1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018-2023, Intel Corporation. */
3
4#include "ice_common.h"
5#include "ice_sched.h"
6#include "ice_adminq_cmd.h"
7#include "ice_flow.h"
8#include "ice_ptp_hw.h"
9#include <linux/packing.h>
10
11#define ICE_PF_RESET_WAIT_COUNT 300
12#define ICE_MAX_NETLIST_SIZE 10
13
14static const char * const ice_link_mode_str_low[] = {
15 [0] = "100BASE_TX",
16 [1] = "100M_SGMII",
17 [2] = "1000BASE_T",
18 [3] = "1000BASE_SX",
19 [4] = "1000BASE_LX",
20 [5] = "1000BASE_KX",
21 [6] = "1G_SGMII",
22 [7] = "2500BASE_T",
23 [8] = "2500BASE_X",
24 [9] = "2500BASE_KX",
25 [10] = "5GBASE_T",
26 [11] = "5GBASE_KR",
27 [12] = "10GBASE_T",
28 [13] = "10G_SFI_DA",
29 [14] = "10GBASE_SR",
30 [15] = "10GBASE_LR",
31 [16] = "10GBASE_KR_CR1",
32 [17] = "10G_SFI_AOC_ACC",
33 [18] = "10G_SFI_C2C",
34 [19] = "25GBASE_T",
35 [20] = "25GBASE_CR",
36 [21] = "25GBASE_CR_S",
37 [22] = "25GBASE_CR1",
38 [23] = "25GBASE_SR",
39 [24] = "25GBASE_LR",
40 [25] = "25GBASE_KR",
41 [26] = "25GBASE_KR_S",
42 [27] = "25GBASE_KR1",
43 [28] = "25G_AUI_AOC_ACC",
44 [29] = "25G_AUI_C2C",
45 [30] = "40GBASE_CR4",
46 [31] = "40GBASE_SR4",
47 [32] = "40GBASE_LR4",
48 [33] = "40GBASE_KR4",
49 [34] = "40G_XLAUI_AOC_ACC",
50 [35] = "40G_XLAUI",
51 [36] = "50GBASE_CR2",
52 [37] = "50GBASE_SR2",
53 [38] = "50GBASE_LR2",
54 [39] = "50GBASE_KR2",
55 [40] = "50G_LAUI2_AOC_ACC",
56 [41] = "50G_LAUI2",
57 [42] = "50G_AUI2_AOC_ACC",
58 [43] = "50G_AUI2",
59 [44] = "50GBASE_CP",
60 [45] = "50GBASE_SR",
61 [46] = "50GBASE_FR",
62 [47] = "50GBASE_LR",
63 [48] = "50GBASE_KR_PAM4",
64 [49] = "50G_AUI1_AOC_ACC",
65 [50] = "50G_AUI1",
66 [51] = "100GBASE_CR4",
67 [52] = "100GBASE_SR4",
68 [53] = "100GBASE_LR4",
69 [54] = "100GBASE_KR4",
70 [55] = "100G_CAUI4_AOC_ACC",
71 [56] = "100G_CAUI4",
72 [57] = "100G_AUI4_AOC_ACC",
73 [58] = "100G_AUI4",
74 [59] = "100GBASE_CR_PAM4",
75 [60] = "100GBASE_KR_PAM4",
76 [61] = "100GBASE_CP2",
77 [62] = "100GBASE_SR2",
78 [63] = "100GBASE_DR",
79};
80
81static const char * const ice_link_mode_str_high[] = {
82 [0] = "100GBASE_KR2_PAM4",
83 [1] = "100G_CAUI2_AOC_ACC",
84 [2] = "100G_CAUI2",
85 [3] = "100G_AUI2_AOC_ACC",
86 [4] = "100G_AUI2",
87};
88
89/**
90 * ice_dump_phy_type - helper function to dump phy_type
91 * @hw: pointer to the HW structure
92 * @low: 64 bit value for phy_type_low
93 * @high: 64 bit value for phy_type_high
94 * @prefix: prefix string to differentiate multiple dumps
95 */
96static void
97ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
98{
99 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
100
101 for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
102 if (low & BIT_ULL(i))
103 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
104 prefix, i, ice_link_mode_str_low[i]);
105 }
106
107 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
108
109 for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
110 if (high & BIT_ULL(i))
111 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
112 prefix, i, ice_link_mode_str_high[i]);
113 }
114}
115
116/**
117 * ice_set_mac_type - Sets MAC type
118 * @hw: pointer to the HW structure
119 *
120 * This function sets the MAC type of the adapter based on the
121 * vendor ID and device ID stored in the HW structure.
122 */
123static int ice_set_mac_type(struct ice_hw *hw)
124{
125 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
126 return -ENODEV;
127
128 switch (hw->device_id) {
129 case ICE_DEV_ID_E810C_BACKPLANE:
130 case ICE_DEV_ID_E810C_QSFP:
131 case ICE_DEV_ID_E810C_SFP:
132 case ICE_DEV_ID_E810_XXV_BACKPLANE:
133 case ICE_DEV_ID_E810_XXV_QSFP:
134 case ICE_DEV_ID_E810_XXV_SFP:
135 hw->mac_type = ICE_MAC_E810;
136 break;
137 case ICE_DEV_ID_E823C_10G_BASE_T:
138 case ICE_DEV_ID_E823C_BACKPLANE:
139 case ICE_DEV_ID_E823C_QSFP:
140 case ICE_DEV_ID_E823C_SFP:
141 case ICE_DEV_ID_E823C_SGMII:
142 case ICE_DEV_ID_E822C_10G_BASE_T:
143 case ICE_DEV_ID_E822C_BACKPLANE:
144 case ICE_DEV_ID_E822C_QSFP:
145 case ICE_DEV_ID_E822C_SFP:
146 case ICE_DEV_ID_E822C_SGMII:
147 case ICE_DEV_ID_E822L_10G_BASE_T:
148 case ICE_DEV_ID_E822L_BACKPLANE:
149 case ICE_DEV_ID_E822L_SFP:
150 case ICE_DEV_ID_E822L_SGMII:
151 case ICE_DEV_ID_E823L_10G_BASE_T:
152 case ICE_DEV_ID_E823L_1GBE:
153 case ICE_DEV_ID_E823L_BACKPLANE:
154 case ICE_DEV_ID_E823L_QSFP:
155 case ICE_DEV_ID_E823L_SFP:
156 hw->mac_type = ICE_MAC_GENERIC;
157 break;
158 case ICE_DEV_ID_E825C_BACKPLANE:
159 case ICE_DEV_ID_E825C_QSFP:
160 case ICE_DEV_ID_E825C_SFP:
161 case ICE_DEV_ID_E825C_SGMII:
162 hw->mac_type = ICE_MAC_GENERIC_3K_E825;
163 break;
164 case ICE_DEV_ID_E830CC_BACKPLANE:
165 case ICE_DEV_ID_E830CC_QSFP56:
166 case ICE_DEV_ID_E830CC_SFP:
167 case ICE_DEV_ID_E830CC_SFP_DD:
168 case ICE_DEV_ID_E830C_BACKPLANE:
169 case ICE_DEV_ID_E830_XXV_BACKPLANE:
170 case ICE_DEV_ID_E830C_QSFP:
171 case ICE_DEV_ID_E830_XXV_QSFP:
172 case ICE_DEV_ID_E830C_SFP:
173 case ICE_DEV_ID_E830_XXV_SFP:
174 hw->mac_type = ICE_MAC_E830;
175 break;
176 default:
177 hw->mac_type = ICE_MAC_UNKNOWN;
178 break;
179 }
180
181 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
182 return 0;
183}
184
185/**
186 * ice_is_generic_mac - check if device's mac_type is generic
187 * @hw: pointer to the hardware structure
188 *
189 * Return: true if mac_type is ICE_MAC_GENERIC*, false otherwise.
190 */
191bool ice_is_generic_mac(struct ice_hw *hw)
192{
193 return (hw->mac_type == ICE_MAC_GENERIC ||
194 hw->mac_type == ICE_MAC_GENERIC_3K_E825);
195}
196
197/**
198 * ice_is_pf_c827 - check if pf contains c827 phy
199 * @hw: pointer to the hw struct
200 *
201 * Return: true if the device has c827 phy.
202 */
203static bool ice_is_pf_c827(struct ice_hw *hw)
204{
205 struct ice_aqc_get_link_topo cmd = {};
206 u8 node_part_number;
207 u16 node_handle;
208 int status;
209
210 if (hw->mac_type != ICE_MAC_E810)
211 return false;
212
213 if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
214 return true;
215
216 cmd.addr.topo_params.node_type_ctx =
217 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
218 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
219 cmd.addr.topo_params.index = 0;
220
221 status = ice_aq_get_netlist_node(hw, cmd: &cmd, node_part_number: &node_part_number,
222 node_handle: &node_handle);
223
224 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
225 return false;
226
227 if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
228 return true;
229
230 return false;
231}
232
233/**
234 * ice_clear_pf_cfg - Clear PF configuration
235 * @hw: pointer to the hardware structure
236 *
237 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
238 * configuration, flow director filters, etc.).
239 */
240int ice_clear_pf_cfg(struct ice_hw *hw)
241{
242 struct ice_aq_desc desc;
243
244 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_clear_pf_cfg);
245
246 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
247}
248
249/**
250 * ice_aq_manage_mac_read - manage MAC address read command
251 * @hw: pointer to the HW struct
252 * @buf: a virtual buffer to hold the manage MAC read response
253 * @buf_size: Size of the virtual buffer
254 * @cd: pointer to command details structure or NULL
255 *
256 * This function is used to return per PF station MAC address (0x0107).
257 * NOTE: Upon successful completion of this command, MAC address information
258 * is returned in user specified buffer. Please interpret user specified
259 * buffer as "manage_mac_read" response.
260 * Response such as various MAC addresses are stored in HW struct (port.mac)
261 * ice_discover_dev_caps is expected to be called before this function is
262 * called.
263 */
264static int
265ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
266 struct ice_sq_cd *cd)
267{
268 struct ice_aqc_manage_mac_read_resp *resp;
269 struct ice_aqc_manage_mac_read *cmd;
270 struct ice_aq_desc desc;
271 int status;
272 u16 flags;
273 u8 i;
274
275 cmd = &desc.params.mac_read;
276
277 if (buf_size < sizeof(*resp))
278 return -EINVAL;
279
280 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_manage_mac_read);
281
282 status = ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
283 if (status)
284 return status;
285
286 resp = buf;
287 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
288
289 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
290 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
291 return -EIO;
292 }
293
294 /* A single port can report up to two (LAN and WoL) addresses */
295 for (i = 0; i < cmd->num_addr; i++)
296 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
297 ether_addr_copy(dst: hw->port_info->mac.lan_addr,
298 src: resp[i].mac_addr);
299 ether_addr_copy(dst: hw->port_info->mac.perm_addr,
300 src: resp[i].mac_addr);
301 break;
302 }
303
304 return 0;
305}
306
307/**
308 * ice_aq_get_phy_caps - returns PHY capabilities
309 * @pi: port information structure
310 * @qual_mods: report qualified modules
311 * @report_mode: report mode capabilities
312 * @pcaps: structure for PHY capabilities to be filled
313 * @cd: pointer to command details structure or NULL
314 *
315 * Returns the various PHY capabilities supported on the Port (0x0600)
316 */
317int
318ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
319 struct ice_aqc_get_phy_caps_data *pcaps,
320 struct ice_sq_cd *cd)
321{
322 struct ice_aqc_get_phy_caps *cmd;
323 u16 pcaps_size = sizeof(*pcaps);
324 struct ice_aq_desc desc;
325 const char *prefix;
326 struct ice_hw *hw;
327 int status;
328
329 cmd = &desc.params.get_phy;
330
331 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
332 return -EINVAL;
333 hw = pi->hw;
334
335 if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
336 !ice_fw_supports_report_dflt_cfg(hw))
337 return -EINVAL;
338
339 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_phy_caps);
340
341 if (qual_mods)
342 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
343
344 cmd->param0 |= cpu_to_le16(report_mode);
345 status = ice_aq_send_cmd(hw, desc: &desc, buf: pcaps, buf_size: pcaps_size, cd);
346
347 ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
348
349 switch (report_mode) {
350 case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
351 prefix = "phy_caps_media";
352 break;
353 case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
354 prefix = "phy_caps_no_media";
355 break;
356 case ICE_AQC_REPORT_ACTIVE_CFG:
357 prefix = "phy_caps_active";
358 break;
359 case ICE_AQC_REPORT_DFLT_CFG:
360 prefix = "phy_caps_default";
361 break;
362 default:
363 prefix = "phy_caps_invalid";
364 }
365
366 ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
367 le64_to_cpu(pcaps->phy_type_high), prefix);
368
369 ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
370 prefix, report_mode);
371 ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
372 ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
373 pcaps->low_power_ctrl_an);
374 ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
375 pcaps->eee_cap);
376 ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
377 pcaps->eeer_value);
378 ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
379 pcaps->link_fec_options);
380 ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
381 prefix, pcaps->module_compliance_enforcement);
382 ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
383 prefix, pcaps->extended_compliance_code);
384 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
385 pcaps->module_type[0]);
386 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
387 pcaps->module_type[1]);
388 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
389 pcaps->module_type[2]);
390
391 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
392 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
393 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
394 memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
395 sizeof(pi->phy.link_info.module_type));
396 }
397
398 return status;
399}
400
401/**
402 * ice_aq_get_link_topo_handle - get link topology node return status
403 * @pi: port information structure
404 * @node_type: requested node type
405 * @cd: pointer to command details structure or NULL
406 *
407 * Get link topology node return status for specified node type (0x06E0)
408 *
409 * Node type cage can be used to determine if cage is present. If AQC
410 * returns error (ENOENT), then no cage present. If no cage present, then
411 * connection type is backplane or BASE-T.
412 */
413static int
414ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
415 struct ice_sq_cd *cd)
416{
417 struct ice_aqc_get_link_topo *cmd;
418 struct ice_aq_desc desc;
419
420 cmd = &desc.params.get_link_topo;
421
422 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_link_topo);
423
424 cmd->addr.topo_params.node_type_ctx =
425 (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
426 ICE_AQC_LINK_TOPO_NODE_CTX_S);
427
428 /* set node type */
429 cmd->addr.topo_params.node_type_ctx |=
430 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
431
432 return ice_aq_send_cmd(hw: pi->hw, desc: &desc, NULL, buf_size: 0, cd);
433}
434
435/**
436 * ice_aq_get_netlist_node
437 * @hw: pointer to the hw struct
438 * @cmd: get_link_topo AQ structure
439 * @node_part_number: output node part number if node found
440 * @node_handle: output node handle parameter if node found
441 *
442 * Get netlist node handle.
443 */
444int
445ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
446 u8 *node_part_number, u16 *node_handle)
447{
448 struct ice_aq_desc desc;
449
450 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_link_topo);
451 desc.params.get_link_topo = *cmd;
452
453 if (ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL))
454 return -EINTR;
455
456 if (node_handle)
457 *node_handle =
458 le16_to_cpu(desc.params.get_link_topo.addr.handle);
459 if (node_part_number)
460 *node_part_number = desc.params.get_link_topo.node_part_num;
461
462 return 0;
463}
464
465/**
466 * ice_find_netlist_node
467 * @hw: pointer to the hw struct
468 * @node_type: type of netlist node to look for
469 * @ctx: context of the search
470 * @node_part_number: node part number to look for
471 * @node_handle: output parameter if node found - optional
472 *
473 * Scan the netlist for a node handle of the given node type and part number.
474 *
475 * If node_handle is non-NULL it will be modified on function exit. It is only
476 * valid if the function returns zero, and should be ignored on any non-zero
477 * return value.
478 *
479 * Return:
480 * * 0 if the node is found,
481 * * -ENOENT if no handle was found,
482 * * negative error code on failure to access the AQ.
483 */
484static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
485 u8 node_part_number, u16 *node_handle)
486{
487 u8 idx;
488
489 for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
490 struct ice_aqc_get_link_topo cmd = {};
491 u8 rec_node_part_number;
492 int status;
493
494 cmd.addr.topo_params.node_type_ctx =
495 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
496 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
497 cmd.addr.topo_params.index = idx;
498
499 status = ice_aq_get_netlist_node(hw, cmd: &cmd,
500 node_part_number: &rec_node_part_number,
501 node_handle);
502 if (status)
503 return status;
504
505 if (rec_node_part_number == node_part_number)
506 return 0;
507 }
508
509 return -ENOENT;
510}
511
512/**
513 * ice_is_media_cage_present
514 * @pi: port information structure
515 *
516 * Returns true if media cage is present, else false. If no cage, then
517 * media type is backplane or BASE-T.
518 */
519static bool ice_is_media_cage_present(struct ice_port_info *pi)
520{
521 /* Node type cage can be used to determine if cage is present. If AQC
522 * returns error (ENOENT), then no cage present. If no cage present then
523 * connection type is backplane or BASE-T.
524 */
525 return !ice_aq_get_link_topo_handle(pi,
526 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
527 NULL);
528}
529
530/**
531 * ice_get_media_type - Gets media type
532 * @pi: port information structure
533 */
534static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
535{
536 struct ice_link_status *hw_link_info;
537
538 if (!pi)
539 return ICE_MEDIA_UNKNOWN;
540
541 hw_link_info = &pi->phy.link_info;
542 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
543 /* If more than one media type is selected, report unknown */
544 return ICE_MEDIA_UNKNOWN;
545
546 if (hw_link_info->phy_type_low) {
547 /* 1G SGMII is a special case where some DA cable PHYs
548 * may show this as an option when it really shouldn't
549 * be since SGMII is meant to be between a MAC and a PHY
550 * in a backplane. Try to detect this case and handle it
551 */
552 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
553 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
554 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
555 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
556 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
557 return ICE_MEDIA_DA;
558
559 switch (hw_link_info->phy_type_low) {
560 case ICE_PHY_TYPE_LOW_1000BASE_SX:
561 case ICE_PHY_TYPE_LOW_1000BASE_LX:
562 case ICE_PHY_TYPE_LOW_10GBASE_SR:
563 case ICE_PHY_TYPE_LOW_10GBASE_LR:
564 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
565 case ICE_PHY_TYPE_LOW_25GBASE_SR:
566 case ICE_PHY_TYPE_LOW_25GBASE_LR:
567 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
568 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
569 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
570 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
571 case ICE_PHY_TYPE_LOW_50GBASE_SR:
572 case ICE_PHY_TYPE_LOW_50GBASE_FR:
573 case ICE_PHY_TYPE_LOW_50GBASE_LR:
574 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
575 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
576 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
577 case ICE_PHY_TYPE_LOW_100GBASE_DR:
578 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
579 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
580 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
581 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
582 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
583 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
584 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
585 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
586 return ICE_MEDIA_FIBER;
587 case ICE_PHY_TYPE_LOW_100BASE_TX:
588 case ICE_PHY_TYPE_LOW_1000BASE_T:
589 case ICE_PHY_TYPE_LOW_2500BASE_T:
590 case ICE_PHY_TYPE_LOW_5GBASE_T:
591 case ICE_PHY_TYPE_LOW_10GBASE_T:
592 case ICE_PHY_TYPE_LOW_25GBASE_T:
593 return ICE_MEDIA_BASET;
594 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
595 case ICE_PHY_TYPE_LOW_25GBASE_CR:
596 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
597 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
598 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
599 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
600 case ICE_PHY_TYPE_LOW_50GBASE_CP:
601 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
602 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
603 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
604 return ICE_MEDIA_DA;
605 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
606 case ICE_PHY_TYPE_LOW_40G_XLAUI:
607 case ICE_PHY_TYPE_LOW_50G_LAUI2:
608 case ICE_PHY_TYPE_LOW_50G_AUI2:
609 case ICE_PHY_TYPE_LOW_50G_AUI1:
610 case ICE_PHY_TYPE_LOW_100G_AUI4:
611 case ICE_PHY_TYPE_LOW_100G_CAUI4:
612 if (ice_is_media_cage_present(pi))
613 return ICE_MEDIA_DA;
614 fallthrough;
615 case ICE_PHY_TYPE_LOW_1000BASE_KX:
616 case ICE_PHY_TYPE_LOW_2500BASE_KX:
617 case ICE_PHY_TYPE_LOW_2500BASE_X:
618 case ICE_PHY_TYPE_LOW_5GBASE_KR:
619 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
620 case ICE_PHY_TYPE_LOW_25GBASE_KR:
621 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
622 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
623 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
624 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
625 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
626 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
627 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
628 return ICE_MEDIA_BACKPLANE;
629 }
630 } else {
631 switch (hw_link_info->phy_type_high) {
632 case ICE_PHY_TYPE_HIGH_100G_AUI2:
633 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
634 if (ice_is_media_cage_present(pi))
635 return ICE_MEDIA_DA;
636 fallthrough;
637 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
638 return ICE_MEDIA_BACKPLANE;
639 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
640 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
641 return ICE_MEDIA_FIBER;
642 }
643 }
644 return ICE_MEDIA_UNKNOWN;
645}
646
647/**
648 * ice_get_link_status_datalen
649 * @hw: pointer to the HW struct
650 *
651 * Returns datalength for the Get Link Status AQ command, which is bigger for
652 * newer adapter families handled by ice driver.
653 */
654static u16 ice_get_link_status_datalen(struct ice_hw *hw)
655{
656 switch (hw->mac_type) {
657 case ICE_MAC_E830:
658 return ICE_AQC_LS_DATA_SIZE_V2;
659 case ICE_MAC_E810:
660 default:
661 return ICE_AQC_LS_DATA_SIZE_V1;
662 }
663}
664
665/**
666 * ice_aq_get_link_info
667 * @pi: port information structure
668 * @ena_lse: enable/disable LinkStatusEvent reporting
669 * @link: pointer to link status structure - optional
670 * @cd: pointer to command details structure or NULL
671 *
672 * Get Link Status (0x607). Returns the link status of the adapter.
673 */
674int
675ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
676 struct ice_link_status *link, struct ice_sq_cd *cd)
677{
678 struct ice_aqc_get_link_status_data link_data = { 0 };
679 struct ice_aqc_get_link_status *resp;
680 struct ice_link_status *li_old, *li;
681 enum ice_media_type *hw_media_type;
682 struct ice_fc_info *hw_fc_info;
683 bool tx_pause, rx_pause;
684 struct ice_aq_desc desc;
685 struct ice_hw *hw;
686 u16 cmd_flags;
687 int status;
688
689 if (!pi)
690 return -EINVAL;
691 hw = pi->hw;
692 li_old = &pi->phy.link_info_old;
693 hw_media_type = &pi->phy.media_type;
694 li = &pi->phy.link_info;
695 hw_fc_info = &pi->fc;
696
697 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_link_status);
698 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
699 resp = &desc.params.get_link_status;
700 resp->cmd_flags = cpu_to_le16(cmd_flags);
701 resp->lport_num = pi->lport;
702
703 status = ice_aq_send_cmd(hw, desc: &desc, buf: &link_data,
704 buf_size: ice_get_link_status_datalen(hw), cd);
705 if (status)
706 return status;
707
708 /* save off old link status information */
709 *li_old = *li;
710
711 /* update current link status information */
712 li->link_speed = le16_to_cpu(link_data.link_speed);
713 li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
714 li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
715 *hw_media_type = ice_get_media_type(pi);
716 li->link_info = link_data.link_info;
717 li->link_cfg_err = link_data.link_cfg_err;
718 li->an_info = link_data.an_info;
719 li->ext_info = link_data.ext_info;
720 li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
721 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
722 li->topo_media_conflict = link_data.topo_media_conflict;
723 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
724 ICE_AQ_CFG_PACING_TYPE_M);
725
726 /* update fc info */
727 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
728 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
729 if (tx_pause && rx_pause)
730 hw_fc_info->current_mode = ICE_FC_FULL;
731 else if (tx_pause)
732 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
733 else if (rx_pause)
734 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
735 else
736 hw_fc_info->current_mode = ICE_FC_NONE;
737
738 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
739
740 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
741 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
742 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
743 (unsigned long long)li->phy_type_low);
744 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
745 (unsigned long long)li->phy_type_high);
746 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
747 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
748 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
749 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
750 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
751 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
752 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
753 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
754 li->max_frame_size);
755 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
756
757 /* save link status information */
758 if (link)
759 *link = *li;
760
761 /* flag cleared so calling functions don't call AQ again */
762 pi->phy.get_link_info = false;
763
764 return 0;
765}
766
767/**
768 * ice_fill_tx_timer_and_fc_thresh
769 * @hw: pointer to the HW struct
770 * @cmd: pointer to MAC cfg structure
771 *
772 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
773 * descriptor
774 */
775static void
776ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
777 struct ice_aqc_set_mac_cfg *cmd)
778{
779 u32 val, fc_thres_m;
780
781 /* We read back the transmit timer and FC threshold value of
782 * LFC. Thus, we will use index =
783 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
784 *
785 * Also, because we are operating on transmit timer and FC
786 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
787 */
788#define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
789#define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
790
791 if (hw->mac_type == ICE_MAC_E830) {
792 /* Retrieve the transmit timer */
793 val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
794 cmd->tx_tmr_value =
795 le16_encode_bits(v: val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
796
797 /* Retrieve the fc threshold */
798 val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
799 fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
800 } else {
801 /* Retrieve the transmit timer */
802 val = rd32(hw,
803 E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
804 cmd->tx_tmr_value =
805 le16_encode_bits(v: val,
806 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
807
808 /* Retrieve the fc threshold */
809 val = rd32(hw,
810 E800_REFRESH_TMR(E800_IDX_OF_LFC));
811 fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
812 }
813 cmd->fc_refresh_threshold = le16_encode_bits(v: val, field: fc_thres_m);
814}
815
816/**
817 * ice_aq_set_mac_cfg
818 * @hw: pointer to the HW struct
819 * @max_frame_size: Maximum Frame Size to be supported
820 * @cd: pointer to command details structure or NULL
821 *
822 * Set MAC configuration (0x0603)
823 */
824int
825ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
826{
827 struct ice_aqc_set_mac_cfg *cmd;
828 struct ice_aq_desc desc;
829
830 cmd = &desc.params.set_mac_cfg;
831
832 if (max_frame_size == 0)
833 return -EINVAL;
834
835 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_mac_cfg);
836
837 cmd->max_frame_size = cpu_to_le16(max_frame_size);
838
839 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
840
841 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
842}
843
844/**
845 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
846 * @hw: pointer to the HW struct
847 */
848static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
849{
850 struct ice_switch_info *sw;
851 int status;
852
853 hw->switch_info = devm_kzalloc(dev: ice_hw_to_dev(hw),
854 size: sizeof(*hw->switch_info), GFP_KERNEL);
855 sw = hw->switch_info;
856
857 if (!sw)
858 return -ENOMEM;
859
860 INIT_LIST_HEAD(list: &sw->vsi_list_map_head);
861 sw->prof_res_bm_init = 0;
862
863 /* Initialize recipe count with default recipes read from NVM */
864 sw->recp_cnt = ICE_SW_LKUP_LAST;
865
866 status = ice_init_def_sw_recp(hw);
867 if (status) {
868 devm_kfree(dev: ice_hw_to_dev(hw), p: hw->switch_info);
869 return status;
870 }
871 return 0;
872}
873
874/**
875 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
876 * @hw: pointer to the HW struct
877 */
878static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
879{
880 struct ice_switch_info *sw = hw->switch_info;
881 struct ice_vsi_list_map_info *v_pos_map;
882 struct ice_vsi_list_map_info *v_tmp_map;
883 struct ice_sw_recipe *recps;
884 u8 i;
885
886 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
887 list_entry) {
888 list_del(entry: &v_pos_map->list_entry);
889 devm_kfree(dev: ice_hw_to_dev(hw), p: v_pos_map);
890 }
891 recps = sw->recp_list;
892 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
893 recps[i].root_rid = i;
894
895 if (recps[i].adv_rule) {
896 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
897 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
898
899 mutex_destroy(lock: &recps[i].filt_rule_lock);
900 list_for_each_entry_safe(lst_itr, tmp_entry,
901 &recps[i].filt_rules,
902 list_entry) {
903 list_del(entry: &lst_itr->list_entry);
904 devm_kfree(dev: ice_hw_to_dev(hw), p: lst_itr->lkups);
905 devm_kfree(dev: ice_hw_to_dev(hw), p: lst_itr);
906 }
907 } else {
908 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
909
910 mutex_destroy(lock: &recps[i].filt_rule_lock);
911 list_for_each_entry_safe(lst_itr, tmp_entry,
912 &recps[i].filt_rules,
913 list_entry) {
914 list_del(entry: &lst_itr->list_entry);
915 devm_kfree(dev: ice_hw_to_dev(hw), p: lst_itr);
916 }
917 }
918 }
919 ice_rm_all_sw_replay_rule_info(hw);
920 devm_kfree(dev: ice_hw_to_dev(hw), p: sw->recp_list);
921 devm_kfree(dev: ice_hw_to_dev(hw), p: sw);
922}
923
924/**
925 * ice_get_itr_intrl_gran
926 * @hw: pointer to the HW struct
927 *
928 * Determines the ITR/INTRL granularities based on the maximum aggregate
929 * bandwidth according to the device's configuration during power-on.
930 */
931static void ice_get_itr_intrl_gran(struct ice_hw *hw)
932{
933 u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
934 rd32(hw, GL_PWR_MODE_CTL));
935
936 switch (max_agg_bw) {
937 case ICE_MAX_AGG_BW_200G:
938 case ICE_MAX_AGG_BW_100G:
939 case ICE_MAX_AGG_BW_50G:
940 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
941 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
942 break;
943 case ICE_MAX_AGG_BW_25G:
944 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
945 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
946 break;
947 }
948}
949
950/**
951 * ice_wait_for_fw - wait for full FW readiness
952 * @hw: pointer to the hardware structure
953 * @timeout: milliseconds that can elapse before timing out
954 *
955 * Return: 0 on success, -ETIMEDOUT on timeout.
956 */
957static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
958{
959 int fw_loading;
960 u32 elapsed = 0;
961
962 while (elapsed <= timeout) {
963 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
964
965 /* firmware was not yet loaded, we have to wait more */
966 if (fw_loading) {
967 elapsed += 100;
968 msleep(msecs: 100);
969 continue;
970 }
971 return 0;
972 }
973
974 return -ETIMEDOUT;
975}
976
977/**
978 * ice_init_hw - main hardware initialization routine
979 * @hw: pointer to the hardware structure
980 */
981int ice_init_hw(struct ice_hw *hw)
982{
983 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
984 void *mac_buf __free(kfree) = NULL;
985 u16 mac_buf_len;
986 int status;
987
988 /* Set MAC type based on DeviceID */
989 status = ice_set_mac_type(hw);
990 if (status)
991 return status;
992
993 hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
994
995 status = ice_reset(hw, req: ICE_RESET_PFR);
996 if (status)
997 return status;
998
999 ice_get_itr_intrl_gran(hw);
1000
1001 status = ice_create_all_ctrlq(hw);
1002 if (status)
1003 goto err_unroll_cqinit;
1004
1005 status = ice_fwlog_init(hw);
1006 if (status)
1007 ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1008 status);
1009
1010 status = ice_clear_pf_cfg(hw);
1011 if (status)
1012 goto err_unroll_cqinit;
1013
1014 /* Set bit to enable Flow Director filters */
1015 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1016 INIT_LIST_HEAD(list: &hw->fdir_list_head);
1017
1018 ice_clear_pxe_mode(hw);
1019
1020 status = ice_init_nvm(hw);
1021 if (status)
1022 goto err_unroll_cqinit;
1023
1024 status = ice_get_caps(hw);
1025 if (status)
1026 goto err_unroll_cqinit;
1027
1028 if (!hw->port_info)
1029 hw->port_info = devm_kzalloc(dev: ice_hw_to_dev(hw),
1030 size: sizeof(*hw->port_info),
1031 GFP_KERNEL);
1032 if (!hw->port_info) {
1033 status = -ENOMEM;
1034 goto err_unroll_cqinit;
1035 }
1036
1037 hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1038 /* set the back pointer to HW */
1039 hw->port_info->hw = hw;
1040
1041 /* Initialize port_info struct with switch configuration data */
1042 status = ice_get_initial_sw_cfg(hw);
1043 if (status)
1044 goto err_unroll_alloc;
1045
1046 hw->evb_veb = true;
1047
1048 /* init xarray for identifying scheduling nodes uniquely */
1049 xa_init_flags(xa: &hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1050
1051 /* Query the allocated resources for Tx scheduler */
1052 status = ice_sched_query_res_alloc(hw);
1053 if (status) {
1054 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1055 goto err_unroll_alloc;
1056 }
1057 ice_sched_get_psm_clk_freq(hw);
1058
1059 /* Initialize port_info struct with scheduler data */
1060 status = ice_sched_init_port(pi: hw->port_info);
1061 if (status)
1062 goto err_unroll_sched;
1063
1064 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1065 if (!pcaps) {
1066 status = -ENOMEM;
1067 goto err_unroll_sched;
1068 }
1069
1070 /* Initialize port_info struct with PHY capabilities */
1071 status = ice_aq_get_phy_caps(pi: hw->port_info, qual_mods: false,
1072 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1073 NULL);
1074 if (status)
1075 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1076 status);
1077
1078 /* Initialize port_info struct with link information */
1079 status = ice_aq_get_link_info(pi: hw->port_info, ena_lse: false, NULL, NULL);
1080 if (status)
1081 goto err_unroll_sched;
1082
1083 /* need a valid SW entry point to build a Tx tree */
1084 if (!hw->sw_entry_point_layer) {
1085 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1086 status = -EIO;
1087 goto err_unroll_sched;
1088 }
1089 INIT_LIST_HEAD(list: &hw->agg_list);
1090 /* Initialize max burst size */
1091 if (!hw->max_burst_size)
1092 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1093
1094 status = ice_init_fltr_mgmt_struct(hw);
1095 if (status)
1096 goto err_unroll_sched;
1097
1098 /* Get MAC information */
1099 /* A single port can report up to two (LAN and WoL) addresses */
1100 mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1101 GFP_KERNEL);
1102 if (!mac_buf) {
1103 status = -ENOMEM;
1104 goto err_unroll_fltr_mgmt_struct;
1105 }
1106
1107 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1108 status = ice_aq_manage_mac_read(hw, buf: mac_buf, buf_size: mac_buf_len, NULL);
1109
1110 if (status)
1111 goto err_unroll_fltr_mgmt_struct;
1112 /* enable jumbo frame support at MAC level */
1113 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1114 if (status)
1115 goto err_unroll_fltr_mgmt_struct;
1116 /* Obtain counter base index which would be used by flow director */
1117 status = ice_alloc_fd_res_cntr(hw, cntr_id: &hw->fd_ctr_base);
1118 if (status)
1119 goto err_unroll_fltr_mgmt_struct;
1120 status = ice_init_hw_tbls(hw);
1121 if (status)
1122 goto err_unroll_fltr_mgmt_struct;
1123 mutex_init(&hw->tnl_lock);
1124 ice_init_chk_recipe_reuse_support(hw);
1125
1126 /* Some cards require longer initialization times
1127 * due to necessity of loading FW from an external source.
1128 * This can take even half a minute.
1129 */
1130 if (ice_is_pf_c827(hw)) {
1131 status = ice_wait_for_fw(hw, timeout: 30000);
1132 if (status) {
1133 dev_err(ice_hw_to_dev(hw), "ice_wait_for_fw timed out");
1134 goto err_unroll_fltr_mgmt_struct;
1135 }
1136 }
1137
1138 hw->lane_num = ice_get_phy_lane_number(hw);
1139
1140 return 0;
1141err_unroll_fltr_mgmt_struct:
1142 ice_cleanup_fltr_mgmt_struct(hw);
1143err_unroll_sched:
1144 ice_sched_cleanup_all(hw);
1145err_unroll_alloc:
1146 devm_kfree(dev: ice_hw_to_dev(hw), p: hw->port_info);
1147err_unroll_cqinit:
1148 ice_destroy_all_ctrlq(hw);
1149 return status;
1150}
1151
1152/**
1153 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1154 * @hw: pointer to the hardware structure
1155 *
1156 * This should be called only during nominal operation, not as a result of
1157 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1158 * applicable initializations if it fails for any reason.
1159 */
1160void ice_deinit_hw(struct ice_hw *hw)
1161{
1162 ice_free_fd_res_cntr(hw, cntr_id: hw->fd_ctr_base);
1163 ice_cleanup_fltr_mgmt_struct(hw);
1164
1165 ice_sched_cleanup_all(hw);
1166 ice_sched_clear_agg(hw);
1167 ice_free_seg(hw);
1168 ice_free_hw_tbls(hw);
1169 mutex_destroy(lock: &hw->tnl_lock);
1170
1171 ice_fwlog_deinit(hw);
1172 ice_destroy_all_ctrlq(hw);
1173
1174 /* Clear VSI contexts if not already cleared */
1175 ice_clear_all_vsi_ctx(hw);
1176}
1177
1178/**
1179 * ice_check_reset - Check to see if a global reset is complete
1180 * @hw: pointer to the hardware structure
1181 */
1182int ice_check_reset(struct ice_hw *hw)
1183{
1184 u32 cnt, reg = 0, grst_timeout, uld_mask;
1185
1186 /* Poll for Device Active state in case a recent CORER, GLOBR,
1187 * or EMPR has occurred. The grst delay value is in 100ms units.
1188 * Add 1sec for outstanding AQ commands that can take a long time.
1189 */
1190 grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1191 rd32(hw, GLGEN_RSTCTL)) + 10;
1192
1193 for (cnt = 0; cnt < grst_timeout; cnt++) {
1194 mdelay(100);
1195 reg = rd32(hw, GLGEN_RSTAT);
1196 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1197 break;
1198 }
1199
1200 if (cnt == grst_timeout) {
1201 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1202 return -EIO;
1203 }
1204
1205#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1206 GLNVM_ULD_PCIER_DONE_1_M |\
1207 GLNVM_ULD_CORER_DONE_M |\
1208 GLNVM_ULD_GLOBR_DONE_M |\
1209 GLNVM_ULD_POR_DONE_M |\
1210 GLNVM_ULD_POR_DONE_1_M |\
1211 GLNVM_ULD_PCIER_DONE_2_M)
1212
1213 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1214 GLNVM_ULD_PE_DONE_M : 0);
1215
1216 /* Device is Active; check Global Reset processes are done */
1217 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1218 reg = rd32(hw, GLNVM_ULD) & uld_mask;
1219 if (reg == uld_mask) {
1220 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1221 break;
1222 }
1223 mdelay(10);
1224 }
1225
1226 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1227 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1228 reg);
1229 return -EIO;
1230 }
1231
1232 return 0;
1233}
1234
1235/**
1236 * ice_pf_reset - Reset the PF
1237 * @hw: pointer to the hardware structure
1238 *
1239 * If a global reset has been triggered, this function checks
1240 * for its completion and then issues the PF reset
1241 */
1242static int ice_pf_reset(struct ice_hw *hw)
1243{
1244 u32 cnt, reg;
1245
1246 /* If at function entry a global reset was already in progress, i.e.
1247 * state is not 'device active' or any of the reset done bits are not
1248 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1249 * global reset is done.
1250 */
1251 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1252 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1253 /* poll on global reset currently in progress until done */
1254 if (ice_check_reset(hw))
1255 return -EIO;
1256
1257 return 0;
1258 }
1259
1260 /* Reset the PF */
1261 reg = rd32(hw, PFGEN_CTRL);
1262
1263 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1264
1265 /* Wait for the PFR to complete. The wait time is the global config lock
1266 * timeout plus the PFR timeout which will account for a possible reset
1267 * that is occurring during a download package operation.
1268 */
1269 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1270 ICE_PF_RESET_WAIT_COUNT; cnt++) {
1271 reg = rd32(hw, PFGEN_CTRL);
1272 if (!(reg & PFGEN_CTRL_PFSWR_M))
1273 break;
1274
1275 mdelay(1);
1276 }
1277
1278 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1279 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1280 return -EIO;
1281 }
1282
1283 return 0;
1284}
1285
1286/**
1287 * ice_reset - Perform different types of reset
1288 * @hw: pointer to the hardware structure
1289 * @req: reset request
1290 *
1291 * This function triggers a reset as specified by the req parameter.
1292 *
1293 * Note:
1294 * If anything other than a PF reset is triggered, PXE mode is restored.
1295 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1296 * interface has been restored in the rebuild flow.
1297 */
1298int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1299{
1300 u32 val = 0;
1301
1302 switch (req) {
1303 case ICE_RESET_PFR:
1304 return ice_pf_reset(hw);
1305 case ICE_RESET_CORER:
1306 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1307 val = GLGEN_RTRIG_CORER_M;
1308 break;
1309 case ICE_RESET_GLOBR:
1310 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1311 val = GLGEN_RTRIG_GLOBR_M;
1312 break;
1313 default:
1314 return -EINVAL;
1315 }
1316
1317 val |= rd32(hw, GLGEN_RTRIG);
1318 wr32(hw, GLGEN_RTRIG, val);
1319 ice_flush(hw);
1320
1321 /* wait for the FW to be ready */
1322 return ice_check_reset(hw);
1323}
1324
1325/**
1326 * ice_copy_rxq_ctx_to_hw - Copy packed Rx queue context to HW registers
1327 * @hw: pointer to the hardware structure
1328 * @rxq_ctx: pointer to the packed Rx queue context
1329 * @rxq_index: the index of the Rx queue
1330 */
1331static void ice_copy_rxq_ctx_to_hw(struct ice_hw *hw,
1332 const ice_rxq_ctx_buf_t *rxq_ctx,
1333 u32 rxq_index)
1334{
1335 /* Copy each dword separately to HW */
1336 for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1337 u32 ctx = ((const u32 *)rxq_ctx)[i];
1338
1339 wr32(hw, QRX_CONTEXT(i, rxq_index), ctx);
1340
1341 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, ctx);
1342 }
1343}
1344
1345#define ICE_CTX_STORE(struct_name, struct_field, width, lsb) \
1346 PACKED_FIELD((lsb) + (width) - 1, (lsb), struct struct_name, struct_field)
1347
1348/* LAN Rx Queue Context */
1349static const struct packed_field_u8 ice_rlan_ctx_fields[] = {
1350 /* Field Width LSB */
1351 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1352 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1353 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1354 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1355 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1356 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1357 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1358 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1359 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1360 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1361 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1362 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1363 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1364 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1365 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1366 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1367 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1368 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1369 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1370 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1371};
1372
1373/**
1374 * ice_pack_rxq_ctx - Pack Rx queue context into a HW buffer
1375 * @ctx: the Rx queue context to pack
1376 * @buf: the HW buffer to pack into
1377 *
1378 * Pack the Rx queue context from the CPU-friendly unpacked buffer into its
1379 * bit-packed HW layout.
1380 */
1381static void ice_pack_rxq_ctx(const struct ice_rlan_ctx *ctx,
1382 ice_rxq_ctx_buf_t *buf)
1383{
1384 pack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1385 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1386}
1387
1388/**
1389 * ice_write_rxq_ctx - Write Rx Queue context to hardware
1390 * @hw: pointer to the hardware structure
1391 * @rlan_ctx: pointer to the unpacked Rx queue context
1392 * @rxq_index: the index of the Rx queue
1393 *
1394 * Pack the sparse Rx Queue context into dense hardware format and write it
1395 * into the HW register space.
1396 *
1397 * Return: 0 on success, or -EINVAL if the Rx queue index is invalid.
1398 */
1399int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1400 u32 rxq_index)
1401{
1402 ice_rxq_ctx_buf_t buf = {};
1403
1404 if (rxq_index > QRX_CTRL_MAX_INDEX)
1405 return -EINVAL;
1406
1407 ice_pack_rxq_ctx(ctx: rlan_ctx, buf: &buf);
1408 ice_copy_rxq_ctx_to_hw(hw, rxq_ctx: &buf, rxq_index);
1409
1410 return 0;
1411}
1412
1413/* LAN Tx Queue Context */
1414static const struct packed_field_u8 ice_tlan_ctx_fields[] = {
1415 /* Field Width LSB */
1416 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1417 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1418 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1419 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1420 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1421 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1422 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1423 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1424 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1425 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1426 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1427 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1428 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1429 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1430 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1431 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1432 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1433 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1434 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1435 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1436 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1437 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1438 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1439 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1440 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1441 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1442 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1443};
1444
1445/**
1446 * ice_pack_txq_ctx - Pack Tx queue context into a HW buffer
1447 * @ctx: the Tx queue context to pack
1448 * @buf: the HW buffer to pack into
1449 *
1450 * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1451 * bit-packed HW layout.
1452 */
1453void ice_pack_txq_ctx(const struct ice_tlan_ctx *ctx, ice_txq_ctx_buf_t *buf)
1454{
1455 pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1456 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1457}
1458
1459/* Sideband Queue command wrappers */
1460
1461/**
1462 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1463 * @hw: pointer to the HW struct
1464 * @desc: descriptor describing the command
1465 * @buf: buffer to use for indirect commands (NULL for direct commands)
1466 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1467 * @cd: pointer to command details structure
1468 */
1469static int
1470ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1471 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1472{
1473 return ice_sq_send_cmd(hw, cq: ice_get_sbq(hw),
1474 desc: (struct ice_aq_desc *)desc, buf, buf_size, cd);
1475}
1476
1477/**
1478 * ice_sbq_rw_reg - Fill Sideband Queue command
1479 * @hw: pointer to the HW struct
1480 * @in: message info to be filled in descriptor
1481 * @flags: control queue descriptor flags
1482 */
1483int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1484{
1485 struct ice_sbq_cmd_desc desc = {0};
1486 struct ice_sbq_msg_req msg = {0};
1487 u16 msg_len;
1488 int status;
1489
1490 msg_len = sizeof(msg);
1491
1492 msg.dest_dev = in->dest_dev;
1493 msg.opcode = in->opcode;
1494 msg.flags = ICE_SBQ_MSG_FLAGS;
1495 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1496 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1497 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1498
1499 if (in->opcode)
1500 msg.data = cpu_to_le32(in->data);
1501 else
1502 /* data read comes back in completion, so shorten the struct by
1503 * sizeof(msg.data)
1504 */
1505 msg_len -= sizeof(msg.data);
1506
1507 desc.flags = cpu_to_le16(flags);
1508 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1509 desc.param0.cmd_len = cpu_to_le16(msg_len);
1510 status = ice_sbq_send_cmd(hw, desc: &desc, buf: &msg, buf_size: msg_len, NULL);
1511 if (!status && !in->opcode)
1512 in->data = le32_to_cpu
1513 (((struct ice_sbq_msg_cmpl *)&msg)->data);
1514 return status;
1515}
1516
1517/* FW Admin Queue command wrappers */
1518
1519/* Software lock/mutex that is meant to be held while the Global Config Lock
1520 * in firmware is acquired by the software to prevent most (but not all) types
1521 * of AQ commands from being sent to FW
1522 */
1523DEFINE_MUTEX(ice_global_cfg_lock_sw);
1524
1525/**
1526 * ice_should_retry_sq_send_cmd
1527 * @opcode: AQ opcode
1528 *
1529 * Decide if we should retry the send command routine for the ATQ, depending
1530 * on the opcode.
1531 */
1532static bool ice_should_retry_sq_send_cmd(u16 opcode)
1533{
1534 switch (opcode) {
1535 case ice_aqc_opc_get_link_topo:
1536 case ice_aqc_opc_lldp_stop:
1537 case ice_aqc_opc_lldp_start:
1538 case ice_aqc_opc_lldp_filter_ctrl:
1539 return true;
1540 }
1541
1542 return false;
1543}
1544
1545/**
1546 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1547 * @hw: pointer to the HW struct
1548 * @cq: pointer to the specific Control queue
1549 * @desc: prefilled descriptor describing the command
1550 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1551 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1552 * @cd: pointer to command details structure
1553 *
1554 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1555 * Queue if the EBUSY AQ error is returned.
1556 */
1557static int
1558ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1559 struct ice_aq_desc *desc, void *buf, u16 buf_size,
1560 struct ice_sq_cd *cd)
1561{
1562 struct ice_aq_desc desc_cpy;
1563 bool is_cmd_for_retry;
1564 u8 idx = 0;
1565 u16 opcode;
1566 int status;
1567
1568 opcode = le16_to_cpu(desc->opcode);
1569 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1570 memset(&desc_cpy, 0, sizeof(desc_cpy));
1571
1572 if (is_cmd_for_retry) {
1573 /* All retryable cmds are direct, without buf. */
1574 WARN_ON(buf);
1575
1576 memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1577 }
1578
1579 do {
1580 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1581
1582 if (!is_cmd_for_retry || !status ||
1583 hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1584 break;
1585
1586 memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1587
1588 msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1589
1590 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1591
1592 return status;
1593}
1594
1595/**
1596 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1597 * @hw: pointer to the HW struct
1598 * @desc: descriptor describing the command
1599 * @buf: buffer to use for indirect commands (NULL for direct commands)
1600 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1601 * @cd: pointer to command details structure
1602 *
1603 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1604 */
1605int
1606ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1607 u16 buf_size, struct ice_sq_cd *cd)
1608{
1609 struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1610 bool lock_acquired = false;
1611 int status;
1612
1613 /* When a package download is in process (i.e. when the firmware's
1614 * Global Configuration Lock resource is held), only the Download
1615 * Package, Get Version, Get Package Info List, Upload Section,
1616 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1617 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1618 * Recipes to Profile Association, and Release Resource (with resource
1619 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1620 * must block until the package download completes and the Global Config
1621 * Lock is released. See also ice_acquire_global_cfg_lock().
1622 */
1623 switch (le16_to_cpu(desc->opcode)) {
1624 case ice_aqc_opc_download_pkg:
1625 case ice_aqc_opc_get_pkg_info_list:
1626 case ice_aqc_opc_get_ver:
1627 case ice_aqc_opc_upload_section:
1628 case ice_aqc_opc_update_pkg:
1629 case ice_aqc_opc_set_port_params:
1630 case ice_aqc_opc_get_vlan_mode_parameters:
1631 case ice_aqc_opc_set_vlan_mode_parameters:
1632 case ice_aqc_opc_set_tx_topo:
1633 case ice_aqc_opc_get_tx_topo:
1634 case ice_aqc_opc_add_recipe:
1635 case ice_aqc_opc_recipe_to_profile:
1636 case ice_aqc_opc_get_recipe:
1637 case ice_aqc_opc_get_recipe_to_profile:
1638 break;
1639 case ice_aqc_opc_release_res:
1640 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1641 break;
1642 fallthrough;
1643 default:
1644 mutex_lock(&ice_global_cfg_lock_sw);
1645 lock_acquired = true;
1646 break;
1647 }
1648
1649 status = ice_sq_send_cmd_retry(hw, cq: &hw->adminq, desc, buf, buf_size, cd);
1650 if (lock_acquired)
1651 mutex_unlock(lock: &ice_global_cfg_lock_sw);
1652
1653 return status;
1654}
1655
1656/**
1657 * ice_aq_get_fw_ver
1658 * @hw: pointer to the HW struct
1659 * @cd: pointer to command details structure or NULL
1660 *
1661 * Get the firmware version (0x0001) from the admin queue commands
1662 */
1663int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1664{
1665 struct ice_aqc_get_ver *resp;
1666 struct ice_aq_desc desc;
1667 int status;
1668
1669 resp = &desc.params.get_ver;
1670
1671 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_ver);
1672
1673 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
1674
1675 if (!status) {
1676 hw->fw_branch = resp->fw_branch;
1677 hw->fw_maj_ver = resp->fw_major;
1678 hw->fw_min_ver = resp->fw_minor;
1679 hw->fw_patch = resp->fw_patch;
1680 hw->fw_build = le32_to_cpu(resp->fw_build);
1681 hw->api_branch = resp->api_branch;
1682 hw->api_maj_ver = resp->api_major;
1683 hw->api_min_ver = resp->api_minor;
1684 hw->api_patch = resp->api_patch;
1685 }
1686
1687 return status;
1688}
1689
1690/**
1691 * ice_aq_send_driver_ver
1692 * @hw: pointer to the HW struct
1693 * @dv: driver's major, minor version
1694 * @cd: pointer to command details structure or NULL
1695 *
1696 * Send the driver version (0x0002) to the firmware
1697 */
1698int
1699ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1700 struct ice_sq_cd *cd)
1701{
1702 struct ice_aqc_driver_ver *cmd;
1703 struct ice_aq_desc desc;
1704 u16 len;
1705
1706 cmd = &desc.params.driver_ver;
1707
1708 if (!dv)
1709 return -EINVAL;
1710
1711 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_driver_ver);
1712
1713 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1714 cmd->major_ver = dv->major_ver;
1715 cmd->minor_ver = dv->minor_ver;
1716 cmd->build_ver = dv->build_ver;
1717 cmd->subbuild_ver = dv->subbuild_ver;
1718
1719 len = 0;
1720 while (len < sizeof(dv->driver_string) &&
1721 isascii(dv->driver_string[len]) && dv->driver_string[len])
1722 len++;
1723
1724 return ice_aq_send_cmd(hw, desc: &desc, buf: dv->driver_string, buf_size: len, cd);
1725}
1726
1727/**
1728 * ice_aq_q_shutdown
1729 * @hw: pointer to the HW struct
1730 * @unloading: is the driver unloading itself
1731 *
1732 * Tell the Firmware that we're shutting down the AdminQ and whether
1733 * or not the driver is unloading as well (0x0003).
1734 */
1735int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1736{
1737 struct ice_aqc_q_shutdown *cmd;
1738 struct ice_aq_desc desc;
1739
1740 cmd = &desc.params.q_shutdown;
1741
1742 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_q_shutdown);
1743
1744 if (unloading)
1745 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1746
1747 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
1748}
1749
1750/**
1751 * ice_aq_req_res
1752 * @hw: pointer to the HW struct
1753 * @res: resource ID
1754 * @access: access type
1755 * @sdp_number: resource number
1756 * @timeout: the maximum time in ms that the driver may hold the resource
1757 * @cd: pointer to command details structure or NULL
1758 *
1759 * Requests common resource using the admin queue commands (0x0008).
1760 * When attempting to acquire the Global Config Lock, the driver can
1761 * learn of three states:
1762 * 1) 0 - acquired lock, and can perform download package
1763 * 2) -EIO - did not get lock, driver should fail to load
1764 * 3) -EALREADY - did not get lock, but another driver has
1765 * successfully downloaded the package; the driver does
1766 * not have to download the package and can continue
1767 * loading
1768 *
1769 * Note that if the caller is in an acquire lock, perform action, release lock
1770 * phase of operation, it is possible that the FW may detect a timeout and issue
1771 * a CORER. In this case, the driver will receive a CORER interrupt and will
1772 * have to determine its cause. The calling thread that is handling this flow
1773 * will likely get an error propagated back to it indicating the Download
1774 * Package, Update Package or the Release Resource AQ commands timed out.
1775 */
1776static int
1777ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1778 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1779 struct ice_sq_cd *cd)
1780{
1781 struct ice_aqc_req_res *cmd_resp;
1782 struct ice_aq_desc desc;
1783 int status;
1784
1785 cmd_resp = &desc.params.res_owner;
1786
1787 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_req_res);
1788
1789 cmd_resp->res_id = cpu_to_le16(res);
1790 cmd_resp->access_type = cpu_to_le16(access);
1791 cmd_resp->res_number = cpu_to_le32(sdp_number);
1792 cmd_resp->timeout = cpu_to_le32(*timeout);
1793 *timeout = 0;
1794
1795 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
1796
1797 /* The completion specifies the maximum time in ms that the driver
1798 * may hold the resource in the Timeout field.
1799 */
1800
1801 /* Global config lock response utilizes an additional status field.
1802 *
1803 * If the Global config lock resource is held by some other driver, the
1804 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1805 * and the timeout field indicates the maximum time the current owner
1806 * of the resource has to free it.
1807 */
1808 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1809 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1810 *timeout = le32_to_cpu(cmd_resp->timeout);
1811 return 0;
1812 } else if (le16_to_cpu(cmd_resp->status) ==
1813 ICE_AQ_RES_GLBL_IN_PROG) {
1814 *timeout = le32_to_cpu(cmd_resp->timeout);
1815 return -EIO;
1816 } else if (le16_to_cpu(cmd_resp->status) ==
1817 ICE_AQ_RES_GLBL_DONE) {
1818 return -EALREADY;
1819 }
1820
1821 /* invalid FW response, force a timeout immediately */
1822 *timeout = 0;
1823 return -EIO;
1824 }
1825
1826 /* If the resource is held by some other driver, the command completes
1827 * with a busy return value and the timeout field indicates the maximum
1828 * time the current owner of the resource has to free it.
1829 */
1830 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1831 *timeout = le32_to_cpu(cmd_resp->timeout);
1832
1833 return status;
1834}
1835
1836/**
1837 * ice_aq_release_res
1838 * @hw: pointer to the HW struct
1839 * @res: resource ID
1840 * @sdp_number: resource number
1841 * @cd: pointer to command details structure or NULL
1842 *
1843 * release common resource using the admin queue commands (0x0009)
1844 */
1845static int
1846ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1847 struct ice_sq_cd *cd)
1848{
1849 struct ice_aqc_req_res *cmd;
1850 struct ice_aq_desc desc;
1851
1852 cmd = &desc.params.res_owner;
1853
1854 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_release_res);
1855
1856 cmd->res_id = cpu_to_le16(res);
1857 cmd->res_number = cpu_to_le32(sdp_number);
1858
1859 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
1860}
1861
1862/**
1863 * ice_acquire_res
1864 * @hw: pointer to the HW structure
1865 * @res: resource ID
1866 * @access: access type (read or write)
1867 * @timeout: timeout in milliseconds
1868 *
1869 * This function will attempt to acquire the ownership of a resource.
1870 */
1871int
1872ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1873 enum ice_aq_res_access_type access, u32 timeout)
1874{
1875#define ICE_RES_POLLING_DELAY_MS 10
1876 u32 delay = ICE_RES_POLLING_DELAY_MS;
1877 u32 time_left = timeout;
1878 int status;
1879
1880 status = ice_aq_req_res(hw, res, access, sdp_number: 0, timeout: &time_left, NULL);
1881
1882 /* A return code of -EALREADY means that another driver has
1883 * previously acquired the resource and performed any necessary updates;
1884 * in this case the caller does not obtain the resource and has no
1885 * further work to do.
1886 */
1887 if (status == -EALREADY)
1888 goto ice_acquire_res_exit;
1889
1890 if (status)
1891 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1892
1893 /* If necessary, poll until the current lock owner timeouts */
1894 timeout = time_left;
1895 while (status && timeout && time_left) {
1896 mdelay(delay);
1897 timeout = (timeout > delay) ? timeout - delay : 0;
1898 status = ice_aq_req_res(hw, res, access, sdp_number: 0, timeout: &time_left, NULL);
1899
1900 if (status == -EALREADY)
1901 /* lock free, but no work to do */
1902 break;
1903
1904 if (!status)
1905 /* lock acquired */
1906 break;
1907 }
1908 if (status && status != -EALREADY)
1909 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1910
1911ice_acquire_res_exit:
1912 if (status == -EALREADY) {
1913 if (access == ICE_RES_WRITE)
1914 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1915 else
1916 ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1917 }
1918 return status;
1919}
1920
1921/**
1922 * ice_release_res
1923 * @hw: pointer to the HW structure
1924 * @res: resource ID
1925 *
1926 * This function will release a resource using the proper Admin Command.
1927 */
1928void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1929{
1930 unsigned long timeout;
1931 int status;
1932
1933 /* there are some rare cases when trying to release the resource
1934 * results in an admin queue timeout, so handle them correctly
1935 */
1936 timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1937 do {
1938 status = ice_aq_release_res(hw, res, sdp_number: 0, NULL);
1939 if (status != -EIO)
1940 break;
1941 usleep_range(min: 1000, max: 2000);
1942 } while (time_before(jiffies, timeout));
1943}
1944
1945/**
1946 * ice_aq_alloc_free_res - command to allocate/free resources
1947 * @hw: pointer to the HW struct
1948 * @buf: Indirect buffer to hold data parameters and response
1949 * @buf_size: size of buffer for indirect commands
1950 * @opc: pass in the command opcode
1951 *
1952 * Helper function to allocate/free resources using the admin queue commands
1953 */
1954int ice_aq_alloc_free_res(struct ice_hw *hw,
1955 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1956 enum ice_adminq_opc opc)
1957{
1958 struct ice_aqc_alloc_free_res_cmd *cmd;
1959 struct ice_aq_desc desc;
1960
1961 cmd = &desc.params.sw_res_ctrl;
1962
1963 if (!buf || buf_size < flex_array_size(buf, elem, 1))
1964 return -EINVAL;
1965
1966 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: opc);
1967
1968 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1969
1970 cmd->num_entries = cpu_to_le16(1);
1971
1972 return ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, NULL);
1973}
1974
1975/**
1976 * ice_alloc_hw_res - allocate resource
1977 * @hw: pointer to the HW struct
1978 * @type: type of resource
1979 * @num: number of resources to allocate
1980 * @btm: allocate from bottom
1981 * @res: pointer to array that will receive the resources
1982 */
1983int
1984ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1985{
1986 struct ice_aqc_alloc_free_res_elem *buf;
1987 u16 buf_len;
1988 int status;
1989
1990 buf_len = struct_size(buf, elem, num);
1991 buf = kzalloc(buf_len, GFP_KERNEL);
1992 if (!buf)
1993 return -ENOMEM;
1994
1995 /* Prepare buffer to allocate resource. */
1996 buf->num_elems = cpu_to_le16(num);
1997 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1998 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1999 if (btm)
2000 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2001
2002 status = ice_aq_alloc_free_res(hw, buf, buf_size: buf_len, opc: ice_aqc_opc_alloc_res);
2003 if (status)
2004 goto ice_alloc_res_exit;
2005
2006 memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2007
2008ice_alloc_res_exit:
2009 kfree(objp: buf);
2010 return status;
2011}
2012
2013/**
2014 * ice_free_hw_res - free allocated HW resource
2015 * @hw: pointer to the HW struct
2016 * @type: type of resource to free
2017 * @num: number of resources
2018 * @res: pointer to array that contains the resources to free
2019 */
2020int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2021{
2022 struct ice_aqc_alloc_free_res_elem *buf;
2023 u16 buf_len;
2024 int status;
2025
2026 buf_len = struct_size(buf, elem, num);
2027 buf = kzalloc(buf_len, GFP_KERNEL);
2028 if (!buf)
2029 return -ENOMEM;
2030
2031 /* Prepare buffer to free resource. */
2032 buf->num_elems = cpu_to_le16(num);
2033 buf->res_type = cpu_to_le16(type);
2034 memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2035
2036 status = ice_aq_alloc_free_res(hw, buf, buf_size: buf_len, opc: ice_aqc_opc_free_res);
2037 if (status)
2038 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2039
2040 kfree(objp: buf);
2041 return status;
2042}
2043
2044/**
2045 * ice_get_num_per_func - determine number of resources per PF
2046 * @hw: pointer to the HW structure
2047 * @max: value to be evenly split between each PF
2048 *
2049 * Determine the number of valid functions by going through the bitmap returned
2050 * from parsing capabilities and use this to calculate the number of resources
2051 * per PF based on the max value passed in.
2052 */
2053static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2054{
2055 u8 funcs;
2056
2057#define ICE_CAPS_VALID_FUNCS_M 0xFF
2058 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2059 ICE_CAPS_VALID_FUNCS_M);
2060
2061 if (!funcs)
2062 return 0;
2063
2064 return max / funcs;
2065}
2066
2067/**
2068 * ice_parse_common_caps - parse common device/function capabilities
2069 * @hw: pointer to the HW struct
2070 * @caps: pointer to common capabilities structure
2071 * @elem: the capability element to parse
2072 * @prefix: message prefix for tracing capabilities
2073 *
2074 * Given a capability element, extract relevant details into the common
2075 * capability structure.
2076 *
2077 * Returns: true if the capability matches one of the common capability ids,
2078 * false otherwise.
2079 */
2080static bool
2081ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2082 struct ice_aqc_list_caps_elem *elem, const char *prefix)
2083{
2084 u32 logical_id = le32_to_cpu(elem->logical_id);
2085 u32 phys_id = le32_to_cpu(elem->phys_id);
2086 u32 number = le32_to_cpu(elem->number);
2087 u16 cap = le16_to_cpu(elem->cap);
2088 bool found = true;
2089
2090 switch (cap) {
2091 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2092 caps->valid_functions = number;
2093 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2094 caps->valid_functions);
2095 break;
2096 case ICE_AQC_CAPS_SRIOV:
2097 caps->sr_iov_1_1 = (number == 1);
2098 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2099 caps->sr_iov_1_1);
2100 break;
2101 case ICE_AQC_CAPS_DCB:
2102 caps->dcb = (number == 1);
2103 caps->active_tc_bitmap = logical_id;
2104 caps->maxtc = phys_id;
2105 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2106 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2107 caps->active_tc_bitmap);
2108 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2109 break;
2110 case ICE_AQC_CAPS_RSS:
2111 caps->rss_table_size = number;
2112 caps->rss_table_entry_width = logical_id;
2113 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2114 caps->rss_table_size);
2115 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2116 caps->rss_table_entry_width);
2117 break;
2118 case ICE_AQC_CAPS_RXQS:
2119 caps->num_rxq = number;
2120 caps->rxq_first_id = phys_id;
2121 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2122 caps->num_rxq);
2123 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2124 caps->rxq_first_id);
2125 break;
2126 case ICE_AQC_CAPS_TXQS:
2127 caps->num_txq = number;
2128 caps->txq_first_id = phys_id;
2129 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2130 caps->num_txq);
2131 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2132 caps->txq_first_id);
2133 break;
2134 case ICE_AQC_CAPS_MSIX:
2135 caps->num_msix_vectors = number;
2136 caps->msix_vector_first_id = phys_id;
2137 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2138 caps->num_msix_vectors);
2139 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2140 caps->msix_vector_first_id);
2141 break;
2142 case ICE_AQC_CAPS_PENDING_NVM_VER:
2143 caps->nvm_update_pending_nvm = true;
2144 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2145 break;
2146 case ICE_AQC_CAPS_PENDING_OROM_VER:
2147 caps->nvm_update_pending_orom = true;
2148 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2149 break;
2150 case ICE_AQC_CAPS_PENDING_NET_VER:
2151 caps->nvm_update_pending_netlist = true;
2152 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2153 break;
2154 case ICE_AQC_CAPS_NVM_MGMT:
2155 caps->nvm_unified_update =
2156 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2157 true : false;
2158 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2159 caps->nvm_unified_update);
2160 break;
2161 case ICE_AQC_CAPS_RDMA:
2162 if (IS_ENABLED(CONFIG_INFINIBAND_IRDMA))
2163 caps->rdma = (number == 1);
2164 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2165 break;
2166 case ICE_AQC_CAPS_MAX_MTU:
2167 caps->max_mtu = number;
2168 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2169 prefix, caps->max_mtu);
2170 break;
2171 case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2172 caps->pcie_reset_avoidance = (number > 0);
2173 ice_debug(hw, ICE_DBG_INIT,
2174 "%s: pcie_reset_avoidance = %d\n", prefix,
2175 caps->pcie_reset_avoidance);
2176 break;
2177 case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2178 caps->reset_restrict_support = (number == 1);
2179 ice_debug(hw, ICE_DBG_INIT,
2180 "%s: reset_restrict_support = %d\n", prefix,
2181 caps->reset_restrict_support);
2182 break;
2183 case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2184 caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2185 ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2186 prefix, caps->roce_lag);
2187 caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2188 ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2189 prefix, caps->sriov_lag);
2190 break;
2191 case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2192 caps->tx_sched_topo_comp_mode_en = (number == 1);
2193 break;
2194 default:
2195 /* Not one of the recognized common capabilities */
2196 found = false;
2197 }
2198
2199 return found;
2200}
2201
2202/**
2203 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2204 * @hw: pointer to the HW structure
2205 * @caps: pointer to capabilities structure to fix
2206 *
2207 * Re-calculate the capabilities that are dependent on the number of physical
2208 * ports; i.e. some features are not supported or function differently on
2209 * devices with more than 4 ports.
2210 */
2211static void
2212ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2213{
2214 /* This assumes device capabilities are always scanned before function
2215 * capabilities during the initialization flow.
2216 */
2217 if (hw->dev_caps.num_funcs > 4) {
2218 /* Max 4 TCs per port */
2219 caps->maxtc = 4;
2220 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2221 caps->maxtc);
2222 if (caps->rdma) {
2223 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2224 caps->rdma = 0;
2225 }
2226
2227 /* print message only when processing device capabilities
2228 * during initialization.
2229 */
2230 if (caps == &hw->dev_caps.common_cap)
2231 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2232 }
2233}
2234
2235/**
2236 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2237 * @hw: pointer to the HW struct
2238 * @func_p: pointer to function capabilities structure
2239 * @cap: pointer to the capability element to parse
2240 *
2241 * Extract function capabilities for ICE_AQC_CAPS_VF.
2242 */
2243static void
2244ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2245 struct ice_aqc_list_caps_elem *cap)
2246{
2247 u32 logical_id = le32_to_cpu(cap->logical_id);
2248 u32 number = le32_to_cpu(cap->number);
2249
2250 func_p->num_allocd_vfs = number;
2251 func_p->vf_base_id = logical_id;
2252 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2253 func_p->num_allocd_vfs);
2254 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2255 func_p->vf_base_id);
2256}
2257
2258/**
2259 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2260 * @hw: pointer to the HW struct
2261 * @func_p: pointer to function capabilities structure
2262 * @cap: pointer to the capability element to parse
2263 *
2264 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2265 */
2266static void
2267ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2268 struct ice_aqc_list_caps_elem *cap)
2269{
2270 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2271 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2272 le32_to_cpu(cap->number));
2273 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2274 func_p->guar_num_vsi);
2275}
2276
2277/**
2278 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2279 * @hw: pointer to the HW struct
2280 * @func_p: pointer to function capabilities structure
2281 * @cap: pointer to the capability element to parse
2282 *
2283 * Extract function capabilities for ICE_AQC_CAPS_1588.
2284 */
2285static void
2286ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2287 struct ice_aqc_list_caps_elem *cap)
2288{
2289 struct ice_ts_func_info *info = &func_p->ts_func_info;
2290 u32 number = le32_to_cpu(cap->number);
2291
2292 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2293 func_p->common_cap.ieee_1588 = info->ena;
2294
2295 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2296 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2297 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2298 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2299
2300 if (hw->mac_type != ICE_MAC_GENERIC_3K_E825) {
2301 info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2302 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2303 } else {
2304 info->clk_freq = ICE_TIME_REF_FREQ_156_250;
2305 info->clk_src = ICE_CLK_SRC_TCXO;
2306 }
2307
2308 if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2309 info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2310 } else {
2311 /* Unknown clock frequency, so assume a (probably incorrect)
2312 * default to avoid out-of-bounds look ups of frequency
2313 * related information.
2314 */
2315 ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2316 info->clk_freq);
2317 info->time_ref = ICE_TIME_REF_FREQ_25_000;
2318 }
2319
2320 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2321 func_p->common_cap.ieee_1588);
2322 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2323 info->src_tmr_owned);
2324 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2325 info->tmr_ena);
2326 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2327 info->tmr_index_owned);
2328 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2329 info->tmr_index_assoc);
2330 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2331 info->clk_freq);
2332 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2333 info->clk_src);
2334}
2335
2336/**
2337 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2338 * @hw: pointer to the HW struct
2339 * @func_p: pointer to function capabilities structure
2340 *
2341 * Extract function capabilities for ICE_AQC_CAPS_FD.
2342 */
2343static void
2344ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2345{
2346 u32 reg_val, gsize, bsize;
2347
2348 reg_val = rd32(hw, GLQF_FD_SIZE);
2349 switch (hw->mac_type) {
2350 case ICE_MAC_E830:
2351 gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2352 bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2353 break;
2354 case ICE_MAC_E810:
2355 default:
2356 gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2357 bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2358 }
2359 func_p->fd_fltr_guar = ice_get_num_per_func(hw, max: gsize);
2360 func_p->fd_fltr_best_effort = bsize;
2361
2362 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2363 func_p->fd_fltr_guar);
2364 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2365 func_p->fd_fltr_best_effort);
2366}
2367
2368/**
2369 * ice_parse_func_caps - Parse function capabilities
2370 * @hw: pointer to the HW struct
2371 * @func_p: pointer to function capabilities structure
2372 * @buf: buffer containing the function capability records
2373 * @cap_count: the number of capabilities
2374 *
2375 * Helper function to parse function (0x000A) capabilities list. For
2376 * capabilities shared between device and function, this relies on
2377 * ice_parse_common_caps.
2378 *
2379 * Loop through the list of provided capabilities and extract the relevant
2380 * data into the function capabilities structured.
2381 */
2382static void
2383ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2384 void *buf, u32 cap_count)
2385{
2386 struct ice_aqc_list_caps_elem *cap_resp;
2387 u32 i;
2388
2389 cap_resp = buf;
2390
2391 memset(func_p, 0, sizeof(*func_p));
2392
2393 for (i = 0; i < cap_count; i++) {
2394 u16 cap = le16_to_cpu(cap_resp[i].cap);
2395 bool found;
2396
2397 found = ice_parse_common_caps(hw, caps: &func_p->common_cap,
2398 elem: &cap_resp[i], prefix: "func caps");
2399
2400 switch (cap) {
2401 case ICE_AQC_CAPS_VF:
2402 ice_parse_vf_func_caps(hw, func_p, cap: &cap_resp[i]);
2403 break;
2404 case ICE_AQC_CAPS_VSI:
2405 ice_parse_vsi_func_caps(hw, func_p, cap: &cap_resp[i]);
2406 break;
2407 case ICE_AQC_CAPS_1588:
2408 ice_parse_1588_func_caps(hw, func_p, cap: &cap_resp[i]);
2409 break;
2410 case ICE_AQC_CAPS_FD:
2411 ice_parse_fdir_func_caps(hw, func_p);
2412 break;
2413 default:
2414 /* Don't list common capabilities as unknown */
2415 if (!found)
2416 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2417 i, cap);
2418 break;
2419 }
2420 }
2421
2422 ice_recalc_port_limited_caps(hw, caps: &func_p->common_cap);
2423}
2424
2425/**
2426 * ice_func_id_to_logical_id - map from function id to logical pf id
2427 * @active_function_bitmap: active function bitmap
2428 * @pf_id: function number of device
2429 *
2430 * Return: logical PF ID.
2431 */
2432static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2433{
2434 u8 logical_id = 0;
2435 u8 i;
2436
2437 for (i = 0; i < pf_id; i++)
2438 if (active_function_bitmap & BIT(i))
2439 logical_id++;
2440
2441 return logical_id;
2442}
2443
2444/**
2445 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2446 * @hw: pointer to the HW struct
2447 * @dev_p: pointer to device capabilities structure
2448 * @cap: capability element to parse
2449 *
2450 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2451 */
2452static void
2453ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2454 struct ice_aqc_list_caps_elem *cap)
2455{
2456 u32 number = le32_to_cpu(cap->number);
2457
2458 dev_p->num_funcs = hweight32(number);
2459 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2460 dev_p->num_funcs);
2461
2462 hw->logical_pf_id = ice_func_id_to_logical_id(active_function_bitmap: number, pf_id: hw->pf_id);
2463}
2464
2465/**
2466 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2467 * @hw: pointer to the HW struct
2468 * @dev_p: pointer to device capabilities structure
2469 * @cap: capability element to parse
2470 *
2471 * Parse ICE_AQC_CAPS_VF for device capabilities.
2472 */
2473static void
2474ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2475 struct ice_aqc_list_caps_elem *cap)
2476{
2477 u32 number = le32_to_cpu(cap->number);
2478
2479 dev_p->num_vfs_exposed = number;
2480 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2481 dev_p->num_vfs_exposed);
2482}
2483
2484/**
2485 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2486 * @hw: pointer to the HW struct
2487 * @dev_p: pointer to device capabilities structure
2488 * @cap: capability element to parse
2489 *
2490 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2491 */
2492static void
2493ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2494 struct ice_aqc_list_caps_elem *cap)
2495{
2496 u32 number = le32_to_cpu(cap->number);
2497
2498 dev_p->num_vsi_allocd_to_host = number;
2499 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2500 dev_p->num_vsi_allocd_to_host);
2501}
2502
2503/**
2504 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2505 * @hw: pointer to the HW struct
2506 * @dev_p: pointer to device capabilities structure
2507 * @cap: capability element to parse
2508 *
2509 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2510 */
2511static void
2512ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2513 struct ice_aqc_list_caps_elem *cap)
2514{
2515 struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2516 u32 logical_id = le32_to_cpu(cap->logical_id);
2517 u32 phys_id = le32_to_cpu(cap->phys_id);
2518 u32 number = le32_to_cpu(cap->number);
2519
2520 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2521 dev_p->common_cap.ieee_1588 = info->ena;
2522
2523 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2524 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2525 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2526
2527 info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2528 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2529 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2530
2531 info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2532 info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2533 info->ll_phy_tmr_update = ((number & ICE_TS_LL_PHY_TMR_UPDATE_M) != 0);
2534
2535 info->ena_ports = logical_id;
2536 info->tmr_own_map = phys_id;
2537
2538 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2539 dev_p->common_cap.ieee_1588);
2540 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2541 info->tmr0_owner);
2542 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2543 info->tmr0_owned);
2544 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2545 info->tmr0_ena);
2546 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2547 info->tmr1_owner);
2548 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2549 info->tmr1_owned);
2550 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2551 info->tmr1_ena);
2552 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2553 info->ts_ll_read);
2554 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2555 info->ts_ll_int_read);
2556 ice_debug(hw, ICE_DBG_INIT, "dev caps: ll_phy_tmr_update = %u\n",
2557 info->ll_phy_tmr_update);
2558 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2559 info->ena_ports);
2560 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2561 info->tmr_own_map);
2562}
2563
2564/**
2565 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2566 * @hw: pointer to the HW struct
2567 * @dev_p: pointer to device capabilities structure
2568 * @cap: capability element to parse
2569 *
2570 * Parse ICE_AQC_CAPS_FD for device capabilities.
2571 */
2572static void
2573ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2574 struct ice_aqc_list_caps_elem *cap)
2575{
2576 u32 number = le32_to_cpu(cap->number);
2577
2578 dev_p->num_flow_director_fltr = number;
2579 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2580 dev_p->num_flow_director_fltr);
2581}
2582
2583/**
2584 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2585 * @hw: pointer to the HW struct
2586 * @dev_p: pointer to device capabilities structure
2587 * @cap: capability element to parse
2588 *
2589 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2590 * enabled sensors.
2591 */
2592static void
2593ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2594 struct ice_aqc_list_caps_elem *cap)
2595{
2596 dev_p->supported_sensors = le32_to_cpu(cap->number);
2597
2598 ice_debug(hw, ICE_DBG_INIT,
2599 "dev caps: supported sensors (bitmap) = 0x%x\n",
2600 dev_p->supported_sensors);
2601}
2602
2603/**
2604 * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2605 * @hw: pointer to the HW struct
2606 * @dev_p: pointer to device capabilities structure
2607 * @cap: capability element to parse
2608 *
2609 * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2610 */
2611static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2612 struct ice_hw_dev_caps *dev_p,
2613 struct ice_aqc_list_caps_elem *cap)
2614{
2615 dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2616 dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2617
2618 dev_info(ice_hw_to_dev(hw),
2619 "PF is configured in %s mode with IP instance ID %d\n",
2620 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2621 "primary" : "secondary", dev_p->nac_topo.id);
2622
2623 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2624 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2625 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2626 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2627 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2628 dev_p->nac_topo.id);
2629}
2630
2631/**
2632 * ice_parse_dev_caps - Parse device capabilities
2633 * @hw: pointer to the HW struct
2634 * @dev_p: pointer to device capabilities structure
2635 * @buf: buffer containing the device capability records
2636 * @cap_count: the number of capabilities
2637 *
2638 * Helper device to parse device (0x000B) capabilities list. For
2639 * capabilities shared between device and function, this relies on
2640 * ice_parse_common_caps.
2641 *
2642 * Loop through the list of provided capabilities and extract the relevant
2643 * data into the device capabilities structured.
2644 */
2645static void
2646ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2647 void *buf, u32 cap_count)
2648{
2649 struct ice_aqc_list_caps_elem *cap_resp;
2650 u32 i;
2651
2652 cap_resp = buf;
2653
2654 memset(dev_p, 0, sizeof(*dev_p));
2655
2656 for (i = 0; i < cap_count; i++) {
2657 u16 cap = le16_to_cpu(cap_resp[i].cap);
2658 bool found;
2659
2660 found = ice_parse_common_caps(hw, caps: &dev_p->common_cap,
2661 elem: &cap_resp[i], prefix: "dev caps");
2662
2663 switch (cap) {
2664 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2665 ice_parse_valid_functions_cap(hw, dev_p, cap: &cap_resp[i]);
2666 break;
2667 case ICE_AQC_CAPS_VF:
2668 ice_parse_vf_dev_caps(hw, dev_p, cap: &cap_resp[i]);
2669 break;
2670 case ICE_AQC_CAPS_VSI:
2671 ice_parse_vsi_dev_caps(hw, dev_p, cap: &cap_resp[i]);
2672 break;
2673 case ICE_AQC_CAPS_1588:
2674 ice_parse_1588_dev_caps(hw, dev_p, cap: &cap_resp[i]);
2675 break;
2676 case ICE_AQC_CAPS_FD:
2677 ice_parse_fdir_dev_caps(hw, dev_p, cap: &cap_resp[i]);
2678 break;
2679 case ICE_AQC_CAPS_SENSOR_READING:
2680 ice_parse_sensor_reading_cap(hw, dev_p, cap: &cap_resp[i]);
2681 break;
2682 case ICE_AQC_CAPS_NAC_TOPOLOGY:
2683 ice_parse_nac_topo_dev_caps(hw, dev_p, cap: &cap_resp[i]);
2684 break;
2685 default:
2686 /* Don't list common capabilities as unknown */
2687 if (!found)
2688 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2689 i, cap);
2690 break;
2691 }
2692 }
2693
2694 ice_recalc_port_limited_caps(hw, caps: &dev_p->common_cap);
2695}
2696
2697/**
2698 * ice_is_phy_rclk_in_netlist
2699 * @hw: pointer to the hw struct
2700 *
2701 * Check if the PHY Recovered Clock device is present in the netlist
2702 */
2703bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2704{
2705 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2706 ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2707 ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2708 ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2709 ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2710 ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2711 return false;
2712
2713 return true;
2714}
2715
2716/**
2717 * ice_is_clock_mux_in_netlist
2718 * @hw: pointer to the hw struct
2719 *
2720 * Check if the Clock Multiplexer device is present in the netlist
2721 */
2722bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2723{
2724 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2725 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2726 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2727 NULL))
2728 return false;
2729
2730 return true;
2731}
2732
2733/**
2734 * ice_is_cgu_in_netlist - check for CGU presence
2735 * @hw: pointer to the hw struct
2736 *
2737 * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2738 * Save the CGU part number in the hw structure for later use.
2739 * Return:
2740 * * true - cgu is present
2741 * * false - cgu is not present
2742 */
2743bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2744{
2745 if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2746 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2747 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2748 NULL)) {
2749 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2750 return true;
2751 } else if (!ice_find_netlist_node(hw,
2752 ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2753 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2754 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2755 NULL)) {
2756 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2757 return true;
2758 }
2759
2760 return false;
2761}
2762
2763/**
2764 * ice_is_gps_in_netlist
2765 * @hw: pointer to the hw struct
2766 *
2767 * Check if the GPS generic device is present in the netlist
2768 */
2769bool ice_is_gps_in_netlist(struct ice_hw *hw)
2770{
2771 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2772 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2773 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2774 return false;
2775
2776 return true;
2777}
2778
2779/**
2780 * ice_aq_list_caps - query function/device capabilities
2781 * @hw: pointer to the HW struct
2782 * @buf: a buffer to hold the capabilities
2783 * @buf_size: size of the buffer
2784 * @cap_count: if not NULL, set to the number of capabilities reported
2785 * @opc: capabilities type to discover, device or function
2786 * @cd: pointer to command details structure or NULL
2787 *
2788 * Get the function (0x000A) or device (0x000B) capabilities description from
2789 * firmware and store it in the buffer.
2790 *
2791 * If the cap_count pointer is not NULL, then it is set to the number of
2792 * capabilities firmware will report. Note that if the buffer size is too
2793 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2794 * cap_count will still be updated in this case. It is recommended that the
2795 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2796 * firmware could return) to avoid this.
2797 */
2798int
2799ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2800 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2801{
2802 struct ice_aqc_list_caps *cmd;
2803 struct ice_aq_desc desc;
2804 int status;
2805
2806 cmd = &desc.params.get_cap;
2807
2808 if (opc != ice_aqc_opc_list_func_caps &&
2809 opc != ice_aqc_opc_list_dev_caps)
2810 return -EINVAL;
2811
2812 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: opc);
2813 status = ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
2814
2815 if (cap_count)
2816 *cap_count = le32_to_cpu(cmd->count);
2817
2818 return status;
2819}
2820
2821/**
2822 * ice_discover_dev_caps - Read and extract device capabilities
2823 * @hw: pointer to the hardware structure
2824 * @dev_caps: pointer to device capabilities structure
2825 *
2826 * Read the device capabilities and extract them into the dev_caps structure
2827 * for later use.
2828 */
2829int
2830ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2831{
2832 u32 cap_count = 0;
2833 void *cbuf;
2834 int status;
2835
2836 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2837 if (!cbuf)
2838 return -ENOMEM;
2839
2840 /* Although the driver doesn't know the number of capabilities the
2841 * device will return, we can simply send a 4KB buffer, the maximum
2842 * possible size that firmware can return.
2843 */
2844 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2845
2846 status = ice_aq_list_caps(hw, buf: cbuf, ICE_AQ_MAX_BUF_LEN, cap_count: &cap_count,
2847 opc: ice_aqc_opc_list_dev_caps, NULL);
2848 if (!status)
2849 ice_parse_dev_caps(hw, dev_p: dev_caps, buf: cbuf, cap_count);
2850 kfree(objp: cbuf);
2851
2852 return status;
2853}
2854
2855/**
2856 * ice_discover_func_caps - Read and extract function capabilities
2857 * @hw: pointer to the hardware structure
2858 * @func_caps: pointer to function capabilities structure
2859 *
2860 * Read the function capabilities and extract them into the func_caps structure
2861 * for later use.
2862 */
2863static int
2864ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2865{
2866 u32 cap_count = 0;
2867 void *cbuf;
2868 int status;
2869
2870 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2871 if (!cbuf)
2872 return -ENOMEM;
2873
2874 /* Although the driver doesn't know the number of capabilities the
2875 * device will return, we can simply send a 4KB buffer, the maximum
2876 * possible size that firmware can return.
2877 */
2878 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2879
2880 status = ice_aq_list_caps(hw, buf: cbuf, ICE_AQ_MAX_BUF_LEN, cap_count: &cap_count,
2881 opc: ice_aqc_opc_list_func_caps, NULL);
2882 if (!status)
2883 ice_parse_func_caps(hw, func_p: func_caps, buf: cbuf, cap_count);
2884 kfree(objp: cbuf);
2885
2886 return status;
2887}
2888
2889/**
2890 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2891 * @hw: pointer to the hardware structure
2892 */
2893void ice_set_safe_mode_caps(struct ice_hw *hw)
2894{
2895 struct ice_hw_func_caps *func_caps = &hw->func_caps;
2896 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2897 struct ice_hw_common_caps cached_caps;
2898 u32 num_funcs;
2899
2900 /* cache some func_caps values that should be restored after memset */
2901 cached_caps = func_caps->common_cap;
2902
2903 /* unset func capabilities */
2904 memset(func_caps, 0, sizeof(*func_caps));
2905
2906#define ICE_RESTORE_FUNC_CAP(name) \
2907 func_caps->common_cap.name = cached_caps.name
2908
2909 /* restore cached values */
2910 ICE_RESTORE_FUNC_CAP(valid_functions);
2911 ICE_RESTORE_FUNC_CAP(txq_first_id);
2912 ICE_RESTORE_FUNC_CAP(rxq_first_id);
2913 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2914 ICE_RESTORE_FUNC_CAP(max_mtu);
2915 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2916 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2917 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2918 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2919
2920 /* one Tx and one Rx queue in safe mode */
2921 func_caps->common_cap.num_rxq = 1;
2922 func_caps->common_cap.num_txq = 1;
2923
2924 /* two MSIX vectors, one for traffic and one for misc causes */
2925 func_caps->common_cap.num_msix_vectors = 2;
2926 func_caps->guar_num_vsi = 1;
2927
2928 /* cache some dev_caps values that should be restored after memset */
2929 cached_caps = dev_caps->common_cap;
2930 num_funcs = dev_caps->num_funcs;
2931
2932 /* unset dev capabilities */
2933 memset(dev_caps, 0, sizeof(*dev_caps));
2934
2935#define ICE_RESTORE_DEV_CAP(name) \
2936 dev_caps->common_cap.name = cached_caps.name
2937
2938 /* restore cached values */
2939 ICE_RESTORE_DEV_CAP(valid_functions);
2940 ICE_RESTORE_DEV_CAP(txq_first_id);
2941 ICE_RESTORE_DEV_CAP(rxq_first_id);
2942 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2943 ICE_RESTORE_DEV_CAP(max_mtu);
2944 ICE_RESTORE_DEV_CAP(nvm_unified_update);
2945 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2946 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2947 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2948 dev_caps->num_funcs = num_funcs;
2949
2950 /* one Tx and one Rx queue per function in safe mode */
2951 dev_caps->common_cap.num_rxq = num_funcs;
2952 dev_caps->common_cap.num_txq = num_funcs;
2953
2954 /* two MSIX vectors per function */
2955 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2956}
2957
2958/**
2959 * ice_get_caps - get info about the HW
2960 * @hw: pointer to the hardware structure
2961 */
2962int ice_get_caps(struct ice_hw *hw)
2963{
2964 int status;
2965
2966 status = ice_discover_dev_caps(hw, dev_caps: &hw->dev_caps);
2967 if (status)
2968 return status;
2969
2970 return ice_discover_func_caps(hw, func_caps: &hw->func_caps);
2971}
2972
2973/**
2974 * ice_aq_manage_mac_write - manage MAC address write command
2975 * @hw: pointer to the HW struct
2976 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2977 * @flags: flags to control write behavior
2978 * @cd: pointer to command details structure or NULL
2979 *
2980 * This function is used to write MAC address to the NVM (0x0108).
2981 */
2982int
2983ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2984 struct ice_sq_cd *cd)
2985{
2986 struct ice_aqc_manage_mac_write *cmd;
2987 struct ice_aq_desc desc;
2988
2989 cmd = &desc.params.mac_write;
2990 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_manage_mac_write);
2991
2992 cmd->flags = flags;
2993 ether_addr_copy(dst: cmd->mac_addr, src: mac_addr);
2994
2995 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
2996}
2997
2998/**
2999 * ice_aq_clear_pxe_mode
3000 * @hw: pointer to the HW struct
3001 *
3002 * Tell the firmware that the driver is taking over from PXE (0x0110).
3003 */
3004static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3005{
3006 struct ice_aq_desc desc;
3007
3008 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_clear_pxe_mode);
3009 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3010
3011 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
3012}
3013
3014/**
3015 * ice_clear_pxe_mode - clear pxe operations mode
3016 * @hw: pointer to the HW struct
3017 *
3018 * Make sure all PXE mode settings are cleared, including things
3019 * like descriptor fetch/write-back mode.
3020 */
3021void ice_clear_pxe_mode(struct ice_hw *hw)
3022{
3023 if (ice_check_sq_alive(hw, cq: &hw->adminq))
3024 ice_aq_clear_pxe_mode(hw);
3025}
3026
3027/**
3028 * ice_aq_set_port_params - set physical port parameters.
3029 * @pi: pointer to the port info struct
3030 * @double_vlan: if set double VLAN is enabled
3031 * @cd: pointer to command details structure or NULL
3032 *
3033 * Set Physical port parameters (0x0203)
3034 */
3035int
3036ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3037 struct ice_sq_cd *cd)
3038
3039{
3040 struct ice_aqc_set_port_params *cmd;
3041 struct ice_hw *hw = pi->hw;
3042 struct ice_aq_desc desc;
3043 u16 cmd_flags = 0;
3044
3045 cmd = &desc.params.set_port_params;
3046
3047 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_port_params);
3048 if (double_vlan)
3049 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3050 cmd->cmd_flags = cpu_to_le16(cmd_flags);
3051
3052 cmd->local_fwd_mode = pi->local_fwd_mode |
3053 ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3054
3055 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
3056}
3057
3058/**
3059 * ice_is_100m_speed_supported
3060 * @hw: pointer to the HW struct
3061 *
3062 * returns true if 100M speeds are supported by the device,
3063 * false otherwise.
3064 */
3065bool ice_is_100m_speed_supported(struct ice_hw *hw)
3066{
3067 switch (hw->device_id) {
3068 case ICE_DEV_ID_E822C_SGMII:
3069 case ICE_DEV_ID_E822L_SGMII:
3070 case ICE_DEV_ID_E823L_1GBE:
3071 case ICE_DEV_ID_E823C_SGMII:
3072 return true;
3073 default:
3074 return false;
3075 }
3076}
3077
3078/**
3079 * ice_get_link_speed_based_on_phy_type - returns link speed
3080 * @phy_type_low: lower part of phy_type
3081 * @phy_type_high: higher part of phy_type
3082 *
3083 * This helper function will convert an entry in PHY type structure
3084 * [phy_type_low, phy_type_high] to its corresponding link speed.
3085 * Note: In the structure of [phy_type_low, phy_type_high], there should
3086 * be one bit set, as this function will convert one PHY type to its
3087 * speed.
3088 *
3089 * Return:
3090 * * PHY speed for recognized PHY type
3091 * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3092 * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3093 */
3094u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3095{
3096 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3097 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3098
3099 switch (phy_type_low) {
3100 case ICE_PHY_TYPE_LOW_100BASE_TX:
3101 case ICE_PHY_TYPE_LOW_100M_SGMII:
3102 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3103 break;
3104 case ICE_PHY_TYPE_LOW_1000BASE_T:
3105 case ICE_PHY_TYPE_LOW_1000BASE_SX:
3106 case ICE_PHY_TYPE_LOW_1000BASE_LX:
3107 case ICE_PHY_TYPE_LOW_1000BASE_KX:
3108 case ICE_PHY_TYPE_LOW_1G_SGMII:
3109 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3110 break;
3111 case ICE_PHY_TYPE_LOW_2500BASE_T:
3112 case ICE_PHY_TYPE_LOW_2500BASE_X:
3113 case ICE_PHY_TYPE_LOW_2500BASE_KX:
3114 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3115 break;
3116 case ICE_PHY_TYPE_LOW_5GBASE_T:
3117 case ICE_PHY_TYPE_LOW_5GBASE_KR:
3118 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3119 break;
3120 case ICE_PHY_TYPE_LOW_10GBASE_T:
3121 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3122 case ICE_PHY_TYPE_LOW_10GBASE_SR:
3123 case ICE_PHY_TYPE_LOW_10GBASE_LR:
3124 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3125 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3126 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3127 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3128 break;
3129 case ICE_PHY_TYPE_LOW_25GBASE_T:
3130 case ICE_PHY_TYPE_LOW_25GBASE_CR:
3131 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3132 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3133 case ICE_PHY_TYPE_LOW_25GBASE_SR:
3134 case ICE_PHY_TYPE_LOW_25GBASE_LR:
3135 case ICE_PHY_TYPE_LOW_25GBASE_KR:
3136 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3137 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3138 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3139 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3140 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3141 break;
3142 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3143 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3144 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3145 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3146 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3147 case ICE_PHY_TYPE_LOW_40G_XLAUI:
3148 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3149 break;
3150 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3151 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3152 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3153 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3154 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3155 case ICE_PHY_TYPE_LOW_50G_LAUI2:
3156 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3157 case ICE_PHY_TYPE_LOW_50G_AUI2:
3158 case ICE_PHY_TYPE_LOW_50GBASE_CP:
3159 case ICE_PHY_TYPE_LOW_50GBASE_SR:
3160 case ICE_PHY_TYPE_LOW_50GBASE_FR:
3161 case ICE_PHY_TYPE_LOW_50GBASE_LR:
3162 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3163 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3164 case ICE_PHY_TYPE_LOW_50G_AUI1:
3165 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3166 break;
3167 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3168 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3169 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3170 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3171 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3172 case ICE_PHY_TYPE_LOW_100G_CAUI4:
3173 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3174 case ICE_PHY_TYPE_LOW_100G_AUI4:
3175 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3176 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3177 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3178 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3179 case ICE_PHY_TYPE_LOW_100GBASE_DR:
3180 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3181 break;
3182 default:
3183 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3184 break;
3185 }
3186
3187 switch (phy_type_high) {
3188 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3189 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3190 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3191 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3192 case ICE_PHY_TYPE_HIGH_100G_AUI2:
3193 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3194 break;
3195 case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3196 case ICE_PHY_TYPE_HIGH_200G_SR4:
3197 case ICE_PHY_TYPE_HIGH_200G_FR4:
3198 case ICE_PHY_TYPE_HIGH_200G_LR4:
3199 case ICE_PHY_TYPE_HIGH_200G_DR4:
3200 case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3201 case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3202 case ICE_PHY_TYPE_HIGH_200G_AUI4:
3203 speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3204 break;
3205 default:
3206 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3207 break;
3208 }
3209
3210 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3211 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3212 return ICE_AQ_LINK_SPEED_UNKNOWN;
3213 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3214 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3215 return ICE_AQ_LINK_SPEED_UNKNOWN;
3216 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3217 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3218 return speed_phy_type_low;
3219 else
3220 return speed_phy_type_high;
3221}
3222
3223/**
3224 * ice_update_phy_type
3225 * @phy_type_low: pointer to the lower part of phy_type
3226 * @phy_type_high: pointer to the higher part of phy_type
3227 * @link_speeds_bitmap: targeted link speeds bitmap
3228 *
3229 * Note: For the link_speeds_bitmap structure, you can check it at
3230 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3231 * link_speeds_bitmap include multiple speeds.
3232 *
3233 * Each entry in this [phy_type_low, phy_type_high] structure will
3234 * present a certain link speed. This helper function will turn on bits
3235 * in [phy_type_low, phy_type_high] structure based on the value of
3236 * link_speeds_bitmap input parameter.
3237 */
3238void
3239ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3240 u16 link_speeds_bitmap)
3241{
3242 u64 pt_high;
3243 u64 pt_low;
3244 int index;
3245 u16 speed;
3246
3247 /* We first check with low part of phy_type */
3248 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3249 pt_low = BIT_ULL(index);
3250 speed = ice_get_link_speed_based_on_phy_type(phy_type_low: pt_low, phy_type_high: 0);
3251
3252 if (link_speeds_bitmap & speed)
3253 *phy_type_low |= BIT_ULL(index);
3254 }
3255
3256 /* We then check with high part of phy_type */
3257 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3258 pt_high = BIT_ULL(index);
3259 speed = ice_get_link_speed_based_on_phy_type(phy_type_low: 0, phy_type_high: pt_high);
3260
3261 if (link_speeds_bitmap & speed)
3262 *phy_type_high |= BIT_ULL(index);
3263 }
3264}
3265
3266/**
3267 * ice_aq_set_phy_cfg
3268 * @hw: pointer to the HW struct
3269 * @pi: port info structure of the interested logical port
3270 * @cfg: structure with PHY configuration data to be set
3271 * @cd: pointer to command details structure or NULL
3272 *
3273 * Set the various PHY configuration parameters supported on the Port.
3274 * One or more of the Set PHY config parameters may be ignored in an MFP
3275 * mode as the PF may not have the privilege to set some of the PHY Config
3276 * parameters. This status will be indicated by the command response (0x0601).
3277 */
3278int
3279ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3280 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3281{
3282 struct ice_aq_desc desc;
3283 int status;
3284
3285 if (!cfg)
3286 return -EINVAL;
3287
3288 /* Ensure that only valid bits of cfg->caps can be turned on. */
3289 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3290 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3291 cfg->caps);
3292
3293 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3294 }
3295
3296 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_phy_cfg);
3297 desc.params.set_phy.lport_num = pi->lport;
3298 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3299
3300 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3301 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
3302 (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3303 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
3304 (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3305 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
3306 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
3307 cfg->low_power_ctrl_an);
3308 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
3309 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
3310 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
3311 cfg->link_fec_opt);
3312
3313 status = ice_aq_send_cmd(hw, desc: &desc, buf: cfg, buf_size: sizeof(*cfg), cd);
3314 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3315 status = 0;
3316
3317 if (!status)
3318 pi->phy.curr_user_phy_cfg = *cfg;
3319
3320 return status;
3321}
3322
3323/**
3324 * ice_update_link_info - update status of the HW network link
3325 * @pi: port info structure of the interested logical port
3326 */
3327int ice_update_link_info(struct ice_port_info *pi)
3328{
3329 struct ice_link_status *li;
3330 int status;
3331
3332 if (!pi)
3333 return -EINVAL;
3334
3335 li = &pi->phy.link_info;
3336
3337 status = ice_aq_get_link_info(pi, ena_lse: true, NULL, NULL);
3338 if (status)
3339 return status;
3340
3341 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3342 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3343
3344 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3345 if (!pcaps)
3346 return -ENOMEM;
3347
3348 status = ice_aq_get_phy_caps(pi, qual_mods: false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3349 pcaps, NULL);
3350 }
3351
3352 return status;
3353}
3354
3355/**
3356 * ice_aq_get_phy_equalization - function to read serdes equaliser
3357 * value from firmware using admin queue command.
3358 * @hw: pointer to the HW struct
3359 * @data_in: represents the serdes equalization parameter requested
3360 * @op_code: represents the serdes number and flag to represent tx or rx
3361 * @serdes_num: represents the serdes number
3362 * @output: pointer to the caller-supplied buffer to return serdes equaliser
3363 *
3364 * Return: non-zero status on error and 0 on success.
3365 */
3366int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3367 u8 serdes_num, int *output)
3368{
3369 struct ice_aqc_dnl_call_command *cmd;
3370 struct ice_aqc_dnl_call buf = {};
3371 struct ice_aq_desc desc;
3372 int err;
3373
3374 buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3375 buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3376 cpu_to_le16(op_code | (serdes_num & 0xF));
3377 cmd = &desc.params.dnl_call;
3378 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_dnl_call);
3379 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF |
3380 ICE_AQ_FLAG_RD |
3381 ICE_AQ_FLAG_SI);
3382 desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3383 cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3384
3385 err = ice_aq_send_cmd(hw, desc: &desc, buf: &buf, buf_size: sizeof(struct ice_aqc_dnl_call),
3386 NULL);
3387 *output = err ? 0 : buf.sto.txrx_equa_resp.val;
3388
3389 return err;
3390}
3391
3392#define FEC_REG_PORT(port) { \
3393 FEC_CORR_LOW_REG_PORT##port, \
3394 FEC_CORR_HIGH_REG_PORT##port, \
3395 FEC_UNCORR_LOW_REG_PORT##port, \
3396 FEC_UNCORR_HIGH_REG_PORT##port, \
3397}
3398
3399static const u32 fec_reg[][ICE_FEC_MAX] = {
3400 FEC_REG_PORT(0),
3401 FEC_REG_PORT(1),
3402 FEC_REG_PORT(2),
3403 FEC_REG_PORT(3)
3404};
3405
3406/**
3407 * ice_aq_get_fec_stats - reads fec stats from phy
3408 * @hw: pointer to the HW struct
3409 * @pcs_quad: represents pcsquad of user input serdes
3410 * @pcs_port: represents the pcs port number part of above pcs quad
3411 * @fec_type: represents FEC stats type
3412 * @output: pointer to the caller-supplied buffer to return requested fec stats
3413 *
3414 * Return: non-zero status on error and 0 on success.
3415 */
3416int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3417 enum ice_fec_stats_types fec_type, u32 *output)
3418{
3419 u16 flag = (ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_SI);
3420 struct ice_sbq_msg_input msg = {};
3421 u32 receiver_id, reg_offset;
3422 int err;
3423
3424 if (pcs_port > 3)
3425 return -EINVAL;
3426
3427 reg_offset = fec_reg[pcs_port][fec_type];
3428
3429 if (pcs_quad == 0)
3430 receiver_id = FEC_RECEIVER_ID_PCS0;
3431 else if (pcs_quad == 1)
3432 receiver_id = FEC_RECEIVER_ID_PCS1;
3433 else
3434 return -EINVAL;
3435
3436 msg.msg_addr_low = lower_16_bits(reg_offset);
3437 msg.msg_addr_high = receiver_id;
3438 msg.opcode = ice_sbq_msg_rd;
3439 msg.dest_dev = ice_sbq_dev_phy_0;
3440
3441 err = ice_sbq_rw_reg(hw, in: &msg, flags: flag);
3442 if (err)
3443 return err;
3444
3445 *output = msg.data;
3446 return 0;
3447}
3448
3449/**
3450 * ice_cache_phy_user_req
3451 * @pi: port information structure
3452 * @cache_data: PHY logging data
3453 * @cache_mode: PHY logging mode
3454 *
3455 * Log the user request on (FC, FEC, SPEED) for later use.
3456 */
3457static void
3458ice_cache_phy_user_req(struct ice_port_info *pi,
3459 struct ice_phy_cache_mode_data cache_data,
3460 enum ice_phy_cache_mode cache_mode)
3461{
3462 if (!pi)
3463 return;
3464
3465 switch (cache_mode) {
3466 case ICE_FC_MODE:
3467 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3468 break;
3469 case ICE_SPEED_MODE:
3470 pi->phy.curr_user_speed_req =
3471 cache_data.data.curr_user_speed_req;
3472 break;
3473 case ICE_FEC_MODE:
3474 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3475 break;
3476 default:
3477 break;
3478 }
3479}
3480
3481/**
3482 * ice_caps_to_fc_mode
3483 * @caps: PHY capabilities
3484 *
3485 * Convert PHY FC capabilities to ice FC mode
3486 */
3487enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3488{
3489 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3490 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3491 return ICE_FC_FULL;
3492
3493 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3494 return ICE_FC_TX_PAUSE;
3495
3496 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3497 return ICE_FC_RX_PAUSE;
3498
3499 return ICE_FC_NONE;
3500}
3501
3502/**
3503 * ice_caps_to_fec_mode
3504 * @caps: PHY capabilities
3505 * @fec_options: Link FEC options
3506 *
3507 * Convert PHY FEC capabilities to ice FEC mode
3508 */
3509enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3510{
3511 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3512 return ICE_FEC_AUTO;
3513
3514 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3515 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3516 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3517 ICE_AQC_PHY_FEC_25G_KR_REQ))
3518 return ICE_FEC_BASER;
3519
3520 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3521 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3522 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3523 return ICE_FEC_RS;
3524
3525 return ICE_FEC_NONE;
3526}
3527
3528/**
3529 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3530 * @pi: port information structure
3531 * @cfg: PHY configuration data to set FC mode
3532 * @req_mode: FC mode to configure
3533 */
3534int
3535ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3536 enum ice_fc_mode req_mode)
3537{
3538 struct ice_phy_cache_mode_data cache_data;
3539 u8 pause_mask = 0x0;
3540
3541 if (!pi || !cfg)
3542 return -EINVAL;
3543
3544 switch (req_mode) {
3545 case ICE_FC_FULL:
3546 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3547 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3548 break;
3549 case ICE_FC_RX_PAUSE:
3550 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3551 break;
3552 case ICE_FC_TX_PAUSE:
3553 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3554 break;
3555 default:
3556 break;
3557 }
3558
3559 /* clear the old pause settings */
3560 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3561 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3562
3563 /* set the new capabilities */
3564 cfg->caps |= pause_mask;
3565
3566 /* Cache user FC request */
3567 cache_data.data.curr_user_fc_req = req_mode;
3568 ice_cache_phy_user_req(pi, cache_data, cache_mode: ICE_FC_MODE);
3569
3570 return 0;
3571}
3572
3573/**
3574 * ice_set_fc
3575 * @pi: port information structure
3576 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3577 * @ena_auto_link_update: enable automatic link update
3578 *
3579 * Set the requested flow control mode.
3580 */
3581int
3582ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3583{
3584 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3585 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3586 struct ice_hw *hw;
3587 int status;
3588
3589 if (!pi || !aq_failures)
3590 return -EINVAL;
3591
3592 *aq_failures = 0;
3593 hw = pi->hw;
3594
3595 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3596 if (!pcaps)
3597 return -ENOMEM;
3598
3599 /* Get the current PHY config */
3600 status = ice_aq_get_phy_caps(pi, qual_mods: false, ICE_AQC_REPORT_ACTIVE_CFG,
3601 pcaps, NULL);
3602 if (status) {
3603 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3604 goto out;
3605 }
3606
3607 ice_copy_phy_caps_to_cfg(pi, caps: pcaps, cfg: &cfg);
3608
3609 /* Configure the set PHY data */
3610 status = ice_cfg_phy_fc(pi, cfg: &cfg, req_mode: pi->fc.req_mode);
3611 if (status)
3612 goto out;
3613
3614 /* If the capabilities have changed, then set the new config */
3615 if (cfg.caps != pcaps->caps) {
3616 int retry_count, retry_max = 10;
3617
3618 /* Auto restart link so settings take effect */
3619 if (ena_auto_link_update)
3620 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3621
3622 status = ice_aq_set_phy_cfg(hw, pi, cfg: &cfg, NULL);
3623 if (status) {
3624 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3625 goto out;
3626 }
3627
3628 /* Update the link info
3629 * It sometimes takes a really long time for link to
3630 * come back from the atomic reset. Thus, we wait a
3631 * little bit.
3632 */
3633 for (retry_count = 0; retry_count < retry_max; retry_count++) {
3634 status = ice_update_link_info(pi);
3635
3636 if (!status)
3637 break;
3638
3639 mdelay(100);
3640 }
3641
3642 if (status)
3643 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3644 }
3645
3646out:
3647 return status;
3648}
3649
3650/**
3651 * ice_phy_caps_equals_cfg
3652 * @phy_caps: PHY capabilities
3653 * @phy_cfg: PHY configuration
3654 *
3655 * Helper function to determine if PHY capabilities matches PHY
3656 * configuration
3657 */
3658bool
3659ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3660 struct ice_aqc_set_phy_cfg_data *phy_cfg)
3661{
3662 u8 caps_mask, cfg_mask;
3663
3664 if (!phy_caps || !phy_cfg)
3665 return false;
3666
3667 /* These bits are not common between capabilities and configuration.
3668 * Do not use them to determine equality.
3669 */
3670 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3671 ICE_AQC_GET_PHY_EN_MOD_QUAL);
3672 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3673
3674 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3675 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3676 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3677 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3678 phy_caps->eee_cap != phy_cfg->eee_cap ||
3679 phy_caps->eeer_value != phy_cfg->eeer_value ||
3680 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3681 return false;
3682
3683 return true;
3684}
3685
3686/**
3687 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3688 * @pi: port information structure
3689 * @caps: PHY ability structure to copy date from
3690 * @cfg: PHY configuration structure to copy data to
3691 *
3692 * Helper function to copy AQC PHY get ability data to PHY set configuration
3693 * data structure
3694 */
3695void
3696ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3697 struct ice_aqc_get_phy_caps_data *caps,
3698 struct ice_aqc_set_phy_cfg_data *cfg)
3699{
3700 if (!pi || !caps || !cfg)
3701 return;
3702
3703 memset(cfg, 0, sizeof(*cfg));
3704 cfg->phy_type_low = caps->phy_type_low;
3705 cfg->phy_type_high = caps->phy_type_high;
3706 cfg->caps = caps->caps;
3707 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3708 cfg->eee_cap = caps->eee_cap;
3709 cfg->eeer_value = caps->eeer_value;
3710 cfg->link_fec_opt = caps->link_fec_options;
3711 cfg->module_compliance_enforcement =
3712 caps->module_compliance_enforcement;
3713}
3714
3715/**
3716 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3717 * @pi: port information structure
3718 * @cfg: PHY configuration data to set FEC mode
3719 * @fec: FEC mode to configure
3720 */
3721int
3722ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3723 enum ice_fec_mode fec)
3724{
3725 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3726 struct ice_hw *hw;
3727 int status;
3728
3729 if (!pi || !cfg)
3730 return -EINVAL;
3731
3732 hw = pi->hw;
3733
3734 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3735 if (!pcaps)
3736 return -ENOMEM;
3737
3738 status = ice_aq_get_phy_caps(pi, qual_mods: false,
3739 report_mode: (ice_fw_supports_report_dflt_cfg(hw) ?
3740 ICE_AQC_REPORT_DFLT_CFG :
3741 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3742 if (status)
3743 goto out;
3744
3745 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3746 cfg->link_fec_opt = pcaps->link_fec_options;
3747
3748 switch (fec) {
3749 case ICE_FEC_BASER:
3750 /* Clear RS bits, and AND BASE-R ability
3751 * bits and OR request bits.
3752 */
3753 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3754 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3755 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3756 ICE_AQC_PHY_FEC_25G_KR_REQ;
3757 break;
3758 case ICE_FEC_RS:
3759 /* Clear BASE-R bits, and AND RS ability
3760 * bits and OR request bits.
3761 */
3762 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3763 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3764 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3765 break;
3766 case ICE_FEC_NONE:
3767 /* Clear all FEC option bits. */
3768 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3769 break;
3770 case ICE_FEC_AUTO:
3771 /* AND auto FEC bit, and all caps bits. */
3772 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3773 cfg->link_fec_opt |= pcaps->link_fec_options;
3774 break;
3775 default:
3776 status = -EINVAL;
3777 break;
3778 }
3779
3780 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3781 !ice_fw_supports_report_dflt_cfg(hw)) {
3782 struct ice_link_default_override_tlv tlv = { 0 };
3783
3784 status = ice_get_link_default_override(ldo: &tlv, pi);
3785 if (status)
3786 goto out;
3787
3788 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3789 (tlv.options & ICE_LINK_OVERRIDE_EN))
3790 cfg->link_fec_opt = tlv.fec_options;
3791 }
3792
3793out:
3794 return status;
3795}
3796
3797/**
3798 * ice_get_link_status - get status of the HW network link
3799 * @pi: port information structure
3800 * @link_up: pointer to bool (true/false = linkup/linkdown)
3801 *
3802 * Variable link_up is true if link is up, false if link is down.
3803 * The variable link_up is invalid if status is non zero. As a
3804 * result of this call, link status reporting becomes enabled
3805 */
3806int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3807{
3808 struct ice_phy_info *phy_info;
3809 int status = 0;
3810
3811 if (!pi || !link_up)
3812 return -EINVAL;
3813
3814 phy_info = &pi->phy;
3815
3816 if (phy_info->get_link_info) {
3817 status = ice_update_link_info(pi);
3818
3819 if (status)
3820 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3821 status);
3822 }
3823
3824 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3825
3826 return status;
3827}
3828
3829/**
3830 * ice_aq_set_link_restart_an
3831 * @pi: pointer to the port information structure
3832 * @ena_link: if true: enable link, if false: disable link
3833 * @cd: pointer to command details structure or NULL
3834 *
3835 * Sets up the link and restarts the Auto-Negotiation over the link.
3836 */
3837int
3838ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3839 struct ice_sq_cd *cd)
3840{
3841 struct ice_aqc_restart_an *cmd;
3842 struct ice_aq_desc desc;
3843
3844 cmd = &desc.params.restart_an;
3845
3846 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_restart_an);
3847
3848 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3849 cmd->lport_num = pi->lport;
3850 if (ena_link)
3851 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3852 else
3853 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3854
3855 return ice_aq_send_cmd(hw: pi->hw, desc: &desc, NULL, buf_size: 0, cd);
3856}
3857
3858/**
3859 * ice_aq_set_event_mask
3860 * @hw: pointer to the HW struct
3861 * @port_num: port number of the physical function
3862 * @mask: event mask to be set
3863 * @cd: pointer to command details structure or NULL
3864 *
3865 * Set event mask (0x0613)
3866 */
3867int
3868ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3869 struct ice_sq_cd *cd)
3870{
3871 struct ice_aqc_set_event_mask *cmd;
3872 struct ice_aq_desc desc;
3873
3874 cmd = &desc.params.set_event_mask;
3875
3876 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_event_mask);
3877
3878 cmd->lport_num = port_num;
3879
3880 cmd->event_mask = cpu_to_le16(mask);
3881 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
3882}
3883
3884/**
3885 * ice_aq_set_mac_loopback
3886 * @hw: pointer to the HW struct
3887 * @ena_lpbk: Enable or Disable loopback
3888 * @cd: pointer to command details structure or NULL
3889 *
3890 * Enable/disable loopback on a given port
3891 */
3892int
3893ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3894{
3895 struct ice_aqc_set_mac_lb *cmd;
3896 struct ice_aq_desc desc;
3897
3898 cmd = &desc.params.set_mac_lb;
3899
3900 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_mac_lb);
3901 if (ena_lpbk)
3902 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3903
3904 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
3905}
3906
3907/**
3908 * ice_aq_set_port_id_led
3909 * @pi: pointer to the port information
3910 * @is_orig_mode: is this LED set to original mode (by the net-list)
3911 * @cd: pointer to command details structure or NULL
3912 *
3913 * Set LED value for the given port (0x06e9)
3914 */
3915int
3916ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3917 struct ice_sq_cd *cd)
3918{
3919 struct ice_aqc_set_port_id_led *cmd;
3920 struct ice_hw *hw = pi->hw;
3921 struct ice_aq_desc desc;
3922
3923 cmd = &desc.params.set_port_id_led;
3924
3925 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_port_id_led);
3926
3927 if (is_orig_mode)
3928 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3929 else
3930 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3931
3932 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
3933}
3934
3935/**
3936 * ice_aq_get_port_options
3937 * @hw: pointer to the HW struct
3938 * @options: buffer for the resultant port options
3939 * @option_count: input - size of the buffer in port options structures,
3940 * output - number of returned port options
3941 * @lport: logical port to call the command with (optional)
3942 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3943 * when PF owns more than 1 port it must be true
3944 * @active_option_idx: index of active port option in returned buffer
3945 * @active_option_valid: active option in returned buffer is valid
3946 * @pending_option_idx: index of pending port option in returned buffer
3947 * @pending_option_valid: pending option in returned buffer is valid
3948 *
3949 * Calls Get Port Options AQC (0x06ea) and verifies result.
3950 */
3951int
3952ice_aq_get_port_options(struct ice_hw *hw,
3953 struct ice_aqc_get_port_options_elem *options,
3954 u8 *option_count, u8 lport, bool lport_valid,
3955 u8 *active_option_idx, bool *active_option_valid,
3956 u8 *pending_option_idx, bool *pending_option_valid)
3957{
3958 struct ice_aqc_get_port_options *cmd;
3959 struct ice_aq_desc desc;
3960 int status;
3961 u8 i;
3962
3963 /* options buffer shall be able to hold max returned options */
3964 if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3965 return -EINVAL;
3966
3967 cmd = &desc.params.get_port_options;
3968 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_port_options);
3969
3970 if (lport_valid)
3971 cmd->lport_num = lport;
3972 cmd->lport_num_valid = lport_valid;
3973
3974 status = ice_aq_send_cmd(hw, desc: &desc, buf: options,
3975 buf_size: *option_count * sizeof(*options), NULL);
3976 if (status)
3977 return status;
3978
3979 /* verify direct FW response & set output parameters */
3980 *option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3981 cmd->port_options_count);
3982 ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3983 *active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3984 cmd->port_options);
3985 if (*active_option_valid) {
3986 *active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3987 cmd->port_options);
3988 if (*active_option_idx > (*option_count - 1))
3989 return -EIO;
3990 ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3991 *active_option_idx);
3992 }
3993
3994 *pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3995 cmd->pending_port_option_status);
3996 if (*pending_option_valid) {
3997 *pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3998 cmd->pending_port_option_status);
3999 if (*pending_option_idx > (*option_count - 1))
4000 return -EIO;
4001 ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4002 *pending_option_idx);
4003 }
4004
4005 /* mask output options fields */
4006 for (i = 0; i < *option_count; i++) {
4007 options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4008 options[i].pmd);
4009 options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4010 options[i].max_lane_speed);
4011 ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4012 options[i].pmd, options[i].max_lane_speed);
4013 }
4014
4015 return 0;
4016}
4017
4018/**
4019 * ice_aq_set_port_option
4020 * @hw: pointer to the HW struct
4021 * @lport: logical port to call the command with
4022 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4023 * when PF owns more than 1 port it must be true
4024 * @new_option: new port option to be written
4025 *
4026 * Calls Set Port Options AQC (0x06eb).
4027 */
4028int
4029ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4030 u8 new_option)
4031{
4032 struct ice_aqc_set_port_option *cmd;
4033 struct ice_aq_desc desc;
4034
4035 if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4036 return -EINVAL;
4037
4038 cmd = &desc.params.set_port_option;
4039 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_port_option);
4040
4041 if (lport_valid)
4042 cmd->lport_num = lport;
4043
4044 cmd->lport_num_valid = lport_valid;
4045 cmd->selected_port_option = new_option;
4046
4047 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
4048}
4049
4050/**
4051 * ice_get_phy_lane_number - Get PHY lane number for current adapter
4052 * @hw: pointer to the hw struct
4053 *
4054 * Return: PHY lane number on success, negative error code otherwise.
4055 */
4056int ice_get_phy_lane_number(struct ice_hw *hw)
4057{
4058 struct ice_aqc_get_port_options_elem *options;
4059 unsigned int lport = 0;
4060 unsigned int lane;
4061 int err;
4062
4063 options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL);
4064 if (!options)
4065 return -ENOMEM;
4066
4067 for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) {
4068 u8 options_count = ICE_AQC_PORT_OPT_MAX;
4069 u8 speed, active_idx, pending_idx;
4070 bool active_valid, pending_valid;
4071
4072 err = ice_aq_get_port_options(hw, options, option_count: &options_count, lport: lane,
4073 lport_valid: true, active_option_idx: &active_idx, active_option_valid: &active_valid,
4074 pending_option_idx: &pending_idx, pending_option_valid: &pending_valid);
4075 if (err)
4076 goto err;
4077
4078 if (!active_valid)
4079 continue;
4080
4081 speed = options[active_idx].max_lane_speed;
4082 /* If we don't get speed for this lane, it's unoccupied */
4083 if (speed > ICE_AQC_PORT_OPT_MAX_LANE_200G)
4084 continue;
4085
4086 if (hw->pf_id == lport) {
4087 if (hw->mac_type == ICE_MAC_GENERIC_3K_E825 &&
4088 ice_is_dual(hw) && !ice_is_primary(hw))
4089 lane += ICE_PORTS_PER_QUAD;
4090 kfree(objp: options);
4091 return lane;
4092 }
4093 lport++;
4094 }
4095
4096 /* PHY lane not found */
4097 err = -ENXIO;
4098err:
4099 kfree(objp: options);
4100 return err;
4101}
4102
4103/**
4104 * ice_aq_sff_eeprom
4105 * @hw: pointer to the HW struct
4106 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4107 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4108 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4109 * @page: QSFP page
4110 * @set_page: set or ignore the page
4111 * @data: pointer to data buffer to be read/written to the I2C device.
4112 * @length: 1-16 for read, 1 for write.
4113 * @write: 0 read, 1 for write.
4114 * @cd: pointer to command details structure or NULL
4115 *
4116 * Read/Write SFF EEPROM (0x06EE)
4117 */
4118int
4119ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4120 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4121 bool write, struct ice_sq_cd *cd)
4122{
4123 struct ice_aqc_sff_eeprom *cmd;
4124 struct ice_aq_desc desc;
4125 u16 i2c_bus_addr;
4126 int status;
4127
4128 if (!data || (mem_addr & 0xff00))
4129 return -EINVAL;
4130
4131 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_sff_eeprom);
4132 cmd = &desc.params.read_write_sff_param;
4133 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
4134 cmd->lport_num = (u8)(lport & 0xff);
4135 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4136 i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4137 FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4138 if (write)
4139 i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4140 cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4141 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4142 cmd->eeprom_page = le16_encode_bits(v: page, ICE_AQC_SFF_EEPROM_PAGE_M);
4143
4144 status = ice_aq_send_cmd(hw, desc: &desc, buf: data, buf_size: length, cd);
4145 return status;
4146}
4147
4148static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4149{
4150 switch (type) {
4151 case ICE_LUT_VSI:
4152 return ICE_LUT_VSI_SIZE;
4153 case ICE_LUT_GLOBAL:
4154 return ICE_LUT_GLOBAL_SIZE;
4155 case ICE_LUT_PF:
4156 return ICE_LUT_PF_SIZE;
4157 }
4158 WARN_ONCE(1, "incorrect type passed");
4159 return ICE_LUT_VSI_SIZE;
4160}
4161
4162static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4163{
4164 switch (size) {
4165 case ICE_LUT_VSI_SIZE:
4166 return ICE_AQC_LUT_SIZE_SMALL;
4167 case ICE_LUT_GLOBAL_SIZE:
4168 return ICE_AQC_LUT_SIZE_512;
4169 case ICE_LUT_PF_SIZE:
4170 return ICE_AQC_LUT_SIZE_2K;
4171 }
4172 WARN_ONCE(1, "incorrect size passed");
4173 return 0;
4174}
4175
4176/**
4177 * __ice_aq_get_set_rss_lut
4178 * @hw: pointer to the hardware structure
4179 * @params: RSS LUT parameters
4180 * @set: set true to set the table, false to get the table
4181 *
4182 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4183 */
4184static int
4185__ice_aq_get_set_rss_lut(struct ice_hw *hw,
4186 struct ice_aq_get_set_rss_lut_params *params, bool set)
4187{
4188 u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4189 enum ice_lut_type lut_type = params->lut_type;
4190 struct ice_aqc_get_set_rss_lut *desc_params;
4191 enum ice_aqc_lut_flags flags;
4192 enum ice_lut_size lut_size;
4193 struct ice_aq_desc desc;
4194 u8 *lut = params->lut;
4195
4196
4197 if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4198 return -EINVAL;
4199
4200 lut_size = ice_lut_type_to_size(type: lut_type);
4201 if (lut_size > params->lut_size)
4202 return -EINVAL;
4203 else if (set && lut_size != params->lut_size)
4204 return -EINVAL;
4205
4206 opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4207 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode);
4208 if (set)
4209 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4210
4211 desc_params = &desc.params.get_set_rss_lut;
4212 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4213 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4214
4215 if (lut_type == ICE_LUT_GLOBAL)
4216 glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4217 params->global_lut_id);
4218
4219 flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(size: lut_size);
4220 desc_params->flags = cpu_to_le16(flags);
4221
4222 return ice_aq_send_cmd(hw, desc: &desc, buf: lut, buf_size: lut_size, NULL);
4223}
4224
4225/**
4226 * ice_aq_get_rss_lut
4227 * @hw: pointer to the hardware structure
4228 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4229 *
4230 * get the RSS lookup table, PF or VSI type
4231 */
4232int
4233ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4234{
4235 return __ice_aq_get_set_rss_lut(hw, params: get_params, set: false);
4236}
4237
4238/**
4239 * ice_aq_set_rss_lut
4240 * @hw: pointer to the hardware structure
4241 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4242 *
4243 * set the RSS lookup table, PF or VSI type
4244 */
4245int
4246ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4247{
4248 return __ice_aq_get_set_rss_lut(hw, params: set_params, set: true);
4249}
4250
4251/**
4252 * __ice_aq_get_set_rss_key
4253 * @hw: pointer to the HW struct
4254 * @vsi_id: VSI FW index
4255 * @key: pointer to key info struct
4256 * @set: set true to set the key, false to get the key
4257 *
4258 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4259 */
4260static int
4261__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4262 struct ice_aqc_get_set_rss_keys *key, bool set)
4263{
4264 struct ice_aqc_get_set_rss_key *desc_params;
4265 u16 key_size = sizeof(*key);
4266 struct ice_aq_desc desc;
4267
4268 if (set) {
4269 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_rss_key);
4270 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4271 } else {
4272 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_rss_key);
4273 }
4274
4275 desc_params = &desc.params.get_set_rss_key;
4276 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4277
4278 return ice_aq_send_cmd(hw, desc: &desc, buf: key, buf_size: key_size, NULL);
4279}
4280
4281/**
4282 * ice_aq_get_rss_key
4283 * @hw: pointer to the HW struct
4284 * @vsi_handle: software VSI handle
4285 * @key: pointer to key info struct
4286 *
4287 * get the RSS key per VSI
4288 */
4289int
4290ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4291 struct ice_aqc_get_set_rss_keys *key)
4292{
4293 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4294 return -EINVAL;
4295
4296 return __ice_aq_get_set_rss_key(hw, vsi_id: ice_get_hw_vsi_num(hw, vsi_handle),
4297 key, set: false);
4298}
4299
4300/**
4301 * ice_aq_set_rss_key
4302 * @hw: pointer to the HW struct
4303 * @vsi_handle: software VSI handle
4304 * @keys: pointer to key info struct
4305 *
4306 * set the RSS key per VSI
4307 */
4308int
4309ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4310 struct ice_aqc_get_set_rss_keys *keys)
4311{
4312 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4313 return -EINVAL;
4314
4315 return __ice_aq_get_set_rss_key(hw, vsi_id: ice_get_hw_vsi_num(hw, vsi_handle),
4316 key: keys, set: true);
4317}
4318
4319/**
4320 * ice_aq_add_lan_txq
4321 * @hw: pointer to the hardware structure
4322 * @num_qgrps: Number of added queue groups
4323 * @qg_list: list of queue groups to be added
4324 * @buf_size: size of buffer for indirect command
4325 * @cd: pointer to command details structure or NULL
4326 *
4327 * Add Tx LAN queue (0x0C30)
4328 *
4329 * NOTE:
4330 * Prior to calling add Tx LAN queue:
4331 * Initialize the following as part of the Tx queue context:
4332 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4333 * Cache profile and Packet shaper profile.
4334 *
4335 * After add Tx LAN queue AQ command is completed:
4336 * Interrupts should be associated with specific queues,
4337 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4338 * flow.
4339 */
4340static int
4341ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4342 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4343 struct ice_sq_cd *cd)
4344{
4345 struct ice_aqc_add_tx_qgrp *list;
4346 struct ice_aqc_add_txqs *cmd;
4347 struct ice_aq_desc desc;
4348 u16 i, sum_size = 0;
4349
4350 cmd = &desc.params.add_txqs;
4351
4352 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_add_txqs);
4353
4354 if (!qg_list)
4355 return -EINVAL;
4356
4357 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4358 return -EINVAL;
4359
4360 for (i = 0, list = qg_list; i < num_qgrps; i++) {
4361 sum_size += struct_size(list, txqs, list->num_txqs);
4362 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4363 list->num_txqs);
4364 }
4365
4366 if (buf_size != sum_size)
4367 return -EINVAL;
4368
4369 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4370
4371 cmd->num_qgrps = num_qgrps;
4372
4373 return ice_aq_send_cmd(hw, desc: &desc, buf: qg_list, buf_size, cd);
4374}
4375
4376/**
4377 * ice_aq_dis_lan_txq
4378 * @hw: pointer to the hardware structure
4379 * @num_qgrps: number of groups in the list
4380 * @qg_list: the list of groups to disable
4381 * @buf_size: the total size of the qg_list buffer in bytes
4382 * @rst_src: if called due to reset, specifies the reset source
4383 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4384 * @cd: pointer to command details structure or NULL
4385 *
4386 * Disable LAN Tx queue (0x0C31)
4387 */
4388static int
4389ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4390 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4391 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4392 struct ice_sq_cd *cd)
4393{
4394 struct ice_aqc_dis_txq_item *item;
4395 struct ice_aqc_dis_txqs *cmd;
4396 struct ice_aq_desc desc;
4397 u16 vmvf_and_timeout;
4398 u16 i, sz = 0;
4399 int status;
4400
4401 cmd = &desc.params.dis_txqs;
4402 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_dis_txqs);
4403
4404 /* qg_list can be NULL only in VM/VF reset flow */
4405 if (!qg_list && !rst_src)
4406 return -EINVAL;
4407
4408 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4409 return -EINVAL;
4410
4411 cmd->num_entries = num_qgrps;
4412
4413 vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4414
4415 switch (rst_src) {
4416 case ICE_VM_RESET:
4417 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4418 vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4419 break;
4420 case ICE_VF_RESET:
4421 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4422 /* In this case, FW expects vmvf_num to be absolute VF ID */
4423 vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4424 ICE_AQC_Q_DIS_VMVF_NUM_M;
4425 break;
4426 case ICE_NO_RESET:
4427 default:
4428 break;
4429 }
4430
4431 cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4432
4433 /* flush pipe on time out */
4434 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4435 /* If no queue group info, we are in a reset flow. Issue the AQ */
4436 if (!qg_list)
4437 goto do_aq;
4438
4439 /* set RD bit to indicate that command buffer is provided by the driver
4440 * and it needs to be read by the firmware
4441 */
4442 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4443
4444 for (i = 0, item = qg_list; i < num_qgrps; i++) {
4445 u16 item_size = struct_size(item, q_id, item->num_qs);
4446
4447 /* If the num of queues is even, add 2 bytes of padding */
4448 if ((item->num_qs % 2) == 0)
4449 item_size += 2;
4450
4451 sz += item_size;
4452
4453 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4454 }
4455
4456 if (buf_size != sz)
4457 return -EINVAL;
4458
4459do_aq:
4460 status = ice_aq_send_cmd(hw, desc: &desc, buf: qg_list, buf_size, cd);
4461 if (status) {
4462 if (!qg_list)
4463 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4464 vmvf_num, hw->adminq.sq_last_status);
4465 else
4466 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4467 le16_to_cpu(qg_list[0].q_id[0]),
4468 hw->adminq.sq_last_status);
4469 }
4470 return status;
4471}
4472
4473/**
4474 * ice_aq_cfg_lan_txq
4475 * @hw: pointer to the hardware structure
4476 * @buf: buffer for command
4477 * @buf_size: size of buffer in bytes
4478 * @num_qs: number of queues being configured
4479 * @oldport: origination lport
4480 * @newport: destination lport
4481 * @cd: pointer to command details structure or NULL
4482 *
4483 * Move/Configure LAN Tx queue (0x0C32)
4484 *
4485 * There is a better AQ command to use for moving nodes, so only coding
4486 * this one for configuring the node.
4487 */
4488int
4489ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4490 u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4491 struct ice_sq_cd *cd)
4492{
4493 struct ice_aqc_cfg_txqs *cmd;
4494 struct ice_aq_desc desc;
4495 int status;
4496
4497 cmd = &desc.params.cfg_txqs;
4498 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_cfg_txqs);
4499 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4500
4501 if (!buf)
4502 return -EINVAL;
4503
4504 cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4505 cmd->num_qs = num_qs;
4506 cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4507 cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4508 cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4509 cmd->blocked_cgds = 0;
4510
4511 status = ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
4512 if (status)
4513 ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4514 hw->adminq.sq_last_status);
4515 return status;
4516}
4517
4518/**
4519 * ice_aq_add_rdma_qsets
4520 * @hw: pointer to the hardware structure
4521 * @num_qset_grps: Number of RDMA Qset groups
4522 * @qset_list: list of Qset groups to be added
4523 * @buf_size: size of buffer for indirect command
4524 * @cd: pointer to command details structure or NULL
4525 *
4526 * Add Tx RDMA Qsets (0x0C33)
4527 */
4528static int
4529ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4530 struct ice_aqc_add_rdma_qset_data *qset_list,
4531 u16 buf_size, struct ice_sq_cd *cd)
4532{
4533 struct ice_aqc_add_rdma_qset_data *list;
4534 struct ice_aqc_add_rdma_qset *cmd;
4535 struct ice_aq_desc desc;
4536 u16 i, sum_size = 0;
4537
4538 cmd = &desc.params.add_rdma_qset;
4539
4540 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_add_rdma_qset);
4541
4542 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4543 return -EINVAL;
4544
4545 for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4546 u16 num_qsets = le16_to_cpu(list->num_qsets);
4547
4548 sum_size += struct_size(list, rdma_qsets, num_qsets);
4549 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4550 num_qsets);
4551 }
4552
4553 if (buf_size != sum_size)
4554 return -EINVAL;
4555
4556 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4557
4558 cmd->num_qset_grps = num_qset_grps;
4559
4560 return ice_aq_send_cmd(hw, desc: &desc, buf: qset_list, buf_size, cd);
4561}
4562
4563/* End of FW Admin Queue command wrappers */
4564
4565/**
4566 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4567 * @hw: pointer to the HW struct
4568 * @vsi_handle: software VSI handle
4569 * @tc: TC number
4570 * @q_handle: software queue handle
4571 */
4572struct ice_q_ctx *
4573ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4574{
4575 struct ice_vsi_ctx *vsi;
4576 struct ice_q_ctx *q_ctx;
4577
4578 vsi = ice_get_vsi_ctx(hw, vsi_handle);
4579 if (!vsi)
4580 return NULL;
4581 if (q_handle >= vsi->num_lan_q_entries[tc])
4582 return NULL;
4583 if (!vsi->lan_q_ctx[tc])
4584 return NULL;
4585 q_ctx = vsi->lan_q_ctx[tc];
4586 return &q_ctx[q_handle];
4587}
4588
4589/**
4590 * ice_ena_vsi_txq
4591 * @pi: port information structure
4592 * @vsi_handle: software VSI handle
4593 * @tc: TC number
4594 * @q_handle: software queue handle
4595 * @num_qgrps: Number of added queue groups
4596 * @buf: list of queue groups to be added
4597 * @buf_size: size of buffer for indirect command
4598 * @cd: pointer to command details structure or NULL
4599 *
4600 * This function adds one LAN queue
4601 */
4602int
4603ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4604 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4605 struct ice_sq_cd *cd)
4606{
4607 struct ice_aqc_txsched_elem_data node = { 0 };
4608 struct ice_sched_node *parent;
4609 struct ice_q_ctx *q_ctx;
4610 struct ice_hw *hw;
4611 int status;
4612
4613 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4614 return -EIO;
4615
4616 if (num_qgrps > 1 || buf->num_txqs > 1)
4617 return -ENOSPC;
4618
4619 hw = pi->hw;
4620
4621 if (!ice_is_vsi_valid(hw, vsi_handle))
4622 return -EINVAL;
4623
4624 mutex_lock(&pi->sched_lock);
4625
4626 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4627 if (!q_ctx) {
4628 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4629 q_handle);
4630 status = -EINVAL;
4631 goto ena_txq_exit;
4632 }
4633
4634 /* find a parent node */
4635 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4636 ICE_SCHED_NODE_OWNER_LAN);
4637 if (!parent) {
4638 status = -EINVAL;
4639 goto ena_txq_exit;
4640 }
4641
4642 buf->parent_teid = parent->info.node_teid;
4643 node.parent_teid = parent->info.node_teid;
4644 /* Mark that the values in the "generic" section as valid. The default
4645 * value in the "generic" section is zero. This means that :
4646 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4647 * - 0 priority among siblings, indicated by Bit 1-3.
4648 * - WFQ, indicated by Bit 4.
4649 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4650 * Bit 5-6.
4651 * - Bit 7 is reserved.
4652 * Without setting the generic section as valid in valid_sections, the
4653 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4654 */
4655 buf->txqs[0].info.valid_sections =
4656 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4657 ICE_AQC_ELEM_VALID_EIR;
4658 buf->txqs[0].info.generic = 0;
4659 buf->txqs[0].info.cir_bw.bw_profile_idx =
4660 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4661 buf->txqs[0].info.cir_bw.bw_alloc =
4662 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4663 buf->txqs[0].info.eir_bw.bw_profile_idx =
4664 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4665 buf->txqs[0].info.eir_bw.bw_alloc =
4666 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4667
4668 /* add the LAN queue */
4669 status = ice_aq_add_lan_txq(hw, num_qgrps, qg_list: buf, buf_size, cd);
4670 if (status) {
4671 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4672 le16_to_cpu(buf->txqs[0].txq_id),
4673 hw->adminq.sq_last_status);
4674 goto ena_txq_exit;
4675 }
4676
4677 node.node_teid = buf->txqs[0].q_teid;
4678 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4679 q_ctx->q_handle = q_handle;
4680 q_ctx->q_teid = le32_to_cpu(node.node_teid);
4681
4682 /* add a leaf node into scheduler tree queue layer */
4683 status = ice_sched_add_node(pi, layer: hw->num_tx_sched_layers - 1, info: &node, NULL);
4684 if (!status)
4685 status = ice_sched_replay_q_bw(pi, q_ctx);
4686
4687ena_txq_exit:
4688 mutex_unlock(lock: &pi->sched_lock);
4689 return status;
4690}
4691
4692/**
4693 * ice_dis_vsi_txq
4694 * @pi: port information structure
4695 * @vsi_handle: software VSI handle
4696 * @tc: TC number
4697 * @num_queues: number of queues
4698 * @q_handles: pointer to software queue handle array
4699 * @q_ids: pointer to the q_id array
4700 * @q_teids: pointer to queue node teids
4701 * @rst_src: if called due to reset, specifies the reset source
4702 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4703 * @cd: pointer to command details structure or NULL
4704 *
4705 * This function removes queues and their corresponding nodes in SW DB
4706 */
4707int
4708ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4709 u16 *q_handles, u16 *q_ids, u32 *q_teids,
4710 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4711 struct ice_sq_cd *cd)
4712{
4713 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4714 u16 i, buf_size = __struct_size(qg_list);
4715 struct ice_q_ctx *q_ctx;
4716 int status = -ENOENT;
4717 struct ice_hw *hw;
4718
4719 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4720 return -EIO;
4721
4722 hw = pi->hw;
4723
4724 if (!num_queues) {
4725 /* if queue is disabled already yet the disable queue command
4726 * has to be sent to complete the VF reset, then call
4727 * ice_aq_dis_lan_txq without any queue information
4728 */
4729 if (rst_src)
4730 return ice_aq_dis_lan_txq(hw, num_qgrps: 0, NULL, buf_size: 0, rst_src,
4731 vmvf_num, NULL);
4732 return -EIO;
4733 }
4734
4735 mutex_lock(&pi->sched_lock);
4736
4737 for (i = 0; i < num_queues; i++) {
4738 struct ice_sched_node *node;
4739
4740 node = ice_sched_find_node_by_teid(start_node: pi->root, teid: q_teids[i]);
4741 if (!node)
4742 continue;
4743 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle: q_handles[i]);
4744 if (!q_ctx) {
4745 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4746 q_handles[i]);
4747 continue;
4748 }
4749 if (q_ctx->q_handle != q_handles[i]) {
4750 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4751 q_ctx->q_handle, q_handles[i]);
4752 continue;
4753 }
4754 qg_list->parent_teid = node->info.parent_teid;
4755 qg_list->num_qs = 1;
4756 qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4757 status = ice_aq_dis_lan_txq(hw, num_qgrps: 1, qg_list, buf_size, rst_src,
4758 vmvf_num, cd);
4759
4760 if (status)
4761 break;
4762 ice_free_sched_node(pi, node);
4763 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4764 q_ctx->q_teid = ICE_INVAL_TEID;
4765 }
4766 mutex_unlock(lock: &pi->sched_lock);
4767 return status;
4768}
4769
4770/**
4771 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4772 * @pi: port information structure
4773 * @vsi_handle: software VSI handle
4774 * @tc_bitmap: TC bitmap
4775 * @maxqs: max queues array per TC
4776 * @owner: LAN or RDMA
4777 *
4778 * This function adds/updates the VSI queues per TC.
4779 */
4780static int
4781ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4782 u16 *maxqs, u8 owner)
4783{
4784 int status = 0;
4785 u8 i;
4786
4787 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4788 return -EIO;
4789
4790 if (!ice_is_vsi_valid(hw: pi->hw, vsi_handle))
4791 return -EINVAL;
4792
4793 mutex_lock(&pi->sched_lock);
4794
4795 ice_for_each_traffic_class(i) {
4796 /* configuration is possible only if TC node is present */
4797 if (!ice_sched_get_tc_node(pi, tc: i))
4798 continue;
4799
4800 status = ice_sched_cfg_vsi(pi, vsi_handle, tc: i, maxqs: maxqs[i], owner,
4801 enable: ice_is_tc_ena(bitmap: tc_bitmap, tc: i));
4802 if (status)
4803 break;
4804 }
4805
4806 mutex_unlock(lock: &pi->sched_lock);
4807 return status;
4808}
4809
4810/**
4811 * ice_cfg_vsi_lan - configure VSI LAN queues
4812 * @pi: port information structure
4813 * @vsi_handle: software VSI handle
4814 * @tc_bitmap: TC bitmap
4815 * @max_lanqs: max LAN queues array per TC
4816 *
4817 * This function adds/updates the VSI LAN queues per TC.
4818 */
4819int
4820ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4821 u16 *max_lanqs)
4822{
4823 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, maxqs: max_lanqs,
4824 ICE_SCHED_NODE_OWNER_LAN);
4825}
4826
4827/**
4828 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4829 * @pi: port information structure
4830 * @vsi_handle: software VSI handle
4831 * @tc_bitmap: TC bitmap
4832 * @max_rdmaqs: max RDMA queues array per TC
4833 *
4834 * This function adds/updates the VSI RDMA queues per TC.
4835 */
4836int
4837ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4838 u16 *max_rdmaqs)
4839{
4840 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, maxqs: max_rdmaqs,
4841 ICE_SCHED_NODE_OWNER_RDMA);
4842}
4843
4844/**
4845 * ice_ena_vsi_rdma_qset
4846 * @pi: port information structure
4847 * @vsi_handle: software VSI handle
4848 * @tc: TC number
4849 * @rdma_qset: pointer to RDMA Qset
4850 * @num_qsets: number of RDMA Qsets
4851 * @qset_teid: pointer to Qset node TEIDs
4852 *
4853 * This function adds RDMA Qset
4854 */
4855int
4856ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4857 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4858{
4859 struct ice_aqc_txsched_elem_data node = { 0 };
4860 struct ice_aqc_add_rdma_qset_data *buf;
4861 struct ice_sched_node *parent;
4862 struct ice_hw *hw;
4863 u16 i, buf_size;
4864 int ret;
4865
4866 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4867 return -EIO;
4868 hw = pi->hw;
4869
4870 if (!ice_is_vsi_valid(hw, vsi_handle))
4871 return -EINVAL;
4872
4873 buf_size = struct_size(buf, rdma_qsets, num_qsets);
4874 buf = kzalloc(buf_size, GFP_KERNEL);
4875 if (!buf)
4876 return -ENOMEM;
4877 mutex_lock(&pi->sched_lock);
4878
4879 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4880 ICE_SCHED_NODE_OWNER_RDMA);
4881 if (!parent) {
4882 ret = -EINVAL;
4883 goto rdma_error_exit;
4884 }
4885 buf->parent_teid = parent->info.node_teid;
4886 node.parent_teid = parent->info.node_teid;
4887
4888 buf->num_qsets = cpu_to_le16(num_qsets);
4889 for (i = 0; i < num_qsets; i++) {
4890 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4891 buf->rdma_qsets[i].info.valid_sections =
4892 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4893 ICE_AQC_ELEM_VALID_EIR;
4894 buf->rdma_qsets[i].info.generic = 0;
4895 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4896 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4897 buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4898 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4899 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4900 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4901 buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4902 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4903 }
4904 ret = ice_aq_add_rdma_qsets(hw, num_qset_grps: 1, qset_list: buf, buf_size, NULL);
4905 if (ret) {
4906 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4907 goto rdma_error_exit;
4908 }
4909 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4910 for (i = 0; i < num_qsets; i++) {
4911 node.node_teid = buf->rdma_qsets[i].qset_teid;
4912 ret = ice_sched_add_node(pi, layer: hw->num_tx_sched_layers - 1,
4913 info: &node, NULL);
4914 if (ret)
4915 break;
4916 qset_teid[i] = le32_to_cpu(node.node_teid);
4917 }
4918rdma_error_exit:
4919 mutex_unlock(lock: &pi->sched_lock);
4920 kfree(objp: buf);
4921 return ret;
4922}
4923
4924/**
4925 * ice_dis_vsi_rdma_qset - free RDMA resources
4926 * @pi: port_info struct
4927 * @count: number of RDMA Qsets to free
4928 * @qset_teid: TEID of Qset node
4929 * @q_id: list of queue IDs being disabled
4930 */
4931int
4932ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4933 u16 *q_id)
4934{
4935 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4936 u16 qg_size = __struct_size(qg_list);
4937 struct ice_hw *hw;
4938 int status = 0;
4939 int i;
4940
4941 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4942 return -EIO;
4943
4944 hw = pi->hw;
4945
4946 mutex_lock(&pi->sched_lock);
4947
4948 for (i = 0; i < count; i++) {
4949 struct ice_sched_node *node;
4950
4951 node = ice_sched_find_node_by_teid(start_node: pi->root, teid: qset_teid[i]);
4952 if (!node)
4953 continue;
4954
4955 qg_list->parent_teid = node->info.parent_teid;
4956 qg_list->num_qs = 1;
4957 qg_list->q_id[0] =
4958 cpu_to_le16(q_id[i] |
4959 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4960
4961 status = ice_aq_dis_lan_txq(hw, num_qgrps: 1, qg_list, buf_size: qg_size,
4962 rst_src: ICE_NO_RESET, vmvf_num: 0, NULL);
4963 if (status)
4964 break;
4965
4966 ice_free_sched_node(pi, node);
4967 }
4968
4969 mutex_unlock(lock: &pi->sched_lock);
4970 return status;
4971}
4972
4973/**
4974 * ice_aq_get_cgu_abilities - get cgu abilities
4975 * @hw: pointer to the HW struct
4976 * @abilities: CGU abilities
4977 *
4978 * Get CGU abilities (0x0C61)
4979 * Return: 0 on success or negative value on failure.
4980 */
4981int
4982ice_aq_get_cgu_abilities(struct ice_hw *hw,
4983 struct ice_aqc_get_cgu_abilities *abilities)
4984{
4985 struct ice_aq_desc desc;
4986
4987 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_abilities);
4988 return ice_aq_send_cmd(hw, desc: &desc, buf: abilities, buf_size: sizeof(*abilities), NULL);
4989}
4990
4991/**
4992 * ice_aq_set_input_pin_cfg - set input pin config
4993 * @hw: pointer to the HW struct
4994 * @input_idx: Input index
4995 * @flags1: Input flags
4996 * @flags2: Input flags
4997 * @freq: Frequency in Hz
4998 * @phase_delay: Delay in ps
4999 *
5000 * Set CGU input config (0x0C62)
5001 * Return: 0 on success or negative value on failure.
5002 */
5003int
5004ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5005 u32 freq, s32 phase_delay)
5006{
5007 struct ice_aqc_set_cgu_input_config *cmd;
5008 struct ice_aq_desc desc;
5009
5010 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_cgu_input_config);
5011 cmd = &desc.params.set_cgu_input_config;
5012 cmd->input_idx = input_idx;
5013 cmd->flags1 = flags1;
5014 cmd->flags2 = flags2;
5015 cmd->freq = cpu_to_le32(freq);
5016 cmd->phase_delay = cpu_to_le32(phase_delay);
5017
5018 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5019}
5020
5021/**
5022 * ice_aq_get_input_pin_cfg - get input pin config
5023 * @hw: pointer to the HW struct
5024 * @input_idx: Input index
5025 * @status: Pin status
5026 * @type: Pin type
5027 * @flags1: Input flags
5028 * @flags2: Input flags
5029 * @freq: Frequency in Hz
5030 * @phase_delay: Delay in ps
5031 *
5032 * Get CGU input config (0x0C63)
5033 * Return: 0 on success or negative value on failure.
5034 */
5035int
5036ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5037 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5038{
5039 struct ice_aqc_get_cgu_input_config *cmd;
5040 struct ice_aq_desc desc;
5041 int ret;
5042
5043 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_input_config);
5044 cmd = &desc.params.get_cgu_input_config;
5045 cmd->input_idx = input_idx;
5046
5047 ret = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5048 if (!ret) {
5049 if (status)
5050 *status = cmd->status;
5051 if (type)
5052 *type = cmd->type;
5053 if (flags1)
5054 *flags1 = cmd->flags1;
5055 if (flags2)
5056 *flags2 = cmd->flags2;
5057 if (freq)
5058 *freq = le32_to_cpu(cmd->freq);
5059 if (phase_delay)
5060 *phase_delay = le32_to_cpu(cmd->phase_delay);
5061 }
5062
5063 return ret;
5064}
5065
5066/**
5067 * ice_aq_set_output_pin_cfg - set output pin config
5068 * @hw: pointer to the HW struct
5069 * @output_idx: Output index
5070 * @flags: Output flags
5071 * @src_sel: Index of DPLL block
5072 * @freq: Output frequency
5073 * @phase_delay: Output phase compensation
5074 *
5075 * Set CGU output config (0x0C64)
5076 * Return: 0 on success or negative value on failure.
5077 */
5078int
5079ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5080 u8 src_sel, u32 freq, s32 phase_delay)
5081{
5082 struct ice_aqc_set_cgu_output_config *cmd;
5083 struct ice_aq_desc desc;
5084
5085 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_cgu_output_config);
5086 cmd = &desc.params.set_cgu_output_config;
5087 cmd->output_idx = output_idx;
5088 cmd->flags = flags;
5089 cmd->src_sel = src_sel;
5090 cmd->freq = cpu_to_le32(freq);
5091 cmd->phase_delay = cpu_to_le32(phase_delay);
5092
5093 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5094}
5095
5096/**
5097 * ice_aq_get_output_pin_cfg - get output pin config
5098 * @hw: pointer to the HW struct
5099 * @output_idx: Output index
5100 * @flags: Output flags
5101 * @src_sel: Internal DPLL source
5102 * @freq: Output frequency
5103 * @src_freq: Source frequency
5104 *
5105 * Get CGU output config (0x0C65)
5106 * Return: 0 on success or negative value on failure.
5107 */
5108int
5109ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5110 u8 *src_sel, u32 *freq, u32 *src_freq)
5111{
5112 struct ice_aqc_get_cgu_output_config *cmd;
5113 struct ice_aq_desc desc;
5114 int ret;
5115
5116 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_output_config);
5117 cmd = &desc.params.get_cgu_output_config;
5118 cmd->output_idx = output_idx;
5119
5120 ret = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5121 if (!ret) {
5122 if (flags)
5123 *flags = cmd->flags;
5124 if (src_sel)
5125 *src_sel = cmd->src_sel;
5126 if (freq)
5127 *freq = le32_to_cpu(cmd->freq);
5128 if (src_freq)
5129 *src_freq = le32_to_cpu(cmd->src_freq);
5130 }
5131
5132 return ret;
5133}
5134
5135/**
5136 * ice_aq_get_cgu_dpll_status - get dpll status
5137 * @hw: pointer to the HW struct
5138 * @dpll_num: DPLL index
5139 * @ref_state: Reference clock state
5140 * @config: current DPLL config
5141 * @dpll_state: current DPLL state
5142 * @phase_offset: Phase offset in ns
5143 * @eec_mode: EEC_mode
5144 *
5145 * Get CGU DPLL status (0x0C66)
5146 * Return: 0 on success or negative value on failure.
5147 */
5148int
5149ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5150 u8 *dpll_state, u8 *config, s64 *phase_offset,
5151 u8 *eec_mode)
5152{
5153 struct ice_aqc_get_cgu_dpll_status *cmd;
5154 struct ice_aq_desc desc;
5155 int status;
5156
5157 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_dpll_status);
5158 cmd = &desc.params.get_cgu_dpll_status;
5159 cmd->dpll_num = dpll_num;
5160
5161 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5162 if (!status) {
5163 *ref_state = cmd->ref_state;
5164 *dpll_state = cmd->dpll_state;
5165 *config = cmd->config;
5166 *phase_offset = le32_to_cpu(cmd->phase_offset_h);
5167 *phase_offset <<= 32;
5168 *phase_offset += le32_to_cpu(cmd->phase_offset_l);
5169 *phase_offset = sign_extend64(value: *phase_offset, index: 47);
5170 *eec_mode = cmd->eec_mode;
5171 }
5172
5173 return status;
5174}
5175
5176/**
5177 * ice_aq_set_cgu_dpll_config - set dpll config
5178 * @hw: pointer to the HW struct
5179 * @dpll_num: DPLL index
5180 * @ref_state: Reference clock state
5181 * @config: DPLL config
5182 * @eec_mode: EEC mode
5183 *
5184 * Set CGU DPLL config (0x0C67)
5185 * Return: 0 on success or negative value on failure.
5186 */
5187int
5188ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5189 u8 config, u8 eec_mode)
5190{
5191 struct ice_aqc_set_cgu_dpll_config *cmd;
5192 struct ice_aq_desc desc;
5193
5194 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_cgu_dpll_config);
5195 cmd = &desc.params.set_cgu_dpll_config;
5196 cmd->dpll_num = dpll_num;
5197 cmd->ref_state = ref_state;
5198 cmd->config = config;
5199 cmd->eec_mode = eec_mode;
5200
5201 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5202}
5203
5204/**
5205 * ice_aq_set_cgu_ref_prio - set input reference priority
5206 * @hw: pointer to the HW struct
5207 * @dpll_num: DPLL index
5208 * @ref_idx: Reference pin index
5209 * @ref_priority: Reference input priority
5210 *
5211 * Set CGU reference priority (0x0C68)
5212 * Return: 0 on success or negative value on failure.
5213 */
5214int
5215ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5216 u8 ref_priority)
5217{
5218 struct ice_aqc_set_cgu_ref_prio *cmd;
5219 struct ice_aq_desc desc;
5220
5221 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_cgu_ref_prio);
5222 cmd = &desc.params.set_cgu_ref_prio;
5223 cmd->dpll_num = dpll_num;
5224 cmd->ref_idx = ref_idx;
5225 cmd->ref_priority = ref_priority;
5226
5227 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5228}
5229
5230/**
5231 * ice_aq_get_cgu_ref_prio - get input reference priority
5232 * @hw: pointer to the HW struct
5233 * @dpll_num: DPLL index
5234 * @ref_idx: Reference pin index
5235 * @ref_prio: Reference input priority
5236 *
5237 * Get CGU reference priority (0x0C69)
5238 * Return: 0 on success or negative value on failure.
5239 */
5240int
5241ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5242 u8 *ref_prio)
5243{
5244 struct ice_aqc_get_cgu_ref_prio *cmd;
5245 struct ice_aq_desc desc;
5246 int status;
5247
5248 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_ref_prio);
5249 cmd = &desc.params.get_cgu_ref_prio;
5250 cmd->dpll_num = dpll_num;
5251 cmd->ref_idx = ref_idx;
5252
5253 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5254 if (!status)
5255 *ref_prio = cmd->ref_priority;
5256
5257 return status;
5258}
5259
5260/**
5261 * ice_aq_get_cgu_info - get cgu info
5262 * @hw: pointer to the HW struct
5263 * @cgu_id: CGU ID
5264 * @cgu_cfg_ver: CGU config version
5265 * @cgu_fw_ver: CGU firmware version
5266 *
5267 * Get CGU info (0x0C6A)
5268 * Return: 0 on success or negative value on failure.
5269 */
5270int
5271ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5272 u32 *cgu_fw_ver)
5273{
5274 struct ice_aqc_get_cgu_info *cmd;
5275 struct ice_aq_desc desc;
5276 int status;
5277
5278 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_cgu_info);
5279 cmd = &desc.params.get_cgu_info;
5280
5281 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5282 if (!status) {
5283 *cgu_id = le32_to_cpu(cmd->cgu_id);
5284 *cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5285 *cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5286 }
5287
5288 return status;
5289}
5290
5291/**
5292 * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5293 * @hw: pointer to the HW struct
5294 * @phy_output: PHY reference clock output pin
5295 * @enable: GPIO state to be applied
5296 * @freq: PHY output frequency
5297 *
5298 * Set phy recovered clock as reference (0x0630)
5299 * Return: 0 on success or negative value on failure.
5300 */
5301int
5302ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5303 u32 *freq)
5304{
5305 struct ice_aqc_set_phy_rec_clk_out *cmd;
5306 struct ice_aq_desc desc;
5307 int status;
5308
5309 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_phy_rec_clk_out);
5310 cmd = &desc.params.set_phy_rec_clk_out;
5311 cmd->phy_output = phy_output;
5312 cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5313 cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5314 cmd->freq = cpu_to_le32(*freq);
5315
5316 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5317 if (!status)
5318 *freq = le32_to_cpu(cmd->freq);
5319
5320 return status;
5321}
5322
5323/**
5324 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5325 * @hw: pointer to the HW struct
5326 * @phy_output: PHY reference clock output pin
5327 * @port_num: Port number
5328 * @flags: PHY flags
5329 * @node_handle: PHY output frequency
5330 *
5331 * Get PHY recovered clock output info (0x0631)
5332 * Return: 0 on success or negative value on failure.
5333 */
5334int
5335ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5336 u8 *flags, u16 *node_handle)
5337{
5338 struct ice_aqc_get_phy_rec_clk_out *cmd;
5339 struct ice_aq_desc desc;
5340 int status;
5341
5342 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_phy_rec_clk_out);
5343 cmd = &desc.params.get_phy_rec_clk_out;
5344 cmd->phy_output = *phy_output;
5345
5346 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5347 if (!status) {
5348 *phy_output = cmd->phy_output;
5349 if (port_num)
5350 *port_num = cmd->port_num;
5351 if (flags)
5352 *flags = cmd->flags;
5353 if (node_handle)
5354 *node_handle = le16_to_cpu(cmd->node_handle);
5355 }
5356
5357 return status;
5358}
5359
5360/**
5361 * ice_aq_get_sensor_reading
5362 * @hw: pointer to the HW struct
5363 * @data: pointer to data to be read from the sensor
5364 *
5365 * Get sensor reading (0x0632)
5366 */
5367int ice_aq_get_sensor_reading(struct ice_hw *hw,
5368 struct ice_aqc_get_sensor_reading_resp *data)
5369{
5370 struct ice_aqc_get_sensor_reading *cmd;
5371 struct ice_aq_desc desc;
5372 int status;
5373
5374 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_sensor_reading);
5375 cmd = &desc.params.get_sensor_reading;
5376#define ICE_INTERNAL_TEMP_SENSOR_FORMAT 0
5377#define ICE_INTERNAL_TEMP_SENSOR 0
5378 cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5379 cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5380
5381 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5382 if (!status)
5383 memcpy(data, &desc.params.get_sensor_reading_resp,
5384 sizeof(*data));
5385
5386 return status;
5387}
5388
5389/**
5390 * ice_replay_pre_init - replay pre initialization
5391 * @hw: pointer to the HW struct
5392 *
5393 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5394 */
5395static int ice_replay_pre_init(struct ice_hw *hw)
5396{
5397 struct ice_switch_info *sw = hw->switch_info;
5398 u8 i;
5399
5400 /* Delete old entries from replay filter list head if there is any */
5401 ice_rm_all_sw_replay_rule_info(hw);
5402 /* In start of replay, move entries into replay_rules list, it
5403 * will allow adding rules entries back to filt_rules list,
5404 * which is operational list.
5405 */
5406 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5407 list_replace_init(old: &sw->recp_list[i].filt_rules,
5408 new: &sw->recp_list[i].filt_replay_rules);
5409 ice_sched_replay_agg_vsi_preinit(hw);
5410
5411 return 0;
5412}
5413
5414/**
5415 * ice_replay_vsi - replay VSI configuration
5416 * @hw: pointer to the HW struct
5417 * @vsi_handle: driver VSI handle
5418 *
5419 * Restore all VSI configuration after reset. It is required to call this
5420 * function with main VSI first.
5421 */
5422int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5423{
5424 int status;
5425
5426 if (!ice_is_vsi_valid(hw, vsi_handle))
5427 return -EINVAL;
5428
5429 /* Replay pre-initialization if there is any */
5430 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5431 status = ice_replay_pre_init(hw);
5432 if (status)
5433 return status;
5434 }
5435 /* Replay per VSI all RSS configurations */
5436 status = ice_replay_rss_cfg(hw, vsi_handle);
5437 if (status)
5438 return status;
5439 /* Replay per VSI all filters */
5440 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5441 if (!status)
5442 status = ice_replay_vsi_agg(hw, vsi_handle);
5443 return status;
5444}
5445
5446/**
5447 * ice_replay_post - post replay configuration cleanup
5448 * @hw: pointer to the HW struct
5449 *
5450 * Post replay cleanup.
5451 */
5452void ice_replay_post(struct ice_hw *hw)
5453{
5454 /* Delete old entries from replay filter list head */
5455 ice_rm_all_sw_replay_rule_info(hw);
5456 ice_sched_replay_agg(hw);
5457}
5458
5459/**
5460 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5461 * @hw: ptr to the hardware info
5462 * @reg: offset of 64 bit HW register to read from
5463 * @prev_stat_loaded: bool to specify if previous stats are loaded
5464 * @prev_stat: ptr to previous loaded stat value
5465 * @cur_stat: ptr to current stat value
5466 */
5467void
5468ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5469 u64 *prev_stat, u64 *cur_stat)
5470{
5471 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5472
5473 /* device stats are not reset at PFR, they likely will not be zeroed
5474 * when the driver starts. Thus, save the value from the first read
5475 * without adding to the statistic value so that we report stats which
5476 * count up from zero.
5477 */
5478 if (!prev_stat_loaded) {
5479 *prev_stat = new_data;
5480 return;
5481 }
5482
5483 /* Calculate the difference between the new and old values, and then
5484 * add it to the software stat value.
5485 */
5486 if (new_data >= *prev_stat)
5487 *cur_stat += new_data - *prev_stat;
5488 else
5489 /* to manage the potential roll-over */
5490 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5491
5492 /* Update the previously stored value to prepare for next read */
5493 *prev_stat = new_data;
5494}
5495
5496/**
5497 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5498 * @hw: ptr to the hardware info
5499 * @reg: offset of HW register to read from
5500 * @prev_stat_loaded: bool to specify if previous stats are loaded
5501 * @prev_stat: ptr to previous loaded stat value
5502 * @cur_stat: ptr to current stat value
5503 */
5504void
5505ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5506 u64 *prev_stat, u64 *cur_stat)
5507{
5508 u32 new_data;
5509
5510 new_data = rd32(hw, reg);
5511
5512 /* device stats are not reset at PFR, they likely will not be zeroed
5513 * when the driver starts. Thus, save the value from the first read
5514 * without adding to the statistic value so that we report stats which
5515 * count up from zero.
5516 */
5517 if (!prev_stat_loaded) {
5518 *prev_stat = new_data;
5519 return;
5520 }
5521
5522 /* Calculate the difference between the new and old values, and then
5523 * add it to the software stat value.
5524 */
5525 if (new_data >= *prev_stat)
5526 *cur_stat += new_data - *prev_stat;
5527 else
5528 /* to manage the potential roll-over */
5529 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5530
5531 /* Update the previously stored value to prepare for next read */
5532 *prev_stat = new_data;
5533}
5534
5535/**
5536 * ice_sched_query_elem - query element information from HW
5537 * @hw: pointer to the HW struct
5538 * @node_teid: node TEID to be queried
5539 * @buf: buffer to element information
5540 *
5541 * This function queries HW element information
5542 */
5543int
5544ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5545 struct ice_aqc_txsched_elem_data *buf)
5546{
5547 u16 buf_size, num_elem_ret = 0;
5548 int status;
5549
5550 buf_size = sizeof(*buf);
5551 memset(buf, 0, buf_size);
5552 buf->node_teid = cpu_to_le32(node_teid);
5553 status = ice_aq_query_sched_elems(hw, elems_req: 1, buf, buf_size, elems_ret: &num_elem_ret,
5554 NULL);
5555 if (status || num_elem_ret != 1)
5556 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5557 return status;
5558}
5559
5560/**
5561 * ice_aq_read_i2c
5562 * @hw: pointer to the hw struct
5563 * @topo_addr: topology address for a device to communicate with
5564 * @bus_addr: 7-bit I2C bus address
5565 * @addr: I2C memory address (I2C offset) with up to 16 bits
5566 * @params: I2C parameters: bit [7] - Repeated start,
5567 * bits [6:5] data offset size,
5568 * bit [4] - I2C address type,
5569 * bits [3:0] - data size to read (0-16 bytes)
5570 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5571 * @cd: pointer to command details structure or NULL
5572 *
5573 * Read I2C (0x06E2)
5574 */
5575int
5576ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5577 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5578 struct ice_sq_cd *cd)
5579{
5580 struct ice_aq_desc desc = { 0 };
5581 struct ice_aqc_i2c *cmd;
5582 u8 data_size;
5583 int status;
5584
5585 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_read_i2c);
5586 cmd = &desc.params.read_write_i2c;
5587
5588 if (!data)
5589 return -EINVAL;
5590
5591 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5592
5593 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5594 cmd->topo_addr = topo_addr;
5595 cmd->i2c_params = params;
5596 cmd->i2c_addr = addr;
5597
5598 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
5599 if (!status) {
5600 struct ice_aqc_read_i2c_resp *resp;
5601 u8 i;
5602
5603 resp = &desc.params.read_i2c_resp;
5604 for (i = 0; i < data_size; i++) {
5605 *data = resp->i2c_data[i];
5606 data++;
5607 }
5608 }
5609
5610 return status;
5611}
5612
5613/**
5614 * ice_aq_write_i2c
5615 * @hw: pointer to the hw struct
5616 * @topo_addr: topology address for a device to communicate with
5617 * @bus_addr: 7-bit I2C bus address
5618 * @addr: I2C memory address (I2C offset) with up to 16 bits
5619 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5620 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5621 * @cd: pointer to command details structure or NULL
5622 *
5623 * Write I2C (0x06E3)
5624 *
5625 * * Return:
5626 * * 0 - Successful write to the i2c device
5627 * * -EINVAL - Data size greater than 4 bytes
5628 * * -EIO - FW error
5629 */
5630int
5631ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5632 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5633 struct ice_sq_cd *cd)
5634{
5635 struct ice_aq_desc desc = { 0 };
5636 struct ice_aqc_i2c *cmd;
5637 u8 data_size;
5638
5639 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_write_i2c);
5640 cmd = &desc.params.read_write_i2c;
5641
5642 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5643
5644 /* data_size limited to 4 */
5645 if (data_size > 4)
5646 return -EINVAL;
5647
5648 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5649 cmd->topo_addr = topo_addr;
5650 cmd->i2c_params = params;
5651 cmd->i2c_addr = addr;
5652
5653 memcpy(cmd->i2c_data, data, data_size);
5654
5655 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
5656}
5657
5658/**
5659 * ice_get_pca9575_handle - find and return the PCA9575 controller
5660 * @hw: pointer to the hw struct
5661 * @pca9575_handle: GPIO controller's handle
5662 *
5663 * Find and return the GPIO controller's handle in the netlist.
5664 * When found - the value will be cached in the hw structure and following calls
5665 * will return cached value.
5666 *
5667 * Return: 0 on success, -ENXIO when there's no PCA9575 present.
5668 */
5669int ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
5670{
5671 struct ice_aqc_get_link_topo *cmd;
5672 struct ice_aq_desc desc;
5673 int err;
5674 u8 idx;
5675
5676 /* If handle was read previously return cached value */
5677 if (hw->io_expander_handle) {
5678 *pca9575_handle = hw->io_expander_handle;
5679 return 0;
5680 }
5681
5682#define SW_PCA9575_SFP_TOPO_IDX 2
5683#define SW_PCA9575_QSFP_TOPO_IDX 1
5684
5685 /* Check if the SW IO expander controlling SMA exists in the netlist. */
5686 if (hw->device_id == ICE_DEV_ID_E810C_SFP)
5687 idx = SW_PCA9575_SFP_TOPO_IDX;
5688 else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
5689 idx = SW_PCA9575_QSFP_TOPO_IDX;
5690 else
5691 return -ENXIO;
5692
5693 /* If handle was not detected read it from the netlist */
5694 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_link_topo);
5695 cmd = &desc.params.get_link_topo;
5696 cmd->addr.topo_params.node_type_ctx =
5697 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL;
5698 cmd->addr.topo_params.index = idx;
5699
5700 err = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5701 if (err)
5702 return -ENXIO;
5703
5704 /* Verify if we found the right IO expander type */
5705 if (desc.params.get_link_topo.node_part_num !=
5706 ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
5707 return -ENXIO;
5708
5709 /* If present save the handle and return it */
5710 hw->io_expander_handle =
5711 le16_to_cpu(desc.params.get_link_topo.addr.handle);
5712 *pca9575_handle = hw->io_expander_handle;
5713
5714 return 0;
5715}
5716
5717/**
5718 * ice_read_pca9575_reg - read the register from the PCA9575 controller
5719 * @hw: pointer to the hw struct
5720 * @offset: GPIO controller register offset
5721 * @data: pointer to data to be read from the GPIO controller
5722 *
5723 * Return: 0 on success, negative error code otherwise.
5724 */
5725int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data)
5726{
5727 struct ice_aqc_link_topo_addr link_topo;
5728 __le16 addr;
5729 u16 handle;
5730 int err;
5731
5732 memset(&link_topo, 0, sizeof(link_topo));
5733
5734 err = ice_get_pca9575_handle(hw, pca9575_handle: &handle);
5735 if (err)
5736 return err;
5737
5738 link_topo.handle = cpu_to_le16(handle);
5739 link_topo.topo_params.node_type_ctx =
5740 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
5741 ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
5742
5743 addr = cpu_to_le16((u16)offset);
5744
5745 return ice_aq_read_i2c(hw, topo_addr: link_topo, bus_addr: 0, addr, params: 1, data, NULL);
5746}
5747
5748/**
5749 * ice_aq_set_gpio
5750 * @hw: pointer to the hw struct
5751 * @gpio_ctrl_handle: GPIO controller node handle
5752 * @pin_idx: IO Number of the GPIO that needs to be set
5753 * @value: SW provide IO value to set in the LSB
5754 * @cd: pointer to command details structure or NULL
5755 *
5756 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5757 */
5758int
5759ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5760 struct ice_sq_cd *cd)
5761{
5762 struct ice_aqc_gpio *cmd;
5763 struct ice_aq_desc desc;
5764
5765 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_gpio);
5766 cmd = &desc.params.read_write_gpio;
5767 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5768 cmd->gpio_num = pin_idx;
5769 cmd->gpio_val = value ? 1 : 0;
5770
5771 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
5772}
5773
5774/**
5775 * ice_aq_get_gpio
5776 * @hw: pointer to the hw struct
5777 * @gpio_ctrl_handle: GPIO controller node handle
5778 * @pin_idx: IO Number of the GPIO that needs to be set
5779 * @value: IO value read
5780 * @cd: pointer to command details structure or NULL
5781 *
5782 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5783 * the topology
5784 */
5785int
5786ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5787 bool *value, struct ice_sq_cd *cd)
5788{
5789 struct ice_aqc_gpio *cmd;
5790 struct ice_aq_desc desc;
5791 int status;
5792
5793 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_get_gpio);
5794 cmd = &desc.params.read_write_gpio;
5795 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5796 cmd->gpio_num = pin_idx;
5797
5798 status = ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, cd);
5799 if (status)
5800 return status;
5801
5802 *value = !!cmd->gpio_val;
5803 return 0;
5804}
5805
5806/**
5807 * ice_is_fw_api_min_ver
5808 * @hw: pointer to the hardware structure
5809 * @maj: major version
5810 * @min: minor version
5811 * @patch: patch version
5812 *
5813 * Checks if the firmware API is minimum version
5814 */
5815static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5816{
5817 if (hw->api_maj_ver == maj) {
5818 if (hw->api_min_ver > min)
5819 return true;
5820 if (hw->api_min_ver == min && hw->api_patch >= patch)
5821 return true;
5822 } else if (hw->api_maj_ver > maj) {
5823 return true;
5824 }
5825
5826 return false;
5827}
5828
5829/**
5830 * ice_fw_supports_link_override
5831 * @hw: pointer to the hardware structure
5832 *
5833 * Checks if the firmware supports link override
5834 */
5835bool ice_fw_supports_link_override(struct ice_hw *hw)
5836{
5837 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5838 ICE_FW_API_LINK_OVERRIDE_MIN,
5839 ICE_FW_API_LINK_OVERRIDE_PATCH);
5840}
5841
5842/**
5843 * ice_get_link_default_override
5844 * @ldo: pointer to the link default override struct
5845 * @pi: pointer to the port info struct
5846 *
5847 * Gets the link default override for a port
5848 */
5849int
5850ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5851 struct ice_port_info *pi)
5852{
5853 u16 i, tlv, tlv_len, tlv_start, buf, offset;
5854 struct ice_hw *hw = pi->hw;
5855 int status;
5856
5857 status = ice_get_pfa_module_tlv(hw, module_tlv: &tlv, module_tlv_len: &tlv_len,
5858 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5859 if (status) {
5860 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5861 return status;
5862 }
5863
5864 /* Each port has its own config; calculate for our port */
5865 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5866 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5867
5868 /* link options first */
5869 status = ice_read_sr_word(hw, offset: tlv_start, data: &buf);
5870 if (status) {
5871 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5872 return status;
5873 }
5874 ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5875 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5876 ICE_LINK_OVERRIDE_PHY_CFG_S;
5877
5878 /* link PHY config */
5879 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5880 status = ice_read_sr_word(hw, offset, data: &buf);
5881 if (status) {
5882 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5883 return status;
5884 }
5885 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5886
5887 /* PHY types low */
5888 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5889 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5890 status = ice_read_sr_word(hw, offset: (offset + i), data: &buf);
5891 if (status) {
5892 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5893 return status;
5894 }
5895 /* shift 16 bits at a time to fill 64 bits */
5896 ldo->phy_type_low |= ((u64)buf << (i * 16));
5897 }
5898
5899 /* PHY types high */
5900 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5901 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5902 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5903 status = ice_read_sr_word(hw, offset: (offset + i), data: &buf);
5904 if (status) {
5905 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5906 return status;
5907 }
5908 /* shift 16 bits at a time to fill 64 bits */
5909 ldo->phy_type_high |= ((u64)buf << (i * 16));
5910 }
5911
5912 return status;
5913}
5914
5915/**
5916 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5917 * @caps: get PHY capability data
5918 */
5919bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5920{
5921 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5922 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5923 ICE_AQC_PHY_AN_EN_CLAUSE73 |
5924 ICE_AQC_PHY_AN_EN_CLAUSE37))
5925 return true;
5926
5927 return false;
5928}
5929
5930/**
5931 * ice_is_fw_health_report_supported - checks if firmware supports health events
5932 * @hw: pointer to the hardware structure
5933 *
5934 * Return: true if firmware supports health status reports,
5935 * false otherwise
5936 */
5937bool ice_is_fw_health_report_supported(struct ice_hw *hw)
5938{
5939 return ice_is_fw_api_min_ver(hw, ICE_FW_API_HEALTH_REPORT_MAJ,
5940 ICE_FW_API_HEALTH_REPORT_MIN,
5941 ICE_FW_API_HEALTH_REPORT_PATCH);
5942}
5943
5944/**
5945 * ice_aq_set_health_status_cfg - Configure FW health events
5946 * @hw: pointer to the HW struct
5947 * @event_source: type of diagnostic events to enable
5948 *
5949 * Configure the health status event types that the firmware will send to this
5950 * PF. The supported event types are: PF-specific, all PFs, and global.
5951 *
5952 * Return: 0 on success, negative error code otherwise.
5953 */
5954int ice_aq_set_health_status_cfg(struct ice_hw *hw, u8 event_source)
5955{
5956 struct ice_aqc_set_health_status_cfg *cmd;
5957 struct ice_aq_desc desc;
5958
5959 cmd = &desc.params.set_health_status_cfg;
5960
5961 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_set_health_status_cfg);
5962
5963 cmd->event_source = event_source;
5964
5965 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
5966}
5967
5968/**
5969 * ice_aq_set_lldp_mib - Set the LLDP MIB
5970 * @hw: pointer to the HW struct
5971 * @mib_type: Local, Remote or both Local and Remote MIBs
5972 * @buf: pointer to the caller-supplied buffer to store the MIB block
5973 * @buf_size: size of the buffer (in bytes)
5974 * @cd: pointer to command details structure or NULL
5975 *
5976 * Set the LLDP MIB. (0x0A08)
5977 */
5978int
5979ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5980 struct ice_sq_cd *cd)
5981{
5982 struct ice_aqc_lldp_set_local_mib *cmd;
5983 struct ice_aq_desc desc;
5984
5985 cmd = &desc.params.lldp_set_mib;
5986
5987 if (buf_size == 0 || !buf)
5988 return -EINVAL;
5989
5990 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_lldp_set_local_mib);
5991
5992 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5993 desc.datalen = cpu_to_le16(buf_size);
5994
5995 cmd->type = mib_type;
5996 cmd->length = cpu_to_le16(buf_size);
5997
5998 return ice_aq_send_cmd(hw, desc: &desc, buf, buf_size, cd);
5999}
6000
6001/**
6002 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6003 * @hw: pointer to HW struct
6004 */
6005bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6006{
6007 if (hw->mac_type != ICE_MAC_E810)
6008 return false;
6009
6010 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6011 ICE_FW_API_LLDP_FLTR_MIN,
6012 ICE_FW_API_LLDP_FLTR_PATCH);
6013}
6014
6015/**
6016 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6017 * @hw: pointer to HW struct
6018 * @vsi: VSI to add the filter to
6019 * @add: boolean for if adding or removing a filter
6020 *
6021 * Return: 0 on success, -EOPNOTSUPP if the operation cannot be performed
6022 * with this HW or VSI, otherwise an error corresponding to
6023 * the AQ transaction result.
6024 */
6025int ice_lldp_fltr_add_remove(struct ice_hw *hw, struct ice_vsi *vsi, bool add)
6026{
6027 struct ice_aqc_lldp_filter_ctrl *cmd;
6028 struct ice_aq_desc desc;
6029
6030 if (vsi->type != ICE_VSI_PF || !ice_fw_supports_lldp_fltr_ctrl(hw))
6031 return -EOPNOTSUPP;
6032
6033 cmd = &desc.params.lldp_filter_ctrl;
6034
6035 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_lldp_filter_ctrl);
6036
6037 if (add)
6038 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6039 else
6040 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6041
6042 cmd->vsi_num = cpu_to_le16(vsi->vsi_num);
6043
6044 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
6045}
6046
6047/**
6048 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6049 * @hw: pointer to HW struct
6050 */
6051int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6052{
6053 struct ice_aq_desc desc;
6054
6055 ice_fill_dflt_direct_cmd_desc(desc: &desc, opcode: ice_aqc_opc_lldp_execute_pending_mib);
6056
6057 return ice_aq_send_cmd(hw, desc: &desc, NULL, buf_size: 0, NULL);
6058}
6059
6060/**
6061 * ice_fw_supports_report_dflt_cfg
6062 * @hw: pointer to the hardware structure
6063 *
6064 * Checks if the firmware supports report default configuration
6065 */
6066bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6067{
6068 return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6069 ICE_FW_API_REPORT_DFLT_CFG_MIN,
6070 ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6071}
6072
6073/* each of the indexes into the following array match the speed of a return
6074 * value from the list of AQ returned speeds like the range:
6075 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6076 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6077 * array. The array is defined as 15 elements long because the link_speed
6078 * returned by the firmware is a 16 bit * value, but is indexed
6079 * by [fls(speed) - 1]
6080 */
6081static const u32 ice_aq_to_link_speed[] = {
6082 SPEED_10, /* BIT(0) */
6083 SPEED_100,
6084 SPEED_1000,
6085 SPEED_2500,
6086 SPEED_5000,
6087 SPEED_10000,
6088 SPEED_20000,
6089 SPEED_25000,
6090 SPEED_40000,
6091 SPEED_50000,
6092 SPEED_100000, /* BIT(10) */
6093 SPEED_200000,
6094};
6095
6096/**
6097 * ice_get_link_speed - get integer speed from table
6098 * @index: array index from fls(aq speed) - 1
6099 *
6100 * Returns: u32 value containing integer speed
6101 */
6102u32 ice_get_link_speed(u16 index)
6103{
6104 if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6105 return 0;
6106
6107 return ice_aq_to_link_speed[index];
6108}
6109

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/drivers/net/ethernet/intel/ice/ice_common.c