1 | // SPDX-License-Identifier: GPL-2.0-or-later |
---|---|
2 | /* audit.c -- Auditing support |
3 | * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. |
4 | * System-call specific features have moved to auditsc.c |
5 | * |
6 | * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. |
7 | * All Rights Reserved. |
8 | * |
9 | * Written by Rickard E. (Rik) Faith <faith@redhat.com> |
10 | * |
11 | * Goals: 1) Integrate fully with Security Modules. |
12 | * 2) Minimal run-time overhead: |
13 | * a) Minimal when syscall auditing is disabled (audit_enable=0). |
14 | * b) Small when syscall auditing is enabled and no audit record |
15 | * is generated (defer as much work as possible to record |
16 | * generation time): |
17 | * i) context is allocated, |
18 | * ii) names from getname are stored without a copy, and |
19 | * iii) inode information stored from path_lookup. |
20 | * 3) Ability to disable syscall auditing at boot time (audit=0). |
21 | * 4) Usable by other parts of the kernel (if audit_log* is called, |
22 | * then a syscall record will be generated automatically for the |
23 | * current syscall). |
24 | * 5) Netlink interface to user-space. |
25 | * 6) Support low-overhead kernel-based filtering to minimize the |
26 | * information that must be passed to user-space. |
27 | * |
28 | * Audit userspace, documentation, tests, and bug/issue trackers: |
29 | * https://github.com/linux-audit |
30 | */ |
31 | |
32 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
33 | |
34 | #include <linux/file.h> |
35 | #include <linux/init.h> |
36 | #include <linux/types.h> |
37 | #include <linux/atomic.h> |
38 | #include <linux/mm.h> |
39 | #include <linux/export.h> |
40 | #include <linux/slab.h> |
41 | #include <linux/err.h> |
42 | #include <linux/kthread.h> |
43 | #include <linux/kernel.h> |
44 | #include <linux/syscalls.h> |
45 | #include <linux/spinlock.h> |
46 | #include <linux/rcupdate.h> |
47 | #include <linux/mutex.h> |
48 | #include <linux/gfp.h> |
49 | #include <linux/pid.h> |
50 | |
51 | #include <linux/audit.h> |
52 | |
53 | #include <net/sock.h> |
54 | #include <net/netlink.h> |
55 | #include <linux/skbuff.h> |
56 | #include <linux/security.h> |
57 | #include <linux/freezer.h> |
58 | #include <linux/pid_namespace.h> |
59 | #include <net/netns/generic.h> |
60 | |
61 | #include "audit.h" |
62 | |
63 | /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. |
64 | * (Initialization happens after skb_init is called.) */ |
65 | #define AUDIT_DISABLED -1 |
66 | #define AUDIT_UNINITIALIZED 0 |
67 | #define AUDIT_INITIALIZED 1 |
68 | static int audit_initialized = AUDIT_UNINITIALIZED; |
69 | |
70 | u32 audit_enabled = AUDIT_OFF; |
71 | bool audit_ever_enabled = !!AUDIT_OFF; |
72 | |
73 | EXPORT_SYMBOL_GPL(audit_enabled); |
74 | |
75 | /* Default state when kernel boots without any parameters. */ |
76 | static u32 audit_default = AUDIT_OFF; |
77 | |
78 | /* If auditing cannot proceed, audit_failure selects what happens. */ |
79 | static u32 audit_failure = AUDIT_FAIL_PRINTK; |
80 | |
81 | /* private audit network namespace index */ |
82 | static unsigned int audit_net_id; |
83 | |
84 | /** |
85 | * struct audit_net - audit private network namespace data |
86 | * @sk: communication socket |
87 | */ |
88 | struct audit_net { |
89 | struct sock *sk; |
90 | }; |
91 | |
92 | /** |
93 | * struct auditd_connection - kernel/auditd connection state |
94 | * @pid: auditd PID |
95 | * @portid: netlink portid |
96 | * @net: the associated network namespace |
97 | * @rcu: RCU head |
98 | * |
99 | * Description: |
100 | * This struct is RCU protected; you must either hold the RCU lock for reading |
101 | * or the associated spinlock for writing. |
102 | */ |
103 | struct auditd_connection { |
104 | struct pid *pid; |
105 | u32 portid; |
106 | struct net *net; |
107 | struct rcu_head rcu; |
108 | }; |
109 | static struct auditd_connection __rcu *auditd_conn; |
110 | static DEFINE_SPINLOCK(auditd_conn_lock); |
111 | |
112 | /* If audit_rate_limit is non-zero, limit the rate of sending audit records |
113 | * to that number per second. This prevents DoS attacks, but results in |
114 | * audit records being dropped. */ |
115 | static u32 audit_rate_limit; |
116 | |
117 | /* Number of outstanding audit_buffers allowed. |
118 | * When set to zero, this means unlimited. */ |
119 | static u32 audit_backlog_limit = 64; |
120 | #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) |
121 | static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; |
122 | |
123 | /* The identity of the user shutting down the audit system. */ |
124 | static kuid_t audit_sig_uid = INVALID_UID; |
125 | static pid_t audit_sig_pid = -1; |
126 | static struct lsm_prop audit_sig_lsm; |
127 | |
128 | /* Records can be lost in several ways: |
129 | 0) [suppressed in audit_alloc] |
130 | 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] |
131 | 2) out of memory in audit_log_move [alloc_skb] |
132 | 3) suppressed due to audit_rate_limit |
133 | 4) suppressed due to audit_backlog_limit |
134 | */ |
135 | static atomic_t audit_lost = ATOMIC_INIT(0); |
136 | |
137 | /* Monotonically increasing sum of time the kernel has spent |
138 | * waiting while the backlog limit is exceeded. |
139 | */ |
140 | static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0); |
141 | |
142 | /* Hash for inode-based rules */ |
143 | struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; |
144 | |
145 | static struct kmem_cache *audit_buffer_cache; |
146 | |
147 | /* queue msgs to send via kauditd_task */ |
148 | static struct sk_buff_head audit_queue; |
149 | /* queue msgs due to temporary unicast send problems */ |
150 | static struct sk_buff_head audit_retry_queue; |
151 | /* queue msgs waiting for new auditd connection */ |
152 | static struct sk_buff_head audit_hold_queue; |
153 | |
154 | /* queue servicing thread */ |
155 | static struct task_struct *kauditd_task; |
156 | static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); |
157 | |
158 | /* waitqueue for callers who are blocked on the audit backlog */ |
159 | static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); |
160 | |
161 | static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, |
162 | .mask = -1, |
163 | .features = 0, |
164 | .lock = 0,}; |
165 | |
166 | static char *audit_feature_names[2] = { |
167 | "only_unset_loginuid", |
168 | "loginuid_immutable", |
169 | }; |
170 | |
171 | /** |
172 | * struct audit_ctl_mutex - serialize requests from userspace |
173 | * @lock: the mutex used for locking |
174 | * @owner: the task which owns the lock |
175 | * |
176 | * Description: |
177 | * This is the lock struct used to ensure we only process userspace requests |
178 | * in an orderly fashion. We can't simply use a mutex/lock here because we |
179 | * need to track lock ownership so we don't end up blocking the lock owner in |
180 | * audit_log_start() or similar. |
181 | */ |
182 | static struct audit_ctl_mutex { |
183 | struct mutex lock; |
184 | void *owner; |
185 | } audit_cmd_mutex; |
186 | |
187 | /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting |
188 | * audit records. Since printk uses a 1024 byte buffer, this buffer |
189 | * should be at least that large. */ |
190 | #define AUDIT_BUFSIZ 1024 |
191 | |
192 | /* The audit_buffer is used when formatting an audit record. The caller |
193 | * locks briefly to get the record off the freelist or to allocate the |
194 | * buffer, and locks briefly to send the buffer to the netlink layer or |
195 | * to place it on a transmit queue. Multiple audit_buffers can be in |
196 | * use simultaneously. */ |
197 | struct audit_buffer { |
198 | struct sk_buff *skb; /* formatted skb ready to send */ |
199 | struct audit_context *ctx; /* NULL or associated context */ |
200 | gfp_t gfp_mask; |
201 | }; |
202 | |
203 | struct audit_reply { |
204 | __u32 portid; |
205 | struct net *net; |
206 | struct sk_buff *skb; |
207 | }; |
208 | |
209 | /** |
210 | * auditd_test_task - Check to see if a given task is an audit daemon |
211 | * @task: the task to check |
212 | * |
213 | * Description: |
214 | * Return 1 if the task is a registered audit daemon, 0 otherwise. |
215 | */ |
216 | int auditd_test_task(struct task_struct *task) |
217 | { |
218 | int rc; |
219 | struct auditd_connection *ac; |
220 | |
221 | rcu_read_lock(); |
222 | ac = rcu_dereference(auditd_conn); |
223 | rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); |
224 | rcu_read_unlock(); |
225 | |
226 | return rc; |
227 | } |
228 | |
229 | /** |
230 | * audit_ctl_lock - Take the audit control lock |
231 | */ |
232 | void audit_ctl_lock(void) |
233 | { |
234 | mutex_lock(&audit_cmd_mutex.lock); |
235 | audit_cmd_mutex.owner = current; |
236 | } |
237 | |
238 | /** |
239 | * audit_ctl_unlock - Drop the audit control lock |
240 | */ |
241 | void audit_ctl_unlock(void) |
242 | { |
243 | audit_cmd_mutex.owner = NULL; |
244 | mutex_unlock(lock: &audit_cmd_mutex.lock); |
245 | } |
246 | |
247 | /** |
248 | * audit_ctl_owner_current - Test to see if the current task owns the lock |
249 | * |
250 | * Description: |
251 | * Return true if the current task owns the audit control lock, false if it |
252 | * doesn't own the lock. |
253 | */ |
254 | static bool audit_ctl_owner_current(void) |
255 | { |
256 | return (current == audit_cmd_mutex.owner); |
257 | } |
258 | |
259 | /** |
260 | * auditd_pid_vnr - Return the auditd PID relative to the namespace |
261 | * |
262 | * Description: |
263 | * Returns the PID in relation to the namespace, 0 on failure. |
264 | */ |
265 | static pid_t auditd_pid_vnr(void) |
266 | { |
267 | pid_t pid; |
268 | const struct auditd_connection *ac; |
269 | |
270 | rcu_read_lock(); |
271 | ac = rcu_dereference(auditd_conn); |
272 | if (!ac || !ac->pid) |
273 | pid = 0; |
274 | else |
275 | pid = pid_vnr(pid: ac->pid); |
276 | rcu_read_unlock(); |
277 | |
278 | return pid; |
279 | } |
280 | |
281 | /** |
282 | * audit_get_sk - Return the audit socket for the given network namespace |
283 | * @net: the destination network namespace |
284 | * |
285 | * Description: |
286 | * Returns the sock pointer if valid, NULL otherwise. The caller must ensure |
287 | * that a reference is held for the network namespace while the sock is in use. |
288 | */ |
289 | static struct sock *audit_get_sk(const struct net *net) |
290 | { |
291 | struct audit_net *aunet; |
292 | |
293 | if (!net) |
294 | return NULL; |
295 | |
296 | aunet = net_generic(net, id: audit_net_id); |
297 | return aunet->sk; |
298 | } |
299 | |
300 | void audit_panic(const char *message) |
301 | { |
302 | switch (audit_failure) { |
303 | case AUDIT_FAIL_SILENT: |
304 | break; |
305 | case AUDIT_FAIL_PRINTK: |
306 | if (printk_ratelimit()) |
307 | pr_err("%s\n", message); |
308 | break; |
309 | case AUDIT_FAIL_PANIC: |
310 | panic(fmt: "audit: %s\n", message); |
311 | break; |
312 | } |
313 | } |
314 | |
315 | static inline int audit_rate_check(void) |
316 | { |
317 | static unsigned long last_check = 0; |
318 | static int messages = 0; |
319 | static DEFINE_SPINLOCK(lock); |
320 | unsigned long flags; |
321 | unsigned long now; |
322 | int retval = 0; |
323 | |
324 | if (!audit_rate_limit) |
325 | return 1; |
326 | |
327 | spin_lock_irqsave(&lock, flags); |
328 | if (++messages < audit_rate_limit) { |
329 | retval = 1; |
330 | } else { |
331 | now = jiffies; |
332 | if (time_after(now, last_check + HZ)) { |
333 | last_check = now; |
334 | messages = 0; |
335 | retval = 1; |
336 | } |
337 | } |
338 | spin_unlock_irqrestore(lock: &lock, flags); |
339 | |
340 | return retval; |
341 | } |
342 | |
343 | /** |
344 | * audit_log_lost - conditionally log lost audit message event |
345 | * @message: the message stating reason for lost audit message |
346 | * |
347 | * Emit at least 1 message per second, even if audit_rate_check is |
348 | * throttling. |
349 | * Always increment the lost messages counter. |
350 | */ |
351 | void audit_log_lost(const char *message) |
352 | { |
353 | static unsigned long last_msg = 0; |
354 | static DEFINE_SPINLOCK(lock); |
355 | unsigned long flags; |
356 | unsigned long now; |
357 | int print; |
358 | |
359 | atomic_inc(v: &audit_lost); |
360 | |
361 | print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); |
362 | |
363 | if (!print) { |
364 | spin_lock_irqsave(&lock, flags); |
365 | now = jiffies; |
366 | if (time_after(now, last_msg + HZ)) { |
367 | print = 1; |
368 | last_msg = now; |
369 | } |
370 | spin_unlock_irqrestore(lock: &lock, flags); |
371 | } |
372 | |
373 | if (print) { |
374 | if (printk_ratelimit()) |
375 | pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", |
376 | atomic_read(&audit_lost), |
377 | audit_rate_limit, |
378 | audit_backlog_limit); |
379 | audit_panic(message); |
380 | } |
381 | } |
382 | |
383 | static int audit_log_config_change(char *function_name, u32 new, u32 old, |
384 | int allow_changes) |
385 | { |
386 | struct audit_buffer *ab; |
387 | int rc = 0; |
388 | |
389 | ab = audit_log_start(ctx: audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); |
390 | if (unlikely(!ab)) |
391 | return rc; |
392 | audit_log_format(ab, fmt: "op=set %s=%u old=%u ", function_name, new, old); |
393 | audit_log_session_info(ab); |
394 | rc = audit_log_task_context(ab); |
395 | if (rc) |
396 | allow_changes = 0; /* Something weird, deny request */ |
397 | audit_log_format(ab, fmt: " res=%d", allow_changes); |
398 | audit_log_end(ab); |
399 | return rc; |
400 | } |
401 | |
402 | static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) |
403 | { |
404 | int allow_changes, rc = 0; |
405 | u32 old = *to_change; |
406 | |
407 | /* check if we are locked */ |
408 | if (audit_enabled == AUDIT_LOCKED) |
409 | allow_changes = 0; |
410 | else |
411 | allow_changes = 1; |
412 | |
413 | if (audit_enabled != AUDIT_OFF) { |
414 | rc = audit_log_config_change(function_name, new, old, allow_changes); |
415 | if (rc) |
416 | allow_changes = 0; |
417 | } |
418 | |
419 | /* If we are allowed, make the change */ |
420 | if (allow_changes == 1) |
421 | *to_change = new; |
422 | /* Not allowed, update reason */ |
423 | else if (rc == 0) |
424 | rc = -EPERM; |
425 | return rc; |
426 | } |
427 | |
428 | static int audit_set_rate_limit(u32 limit) |
429 | { |
430 | return audit_do_config_change(function_name: "audit_rate_limit", to_change: &audit_rate_limit, new: limit); |
431 | } |
432 | |
433 | static int audit_set_backlog_limit(u32 limit) |
434 | { |
435 | return audit_do_config_change(function_name: "audit_backlog_limit", to_change: &audit_backlog_limit, new: limit); |
436 | } |
437 | |
438 | static int audit_set_backlog_wait_time(u32 timeout) |
439 | { |
440 | return audit_do_config_change(function_name: "audit_backlog_wait_time", |
441 | to_change: &audit_backlog_wait_time, new: timeout); |
442 | } |
443 | |
444 | static int audit_set_enabled(u32 state) |
445 | { |
446 | int rc; |
447 | if (state > AUDIT_LOCKED) |
448 | return -EINVAL; |
449 | |
450 | rc = audit_do_config_change(function_name: "audit_enabled", to_change: &audit_enabled, new: state); |
451 | if (!rc) |
452 | audit_ever_enabled |= !!state; |
453 | |
454 | return rc; |
455 | } |
456 | |
457 | static int audit_set_failure(u32 state) |
458 | { |
459 | if (state != AUDIT_FAIL_SILENT |
460 | && state != AUDIT_FAIL_PRINTK |
461 | && state != AUDIT_FAIL_PANIC) |
462 | return -EINVAL; |
463 | |
464 | return audit_do_config_change(function_name: "audit_failure", to_change: &audit_failure, new: state); |
465 | } |
466 | |
467 | /** |
468 | * auditd_conn_free - RCU helper to release an auditd connection struct |
469 | * @rcu: RCU head |
470 | * |
471 | * Description: |
472 | * Drop any references inside the auditd connection tracking struct and free |
473 | * the memory. |
474 | */ |
475 | static void auditd_conn_free(struct rcu_head *rcu) |
476 | { |
477 | struct auditd_connection *ac; |
478 | |
479 | ac = container_of(rcu, struct auditd_connection, rcu); |
480 | put_pid(pid: ac->pid); |
481 | put_net(net: ac->net); |
482 | kfree(objp: ac); |
483 | } |
484 | |
485 | /** |
486 | * auditd_set - Set/Reset the auditd connection state |
487 | * @pid: auditd PID |
488 | * @portid: auditd netlink portid |
489 | * @net: auditd network namespace pointer |
490 | * @skb: the netlink command from the audit daemon |
491 | * @ack: netlink ack flag, cleared if ack'd here |
492 | * |
493 | * Description: |
494 | * This function will obtain and drop network namespace references as |
495 | * necessary. Returns zero on success, negative values on failure. |
496 | */ |
497 | static int auditd_set(struct pid *pid, u32 portid, struct net *net, |
498 | struct sk_buff *skb, bool *ack) |
499 | { |
500 | unsigned long flags; |
501 | struct auditd_connection *ac_old, *ac_new; |
502 | struct nlmsghdr *nlh; |
503 | |
504 | if (!pid || !net) |
505 | return -EINVAL; |
506 | |
507 | ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); |
508 | if (!ac_new) |
509 | return -ENOMEM; |
510 | ac_new->pid = get_pid(pid); |
511 | ac_new->portid = portid; |
512 | ac_new->net = get_net(net); |
513 | |
514 | /* send the ack now to avoid a race with the queue backlog */ |
515 | if (*ack) { |
516 | nlh = nlmsg_hdr(skb); |
517 | netlink_ack(in_skb: skb, nlh, err: 0, NULL); |
518 | *ack = false; |
519 | } |
520 | |
521 | spin_lock_irqsave(&auditd_conn_lock, flags); |
522 | ac_old = rcu_dereference_protected(auditd_conn, |
523 | lockdep_is_held(&auditd_conn_lock)); |
524 | rcu_assign_pointer(auditd_conn, ac_new); |
525 | spin_unlock_irqrestore(lock: &auditd_conn_lock, flags); |
526 | |
527 | if (ac_old) |
528 | call_rcu(head: &ac_old->rcu, func: auditd_conn_free); |
529 | |
530 | return 0; |
531 | } |
532 | |
533 | /** |
534 | * kauditd_printk_skb - Print the audit record to the ring buffer |
535 | * @skb: audit record |
536 | * |
537 | * Whatever the reason, this packet may not make it to the auditd connection |
538 | * so write it via printk so the information isn't completely lost. |
539 | */ |
540 | static void kauditd_printk_skb(struct sk_buff *skb) |
541 | { |
542 | struct nlmsghdr *nlh = nlmsg_hdr(skb); |
543 | char *data = nlmsg_data(nlh); |
544 | |
545 | if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) |
546 | pr_notice("type=%d %s\n", nlh->nlmsg_type, data); |
547 | } |
548 | |
549 | /** |
550 | * kauditd_rehold_skb - Handle a audit record send failure in the hold queue |
551 | * @skb: audit record |
552 | * @error: error code (unused) |
553 | * |
554 | * Description: |
555 | * This should only be used by the kauditd_thread when it fails to flush the |
556 | * hold queue. |
557 | */ |
558 | static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error) |
559 | { |
560 | /* put the record back in the queue */ |
561 | skb_queue_tail(list: &audit_hold_queue, newsk: skb); |
562 | } |
563 | |
564 | /** |
565 | * kauditd_hold_skb - Queue an audit record, waiting for auditd |
566 | * @skb: audit record |
567 | * @error: error code |
568 | * |
569 | * Description: |
570 | * Queue the audit record, waiting for an instance of auditd. When this |
571 | * function is called we haven't given up yet on sending the record, but things |
572 | * are not looking good. The first thing we want to do is try to write the |
573 | * record via printk and then see if we want to try and hold on to the record |
574 | * and queue it, if we have room. If we want to hold on to the record, but we |
575 | * don't have room, record a record lost message. |
576 | */ |
577 | static void kauditd_hold_skb(struct sk_buff *skb, int error) |
578 | { |
579 | /* at this point it is uncertain if we will ever send this to auditd so |
580 | * try to send the message via printk before we go any further */ |
581 | kauditd_printk_skb(skb); |
582 | |
583 | /* can we just silently drop the message? */ |
584 | if (!audit_default) |
585 | goto drop; |
586 | |
587 | /* the hold queue is only for when the daemon goes away completely, |
588 | * not -EAGAIN failures; if we are in a -EAGAIN state requeue the |
589 | * record on the retry queue unless it's full, in which case drop it |
590 | */ |
591 | if (error == -EAGAIN) { |
592 | if (!audit_backlog_limit || |
593 | skb_queue_len(list_: &audit_retry_queue) < audit_backlog_limit) { |
594 | skb_queue_tail(list: &audit_retry_queue, newsk: skb); |
595 | return; |
596 | } |
597 | audit_log_lost(message: "kauditd retry queue overflow"); |
598 | goto drop; |
599 | } |
600 | |
601 | /* if we have room in the hold queue, queue the message */ |
602 | if (!audit_backlog_limit || |
603 | skb_queue_len(list_: &audit_hold_queue) < audit_backlog_limit) { |
604 | skb_queue_tail(list: &audit_hold_queue, newsk: skb); |
605 | return; |
606 | } |
607 | |
608 | /* we have no other options - drop the message */ |
609 | audit_log_lost(message: "kauditd hold queue overflow"); |
610 | drop: |
611 | kfree_skb(skb); |
612 | } |
613 | |
614 | /** |
615 | * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd |
616 | * @skb: audit record |
617 | * @error: error code (unused) |
618 | * |
619 | * Description: |
620 | * Not as serious as kauditd_hold_skb() as we still have a connected auditd, |
621 | * but for some reason we are having problems sending it audit records so |
622 | * queue the given record and attempt to resend. |
623 | */ |
624 | static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error) |
625 | { |
626 | if (!audit_backlog_limit || |
627 | skb_queue_len(list_: &audit_retry_queue) < audit_backlog_limit) { |
628 | skb_queue_tail(list: &audit_retry_queue, newsk: skb); |
629 | return; |
630 | } |
631 | |
632 | /* we have to drop the record, send it via printk as a last effort */ |
633 | kauditd_printk_skb(skb); |
634 | audit_log_lost(message: "kauditd retry queue overflow"); |
635 | kfree_skb(skb); |
636 | } |
637 | |
638 | /** |
639 | * auditd_reset - Disconnect the auditd connection |
640 | * @ac: auditd connection state |
641 | * |
642 | * Description: |
643 | * Break the auditd/kauditd connection and move all the queued records into the |
644 | * hold queue in case auditd reconnects. It is important to note that the @ac |
645 | * pointer should never be dereferenced inside this function as it may be NULL |
646 | * or invalid, you can only compare the memory address! If @ac is NULL then |
647 | * the connection will always be reset. |
648 | */ |
649 | static void auditd_reset(const struct auditd_connection *ac) |
650 | { |
651 | unsigned long flags; |
652 | struct sk_buff *skb; |
653 | struct auditd_connection *ac_old; |
654 | |
655 | /* if it isn't already broken, break the connection */ |
656 | spin_lock_irqsave(&auditd_conn_lock, flags); |
657 | ac_old = rcu_dereference_protected(auditd_conn, |
658 | lockdep_is_held(&auditd_conn_lock)); |
659 | if (ac && ac != ac_old) { |
660 | /* someone already registered a new auditd connection */ |
661 | spin_unlock_irqrestore(lock: &auditd_conn_lock, flags); |
662 | return; |
663 | } |
664 | rcu_assign_pointer(auditd_conn, NULL); |
665 | spin_unlock_irqrestore(lock: &auditd_conn_lock, flags); |
666 | |
667 | if (ac_old) |
668 | call_rcu(head: &ac_old->rcu, func: auditd_conn_free); |
669 | |
670 | /* flush the retry queue to the hold queue, but don't touch the main |
671 | * queue since we need to process that normally for multicast */ |
672 | while ((skb = skb_dequeue(list: &audit_retry_queue))) |
673 | kauditd_hold_skb(skb, error: -ECONNREFUSED); |
674 | } |
675 | |
676 | /** |
677 | * auditd_send_unicast_skb - Send a record via unicast to auditd |
678 | * @skb: audit record |
679 | * |
680 | * Description: |
681 | * Send a skb to the audit daemon, returns positive/zero values on success and |
682 | * negative values on failure; in all cases the skb will be consumed by this |
683 | * function. If the send results in -ECONNREFUSED the connection with auditd |
684 | * will be reset. This function may sleep so callers should not hold any locks |
685 | * where this would cause a problem. |
686 | */ |
687 | static int auditd_send_unicast_skb(struct sk_buff *skb) |
688 | { |
689 | int rc; |
690 | u32 portid; |
691 | struct net *net; |
692 | struct sock *sk; |
693 | struct auditd_connection *ac; |
694 | |
695 | /* NOTE: we can't call netlink_unicast while in the RCU section so |
696 | * take a reference to the network namespace and grab local |
697 | * copies of the namespace, the sock, and the portid; the |
698 | * namespace and sock aren't going to go away while we hold a |
699 | * reference and if the portid does become invalid after the RCU |
700 | * section netlink_unicast() should safely return an error */ |
701 | |
702 | rcu_read_lock(); |
703 | ac = rcu_dereference(auditd_conn); |
704 | if (!ac) { |
705 | rcu_read_unlock(); |
706 | kfree_skb(skb); |
707 | rc = -ECONNREFUSED; |
708 | goto err; |
709 | } |
710 | net = get_net(net: ac->net); |
711 | sk = audit_get_sk(net); |
712 | portid = ac->portid; |
713 | rcu_read_unlock(); |
714 | |
715 | rc = netlink_unicast(ssk: sk, skb, portid, nonblock: 0); |
716 | put_net(net); |
717 | if (rc < 0) |
718 | goto err; |
719 | |
720 | return rc; |
721 | |
722 | err: |
723 | if (ac && rc == -ECONNREFUSED) |
724 | auditd_reset(ac); |
725 | return rc; |
726 | } |
727 | |
728 | /** |
729 | * kauditd_send_queue - Helper for kauditd_thread to flush skb queues |
730 | * @sk: the sending sock |
731 | * @portid: the netlink destination |
732 | * @queue: the skb queue to process |
733 | * @retry_limit: limit on number of netlink unicast failures |
734 | * @skb_hook: per-skb hook for additional processing |
735 | * @err_hook: hook called if the skb fails the netlink unicast send |
736 | * |
737 | * Description: |
738 | * Run through the given queue and attempt to send the audit records to auditd, |
739 | * returns zero on success, negative values on failure. It is up to the caller |
740 | * to ensure that the @sk is valid for the duration of this function. |
741 | * |
742 | */ |
743 | static int kauditd_send_queue(struct sock *sk, u32 portid, |
744 | struct sk_buff_head *queue, |
745 | unsigned int retry_limit, |
746 | void (*skb_hook)(struct sk_buff *skb), |
747 | void (*err_hook)(struct sk_buff *skb, int error)) |
748 | { |
749 | int rc = 0; |
750 | struct sk_buff *skb = NULL; |
751 | struct sk_buff *skb_tail; |
752 | unsigned int failed = 0; |
753 | |
754 | /* NOTE: kauditd_thread takes care of all our locking, we just use |
755 | * the netlink info passed to us (e.g. sk and portid) */ |
756 | |
757 | skb_tail = skb_peek_tail(list_: queue); |
758 | while ((skb != skb_tail) && (skb = skb_dequeue(list: queue))) { |
759 | /* call the skb_hook for each skb we touch */ |
760 | if (skb_hook) |
761 | (*skb_hook)(skb); |
762 | |
763 | /* can we send to anyone via unicast? */ |
764 | if (!sk) { |
765 | if (err_hook) |
766 | (*err_hook)(skb, -ECONNREFUSED); |
767 | continue; |
768 | } |
769 | |
770 | retry: |
771 | /* grab an extra skb reference in case of error */ |
772 | skb_get(skb); |
773 | rc = netlink_unicast(ssk: sk, skb, portid, nonblock: 0); |
774 | if (rc < 0) { |
775 | /* send failed - try a few times unless fatal error */ |
776 | if (++failed >= retry_limit || |
777 | rc == -ECONNREFUSED || rc == -EPERM) { |
778 | sk = NULL; |
779 | if (err_hook) |
780 | (*err_hook)(skb, rc); |
781 | if (rc == -EAGAIN) |
782 | rc = 0; |
783 | /* continue to drain the queue */ |
784 | continue; |
785 | } else |
786 | goto retry; |
787 | } else { |
788 | /* skb sent - drop the extra reference and continue */ |
789 | consume_skb(skb); |
790 | failed = 0; |
791 | } |
792 | } |
793 | |
794 | return (rc >= 0 ? 0 : rc); |
795 | } |
796 | |
797 | /* |
798 | * kauditd_send_multicast_skb - Send a record to any multicast listeners |
799 | * @skb: audit record |
800 | * |
801 | * Description: |
802 | * Write a multicast message to anyone listening in the initial network |
803 | * namespace. This function doesn't consume an skb as might be expected since |
804 | * it has to copy it anyways. |
805 | */ |
806 | static void kauditd_send_multicast_skb(struct sk_buff *skb) |
807 | { |
808 | struct sk_buff *copy; |
809 | struct sock *sock = audit_get_sk(net: &init_net); |
810 | struct nlmsghdr *nlh; |
811 | |
812 | /* NOTE: we are not taking an additional reference for init_net since |
813 | * we don't have to worry about it going away */ |
814 | |
815 | if (!netlink_has_listeners(sk: sock, group: AUDIT_NLGRP_READLOG)) |
816 | return; |
817 | |
818 | /* |
819 | * The seemingly wasteful skb_copy() rather than bumping the refcount |
820 | * using skb_get() is necessary because non-standard mods are made to |
821 | * the skb by the original kaudit unicast socket send routine. The |
822 | * existing auditd daemon assumes this breakage. Fixing this would |
823 | * require co-ordinating a change in the established protocol between |
824 | * the kaudit kernel subsystem and the auditd userspace code. There is |
825 | * no reason for new multicast clients to continue with this |
826 | * non-compliance. |
827 | */ |
828 | copy = skb_copy(skb, GFP_KERNEL); |
829 | if (!copy) |
830 | return; |
831 | nlh = nlmsg_hdr(skb: copy); |
832 | nlh->nlmsg_len = skb->len; |
833 | |
834 | nlmsg_multicast(sk: sock, skb: copy, portid: 0, group: AUDIT_NLGRP_READLOG, GFP_KERNEL); |
835 | } |
836 | |
837 | /** |
838 | * kauditd_thread - Worker thread to send audit records to userspace |
839 | * @dummy: unused |
840 | */ |
841 | static int kauditd_thread(void *dummy) |
842 | { |
843 | int rc; |
844 | u32 portid = 0; |
845 | struct net *net = NULL; |
846 | struct sock *sk = NULL; |
847 | struct auditd_connection *ac; |
848 | |
849 | #define UNICAST_RETRIES 5 |
850 | |
851 | set_freezable(); |
852 | while (!kthread_should_stop()) { |
853 | /* NOTE: see the lock comments in auditd_send_unicast_skb() */ |
854 | rcu_read_lock(); |
855 | ac = rcu_dereference(auditd_conn); |
856 | if (!ac) { |
857 | rcu_read_unlock(); |
858 | goto main_queue; |
859 | } |
860 | net = get_net(net: ac->net); |
861 | sk = audit_get_sk(net); |
862 | portid = ac->portid; |
863 | rcu_read_unlock(); |
864 | |
865 | /* attempt to flush the hold queue */ |
866 | rc = kauditd_send_queue(sk, portid, |
867 | queue: &audit_hold_queue, UNICAST_RETRIES, |
868 | NULL, err_hook: kauditd_rehold_skb); |
869 | if (rc < 0) { |
870 | sk = NULL; |
871 | auditd_reset(ac); |
872 | goto main_queue; |
873 | } |
874 | |
875 | /* attempt to flush the retry queue */ |
876 | rc = kauditd_send_queue(sk, portid, |
877 | queue: &audit_retry_queue, UNICAST_RETRIES, |
878 | NULL, err_hook: kauditd_hold_skb); |
879 | if (rc < 0) { |
880 | sk = NULL; |
881 | auditd_reset(ac); |
882 | goto main_queue; |
883 | } |
884 | |
885 | main_queue: |
886 | /* process the main queue - do the multicast send and attempt |
887 | * unicast, dump failed record sends to the retry queue; if |
888 | * sk == NULL due to previous failures we will just do the |
889 | * multicast send and move the record to the hold queue */ |
890 | rc = kauditd_send_queue(sk, portid, queue: &audit_queue, retry_limit: 1, |
891 | skb_hook: kauditd_send_multicast_skb, |
892 | err_hook: (sk ? |
893 | kauditd_retry_skb : kauditd_hold_skb)); |
894 | if (ac && rc < 0) |
895 | auditd_reset(ac); |
896 | sk = NULL; |
897 | |
898 | /* drop our netns reference, no auditd sends past this line */ |
899 | if (net) { |
900 | put_net(net); |
901 | net = NULL; |
902 | } |
903 | |
904 | /* we have processed all the queues so wake everyone */ |
905 | wake_up(&audit_backlog_wait); |
906 | |
907 | /* NOTE: we want to wake up if there is anything on the queue, |
908 | * regardless of if an auditd is connected, as we need to |
909 | * do the multicast send and rotate records from the |
910 | * main queue to the retry/hold queues */ |
911 | wait_event_freezable(kauditd_wait, |
912 | (skb_queue_len(&audit_queue) ? 1 : 0)); |
913 | } |
914 | |
915 | return 0; |
916 | } |
917 | |
918 | int audit_send_list_thread(void *_dest) |
919 | { |
920 | struct audit_netlink_list *dest = _dest; |
921 | struct sk_buff *skb; |
922 | struct sock *sk = audit_get_sk(net: dest->net); |
923 | |
924 | /* wait for parent to finish and send an ACK */ |
925 | audit_ctl_lock(); |
926 | audit_ctl_unlock(); |
927 | |
928 | while ((skb = __skb_dequeue(list: &dest->q)) != NULL) |
929 | netlink_unicast(ssk: sk, skb, portid: dest->portid, nonblock: 0); |
930 | |
931 | put_net(net: dest->net); |
932 | kfree(objp: dest); |
933 | |
934 | return 0; |
935 | } |
936 | |
937 | struct sk_buff *audit_make_reply(int seq, int type, int done, |
938 | int multi, const void *payload, int size) |
939 | { |
940 | struct sk_buff *skb; |
941 | struct nlmsghdr *nlh; |
942 | void *data; |
943 | int flags = multi ? NLM_F_MULTI : 0; |
944 | int t = done ? NLMSG_DONE : type; |
945 | |
946 | skb = nlmsg_new(payload: size, GFP_KERNEL); |
947 | if (!skb) |
948 | return NULL; |
949 | |
950 | nlh = nlmsg_put(skb, portid: 0, seq, type: t, payload: size, flags); |
951 | if (!nlh) |
952 | goto out_kfree_skb; |
953 | data = nlmsg_data(nlh); |
954 | memcpy(data, payload, size); |
955 | return skb; |
956 | |
957 | out_kfree_skb: |
958 | kfree_skb(skb); |
959 | return NULL; |
960 | } |
961 | |
962 | static void audit_free_reply(struct audit_reply *reply) |
963 | { |
964 | if (!reply) |
965 | return; |
966 | |
967 | kfree_skb(skb: reply->skb); |
968 | if (reply->net) |
969 | put_net(net: reply->net); |
970 | kfree(objp: reply); |
971 | } |
972 | |
973 | static int audit_send_reply_thread(void *arg) |
974 | { |
975 | struct audit_reply *reply = (struct audit_reply *)arg; |
976 | |
977 | audit_ctl_lock(); |
978 | audit_ctl_unlock(); |
979 | |
980 | /* Ignore failure. It'll only happen if the sender goes away, |
981 | because our timeout is set to infinite. */ |
982 | netlink_unicast(ssk: audit_get_sk(net: reply->net), skb: reply->skb, portid: reply->portid, nonblock: 0); |
983 | reply->skb = NULL; |
984 | audit_free_reply(reply); |
985 | return 0; |
986 | } |
987 | |
988 | /** |
989 | * audit_send_reply - send an audit reply message via netlink |
990 | * @request_skb: skb of request we are replying to (used to target the reply) |
991 | * @seq: sequence number |
992 | * @type: audit message type |
993 | * @done: done (last) flag |
994 | * @multi: multi-part message flag |
995 | * @payload: payload data |
996 | * @size: payload size |
997 | * |
998 | * Allocates a skb, builds the netlink message, and sends it to the port id. |
999 | */ |
1000 | static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, |
1001 | int multi, const void *payload, int size) |
1002 | { |
1003 | struct task_struct *tsk; |
1004 | struct audit_reply *reply; |
1005 | |
1006 | reply = kzalloc(sizeof(*reply), GFP_KERNEL); |
1007 | if (!reply) |
1008 | return; |
1009 | |
1010 | reply->skb = audit_make_reply(seq, type, done, multi, payload, size); |
1011 | if (!reply->skb) |
1012 | goto err; |
1013 | reply->net = get_net(net: sock_net(NETLINK_CB(request_skb).sk)); |
1014 | reply->portid = NETLINK_CB(request_skb).portid; |
1015 | |
1016 | tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); |
1017 | if (IS_ERR(ptr: tsk)) |
1018 | goto err; |
1019 | |
1020 | return; |
1021 | |
1022 | err: |
1023 | audit_free_reply(reply); |
1024 | } |
1025 | |
1026 | /* |
1027 | * Check for appropriate CAP_AUDIT_ capabilities on incoming audit |
1028 | * control messages. |
1029 | */ |
1030 | static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) |
1031 | { |
1032 | int err = 0; |
1033 | |
1034 | /* Only support initial user namespace for now. */ |
1035 | /* |
1036 | * We return ECONNREFUSED because it tricks userspace into thinking |
1037 | * that audit was not configured into the kernel. Lots of users |
1038 | * configure their PAM stack (because that's what the distro does) |
1039 | * to reject login if unable to send messages to audit. If we return |
1040 | * ECONNREFUSED the PAM stack thinks the kernel does not have audit |
1041 | * configured in and will let login proceed. If we return EPERM |
1042 | * userspace will reject all logins. This should be removed when we |
1043 | * support non init namespaces!! |
1044 | */ |
1045 | if (current_user_ns() != &init_user_ns) |
1046 | return -ECONNREFUSED; |
1047 | |
1048 | switch (msg_type) { |
1049 | case AUDIT_LIST: |
1050 | case AUDIT_ADD: |
1051 | case AUDIT_DEL: |
1052 | return -EOPNOTSUPP; |
1053 | case AUDIT_GET: |
1054 | case AUDIT_SET: |
1055 | case AUDIT_GET_FEATURE: |
1056 | case AUDIT_SET_FEATURE: |
1057 | case AUDIT_LIST_RULES: |
1058 | case AUDIT_ADD_RULE: |
1059 | case AUDIT_DEL_RULE: |
1060 | case AUDIT_SIGNAL_INFO: |
1061 | case AUDIT_TTY_GET: |
1062 | case AUDIT_TTY_SET: |
1063 | case AUDIT_TRIM: |
1064 | case AUDIT_MAKE_EQUIV: |
1065 | /* Only support auditd and auditctl in initial pid namespace |
1066 | * for now. */ |
1067 | if (task_active_pid_ns(current) != &init_pid_ns) |
1068 | return -EPERM; |
1069 | |
1070 | if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) |
1071 | err = -EPERM; |
1072 | break; |
1073 | case AUDIT_USER: |
1074 | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: |
1075 | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: |
1076 | if (!netlink_capable(skb, CAP_AUDIT_WRITE)) |
1077 | err = -EPERM; |
1078 | break; |
1079 | default: /* bad msg */ |
1080 | err = -EINVAL; |
1081 | } |
1082 | |
1083 | return err; |
1084 | } |
1085 | |
1086 | static void audit_log_common_recv_msg(struct audit_context *context, |
1087 | struct audit_buffer **ab, u16 msg_type) |
1088 | { |
1089 | uid_t uid = from_kuid(to: &init_user_ns, current_uid()); |
1090 | pid_t pid = task_tgid_nr(current); |
1091 | |
1092 | if (!audit_enabled && msg_type != AUDIT_USER_AVC) { |
1093 | *ab = NULL; |
1094 | return; |
1095 | } |
1096 | |
1097 | *ab = audit_log_start(ctx: context, GFP_KERNEL, type: msg_type); |
1098 | if (unlikely(!*ab)) |
1099 | return; |
1100 | audit_log_format(ab: *ab, fmt: "pid=%d uid=%u ", pid, uid); |
1101 | audit_log_session_info(ab: *ab); |
1102 | audit_log_task_context(ab: *ab); |
1103 | } |
1104 | |
1105 | static inline void audit_log_user_recv_msg(struct audit_buffer **ab, |
1106 | u16 msg_type) |
1107 | { |
1108 | audit_log_common_recv_msg(NULL, ab, msg_type); |
1109 | } |
1110 | |
1111 | static int is_audit_feature_set(int i) |
1112 | { |
1113 | return af.features & AUDIT_FEATURE_TO_MASK(i); |
1114 | } |
1115 | |
1116 | |
1117 | static int audit_get_feature(struct sk_buff *skb) |
1118 | { |
1119 | u32 seq; |
1120 | |
1121 | seq = nlmsg_hdr(skb)->nlmsg_seq; |
1122 | |
1123 | audit_send_reply(request_skb: skb, seq, AUDIT_GET_FEATURE, done: 0, multi: 0, payload: &af, size: sizeof(af)); |
1124 | |
1125 | return 0; |
1126 | } |
1127 | |
1128 | static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, |
1129 | u32 old_lock, u32 new_lock, int res) |
1130 | { |
1131 | struct audit_buffer *ab; |
1132 | |
1133 | if (audit_enabled == AUDIT_OFF) |
1134 | return; |
1135 | |
1136 | ab = audit_log_start(ctx: audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); |
1137 | if (!ab) |
1138 | return; |
1139 | audit_log_task_info(ab); |
1140 | audit_log_format(ab, fmt: " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", |
1141 | audit_feature_names[which], !!old_feature, !!new_feature, |
1142 | !!old_lock, !!new_lock, res); |
1143 | audit_log_end(ab); |
1144 | } |
1145 | |
1146 | static int audit_set_feature(struct audit_features *uaf) |
1147 | { |
1148 | int i; |
1149 | |
1150 | BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); |
1151 | |
1152 | /* if there is ever a version 2 we should handle that here */ |
1153 | |
1154 | for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { |
1155 | u32 feature = AUDIT_FEATURE_TO_MASK(i); |
1156 | u32 old_feature, new_feature, old_lock, new_lock; |
1157 | |
1158 | /* if we are not changing this feature, move along */ |
1159 | if (!(feature & uaf->mask)) |
1160 | continue; |
1161 | |
1162 | old_feature = af.features & feature; |
1163 | new_feature = uaf->features & feature; |
1164 | new_lock = (uaf->lock | af.lock) & feature; |
1165 | old_lock = af.lock & feature; |
1166 | |
1167 | /* are we changing a locked feature? */ |
1168 | if (old_lock && (new_feature != old_feature)) { |
1169 | audit_log_feature_change(which: i, old_feature, new_feature, |
1170 | old_lock, new_lock, res: 0); |
1171 | return -EPERM; |
1172 | } |
1173 | } |
1174 | /* nothing invalid, do the changes */ |
1175 | for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { |
1176 | u32 feature = AUDIT_FEATURE_TO_MASK(i); |
1177 | u32 old_feature, new_feature, old_lock, new_lock; |
1178 | |
1179 | /* if we are not changing this feature, move along */ |
1180 | if (!(feature & uaf->mask)) |
1181 | continue; |
1182 | |
1183 | old_feature = af.features & feature; |
1184 | new_feature = uaf->features & feature; |
1185 | old_lock = af.lock & feature; |
1186 | new_lock = (uaf->lock | af.lock) & feature; |
1187 | |
1188 | if (new_feature != old_feature) |
1189 | audit_log_feature_change(which: i, old_feature, new_feature, |
1190 | old_lock, new_lock, res: 1); |
1191 | |
1192 | if (new_feature) |
1193 | af.features |= feature; |
1194 | else |
1195 | af.features &= ~feature; |
1196 | af.lock |= new_lock; |
1197 | } |
1198 | |
1199 | return 0; |
1200 | } |
1201 | |
1202 | static int audit_replace(struct pid *pid) |
1203 | { |
1204 | pid_t pvnr; |
1205 | struct sk_buff *skb; |
1206 | |
1207 | pvnr = pid_vnr(pid); |
1208 | skb = audit_make_reply(seq: 0, AUDIT_REPLACE, done: 0, multi: 0, payload: &pvnr, size: sizeof(pvnr)); |
1209 | if (!skb) |
1210 | return -ENOMEM; |
1211 | return auditd_send_unicast_skb(skb); |
1212 | } |
1213 | |
1214 | static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh, |
1215 | bool *ack) |
1216 | { |
1217 | u32 seq; |
1218 | void *data; |
1219 | int data_len; |
1220 | int err; |
1221 | struct audit_buffer *ab; |
1222 | u16 msg_type = nlh->nlmsg_type; |
1223 | struct audit_sig_info *sig_data; |
1224 | struct lsm_context lsmctx = { NULL, 0, 0 }; |
1225 | |
1226 | err = audit_netlink_ok(skb, msg_type); |
1227 | if (err) |
1228 | return err; |
1229 | |
1230 | seq = nlh->nlmsg_seq; |
1231 | data = nlmsg_data(nlh); |
1232 | data_len = nlmsg_len(nlh); |
1233 | |
1234 | switch (msg_type) { |
1235 | case AUDIT_GET: { |
1236 | struct audit_status s; |
1237 | memset(&s, 0, sizeof(s)); |
1238 | s.enabled = audit_enabled; |
1239 | s.failure = audit_failure; |
1240 | /* NOTE: use pid_vnr() so the PID is relative to the current |
1241 | * namespace */ |
1242 | s.pid = auditd_pid_vnr(); |
1243 | s.rate_limit = audit_rate_limit; |
1244 | s.backlog_limit = audit_backlog_limit; |
1245 | s.lost = atomic_read(v: &audit_lost); |
1246 | s.backlog = skb_queue_len(list_: &audit_queue); |
1247 | s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; |
1248 | s.backlog_wait_time = audit_backlog_wait_time; |
1249 | s.backlog_wait_time_actual = atomic_read(v: &audit_backlog_wait_time_actual); |
1250 | audit_send_reply(request_skb: skb, seq, AUDIT_GET, done: 0, multi: 0, payload: &s, size: sizeof(s)); |
1251 | break; |
1252 | } |
1253 | case AUDIT_SET: { |
1254 | struct audit_status s; |
1255 | memset(&s, 0, sizeof(s)); |
1256 | /* guard against past and future API changes */ |
1257 | memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); |
1258 | if (s.mask & AUDIT_STATUS_ENABLED) { |
1259 | err = audit_set_enabled(state: s.enabled); |
1260 | if (err < 0) |
1261 | return err; |
1262 | } |
1263 | if (s.mask & AUDIT_STATUS_FAILURE) { |
1264 | err = audit_set_failure(state: s.failure); |
1265 | if (err < 0) |
1266 | return err; |
1267 | } |
1268 | if (s.mask & AUDIT_STATUS_PID) { |
1269 | /* NOTE: we are using the vnr PID functions below |
1270 | * because the s.pid value is relative to the |
1271 | * namespace of the caller; at present this |
1272 | * doesn't matter much since you can really only |
1273 | * run auditd from the initial pid namespace, but |
1274 | * something to keep in mind if this changes */ |
1275 | pid_t new_pid = s.pid; |
1276 | pid_t auditd_pid; |
1277 | struct pid *req_pid = task_tgid(current); |
1278 | |
1279 | /* Sanity check - PID values must match. Setting |
1280 | * pid to 0 is how auditd ends auditing. */ |
1281 | if (new_pid && (new_pid != pid_vnr(pid: req_pid))) |
1282 | return -EINVAL; |
1283 | |
1284 | /* test the auditd connection */ |
1285 | audit_replace(pid: req_pid); |
1286 | |
1287 | auditd_pid = auditd_pid_vnr(); |
1288 | if (auditd_pid) { |
1289 | /* replacing a healthy auditd is not allowed */ |
1290 | if (new_pid) { |
1291 | audit_log_config_change(function_name: "audit_pid", |
1292 | new: new_pid, old: auditd_pid, allow_changes: 0); |
1293 | return -EEXIST; |
1294 | } |
1295 | /* only current auditd can unregister itself */ |
1296 | if (pid_vnr(pid: req_pid) != auditd_pid) { |
1297 | audit_log_config_change(function_name: "audit_pid", |
1298 | new: new_pid, old: auditd_pid, allow_changes: 0); |
1299 | return -EACCES; |
1300 | } |
1301 | } |
1302 | |
1303 | if (new_pid) { |
1304 | /* register a new auditd connection */ |
1305 | err = auditd_set(pid: req_pid, |
1306 | NETLINK_CB(skb).portid, |
1307 | net: sock_net(NETLINK_CB(skb).sk), |
1308 | skb, ack); |
1309 | if (audit_enabled != AUDIT_OFF) |
1310 | audit_log_config_change(function_name: "audit_pid", |
1311 | new: new_pid, |
1312 | old: auditd_pid, |
1313 | allow_changes: err ? 0 : 1); |
1314 | if (err) |
1315 | return err; |
1316 | |
1317 | /* try to process any backlog */ |
1318 | wake_up_interruptible(&kauditd_wait); |
1319 | } else { |
1320 | if (audit_enabled != AUDIT_OFF) |
1321 | audit_log_config_change(function_name: "audit_pid", |
1322 | new: new_pid, |
1323 | old: auditd_pid, allow_changes: 1); |
1324 | |
1325 | /* unregister the auditd connection */ |
1326 | auditd_reset(NULL); |
1327 | } |
1328 | } |
1329 | if (s.mask & AUDIT_STATUS_RATE_LIMIT) { |
1330 | err = audit_set_rate_limit(limit: s.rate_limit); |
1331 | if (err < 0) |
1332 | return err; |
1333 | } |
1334 | if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { |
1335 | err = audit_set_backlog_limit(limit: s.backlog_limit); |
1336 | if (err < 0) |
1337 | return err; |
1338 | } |
1339 | if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { |
1340 | if (sizeof(s) > (size_t)nlh->nlmsg_len) |
1341 | return -EINVAL; |
1342 | if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) |
1343 | return -EINVAL; |
1344 | err = audit_set_backlog_wait_time(timeout: s.backlog_wait_time); |
1345 | if (err < 0) |
1346 | return err; |
1347 | } |
1348 | if (s.mask == AUDIT_STATUS_LOST) { |
1349 | u32 lost = atomic_xchg(v: &audit_lost, new: 0); |
1350 | |
1351 | audit_log_config_change(function_name: "lost", new: 0, old: lost, allow_changes: 1); |
1352 | return lost; |
1353 | } |
1354 | if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) { |
1355 | u32 actual = atomic_xchg(v: &audit_backlog_wait_time_actual, new: 0); |
1356 | |
1357 | audit_log_config_change(function_name: "backlog_wait_time_actual", new: 0, old: actual, allow_changes: 1); |
1358 | return actual; |
1359 | } |
1360 | break; |
1361 | } |
1362 | case AUDIT_GET_FEATURE: |
1363 | err = audit_get_feature(skb); |
1364 | if (err) |
1365 | return err; |
1366 | break; |
1367 | case AUDIT_SET_FEATURE: |
1368 | if (data_len < sizeof(struct audit_features)) |
1369 | return -EINVAL; |
1370 | err = audit_set_feature(uaf: data); |
1371 | if (err) |
1372 | return err; |
1373 | break; |
1374 | case AUDIT_USER: |
1375 | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: |
1376 | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: |
1377 | if (!audit_enabled && msg_type != AUDIT_USER_AVC) |
1378 | return 0; |
1379 | /* exit early if there isn't at least one character to print */ |
1380 | if (data_len < 2) |
1381 | return -EINVAL; |
1382 | |
1383 | err = audit_filter(msgtype: msg_type, AUDIT_FILTER_USER); |
1384 | if (err == 1) { /* match or error */ |
1385 | char *str = data; |
1386 | |
1387 | err = 0; |
1388 | if (msg_type == AUDIT_USER_TTY) { |
1389 | err = tty_audit_push(); |
1390 | if (err) |
1391 | break; |
1392 | } |
1393 | audit_log_user_recv_msg(ab: &ab, msg_type); |
1394 | if (msg_type != AUDIT_USER_TTY) { |
1395 | /* ensure NULL termination */ |
1396 | str[data_len - 1] = '\0'; |
1397 | audit_log_format(ab, fmt: " msg='%.*s'", |
1398 | AUDIT_MESSAGE_TEXT_MAX, |
1399 | str); |
1400 | } else { |
1401 | audit_log_format(ab, fmt: " data="); |
1402 | if (str[data_len - 1] == '\0') |
1403 | data_len--; |
1404 | audit_log_n_untrustedstring(ab, string: str, n: data_len); |
1405 | } |
1406 | audit_log_end(ab); |
1407 | } |
1408 | break; |
1409 | case AUDIT_ADD_RULE: |
1410 | case AUDIT_DEL_RULE: |
1411 | if (data_len < sizeof(struct audit_rule_data)) |
1412 | return -EINVAL; |
1413 | if (audit_enabled == AUDIT_LOCKED) { |
1414 | audit_log_common_recv_msg(context: audit_context(), ab: &ab, |
1415 | AUDIT_CONFIG_CHANGE); |
1416 | audit_log_format(ab, fmt: " op=%s audit_enabled=%d res=0", |
1417 | msg_type == AUDIT_ADD_RULE ? |
1418 | "add_rule": "remove_rule", |
1419 | audit_enabled); |
1420 | audit_log_end(ab); |
1421 | return -EPERM; |
1422 | } |
1423 | err = audit_rule_change(type: msg_type, seq, data, datasz: data_len); |
1424 | break; |
1425 | case AUDIT_LIST_RULES: |
1426 | err = audit_list_rules_send(request_skb: skb, seq); |
1427 | break; |
1428 | case AUDIT_TRIM: |
1429 | audit_trim_trees(); |
1430 | audit_log_common_recv_msg(context: audit_context(), ab: &ab, |
1431 | AUDIT_CONFIG_CHANGE); |
1432 | audit_log_format(ab, fmt: " op=trim res=1"); |
1433 | audit_log_end(ab); |
1434 | break; |
1435 | case AUDIT_MAKE_EQUIV: { |
1436 | void *bufp = data; |
1437 | u32 sizes[2]; |
1438 | size_t msglen = data_len; |
1439 | char *old, *new; |
1440 | |
1441 | err = -EINVAL; |
1442 | if (msglen < 2 * sizeof(u32)) |
1443 | break; |
1444 | memcpy(sizes, bufp, 2 * sizeof(u32)); |
1445 | bufp += 2 * sizeof(u32); |
1446 | msglen -= 2 * sizeof(u32); |
1447 | old = audit_unpack_string(bufp: &bufp, remain: &msglen, len: sizes[0]); |
1448 | if (IS_ERR(ptr: old)) { |
1449 | err = PTR_ERR(ptr: old); |
1450 | break; |
1451 | } |
1452 | new = audit_unpack_string(bufp: &bufp, remain: &msglen, len: sizes[1]); |
1453 | if (IS_ERR(ptr: new)) { |
1454 | err = PTR_ERR(ptr: new); |
1455 | kfree(objp: old); |
1456 | break; |
1457 | } |
1458 | /* OK, here comes... */ |
1459 | err = audit_tag_tree(old, new); |
1460 | |
1461 | audit_log_common_recv_msg(context: audit_context(), ab: &ab, |
1462 | AUDIT_CONFIG_CHANGE); |
1463 | audit_log_format(ab, fmt: " op=make_equiv old="); |
1464 | audit_log_untrustedstring(ab, string: old); |
1465 | audit_log_format(ab, fmt: " new="); |
1466 | audit_log_untrustedstring(ab, string: new); |
1467 | audit_log_format(ab, fmt: " res=%d", !err); |
1468 | audit_log_end(ab); |
1469 | kfree(objp: old); |
1470 | kfree(objp: new); |
1471 | break; |
1472 | } |
1473 | case AUDIT_SIGNAL_INFO: |
1474 | if (lsmprop_is_set(prop: &audit_sig_lsm)) { |
1475 | err = security_lsmprop_to_secctx(prop: &audit_sig_lsm, |
1476 | cp: &lsmctx); |
1477 | if (err < 0) |
1478 | return err; |
1479 | } |
1480 | sig_data = kmalloc(struct_size(sig_data, ctx, lsmctx.len), |
1481 | GFP_KERNEL); |
1482 | if (!sig_data) { |
1483 | if (lsmprop_is_set(prop: &audit_sig_lsm)) |
1484 | security_release_secctx(cp: &lsmctx); |
1485 | return -ENOMEM; |
1486 | } |
1487 | sig_data->uid = from_kuid(to: &init_user_ns, uid: audit_sig_uid); |
1488 | sig_data->pid = audit_sig_pid; |
1489 | if (lsmprop_is_set(prop: &audit_sig_lsm)) { |
1490 | memcpy(sig_data->ctx, lsmctx.context, lsmctx.len); |
1491 | security_release_secctx(cp: &lsmctx); |
1492 | } |
1493 | audit_send_reply(request_skb: skb, seq, AUDIT_SIGNAL_INFO, done: 0, multi: 0, |
1494 | payload: sig_data, struct_size(sig_data, ctx, |
1495 | lsmctx.len)); |
1496 | kfree(objp: sig_data); |
1497 | break; |
1498 | case AUDIT_TTY_GET: { |
1499 | struct audit_tty_status s; |
1500 | unsigned int t; |
1501 | |
1502 | t = READ_ONCE(current->signal->audit_tty); |
1503 | s.enabled = t & AUDIT_TTY_ENABLE; |
1504 | s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); |
1505 | |
1506 | audit_send_reply(request_skb: skb, seq, AUDIT_TTY_GET, done: 0, multi: 0, payload: &s, size: sizeof(s)); |
1507 | break; |
1508 | } |
1509 | case AUDIT_TTY_SET: { |
1510 | struct audit_tty_status s, old; |
1511 | struct audit_buffer *ab; |
1512 | unsigned int t; |
1513 | |
1514 | memset(&s, 0, sizeof(s)); |
1515 | /* guard against past and future API changes */ |
1516 | memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); |
1517 | /* check if new data is valid */ |
1518 | if ((s.enabled != 0 && s.enabled != 1) || |
1519 | (s.log_passwd != 0 && s.log_passwd != 1)) |
1520 | err = -EINVAL; |
1521 | |
1522 | if (err) |
1523 | t = READ_ONCE(current->signal->audit_tty); |
1524 | else { |
1525 | t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); |
1526 | t = xchg(¤t->signal->audit_tty, t); |
1527 | } |
1528 | old.enabled = t & AUDIT_TTY_ENABLE; |
1529 | old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); |
1530 | |
1531 | audit_log_common_recv_msg(context: audit_context(), ab: &ab, |
1532 | AUDIT_CONFIG_CHANGE); |
1533 | audit_log_format(ab, fmt: " op=tty_set old-enabled=%d new-enabled=%d" |
1534 | " old-log_passwd=%d new-log_passwd=%d res=%d", |
1535 | old.enabled, s.enabled, old.log_passwd, |
1536 | s.log_passwd, !err); |
1537 | audit_log_end(ab); |
1538 | break; |
1539 | } |
1540 | default: |
1541 | err = -EINVAL; |
1542 | break; |
1543 | } |
1544 | |
1545 | return err < 0 ? err : 0; |
1546 | } |
1547 | |
1548 | /** |
1549 | * audit_receive - receive messages from a netlink control socket |
1550 | * @skb: the message buffer |
1551 | * |
1552 | * Parse the provided skb and deal with any messages that may be present, |
1553 | * malformed skbs are discarded. |
1554 | */ |
1555 | static void audit_receive(struct sk_buff *skb) |
1556 | { |
1557 | struct nlmsghdr *nlh; |
1558 | bool ack; |
1559 | /* |
1560 | * len MUST be signed for nlmsg_next to be able to dec it below 0 |
1561 | * if the nlmsg_len was not aligned |
1562 | */ |
1563 | int len; |
1564 | int err; |
1565 | |
1566 | nlh = nlmsg_hdr(skb); |
1567 | len = skb->len; |
1568 | |
1569 | audit_ctl_lock(); |
1570 | while (nlmsg_ok(nlh, remaining: len)) { |
1571 | ack = nlh->nlmsg_flags & NLM_F_ACK; |
1572 | err = audit_receive_msg(skb, nlh, ack: &ack); |
1573 | |
1574 | /* send an ack if the user asked for one and audit_receive_msg |
1575 | * didn't already do it, or if there was an error. */ |
1576 | if (ack || err) |
1577 | netlink_ack(in_skb: skb, nlh, err, NULL); |
1578 | |
1579 | nlh = nlmsg_next(nlh, remaining: &len); |
1580 | } |
1581 | audit_ctl_unlock(); |
1582 | |
1583 | /* can't block with the ctrl lock, so penalize the sender now */ |
1584 | if (audit_backlog_limit && |
1585 | (skb_queue_len(list_: &audit_queue) > audit_backlog_limit)) { |
1586 | DECLARE_WAITQUEUE(wait, current); |
1587 | |
1588 | /* wake kauditd to try and flush the queue */ |
1589 | wake_up_interruptible(&kauditd_wait); |
1590 | |
1591 | add_wait_queue_exclusive(wq_head: &audit_backlog_wait, wq_entry: &wait); |
1592 | set_current_state(TASK_UNINTERRUPTIBLE); |
1593 | schedule_timeout(timeout: audit_backlog_wait_time); |
1594 | remove_wait_queue(wq_head: &audit_backlog_wait, wq_entry: &wait); |
1595 | } |
1596 | } |
1597 | |
1598 | /* Log information about who is connecting to the audit multicast socket */ |
1599 | static void audit_log_multicast(int group, const char *op, int err) |
1600 | { |
1601 | const struct cred *cred; |
1602 | struct tty_struct *tty; |
1603 | char comm[sizeof(current->comm)]; |
1604 | struct audit_buffer *ab; |
1605 | |
1606 | if (!audit_enabled) |
1607 | return; |
1608 | |
1609 | ab = audit_log_start(ctx: audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER); |
1610 | if (!ab) |
1611 | return; |
1612 | |
1613 | cred = current_cred(); |
1614 | tty = audit_get_tty(); |
1615 | audit_log_format(ab, fmt: "pid=%u uid=%u auid=%u tty=%s ses=%u", |
1616 | task_tgid_nr(current), |
1617 | from_kuid(to: &init_user_ns, uid: cred->uid), |
1618 | from_kuid(to: &init_user_ns, uid: audit_get_loginuid(current)), |
1619 | tty ? tty_name(tty) : "(none)", |
1620 | audit_get_sessionid(current)); |
1621 | audit_put_tty(tty); |
1622 | audit_log_task_context(ab); /* subj= */ |
1623 | audit_log_format(ab, fmt: " comm="); |
1624 | audit_log_untrustedstring(ab, get_task_comm(comm, current)); |
1625 | audit_log_d_path_exe(ab, current->mm); /* exe= */ |
1626 | audit_log_format(ab, fmt: " nl-mcgrp=%d op=%s res=%d", group, op, !err); |
1627 | audit_log_end(ab); |
1628 | } |
1629 | |
1630 | /* Run custom bind function on netlink socket group connect or bind requests. */ |
1631 | static int audit_multicast_bind(struct net *net, int group) |
1632 | { |
1633 | int err = 0; |
1634 | |
1635 | if (!capable(CAP_AUDIT_READ)) |
1636 | err = -EPERM; |
1637 | audit_log_multicast(group, op: "connect", err); |
1638 | return err; |
1639 | } |
1640 | |
1641 | static void audit_multicast_unbind(struct net *net, int group) |
1642 | { |
1643 | audit_log_multicast(group, op: "disconnect", err: 0); |
1644 | } |
1645 | |
1646 | static int __net_init audit_net_init(struct net *net) |
1647 | { |
1648 | struct netlink_kernel_cfg cfg = { |
1649 | .input = audit_receive, |
1650 | .bind = audit_multicast_bind, |
1651 | .unbind = audit_multicast_unbind, |
1652 | .flags = NL_CFG_F_NONROOT_RECV, |
1653 | .groups = AUDIT_NLGRP_MAX, |
1654 | }; |
1655 | |
1656 | struct audit_net *aunet = net_generic(net, id: audit_net_id); |
1657 | |
1658 | aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, cfg: &cfg); |
1659 | if (aunet->sk == NULL) { |
1660 | audit_panic(message: "cannot initialize netlink socket in namespace"); |
1661 | return -ENOMEM; |
1662 | } |
1663 | /* limit the timeout in case auditd is blocked/stopped */ |
1664 | aunet->sk->sk_sndtimeo = HZ / 10; |
1665 | |
1666 | return 0; |
1667 | } |
1668 | |
1669 | static void __net_exit audit_net_exit(struct net *net) |
1670 | { |
1671 | struct audit_net *aunet = net_generic(net, id: audit_net_id); |
1672 | |
1673 | /* NOTE: you would think that we would want to check the auditd |
1674 | * connection and potentially reset it here if it lives in this |
1675 | * namespace, but since the auditd connection tracking struct holds a |
1676 | * reference to this namespace (see auditd_set()) we are only ever |
1677 | * going to get here after that connection has been released */ |
1678 | |
1679 | netlink_kernel_release(sk: aunet->sk); |
1680 | } |
1681 | |
1682 | static struct pernet_operations audit_net_ops __net_initdata = { |
1683 | .init = audit_net_init, |
1684 | .exit = audit_net_exit, |
1685 | .id = &audit_net_id, |
1686 | .size = sizeof(struct audit_net), |
1687 | }; |
1688 | |
1689 | /* Initialize audit support at boot time. */ |
1690 | static int __init audit_init(void) |
1691 | { |
1692 | int i; |
1693 | |
1694 | if (audit_initialized == AUDIT_DISABLED) |
1695 | return 0; |
1696 | |
1697 | audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC); |
1698 | |
1699 | skb_queue_head_init(list: &audit_queue); |
1700 | skb_queue_head_init(list: &audit_retry_queue); |
1701 | skb_queue_head_init(list: &audit_hold_queue); |
1702 | |
1703 | for (i = 0; i < AUDIT_INODE_BUCKETS; i++) |
1704 | INIT_LIST_HEAD(list: &audit_inode_hash[i]); |
1705 | |
1706 | mutex_init(&audit_cmd_mutex.lock); |
1707 | audit_cmd_mutex.owner = NULL; |
1708 | |
1709 | pr_info("initializing netlink subsys (%s)\n", |
1710 | str_enabled_disabled(audit_default)); |
1711 | register_pernet_subsys(&audit_net_ops); |
1712 | |
1713 | audit_initialized = AUDIT_INITIALIZED; |
1714 | |
1715 | kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); |
1716 | if (IS_ERR(ptr: kauditd_task)) { |
1717 | int err = PTR_ERR(ptr: kauditd_task); |
1718 | panic(fmt: "audit: failed to start the kauditd thread (%d)\n", err); |
1719 | } |
1720 | |
1721 | audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, |
1722 | fmt: "state=initialized audit_enabled=%u res=1", |
1723 | audit_enabled); |
1724 | |
1725 | return 0; |
1726 | } |
1727 | postcore_initcall(audit_init); |
1728 | |
1729 | /* |
1730 | * Process kernel command-line parameter at boot time. |
1731 | * audit={0|off} or audit={1|on}. |
1732 | */ |
1733 | static int __init audit_enable(char *str) |
1734 | { |
1735 | if (!strcasecmp(s1: str, s2: "off") || !strcmp(str, "0")) |
1736 | audit_default = AUDIT_OFF; |
1737 | else if (!strcasecmp(s1: str, s2: "on") || !strcmp(str, "1")) |
1738 | audit_default = AUDIT_ON; |
1739 | else { |
1740 | pr_err("audit: invalid 'audit' parameter value (%s)\n", str); |
1741 | audit_default = AUDIT_ON; |
1742 | } |
1743 | |
1744 | if (audit_default == AUDIT_OFF) |
1745 | audit_initialized = AUDIT_DISABLED; |
1746 | if (audit_set_enabled(state: audit_default)) |
1747 | pr_err("audit: error setting audit state (%d)\n", |
1748 | audit_default); |
1749 | |
1750 | pr_info("%s\n", audit_default ? |
1751 | "enabled (after initialization)": "disabled (until reboot)"); |
1752 | |
1753 | return 1; |
1754 | } |
1755 | __setup("audit=", audit_enable); |
1756 | |
1757 | /* Process kernel command-line parameter at boot time. |
1758 | * audit_backlog_limit=<n> */ |
1759 | static int __init audit_backlog_limit_set(char *str) |
1760 | { |
1761 | u32 audit_backlog_limit_arg; |
1762 | |
1763 | pr_info("audit_backlog_limit: "); |
1764 | if (kstrtouint(s: str, base: 0, res: &audit_backlog_limit_arg)) { |
1765 | pr_cont("using default of %u, unable to parse %s\n", |
1766 | audit_backlog_limit, str); |
1767 | return 1; |
1768 | } |
1769 | |
1770 | audit_backlog_limit = audit_backlog_limit_arg; |
1771 | pr_cont("%d\n", audit_backlog_limit); |
1772 | |
1773 | return 1; |
1774 | } |
1775 | __setup("audit_backlog_limit=", audit_backlog_limit_set); |
1776 | |
1777 | static void audit_buffer_free(struct audit_buffer *ab) |
1778 | { |
1779 | if (!ab) |
1780 | return; |
1781 | |
1782 | kfree_skb(skb: ab->skb); |
1783 | kmem_cache_free(s: audit_buffer_cache, objp: ab); |
1784 | } |
1785 | |
1786 | static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, |
1787 | gfp_t gfp_mask, int type) |
1788 | { |
1789 | struct audit_buffer *ab; |
1790 | |
1791 | ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); |
1792 | if (!ab) |
1793 | return NULL; |
1794 | |
1795 | ab->skb = nlmsg_new(AUDIT_BUFSIZ, flags: gfp_mask); |
1796 | if (!ab->skb) |
1797 | goto err; |
1798 | if (!nlmsg_put(skb: ab->skb, portid: 0, seq: 0, type, payload: 0, flags: 0)) |
1799 | goto err; |
1800 | |
1801 | ab->ctx = ctx; |
1802 | ab->gfp_mask = gfp_mask; |
1803 | |
1804 | return ab; |
1805 | |
1806 | err: |
1807 | audit_buffer_free(ab); |
1808 | return NULL; |
1809 | } |
1810 | |
1811 | /** |
1812 | * audit_serial - compute a serial number for the audit record |
1813 | * |
1814 | * Compute a serial number for the audit record. Audit records are |
1815 | * written to user-space as soon as they are generated, so a complete |
1816 | * audit record may be written in several pieces. The timestamp of the |
1817 | * record and this serial number are used by the user-space tools to |
1818 | * determine which pieces belong to the same audit record. The |
1819 | * (timestamp,serial) tuple is unique for each syscall and is live from |
1820 | * syscall entry to syscall exit. |
1821 | * |
1822 | * NOTE: Another possibility is to store the formatted records off the |
1823 | * audit context (for those records that have a context), and emit them |
1824 | * all at syscall exit. However, this could delay the reporting of |
1825 | * significant errors until syscall exit (or never, if the system |
1826 | * halts). |
1827 | */ |
1828 | unsigned int audit_serial(void) |
1829 | { |
1830 | static atomic_t serial = ATOMIC_INIT(0); |
1831 | |
1832 | return atomic_inc_return(v: &serial); |
1833 | } |
1834 | |
1835 | static inline void audit_get_stamp(struct audit_context *ctx, |
1836 | struct timespec64 *t, unsigned int *serial) |
1837 | { |
1838 | if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { |
1839 | ktime_get_coarse_real_ts64(ts: t); |
1840 | *serial = audit_serial(); |
1841 | } |
1842 | } |
1843 | |
1844 | /** |
1845 | * audit_log_start - obtain an audit buffer |
1846 | * @ctx: audit_context (may be NULL) |
1847 | * @gfp_mask: type of allocation |
1848 | * @type: audit message type |
1849 | * |
1850 | * Returns audit_buffer pointer on success or NULL on error. |
1851 | * |
1852 | * Obtain an audit buffer. This routine does locking to obtain the |
1853 | * audit buffer, but then no locking is required for calls to |
1854 | * audit_log_*format. If the task (ctx) is a task that is currently in a |
1855 | * syscall, then the syscall is marked as auditable and an audit record |
1856 | * will be written at syscall exit. If there is no associated task, then |
1857 | * task context (ctx) should be NULL. |
1858 | */ |
1859 | struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, |
1860 | int type) |
1861 | { |
1862 | struct audit_buffer *ab; |
1863 | struct timespec64 t; |
1864 | unsigned int serial; |
1865 | |
1866 | if (audit_initialized != AUDIT_INITIALIZED) |
1867 | return NULL; |
1868 | |
1869 | if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) |
1870 | return NULL; |
1871 | |
1872 | /* NOTE: don't ever fail/sleep on these two conditions: |
1873 | * 1. auditd generated record - since we need auditd to drain the |
1874 | * queue; also, when we are checking for auditd, compare PIDs using |
1875 | * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() |
1876 | * using a PID anchored in the caller's namespace |
1877 | * 2. generator holding the audit_cmd_mutex - we don't want to block |
1878 | * while holding the mutex, although we do penalize the sender |
1879 | * later in audit_receive() when it is safe to block |
1880 | */ |
1881 | if (!(auditd_test_task(current) || audit_ctl_owner_current())) { |
1882 | long stime = audit_backlog_wait_time; |
1883 | |
1884 | while (audit_backlog_limit && |
1885 | (skb_queue_len(list_: &audit_queue) > audit_backlog_limit)) { |
1886 | /* wake kauditd to try and flush the queue */ |
1887 | wake_up_interruptible(&kauditd_wait); |
1888 | |
1889 | /* sleep if we are allowed and we haven't exhausted our |
1890 | * backlog wait limit */ |
1891 | if (gfpflags_allow_blocking(gfp_flags: gfp_mask) && (stime > 0)) { |
1892 | long rtime = stime; |
1893 | |
1894 | DECLARE_WAITQUEUE(wait, current); |
1895 | |
1896 | add_wait_queue_exclusive(wq_head: &audit_backlog_wait, |
1897 | wq_entry: &wait); |
1898 | set_current_state(TASK_UNINTERRUPTIBLE); |
1899 | stime = schedule_timeout(timeout: rtime); |
1900 | atomic_add(i: rtime - stime, v: &audit_backlog_wait_time_actual); |
1901 | remove_wait_queue(wq_head: &audit_backlog_wait, wq_entry: &wait); |
1902 | } else { |
1903 | if (audit_rate_check() && printk_ratelimit()) |
1904 | pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", |
1905 | skb_queue_len(&audit_queue), |
1906 | audit_backlog_limit); |
1907 | audit_log_lost(message: "backlog limit exceeded"); |
1908 | return NULL; |
1909 | } |
1910 | } |
1911 | } |
1912 | |
1913 | ab = audit_buffer_alloc(ctx, gfp_mask, type); |
1914 | if (!ab) { |
1915 | audit_log_lost(message: "out of memory in audit_log_start"); |
1916 | return NULL; |
1917 | } |
1918 | |
1919 | audit_get_stamp(ctx: ab->ctx, t: &t, serial: &serial); |
1920 | /* cancel dummy context to enable supporting records */ |
1921 | if (ctx) |
1922 | ctx->dummy = 0; |
1923 | audit_log_format(ab, fmt: "audit(%llu.%03lu:%u): ", |
1924 | (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); |
1925 | |
1926 | return ab; |
1927 | } |
1928 | |
1929 | /** |
1930 | * audit_expand - expand skb in the audit buffer |
1931 | * @ab: audit_buffer |
1932 | * @extra: space to add at tail of the skb |
1933 | * |
1934 | * Returns 0 (no space) on failed expansion, or available space if |
1935 | * successful. |
1936 | */ |
1937 | static inline int audit_expand(struct audit_buffer *ab, int extra) |
1938 | { |
1939 | struct sk_buff *skb = ab->skb; |
1940 | int oldtail = skb_tailroom(skb); |
1941 | int ret = pskb_expand_head(skb, nhead: 0, ntail: extra, gfp_mask: ab->gfp_mask); |
1942 | int newtail = skb_tailroom(skb); |
1943 | |
1944 | if (ret < 0) { |
1945 | audit_log_lost(message: "out of memory in audit_expand"); |
1946 | return 0; |
1947 | } |
1948 | |
1949 | skb->truesize += newtail - oldtail; |
1950 | return newtail; |
1951 | } |
1952 | |
1953 | /* |
1954 | * Format an audit message into the audit buffer. If there isn't enough |
1955 | * room in the audit buffer, more room will be allocated and vsnprint |
1956 | * will be called a second time. Currently, we assume that a printk |
1957 | * can't format message larger than 1024 bytes, so we don't either. |
1958 | */ |
1959 | static __printf(2, 0) |
1960 | void audit_log_vformat(struct audit_buffer *ab, const char *fmt, va_list args) |
1961 | { |
1962 | int len, avail; |
1963 | struct sk_buff *skb; |
1964 | va_list args2; |
1965 | |
1966 | if (!ab) |
1967 | return; |
1968 | |
1969 | BUG_ON(!ab->skb); |
1970 | skb = ab->skb; |
1971 | avail = skb_tailroom(skb); |
1972 | if (avail == 0) { |
1973 | avail = audit_expand(ab, AUDIT_BUFSIZ); |
1974 | if (!avail) |
1975 | goto out; |
1976 | } |
1977 | va_copy(args2, args); |
1978 | len = vsnprintf(buf: skb_tail_pointer(skb), size: avail, fmt, args); |
1979 | if (len >= avail) { |
1980 | /* The printk buffer is 1024 bytes long, so if we get |
1981 | * here and AUDIT_BUFSIZ is at least 1024, then we can |
1982 | * log everything that printk could have logged. */ |
1983 | avail = audit_expand(ab, |
1984 | max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); |
1985 | if (!avail) |
1986 | goto out_va_end; |
1987 | len = vsnprintf(buf: skb_tail_pointer(skb), size: avail, fmt, args: args2); |
1988 | } |
1989 | if (len > 0) |
1990 | skb_put(skb, len); |
1991 | out_va_end: |
1992 | va_end(args2); |
1993 | out: |
1994 | return; |
1995 | } |
1996 | |
1997 | /** |
1998 | * audit_log_format - format a message into the audit buffer. |
1999 | * @ab: audit_buffer |
2000 | * @fmt: format string |
2001 | * @...: optional parameters matching @fmt string |
2002 | * |
2003 | * All the work is done in audit_log_vformat. |
2004 | */ |
2005 | void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) |
2006 | { |
2007 | va_list args; |
2008 | |
2009 | if (!ab) |
2010 | return; |
2011 | va_start(args, fmt); |
2012 | audit_log_vformat(ab, fmt, args); |
2013 | va_end(args); |
2014 | } |
2015 | |
2016 | /** |
2017 | * audit_log_n_hex - convert a buffer to hex and append it to the audit skb |
2018 | * @ab: the audit_buffer |
2019 | * @buf: buffer to convert to hex |
2020 | * @len: length of @buf to be converted |
2021 | * |
2022 | * No return value; failure to expand is silently ignored. |
2023 | * |
2024 | * This function will take the passed buf and convert it into a string of |
2025 | * ascii hex digits. The new string is placed onto the skb. |
2026 | */ |
2027 | void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, |
2028 | size_t len) |
2029 | { |
2030 | int i, avail, new_len; |
2031 | unsigned char *ptr; |
2032 | struct sk_buff *skb; |
2033 | |
2034 | if (!ab) |
2035 | return; |
2036 | |
2037 | BUG_ON(!ab->skb); |
2038 | skb = ab->skb; |
2039 | avail = skb_tailroom(skb); |
2040 | new_len = len<<1; |
2041 | if (new_len >= avail) { |
2042 | /* Round the buffer request up to the next multiple */ |
2043 | new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); |
2044 | avail = audit_expand(ab, extra: new_len); |
2045 | if (!avail) |
2046 | return; |
2047 | } |
2048 | |
2049 | ptr = skb_tail_pointer(skb); |
2050 | for (i = 0; i < len; i++) |
2051 | ptr = hex_byte_pack_upper(buf: ptr, byte: buf[i]); |
2052 | *ptr = 0; |
2053 | skb_put(skb, len: len << 1); /* new string is twice the old string */ |
2054 | } |
2055 | |
2056 | /* |
2057 | * Format a string of no more than slen characters into the audit buffer, |
2058 | * enclosed in quote marks. |
2059 | */ |
2060 | void audit_log_n_string(struct audit_buffer *ab, const char *string, |
2061 | size_t slen) |
2062 | { |
2063 | int avail, new_len; |
2064 | unsigned char *ptr; |
2065 | struct sk_buff *skb; |
2066 | |
2067 | if (!ab) |
2068 | return; |
2069 | |
2070 | BUG_ON(!ab->skb); |
2071 | skb = ab->skb; |
2072 | avail = skb_tailroom(skb); |
2073 | new_len = slen + 3; /* enclosing quotes + null terminator */ |
2074 | if (new_len > avail) { |
2075 | avail = audit_expand(ab, extra: new_len); |
2076 | if (!avail) |
2077 | return; |
2078 | } |
2079 | ptr = skb_tail_pointer(skb); |
2080 | *ptr++ = '"'; |
2081 | memcpy(ptr, string, slen); |
2082 | ptr += slen; |
2083 | *ptr++ = '"'; |
2084 | *ptr = 0; |
2085 | skb_put(skb, len: slen + 2); /* don't include null terminator */ |
2086 | } |
2087 | |
2088 | /** |
2089 | * audit_string_contains_control - does a string need to be logged in hex |
2090 | * @string: string to be checked |
2091 | * @len: max length of the string to check |
2092 | */ |
2093 | bool audit_string_contains_control(const char *string, size_t len) |
2094 | { |
2095 | const unsigned char *p; |
2096 | for (p = string; p < (const unsigned char *)string + len; p++) { |
2097 | if (*p == '"' || *p < 0x21 || *p > 0x7e) |
2098 | return true; |
2099 | } |
2100 | return false; |
2101 | } |
2102 | |
2103 | /** |
2104 | * audit_log_n_untrustedstring - log a string that may contain random characters |
2105 | * @ab: audit_buffer |
2106 | * @string: string to be logged |
2107 | * @len: length of string (not including trailing null) |
2108 | * |
2109 | * This code will escape a string that is passed to it if the string |
2110 | * contains a control character, unprintable character, double quote mark, |
2111 | * or a space. Unescaped strings will start and end with a double quote mark. |
2112 | * Strings that are escaped are printed in hex (2 digits per char). |
2113 | * |
2114 | * The caller specifies the number of characters in the string to log, which may |
2115 | * or may not be the entire string. |
2116 | */ |
2117 | void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, |
2118 | size_t len) |
2119 | { |
2120 | if (audit_string_contains_control(string, len)) |
2121 | audit_log_n_hex(ab, buf: string, len); |
2122 | else |
2123 | audit_log_n_string(ab, string, slen: len); |
2124 | } |
2125 | |
2126 | /** |
2127 | * audit_log_untrustedstring - log a string that may contain random characters |
2128 | * @ab: audit_buffer |
2129 | * @string: string to be logged |
2130 | * |
2131 | * Same as audit_log_n_untrustedstring(), except that strlen is used to |
2132 | * determine string length. |
2133 | */ |
2134 | void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) |
2135 | { |
2136 | audit_log_n_untrustedstring(ab, string, strlen(string)); |
2137 | } |
2138 | |
2139 | /* This is a helper-function to print the escaped d_path */ |
2140 | void audit_log_d_path(struct audit_buffer *ab, const char *prefix, |
2141 | const struct path *path) |
2142 | { |
2143 | char *p, *pathname; |
2144 | |
2145 | if (prefix) |
2146 | audit_log_format(ab, fmt: "%s", prefix); |
2147 | |
2148 | /* We will allow 11 spaces for ' (deleted)' to be appended */ |
2149 | pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); |
2150 | if (!pathname) { |
2151 | audit_log_format(ab, fmt: "\"<no_memory>\""); |
2152 | return; |
2153 | } |
2154 | p = d_path(path, pathname, PATH_MAX+11); |
2155 | if (IS_ERR(ptr: p)) { /* Should never happen since we send PATH_MAX */ |
2156 | /* FIXME: can we save some information here? */ |
2157 | audit_log_format(ab, fmt: "\"<too_long>\""); |
2158 | } else |
2159 | audit_log_untrustedstring(ab, string: p); |
2160 | kfree(objp: pathname); |
2161 | } |
2162 | |
2163 | void audit_log_session_info(struct audit_buffer *ab) |
2164 | { |
2165 | unsigned int sessionid = audit_get_sessionid(current); |
2166 | uid_t auid = from_kuid(to: &init_user_ns, uid: audit_get_loginuid(current)); |
2167 | |
2168 | audit_log_format(ab, fmt: "auid=%u ses=%u", auid, sessionid); |
2169 | } |
2170 | |
2171 | void audit_log_key(struct audit_buffer *ab, char *key) |
2172 | { |
2173 | audit_log_format(ab, fmt: " key="); |
2174 | if (key) |
2175 | audit_log_untrustedstring(ab, string: key); |
2176 | else |
2177 | audit_log_format(ab, fmt: "(null)"); |
2178 | } |
2179 | |
2180 | int audit_log_task_context(struct audit_buffer *ab) |
2181 | { |
2182 | struct lsm_prop prop; |
2183 | struct lsm_context ctx; |
2184 | int error; |
2185 | |
2186 | security_current_getlsmprop_subj(prop: &prop); |
2187 | if (!lsmprop_is_set(prop: &prop)) |
2188 | return 0; |
2189 | |
2190 | error = security_lsmprop_to_secctx(prop: &prop, cp: &ctx); |
2191 | if (error < 0) { |
2192 | if (error != -EINVAL) |
2193 | goto error_path; |
2194 | return 0; |
2195 | } |
2196 | |
2197 | audit_log_format(ab, fmt: " subj=%s", ctx.context); |
2198 | security_release_secctx(cp: &ctx); |
2199 | return 0; |
2200 | |
2201 | error_path: |
2202 | audit_panic(message: "error in audit_log_task_context"); |
2203 | return error; |
2204 | } |
2205 | EXPORT_SYMBOL(audit_log_task_context); |
2206 | |
2207 | void audit_log_d_path_exe(struct audit_buffer *ab, |
2208 | struct mm_struct *mm) |
2209 | { |
2210 | struct file *exe_file; |
2211 | |
2212 | if (!mm) |
2213 | goto out_null; |
2214 | |
2215 | exe_file = get_mm_exe_file(mm); |
2216 | if (!exe_file) |
2217 | goto out_null; |
2218 | |
2219 | audit_log_d_path(ab, prefix: " exe=", path: &exe_file->f_path); |
2220 | fput(exe_file); |
2221 | return; |
2222 | out_null: |
2223 | audit_log_format(ab, fmt: " exe=(null)"); |
2224 | } |
2225 | |
2226 | struct tty_struct *audit_get_tty(void) |
2227 | { |
2228 | struct tty_struct *tty = NULL; |
2229 | unsigned long flags; |
2230 | |
2231 | spin_lock_irqsave(¤t->sighand->siglock, flags); |
2232 | if (current->signal) |
2233 | tty = tty_kref_get(current->signal->tty); |
2234 | spin_unlock_irqrestore(lock: ¤t->sighand->siglock, flags); |
2235 | return tty; |
2236 | } |
2237 | |
2238 | void audit_put_tty(struct tty_struct *tty) |
2239 | { |
2240 | tty_kref_put(tty); |
2241 | } |
2242 | |
2243 | void audit_log_task_info(struct audit_buffer *ab) |
2244 | { |
2245 | const struct cred *cred; |
2246 | char comm[sizeof(current->comm)]; |
2247 | struct tty_struct *tty; |
2248 | |
2249 | if (!ab) |
2250 | return; |
2251 | |
2252 | cred = current_cred(); |
2253 | tty = audit_get_tty(); |
2254 | audit_log_format(ab, |
2255 | fmt: " ppid=%d pid=%d auid=%u uid=%u gid=%u" |
2256 | " euid=%u suid=%u fsuid=%u" |
2257 | " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", |
2258 | task_ppid_nr(current), |
2259 | task_tgid_nr(current), |
2260 | from_kuid(to: &init_user_ns, uid: audit_get_loginuid(current)), |
2261 | from_kuid(to: &init_user_ns, uid: cred->uid), |
2262 | from_kgid(to: &init_user_ns, gid: cred->gid), |
2263 | from_kuid(to: &init_user_ns, uid: cred->euid), |
2264 | from_kuid(to: &init_user_ns, uid: cred->suid), |
2265 | from_kuid(to: &init_user_ns, uid: cred->fsuid), |
2266 | from_kgid(to: &init_user_ns, gid: cred->egid), |
2267 | from_kgid(to: &init_user_ns, gid: cred->sgid), |
2268 | from_kgid(to: &init_user_ns, gid: cred->fsgid), |
2269 | tty ? tty_name(tty) : "(none)", |
2270 | audit_get_sessionid(current)); |
2271 | audit_put_tty(tty); |
2272 | audit_log_format(ab, fmt: " comm="); |
2273 | audit_log_untrustedstring(ab, get_task_comm(comm, current)); |
2274 | audit_log_d_path_exe(ab, current->mm); |
2275 | audit_log_task_context(ab); |
2276 | } |
2277 | EXPORT_SYMBOL(audit_log_task_info); |
2278 | |
2279 | /** |
2280 | * audit_log_path_denied - report a path restriction denial |
2281 | * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc) |
2282 | * @operation: specific operation name |
2283 | */ |
2284 | void audit_log_path_denied(int type, const char *operation) |
2285 | { |
2286 | struct audit_buffer *ab; |
2287 | |
2288 | if (!audit_enabled) |
2289 | return; |
2290 | |
2291 | /* Generate log with subject, operation, outcome. */ |
2292 | ab = audit_log_start(ctx: audit_context(), GFP_KERNEL, type); |
2293 | if (!ab) |
2294 | return; |
2295 | audit_log_format(ab, fmt: "op=%s", operation); |
2296 | audit_log_task_info(ab); |
2297 | audit_log_format(ab, fmt: " res=0"); |
2298 | audit_log_end(ab); |
2299 | } |
2300 | |
2301 | /* global counter which is incremented every time something logs in */ |
2302 | static atomic_t session_id = ATOMIC_INIT(0); |
2303 | |
2304 | static int audit_set_loginuid_perm(kuid_t loginuid) |
2305 | { |
2306 | /* if we are unset, we don't need privs */ |
2307 | if (!audit_loginuid_set(current)) |
2308 | return 0; |
2309 | /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ |
2310 | if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) |
2311 | return -EPERM; |
2312 | /* it is set, you need permission */ |
2313 | if (!capable(CAP_AUDIT_CONTROL)) |
2314 | return -EPERM; |
2315 | /* reject if this is not an unset and we don't allow that */ |
2316 | if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) |
2317 | && uid_valid(uid: loginuid)) |
2318 | return -EPERM; |
2319 | return 0; |
2320 | } |
2321 | |
2322 | static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, |
2323 | unsigned int oldsessionid, |
2324 | unsigned int sessionid, int rc) |
2325 | { |
2326 | struct audit_buffer *ab; |
2327 | uid_t uid, oldloginuid, loginuid; |
2328 | struct tty_struct *tty; |
2329 | |
2330 | if (!audit_enabled) |
2331 | return; |
2332 | |
2333 | ab = audit_log_start(ctx: audit_context(), GFP_KERNEL, AUDIT_LOGIN); |
2334 | if (!ab) |
2335 | return; |
2336 | |
2337 | uid = from_kuid(to: &init_user_ns, task_uid(current)); |
2338 | oldloginuid = from_kuid(to: &init_user_ns, uid: koldloginuid); |
2339 | loginuid = from_kuid(to: &init_user_ns, uid: kloginuid); |
2340 | tty = audit_get_tty(); |
2341 | |
2342 | audit_log_format(ab, fmt: "pid=%d uid=%u", task_tgid_nr(current), uid); |
2343 | audit_log_task_context(ab); |
2344 | audit_log_format(ab, fmt: " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", |
2345 | oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", |
2346 | oldsessionid, sessionid, !rc); |
2347 | audit_put_tty(tty); |
2348 | audit_log_end(ab); |
2349 | } |
2350 | |
2351 | /** |
2352 | * audit_set_loginuid - set current task's loginuid |
2353 | * @loginuid: loginuid value |
2354 | * |
2355 | * Returns 0. |
2356 | * |
2357 | * Called (set) from fs/proc/base.c::proc_loginuid_write(). |
2358 | */ |
2359 | int audit_set_loginuid(kuid_t loginuid) |
2360 | { |
2361 | unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; |
2362 | kuid_t oldloginuid; |
2363 | int rc; |
2364 | |
2365 | oldloginuid = audit_get_loginuid(current); |
2366 | oldsessionid = audit_get_sessionid(current); |
2367 | |
2368 | rc = audit_set_loginuid_perm(loginuid); |
2369 | if (rc) |
2370 | goto out; |
2371 | |
2372 | /* are we setting or clearing? */ |
2373 | if (uid_valid(uid: loginuid)) { |
2374 | sessionid = (unsigned int)atomic_inc_return(v: &session_id); |
2375 | if (unlikely(sessionid == AUDIT_SID_UNSET)) |
2376 | sessionid = (unsigned int)atomic_inc_return(v: &session_id); |
2377 | } |
2378 | |
2379 | current->sessionid = sessionid; |
2380 | current->loginuid = loginuid; |
2381 | out: |
2382 | audit_log_set_loginuid(koldloginuid: oldloginuid, kloginuid: loginuid, oldsessionid, sessionid, rc); |
2383 | return rc; |
2384 | } |
2385 | |
2386 | /** |
2387 | * audit_signal_info - record signal info for shutting down audit subsystem |
2388 | * @sig: signal value |
2389 | * @t: task being signaled |
2390 | * |
2391 | * If the audit subsystem is being terminated, record the task (pid) |
2392 | * and uid that is doing that. |
2393 | */ |
2394 | int audit_signal_info(int sig, struct task_struct *t) |
2395 | { |
2396 | kuid_t uid = current_uid(), auid; |
2397 | |
2398 | if (auditd_test_task(task: t) && |
2399 | (sig == SIGTERM || sig == SIGHUP || |
2400 | sig == SIGUSR1 || sig == SIGUSR2)) { |
2401 | audit_sig_pid = task_tgid_nr(current); |
2402 | auid = audit_get_loginuid(current); |
2403 | if (uid_valid(uid: auid)) |
2404 | audit_sig_uid = auid; |
2405 | else |
2406 | audit_sig_uid = uid; |
2407 | security_current_getlsmprop_subj(prop: &audit_sig_lsm); |
2408 | } |
2409 | |
2410 | return audit_signal_info_syscall(t); |
2411 | } |
2412 | |
2413 | /** |
2414 | * audit_log_end - end one audit record |
2415 | * @ab: the audit_buffer |
2416 | * |
2417 | * We can not do a netlink send inside an irq context because it blocks (last |
2418 | * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a |
2419 | * queue and a kthread is scheduled to remove them from the queue outside the |
2420 | * irq context. May be called in any context. |
2421 | */ |
2422 | void audit_log_end(struct audit_buffer *ab) |
2423 | { |
2424 | struct sk_buff *skb; |
2425 | struct nlmsghdr *nlh; |
2426 | |
2427 | if (!ab) |
2428 | return; |
2429 | |
2430 | if (audit_rate_check()) { |
2431 | skb = ab->skb; |
2432 | ab->skb = NULL; |
2433 | |
2434 | /* setup the netlink header, see the comments in |
2435 | * kauditd_send_multicast_skb() for length quirks */ |
2436 | nlh = nlmsg_hdr(skb); |
2437 | nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; |
2438 | |
2439 | /* queue the netlink packet and poke the kauditd thread */ |
2440 | skb_queue_tail(list: &audit_queue, newsk: skb); |
2441 | wake_up_interruptible(&kauditd_wait); |
2442 | } else |
2443 | audit_log_lost(message: "rate limit exceeded"); |
2444 | |
2445 | audit_buffer_free(ab); |
2446 | } |
2447 | |
2448 | /** |
2449 | * audit_log - Log an audit record |
2450 | * @ctx: audit context |
2451 | * @gfp_mask: type of allocation |
2452 | * @type: audit message type |
2453 | * @fmt: format string to use |
2454 | * @...: variable parameters matching the format string |
2455 | * |
2456 | * This is a convenience function that calls audit_log_start, |
2457 | * audit_log_vformat, and audit_log_end. It may be called |
2458 | * in any context. |
2459 | */ |
2460 | void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, |
2461 | const char *fmt, ...) |
2462 | { |
2463 | struct audit_buffer *ab; |
2464 | va_list args; |
2465 | |
2466 | ab = audit_log_start(ctx, gfp_mask, type); |
2467 | if (ab) { |
2468 | va_start(args, fmt); |
2469 | audit_log_vformat(ab, fmt, args); |
2470 | va_end(args); |
2471 | audit_log_end(ab); |
2472 | } |
2473 | } |
2474 | |
2475 | EXPORT_SYMBOL(audit_log_start); |
2476 | EXPORT_SYMBOL(audit_log_end); |
2477 | EXPORT_SYMBOL(audit_log_format); |
2478 | EXPORT_SYMBOL(audit_log); |
2479 |
Definitions
- audit_initialized
- audit_enabled
- audit_ever_enabled
- audit_default
- audit_failure
- audit_net_id
- audit_net
- auditd_connection
- auditd_conn
- auditd_conn_lock
- audit_rate_limit
- audit_backlog_limit
- audit_backlog_wait_time
- audit_sig_uid
- audit_sig_pid
- audit_sig_lsm
- audit_lost
- audit_backlog_wait_time_actual
- audit_inode_hash
- audit_buffer_cache
- audit_queue
- audit_retry_queue
- audit_hold_queue
- kauditd_task
- kauditd_wait
- audit_backlog_wait
- af
- audit_feature_names
- audit_ctl_mutex
- audit_cmd_mutex
- audit_buffer
- audit_reply
- auditd_test_task
- audit_ctl_lock
- audit_ctl_unlock
- audit_ctl_owner_current
- auditd_pid_vnr
- audit_get_sk
- audit_panic
- audit_rate_check
- audit_log_lost
- audit_log_config_change
- audit_do_config_change
- audit_set_rate_limit
- audit_set_backlog_limit
- audit_set_backlog_wait_time
- audit_set_enabled
- audit_set_failure
- auditd_conn_free
- auditd_set
- kauditd_printk_skb
- kauditd_rehold_skb
- kauditd_hold_skb
- kauditd_retry_skb
- auditd_reset
- auditd_send_unicast_skb
- kauditd_send_queue
- kauditd_send_multicast_skb
- kauditd_thread
- audit_send_list_thread
- audit_make_reply
- audit_free_reply
- audit_send_reply_thread
- audit_send_reply
- audit_netlink_ok
- audit_log_common_recv_msg
- audit_log_user_recv_msg
- is_audit_feature_set
- audit_get_feature
- audit_log_feature_change
- audit_set_feature
- audit_replace
- audit_receive_msg
- audit_receive
- audit_log_multicast
- audit_multicast_bind
- audit_multicast_unbind
- audit_net_init
- audit_net_exit
- audit_net_ops
- audit_init
- audit_enable
- audit_backlog_limit_set
- audit_buffer_free
- audit_buffer_alloc
- audit_serial
- audit_get_stamp
- audit_log_start
- audit_expand
- audit_log_vformat
- audit_log_format
- audit_log_n_hex
- audit_log_n_string
- audit_string_contains_control
- audit_log_n_untrustedstring
- audit_log_untrustedstring
- audit_log_d_path
- audit_log_session_info
- audit_log_key
- audit_log_task_context
- audit_log_d_path_exe
- audit_get_tty
- audit_put_tty
- audit_log_task_info
- audit_log_path_denied
- session_id
- audit_set_loginuid_perm
- audit_log_set_loginuid
- audit_set_loginuid
- audit_signal_info
- audit_log_end
Improve your Profiling and Debugging skills
Find out more