw struct
5717 * @topo_addr: topology address for a device to communicate with
5718 * @bus_addr: 7-bit I2C bus address
5719 * @addr: I2C memory address (I2C offset) with up to 16 bits
5720 * @params: I2C parameters: bit [7] - Repeated start,
5721 * bits [6:5] data offset size,
5722 * bit [4] - I2C address type,
5723 * bits [3:0] - data size to read (0-16 bytes)
5724 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5725 * @cd: pointer to command details structure or NULL
5726 *
5727 * Read I2C (0x06E2)
5728 */
5729int
5730ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5731 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5732 struct ice_sq_cd *cd)
5733{
5734 struct ice_aq_desc desc = { 0 };
5735 struct ice_aqc_i2c *cmd;
5736 u8 data_size;
5737 int status;
5738
5739 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_read_i2c);
5740 cmd = &desc.params.read_write_i2c;
5741
5742 if (!data)
5743 return -EINVAL;
5744
5745 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5746
5747 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5748 cmd->topo_addr = topo_addr;
5749 cmd->i2c_params = params;
5750 cmd->i2c_addr = addr;
5751
5752 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
5753 if (!status) {
5754 struct ice_aqc_read_i2c_resp *resp;
5755 u8 i;
5756
5757 resp = &desc.params.read_i2c_resp;
5758 for (i = 0; i < data_size; i++) {
5759 *data = resp->i2c_data[i];
5760 data++;
5761 }
5762 }
5763
5764 return status;
5765}
5766
5767/**
5768 * ice_aq_write_i2c
5769 * @hw: pointer to the hw struct
5770 * @topo_addr: topology address for a device to communicate with
5771 * @bus_addr: 7-bit I2C bus address
5772 * @addr: I2C memory address (I2C offset) with up to 16 bits
5773 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5774 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5775 * @cd: pointer to command details structure or NULL
5776 *
5777 * Write I2C (0x06E3)
5778 *
5779 * * Return:
5780 * * 0 - Successful write to the i2c device
5781 * * -EINVAL - Data size greater than 4 bytes
5782 * * -EIO - FW error
5783 */
5784int
5785ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5786 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5787 struct ice_sq_cd *cd)
5788{
5789 struct ice_aq_desc desc = { 0 };
5790 struct ice_aqc_i2c *cmd;
5791 u8 data_size;
5792
5793 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_write_i2c);
5794 cmd = &desc.params.read_write_i2c;
5795
5796 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5797
5798 /* data_size limited to 4 */
5799 if (data_size > 4)
5800 return -EINVAL;
5801
5802 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5803 cmd->topo_addr = topo_addr;
5804 cmd->i2c_params = params;
5805 cmd->i2c_addr = addr;
5806
5807 memcpy(cmd->i2c_data, data, data_size);
5808
5809 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
5810}
5811
5812/**
5813 * ice_aq_set_gpio
5814 * @hw: pointer to the hw struct
5815 * @gpio_ctrl_handle: GPIO controller node handle
5816 * @pin_idx: IO Number of the GPIO that needs to be set
5817 * @value: SW provide IO value to set in the LSB
5818 * @cd: pointer to command details structure or NULL
5819 *
5820 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5821 */
5822int
5823ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5824 struct ice_sq_cd *cd)
5825{
5826 struct ice_aqc_gpio *cmd;
5827 struct ice_aq_desc desc;
5828
5829 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_gpio);
5830 cmd = &desc.params.read_write_gpio;
5831 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5832 cmd->gpio_num = pin_idx;
5833 cmd->gpio_val = value ? 1 : 0;
5834
5835 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
5836}
5837
5838/**
5839 * ice_aq_get_gpio
5840 * @hw: pointer to the hw struct
5841 * @gpio_ctrl_handle: GPIO controller node handle
5842 * @pin_idx: IO Number of the GPIO that needs to be set
5843 * @value: IO value read
5844 * @cd: pointer to command details structure or NULL
5845 *
5846 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5847 * the topology
5848 */
5849int
5850ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5851 bool *value, struct ice_sq_cd *cd)
5852{
5853 struct ice_aqc_gpio *cmd;
5854 struct ice_aq_desc desc;
5855 int status;
5856
5857 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_gpio);
5858 cmd = &desc.params.read_write_gpio;
5859 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5860 cmd->gpio_num = pin_idx;
5861
5862 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
5863 if (status)
5864 return status;
5865
5866 *value = !!cmd->gpio_val;
5867 return 0;
5868}
5869
5870/**
5871 * ice_is_fw_api_min_ver
5872 * @hw: pointer to the hardware structure
5873 * @maj: major version
5874 * @min: minor version
5875 * @patch: patch version
5876 *
5877 * Checks if the firmware API is minimum version
5878 */
5879static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5880{
5881 if (hw->api_maj_ver == maj) {
5882 if (hw->api_min_ver > min)
5883 return true;
5884 if (hw->api_min_ver == min && hw->api_patch >= patch)
5885 return true;
5886 } else if (hw->api_maj_ver > maj) {
5887 return true;
5888 }
5889
5890 return false;
5891}
5892
5893/**
5894 * ice_fw_supports_link_override
5895 * @hw: pointer to the hardware structure
5896 *
5897 * Checks if the firmware supports link override
5898 */
5899bool ice_fw_supports_link_override(struct ice_hw *hw)
5900{
5901 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5902 ICE_FW_API_LINK_OVERRIDE_MIN,
5903 ICE_FW_API_LINK_OVERRIDE_PATCH);
5904}
5905
5906/**
5907 * ice_get_link_default_override
5908 * @ldo: pointer to the link default override struct
5909 * @pi: pointer to the port info struct
5910 *
5911 * Gets the link default override for a port
5912 */
5913int
5914ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5915 struct ice_port_info *pi)
5916{
5917 u16 i, tlv, tlv_len, tlv_start, buf, offset;
5918 struct ice_hw *hw = pi->hw;
5919 int status;
5920
5921 status = ice_get_pfa_module_tlv(hw, module_tlv: &tlv, module_tlv_len: &tlv_len,
5922 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5923 if (status) {
5924 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5925 return status;
5926 }
5927
5928 /* Each port has its own config; calculate for our port */
5929 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5930 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5931
5932 /* link options first */
5933 status = ice_read_sr_word(hw, offset: tlv_start, data: &buf);
5934 if (status) {
5935 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5936 return status;
5937 }
5938 ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5939 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5940 ICE_LINK_OVERRIDE_PHY_CFG_S;
5941
5942 /* link PHY config */
5943 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5944 status = ice_read_sr_word(hw, offset, data: &buf);
5945 if (status) {
5946 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5947 return status;
5948 }
5949 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5950
5951 /* PHY types low */
5952 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5953 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5954 status = ice_read_sr_word(hw, offset: (offset + i), data: &buf);
5955 if (status) {
5956 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5957 return status;
5958 }
5959 /* shift 16 bits at a time to fill 64 bits */
5960 ldo->phy_type_low |= ((u64)buf << (i * 16));
5961 }
5962
5963 /* PHY types high */
5964 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5965 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5966 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5967 status = ice_read_sr_word(hw, offset: (offset + i), data: &buf);
5968 if (status) {
5969 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5970 return status;
5971 }
5972 /* shift 16 bits at a time to fill 64 bits */
5973 ldo->phy_type_high |= ((u64)buf << (i * 16));
5974 }
5975
5976 return status;
5977}
5978
5979/**
5980 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5981 * @caps: get PHY capability data
5982 */
5983bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5984{
5985 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5986 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5987 ICE_AQC_PHY_AN_EN_CLAUSE73 |
5988 ICE_AQC_PHY_AN_EN_CLAUSE37))
5989 return true;
5990
5991 return false;
5992}
5993
5994/**
5995 * ice_aq_set_lldp_mib - Set the LLDP MIB
5996 * @hw: pointer to the HW struct
5997 * @mib_type: Local, Remote or both Local and Remote MIBs
5998 * @buf: pointer to the caller-supplied buffer to store the MIB block
5999 * @buf_size: size of the buffer (in bytes)
6000 * @cd: pointer to command details structure or NULL
6001 *
6002 * Set the LLDP MIB. (0x0A08)
6003 */
6004int
6005ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6006 struct ice_sq_cd *cd)
6007{
6008 struct ice_aqc_lldp_set_local_mib *cmd;
6009 struct ice_aq_desc desc;
6010
6011 cmd = &desc.params.lldp_set_mib;
6012
6013 if (buf_size == 0 || !buf)
6014 return -EINVAL;
6015
6016 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_lldp_set_local_mib);
6017
6018 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
6019 desc.datalen = cpu_to_le16(buf_size);
6020
6021 cmd->type = mib_type;
6022 cmd->length = cpu_to_le16(buf_size);
6023
6024 return ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
6025}
6026
6027/**
6028 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6029 * @hw: pointer to HW struct
6030 */
6031bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6032{
6033 if (hw->mac_type != ICE_MAC_E810)
6034 return false;
6035
6036 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6037 ICE_FW_API_LLDP_FLTR_MIN,
6038 ICE_FW_API_LLDP_FLTR_PATCH);
6039}
6040
6041/**
6042 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6043 * @hw: pointer to HW struct
6044 * @vsi_num: absolute HW index for VSI
6045 * @add: boolean for if adding or removing a filter
6046 */
6047int
6048ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6049{
6050 struct ice_aqc_lldp_filter_ctrl *cmd;
6051 struct ice_aq_desc desc;
6052
6053 cmd = &desc.params.lldp_filter_ctrl;
6054
6055 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_lldp_filter_ctrl);
6056
6057 if (add)
6058 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6059 else
6060 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6061
6062 cmd->vsi_num = cpu_to_le16(vsi_num);
6063
6064 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
6065}
6066
6067/**
6068 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6069 * @hw: pointer to HW struct
6070 */
6071int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6072{
6073 struct ice_aq_desc desc;
6074
6075 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_lldp_execute_pending_mib);
6076
6077 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
6078}
6079
6080/**
6081 * ice_fw_supports_report_dflt_cfg
6082 * @hw: pointer to the hardware structure
6083 *
6084 * Checks if the firmware supports report default configuration
6085 */
6086bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6087{
6088 return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6089 ICE_FW_API_REPORT_DFLT_CFG_MIN,
6090 ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6091}
6092
6093/* each of the indexes into the following array match the speed of a return
6094 * value from the list of AQ returned speeds like the range:
6095 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6096 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6097 * array. The array is defined as 15 elements long because the link_speed
6098 * returned by the firmware is a 16 bit * value, but is indexed
6099 * by [fls(speed) - 1]
6100 */
6101static const u32 ice_aq_to_link_speed[] = {
6102 SPEED_10, /* BIT(0) */
6103 SPEED_100,
6104 SPEED_1000,
6105 SPEED_2500,
6106 SPEED_5000,
6107 SPEED_10000,
6108 SPEED_20000,
6109 SPEED_25000,
6110 SPEED_40000,
6111 SPEED_50000,
6112 SPEED_100000, /* BIT(10) */
6113 SPEED_200000,
6114};
6115
6116/**
6117 * ice_get_link_speed - get integer speed from table
6118 * @index: array index from fls(aq speed) - 1
6119 *
6120 * Returns: u32 value containing integer speed
6121 */
6122u32 ice_get_link_speed(u16 index)
6123{
6124 if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6125 return 0;
6126
6127 return ice_aq_to_link_speed[index];
6128}
6129

source code of linux/drivers/net/ethernet/intel/ice/ice_common.c